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Abstract

Loss of control (LOC) is the primary cause of failure of Unmanned Aerial Vehicles (UAV). The safety
of these systems can be largely improved by facilitating techniques to prevent LOC to occur, such as
Flight Envelope Protection, enabling controllers to keep the system within the Safe Flight Envelope
(SFE).

The aim of this work is to examine the behaviour of the global SFE of a quadcopter subjected
to varying system dynamics, including the effects of longitudinal center of gravity displacements and
actuator dynamics.

The analysis has been split into the forward reachable set (FRS) and the backward reachable set
(BRS). The FRS is estimated through an optimized Monte-Carlo (MC) simulation approach. Verification
shows that the system specific optimized MC simulation approximates the true reachable sets with high
accuracy, while exceeding performance on both accuracy as well as computation time compared to the
Level-Set method. The BRS is derived from the FRS directly using a minimum-time optimal control
(MTOC) routine including actuator dynamics. This approach guarantees that the BRS is contained
within the FRS and bypasses the need to simulate the dynamics backwards in time. Both methods
exploit the control affine system structure from which it can be derived that the MTOC for both the
FRS and BRS is bang-bang control, which drastically reduces the sampling space and optimal control
complexity.

The results show that both the location of the centroid of the FRS and the return time distribution of
the BRS are a function of the offset position. A large decrease in the FRS area is seen for larger center
of gravity offset positions. Furthermore, the actuator dynamics reduce the FRS by 85%, irrespective of
center of gravity location, while the BRS without actuator modelling shows impractical return times as a
result of unfeasible instantaneous rotor speed changes. A novel experimental validation procedure on
the quadcopter FRS has been performed. The results show a general overestimation with respect to
the flight data, which is expected when comparing an open-loop simulation with closed-loop performed
flight maneuvers.

The results from this research provide valuable information on quadcopter reachability analysis.
This information can be further used in the application of (probabilistic) FEP for LOC prevention on
quadcopters, subjected to varying system dynamics. Additionally, the results show that it might be
feasible to interpolate the reachable sets subjected to varying center of gravity locations, actuator dy-
namics and varying time-windows. This supports the possibility of a data-base driven approach for
(real-time) envelope prediction and protection. The MC simulation and minimum-time optimal control
routine, as developed in this work, have shown to be promising methods to be used in future work in
the framework of reachability analysis of quadcopter drones.
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Nomenclature

ϵ Model residual

θ̂ Parameter vector

κ0 Rotor property coefficient

µ Mean

ωi Rotational speed of motor i

σ Standard deviation

τ Time constant

τ0 Rotor torque coefficient

Mass moment of inertia matrix around the body i-axis

I Mass moment of inertia matrix

θ Pitch angle (about the body Y-axis)

F⃗ Resultant force vector

G⃗ Gravity vector

M⃗ Resultant moment vector

u⃗ Input vector

x⃗0 Initial state vector

x⃗ State vector

y⃗ Measurement vector

A Regression matrix

b Distance to center of gravity along body Y-axis

d Polynomial degree

dt Time step

f System dynamics

l Distance to center of gravity along body X-axis

m Mass

Mi 0ii<0 th model parameter

N Number of realizations / Number of data points

n Number of independent states

Nswitch Number of control input sampling occasions

Ntraj Number of trajectories

P Regressor function

p Angular velocity about the body X-axis
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pc Tuning parameter

q Angular velocity about the body Y-axis

r Angular velocity about the body Z-axis

R2 Coefficient of determination

T Resultant thrust

T Time-window

t Time

u Airspeed component along the body X-axis / Input

u0 Initial input

Uq Control pitching moment

v Airspeed component along the body Y-axis

w Airspeed component along the body Z-axis

BRS Backward Reachable Set

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

FCL Flight Control Law
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HJ PDE Hamilton-Jacobi Partial Differential Equation
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IMU Inertial Measurement Unit

LOC Loss of Control

LOC-I Loss of Control In Flight

MC Monte-Carlo

MPC Model-Based Predictive Control

NRMSE Normalized Root Mean Square Error

ODE Ordinary Differantial Equation

PCA Principal Component Analysis

PID Proportional Integral Derivative

ROA Region of Attraction

SFE Safe Flight Envelope

SNR Signal-to-Noise Ratio

UAV Unmanned Aerial Vehicle

ZKF Zonotopic Kalman Filter



1
Introduction

The use and applications of Unmanned Areal Vehicles (UAV) are expected to grow rapidly in the near
future [1]. Currently Loss of control (LOC) is the main cause of failures for UAVs [2]. In order to improve
safety of these systems, development of LOC prevention techniques are of utmost importance. A way
to prevent LOC is through the use of flight envelope protection (FEP) which enables controllers to
keep the system within the Safe Flight Envelope (SFE). The SFE indicates the state-space in which
the vehicle can be safely operated, operating outside the SFE is linked to LOC [3][4]. The SFE can be
defined as the set of states that can be reached, within a certain time-window, for which a trajectory exist
to return to a safe flight condition within a predefined time-window [5][6][7][8]. This research focuses
on predicting the SFE of multirotor UAVs to allow for FEP implementation and development for LOC
prevention and thereby facilitating in improving the safety of these systems. The prediction is focused
on the global flight envelope, rather than local boundary prediction, as it has the advantage to apply
global FEP techniques to balance safety and performance for the specific application.

The aim of this work is to examine the behaviour of the global SFE of a quadcopter subjected
to varying system dynamics, including the effects of longitudinal center of gravity displacements and
actuator dynamics. The analysis has been split into the forward reachable set (FRS), which contains
all the states the system can reach from a set of initial states within a given time-window, and the
backward reachable set (BRS), which contains the states from which the system can return to the
initial set of states within an arbitrary time-window. The multirotor UAV considered in this study is a
quadcopter model because these models are widely used in various applications, easily accessible and
suitable for conducting (indoor) flight experiments. The dynamics of the quadcopter for various center of
gravity positions are captured via a data-driven approach using model identification on flight data. The
prediction of the forward reachable sets are obtained using a Monte-Carlo (MC) approach rather than
the prevailing Level-Set method. The MC simulation approach is a promising method for quadcopter
flight envelope prediction as it can be applied on higher dimensional nonlinear systems [8], it has a
lower computational load with increased number of dimensions compared to the Level-Set method
[9], and is recently successfully applied on quadcopter models [10]. The BRS is derived from the
FRS directly using a minimum-time optimal control (MTOC) routine including actuator dynamics. This
approach guarantees that the BRS is contained within the FRS and bypasses the need to simulate the
dynamics backwards in time. Both methods exploit the control affine system structure from which it can
be derived that the MTOC for both the FRS and BRS is bang-bang control, which drastically reduces
the sampling space and optimal control complexity. The methods are verified and an experimental
validation procedure is performed to validate the FRS estimations.

The thesis report is structured as follows: in chapter 2 an overview of the thesis project is covered
including the research motivation, objective, research contributions and the scope and limitations of
the work. In Part I the thesis paper is presented which contains all relevant information of the research.
The findings from the literature review study, carried out before the thesis project, can be found in Part II.
In Part III the conclusions and recommendations of the research are summarized in chapter 8.
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2
Thesis Project Overview

This research focuses on improving and extending knowledge on (the prediction of) the Safe Flight En-
velope (SFE) of a quadcopter model motivated by the promising findings in recent (fixed-wing) aircraft
literature in the framework of SFE prediction and protection (FEP) for loss of control (LOC) prevention.
Hereby contributing to the improvement of the safety of aircraft. Furthermore, research on applica-
tion of this reachability framework on quadcopters is limited [11] and hence this research directly adds
knowledge to the body of literature. The flight envelopes considered in this work include both the for-
ward reachable set (FRS) and the backward reachable set (BRS). These sets can be combined to
define the SFE which can be used in SFE protection techniques for LOC prevention. In this chapter the
research motivation and a summary of the literature review can be found in section 2.1. The research
objective and research questions are discussed in section 2.2. The contributions of this research are
summarized in section 2.3 followed by the scope and limitations in section 2.4.

2.1. Research Motivation and Summary of Gaps in Literature
From the literature research it has been identified that a major factor playing a role in fatal accidents
of UAVs involves LOC [2]. Since the use of (commerical) UAVs has been rising and is expected to
grow even more in the future [1], it is of utmost importance to prevent LOC conditions to improve UAV
safety [12]. Operating outside the Safe Flight Envelope (SFE) of an aircraft is linked to loss of control
(LOC) [3][4], which is the main cause of failures for UAVs [2][12]. The SFE is defined as all the possible
states which an aircraft can both reach from- and be controlled back to a set of initial flight conditions
within a given time-window [8]. A promising technique that prevents the system to violate the SFE
boundaries is called Flight Envelope Protection (FEP). For this research it is decided to focus on global
flight envelope prediction because having prior knowledge on the global envelope has the advantage
to develop FEP systems to balance safety and performance for the specific application.

From the literature research it can be concluded that treating the boundaries of the SFE as proba-
bilistic is preferred. The reason is because classical deterministic flight envelopes tend to overestimate
envelopes leading to dangerously optimistic FEP systems [13][14]. Furthermore, in Yin et al. [8] it
was shown that the envelopes change shape and size when changing the (fixed-wing) aircraft system
dynamics. Therefore, when including system model uncertainties, it is more suitable to model the en-
velope boundaries as probabilistic. Moreover, an advantage of treating the boundaries as probabilistic
allows for earlier responses and gentler protective FEP measures as shown in Yin et al. [8].

The behaviour of the SFE boundaries of amultirotor UAV under varying configurations is yet to be ex-
plored. Therefore, a sensitivity analysis generates knowledge on the behaviour of the boundaries under
varying multirotor UAV configurations which directly adds information to the body of literature of multi-
rotor UAVs. Varying multirotor UAV configurations can be considered as a form of model uncertainty,
thus the analysis of the behaviour of the boundaries will generate knowledge on boundary prediction
in a probabilistic way. Consequently, this could enhance the integration of SFE protection systems on
multirotor UAVs to balance safety and performance with novel probabilistic protection strategies [8].

The current mainstream method for flight envelope prediction found in literature is through (a model-
based) reachability analysis, often involved with finding a solution to the Hamilton-Jacobi partial differ-
ential equation (HJ PDE). The main disadvantage of this method is that the numerical methods for
solving the PDE, such as the widely used Level-Set method, suffer from the curse of dimensionality

2
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as it scales exponentially with the number of states and becomes impractical to use for more than
four states [5][11][15][16]. Furthermore, the Level-Set method tends to produce underestimated sets
which are not desirable as it prevents to exploit the ability of highly maneuverable flight which multiro-
tor UAV systems have to offer [13][14]. Therefore, application of this method is not preferred for high
dimensional nonlinear multirotor UAV applications. To conquer these limitations, the Monte-Carlo (MC)
simulation seems to be the most promising method to be used as it can be applied on higher dimen-
sional nonlinear systems and is recently successfully applied on quadcopter models [8][11]. In Sun et
al. [11] it is shown that this method is able to solve a 6 dimensional reachability problem for a quad-
copter model in a matter of seconds and is more computational efficient than the Level-Set method
[8]. Although in Terrell et al. [9] it was shown that the MC simulation also suffers from the curse of
dimensionality, however less than the Level-Set method. It should be noted that extreme control effec-
tiveness methods, such as bang-bang control [11], should be employed to mainly reach the boundary
states, prevent conservative results and reduce the amount of simulations required. Also it should be
noted that the probability distribution of the input determines the probability distribution of the corre-
sponding output [8]. Furthermore, the time-window used for reachability analysis has a large influence
on the obtained results and is system and application specific.

It should be kept in mind that the results from this model based approach heavily relies on the model
quality and model validity used in the reachability analysis. System identification is a technique often
used for model identification of nonlinear systems [17].

Knowledge on the behaviour of SFE boundaries under varying system dynamics allows for further
investigation into methods to interpolate envelopes for different configurations of the system. Interpola-
tion of envelopes bypasses the need for recalculation of computational expensive envelope prediction
methods and hence could allow for real-time application. This enables further exploration in the feasi-
bility of the promising database approach for real-time flight envelope prediction for multirotor UAVs [5].
In Zhang [5] flight data are used to classify a certain aircraft damage case, and consequently use on-
board stored pre-calculated flight envelopes which are interpolated online based on the flight condition
and damage case scenario. This paper showed promising results on flight envelope interpolation ap-
proximating the result of the Level-Set method and encourages to investigate and apply this database
approach to (damaged) drones [5].

2.2. Research Objective
The thesis project focuses on enhancing the knowledge on the behaviour of the Safe Flight Envelope
(SFE) boundaries of a multirotor UAV under varying system dynamics. The results directly add knowl-
edge to the body of literature of multirotor UAV on probabilistic boundary prediction with regards to
varying system dynamics. This could be used to improve (probabilistic) SFE protection systems for
balancing safety and performance. Furthermore, the obtained knowledge from the research could be
used to investigate interpolation techniques to support a database-driven technique to enable real-time
SFE prediction for quadcopters [5].

The objective for the research is defined as follows:

Research Objective

The objective of this thesis work is to assess the behaviour of the boundaries of the Safe Flight
Envelope (SFE) of a quadcopter subjected to varying system dynamics.

With the research objective defined, the following research question is formulated:

Research Question

How do the boundaries of the Safe Flight Envelope (SFE) of a quadcopter change subjected to
varying system dynamics?

Important to emphasize is the definition of the SFE used in this research, which is as follows:
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The Safe Flight Envelope (SFE) Definition

The Safe Flight Envelope (SFE) can be defined as the set of states that can be reached, within
a certain time-window, for which a trajectory exist to return to a safe flight condition within a
predefined time-window [5][6][7][8].

In this research the SFE is divided into two sets: 1) the forward reachable set (FRS), which defines
all the states that the system can reach within a time-window, and, 2) the backward reachable set
(BRS), which defines all states from which the system can return to the (initial) safe (set of) state(s)
within an arbitrary time-window. In this work the BRS is found directly from the FRS which guarantees
that the BRS is contained within the FRS.

The varying system dynamics in this research include the effects of varying the center of gravity
position and the effects of actuator dynamics on the reachable set. Additionally, the effect of vary-
ing the time-window on the reachable sets are analyzed as well to further explore the possibility of
interpolating envelopes for varying time-windows.

The main research question is further divided into multiple subquestions. The subquestions are
formulated as follows:

1. How does the FRS vary subjected to:

(a) Displacing the center of gravity position?
(b) Actuator dynamics?
(c) Varying the time-window of the reachable set analysis?

2. How does the BRS vary subjected to:

(a) Displacing the center of gravity position?
(b) Actuator dynamics?
(c) Varying the time-window of the reachable set analysis?

3. To what extend is interpolation of the reachable sets feasible to support a data-base driven ap-
proach for (real-time) envelope prediction and protection?

This research uses a Monte-Carlo approach for forward reachable set estimation and a minimum-
time optimal control routine is developed for backward reachable set analysis, both methods are sub-
jected to an elaborate verification analysis. Furthermore, a validation procedure is performed to ex-
perimentally validate the results of the forward reachable set estimates. Since a model-based reach-
ability approach is taken, the models of the quadcopter dynamics are determined using a data-driven
approach. System identification is applied to determine the parameters of the (polynomial) model struc-
ture using ordinary least-squares regression (OLS). An overview of the main project phases and their
relative connections are shown in Figure 2.1.

2.3. Research Contributions
This research contributes to the literature as follows:

1. This research adds knowledge on the behaviour of the SFE of a quadcopter subjected to varying
center of gravity position. It produces results on the quadcopter performance in terms of both
the forward reachable set (FRS) and the backward reachable set (BRS). The results allow further
research into the feasibility of interpolating envelopes, for example for application in a database-
driven approach for (real-time) FEP [5].

2. The results on the reachable sets as a function of center of gravity position can be used to quantify
as model uncertainty. This uncertainty can be used to model the SFE in a probabilistic way, for
example for applications in which the center of gravity of the quadcopter could vary.

3. This research includes the actuator dynamics in the reachability analysis and shows its relevance,
whereas the actuator dynamics are often neglected in quadcopter literature.

4. The results on the reachable sets obtained from the Monte-Carlo (MC) approach can be used for
further research into probabilistic SFE analysis and protection in the application of quadcopters
[8].
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Figure 2.1: Overview of the research project subdivided in various project modules with their relative connections indicated by
arrows.

5. An optimization routine is applied on the MC simulation parameters of which the results and
insights can be used in further research on quadcopter reachable set estimation using a MC
approach.

6. A verification on the performance of the MC simulation on reachable set estimation produces
knowledge and insights for future use of the MC approach for reachability analysis. Furthermore,
the MC simulation approach is briefly benchmarked with the Level-set Toolbox [18].

7. A novel backward reachable set estimation approach is explored. The BRS is derived from the
FRS directly using a minimum-time optimal control routine. This approach guarantees that the
BRS is contained within the FRS and bypasses the need to simulate the dynamics backwards in
time.

8. A minimum-time optimal control routine is developed to control the attitude and angular velocity of
the quadcopter including actuator dynamics to any desired orientation in minimum-time. The re-
sulting bang-bang controller shows a sliding-mode control behaviour. This routine can be (re)used
and further developed in other research into (optimal) control applications of quadcopters.

9. An experimental validation on the reachable set of a quadcopter is conducted to validate the FRS
through flight experiments. The analysis produces validation results and valuable experience for
future implementations.

2.4. Research Scope & Limitations
This research is limited to or restricted by the following elements:

• The quadcopter dynamics and reachable sets are limited to the longitudinal dynamics, which
includes rotations around the pitching axis (Y-axis) only. Any cross-coupling effects between the
longitudinal and lateral axes are excluded.

• Crosswinds, wind gusts, ground effects, propwash and high (wind)speeds are not included in the
modelling. The results presented in this work are therefore only valid in the near-hover regime
which is below 2 to 5 m/s [17][19].

• The effects of gravity due to the mass unbalance with respect to the rotor plane center are only
modelled for pitch angles between ±90 degrees by a constant bias. The results in this work with
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exceeding pitch angles should be interpreted with care.
• The reachable set analysis is centered around the hover condition, which is defined as the straight
and level flight condition in which the quadcopter has no pitch angle, rate or acceleration (q̇ = q =
θ = 0). This condition is defined as the safe set from which the reachability analysis is applied.

• The structure of the system dynamics model is control affine.
• It is assumed that the (forward) reachable sets are both closed and bounded.
• The analysis focuses on forward reachable sets with time-windows up to 0.2 seconds.



Part I

Thesis Paper
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Abstract—Loss of control (LOC) is the primary cause of failure
of Unmanned Aerial Vehicles (UAV). The safety of these systems
can be largely improved by facilitating techniques to prevent
LOC to occur, such as Flight Envelope Protection, enabling
controllers to keep the system within the Safe Flight Envelope
(SFE).

The aim of this work is to examine the behaviour of the global
SFE of a quadcopter subjected to varying system dynamics, in-
cluding the effects of longitudinal center of gravity displacements
and actuator dynamics.

The analysis has been split into the forward reachable set
(FRS) and the backward reachable set (BRS). The FRS is
estimated through an optimized Monte-Carlo (MC) simulation
approach. Verification shows that the system specific optimized
MC simulation approximates the true reachable sets with high
accuracy, while exceeding performance on both accuracy as well
as computation time compared to the Level-Set method. The
BRS is derived from the FRS directly using a minimum-time
optimal control (MTOC) routine including actuator dynamics.
This approach guarantees that the BRS is contained within the
FRS and bypasses the need to simulate the dynamics backwards
in time. Both methods exploit the control affine system structure
from which it can be derived that the MTOC for both the FRS
and BRS is bang-bang control, which drastically reduces the
sampling space and optimal control complexity.

The results show that both the location of the centroid of the
FRS and the return time distribution of the BRS are a function
of the offset position. A large decrease in the FRS area is seen for
larger center of gravity offset positions. Furthermore, the actu-
ator dynamics reduce the FRS by 85%, irrespective of center of
gravity location, while the BRS without actuator modelling shows
impractical return times as a result of unfeasible instantaneous
rotor speed changes. A novel experimental validation procedure
on the quadcopter FRS has been performed. The results show a
general overestimation with respect to the flight data, which is
expected when comparing an open-loop simulation with closed-
loop performed flight maneuvers.

Index Terms—Bang-Bang Control, Safe Flight Envelope Pre-
diction, Level-set Method, Minimum-Time Optimal Control,
Monte-Carlo Simulation, Quadcopter, Reachability Analysis,
Sliding Mode Control

I. INTRODUCTION

The use and applications of Unmanned Areal Vehicles
(UAV) are expected to grow rapidly in the near future [1].
Currently Loss of control (LOC) is the main cause of failure
for UAVs [2]. In order to improve safety of these systems,
development of LOC prevention techniques are of utmost
importance. A way to prevent LOC is through the use of

flight envelope protection (FEP) which enables controllers
to keep the system within the Safe Flight Envelope (SFE).
The SFE indicates the state-space in which the vehicle can
be safely operated, operating outside the SFE is linked to
LOC [3][4]. The SFE can be defined as the set of states
that can be reached, within a certain time-window, for which
a trajectory exist to return to a safe flight condition within
a predefined time-window [5][6][7][8]. This research focuses
on predicting the SFE of multirotor UAVs to allow for FEP
implementation and development for LOC prevention and
thereby facilitating in improving the safety of these systems.
The prediction is focused on the global flight envelope, rather
than local boundary prediction, as it has the advantage to apply
global FEP techniques to balance safety and performance for
the specific application.

The aim of this work is to examine the behaviour of
the global SFE of a quadcopter subjected to varying sys-
tem dynamics, including the effects of longitudinal center of
gravity displacements and actuator dynamics. The analysis
has been split into the forward reachable set (FRS), which
contains all the states the system can reach from a set of
initial states within a given time-window, and the backward
reachable set (BRS), which contains the states from which
the system can return to the initial set of states within an
arbitrary time-window. The multirotor UAV considered in this
study is a quadcopter model because these models are widely
used in various applications, easily accessible and suitable for
conducting (indoor) flight experiments. The dynamics of the
quadcopter for various center of gravity positions are captured
via a data-driven approach using model identification on flight
data. The prediction of the forward reachable sets are obtained
using a Monte-Carlo (MC) approach rather than the prevailing
Level-Set method. The MC simulation approach is a promising
method for quadcopter flight envelope prediction as it can
be applied on higher dimensional nonlinear systems [8], it
has a lower computational load with increased number of
dimensions compared to the Level-Set method [9], and is
recently successfully applied on quadcopter models [10]. The
BRS is derived from the FRS directly using a minimum-time
optimal control (MTOC) routine including actuator dynamics.
This approach guarantees that the BRS is contained within
the FRS and bypasses the need to simulate the dynamics
backwards in time. Both methods exploit the control affine
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system structure from which it can be derived that the MTOC
for both the FRS and BRS is bang-bang control, which
drastically reduces the sampling space and optimal control
complexity. The methods are verified and an experimental vali-
dation procedure is performed to validate the FRS estimations.

In Chapter II information on the literature background on
the topic of reachability analysis can be found. The specific
contributions and limitations of this research are summarized
in Chapter III. Details on the quadcopter modelling can be
found in Chapter IV. The MC approach in the framework of
reachability analysis is covered in Chapter V, followed by a
derivation of the minimum-time optimal control routine for
backward reachable set estimation in Chapter VI. The results
on both the forward and backward reachable set can be found
in Chapter VIII. A verification on the MC simulation and
optimal control routine is presented in Chapter VII and the
forward reachable sets are validated in Chapter IX. Finally, the
conclusions and recommendations on the research findings are
presented in Chapter X and Chapter XI. An overview of the
research project with references to the chapters can be found
in Fig. 1.

II. LITERATURE BACKGROUND

Loss of control (LOC) is the main cause of failure for
Unmanned Aerial Vehicles [2]. LOC can occur as a result of
a system failure, insufficient controller performance, or as a
result of entering an upset condition when violating the flight
envelope in which the system can be safely operated. In the
occasion of system failures, fault-tolerant control systems are
developed making use of a closed-loop control system and
a (real-time) fault detection and diagnostics system [11]. To
improve stability and control, a large amount of quadcopter
literature is dedicated towards developing robust controllers
[12][13]. In order to prevent LOC to occur when the system
enters an upset condition, upset recovery techniques are de-
veloped. Although literature on upset recovery for multirotor
UAVs is limited, it has been shown that recovering from upset
conditions is possible [14][15][16][17].

In the (fixed-wing) aircraft literature of the past decade, an
increase in the amount of research can be observed into the
prediction of the Safe Flight Envelope (SFE). The SFE can be
defined as the set of states that can be reached, within a certain
time-window, for which a trajectory exist to return to a safe
flight condition within a predefined time-window [5][6][7][8].
The prediction of the SFE in fixed-wing literature is often
incorporated with adaptive capabilities under various damage
case scenarios. The damaged aircraft dynamics are captured
using online system identification techniques, as presented by
Belcasto et. al [18] and Van Oort [6], which used the aircraft
trim envelope as the a-priori safe set. This research area has
been continued by the work of Lombaerts et. al [7][19][20].
The feasibility of interpolation of envelopes was shown by
Nabi et. al [21]. In the work of Zhang [5] a database-driven
approach is introduced which interpolates offline estimated
SFEs for various damage case scenarios, showing quick pre-
diction capabilities with high accuracy results for flight enve-

lope protection (FEP). Zhang [5] recommends to investigate
application of this framework on (damaged) drones. In Yin
et. al [8] this date-base driven approach has been applied,
but instead of using deterministic boundaries, a probabilistic
envelope estimation method is used based on the Monte-Carlo
(MC) simulation with kernel density estimation resulting in
fuzzy sets. This work shows that using probabilistic SFE
boundaries results in earlier and more gentle FEP measures
[8]. This research is motivated by the promising findings by
the research summarized above to extend knowledge on SFE
prediction and protection in the framework of quadcopters for
safety improvement.

Many methods can be identified in literature for predicting
the SFE. The initial flight envelopes were determined by
using windtunnel test and computational fluid dynamics (CFD)
analysis, which were verified by expensive flight tests [22].
With improved computational power, the focus turned towards
numerical simulations to predict nonlinear (aircraft) dynamics
and instabilities. A very important development to allow for
flight envelope prediction were the bifurcation and continu-
ation methods introduced by Carroll et al. [23]. With these
methods it is possible to compute steady-state solutions for all
possible control inputs and were mainly used as an analysis
tool for the design of flight control laws and flight envelopes
[6]. This further branched into the reachability analysis. The
most prevailing method used in reachability analysis is the
Level-Set method, which solves the optimal control problem
by numerically approximating the solution to the Hamilton-
Jacobi partial differential equation on a grid. A fundamental
disadvantage of the Level-Set method is the computational
inefficiency. It suffers from the curse of dimensionality as
it scales exponential with the number of states and it be-
comes impractical to use for systems with more than four
states [5][10][24][25]. An alternative method for reachable
set estimation is by using a MC simulation. In Sun et al.
[10] it has been shown that this method is able to solve a
6-dimensional reachability problem for a quadcopter model in
a matter of seconds and is more computational efficient than
the Level-Set method [8]. Although in Terrell et al. [9] it has
been shown that the MC simulation also suffers from the curse
of dimensionality however less than the Level-Set method. It
should be noted that extreme control effectiveness methods,
such as bang-bang control [26], should be employed to mainly
reach the boundary states, prevent conservative results and
reduce the amount of simulations required. It should be noted
that the probability distribution of the input determines the
probability distribution of the corresponding output [8]. In this
research a model-based reachability analysis is applied using
a MC approach supported by the findings described above. In
the next section a summary of the research contributions of
this work can be found, together with the scope and limitations
of the research.
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Fig. 1. Overview of the research project with references to the specific chapters.

III. RESEARCH CONTRIBUTIONS & LIMITATIONS

This research focuses on improving and extending knowl-
edge on (the prediction of) the Safe Flight Envelope (SFE)
of a quadcopter model motivated by the promising findings
in recent (fixed-wing) aircraft literature in the framework
of SFE prediction and protection (FEP) for loss of control
(LOC) prevention, and thereby improving the safety of air-
craft. Furthermore, research of application of this reachability
framework on quadcopters is limited [26] and hence this
research directly adds knowledge to the body of literature for
quadcopter safety improvement. This research contributes to
the literature as follows:

1) This research adds knowledge on the behaviour of the
SFE of a quadcopter subjected to varying center of
gravity position. It produces results on the quadcopter
performance in terms of both the forward reachable set
(FRS) and the backward reachable set (BRS). The results
allow further research into the feasibility of interpolating
envelopes, for example for application in a database-
driven approach for (real-time) FEP [5].

2) The results on the reachable sets as a function of center
of gravity position can be used to quantify as model
uncertainty. This uncertainty can be used to model the
SFE in a probabilistic way, for example for applications

in which the center of gravity of the quadcopter could
vary.

3) This research includes the actuator dynamics in the
reachability analysis and shows its relevance, whereas
the actuator dynamics are often neglected in quadcopter
literature.

4) The results on the reachable sets obtained from the
Monte-Carlo (MC) approach can be used for further
research into probabilistic SFE analysis and protection
in the application of quadcopters [8].

5) An optimization routine is applied on the MC simulation
parameters of which the results and insights can be
used in further research on quadcopter reachable set
estimation using a MC approach.

6) A verification on the performance of the MC simulation
on reachable set estimation produces knowledge and in-
sights for future use of the MC approach for reachability
analysis. Furthermore, the MC simulation approach is
briefly benchmarked with the Level-set Toolbox [27].

7) A novel backward reachable set estimation approach is
explored. The BRS is derived from the FRS directly
using a minimum-time optimal control routine. This
approach guarantees that the BRS is contained within
the FRS and bypasses the need to simulate the dynamics
backwards in time.
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8) A minimum-time optimal control routine is developed
to control the attitude and angular velocity of the
quadcopter including actuator dynamics to any desired
orientation in minimum-time. The resulting bang-bang
controller shows a sliding-mode control behaviour. This
routine can be (re)used and further developed in other
research into (optimal) control applications of quad-
copters.

9) An experimental validation on the reachable set of a
quadcopter is conducted to validate the FRS through
flight experiments. The analysis produces validation
results and valuable experience for future implementa-
tions.

This research is limited to or restricted by the following
elements:

• The quadcopter dynamics and reachable sets are lim-
ited to the longitudinal dynamics, which includes rota-
tions around the pitching axis (Y-axis) only. Any cross-
coupling effects between the longitudinal and lateral axes
are excluded.

• Crosswinds, wind gusts, ground effects, propwash and
high (wind)speeds are not included in the modelling. The
results presented in this work are therefore only valid
in the near-hover regime which is below 2 to 5 m/s
[28][29].

• The effects of gravity due to the mass unbalance with
respect to the rotor plane center are only modelled for
pitch angles between ±90 degrees by a constant bias. The
results in this work with exceeding pitch angles should
be interpreted with care.

• The reachable set analysis is centered around the hover
condition, which is defined as the straight and level flight
condition in which the quadcopter has no pitch angle, rate
or acceleration (q̇ = q = θ = 0). This condition is defined
as the safe set from which the reachability analysis is
applied.

• The structure of the system dynamics model is control
affine.

• It is assumed that the (forward) reachable sets are both
closed and bounded.

• The analysis focuses on forward reachable sets with time-
windows up to 0.2 seconds.

IV. QUADCOPTER MODELLING

For the model-based approach of flight envelope prediction,
a dynamic quadcopter model has been established. The defi-
nition of the body reference frame relative to the quadcopter
frame is illustrated in Fig. 2.

Since the physical principles of modelling a quadcopter sys-
tem are known, a gray-box model structure is used. Assuming
that the quadcopter is a rigid body and using Newton’s laws of
motion, the following linear and rotational dynamic equations
can be derived:

Fig. 2. The definition of the body reference frame with origin at the center
of gravity location [13] (adjusted the motor numbering). Roll, pitch and yaw
rotations are defined as the rotations around the X, Y, Z axes respectively
with right-handed conventions. The motors are labeled by number from one
to four.
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With m the mass of the quadcopter, u, v, w and u̇, v̇, ẇ the
body linear speeds and accelerations along the X, Y and Z
axis. G⃗ and F⃗ represent the gravity vector and the resultant
force vector (excluding gravity) in the body frame. The body
angular rates and accelerations are represented by p, q, r and
ṗ, q̇, ṙ which rotate around the X, Y, and Z axis respectively.
M⃗ represents the resultant moment vector on the quadcopter
in the body frame and I⃗ represents the inertia matrix.

The forces and moments that act on the quadcopter can
be split into the effects of the rotors (F⃗r and M⃗r) and the
aerodynamic effects (F⃗a and M⃗a) as follows:

F⃗ = F⃗r + F⃗a (3)

M⃗ = M⃗r + M⃗a (4)

In Sun et al. [29] this gray-box model has been used and
the results show great improvements in the prediction ability
compared to the basic quadcopter dynamic model. The basic
quadcopter model includes the effect of the rotor dynamics
but neglects the aerodynamic effects. The pitching moment
induced by the rotors can be described by the pitch control
and is induced by differential thrust of the motors as follows:

M⃗y = lκ0(ω
2
4 + ω2

2 − ω2
3 − ω2

1) (5)

With ωi the rotor speeds per motor number i and l the
longitudinal distance to the center of rotation (along the X-
axis), which is equal to the center of gravity location when
assuming a uniform gravitational field around the quadcopter.
κ0 is a rotor property coefficient dependent on the air density
and can be assumed to be constant [29][30][31].
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While previous research suggests that non-rotor aerody-
namic effects are significant [29][28], this work focuses on
the near-hover regime where they are negligible up until 2
m/s [28]. Any (external) aerodynamic effects are not included
in the model. The results in Sun et. al [28][29] show that this
model deteriorates above 5 m/s. Therefore it should be kept
in mind that the results presented in this work are only valid
in the near-hover regime which is below 2 to 5 m/s [28][29].

This research addresses the effects on varying dynamics
as a result of center of gravity offsets from the rotor plane
center. Consequently, the effects on the forces and moments
on the quadcopter dynamics have to be captured. For this
reason an altered model structure is used compared to Eq. 37,
which assumes that the center of gravity coincides with the
rotor plane center. To quantify the offset effects, a data-driven
modelling approach is taken. In this approach the forces and
moments are modelled by fitting the parameters of a designed
model structure to flight data through parameter identification.
Note that in this research only the longitudinal center of
gravity position (along the X-axis) is considered. It is assumed
that the lateral placements (along the Y-axis) are constant.
Furthermore, this work solely focuses on the effects of the
pitching moment. Hence only the modelling of the pitching
moment, My , is included in the model identification.

In order to preserve control over the structure of the model
and to be able to perform an analysis on the identified
parameter values, a white-box model with a polynomial model
structure is used. Ordinary least-squares (OLS) regression is
used to fit parameters of the linear-in-the-parameters model
structure to the flight data.

The flight data are obtained by performing (indoor) quad-
copter flights, details on the quadcopter hardware and the
flight experiment set-up can be found in Section IV-A. In
Section IV-B information is provided on the data acquisition
and data processing applied on the measurements before model
identification. In Section IV-C the model structure design and
the results from the parameter identification are presented.
The identified quadcopter models are independent of actuator
dynamics, therefore a separate model identification routine
is performed for modelling the actuator dynamics in Section
IV-D.

A. Flight Experiment Set-Up & Hardware Details

The flight data have been obtained from manual (line-of-
sight) indoor flights with a 3-inch sized quadcopter frame.
Details on the platform and the hardware can be found in
Table I.

To vary the center of gravity position, the battery on top
of the quadcopter frame has been varied. In total five battery
configurations have been considered: a battery at the center
of the quadcopter rotor frame (the neutral configuration), an
extreme aft position (aft configuration), an extreme forward
position (forward configuration), and two half positions in
between (half aft and half forward configuration). The various
configurations are illustrated in Fig. 3. Note the exceptional
displacement of the battery forward configuration compared

TABLE I
HARDWARE DETAILS OF THE QUADCOPTER PLATFORM.

Mass (incl. battery) 388.24 gram
Frame Kit Metal Beetle (3 inch)
IMU MPU6000-V1.2
Flight Controller Holybro Kakute F7
Propeller Type 3052 Three Blades
Electronic Speed Controller Aikon Race Dragon BLHeli32
Battery R-line 850 mAh
Flight Control Software Betaflight

to the battery aft position. With each battery configuration
manual (indoor) flights have been performed. In order to
excite the pitching moment dynamics, low- and high frequency
pitching maneuvers have been performed, as well as rapid
alternating back-and-forth flying. For the modelling of the
actuator dynamics (see Section IV-D) throttle pulse maneuvers
have been included in the flights.

Varying the location of the battery changes the (mass)
moment of inertia, thus for each configuration the moment
of inertia has been experimentally determined using a bifilar
pendulum. It is assumed that the quadcopter has two mass-
planes of symmetry, hence all products of inertia are zero.
Moreover, the exact center of gravity position has been mea-
sured as well. The results on the measured moment of inertia
around the pitch axis (Y-axis) and the longitudinal position of
the center of gravity (along the X-axis) for each configuration
can be found in Table II. Note that indeed the the battery
forward configuration has the largest moment of inertia and
largest center of gravity offset with respect to the neutral
configuration. More information on the moment of inertia
and center of gravity position measurements can be found in
Appendix A.

TABLE II
RESULTS OF THE EXPERIMENTALLY MEASURED MOMENT OF INERTIA

AROUND THE Y-AXIS, AND CENTER OF GRAVITY POSITION ALONG THE
X-AXIS FOR EACH BATTERY CONFIGURATION. xn IS THE DISTANCE FROM

THE NEUTRAL CENTER OF GRAVITY. xc IS THE DISTANCE FROM THE
ROTOR PLANE CENTER TO THE CENTER OF GRAVITY POSITION.

Battery Position Iyy [kgm2] % xn [cm] xc [cm]
Aft 0.00112 22.3% -1.0 -1.2
Half Aft 0.000951 3.8% -0.9 -1.1
Neutral 0.000916 0% 0 -0.2
Half Forward 0.000979 6.9% 0.9 0.7
Forward 0.00133 45.2% 1.9 1.7

B. Data Processing

The flight data have been obtained from the onboard IMU,
which include angular velocity measurements from a MEMS
gyro, required for the identification of the pitching moment
models. Furthermore, the rotational speeds of the four rotors
are logged from the bidirectional DSHOT telemetry. For
identification of the actuator model, the commanded rotor
speed signals are obtained as well, for more information on
the actuator dynamics modelling see Section IV-D. In order
to improve the quality of the models, state estimation with an
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Fig. 3. The five battery positions used in the reachability analysis. Note that the battery aft configuration has a smaller displacement than the battery forward
configuration, which is due to practical constraints. Note that in this research only the longitudinal center of gravity position (along the X-axis) is considered.
It is assumed that the lateral and vertical placements (along the Y-axis and Z-axis) are constant.

extended Kalman filter has been applied on the data in order
to mitigate any bias originating from measurement (and/or
process) noise. More information on the data processing can
be found in Appendix B. The data have been split into training
datasets, which are used for model parameter estimation, and
validation datasets, which are used to test the identified model.
For each quadcopter configuration, two sets of flight data have
been collected which both contain similar maneuvers. The
take-off and landing (or crashing) phases of the flights have
been excluded from the datasets. Since this work is primarily
focused on modelling the pitching moment, the predominant
pitching maneuvers have been partitioned from the flight data.
The partitioning has been conducted by finding the absolute
peaks in the pitching moment data. The data before and
after the exciting maneuver have been included to capture the
(relevant) dynamics prior and after the excitation maneuvers.
An example of a partitioned dataset is displayed in Fig. 4. It
should be noted, however, that although similar maneuvers are
performed, they are not exactly identical as a result of manual
piloted flights. Therefore, the datasets can differ in the reached
pitching moment range. Consequently, it is impractical to use
a fixed partitioning threshold for all flight datasets. Therefore,
for each dataset a balanced threshold has been set manually
and the dataset with most sustained pitching maneuvers has
been selected as the training dataset. An overview of the total
duration of the training and validation data after partitioning
can be found in Table III.

C. Model Structure and Parameter Identification

This work is limited to the longitudinal pitching dynamics of
a quadcopter, hence the primary focus is on obtaining models
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Fig. 4. Example of data partitioning of the pitching moment data to isolate
relevant maneuvers which excite the pitching moment dynamics. Note that
some data after the maneuver have been included to capture the steady-state
effects.

for the pitching moment My . The model structure consists
of polynomial regressors which have shown to perform well
for quadcopter forces and moments modelling [28][12]. For
the selection of the model regressors, various sources have
been conducted which include patterns in the flight data, a
stepwise regression analysis and the basic quadcopter hover
model structure Eq. 37. More information on the regressor
selection can be found in Appendix D.

The model structure of the pitching moment model has
been determined to consist of a bias term M0 and control
pitching moment term Uq . The control pitching moment is
defined as the sum of the front rotors minus the aft rotors:
Uq = ω2 + ω4 − ω1 − ω3. The control moment is split into
separate terms each modelling the positive U+

q and negative
U−
q control moment independently. When the control input
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TABLE III
OVERVIEW OF THE TOTAL AMOUNT OF DATA, MEASURED IN FLIGHT

MINUTES OF EXCITATION MANEUVERS, WHICH ARE USED IN THE SYSTEM
IDENTIFICATION. THE FLIGHT DATA WITH MOST SUSTAINED PITCHING

MANEUVERS HAS BEEN SELECT AS TRAINING DATASET. THE DATA HAVE
BEEN MORE OR LESS EQUALLY SPLIT, THE TRAINING DATASETS HAVE A
TOTAL DURATION OF 214.64 SECONDS AND THE VALIDATION DATASETS

HAVE A TOTAL DURATION OF 254.4 SECONDS.

Training Datasets
Battery Position Total Excitation Duration [s] % of Full Dataset

Aft 42.2 60.26
Half Aft 56.7 60.99
Neutral 34.0 28.98

Half Forward 51.18 54.56
Forward 30.06 31.37

Validation Datasets
Battery Position Total Excitation Duration [s] % of Full Dataset

Aft 55.51 65.27
Half Aft 37.36 44.8
Neutral 40.44 34.17

Half Forward 77.11 81.17
Forward 43.5 44.0

moment is positive, U−
q is set to zero and vice versa for a

negative control input moment. The resulting model structure
can be summarized as follows:

My = M0 +M1U
+
q +M2U

−
q (6)

The bias term captures the differences in dynamics as a
result of the center of gravity offsets from the rotor plane
center, while the control pitching moment parameters model
the possible differences in rotor effectiveness with respect to
pitching direction in combination with the center of gravity
offset. The coupled and nonlinear regressor terms found from
the stepwise regression routine are excluded from the model
structure in order to keep the models simple and preserve a
physically explainable model structure. Since any (external)
aerodynamic effects have not been included, this model is only
valid in the low speed regime which is below 2 to 5 m/s
[28][29].

The model parameters M0, M1 and M2 are determined
using the OLS regression method:

θ̂ = (ATA)−1AT z (7)

With θ̂ the optimal parameter estimate to minimize the
model residual, A = [1, U+

q , U−
q ] ∈ RN the regression matrix

with N the number of measurement data points, and z ∈ RN

the measurement vector. The optimal parameter estimates
found from the training datasets are summarized in Table IV.
Additionally, the parameter (co)variances are included, which
represent the noise sensitivity, or variability, of the estimator.
The parameter covariances are estimated as follows:

cov(θ̂) = σ2(ATA)−1 ≈ σ̂2(ATA)−1 =
ϵT ϵ

N − k
(ATA)−1

(8)

With ϵ the model residual which is the difference between
the target and the estimated signal values, N the number of
measurement data points, and k the number of regressor terms.

The metrics for estimation performance include the nor-
malized root-mean square error (NRMSE), normalized with
the range of the target data, and the adjusted coefficient
of determination (Adjusted R2). The metrics are defined as
follows:

NRMSE =
RMSE

(ymax − ymin)
=

√∑N
i=1

(ŷi−yi)
2

N

(ymax − ymin)
(9)

R2
Adjusted = 1−

(
(1−R2)(N − 1)

(N − k − 1)

)
(10)

With k the number of regressors, excluding the bias term, and
R2 as:

R2 = 1−
∑N

i=1 (ŷi − yi)
2∑N

i=1 (yi − ȳ)
2

(11)

With y the target signal, ȳ the mean of the target signal,
and ŷ the predicted signal. The metric values of all pitching
moment models can be found in Table V. The identified mod-
els show good approximation power and accuracy with respect
to the validation data with an average R2

Adjusted = 0.83 and
average NRMSE = 0.05. More information on the identified
models including a brief model response analysis can be found
in Appendix C. More information on the system identification
procedure, including the regressor selection procedure, and a
model residual analysis, can be found in Appendix D.

TABLE IV
SUMMARY OF THE OPTIMAL PARAMETER ESTIMATES FOR EACH BATTERY

CONFIGURATION. ADDITIONALLY, THE PARAMETER VARIANCES (THE
ELEMENTS ON THE MAIN DIAGONAL OF THE COVARIANCE MATRIX) ARE
SHOWN REPRESENTING THE NOISE SENSITIVITY (OR VARIABILITY) OF
THE ESTIMATOR. THE BIAS HAS THE LARGEST PARAMETER VARIANCE,

INDICATING THAT THIS PARAMETER HAS THE LARGEST VARIABILITY OF
ITS ESTIMATE WITH RESPECT TO VARIATIONS IN THE NOISE

REALIZATIONS.

M0

Bias θ̂ cov(θ̂) 100cov(θ̂)/θ̂
Battery Aft 0.045714 5.612698e-08 0.000123

Battery Half Aft 0.028478 2.492080e-08 0.000088
Battery Neutral 0.001716 3.739539e-08 0.002179

Battery Half Forward -0.026671 2.666699e-08 -0.000100
Battery Forward -0.060630 3.170904e-08 -0.000052

M1

U+
q θ̂ cov(θ̂) 100cov(θ̂)/θ̂

Battery Aft 0.000111 1.165452e-12 1.048731e-06
Battery Half Aft 0.000108 3.518097e-13 3.268488e-07
Battery Neutral 0.000098 2.673546e-13 2.740386e-07

Battery Half Forward 0.000093 8.573101e-14 9.187859e-08
Battery Forward 0.000078 2.665912e-14 3.397296e-08

M2

U−
q θ̂ cov(θ̂) 100cov(θ̂)/θ̂

Battery Aft 0.000077 6.980824e-14 9.012239e-08
Battery Half Aft 0.000093 7.449741e-14 7.974035e-08
Battery Neutral 0.000104 2.297720e-13 2.208843e-07

Battery Half Forward 0.000102 3.144075e-13 3.087665e-07
Battery Forward 0.000099 4.669925e-13 4.703377e-07
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TABLE V
NORMALIZED RMSE AND ADJUSTED R2 VALUES FOR EACH

QUADCOPTER CONFIGURATION MODELS ON BOTH THE TRAINING- AND
VALIDATION DATASET. NOTE THAT THE METRICS FOLLOW FROM THE

PARTITIONED DATASETS.

NRMSE
Train Validation Total

Battery Aft 0.0568 0.0623 0.0512
Battery Half Aft 0.0444 0.0584 0.0480
Battery Neutral 0.0482 0.0442 0.0533

Battery Half Forward 0.0394 0.0621 0.0411
Battery Forward 0.0350 0.0549 0.0469

Adjusted R2

Train Validation Total
Battery Aft 0.8733 0.7896 0.7901

Battery Half Aft 0.8951 0.8073 0.7782
Battery Neutral 0.8952 0.9066 0.7230

Battery Half Forward 0.9014 0.8020 0.8165
Battery Forward 0.9626 0.8631 0.8344

D. Modelling of Actuator Dynamics

Based on the behaviour of the rotor speeds in response to
commanded inputs as observed in the measurement data, the
actuator dynamics are modelled by a first order lag function,
which in time-domain (12) and frequency-domain (13) has the
following structure:

τ
dy

dt
+ y = u (12)

H(s) =
1

τs+ 1
(13)

With y the rotor speed, u the commanded rotor speed and
τ the time constant. Determination of the time constant τ
follows from estimation of the lag (or time-delay) between
the rotor speed commanded signal and the actual rotor speed
signal measured. By separating dy

dt in Eq. 12 and numerically
differentiating the rotor speed measurements y, the parameter
1
τ is estimated using OLS, after forward-backward filtering
both signals at 10 rad/s. The time constant τ is obtained by
taking the reciprocal of the estimated parameter.

The data used for identification involves all the flight data
as discussed in Section IV-B as well as dedicated throttle
pulses flights containing 12 throttle pulse maneuvers in total.
It is assumed that the actuator dynamics do not change with
varying battery configurations. The data have been split into
training and validation data equally. The model performance
on both training and validation data can be found in Table
VI which shows a validation performance of R2

Adjusted > 0.9
and NRMSE < 0.05 for all time constants. The time constants
estimated, using all flight data available, are summarized
in Table VII. These time constants are used in subsequent
quadcopter actuator dynamics modelling.

TABLE VI
VALIDATION RESULTS - ACTUATOR TIME CONSTANTS IDENTIFICATION

USING AN EQUAL SPLIT OF TRAINING AND VALIDATION DATA.

NRMSE Adjusted R2

Motor τ Train Validation Train Validation
1 0.0518 0.0473 0.0460 0.9020 0.9116
2 0.0794 0.0647 0.0497 0.8511 0.9102
3 0.0485 0.0465 0.0443 0.9015 0.9113
4 0.0580 0.0492 0.0505 0.8967 0.9012

TABLE VII
FINAL RESULTS - ACTUATOR TIME CONSTANTS IDENTIFICATION USING

ALL FLIGHT DATA.

Motor τ 100cov(θ̂)/θ̂ NRMSE (Train) Adjusted R2 (Train)
0 0.0510 0.0221 % 0.0473 0.9102
1 0.0800 0.0173 % 0.0612 0.8704
2 0.0490 0.0232 % 0.0467 0.9075
3 0.0563 0.0193 % 0.0494 0.9012

V. REACHABLE SET ESTIMATION: A MONTE-CARLO
APPROACH

To obtain an estimate of the forward reachable set, a the
Monte-Carlo (MC) simulation approach is used. This approach
consists of simulating numerous trajectories from an initial (set
of) state(s) while randomly varying the control inputs along the
time horizon of a trajectory. Sampling the input randomly from
the entire input space results in an extensive amount of sim-
ulations (which is called brute force). By considering optimal
control for reachability analysis, this sampling space can be
drastically reduced. A well-established method for reachable
set computations is through the Hamilton-Jacobi reachability
analysis in which the goal is to find a control sequence that
minimizes a cost function by solving for a value function.
Solving the value function via dynamic programming results
into the renowned Hamilton-Jacobi-Bellman (HJB) equation.
Solving this partial differential equation (PDE) results in a
solution to the minimum-time optimal control problem. The
PDE has the following form:

DtV (x, t) +H
(
x, t, V,∇ϕ,D2

xV
)
= 0 for x in Rn, t ≥ 0

(14)
Subjected to the initial condition:

V (x, t) = V0(x) for x ∈ Rn (15)

With V the value (or level-set) function, Dt is the partial
derivative of V with time t, ∇V is the gradient of V with
respect to the state variables x and D2

x is the Hessian matrix of
the second partial derivatives with respect to x. An appropriate
weak solution of the HJB PDE is the so-called viscocity
solution which has the differential form as shown in Eq. 16.
The part to be minimized, in case of finding the backward
reachable set (or maximized in case of finding the forward
reachable set), is called the Hamiltonian.

∂V

∂t
+min

u
[∇V (x, t) · f(x, t, u)] = 0 (16)
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With f(x, t, u) the system of equations describing the
dynamics of the system. In the case of a control affine system
the Hamiltonian term can be written as [26]:

min
u

[∇V (x, t) · (f(x, t) + g(x, t)u)] = 0 (17)

For this type of system the following term can be isolated:

λ(x, t) =
∂V

∂x
(x, t)g(x, t) ∈ Rm (18)

Consequently, the solution to the minimum-time optimal
control problem is to maximize the input in case λ(x, t) <
0 and minimize when λ(x, t) > 0. Vice versa for the case of
finding the forward reachable set. When the control input space
ranges from a minimum control input, u−, to a maximum
control input, u+, the found control strategy for the minimum-
time optimal control problem can be formally formulated as
[26]:

u∗
i (x, t) =

{
u+
i if λi(x, t) < 0

u−
i if λi(x, t) > 0

(19)

As a result, the optimum control to solve for reachable sets
is located near the control constraints of the system in the
case λi ̸= 0. With this knowledge, the control input in the MC
simulation can be sampled along the ranges of the control input
space reducing the sampling space substantially. This control
strategy is called bang-bang control. Note that this sampling
strategy can only be effectively used for control affine systems.
In case a system is control nonaffine the optimal control
strategy for MC simulation sampling remains unknown.

To control the extend to which the MC simulation tra-
jectories reach the boundary of the reachable set, thereby
controlling the amount of trajectories required for accurate
boundary estimation, a tuning parameter pc is defined as
introduced in Sun et. al [26]. It describes the chance of
switching the control input from one extreme control input
to the other:

pc = (1− ps)
N (20)

The larger the pc value, the higher the chance the control input
remains constant, while a small pc indicates a large chance of
switching the input. With ps representing:

ps = 1− P [ui(K + h) = ui(k)] (21)

N represents the number of segments the trajectory time-
window, T , is divided into. At every segment a control input
is sampled. This results in the number of switching times
Nswitch, with a stepsize equal to h = T/N . In this work
the stepsize is set equal to the time-step h = dt which is kept
constant. The Nswitch is then expressed in the percentage of
time-steps at which a control input switch is sampled. For
example, Nswitch = 100% indicates that at every time-step a
control input is sampled, while with Nswitch = 50% at only

half of the time-steps an input is sampled, i.e. every two time-
steps along the trajectory. In Fig. 5 and Fig. 6 the effects of
the tuning parameter and switching time are illustrated.

The optimal MC simulation settings, thus the values of pc
and Nswitch, to estimate a reachable set closest to the true set
are dependent on the system dynamics. Therefore a dedicated
optimization routine has been developed for obtaining the pc
and Nswitch resulting in the closest approximation to the true
set per quadcopter configuration. A general overview of the
MC simulation pipeline can be found in Section V-A. Details
about and results from the MC optimization performed on the
quadcopter models can be found in Section V-B.

Fig. 5. The influence of the tuning parameter on the trajectory simulations
for T = 0.1 s for the battery neutral configuration with Ntraj = 1000. The
higher the pc the smaller the chance the input switches from input direction
and hence the more trajectories reach the boundary of the reachable set. The
solid line indicates the estimation of the boundary of the set.

Fig. 6. The influence of sampling time interval on the trajectory simulations
for T = 0.1 seconds for the battery neutral configuration with Ntraj = 1000.
Switching intervals are indicated in percentage of the amount of timesteps
at which input sampling occurs. The smaller the Nswitch the less sampling,
which results in a higher chance that trajectories end up at the same end
state, while increasing the amount of sampling results in more diverse end
state trajectories. The solid line indicates the estimation of the boundary of
the set.

A. The Monte-Carlo Simulation Environment

An overview of the complete simulation loop can be found
in Fig. 7. The simulation uses an open-loop controller, which
sets the commanded inputs to the actuator dynamics directly
equal to the reference rotor speeds. The actuator dynamics are
modelled as a first order lag and saturates the rotor speeds such
that these are bounded between the maximum and minimum
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obtainable rotor speeds. For numerical integration the forward
Euler integration method is used.

Both the forward reachable set (FRS) and backward reach-
able set (BRS) estimation routines are illustrated in the simu-
lation overview. For FRS estimation a MC sampling routine is
performed prior to the trajectory simulation. In this sampling
routine the rotor speed references are sampled to either provide
a maximum pitch up control moment or a pitch down control
moment along the simulation trajectory, based on the pc and
Nswitch values. At the end of a trajectory simulation the end
states are stored and this process is repeated for a number of
trajectories Ntraj . Finally, a convex hull is fitted around the
end states using the alphashape function from the Alpha
Shape Toolbox1, which completes the FRS estimation. An
explanation of the minimum-time optimal control routine used
for BRS estimation can be found in Chapter VI.

B. Monte-Carlo Simulation Optimization Routine & Results

The optimal tuning parameter pc and the optimal time
interval between, or the frequency at which, the control
inputs are sampled Nswitch, are unknown and system specific.
Therefore an optimization procedure is performed to find
the optimum parameters. The MC optimization procedure is
performed for each quadcopter configuration model separately
in order to ensure optimum reachable set estimation for each
center of gravity position model. Since the true reachable
sets are unkown, the optimization procedure is designed to
maximize the total area of the obtained forward reachable
set, as well as maximizing the largest obtained state value,
and, minimizing the minimum state value. As a result, the
optimization procedure optimizes for obtaining sets that mini-
mize underestimation of the true reachable set. The procedure
consists of dividing the simulation parameters into arbitrary
discrete values. For each value a MC simulation is performed
over a time-window of T = 0.1 s for Ntraj = 1000. The
end state values are stored and used to estimate the boundary
of the reachable set by fitting a convex hull shape around
the states. See Fig. 7 for a graphical illustration of the FRS
estimation routine. This procedure is repeated for a number
of realizations to document variability in the results. The
routine first optimizes the tuning parameter pc, subsequently
the Nswitch parameter is optimized. The optimization and
simulation settings are summarized in Table VIII.

The MC parameter values, which result in the maximum
estimated set area, given that a convergence in the maximum
and minimum pitch angle and pitch rate has occurred, are
selected as the optimum values. The found optimum pc and
Nswitch from the MC optimization routine on the forward
reachable set for all quadcopter configurations are summarized
in Table IX. For demonstration purposes, the MC optimization
results for the battery forward model are presented. The area
of the estimated reachable sets per tuning and switching
parameter can be found in Fig. 8. The maximum and minimum
pitch rate from the estimated reachable sets can be found in

1https://pypi.org/project/alphashape

TABLE VIII
MC SIMULATION SETTINGS AND PARAMETER VALUES CONSIDERED IN

THE OPTIMIZATION ROUTINE.

Trajectories Ntraj 1000
Time-Window T 0.1 [s]
Time-Step dt 0.001 [s]
Maximum Uq 3800 [eRPM]
Control Strategy Bang-bang control
Actuator Dynamics True
N 10
Alpha Parameter 0.001
pc [-] 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9
Nswitch [%] 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Optimizing Set Type Forward Reachable Set

Fig. 9 (identical trends are found for the pitch angle). It can
be observed that the performance of the estimated reachable
sets are predominantly determined by the tuning parameter pc.

TABLE IX
SUMMARY OF THE OPTIMAL MC SIMULATION PARAMETERS FOR EACH

QUADCOPTER CONFIGURATION.

Forward Reachable Set
pc Nswitch

Battery Aft 0.3 90%
Battery Half Aft 0.4 90%
Battery Neutral 0.5 100%

Battery Half Forward 0.5 100%
Battery Forward 0.4 90%

Since the optimization has been applied on one time-
window (T = 0.1 s) only, the set estimation performance of
the MC simulation for different time-windows is analyzed as
well. The performance of the estimations for various time-
windows and number of trajectories of the FRS can be found in
Fig. 10 for the battery forward configuration. As expected, the
longer the time-window, the larger the forward reachable set,
hence the more trajectories are required to retain the estimation
performance and reduce the variance among realizations. By
increasing the amount of simulated trajectories, the variability
of a realization of an estimated set can be controlled per time-
window. It can be observed that for about Ntraj > 100 the
total set area starts to converge for up to T = 0.2 s. Due
to the optimized MC simulation settings, pc in particular,
the maximum and minimum angle and rate obtained already
converge for Ntraj = 25 (only the maximum pitch rate is
shown for illustration in Fig. 10). It can be concluded that
the optimized MC simulation with Ntraj = 1000 results in
realizations with sufficient convergence for time-windows up
to T = 0.2 s. Hence, in further analysis on reachable sets, Ntraj

= 1000 is used as a baseline for reachable set estimation.
Moreover, the maximum and minimum pitch angle and rate

obtained from the MC estimated reachable sets can be verified
with a simulated trajectory of the quadcopter models over
time. In the simulated trajectory the same maximum control
pitching moment is applied to the models as used in the MC
simulation for reachable set estimation. The results from the
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Fig. 7. Overview of the entire simulation loop. For forward reachable set estimation a MC sampling routine is performed prior to the simulation to sample the
rotor speed references used along the simulation trajectory. For backward reachable set estimation the end states from the forward reachable set simulations
are used and the reference rotor speeds are determined, and updated during simulation, based on the minimum-time optimal control routine. An input of +1
indicates a maximum control pitch up moment and -1 a maximum control pitch down.
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Fig. 8. The total area of the forward reachable set estimates of 10 realizations
for varying tuning parameters and switching parameters. The results of the
switching parameter are for the case that pc = 0.4. Note the relative
large variability at low tuning parameter values. For the battery forward
configuration the selected values are pc = 0.4 with Nswitch = 90%.

MC simulation and the simulated trajectories up to T = 0.2 s
are shown in Fig. 11. The differences, displayed in Fig. 12, are
negligibly low which verify that the MC simulation provides
a converged reachable set estimate for all the models.
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Fig. 9. The maximum and minimum pitch rate obtained from the reachable
set estimates of 10 realizations for varying tuning parameters and switching
parameter. The results of the switching parameter are for the case that pc =
0.4. Note that both the maximum and minimum pitch rate obtained from the
reachable sets have converged for the selected pc. For the battery forward
configuration the selected values are pc = 0.4 with Nswitch = 90%.
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Fig. 10. The performance of the reachable set estimates (N = 10) for various
time-windows and number of trajectories for the battery forward configuration.
For about Ntraj > 100 the total area of the reachable set estimates starts
to converge for time-windows up to T = 0.2 s. Due to the optimized MC
simulation settings, pc in particular, the maximum and minimum angle and
rate obtained already converge for Ntraj = 25.
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are negligibly low which verify that the MC simulation provides a converged
estimate of the reachable set of the models.

VI. QUADCOPTER BACKWARD REACHABLE SET
ESTIMATION USING OPTIMAL CONTROL (INCLUDING

ACTUATOR DYNAMICS)

The Safe Flight Envelope (SFE) definition as used in this
work is defined as the set of states to- and from which
the system can go- and return to a predefined (set of) safe
state(s) within an arbitrary time-window. Instead of finding
the backward reachable set (BRS) separately and intersecting
the set with the forward reachable set (FRS), as often done in
literature, this work directly calculates the BRS from the FRS.
This approach guarantees that the BRS is contained within
the FRS and bypasses the need to simulate the dynamics
backwards in time.

To return to the initial safe state (in this work the hover
condition) from a state in the FRS, the quadcopter needs to
generate a pitch maneuver. In terms of attitude control, this
amounts to controlling the change of the quadcopter rotational
rate over time, which is equivalent to controlling a double
integrator system. The solution to the minimum-time optimal
control problem for a double integrator system has been proven
in Chapter V to be bang-bang control as it is a control affine
system. This means that the optimal control solution is to
provide a maximum acceleration towards the target state, and
at some critical state provide a maximum opposite acceleration
which will bring the system precisely at the target state. This
critical curve, or optimal control curve, in the state-space of
the double integrator system can be derived by integration of
the system equations and equating the states to the desired
(end state) values:

ẍ = u (22)
ẋ = ẋ(0) + ut (23)

x = x(0) + ẋ(0)t+
1

2
ut2 (24)

With x the system state and u the input. Setting the position
and velocity state to zero, as desired, ẋ = x = 0 results into
the following optimal control curve:

ẋ(0) = ±
√

2 · u · x(0) (25)

For the longitudinal quadcopter system x and ẋ are the pitch
angle and rate respectively. The input u amounts to the change
in pitch rate over time which is equal to:

q̇ =
My

Iyy
(26)

Since the My models, as found in Chapter IV, for the
various quadcopter battery configurations have a bias as a
result of the center of gravity offset with the rotor plane center,
the maximum reachable pitch up and pitch down moment
are not equal. Consequently, the optimal control curve for
the quadcopter models are asymmetrical. A graphical repre-
sentation of these curves for each quadcopter configuration
are shown in Fig. 13. Indeed, for the battery aft position,
for example, a higher pitch up moment can be generated.
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Consequently, when this model has a positive pitch angle with
a pitch rate which is above the optimal control curve, it can
generate a negative pitch rate until the optimal control curve
has been reached after which a pitch up moment is generated.
The aft configuration can extend its negative pitch rate to larger
critical rates than the battery forward position as a result of
the larger obtainable pitch up moment due to the bias. And
vice versa for the battery forward position, which can generate
a larger pitch down moment.
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Fig. 13. The optimal control curves which are used to determine the bang-
bang input to return to zero pitch angle and rate in minimum-time. When the
quadcopter has a negative pitch angle and is below the optimal control curve,
a pitch up moment input is commanded, if it is at, or above the curve, a pitch
down moment input is commanded (note in the latter case the quadcopter will
overshoot the target state). A similar but opposite input sequence applies for
positive pitch angles. The curves are generated with Uq = 3800 eRPM.

The above derivation applies to a system that assumes that
an instantaneous change in rotational rate can be applied: that
is in the case without actuator dynamics. When including the
actuator dynamics, modelled as a first order lag, the system
equations are:

ẍ =

{
ẍ1

ẍ2

=

{
u0 + (u− u0) · (1− e−

t
τ ) if t ≤ ts

ẍ1(ts) · (e−
(t−ts)

τ ) if t > ts
(27)

ẋ =

{
ẋ1

ẋ2

=

{
ẋ0 +

∫ t

0
ẍ1(t) dt if t ≤ ts

ẋ1(ts) +
∫ t

ts
ẍ2(t) dt if t > ts

(28)

x =

{
x1

x2

=

{
x0 +

∫ t

0
ẋ1(t) dt if t ≤ ts

x1(ts) +
∫ t

ts
ẋ2(t) dt if t > ts

(29)

With u0 the initial rotational acceleration and τ the time
constant of the actuator dynamics. Note that if τ = 0, Eq. 27
reduces to the case without actuator dynamics.

The dynamics of the rotational acceleration have been split
into two phases separated by a switch-off time ts. The first
phase (t ≤ ts) accounts for the dynamics of a rotational ac-
celeration input of a quadcopter including actuator dynamics.
The second phase (t > ts) accounts for the dynamics after
which the rotor speeds are commanded to the hover speeds to
ensure no rotational acceleration is present at the target state.

The same derivation of the optimal control curve applies as
previously shown for the system without actuator dynamics
by setting ẋ2 = x2 = 0 in the limit of t → ∞ and solving for
ẋ0 and x0.

Without actuator dynamics these optimal control curves are
only dependent on the maximum possible rotational acceler-
ation (or maximum moment) that can be generated by the
system. However, when introducing actuator dynamics, the
optimal control curves are also a function of u0, τ and ts.
Consequently, instead of optimal control curves, an optimal
control surface is obtained. Determining the optimum bang-
bang control to the system depends on the position of the
system in state-space with respect to this surface. A visual-
ization of this optimal control surface for the battery neutral
configuration can be found in Fig. 14. A graphical illustration
of the minimum-time optimal control routine based on the
optimal control surface can be found in Fig. 7.

In case the quadcopter has a negative pitch angle and is
below the surface, the optimal control routine commands a
pitch up moment, if it is above the surface it commands a
pitch down moment. Vice versa for the case of a positive pitch
angle. Once the system intersects the surface it will command
a pitch down moment in the negative angle case and a pitch up
moment for the positive angle case. Furthermore, the routine
stores the corresponding ts used to determine the time at which
the rotors are set to hover speed. After implementation in
simulation, the resulting optimal control routine also works
without using the ts. This is because after ts, the system
enters the second phase (see Eq. 27) in which the optimal
control surface is independent of u0. The optimal control
surface reduces to an optimal control curve along the pitch
angle and rate plane. The optimal bang-bang control results
in a sliding-mode controller which makes the system oscillate
along this optimal control curve. See Fig. 15 and Fig. 16 for
a trajectory example. Note that the average time constant of
all four motors is used for τ .

The derived optimal bang-bang control solution will always
bring the system back to hover condition, however since the
quadcopter is able to fully rotate ±360 degrees and because
the optimal control strategy depends on the sign of the pitch
angle, the found solution is not always the optimal solution.
This is because the pitch angle loops around an arbitrary range
in simulation. In this work the pitch angle loops between [-
180, +180] degrees and is kept fixed. For future reference it
is recommended to loop the pitch angle range for an integer
amount of variations and select the control trajectory with the
smallest return time.
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Fig. 14. The optimal control surface of the battery neutral configuration used to determine the bang-bang input based on the position of the system in
state-space with respect to this surface. Due to the actuator dynamics, the optimal control curves are not only dependent on the maximum moment that can
be applied to the system, but also on its initial rotational acceleration u0 = q̇0, τ and ts, extending the optimal control curve to an optimal control surface.
The surface is generated with Uq = 3800 eRPM.

Fig. 15. An example of the optimal control trajectory for a quadcopter with an end state of θ = -30 deg, q = -100 deg, and My0= -0.21 Nm. The battery
forward configuration model is used. The optimal control routine returns the quadcopter back to hover while the uncontrolled case results in a trajectory with
increasing rotational rates. See Fig. 16 for more details on the states over time.
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Fig. 16. An example of the optimal control trajectory for a quadcopter with an end state of θ = -30 deg, q = -100 deg, and My0= -0.21 Nm. The battery
forward configuration model is used. Note the sliding mode control behaviour near the end of the trajectory which results in rotor speeds approximating the
hover speeds, resulting in a zero pitching moment.

VII. VERIFICATION OF THE MONTE-CARLO SIMULATION
AND OPTIMAL CONTROL METHOD

Before diving into the results on the quadcopter reachable
sets, first the methods for estimating the sets are verified. Read-
ers who are primarily interested in the quadcopter reachability
results are advised to continue to Chapter VIII.
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Fig. 17. Analytical forward reachable sets of the double integrator system.
The color bar indicates the reachable set time-window.

Both the Monte-Carlo (MC) simulation method, for esti-
mating the forward reachable set (FRS), and the minimum-
time optimal control routine as described in Chapter VI,
used to estimate the return time for backward reachable set
(BRS) estimation, are verified with the analytically obtainable
reachable sets of the double integrator system. The double

integrator system, often modelled as a cart on a rail system,
has the following equation of motion in state-space form:[

ẋ1

ẋ2

]
=

[
0 1
0 0

]
x+

[
0
1

]
u (30)

With x1 the position, x2 the velocity of the system and u
the input, defined as the force acting on the system divided by
the mass of the system. The positive force direction is defined
into the positive direction of the states. The double integrator
system has an analytical solution for its reachable sets, as first
derived by Althans et. al [32]. Given that the origin is the
target or the initial set, the forward reachable set solution can
be defined as:

ϕ(x⃗) =


−x2 +

√
4x1 + 2x2

2 if x1 > 1
2x2 |x2|

x2 +
√

−4x1 + 2x2
2 if x1 < 1

2x2 |x2|
|x2| if x1 = 1

2x2 |x2|
(31)

And the backward reachable set can be defined as:

ϕ(x⃗) =


x2 +

√
4x1 + 2x2

2 if x1 > 1
2x2 |x2|

−x2 +
√

−4x1 + 2x2
2 if x1 < 1

2x2 |x2|
|x2| if x1 = − 1

2x2 |x2|
(32)

Note that both curves have a local discontinuity defined by
the switch curves. The reachable set at any given time t can
be found by solving for ϕ = t. A visualization of the forward
reachable set curve can be found in Fig. 17 with reachable
sets at various times projected as contours onto the position-
velocity plane.

Verification is performed on both the FRS in Section VII-A
and the BRS in Section VII-C. Furthermore, a brief verification
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analysis is done on the well-established Level-Set Toolbox in
Section VII-B in order to benchmark the performance of the
MC simulation with the performance of the toolbox.

A. Verification of the Forward Reachable Set Estimation

For the verification of the FRS estimates from the MC
simulation, the MC simulation settings are optimized for the
double integrator system. The same optimization procedure
has been applied as described in Section V-B. However, since
the analytical sets are available, the MC optimization has been
performed with respect to these true sets by optimizing for
the minimum Hausdorff distance. The Hausdorff distance is a
metric used to quantify how close sets are with respect to one
another in terms of a (non-euclidean) distance. When two sets
are equal, the Hausdorff distance is zero. The found optimum
MC settings for the double integrator system (at T = 2 s) are
pc = 0.1 and Nswitch = 100%.

The performance of the reachable set estimation of the
MC simulation for various time-windows is measured by
analyzing the Hausdorff distance and the area error percentage
for various amount of simulation trajectories. The area error
percentage is defined as the percentage of the difference
between the union and the intersection of the estimated and the
true set, with the true set. Since the Hausdorff distance grows
with increasing set size over time, the metric is normalized
with the area of the analytical set per time-window. The results
are summarized in Fig. 20. It can be observed that for t = 1
s the variance among the realizations is negligibly low indi-
cating a converged set estimation for the given time-window.
For increasing time-windows the variance of the estimated
sets increases, while increasing the number of trajectories
decreases the variance as expected. Hence, the variance of the
metrics can be used to determine whether the MC simulation
estimates have converged for a given time-window and number
of trajectories. Convergence seems to have occurred for Ntraj

= 2000 and Ntraj = 4000 up until t = 2.5 seconds. Increasing
the amount of trajectories does not increase the performance
of the set estimate for the analyzed time-windows. The area
error percentage converges in these converged cases towards
the numerical inaccuracies as a result of numerical integration.
Decreasing the simulation integration step size by an order of
magnitude results in lowering the total area error percentage
with about an order of magnitude, as displayed in Fig. 19.
For the double integrator system the MC simulation shows
a worst case average area error percentage of about 3.84%
for a time-window between 1 and 2.5 seconds and Ntraj =
500. For visualization purposes the estimated and the true
sets are plotted in Fig. 21 for one simulation realization per
time-window with Ntraj = 500. A visualization with the MC
simulation end states can be found in Fig. 18.

From this verification analysis it can be concluded that the
(system specific) optimized MC simulation approximates the
true forward reachable set with high accuracy, as demonstrated
for the double integrator system. Increasing the number of
trajectories results in an improved estimation of the true
set. However, this is only valid up until a certain number
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Ntraj = 500 and dt = 0.01.

1.0 1.5 2.0 2.5
Time Window [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Er

ro
r 

Pe
rc

en
ta

ge
 [

%
]

dt = 0.01 (Ntraj = 2000) ( ± )
dt = 0.001 (Ntraj = 2000) ( ± )
dt = 0.01 (Ntraj = 4000) ( ± )
dt = 0.001 (Ntraj = 4000) ( ± )
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the errors due to numerical inaccuracies in the simulation. The accuracy of
the converged sets can be improved by decreasing the numerical integration
time-step. The simulation results are of reachable sets of 10 realizations.

of trajectories after which no improvement can be observed
and the error converges towards the errors due to numerical
inaccuracies. The accuracy of the converged sets can be
improved by decreasing the numerical integration time-step.
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B. Verification of the Level-Set Toolbox (benchmark)

The Level-Set Toolbox [27] is a numerical solver for the
Hamilton-Jacobi partial differential equation to find the reach-
able set using optimal control. In order to benchmark the
results of the MC simulation approach for reachable set
estimates, the toolbox is also verified with the analytical set
of the double integrator. Various numerical accuracy options
are available. The accuracy VERY HIGH has been used, which
uses a third-order scheme which averages three steps forward
in time. For the spatial scheme a fifth order accurate weighted
“Hamilton-Jacobi Essentially Non-oscillatory” scheme is used.
The results of the reachable set estimates from the toolbox
for various time-windows together with the analytical sets can
be found in Fig. 22. The accuracy of the results from the
toolbox is dependent on the the grid size that is used. The
toolbox provides underestimated reachable sets, despite the
fact that the toolbox uses a set of initial states, instead of
the origin as used in the derivation for the analytical sets.
The underestimation primarily occurs near the edges of the
envelope. This can be explained by the switch curves in
the analytical solution as seen in Eq. 31 and Eq. 32. The
switch curve defines the critical condition in state-space at
which the system control strategy switches its direction (i.e.
application of a force into the opposite direction). Since the
toolbox uses a grid, the extend to which the location of this
switch curve can be identified depends on the accuracy of
the grid. A coarse grid will result into wrong estimations of
the spatial gradient resulting into an incorrect optimal control
strategy. Since the switch curve occurs near the upper and
lower edges, the toolbox provides poor set estimations at these
locations [33]. For Ngrid = 800 the estimation approaches
the performance of the worst MC simulation estimate with
500 trajectories, however the estimates perform worse for
t > 1 second. Besides the poor performance, additionally the
computation time required for the toolbox to obtain a similar
set is in the order of tens of minutes for t = 1 with Ngrid

= 600, and around an hour for t = 2.5 with Ngrid = 800,
while the MC simulation only requires a computation time in
the order of a few seconds on the same machine. From the
analysis it can be concluded that the MC simulation exceeds
the performance of the Level-Set Toolbox in both accuracy as
well as computation time2.

C. Verification of the Optimal Control Routine for Backward
Reachable Set Estimation

The backward reachable set of the double integrator system
includes all the states from which the system can return to
the origin within an arbitrary time-window. The solution to
the optimal control for minimum-time to reach the origin has
been derived in Section V-B to be bang-bang control. In order
to verify whether the minimum-time optimal control routine
has been implemented correctly, the obtained set is compared
to the boundaries of the analytical backward reachable set of

2A thorough time complexity analysis on both the toolbox and the MC
simulation has not been performed and is recommended.

the double integrator. Note that since the optimal control input
is determined relative to curves in state-space (the optimal
control curves), the numerical resolution of the simulation
has an influence on the accuracy of the estimated backward
reachable set.

For the verification analysis a grid in the state-space is
generated. For each grid point the optimal control strategy
is applied to return the system to the origin. The time it takes
for the system to reach the origin, within one time-step dt
size for both the position and velocity state, is documented.
It should be noted that the critical curve contains a margin,
velocity±n·dt, to account for limited floating point precision.
The analysis shows that both the margin size n, as well as
the simulation integration time-step dt influence the estimation
performance. A summary of the results of various simulation
conditions can be found in Table X. The optimal margin
resulting in the lowest amount of incorrectly predicted return
times is ±2 ·dt. An illustration of the results with this margin
and ∆grid = 0.1 can be found in Fig. 23.

To explore the distribution of the errors, the erroneous time
estimates from all simulations with the settings in Table X
are plotted together in Fig. 24. The distribution of the errors
are mostly centered around the upper and lower corners. This
underestimation near the corners also occurred for the set
estimates from the Level-Set Toolbox in which the inaccuracies
near the corners emerged from the inability to estimate a
discontinuity on a grid. The same approach is used in the opti-
mal control routine resulting in similar incorrect set estimates.
The top corner of the BRS estimate from the toolbox with
Ngrid = 800 together with the optimal control estimates has
been highlighted in Fig. 25. Although the optimal control esti-
mate results in errors near the corners, the resulting expected
underestimation of the optimal control routine with the true
set is less compared to the underestimation of the Level-Set
Toolbox estimate. Furthermore, as noticed in the analysis of the
forward reachable set verification, the optimal control routine
has a much lower computational time required compared to
Level-Set Toolbox for obtaining BRS estimates with similar
accuracy.

TABLE X
THE TOTAL AMOUNT OF INCORRECTLY PREDICTED BACKWARD

REACHABLE STATES, ALSO AS A PERCENTAGE OF THE TOTAL AMOUNT OF
PREDICTED STATES WITHIN ALL ANALYTICAL SETS OF T = 1, 1.5, 2, 2.5 S.

∆grid = 0.1
Margin ±1 · dt ±2 · dt ±3 · dt ±4 · dt
dt = 0.01 290 (9.97%) 52 (1.79%) 84 (2.89%) 174 (5.98%)
dt = 0.001 86 (2.96%) 10 (0.34%) 28 (0.96%) 44 (1.51%)

∆grid = 0.05
Margin ±1 · dt ±2 · dt ±3 · dt ±4 · dt
dt = 0.01 1074 (9.41%) 144 (1.26%) 246 (2.15%) 642 (5.61%)
dt = 0.001 378 (3.31%) 38 (0.33%) 38 (0.33%) 98 (0.86%)
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s) and the analytical set. Although the optimal control estimate results in
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control routine with the true set is less compared to the underestimation of
the Level-Set Toolbox estimate.

To conclude, the verification shows that the minimum-
time optimal control routine for BRS estimation, with an
optimal control curve margin of ±2 · dt and a time-step of
dt = 0.001, results in BRS estimates with more than 99.5%
accuracy for the time-windows analyzed. The errors occur near
the upper- and lower corners which could result in a slight
underestimated backward reachable set which increases with
increasing time-windows as can be observed in Fig. 24. The
resulting underestimation of the estimated set is expected to
be smaller than the underestimated backward reachable sets
from the Level-Set Toolbox.

VIII. RESULTS

In this chapter the results on the quadcopter forward
reachable sets (FRS) and backward reachable sets (BRS) are
presented which are analyzed separately in Section VIII-A and
Section VIII-B. The effects of varying the center of gravity
position, varying the trajectory time-windows and the influence
of actuator dynamics on the reachable sets are explored. The
simulation settings, from which the sets are obtained, are
identical to the settings as used during the Monte-Carlo (MC)
optimization routine, summarized in Table VIII. Furthermore,
the found optimized MC parameters are used as summarized
in Table IX.

A. Results on the Forward Reachable Set

The forward reachable set contains all the states that the
quadcopter can reach within a certain time-window. The
FRS is estimated by simulating (random) trajectories with
the optimized MC simulation settings, storing the end states
and fitting a convex hull to the data. The resulting set is
dependent on the system dynamics, and will grow as the
time-window increases. The effect of the center of gravity
position, varying time-windows and the effect of actuator
dynamics on the FRS are explored individually.

1) The Effect of Battery Position: To observe the effect of
varying the center of gravity position on the reachable set, the
FRS estimation routine has been applied on all quadcopter
configurations for a fixed time-window of T = 0.1 s. The
estimated reachable sets can be found in Fig. 26 and Fig.
27. Information on the properties of the reachable sets per
configuration for relative comparison is summarized in Table
XI.

The following observations can be made:
• The larger the displacement of the center of gravity from

the rotor plane center, the smaller the reachable set area.
Compared to the battery neutral position the aft battery
position has a set area which is about 45% smaller, while
the battery forward configuration has a reachable set area
which is reduced by about 65%. The reduction is due to
the increased moment of intertia as a result of the battery
displacement. The increase in inertia is largest for the
forward configuration, resulting in the largest decrease in
reachable set area.

• The location of the centroid of the reachable set is a
function of the center of gravity position. The centroid
of the reachable set moves into the rotation direction of
the pitching moment bias. This is the result of the center
of gravity offset with the rotor plane center resulting in
a bias offset in the pitching moment. The battery neutral
configuration has the smallest absolute pitching moment
bias, which results into a set with a centroid closest
towards the origin. The battery aft configuration has a
centroid shifted into the positive rotation direction (due
to the positive bias) and the battery forward configuration
towards the negative pitching direction (negative bias).
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• The neutral battery position acquires the largest reach-
able set area. Furthermore, it reaches the largest mini-
mum pitch angle and rate compared to the other config-
urations. Although the displaced battery positions from
the neutral position result in a larger bias in the pitching
moment, the increased moment of inertia restraints the
obtainable pitch rates within the fixed time-window.

• The half aft configuration obtains the largest maximum
pitch angle and rate. An exception to above observation
is the battery half aft configuration, which exceeds the
maximum pitch angle and rate for all configurations. This
can be explained by the fact that this configuration has
the smallest increase in moment of inertia, while at the
same time it has a larger bias towards the positive pitch
direction than the neutral configuration. This combination
results in obtaining a larger pitch up angle and rate com-
pared to the other configurations. Vice versa applies to
the half forward configuration, however this configuration
has a larger moment of inertia increase than the half aft
position (compared to the neutral), resulting in a slightly
lower minimum reachable pitch angle and rate than the
neutral configuration.

• The forward battery position has a smaller reachable
set compared to the aft set. This is the direct result
from a larger center of gravity displacement for the
forward battery configuration than the aft configuration.
Consequently, the quadcopter has a larger moment of
inertia, which reduces the change in rotational rate over
time, which shrinks the reachable set, despite the larger
bias in the pitching moment.

40 20 0 20 40
Pitch Angle [deg]

1000

500

0

500

1000

1500

Pi
tc

h
Ra

te
[d

eg
/s

]

Battery Aft
Battery Half Aft
Battery Neutral
Battery Half Forward
Battery Forward

Forward Reachable Set Estimates - T = 0.1 s

Fig. 26. Forward reachable set estimates for each battery configuration for a
time-window of T = 0.1 s. The overlay of the sets highlight the dissimilarities
between the battery configuration reachable set estimates.

2) The Effect of Time: When increasing the time-window,
the reachable set naturally grows. To quantify the effect on
the reachable set as a function of time, the forward sets are
estimated for T = 0.05, 0.1, 0.15 and 0.2 s for all quadcopter
configurations. The results of the sets can be found in Fig. 28
and Fig. 29. The effect of the time-window on the area, the
minimum and maximum pitch angles and rates are quantified
by computing the percentage difference with respect to the set
obtained at T = 0.1 s. The percentages per time-window and
configuration can be found in Fig. 30.

The following observations can be made:
• The reachable set expands as a function of time. The area

of the set grows with increasing time-window. Due to
the double integrator like dynamics, the maximum and
minimum pitch angle and pitch rate obtained from the
reachable set increases quadratically and linearly with
respect to time.

• The expansion of the reachable set per unit of time is
dependent on the system dynamics. The area increases
more for the battery aft and forward position, with less
than 1% more compared to the neutral and half positions
at T = 0.05 s, about 15% more at T = 0.15 s, and 50%
more at T = 0.2 s. The minimum pitch angle and rates
expand more for the battery forward position, with less
than 1% more at T = 0.05 s, about 5% and 3% more
at T = 0.15 s, and 15% and 5% at T = 0.2 s. A larger
expansion is observed in maximum angle and rate for the
battery aft configuration, about 5% more at T = 0.15 s,
15% and 6% more at T = 0.2 s.

• The quadcopter system is a very fast system. When
considering the battery neutral configuration, it can be
observed that at T = 0.1 s a maximum pitch angle of 47
degree with a pitch rate of 1230 deg/s can be obtained.
If this time-window is only increased by a fraction of a
second, to T = 0.2 s, the pitch angle reached is almost 6
times larger, 275 degree, and the pitch rate is almost 3
times larger, 3357 degree/s.

• The reachable set expands in time in a similar fashion as
a double integrator system. The similarities are observed
in the the verification part of this work in Chapter VII.
This is because the pitch angle and pitch rate dynamics
of a quadcopter essentially are a double integrator system
and hence the set is similar to the reachable sets of this
system.
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Fig. 27. Forward reachable set estimates for each configuration including the simulation end states and the boundary estimates for a time-window of T = 0.1
s. Note the evident area size variations and centroid offsets among the battery configurations.

TABLE XI
PERFORMANCE COMPARISON OF THE FRS FOR THE VARIOUS BATTERY CONFIGURATIONS.

Battery Position Area [deg2/s] Min. θ [deg] Max. θ [deg] Min. q [deg/s] Max. q [deg/s] Centroid [θ, q]
Aft 10.31 -45.29% -26.22 +48.34% 45.87 -2.79% -682.34 +48.31% 1222.54 -0.69% 10.39 273.07

Half Aft 17.10 -9.25% -40.69 +19.83% 52.55 +11.35% -1057.10 +19.92% 1379.57 +12.06% 6.22 162.97
Neutral 18.85 0% -50.75 0% 47.19 0% -1320.00 0% 1231.08 0% -1.92 -45.23

Half Forward 15.32 -18.70% -49.41 +2.66% 38.88 -17.61% -1290.12 +2.26% 1013.84 -17.65% -5.43 -139.17
Forward 6.58 -65.07% -36.89 +27.32% 20.82 -55.88% -978.84 +25.85% 541.60 -56.01% -8.32 -219.86
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Fig. 28. The FRS as a function of time for all battery configurations plotted together.
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Fig. 29. The FRS as a function of time for the battery neutral configuration.
Note the similarities between the reachable sets of the double integrator system
as discussed in Chapter VII.

3) The Effect of Actuator Dynamics: The reachable set is
a function of the dynamics of the quadcopter model, hence
including or excluding the actuator dynamics in the modelling
has an effect on the reachable set. To explore the effects of the
actuator dynamics, the forward reachable sets are estimated
for each configuration with and without actuator dynamics
modelling for a fixed time-window of T = 0.1 s. The results
of the reachable sets per configuration can be found in Fig.
31. Numerical information of the properties of the reachable
sets, including the percentage difference with respect to the
set without actuator dynamics, is summarized in Table XII.
The following observations can be made:

• The reachable set area reduces substantially when includ-
ing actuator dynamics. The area of the set with actuator
dynamics reduces about 85% in size compared to the set
without actuator dynamics.

• Maximum and minimum pitch angle and pitch rate re-
duces substantially with actuator dynamics included. The
minimum and maximum pitch angle and rate are reduced
by about 60% and 47% respectively.

• The effect of the actuator dynamics on the set is indepen-
dent of the battery configuration. The extend to which the
actuator dynamics affect the reachable sets is mostly the
same for each quadcopter configuration (about ±1%-2%
difference).

B. Results on the Backward Reachable Set

The backward reachable set is obtained from the forward
reachable set directly by applying the optimal control routine
as described in Chapter VI. The optimal control routine is
applied on every FRS end state, and the amount of time
required to return to the safe state is stored. A quadcopter is
considered to be at the safe state (hover condition) in the case
-5 deg < θ < 5 deg and -1 deg/s < q < 1 deg/s. As a result,
for every end state in the FRS, the amount of time is found
which describes how much time it takes to return to the safe
state, on top of the time required to reach the end state. In this
work the distribution of return times on the FRS is referred
to as the BRS. The effect of the center of gravity position,
varying time-windows and the effect of actuator dynamics on
the backward reachable sets are explored individually.

1) The Effect of Battery Position: To observe the effects of
the center of gravity position, the optimal control routine has
been applied on the forward reachable set of each battery
configuration, with a fixed time-window of T = 0.1 s. In Fig.
32 the results can be found, with the time to return to the
safe state specified in color. The following observation can be
made:

• The distribution of the return time over the entire FRS set
is a function of battery position. For the battery neutral
position this distribution seems almost symmetric, while
for the extreme battery positions larger return times are
found near one of the edges of the FRS. This can be
explained by the pitching moment bias as a result of
the center of gravity offset with the rotor plane center,
due to which higher pitching moments are reached into
the direction of this bias. Moreover, a higher moment of
inertia restricts large changes in rotational rates, which
increases the return time.

2) The Effect of Time: To observe the effects of varying
the time-windows on the BRS, the FRS for various time-
windows have been obtained and the optimal control routine
is applied on these sets. The results of the BRS for varying
FRS time-windows can be found in Fig. 33 for each battery
configuration. To highlight the effects of varying the time-
window on the return time distribution, the BRS results for
various time-windows for the battery neutral configuration
only are shown in Fig. 34. The following observation can be
made:

• The time to return to the safe state generally requires
(substantially) more time than the time-window used to
obtain the FRS. A forward reachable set, with time-
window of T = 0.1 s, results in a BRS with return times
up to 0.7 seconds. This is due to the sampling along
the maximum input range to estimate the boundary of
the FRS. These extreme inputs result in trajectory end
states with high rotational rates and accelerations from
which the quadcopter needs to recover. Moreover, due
to the modelling of the actuator dynamics, an additional
delay is introduced to change the (direction of the) rotor
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Fig. 30. The percentage difference of the reachable set for various time-windows with respect to T = 0.1 s.
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Fig. 31. The FRS with and without actuator dynamics for each battery configuration at T = 0.1 s. Note the substantial reachable set reduction when actuator
dynamics are included in the modelling.

TABLE XII
PERFORMANCE COMPARISON OF THE FRS WITH AND WITHOUT ACTUATOR DYNAMICS FOR THE EACH BATTERY CONFIGURATIONS

Area[deg2/s] Min. θ [deg] Max. θ [deg] Min. q [deg/s] Max. q [deg/s]

Battery Position With Without % With Without % With Without % With Without % With Without %
Aft 68.11 10.31 -84.86% -64.23 -26.22 +59.18% 120.91 45.87 -62.06% -1271.92 -682.34 +46.35% 2394.18 1222.54 -48.94%
Half Aft 107.32 17.10 -84.07% -99.35 -40.69 +59.05% 133.11 52.55 -60.52% -1967.32 -1057.10 +46.27% 2635.83 1379.57 -47.66%
Neutral 116.52 18.85 -83.82% -124.32 -50.75 +59.18% 117.65 47.19 -59.89% -2461.80 -1320.00 +46.38% 2329.66 1231.08 -47.16%
Half Forward 95.59 15.32 -83.97% -122.24 -49.41 +59.58% 96.91 38.88 -59.88% -2420.67 -1290.12 +46.70% 1919.04 1013.84 -47.17%
Forward 42.90 6.58 -84.66% -95.27 -36.89 +61.28% 51.68 20.82 -59.71% -1886.57 -978.84 +48.12% 1023.41 541.60 -47.08%

speeds and generate rotational accelerations towards the
safe state.

• The return time increases with increasing FRS time-
window, until a specific time, after which the return time
distribution shows a repeating pattern along the FRS.
The repeating return time pattern occurs from T = 0.15
s for angles around- and greater than 100 degrees when
considering all configurations. The repeating pattern can
be explained by the looping of the pitch angle in the
simulation. As described in Chapter VI, the optimal
control routine depends on the sign of the pitch angle,
which loops around an arbitrary range. As a result, the
found optimal control solution does not always result in

the global optimum. When the pitch angle approaches the
end of the angle range and it has sufficient pitch rate and
q̇0 into the direction of this range, the quadcopter can
exceed the looping angle and the sign of the pitch angle
is switched. Consequently, the optimal control routine
input is switched as well, which happens to result in a
faster time to reach the safe state. As proposed before,
it is recommended to loop the pitch angle interval for
an integer amount of variations and select the routine
resulting in the minimum return time for each end state
considered.
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Fig. 32. The effect of center of gravity position on the return times in the BRS. The FRS are obtained for a time-window of T = 0.1 s and the number of
trajectories are increased to Ntraj = 2000 for illustration purposes. Note the distribution of the return times along the FRS which seems to be a function of
the center of gravity position.

Fig. 33. The effect of the time-window of the FRS on the return times in the BRS for each battery configuration. With increasing FRS time-windows the
return times increases as well, after T = 0.1 s a pattern emerges along the FRS set. Note that the ranges of the axes of the plots are not the same.

3) The Effect of Actuator Dynamics: The effect of the ac-
tuator dynamics on the BRS is analyzed by comparing the BRS
sets for T = 0.1 s for each configuration with and without actu-
ator dynamics modelling. Note that for the simulations without
actuator dynamics, the optimal control routine reduces from
using the optimal control surface to the optimal control curves
as displayed in Fig. 13. The results for all configurations can
be found in Fig. 35. The following observation can be made:

• The BRS without actuator dynamics has a considerably
larger FRS with reduced return times. The quadcopters
without actuator dynamics modelling obtain larger FRS
as well as a BRS with much lower return times. For a FRS
of T = 0.1 s the largest distribution of the return time of

the set without actuator dynamics ranges up to about 0.3
seconds, despite the larger pitch angles and pitch rates
obtained in the FRS. This is because a system without
actuator dynamics can apply a rotational acceleration
instantaneously, while the actuator dynamics introduce
a lag, making the system respond slower. Note that the
repeating return time distribution as observed before is
already visible in the BRS without actuator dynamics
as larger pitch angles and rates are obtained in the FRS
within the same time-window.
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Fig. 34. The distribution of the return times for various FRS time-windows for the battery neutral configuration. After T = 0.1 s a repeating pattern of the
return times can be observed along the FRS. Note that the ranges of the axes of the plots are not identical.

Fig. 35. The effect of actuator dynamics on the FRS and the BRS for each battery configuration for a FRS time-window of T = 0.1 s, Ntraj = 2000. Note
that the BRS without actuator dynamics have much smaller return times and that the repeating pattern is already visible.

The results on the FRS and BRS generate knowledge on the
capabilities of the quadcopter in the framework of reachability
analysis. So far, the reachable sets are separated into the
FRS and BRS respectively. In order to determine the SFE,
it is required to define the amount of time the quadcopter
is allowed to go from- and return to the safe state (hover
condition). This particular time-window is application specific
and dependent on the safety and performance requirements.
For further implementation of the results in the framework
of the SFE, it is recommended to further investigate the

application specific safety requirements (e.g. in terms of time-
windows) which can then be co-implemented with a controller
for flight envelope protection.
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IX. EXPERIMENTAL VALIDATION OF THE FORWARD
REACHABLE SETS

To validate the results on the forward reachable set (FRS)
as presented in Chapter VIII, the FRS estimations from the
Monte-Carlo (MC) simulation are compared to flight data. In
this work the edge case scenarios of reaching the maximum
and minimum pitch angle and rate (the top and bottom corners
of the envelopes) as a function of time are considered. For
each quadcopter battery configuration, maximum commanded
pitch up and pitch down maneuvers are manually performed.
The resulting angles and rates over time are compared to the
maximum angles and rates of the reachable set estimates.

A. Experiment Set-up

The validation flights have been conducted indoors above
a net to capture the quadcopter after each maneuver. The
quadcopter has been flown manually in a line-of-sight fashion.
Since there was no available method to directly control the
rotors in an open-loop fashion, a rate controller has been
used and adjusted to approximate a step-input as much as
the software could allow3. This resulted in a full stick de-
flection mapping to a pitch rate command of 2000 deg/s,
which extended the maximum control moment input over time
as much as possible before the quadcopter approached the
commanded input rate. To reduce any unintentional roll and
yaw inputs, the roll and yaw commands were limited to a
maximum of 2 deg/s at full stick deflection. An overview of
the commanded pitch rate signals for all maneuvers can be
found in Fig. 36. More details on the experiment set-up can
be found in Appendix E.
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Fig. 36. The mean ± one standard deviation of the pitch rate commanded
signals for both pitch up and pitch down maneuvers. For both maneuver
directions the absolute pitch rate commanded at full stick deflection is 2000
deg/s. Note that the input is not a pure step-input.

B. Validation Data

To perform the validation analysis, the rotor speeds, pitch
angles and pitch rates of all flight maneuvers are required.

3BetaFlight Configurator V10.8.0

The pitch rate data have been obtained from the onboard
MEMS gyro, while the pitch angles are obtained from both
the quadcopter software, which integrates the pitch rate over
time, and an external motion capture system (OptiTrack4). An
overview of the amount of maneuvers included in the analysis
can be found in Table XIII. The measurement results of all
pitch maneuvers are plotted in Fig. 37.

TABLE XIII
OVERVIEW OF THE MANEUVER COUNT PER DIRECTION AND QUADCOPTER

CONFIGURATION.

Number of Maneuvers
Pitch Up Pitch Down

Battery Aft 10 15
Battery Half Aft 13 14
Battery Neutral 16 17

Battery Half Forward 14 15
Battery Forward 13 15

Note that the expected differences between the quadcopter
configurations can be noticed in the measured pitch angles and
rates over time. Especially the battery forward configuration
noticeably obtains much smaller pitch angles and rates over
time for the pitch up maneuvers and vice versa for the battery
aft configuration. Also note that indeed the battery half aft
configuration shows a larger obtainable maximum pitch up
angle and rate compared to the other configurations, which
was also found in the FRS analysis in Chapter VIII.

The results of the OptriTrack measurements together with
the pitch angle data from the onboard software are plotted
in Fig. 38 for the battery neutral configuration. The onboard
pitch angle data show to be periodic about ±90 degrees. Due to
the high pitch angles and rates reached during the maneuvers,
the OptiTrack system systematically lost track of the rigid
body after around ±60 degrees (the signal remains constant
after tracking loss). Furthermore, the onboard pitch angle
underestimates the pitch up maneuvers, and overestimates the
pitch down maneuvers with respect to the OptiTrack system
for the battery neutral configuration measurements. In order
to obtain a clean pitch angle reference, the gyro data have
been integrated over time. The pitch angle from the OptiTrack
system has been used as the initial pitch angle at the start of
the maneuver due to the external fashion and high accuracy
capabilities of the system. The resulting integrated pitch an-
gle signal, also plotted in Fig. 38, averages the under- and
overestimation of the onboard pitch angle measurements and
OptiTrack measurements. This integrated pitch angle signal is
further used as reference in the validation analysis.

Another observation from the flight data is an asymmetry
of the control pitching moment with respect to the direction of
the maneuver. The pitch up maneuvers generally obtain higher
control moments (around 3000 eRPM) than the pitch down
maneuvers (around 3800 eRPM). This becomes more apparent
when plotting the distribution of the rotor speeds as shown in
Fig. 39. A possible explanation of this phenomenon could be

4https://optitrack.com/
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Fig. 37. The mean ± one standard deviation of the pitch angle, pitch rate and control pitching moment of all maneuvers and quadcopter configurations. Note
the expected differences in obtained pitch angle and rate over time, especially noticeable for the pitch up maneuver of the battery forward configuration, which
obtains a smaller pitch angle and rate over time compared to the other configurations. Also note the asymmetry in the control pitching moment between the
pitch up and pitch down maneuvers.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

200

100

0

100

200

An
gl

e 
[d

eg
]

Pitch Up
Pitch Down
Integrated Gyro
OptiTrack
BetaFlight
OptiTrack First Lost Signal
Start Steady Pitch Rate (Gyro)

Pitch Angle Measurements - Battery Neutral

Fig. 38. The mean ± one standard deviation of the pitch angle measurements
over time from both the onboard datalogging (BetaFlight), which show
to be periodic about ±90 degrees, and the external measurement system
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first signal loss of the OptiTrack system, the next two vertical lines indicate
the moment a steady-state pitch rate has been obtained for the pitch up and
down maneuvers. Note that the pitch angle integrated from the gyro signal,
using the initial pitch angle from the OptiTrack system, is plotted as well,
which is the signal used as reference in the validation analysis.

as a result of asymmetrical rotor blades and/or functionality
of the motors. It is recommended to investigate the cause of
this asymmetry as symmetrical control moment inputs would
benefit the validation analysis.

C. Validation Results

Before the validation flight data can be compared to the
simulation results, the control moment applied in the simu-
lations must match those as observed during the validation
flights, in order to obtain a fair comparison. Since the control
moment distributions are asymmetric with maneuver direction,
for each maneuver direction a dedicated control moment is
selected which is used in the MC simulation for envelope
prediction. The maximum front and aft rotor speeds, as used
in the simulations, are selected by averaging the means of
the rotors speeds of all configurations, per pitch up and down
maneuver as displayed in Fig. 39. A summary of the selected
rotor speeds, as well as the MC simulation settings can be
found in Table XIV.

The validation results show that the quadcopter models
consistently underestimate the flight data, as presented in Fig.
40. The actuator dynamics model, as identified in Chapter IV
(referred to as the default actuator model), has a noticeably
slower performance than what the flight data show. A re-
identification of the time constants on the validation data only
shows that indeed the updated time constant values are reduced
by more than half compared to the default time constant
values. The time constants identified on the validation flight
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TABLE XIV
SUMMARY OF THE ROTOR SPEEDS USED IN THE MC SIMULATION,

TOGETHER WITH THE SIMULATION SETTINGS TO OBTAIN THE REACHABLE
SET ESTIMATES FOR COMPARISON WITH THE VALIDATION FLIGHT DATA.

Simulation Settings
Pitch Up [min, max] [384.1, 1803.4] eRPM
Pitch Down [min, max] [264.3, 2015.4] eRPM
dt [s] 0.001
T imeWindows [s] 0.04, 0.08, 0.1, 0.14, 0.18, 0.2
Ntrajectory 1000
pc, Nswitch Optimized Parameters
N 10

data (referred to as the updated actuator model) can be found
in Table XV. A possible explanation for these differences is
that the default actuator dynamics are identified on data from a
quadcopter flown in “angle mode”, while the validation flights
have been performed in “rate mode”. The “angle mode” has an
additional control loop including data from the accelerometer
for angle control. The additional control loop possibly results
in larger delays, resulting in slower actuator dynamics on
the default model. Moreover, the commanded inputs to the
rotors may be different as well. The feedback loop oriented
“angle mode” controller leads to less aggressive inputs than the
feedforward oriented “rate mode” controller. Since the rotor
speed commands change faster, the rotor speed output changes
more aggressively in “rate mode” and hence a smaller time
constant is found. Another possible source for the differences

is the observed difference in scaling of the commanded and
measured rotor speeds in the flight controller software which
directly influences the parameter estimation as well.

The validation errors, which are the differences between
the MC simulation results and the validation measurements,
for both actuator models are shown in Fig. 41. Note that the
regions in which the gyro data have obtained a steady-state
value are highlighted because in that case the comparison with
the simulation data is invalid. Also note that the variance in the
errors (indicated as a bound of one standard deviation) mainly
originate from the variations in the validation flight data.

For time-windows up to T = 0.1 s the mean and standard de-
viation of the validation error, as well as the percentages with
respect to the validation data are summarized in tables. The
data with the default actuator model for the pitch angle and rate
can be found in Table XVI and Table XVII respectively. The
data with the updated actuator model for the pitch angle and
rate can be found in Table XVIII and Table IX-C respectively.
Note that the validation data have an initial positive pitch angle
and pitch rate at the start of the maneuver, which results in
an underestimation for all estimates at T = 0 s. Furthermore,
large error percentages are found for the pitch angle values
at T = 0.04 s due to the pitch angle of the validation data
crossing zero near T = 0.04 s.

The quadcopter models with the default actuator dynamics
generally show an underestimation of the pitch angle and pitch
rate with respect to the validation data. This applies for both
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the pitch up and pitch down maneuvers. The average errors
among all quadcopter configurations at T = 0.1 s for the pitch
up and pitch down maneuvers of the pitch angle are 44.39%
and 26.84%. The average errors at T = 0.1 s for the pitch up
and pitch down maneuvers of the pitch rate are 27.30% and
27.84%.

The quadcopter models with the updated actuator dynamics
generally show an overestimation of the pitch rate for both
pitch up and pitch down maneuvers. Exceptions include the
battery forward configuration and the pitch down maneuver
of the battery aft configuration. For all models the pitch
angle is overestimated for the pitch down maneuver, and
underestimated for the pitch up maneuver. This is as expected
since, although undesirable, all validation maneuvers start with
a positive initial pitch angle. The absolute differences with the
validation data have been reduced substantially compared to
the default model. The average errors at T = 0.1 s for the pitch
up and pitch down maneuvers of the pitch angle are reduced
to 13.75% and 14.70%. The average errors at T = 0.1 s for
the pitch up and pitch down maneuvers of the pitch rate are
reduced to 12.07% and 11.69%.

To visualize the validation results in the perspective of the
reachable set estimates, the results of the pitch down maneuver
for the battery neutral configuration are plotted for T = 0.04,
0.08 and 0.1 s together with a realization of the MC simulation
reachable set estimate for both the default, Fig. 42, and the
updated, Fig. 43, actuator model. The plots in Fig. 42 distinctly
show the underestimation of the reachable set on the pitch
down maneuver of the quadcopter model with the default
actuator model. Note that for the results on T = 0.04 s the pitch
angles of the validation data cross zero as the flight maneuvers
start at an initial positive nonzero pitch angle, which makes the
validation analysis in these time-windows for the pitch angle
invalid. The models with updated actuator dynamics in Fig. 43
clearly show an overestimation with respect to the validation
data. A more detailed figure on the updated actuator model
results can be found in Fig. 44.

To summarize, from the validation analysis it has been
found that mainly the quadcopter actuator dynamics are mod-
elled with a too high time constant, as the simulation data
show a large underestimation with respect to the validation
flight data. Possible explanations include differences between
the control mode used to obtain the flight data, such as time-
delay and commanded inputs, and possible scaling issues
between the commanded and measured rotor speeds. The
quadcopter model with updated actuator dynamics (identified
on the validation data) show a large decrease in (absolute)
error with the validation data compared to the default model,
with an average reduction of about 18% at T = 0.1 s. The
pitch rate is generally being overestimated, which is expected
when comparing an open-loop simulation with closed-loop
performed flight maneuvers. Exceptions are the battery for-
ward configuration (both maneuver directions) and the battery
aft maneuver (pitch down direction) which underestimate the
pitch rate. This could indicate that these models are estimated
insufficiently and a re-analysis would be required. For all

models the pitch angle is overestimated for the pitch down
maneuver, and underestimated for the pitch up maneuver.
This is as expected since, although undesirable, all validation
maneuvers start with a positive initial pitch angle.

TABLE XV
UPDATED ACTUATOR TIME CONSTANTS IDENTIFIED ON THE VALIDATION

FLIGHT DATA.

Motor τ 100cov(θ̂)/θ̂ NRMSE Train R2 (Train)
1 0.0262 2.1807 % 0.0634 0.9727
2 0.0332 2.6489 % 0.0720 0.9651
3 0.0229 1.4640 % 0.0539 0.9795
4 0.0256 1.0352 % 0.0550 0.9778
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TABLE XVI
SUMMARY OF THE PITCH ANGLE VALIDATION RESULTS OF THE DEFAULT ACTUATOR MODEL. NOTE THAT THE VALIDATION DATA HAVE AN INITIAL

POSITIVE PITCH ANGLE AT THE START OF THE MANEUVER, AS A RESULT THE PITCH DOWN MANEUVER ESTIMATION RESULTS IN AN OVERESTIMATION
FOR T = 0.04 S. FURTHERMORE, LARGE PERCENTAGE VALUES ARE FOUND FOR THE PITCH ANGLE VALUES DUE TO THE PITCH ANGLE OF THE

VALIDATION DATA CROSSING ZERO NEAR T = 0.04 S.

ANGLE [deg] T = 0 [s] T = 0.04 [s] T = 0.08 [s] T = 0.1 [s]
Pitch Up µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -4.24 -100.0 2.18 51.31 -6.65 -72.86 2.66 29.13 -15.70 -46.02 5.54 16.25 -21.73 -38.92 7.14 12.79
Half Aft -5.17 -100.0 0.93 18.01 -8.12 -72.88 1.71 15.33 -17.75 -45.41 5.54 14.18 -23.64 -37.72 7.75 12.37
Neutral -6.19 -100.0 1.66 26.86 -8.62 -75.76 2.65 23.32 -17.35 -47.78 7.17 19.74 -23.25 -40.25 9.95 17.23
Half Forward -8.96 -100.0 1.47 16.44 -11.04 -83.29 2.24 16.89 -18.33 -54.68 4.74 14.14 -23.19 -45.63 6.15 12.10
Forward -5.10 -100.0 1.43 28.02 -7.35 -86.62 1.82 21.47 -15.18 -66.39 2.98 13.01 -20.85 -59.92 3.61 10.37
Pitch Down µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -6.39 -100.0 1.55 24.23 -1.19 -38.96 1.98 65.05 -3.88 23.33 3.34 -20.11 -10.61 31.41 4.13 -12.22
Half Aft -5.35 -100.0 1.93 35.96 1.72 142.39 2.43 200.82 -3.22 13.88 5.12 -22.10 -8.46 18.92 6.88 -15.39
Neutral -5.49 -100.0 2.67 48.56 3.24 756.62 2.96 691.19 -4.27 14.57 5.09 -17.34 -9.86 17.81 6.49 -11.72
Half Forward -5.47 -100.0 1.22 22.33 3.43 -3609.35 2.17 -2278.82 -7.65 23.85 6.01 -18.73 -15.42 25.71 8.31 -13.87
Forward -6.14 -100.0 1.73 28.21 1.22 96.51 1.55 122.06 -10.89 37.55 3.59 -12.38 -22.56 40.33 5.25 -9.38

TABLE XVII
SUMMARY OF THE PITCH RATE VALIDATION RESULTS OF THE DEFAULT ACTUATOR MODEL. NOTE THAT THE VALIDATION DATA HAVE AN INITIAL

POSITIVE PITCH RATE AT THE START OF THE MANEUVER.

RATE [deg] T = 0 [s] T = 0.04 [s] T = 0.08 [s] T = 0.1 [s]
Pitch Up µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -20.35 -100.0 1.83 8.98 -117.38 -39.45 79.04 26.56 -265.48 -29.41 89.44 9.91 -285.12 -23.60 86.98 7.20
Half Aft -20.24 -100.0 1.48 7.32 -137.17 -39.11 81.57 23.26 -265.19 -26.85 109.01 11.04 -269.48 -20.62 114.75 8.78
Neutral -20.30 -100.0 0.98 4.83 -112.94 -37.08 94.44 31.01 -257.47 -28.81 139.05 15.56 -281.18 -23.61 146.02 12.26
Half Forward -21.22 -100.0 1.68 7.93 -96.18 -38.51 62.88 25.17 -213.66 -29.57 75.62 10.46 -232.55 -24.21 78.99 8.23
Forward -20.66 -100.0 1.54 7.47 -109.25 -58.33 32.70 17.46 -246.13 -48.98 36.72 7.31 -293.52 -44.50 37.70 5.72
Pitch Down µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -16.47 -100.0 2.09 12.68 -105.73 45.05 38.40 -16.36 -283.05 39.89 43.95 -6.19 -346.92 36.28 45.83 -4.79
Half Aft -14.31 -100.0 4.30 30.06 -81.04 28.58 70.59 -24.90 -221.11 24.90 95.59 -10.76 -249.97 20.80 98.85 -8.22
Neutral -16.57 -100.0 2.09 12.59 -94.58 27.15 62.44 -17.92 -241.44 22.37 76.55 -7.09 -255.14 17.57 81.41 -5.61
Half Forward -17.10 -100.0 1.58 9.25 -132.49 34.97 81.17 -21.42 -334.47 28.93 112.18 -9.70 -375.37 24.19 120.35 -7.76
Forward -15.42 -100.0 2.31 15.00 -164.83 47.98 55.70 -16.21 -489.61 44.08 82.60 -7.44 -607.10 40.38 93.83 -6.24

TABLE XVIII
SUMMARY OF THE PITCH ANGLE VALIDATION RESULTS OF THE UPDATED ACTUATOR MODEL. NOTE THAT THE VALIDATION DATA HAVE AN INITIAL

POSITIVE PITCH ANGLE AT THE START OF THE MANEUVER, AS A RESULT THE PITCH DOWN MANEUVER ESTIMATION RESULTS IN AN OVERESTIMATION
FOR T = 0.04 S. FURTHERMORE, LARGE PERCENTAGE VALUES ARE FOUND FOR THE PITCH ANGLE VALUES DUE TO THE PITCH ANGLE OF THE

VALIDATION DATA CROSSING ZERO NEAR T = 0.04 S.

ANGLE [deg] T = 0 [s] T = 0.04 [s] T = 0.08 [s] T = 0.1 [s]
Pitch Up µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -4.24 -100.0 2.18 51.31 -4.21 -46.05 2.66 29.13 -2.93 -8.60 5.54 16.25 -1.29 -2.31 7.14 12.79
Half Aft -5.17 -100.0 0.93 18.01 -5.47 -49.04 1.71 15.33 -4.16 -10.65 5.54 14.18 -1.95 -3.11 7.75 12.37
Neutral -6.19 -100.0 1.66 26.86 -6.34 -55.72 2.65 23.32 -5.74 -15.80 7.17 19.74 -4.71 -8.16 9.95 17.23
Half Forward -8.96 -100.0 1.47 16.44 -9.22 -69.55 2.24 16.89 -9.04 -26.99 4.74 14.14 -8.37 -16.47 6.15 12.10
Forward -5.10 -100.0 1.43 28.02 -6.45 -75.94 1.82 21.47 -10.56 -46.16 2.98 13.01 -13.46 -38.69 3.61 10.37
Pitch Down µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -6.39 -100.0 1.55 24.23 0.32 10.50 1.98 65.05 3.76 -22.64 3.34 -20.11 1.56 -4.62 4.13 -12.22
Half Aft -5.35 -100.0 1.93 35.96 4.06 336.12 2.43 200.82 8.66 -37.38 5.12 -22.10 10.47 -23.42 6.88 -15.39
Neutral -5.49 -100.0 2.67 48.56 6.19 1447.77 2.96 691.19 10.73 -36.60 5.09 -17.34 14.05 -25.36 6.49 -11.72
Half Forward -5.47 -100.0 1.22 22.33 6.37 -6703.97 2.17 -2278.82 7.29 -22.71 6.01 -18.73 8.40 -14.01 8.31 -13.87
Forward -6.14 -100.0 1.73 28.21 3.55 280.09 1.55 122.06 1.11 -3.84 3.59 -12.38 -3.39 6.06 5.25 -9.38

TABLE XIX
SUMMARY OF THE PITCH RATE VALIDATION RESULTS OF THE UPDATED ACTUATOR MODEL. NOTE THAT THE VALIDATION DATA HAVE AN INITIAL

POSITIVE PITCH RATE AT THE START OF THE MANEUVER

RATE [deg] T = 0 [s] T = 0.04 [s] T = 0.08 [s] T = 0.1 [s]
Pitch Up µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -20.35 -100.0 1.83 8.98 37.18 12.50 79.04 26.56 80.64 8.93 89.44 9.91 130.38 10.79 86.98 7.20
Half Aft -20.24 -100.0 1.48 7.32 27.53 7.85 81.57 23.26 100.45 10.17 109.01 11.04 168.95 12.93 114.75 8.78
Neutral -20.30 -100.0 0.98 4.83 27.95 9.18 94.44 31.01 54.85 6.14 139.05 15.56 93.23 7.83 146.02 12.26
Half Forward -21.22 -100.0 1.68 7.93 16.37 6.55 62.88 25.17 36.05 4.99 75.62 10.46 66.91 6.97 78.99 8.23
Forward -20.66 -100.0 1.54 7.47 -53.20 -28.40 32.70 17.46 -121.52 -24.18 36.72 7.31 -143.98 -21.83 37.70 5.72
Pitch Down µerror % σerror % µerror % σerror % µerror % σerror % µerror % σerror %

Aft -16.47 -100.0 2.09 12.68 -12.83 5.46 38.40 -16.36 -78.53 11.07 43.95 -6.19 -102.43 10.71 45.83 -4.79
Half Aft -14.31 -100.0 4.30 30.06 63.45 -22.38 70.59 -24.90 97.16 -10.94 95.59 -10.76 130.60 -10.86 98.85 -8.22
Neutral -16.57 -100.0 2.09 12.59 87.85 -25.22 62.44 -17.92 160.67 -14.88 76.55 -7.09 225.78 -15.55 81.41 -5.61
Half Forward -17.10 -100.0 1.58 9.25 49.19 -12.98 81.17 -21.42 66.13 -5.72 112.18 -9.70 103.78 -6.69 120.35 -7.76
Forward -15.42 -100.0 2.31 15.00 -19.13 5.57 55.70 -16.21 -166.03 14.95 82.60 -7.44 -219.73 14.62 93.83 -6.24
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Fig. 42. Validation flight data plotted for T = 0.04, 0.08 and 0.1 s of the pitch down maneuver with the neutral configuration, together with a realization
of the MC reachable set estimates from the default actuator model. An error bar of the data points, indicating the mean and one standard deviation bars are
plotted, as well as the confidence ellipses (showing that indeed the pitch angle and rate are correlated) for various standard deviation scalings. Note that for
the results on T = 0.04 s the pitch angles of the validation data cross zero as the flight maneuvers start at an initial positive nonzero pitch angle, which makes
the validation analysis in these time-windows for the pitch angle invalid. The default actuator model results in an underestimation as can be clearly observed.
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Fig. 43. Validation flight data plotted for T = 0.04, 0.08 and 0.1 s of the pitch down maneuver with the neutral configuration, together with a realization of
the MC reachable set estimates from the updated actuator model. An error bar of the data points, indicating the mean and one standard deviation bars are
plotted, as well as the confidence ellipses (showing that indeed the pitch angle and rate are correlated) for various standard deviation scalings. Note that for
the results on T = 0.04 s the pitch angles of the validation data cross zero as the flight maneuvers start at an initial positive nonzero pitch angle, which makes
the validation analysis in these time-windows for the pitch angle invalid. The updated actuator model results in an overestimation as can be clearly observed.
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Fig. 44. Zoomed in figure of Fig. 43 which shows the overestimation of the reachable set estimates of the updated actuator model.

X. CONCLUSIONS

The use and applications of Unmanned Areal Vehicles
(UAV) are expected to grow rapidly in the near future [1].
Currently Loss of control (LOC) is the main cause of failure
for UAVs [2], hence in order to improve safety of these
systems, development of LOC prevention techniques are of
utmost importance. An aircraft operating outside the bound-
aries of the state-space in which the system can be safely
operated is often linked to LOC [3][4]. A way to prevent
LOC to occur is by keeping the system within the boundaries
of the Safe Flight Envelope (SFE), called flight envelope
protection (FEP). The SFE in this work is defined as the set
of states that can be reached, within a certain time-window,
for which a trajectory exist to return to a safe flight condition
within a predefined time-window [5][6][7][8]. The aim of this
research is to explore the behaviour of the boundaries of
the longitudinal SFE of a quadcopter under varying system
dynamics. The SFE has been split into a forward reachable set
(FRS) and backward reachable set (BRS). The FRS is obtained
through a Monte-Carlo (MC) simulation, and the BRS is
obtained from the FRS using a minimum-time optimal control
routine. Both methods have been verified. An analysis has been
carried out on the effects of the center of gravity position,
varying time-windows and the effect of actuator dynamics on
both reachable sets. Furthermore, the forward reachable sets
are experimentally validated. The results from this research
add novel knowledge on the behaviour of the reachable sets
of quadcopters and contributes to the development of FEP on
quadcopter vehicles, thereby contributing to the safety of these
systems. The conclusions have been split into the conclusions
on the FRS results, BRS results, and the verification and
validation part of the research.

A. Conclusions on the Forward Reachable Set

From the results on the FRS, which includes all the states
which can be reached from hover condition within a predefined
time-window, the following outcomes are found:

• A larger displacement of the center of gravity from the
rotor plane center results in a smaller reachable set area.
This is the direct result of the larger moment of inertia of
a quadcopter with a more outer center of gravity location.
Consequently, the quadcopter has a larger resistance
against a change in angular rotation which results in a
smaller reachable set. With respect to the neutral center
of gravity position, the area of the reachable set of the
aft center of gravity position at T = 0.1 s is reduced
by around 45%, while for the forward center of gravity
position the area is reduced by around 65%. It is generally
favorable to have a center of gravity position near the
rotor plane center which results in the largest reachable
set.

• The location of the centroid of the reachable set is a
function of the center of gravity offset position. Due to the
center of gravity offset with the rotor plane center, a bias
in the pitching moment is induced. Consequently a larger
pitching moment can be obtained in the rotation direction
of this bias, which shifts the centroid of reachable set
accordingly.

• The reachable set expands as a function of time and
is dependent on quadcopter dynamics. As the time-
window increases, the reachable set area expands and
the maximum and minimum obtainable pitch angles and
rates increase. The extend to which the set grows within
a unit of time is dependent on the system dynamics. The
area increases more for the larger center of gravity offset
positions. The minimum pitch angles and rates increase
more for the forward center of gravity position while a
larger increase is observed in maximum angles and rates
for the aft center of gravity position.
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• The forward reachable set expands in time in a similar
fashion as a double integrator system. This is because
the rotational quadcopter dynamics are modelled identical
to a double integrator system. Furthermore, the analysis
shows that a quadcopter is a very fast system and hence
time-windows in the reachability analysis framework
should be considered in the order of less than half a
second (for the platform as used in this work).

• Including the modelling of the actuator dynamics reduces
the reachable set substantially. The reachable set area is
reduced by about 85% at T = 0.1 s compared to the set
without actuator dynamics. Furthermore, the maximum
and minimum obtainable pitch angle and rate are reduced
by about 60% and 47% respectively. Hence it is essential
in any quadcopter analysis to include the actuator dynam-
ics in the modelling. The shrinkage of the reachable set
due to the actuator dynamics is independent of center of
gravity offset position.

B. Conclusions on the Backward Reachable Set

The BRS contains the time to return to the safe state
(hover condition) estimated through an minimum-time optimal
control routine for each end state in the FRS. From the results
on the BRS, the following outcomes are found:

• The time to return to the safe state generally requires
(substantially) more time than the time-window used to
obtain the FRS. A FRS obtained within a time-window
of T = 0.1 s results in a BRS with return times up to 0.7
seconds. This is mainly the result of the maximum control
input applied in the FRS estimation, in combination with
the actuator dynamics modelling introducing a delay to
accelerate back towards the safe state.

• The distribution of the return time over the entire FRS set
is a function of center of gravity offset position. For the
neutral center of gravity position this distribution seems
almost symmetric, while for the extreme center of gravity
offsets larger return times are found near one of the edges
of the FRS. This can be explained by the pitching moment
bias as a result of the center of gravity offset with the
rotor plane center and the larger moment of inertia. Hence
it can be concluded that it is generally favorable to have
a center of gravity position near the rotor plane center
which results in a BRS with the smallest return time
distribution.

• The return time increases with increasing FRS time-
window, until a specific time, after which the return time
distribution shows a repeating pattern along the FRS. The
repeating pattern can be explained by the looping of the
pitch angle around an arbitrary range in the simulation.
And since the commanded input from the optimal control
routine depends on the sign of the pitch angle, the found
optimal control solution does not always result in the
global optimum. It is recommended to loop the pitch
angle interval for an integer amount of variations and
select the routine resulting in the minimum return time
for each end state considered.

• The BRS without actuator dynamics has a larger FRS
with considerably reduced return times. The quadcopters
without actuator dynamics modelling obtain a larger FRS
as well as a BRS with considerably lower return times.
For a FRS of T = 0.1 s the largest distribution of
the return time of the set without actuator dynamics
ranges up to only about 0.3 seconds, despite the much
larger pitch angles and pitch rates obtained in the FRS.
This is because a system without actuator dynamics can
apply a change in rotational acceleration instantaneously,
while the actuator dynamics introduce a lag, making the
system respond slower. Therefore, including the actuator
dynamics in the modelling is essential to obtain realistic
reachable sets.

C. Conclusions on the Verification

Both the FRS and BRS estimations have been verified
with the analytically obtainable reachable sets of the double
integrator system [23]. The verification analysis shows that
the (system specific) optimized MC simulation approximates
the true forward reachable set with high accuracy. The area
percentage error ranges from 3.7% at T = 1 s to less than
1.5% at T = 2.5 s for Ntraj ≥ 2000. Increasing the number
of trajectories results in an improved estimation of the true
set up until a certain number of trajectories after which the
error converges towards the errors originating from numerical
inaccuracies. The accuracy of the converged sets can then be
improved by decreasing the numerical integration timestep.

The verification of the BRS shows accurate approxima-
tions on estimation of the boundaries of the BRS using the
minimum-time optimal control routine. Errors are found in the
order of less than 2% to about 0.34% of the total estimated
states within the backward reachable sets of time-windows
of 1, 1.5, 2 and 2.5 seconds. It should be noted that the
performance of the BRS estimation is dependent on the time-
step and the margin used around the optimal control curve
in the minimum-time optimal control routine. The optimal
control routine with a margin of ±2 · dt results in the best
accuracy performance for the simulation conditions considered
in the analysis. Most errors occur near the upper- and lower
corners, due to the inability of estimating the control curve on
a grid, resulting in incorrect optimal control inputs.

Additionally, the often used Level-Set Toolbox [27] has
been briefly verified to the analytical sets as well in order to
benchmark the performance of the MC simulation with respect
to an existing tool which uses the Level-Set method. From
the verification it can be concluded that the MC simulation
exceeds the performance of the Level-Set Toolbox in both
accuracy as well as computation time.
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D. Conclusions on the Validation

An experimental validation has been performed to validate
the estimation of the forward reachable sets from the MC
simulation. The edge case scenarios of reaching the maximum
and minimum pitch angle and rate (the top and bottom corners
of the envelopes) as a function of time were considered. From
the validation analysis it can be concluded that the reachable
set estimates, as presented in this work, underestimate the sets
with respect to the validation flight data. The simulation data
show a large underestimation with respect to the validation
flight data. The average errors at T = 0.1 s for the pitch
up and pitch down maneuvers of the pitch angle are 44.39%
and 26.84%. The average errors at T = 0.1 s for the pitch
up and pitch down maneuvers of the pitch rate are 27.30%
and 27.84%. This underestimation is mainly the result of the
quadcopter actuator dynamics which are modelled with too
high time constants. A possible explanation of the difference is
that the default actuator dynamics are identified on data from a
quadcopter flown in “angle mode” while the validation flights
have been performed in “rate mode”. The “angle mode” has an
additional control loop including data from the accelerometer
for angle control. The additional control loop possibly results
in larger delays, resulting in slower actuator dynamics on
the default model. Moreover, the commanded inputs to the
rotors may be different as well. The feedback loop oriented
“angle mode” controller leads to less aggressive inputs than the
feedforward oriented “rate mode” controller. Since the rotor
speed commands change faster, the rotor speed output changes
more aggressively in “rate mode” and hence a smaller time
constant is found. Another possible source for the differences
is the observed difference in scaling of the commanded and
measured rotor speeds in the flight controller software which
directly influences the parameter estimation as well.

The quadcopter models with updated actuator dynamics
(identified on the validation data only) show a large decrease
in (absolute) error with the validation data compared to the
default models. The error is reduced on average by about 18%
at T = 0.1 s. This results in an average error at T = 0.1 s for
pitch up and pitch down for the pitch angle of 13.75% and
14.70%. The average errors at T = 0.1 s for the pitch up and
pitch down maneuvers of the pitch rate are reduced to 12.07%
and 11.69%. The pitch rate is generally being overestimated,
which is expected when comparing an open-loop simulation
with closed-loop performed flight maneuvers. Exceptions are
the battery forward configuration (both maneuver directions)
and the battery aft maneuver (pitch down direction) which
underestimate the pitch rate. This could indicate that these
models are estimated insufficiently and a re-analysis would be
required. For all quadcopter configuration models the pitch
angle is overestimated for the pitch down maneuver, and
underestimated for the pitch up maneuver. This is as expected
since, although undesirable, all validation maneuvers start with
a slightly nonzero positive initial pitch angle (and rate).

XI. RECOMMENDATIONS

The recommendations of this work have been split into
the recommendations which follow from the research and
recommendations for improving the research itself. Finally
recommended follow-up research subjects are proposed.

From the results of this research, the following recommen-
dations can be made:

• To obtain the largest possible forward reachable set
(FRS) with smallest return times, defined as the backward
reachable set (BRS), it is recommended to place the
center of gravity position near the rotor plane center. Any
center of gravity offset reduces the reachable set area and
increases return times in the BRS.

• The actuator dynamics largely affect the results of the
reachable sets obtained, hence it is essential in any
quadcopter analysis to include the actuator dynamics in
the modelling. The effects of the actuator dynamics show
a larger impact on the reachable sets than the effects
of the center of gravity offsets. Therefore, it is recom-
mended to further develop the performance of the actuator
dynamics as it has a large impact on the reachability
of the quadcopter, and thus on the performance of the
quadcopter as a whole.

• The quadcopter is a very fast system and hence it is
recommended to consider time-windows for reachability
analysis in the order of less than or about half a second
(for the platform as used in this work).

• For FRS estimation of a quadcopter model, it is recom-
mended to use a Monte-Carlo (MC) simulation rather
than the Level-Set Toolbox [27], as it has been shown
to outperform the toolbox in terms of both accuracy and
computation time. Although a more thorough space- and
time complexity analysis is recommended. The MC sim-
ulation is preferred provided that the system under con-
sideration is control affine, such that bang-bang control
can be used which drastically reduces the sampling space.
Additionally, a (system specific optimized) tuning param-
eter should be used to optimize for boundary estimation,
which reduces the required number of trajectories.

The following improvements can be made on the presented
research itself:

• The model identification procedures in this work have
used signals which have been pre-processed by the flight
control software. In particular the gyro data. This directly
influences the identified model parameters. Hence, it is
recommended to use the raw measurement signals for
model identification.

• The data obtained for model identification have been
collected from manual piloted (line-of-sight) flights. Con-
sequently the pitching maneuvers, aimed to only excite
the pitching moment, are contaminated with unintentional
roll- and yaw inputs (although small). Furthermore, man-
ual flights result in a variance among repeated maneuvers.
Although in some applications this is desirable as more
variations in the input result in exploring a wider range
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of the dynamics, in this work the goal was to identify
the differences between system dynamics which require
identical system inputs. Hence for this analysis it is
more desirable to automate flying maneuvers for model
identification.

• The reachability analysis has been applied on a quad-
copter model without including any (non-rotor) aerody-
namic effects. It is recommended to further explore the
analysis in the high speed regime and/or include nonlinear
effects, such as propwash, to analyse the effects on the
reachable sets in extreme flight conditions.

• The pitching moment models do not include the effects
of the center of gravity offsets for pitch angles greater
than ±90 degrees (with a pitch angle bounded between ±
180 degrees). To improve results for envelopes exceeding
these angles, model identification on flights with an
extended flight regime should be performed. The models
could also be extended by for example manipulating the
sign of the bias to capture the effects of gravity on the
mass unbalance when exceeding ±90 degrees.

• The validation data show that the quadcopter has an initial
nonzero pitch angle and pitch rate at the beginning of the
maneuvers. This phenomenon occurred when switching
from “angle mode” to “rate mode”. To improve future
validation analysis it is recommended to eliminate this
effect as the validation analysis was designed to start
at a zero angle and rate. Furthermore, a consistently
larger control moment for the pitch down maneuvers
was achieved compared to the pitch up maneuvers. It is
recommended to investigate the cause of this asymmetry
as symmetrical control moment inputs would benefit the
validation analysis. Possible sources are (asymmetrical)
differences between the rotor blades and/or motor func-
tionalities. This could be explored by swapping the front
and aft blades and/or motors and repeating the flight
maneuvers.

• The optimal control routine in this work has been applied
around a fixed looping range of pitch angles. Conse-
quently, the trajectory inputs from the control routine
do not always provide the global optimum minimum-
time solution. In order to find the global optimum, it is
recommended to loop the pitch angle range for an integer
amount of variations and select the control trajectory
resulting in a minimum return time.

• The verification of the BRS has only be performed
with respect to the boundary of some selected analytical
sets. It is recommended to further verify the estimated
return times also within and outside the boundaries of
the considered sets. This could be done by for example
increasing the amount of analytical sets used in the ver-
ification for various time-windows. Furthermore, instead
of checking whether the return time estimation is within
time-window of the analytical set, the estimated return
times can be directly compared to the time-window of
the analytical set which intersects the state in question.

• An additional model identification analysis on the actua-

tor dynamics showed substantial different model param-
eter estimates when using data from a quadcopter flown
in “rate mode” only. This motivates further analysis on
system identification of the quadcopter model on “rate
mode” data only and compare its validation performance.
Since the possible explanation of these differences might
originate from the differences in control loops, it is
recommended to develop a method to perform system
identification flights in an open-loop fashion for complete
controller-free actuator dynamics model identification.

• The validation analysis has been performed only on the
edge cases of the forward reachable sets, which include
the maximum and minimum pitch angle and rate of the
set. To improve the validation on the FRS, an experiment
should be designed which extends to the other edges of
the flight envelope as well.
Furthermore, no validation has been performed on the
BRS. A validation experiment could be designed which
for example replicates the control inputs from simulation,
or implement the bang-bang optimal control routine onto
the quadcopter, in order to validate the optimal control
routine by comparing the time to return to the hover
condition from a particular state.

• The results from this work cannot directly be compared
to the results from other quadcopter platforms. It is
recommended to normalize the states with the dimensions
of the platform in order to compare to other platforms.
Furthermore, to account for varying flight conditions, a
normalization can be done with respect to (aerodynamic)
conditions, such as the air density.

To further expand upon the results followed from this
research in the framework of reachability analysis of quad-
copters, the succeeding follow-up research subjects are pro-
posed:

• In order to apply flight envelope protection (FEP) in
the framework of quadcopters, the definition of loss of
control (LOC) with respect to the Safe Flight Envelope
(SFE) should be better researched and defined. This
definition, including the time-window(s) considered, can
be very application specific (e.g. how fast the system is
and how much “space” is available) and will depend on
the safety and performance requirements.

• The optimal control routine, as developed in this work, to
return from any end state to hover condition in minimum-
time proofs to work in simulation. This optimal control
routine can be used to further investigate its application
in for example endpoint control and/or implement the
routine onto a real quadcopter. The bang-bang optimal
control in the context of position control has already
be proven to work on quadcopters showing improved
performance compared to a PID controller [34].

• In extension to the item above, the methods as shown in
this work, applied on the pitch channel, can be extended
to the roll channel directly. The reachability results could
be combined to allow for FEP on both the pitch and roll
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channel simultaneously (e.g. in an uncoupled fashion).
Position control using the bang-bang optimal control
can be applied, as done in Westenberger et. al [34], but
including a safety guarantee from the FEP system.

• The FRS as a function of time expands in a similar
fashion as the double integrator system. For the reachable
sets of the double integrator analytical solutions exists
[23]. With the results from this research, which adds
knowledge on how the sets grow in time, as well as
to what extend the actuator dynamics affect the sets, it
could be possible to construct an analytical approximation
of the reachable set for a quadcopter model including
actuator dynamics. This is relevant for example in the
framework of a database-driven approach, in which inter-
polation and/or extrapolation of sets could be beneficial
in terms of efficiency and performance for real-time
applications [5].

• Besides the attitude state-space domain as investigated
in this research, the reachability analysis could be ex-
tended to include position and/or velocity envelopes. The
envelopes could be used in trajectory planning and/or
obstacle avoidance [35]. With the results of this work, the
trajectory planning can be extended to not only include
the dynamics of the quadcopter, with actuator dynamics,
but also add a safety guarantee based on the reachable set
analysis in the framework of the SFE (e.g. to guarantee
a trajectory change within a specified time-window).
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APPENDIX

APPENDIX A
MOMENT OF INERTIA & CENTER OF GRAVITY POSITION

MEASUREMENTS

This appendix chapter contains additional information on
the moment of inertia measurements in Appendix A-A and
center of gravity position measurements in Appendix A-B.

A. Moment of Inertia Measurements

The moment of inertia of the quadcopter configurations
has been determined by using a bifilar pendulum set-up. For
determination of the moment of inertia around the Y-axis, Iyy ,
for example, the quadcopter has been attached to a chord on
two locations on the frame such that the quadcopter would
hang parallel with the body X-axis pointing towards the (flat)
ground, i.e. the length of the chords (in tension) between the
quadcopter and the pendulum frame are the same. See Fig. 45
for an illustration of the pendulum set-up. From the geometry
of the pendulum, assuming the small angle approximation and

sinusoidal motion, and Newton’s second law for rotation, the
moment of inertia can be determined by:

I =
mgD2T 2

16π2L
(33)

With m the mass of the quadcopter, g the gravitational
acceleration of 9.81 m/s2, D the distance between the two
chords, T the period of the sinusoidal oscillation and L the
length of the two chords. An illustration of the measurement
set-up can be found in Fig. 45.

Fig. 45. Set-up for the moment of inertia measurements. In the picture the
quadcopter is positioned for measurement of the moment of inertia around
the X-axis. Two rulers are used to generate inputs which are within the small
angle approximation.

To induce a rotational oscillation, the quadcopter is hold
at an angle around the Y-axis ensuring that a pure rotation
is induced around this axis only, while respecting the small
angle approximation. The quadcopter is then released and the
oscillations are logged with the onboard gyro. A summary of
the measured moment of inertia around the Y-axis for each
quadcopter configuration can be found in Table XX.

The period of the oscillation is estimated by dividing the
measurement time by the amount of oscillations counted
within the time-window. The amount of oscillations are esti-
mated by fitting a curve through the pitch rate measurements
and counting the amount of peaks. An illustration of a repre-
sentative oscillation can be found in Fig. 46.
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TABLE XX
MEASUREMENTS OF THE MOMENT OF INERTIA FOR VARIOUS

OSCILLATIONS. THE AVERAGE VALUE HAS BEEN USED AS THE FINAL
INERTIA VALUES.

Iyy [kgm2] Aft Half Aft Neutral Half Forward Forward
1 1.05e-03 1.01e-03 9.54e-04 9.94e-04 1.17e-03
2 1.11e-03 1.01e-03 9.53e-04 7.13e-04 1.32e-03
3 1.14e-03 8.89e-04 9.04e-04 1.06e-03 1.43e-03
4 1.15e-03 8.91e-04 8.59e-04 1.06e-03 1.37e-03
5 1.15e-03 9.08e-04 1.06e-03 1.35e-03
Average 1.12E-03 9.51E-04 9.16E-04 9.79E-04 1.33E-03
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Fig. 46. Example of an oscillation. Both the pitch rate signal and the fitted
estimation function are plotted, as well as a highlight of the found peaks.

Both the length of the chords, L (0.524 m), and the distance
between the chords, D (0.0096 m), has been measured with
a ruler with accuracy of 1 mm. The maximum error due to
inaccurate measurements on average amounts to ±4.296e−05

kgm2.
It should be noted that due to safety reasons the measure-

ments have been performed with all four propellers removed.
The mass of the for set of propellers accounts for 12.46 gram,
consequently the total mass of the quadcopter (including the
battery) used in the moment of inertia measurements amounts
to 375.78 gram.

An overview of the results from measurements of the mo-
ment of inertia around the X-axis and Z-axis can be found in
Table XXI. Note that the displacement of the battery along the
Y-axis and Z-axis have been limited, hence it is assumed that
the Ixx remains constant across all quadcopter configurations.

TABLE XXI
FINAL RESULTS FROM THE MOMENT OF INERTIA MEASUREMENTS

AROUND THE ROLL AND YAW AXIS.

I[kgm2] Aft Half Aft Neutral Half Forward Forward
Ixx 8.56e-04 8.56e-04 8.56e-04 8.56e-04 8.56e-04
Izz 1.64e-03 1.57e-03 1.56e-03 1.48e-03 1.77e-03

B. Center of Gravity Position Measurements

The center of gravity location has been determined by
attaching the quadcopter to a rope, and by bringing it in a free
steady hanging position. The extension of the chord across the
frame has been documented, this procedure has been repeated
on multiple attachment points. At the intersection of the found
lines the center of gravity is located. A visualization of the set-
up can be found in Fig. 47. For each quadcopter configuration
three attachment points are used, and the measurements were
repeated twice. The distance of the center of gravity location
to the rotor plane center has been measured with a steal ruler.
Hence the reading accuracy is ±0.5 mm, taking into account
for parallax effects.

Errors on the measurements that are expected to largely
affect the results originate from the following sources:

• Alignment of the vertical laser with the attachment chord
has been done visually, which is prone to induce random
errors.

• The vertical laser has been self-leveled with an accuracy
of ± 3 mm per 10 meter.

• The accuracy of documenting the extension of the chord
onto the quadcopter frame was affected by unintentionally
changing the location of the quadcopter when touching
the quadcopter.

Fig. 47. Set-up for the center of gravity position measurements. The extension
of the chord across the quadcopter frame has been determined with the aid
of a vertical laser.
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APPENDIX B
DATA PROCESSING & FLIGHT DATA RESULTS

The data obtained from the flights are pre-processed and
prepared to be used in the system identification process. For
the largest part, the data processing and identification code
from the work of Van Beers [36] have been used. In order
to identify the parameters in the pitching moment model as
proposed, the relevant data signals include the data from the
gyroscope, containing angular speed measurements, and the
rotor speeds. An overview of all the data sources can be found
in Table XXII. In this appendix chapter details on the data
processing can be found in Appendix B-A, in Appendix B-B
an elaborate analysis on the flight data is performed and in
Appendix B-C the flight regime in which the flight data have
been obtained can be found.

A. Data Processing

Before any data pre-processing is applied, it should be noted
that the “raw” data used comes from the onboard logging
blackbox which has been filtered before added to the log.
The flight software (Betaflight) filters the on-board sensor data
(IMU and ESC) in order to remove noise (motor vibration
noise and general broadband noise) from the signals which
are used in the PID control loop. Filtering of the signals
are mostly done on the gyro data and on the D-term in
the PID controller in order to obtain a smooth signal for
better controller performance. Filtering introduces a delay
which could degrade the responsiveness of the quadcopter,
hence tuning of the filters involves a trade-off between noise
attenuation and time-delay. The primary focus is on filtering
the gyro data, which consists of multiple dynamic notch filters
which track the peak frequency of the noise using real-time
Fast-Fourier Transform analysis. The data used in this analysis
are the filtered data from the flight software, as Betaflight logs
the data after the filtering process, consequently the data do not
contain the pure raw signals from the sensors. It is important to
keep in mind that any effects of the filtering have a direct effect
on the obtained model parameters. Both the default controller
and the default filter settings from BetaFlight Configurator
V10.8.0 have been used. The flight data from the on-board
gyroscope and the rotor speed data are illustrated in Fig. 48
and Fig. 49.

The onboard sampling rate has been set to 500 Hz, however
from inspecting the data, the sampling rate has been varying,
see Fig. 50. For this reason all on-board data signals have
been linearly interpolated (spline interpolator) and re-sampled
at 500 Hz to obtain consistent data signals.

In order to improve the quality of the models, state estima-
tion with an extended Kalman filter (EKF) has been applied
in order to mitigate any biases originating from measurement
(and/or process) noise. The process equations from Armanin
et. al [37] has been used. The bias varies during flight
maneuvers, as shown in Fig. 51, which is the result of incorrect
dynamics modelling in the equations for state estimation.
Consequently, at the beginning of each flight the quadcopter
has been kept stationary on the ground, for a few seconds, to
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Fig. 48. Illustration of part of the rotational rate measurements from the
gyro (battery neutral configuration). Note that, although labeled as raw, these
signals come from the pre-filtered data from the flight software.
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Fig. 49. Illustration of part of the rotor speed measurements from the
ESC (battery neutral configuration). Note that, although labeled as raw, these
signals come from the pre-filtered data from the flight software.
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Fig. 50. Sample variations in the datalogging of the on-board IMU. Possible
sources on the variations are clock jitter, parallel processes, and clearing the
memory buffer.
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TABLE XXII
SUMMARY OF THE MEASUREMENT SOURCES. THE OPTITRACK POSITION IS THE POSITION OF THE CENTER OF THE RIGID BODY IDENTIFIED FROM THE

MARKERS ON THE QUADCOPTER, OFFSET CORRECTIONS TO THE CENTER OF GRAVITY LOCATION ARE EXCLUDED.

Measurement Device Data Sampling Rate Reference Frame
On-board MEMS Gyroscope Rotational rate (p, q, r) 500 Hz Body Frame
On-board MEMS Accelerometer Specific force (ax, ay , az) 500 Hz Body Frame
On-board ESC (Bidirectional DSHOT) Rotor Speed [eRPM] 500 Hz
On-board Blackbox Rotor Speed Commanded 500 Hz
OptiTrack Position (X,Y, Z) 120 Hz OptiTrack Frame

Attitude (Quaternions)

allow convergence of the EKF bias estimate. The data from
the gyro are corrected for the estimated bias found from this
stationary period for each flight.
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Fig. 51. Bias estimates from the EKF at the beginning of a flight maneuver.
For t > 12 seconds the quadcopter takes off from the ground.

To further remove any noise on the signal, the unbiased gyro
data is additionally filtered with a low pass filter (4rd order
Butterworth filter). Since the movement area of a quadcopter is
generally between 0 - 80 Hz the cutoff frequency is set at 100
Hz. See Fig. 52 of an illustration of the signals in frequency
domain before and after low pass filtering. Note that a zero
phase forward-backward filter has been applied.

With the (unbiased) filtered gyro data, and the measured
moment of inertia, the pitching moment M can be determined
as follows:

M = I

 ṗ
q̇
ṙ

+

 p
q
r

× I

 p
q
r

 (34)

The first term accounts for the change of angular rate of
the quadcopter around its center of mass, the second term is a
compensation for the rotation of the body frame. The rotational
acceleration has been obtained by the finite-difference method
applied on the rotational rate measurements from the gyro. An
illustration of the processed moment signals from a flight can
be found in Fig. 53.
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Fig. 52. The power spectral density of the gyro data before and after filtering
the signal with a 4rd order Butterworth filter.
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Fig. 53. Illustration of the moment signals of a flight with the battery neutral
configuration. The pitching moments are used in the system identification for
parameter estimation of the pitching moment models.
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B. Flight Data Analysis

The flight data have been analyzed in order to find relevant
patterns to be used in the design of the regressor model design.
The longitudinal variations of the center of gravity from the
rotor plane center causes a change in distribution of rotor
speeds among the four motors to obtain a force and moment
equilibrium. The data distribution of the rotor speeds of all
quadcopter configurations are plotted in Fig. 54, as well as the
control pitching moment in Fig. 55. As expected, the center
of gravity location closest to the rotor plane center has a more
symmetrical distribution while a further displacement center of
gravity position causes an increase in rotor speed of the motors
near the offset location. This correlation is clearly visible in
the control pitching moment data distribution in Fig. 55. When
inspecting the data of the control pitching moment and the
pitching moment this correlation is visible as well as illustrated
in Fig. 56 and Fig. 57. An overview of the correlations of the
pitch angle, rate and control moment can be found in Fig. 58.
Although the flight regime for the pitch angle and rate are
similar among the configurations, different control moments
are required to attain them. This supports that including control
pitching moment regressor terms enhances the approximation
power of the model to capture the effects of the center of
gravity offsets.
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Fig. 54. Data distribution of the rotor speeds of all quadcopter configurations.
The closer the center of gravity to the rotor plane center, the more symmetrical
the data distribution among the four motors.

C. Flight Regime

The flight regime in which the flight data have been obtained
for parameter identification, dictates the ranges of the domain
in which the model is valid. For illustration purposes the posi-
tion trajectory of a flight with the battery neutral configuration
is displayed in Fig. 59.

The relevant flight envelope parameters for the pitching
moment models as used in this work include the speed regime,
the pitching moment, the control pitching moment and both
the pitch angles and rates. The velocity profile of all flight data
per quadcopter configuration can be found in Fig. 60. The data
of the pitching moment are displayed in Fig. 61.
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Fig. 55. Data distribution of the control pitching moment of all quadcopter
configurations. Data are shown for the two flights per quadcopter configuration
separately to show reproducibility of the flight data results.

Fig. 56. The control pitching moment versus the pitching moment measured.
The correlation between the control pitching moment and center of gravity
offset is visible from the location of the highest probability density values.
The distribution is estimated using a Kernel Density Estimate with a Scott
bandwidth estimation (Gaussian kernel). Note that for more extreme offset
positions a higher control pitching moment is required to obtain similar
pitching moments. In Fig. 57 the data are illustrated in one figure to show
the relative differences between the configurations.
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Fig. 57. The control pitching moment versus the pitching moment measured
relative to battery configuration. Note that for more extreme offset positions a
higher control pitching moment is required to obtain similar pitching moments.
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Fig. 58. Plots of the pitch angle, rate and control moment. Note that for more extreme offset positions a higher control pitching moment is required to obtain
similar angular position and rates.

Fig. 59. Position trajectory of a flight with the battery neutral configuration.
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Fig. 60. Total speed computed from the position obtained from the OptiTrack
system. It can be observed that the average speed is about 1.5 m/s.
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APPENDIX C
IDENTIFIED MODEL DETAILS

With the identified parameters the moment models can be
used in the quadcopter simulation. A response analysis is done
by performing an open-loop control input. The responses of
the models to a maximum pitch up and pitch down can be
found in Fig. 62 and Fig. 63.
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Fig. 62. Response of the quadcopter models to a pitch up maneuver with
front rotors commanded to the maximum 2100 eRPM and the aft rotors to the
minimum of 200 eRPM. Note the differences in steady-state pitching moment
between the quadcopter configurations.
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Fig. 63. Response of the quadcopter models to a pitch down maneuver with
front rotors commanded to the minimum 200 eRPM and the aft rotors to
the maximum of 2100 eRPM. Note the differences in steady-state pitching
moment between the quadcopter configurations.

The reachability analysis has been performed from a steady
hover condition. In order to obtain a steady hover, the hover

TABLE XXIII
ESTIMATION OF THE HOVER ROTOR SPEEDS PER QUADCOPTER

CONFIGURATION [ERPM].

Battery Position Front Rotors Aft Rotors
Aft 916.60 1211.17
Half Aft 988.482 1145.45
Neutral 1064.81 1075.10
Half Forward 1133.55 989.96
Forward 1246.43 852.31

rotor speeds have been determined for each quadcopter config-
uration model individually. An OLS model identification have
been performed with stepwise regression to identify the Fz and
Fx models. Note that due to the center of gravity offset with
respect to the IMU sensor, a correction on the acceleration
measurements have been performed using:

aS = aB + ω̇B × r + ωB × (ωB × r) (35)

With as the specific forces measured by the IMU, ab the
“true” body accelerations, ωb the body rotational rates and
r the position vector from the center of gravity position to the
IMU sensor. When assuming only a displacement along the
X-axis the corrected acceleration reduces to:

ab = as +

 q2 + r2

−(ṙ + pq)
q̇ − pq

 l (36)

With l the distance from the center of gravity to the IMU
sensor along the X-axis. The analysis on the data showed that
mostly the acceleration in the Z-axis direction was affected by
the center of gravity offset due to the large pitching maneuvers.
Although, the absolute mean residual was about 6% for the
aZ signals, and hence the effect of the offset on the IMU data
can be considered negligibly low.

The models are build up by the regressors selected by
the stepwise regression algorithm with a maximum of 15
regressors. This resulted in models with R2 > 0.98 for all
quadcopter configurations. A PID controller is implemented
to control the quadcopter to maintain zero pitch angle, rate,
and zero velocity in the Z-direction. After a steady-state
condition had been reached the rotor speeds were documented.
A summary of the estimated hover rotor speeds can be found
in Table XXIII.
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APPENDIX D
SYSTEM IDENTIFICATION

In this appendix chapter more information can be found
on the system identification procedure. In Appendix D-A the
procedure of regressor selection can be found. Additional
information on the stepwise regression and regressor analysis
can be found in Appendix D-B. Model performance illustra-
tions can be found in Appendix D-C followed by details on
parameter estimation statistics in Appendix D-D. Finally, in
Appendix D-E a model residual analysis is performed.

A. Regressor Selection Analysis

For a well-balanced selection of the specific modelling
terms (i.e. regressors) the following sources have been ad-
dressed:

• Flight Data The flight data used in the model iden-
tification show relevant patterns which can be used to
design regressor terms in order to capture the differences
in dynamics between the various battery configurations.
The flight data analysis in Appendix B reveals that the
relative rotor speeds between front- and aft rotors describe
a significant difference in dynamics among the various
battery configurations. Furthermore, the control pitching
moment shows a distinct correlation with the pitching
moment among the different quadcopter configurations
in Fig. 57. Hence, based on flight data analysis the
control pitching moment term in particular seems to be
a promising regressor to capture the relevant dynamics.

• Stepwise Regression For obtaining a selection of re-
gressors resulting in the best fit to the flight data, a
stepwise regression routine has been applied. Regressors
are selected from a pool of regressors resulting in the
best fit to the flight data. A model fitting process has
been performed using step-wise regression up until fifteen
regressor terms. The regressor pool consist of all possible
combinations of state terms, constructed as polynomials
up to a fourth order degree. The analysis shows that
generally after around five regressor terms no large im-
provements in terms of normalized RMSE and R2 values
can be observed, while the complexity of the regressors
increases and terms appear that cannot be directly physi-
cally explained. More information on stepwise regression
can be found in the succeeding section.

• Regressor Re-occurence Analysis Step-wise regression
can be considered as a greedy algorithm which selects
the regressors based on maximizing data fit. As a result
regressors can be selected that are more flight data
dependent (i.e. noise dependent) while regressors that
physically describe the underlying dynamics are not se-
lected. For this reason an additional analysis is performed
which documents the regressors that re-occur during
stepwise regression but were not selected in the stepwise
regression routine. From the analysis on the pitching
model, the control pitching moment term re-occurs at
second place among all battery configurations in the first

step of the routine. This motivates and confirms that this
regressor term plays an important role in modelling the
pitching moment to capture the differences in dynamics
among the battery configurations. More information on
this re-occurence analysis can be found in the succeeding
section.

• Literature As stated earlier, quadcopters are often mod-
elled by only including the effect of the rotor dynamics
while neglecting the aerodynamic effects [28][29]. The
pitching moment induced by the rotors can be described
by the pitch control and is induced by differential thrust
of the motors as follows:

M⃗y = lκ0(ω
2
4 + ω2

2 − ω2
3 − ω2

1) (37)

With ωi the rotor speeds per motor i respectively and l
the longitudinal distance along the X-axis to the center
of rotation, which is equal to the center of gravity
when assuming a uniform gravitational field around the
quadcopter. κ0 is a rotor property coefficient dependent
on the air density and can be assumed to be constant
[29][30][38]. The parameters in the moment model struc-
ture used in this work directly capture the effects of l and
κ0. Moreover a bias is added to include the effects of the
center of gravity offset. Note that in this work the control
pitching moment does not include the square of the rotor
speeds which results in a different scaling of the model
parameters.

B. Stepwise Regression Procedure & Details

In stepwise regression an algorithm selects regressors from
a pool of regressors resulting in the best fit to the data. For
quadcopter model identification Sun et. al [29] uses the step-
wise regression procedure to select the model regressors to
fit the model to high-speed flight data. The same stepwise
regression procedure has been used as described in Sun et.
al [29]. The routine consists of a forward step, in which
a regressor is selected that improves the accuracy of the
model the most. And a backward step, in which the model
accuracy is analyzed by removing each regressor one-by-one.
The regressor that does not increase the accuracy of the model
is then removed (as it became redundant after adding the new
regressor). If the regressor reappears in the forward step after
being removed the algorithm is stopped to prevent an infinite
loop.

The stepwise regression analysis showed that mostly non-
linear terms appeared and after about two to five regressors
no large improvements in the R2 and model error appeared,
see Fig. 64. An example of the relative contributions of the
selected regressors can be found in Fig. 65.

Furthermore, the re-occurrence analysis, in which the top
ten regressors which were not selected per regression step
were documented, consistently showed the importance of
the control pitching moment as regressor term. An example
of the documentation of unselected regressors per stepwise
regression step can be found in Fig. 66.
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Fig. 64. Adjusted R2 and normalized error as a function of number of
regressors in the model. It can be observed that after five regressors the
accuracy of the model starts to converge. Most improvements are made with
the first regressor terms. The model results shown have been optimized on a
full dataset (without data partitioning).

To keep the models simple and physically explainable,
which eases the relative comparison between the quadcopter
configurations, it was decided for this work to only select
the control pitching moment as regressor in the model. It
is recommended when including for example the effects of
external aerodynamics interaction, mostly encountered during
aggressive and high speed flights, to perform the regressor re-
occurence analysis as done in this work. The analysis gives
insight into feasible regressors which model the underlying
dynamics as the stepwise regression algorithm can be greedy
and select the best performing regressor at a cost of higher
noise sensitivity.

C. Model Performance Illustration

The performances of the regression models are illustrated
for the battery forward configuration on the pitch induced
flight maneuvers. These include the low- and high frequency
pitching maneuvers (Fig. 67 and Fig. 68), and flying back and
forth (Fig. 69).

D. Parameter Estimation Statistics

The extend to which the parameters are sensitive to noise,
or the variability of the OLS estimator, can be analyzed by
exploring the parameter covariance matrix. The parameter
variances, as displayed in Table IV, show that the bias has
the largest parameter variance, indicating that this parameter
has the largest variability of its estimate with respect to
variations in the noise realizations. To analyze the correlation
between parameters, the full parameter covariance matrix of
all quadcopter models are displayed in Table XXIV (of the
validation datasets).

E. Model Residual Analysis

The OLS estimator as used in this work assumes that 1)
the error (or model residual) has a constant variance for all
measurements and is uncorrelated, and, 2) the residual has zero
mean. Thus the model residuals should resemble white noise.
These conditions are required to ensure that the estimator is a

TABLE XXIV
PARAMETER COVARIANCE MATRICES FOR EACH QUADCOPTER

CONFIGURATION. MATRICES ARE ESTIMATED FROM THE VALIDATION
DATASETS.

Aft M0 M1 M2

M0 4.192893e-08 -9.598106e-11 3.799491e-11
M1 -9.598106e-11 8.706360e-13 -8.697554e-14
M2 3.799491e-11 -8.697554e-14 5.214935e-14

Half Aft M0 M1 M2

M0 3.580905e-08 -7.155785e-11 4.779818e-11
M1 -7.155785e-11 5.055205e-13 -9.551595e-14
M2 4.779818e-11 -9.551595e-14 1.070464e-13

Neutral M0 M1 M2

M0 2.832427e-08 -5.007731e-11 4.577028e-11
M1 -5.007731e-11 2.025016e-13 -8.092184e-14
M2 4.577028e-11 -8.092184e-14 1.740355e-13

Half Forward M0 M1 M2

M0 3.410725e-08 -4.834808e-11 6.664716e-11
M1 -4.834808e-11 1.096505e-13 -9.447439e-14
M2 6.664716e-11 -9.447439e-14 4.021293e-13

Forward M0 M1 M2

M0 6.472737e-08 -5.017109e-11 1.282646e-10
M1 -5.017109e-11 5.441901e-14 -9.941969e-14
M2 1.282646e-10 -9.941969e-14 9.532676e-13

best linear unbiased estimator (BLUE). In order to quantify the
extend to which the model residual resembles white noise, a
model residual analysis is performed by exploring the residual
signal and the autocorrelation functions. The model residuals
of all quadcopter configurations on both training and validation
dataset are plotted in Fig. 70. As expected the validation data
show a large increase in residual mean value compared to the
training datasets, although relatively small. Also most data are
within the σ bounds. Hence the estimators can be considered
to satisfy 2). In Fig. 71 the autocorrelation functions of the
residuals are plotted. It can be observed that, considering the
confidence bounds, the residuals do not resemble white noise.
However, it should be noted that the confidence bounds are
dependent on the number of data points N as follows:

conf =
1.96√
N

(38)

This applies to white noise, however when the models are
predicting similar maneuvers, similar errors appear while the
confidence bound shrinks nonetheless. Indeed, the maneuvers
performed to excite the pitching moment are similar and are
often repeated. Consequently, similar errors occur, which are
observable as “patterns” in the residual data in Fig. 70.

It is highly recommended to perform the same residual
analysis on an isolated maneuver or take for example a few
seconds before or after a maneuver rather than the full dataset
to prevent residual correlations due to repeating or oscillating
flight maneuvers.
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Fig. 65. Relative contributions of the various regressor terms which degrades after about five regressors. Note that the terms are highly nonlinear. The models
shown have been optimized on a full dataset (without data partitioning).
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Fig. 66. Analysis of the regressors that re-occur among all quadcopter configurations. These regressors are not selected by the stepwise regression algorithm
but are within the top five of the best performing regressors. Note that in the first selection step the control pitching moment Uq is the first term after the
selected regressor that appears in the selection among all quadcopter configurations. This highly suggests that this regressor term captures the underlying
dynamics. The models shown have been optimized on a full dataset (without data partitioning).
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Fig. 67. Performance of the battery forward model on the low frequency pitching maneuvers. The target data concerns the validation dataset.
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Fig. 68. Performance of the battery forward model on the high frequency pitching maneuvers. The target data concerns the validation dataset.
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Fig. 69. Performance of the battery forward model on the flying back and forth maneuver. The target data concerns the validation dataset.
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Fig. 70. Model residuals (the difference between the targets and the predictions) for all quadcopter configurations on both the training and validation data.
The residual analysis applies on the partitioned datasets.
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Fig. 71. Autocorrelation functions of the model residuals for all quadcopter configuration on both the training and validation datasets. The 95% bounds are
determined by 1.96/

√
N , with N the number of data points. The residual analysis applies on the partitioned datasets.

APPENDIX E
VALIDATION EXPERIMENT SET-UP

The validation flights have been performed in the CyberZoo
at the faculty over Aerospace Engineering in Delft. The pitch-
ing maneuvers have been performed above a net to capture
the quadcopter after the maneuver. A picture of the set-up can
be found in Fig. 72.

Fig. 72. Validation experiment set-up. The net was necessary to capture the
drone after performing the validation flight maneuver.

The procedure for each flight maneuver was as follows:
1) Take-off in “angle mode”.
2) Fly above the net and obtain a steady hover condition.
3) Switch to “rate mode”.
4) Perform a full stick deflection in either the pitch up or

pitch down direction while keeping the yaw and roll
input zero.

5) Turn off motors after hitting the net and place quad-
copter to starting position.

6) Repeat for each quadcopter configuration and pitch
direction.

A fully charged battery was used per 15 flight maneuvers,
which on average started at about 16.2 Volt (4s battery) and
reduced to about 15 Volt.

Since the initial pitch angle at the beginning of the maneuver
has to be accurately determined, an external measurement
device has been used (OptiTrack). Before the validation flights
were performed, the OptiTrack system has been calibrated.
This included calibration of the ground plane by placing a
calibration square at the origin and levelling it with a level.
Furthermore, the maximum sampling rate of 360 Hz has been
used to measure the rotations of the quadcopter rigid body.
Note that a correction of the offset of the OptiTrack identified
rigid body with the quadcopter frame has not been determined
nor corrected (if any).
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3
Introduction Literature Review

Safety in commercial aviation is one of the most important factor taken into account during the design
and operation of aircraft. Yet, fatal accidents still occur. From a statistical summary of fatal accidents of
commercial jet aircraft occurring from 2011 to 2020 done by the Boeing company it can be concluded
that the main cause of fatal accidents is due to loss of control in flight (LOC-I or LOC) [20]. LOC
accounts for around 20% of all fatal accidents, and involves most of the fatalities [20]. This has also
been confirmed by an accident analysis performed by IATA [21]. Deviation of the aircraft from the
nominal flight envelope is a key characteristic of LOC [3][4][5]. Main causes of crossing the flight
envelope boundaries are 1) due to pilot unawareness of the envelope 2) lack of guidance for recovery
and 3) changes in the flight envelope boundaries which are not identified or monitored (in time) [5]. The
first step in preventing LOC includes obtaining knowledge on the dynamic flight envelope. A well known
example of a case in which proper knowledge of the (changed) fight envelope could have prevented a
fatal accident is the El Al flight 1862 in 1992 [22]. After data analysis of the flight it was found that the
aircraft was recoverable even with two engines disattached [23]. This shows the importance of having
knowledge on the (updated) flight envelope to prevent entering LOC conditions and hence improving
safety.

Besides (commercial jet) aircraft, also a major factor playing a role in safety of Unmanned Aerial Ve-
hicles (UAVs) involves the occurrence of LOC. In Belcastro et al. [2] 100 reported civilian UAV mishaps
having a mass less than 25 kg have been analyzed. LOC accounts for the majority of the cases count-
ing 34 mishaps. Also in the analysis of Colgren et al. [12] it was found that 36% of the found UAV
mishaps could have been prevented by flight envelope protection and hence has a substantial impact
on safety improvement of UAVs. UAVs are being used for various civilian and military applications such
as search and rescue missions, delivery of goods, monitoring and other implementations. Since the
technology can be considered to be in its early stages, many new applications are expected to arise
with their corresponding hazard potentials that come along [2]. The use of (commercial) UAVs has been
rising and is expected to grow even more in the future [1]. If no research is done on further improving
UAV LOC prevention, the amount of UAV accidents are expected to grow. Hence it is of utmost im-
portance to further develop techniques for UAV safe flight envelope prediction and consequently LOC
prevention in order to improve their safety.

The aim of this literature report is to identify areas of improvement for enhancing safety of multirotor
UAVs and explore to which extend, and in what form, knowledge can be added to the body of literature to
enhance UAV safety. This will be done by means of an extensive literature review on this topic. From
the literature review a research objective and research question of the thesis project will formulated.
Furthermore, a research methodology will be presented together with a research plan for conducting
the proposed thesis project.

The report is structured as follows. In chapter 4 current safety techniques for multirotor UAVs are
explored and summarized. In chapter 5 the mainstream and state-of-the-art methods for global flight
envelope prediction are identified and described elaborately. With regards to model based prediction
techniques, in chapter 6 system identification techniques for multirotor UAVs are investigated. Finally,
a conclusion of the literature report is given in chapter 7.
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4
Safety of Multirotor UAV

The applications of Unmanned Aerial Vehicles (UAVs) are expected to grow rapidly in the near future
[1], however loss of control (LOC) is the main cause of failures for UAVs [2]. In order to improve safety
of these systems, development of LOC prevention techniques are of utmost importance. In this chapter
current safety techniques with regards to LOC of multirotor UAVs are explored. The goal of this chapter
is to summarize current LOC prevention techniques and identify gaps of knowledge that could be further
explored to improve safety of multirotor UAVs. In section 4.1 methods for safety improvement of aircraft
are described. The definition of the Safe Flight Envelope (SFE) and details regarding the boundary
behaviour can be found in section 4.2. In section 4.3 Flight Envelope Protection (FEP) techniques,
a method for safety improvement of aircraft, are worked out in more detail. The chapter ends with a
conclusion on the findings of this chapter in section 4.4.

4.1. Methods for Safety Improvement
In literature various ways can be distinguished that focus on improving the safety of aircraft. These in-
clude fault-tolerant control systems, robust controller and modelling, and safe flight envelope protection
and are briefly touched upon below.

1. Fault-tolerant Control Systems The development of fault-tolerant control systems consists of
a closed-loop control system that is able to (automatically) maintain stability and performance in
case an anomaly or failure in the system occurs [24]. This can be done passively, in which a
controller is robust against predefined faults, or actively, in which a controller is reconfigurable in
case a fault is detected [24]. For the latter an onboard real-time fault detection and diagnostics
system is required, which can be model based or applied via data-driven techniques by process-
ing sensor data. Another way of improving safety is by finding ways of recovering from upset
conditions. Although not much literature on upset recovery for multirotor UAVs exist, it has been
shown that recovering from upset conditions is possible [25][26][27][28].

2. Robust Controllers andModellingA significant amount of multirotor UAV literature (quadcopters
in particular) is dedicated towards developing robust controllers [29]. Controllers are designed
based on a model of the system which must be an accurate model derived from six degrees of
freedom nonlinear system dynamics. Usually (model) uncertainties are not taken into account.
Recently there is a trend in developing controllers based on sensor data to relieve the coupling of
the controller with the model [30]. Although a model is still required for the control effectiveness.
Hence research is still being done on improving (quadcopter) model identification techniques as
done in Van Beers [29]. Another method to uncouple controller and model, is through the use of
a model-free data-driven system identification. This has been applied to a quadcopter with the
use of a fuzzy clustering model in [31].

3. Safe Flight Envelope Protection Besides failures that can occur in the system and applying
fault-tolerant techniques or develop robust controllers to handle them, another category exist that
can cause loss of control. This includes violating the Safe Flight Envelope (SFE) which can be
considered as the state space in which an aircraft can be safely operated. Operating outside this
envelope is often linked to upset conditions and loss of control, inherently associated with aircraft
accident events [32][33][34]. The act of implementing a system that prevents the system to cross
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4.2. The Safe Flight Envelope 63

the envelope boundaries is called Flight Envelope Protection (FEP) and requires full knowledge
on the flight envelopes. More information on FEP can be found in section 4.3.

Due to the promising nature and still limited research on flight envelopes of multirotor UAVs, this
research project will focus on improving and extending knowledge on safe flight envelope prediction
and protection techniques. Therefore, the next section will elaborate upon the safe flight envelope, its
definition and boundary behaviours.

4.2. The Safe Flight Envelope
The traditional flight envelope definition originates from the (fixed-wing) aircraft literature in which it is
defined as the region where the aircraft is constrained to operate, usually described as a function of
altitude and airspeed [35]. The usual limiting factors on performance include engine power, stalling,
buffet characteristics and structural load [35]. Important to note is that these envelopes consider nomi-
nal conditions and only take into account the aircraft performance. An extension to the flight envelope
definition is to include environmental conditions and define the flight envelope as the region in the state
space in which safe flight is possible. This is referred to as the Dynamic Flight Envelope [6][36] and
is defined as the part of the state space for which safe operation of the aircraft and safety of its cargo
can be guaranteed and externally posed constraints will not be violated [6]. A definition of the flight
envelope with regards to loss of control is the Safe Flight Envelope (SFE), which refers to the set of all
the states that can be reached within a certain time-window for which a trajectory exist to return back
to a steady-state condition [5][6][7]. This is more formally defined as the intersection of the forward-
and backward reachable set, about which more information can be found in the reachability analysis
section in chapter 5. The definition for the SFE used in this research is defined as follows:

The Safe Flight Envelope Definition

The Safe Flight Envelope (SFE) is defined as all the possible states which an aircraft can both
reach from- and be controlled back to a set of initial flight conditions within a given time-window
[8].

Reaching states outside the boundaries of the SFE detriments safe operation and can lead to upset
conditions, loss of control (LOC) and eventually a crash. Upset conditions for UAVs can be recovered
as seen in Sun et al. [25] and Baert [26], however it is also seen in these literature work that not all
conditions can be recovered and eventually the system will enter a LOC condition. The definition of
LOC is discussed in the next subsection.

4.2.1. Loss of Control Definition
In Altena [37] an elaborate literature research has been conducted on LOC and its definition. In this work
it is concluded that little research has been done on LOC and its prediction, while prevention of LOC
can improve the safety of UAVs drastically as it is the main cause of aircraft and UAV accidents[2][12].
The definition of LOC for aircraft is not well defined, and various definitions exist. The traditional flight
envelope for fixed-wing aircraft cannot be used to predict LOC of multirotor UAVs because, as identified
in Sun et al. [11], multirotor UAVs behave distinctively different than fixed-wing aircraft. Generally,
operating outside the SFE as defined in this chapter, is linked to LOC conditions [3][4]. Therefore, this
definition will be used for the research project. Two distinct approaches with regards to flight envelope
prediction could be identified: focus on predicting boundaries of the SFE locally, and predicting the
global SFE. The two approaches are elaborated upon in the next subsection.

4.2.2. Local Envelope Prediction and Global Envelope Prediction
Before LOC prevention techniques can be applied, knowledge is required of the boundaries of the
envelope. There are two main approaches that can be taken:

1. Local Envelope Prediction This prediction method focuses on local envelope boundary predic-
tion. The idea is to predict whether the system is close towards an envelope boundary and use
this information to warn the pilot and/or use a control strategy to stay away from the predicted
boundary. A way to predict LOC locally, is by looking at critical transitions. This principle makes
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use of warning signals that indicate critical transitions of a system. The most important warning
signal is called the critical slowing down principle. The system becomes increasingly slow in re-
covering from small perturbation as it is approaching a transition [38]. These are called critical
thresholds, or tipping points at which the complex system changes from one state to another [38].
This occurs in many complex dynamical systems such as ecosystems and finance, and similar
behaviour towards those tipping points are shown for many classes of systems [38]. In case of a
multirotor UAV the critical transitions can be seen as transitioning to LOC state. Predicting that a
multirotor UAV will transition towards a LOC state can help to employ measures to prevent LOC
events to occur. Another way to predict LOC is through the use of neural network models and
flight data as done in Altena [37] to predict time to LOC.

2. Global Envelope Prediction Global envelope prediction focuses on obtaining full knowledge on
envelope boundaries on a global scale. The prediction of the global envelope can be used to
develop and implement SFE protection techniques. More details on global boundary prediction
methods can be found in chapter 5.

An advantage of having prior knowledge on the global envelope is that SFE protection can be ap-
plied. A control strategy can be designed to ensure that the system stays within the SFE in order to
preserve the safety of the system by preventing LOC events from occurring. This control strategy could
also be exploited by designing it such that the system can be operated close to the boundaries in order
to maximize performance. A trade-off between safety and performance can be made for the specific
application. Furthermore, on top of the predicted global envelope boundaries, the local boundary pre-
diction methods could be employed in order to locally update the prediction of the globally predicted
envelope boundaries. The boundaries of the envelope can be treated as either deterministic or proba-
bilistic as described in next subsection.

4.2.3. Deterministic and Probabilistic Boundaries
In most of the flight envelope literature the boundaries are treated as deterministic bounds in which the
envelope is described as a crisp set. See chapter 5 for more details on deterministic envelope predic-
tion methods. Model uncertainties can be taken into account by modelling them as disturbances [39].
However, the safety of a given state depends on various other factors, such as external disturbances,
pilot reaction time, actuator dynamics and controller performance [8]. Therefore, it is more realistic to
treat the boundaries of the SFE as probabilistic rather than deterministic. In the probabilistic approach
the range of possible safe trajectories available can be characterized by this probability [8]. In Yin et al.
[8] the definition of the flight envelope has been extended to fuzzy sets with kernel density estimation in
order to include a measure for the amount of safety. A visual representation of the difference between
deterministic and probabilistic envelopes can be found in Figure 4.1.

Figure 4.1: Visual representation of the (classical) deterministic flight envelope (a) and probabilistic flight envelope definition
for one variable (b) [8]. Formally, the SFE can be defined as the intersection of the forward- and backward reachable set, about

which more information can be found in the reachability analysis section in chapter 5.

An advantage of using probabilistic boundaries over deterministic boundaries is that it gives ad-
ditional information about the safety of a specific point in the envelope. This can be used in flight
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envelope protection (FEP) to design the ”aggressiveness” of the protection of the system as a function
of the flight envelope [8]. Both in Yin et al. [8] and Sun et al. [11] a Monte-Carlo simulation is used to
find the reachable sets of states. However it should be noted that the probability of the input used in
the simulation has an effect on the probability distribution of the output as seen in Sun et al. [11]. In
the next subsection the sensitivity of the boundaries are discussed.

4.2.4. Envelope Boundary Sensitivity
As indicated in the previous subsection, the boundaries of the flight envelope depend on various factors.
In Yin et al. [8] the probabilistic flight envelope of a fixed-wing aircraft has been estimated for various
flight conditions, which includes recovery time, equipped control effectors, and mass configurations.
It can be seen that when increasing recovery times, the envelope for both angle of attack and pitch
angle, and, sideslip angle and yaw rate, expands accordingly while remaining its shape. Whereas a
lower mass, enhances agility, and hence the envelope is expanded. The shape has also changed due
to center of gravity shifts. It should be noted that in Yin et al. [8] the estimation method has not been
validated.

In Brandt et al. [13] a comparison between deterministic and probabilistic reachable sets is made
on a simplified aircraft model by adding disturbances. In this paper is it shown that the SFE can shrink
substantially when disturbances are included showing that deterministic flight envelopes could lead to
dangerously optimistic FEP systems.

4.3. Flight Envelope Protection
Maneuvering within the SFE as defined in section 4.2 will guarantee safe flight and prevent LOC condi-
tions. In order to stay away from the boundaries, protection systems are required which are preferred
in both autopilot as well as manual control modes in aircraft [40]. In Lambregts [41] the requirements
and approaches for envelope protection design of general aviation and transport aircraft are discussed
for both manual and automatic fly-by-wire control. Two main functions of the protection system can be
identified, this includes control law design and enhancing pilot awareness [5].

1. Control Laws In modern fly-by-wire aircraft limitations of the aircraft imposed by its flight enve-
lope are customary to be implemented in the flight control laws [42]. In this way commands are
automatically adjusted when the aircraft is close to LOC [8]. This reduces workload of the pilot
[42]. Two types of techniques are hard limitations and soft limitations. Hard limitations focus on
fully limiting the ability of the pilot to fly the aircraft outside the envelope [43], whereas soft limita-
tions still allow pilots to do so [44]. An example of a state that is usually limited in aircraft is the
maximum allowed angle of attack [45]. Including a FEP system has been researched in various
control configurations which include reconfiguring controllers for fault-tolerant flight control [36],
hybrid control [40] and model based predictive control [46].
In Falkena et al. [46] a flight envelope protection system has been implemented for smaller aircraft
for carefree maneuvering. In this paper the following manual FEP approaches are compared:

• PID Based limiting approach
• Command limiting approach
• Constrained Flight Control Law (FCL) using Model Based Predictive Control (MPC)

An overview of the block diagrams of the FEP control strategies can be found in Figure 4.2. The
command limiting is preferred for their application [46]. In Zogopoulos-Papaliakos et al. [47][48]
a MPC controller is designed which takes into account the constraints of the trim flight envelope
of a fixed-wing nonlinear UAV model. As summarized in Zogopoulos-Papaliakos et al. [47][48]
design efforts with regards to dynamic flight envelope protection systems have been employed
using MPC. MPC allows to satisfy input- and state constraints hence many fault-tolerant control
methods use MPC. However, trade offs between model fidelity and time performance, and, model
constraints and feasibility are still an active research area [47].
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Figure 4.2: Block diagrams for various FEP control strategies to keep the aircraft within the SFE [46].

It should be noted that in traditional general aviation, the protections are implemented for static
envelopes. But recently there is a trend in implementing adaptive flight envelope protection sys-
tems which use updated envelope limitations [42]. An example of a paper that covers FEP with
regards to adaptive flight envelopes includes Tekles et al. [49] which is based on a command limit-
ing approach that accounts for adverse aerodynamics, unusual attitude conditions, and structural
integrity. The scheme is implemented around a gain scheduled control law. Another example is
Lombaerts et al. [50] in which an adaptive flight envelope is predicted which is used for adaptive
FEP in the manual flight control law design to prevent LOC. ”This method is robust with respect
to uncertainties in the estimates for the aerodynamic properties.”[50]. Adaptive FEP can also be
done by safe switching between flight modes [40]. Local envelope protection can be employed
such as avoiding input saturation which is done in Lombaerts et al. [51], however this cannot be
considered as a complete protection algorithm.
By adjusting the limitations as defined by the SFE for FEP development, the control law can be
designed such to obtain a desired balance between safety and performance for the application
of the system.
Instead of using hard limitations, yin et al. [8] proposes to treat the envelope as probabilistic
instead of deterministic. As a result the probabilistic boundaries are used to provide additional
information. This allows for a novel predictive protection law which can respond earlier and re-
sults in gentler protective FEP measures [8]. Instead of hard limiting commands, commands are
adjusted during flight [8]. In Yin et al. [8] FEP has been successfully implemented with a novel
multiloop nonlinear controller.

2. Pilot Awareness Besides control design for preventing operating outside the envelope, another
envelope protection technique is by providing cues to the pilot about aircraft limitations. This can
be done through a human-machine interface, for example by:



4.4. Conclusion 67

• Displaying visual bounds on a display, e.g. the primary flight display [3][52] .
• Haptic feedback through control loading in the pilot control stick [53][54].

Both above mentioned applications have been implemented in Lombaerts et al. [42] which
showed an increase in pilot awareness, a decrease in workload, and a increased amount safety
margin used by the pilots preventing LOC in off-nominal conditions.

So far, FEP systems have been discussed with regards to traditional aviation with application to
fixed-wing aircraft. In the next subsection envelope protection with regards to multirotor UAV are sum-
marized.

4.3.1. Multirotor UAV Envelope Protection
In Colgren et al. [12] a control system is developed for UAVs with as goal to achieve flight safety dur-
ing operation as similar to the safety of piloted aircraft. In this paper FEP is proposed that consists of
implementing an outer-loop correction for large disturbances that could require maneuver correction,
switching of modes or adjusting control inputs to the flight control system. This is implemented with an
inner control loop using dynamic inversion methods which enhance the requirements for the outer-loop
FEP design. In Vachtsevanos et al. [55] FEP is suggested by a fault detection system in a hierar-
chical architecture by using sensor fusion and neural network models to detect and identify abnormal
situations and switch between modes. The fault-tolerant control system adjusts the available control
authority. The mid- and low level controllers are reconfigured accordingly to ensure that the UAV stays
within its flight envelope of the selected mode. Another method used for multirotor UAV FEP is through
the use of an online trained neural network model for limit prediction and avoidance [56]. Successful
avoidance of normal load factor and a rotor stall prediction parameter in a high speed rapid turn in a
flight test was achieved [57]. A similar switching between modes strategy is used in Naldi et al. [58]
in which a control law is designed for transition maneuvers by using a path following approach with a
FEP controller. Obstacle avoidance and operational limit avoidance can be used in parallel by applying
them as inequality constraints in a state-space frame in an optimal control solution approach as done
for aggressive maneuvers in Moon et al. [59] or through a minimum time approach [60].

The traditional FEP by incorparating (artificial) limits on control system signals as described pre-
viously generally results in under-utilization of the operational envelope [61], whereas the extreme
maneuverability and agility are the main advantageous characteristics of multirotor UAVs. Hence FEP
systems design is required independent of the control system [61]. Finite and time horizon prediction
based FEP have been proposed [61]. Finite methods require large modelling and susceptible to model
uncertainties, while infinite methods, e.g. the dynamic trim method [62], cannot be used for transient
peak limiting [61]. In Unnikrishnan et al. [61] a reactionary approach is developed which modifies
system commands to follow a predetermined safe trajectory profile which is close to the boundaries
of the envelope. Finite time horizon predictions are estimated through a trained neural network model.
Boundary limits are treated as an obstacle to be avoided by moving in the opposite direction. This
makes the approach suitable for steady-state and transient peak limiting [61]. This technique is em-
ployed to protect load factor limitations and has been verified in simulation and validated in a flight test
in an aggressive e-turn maneuver in Unnikrishnan et al. [63].

4.4. Conclusion
The aim of this chapter is to identify areas of improvement for enhancing safety of multirotor Unmanned
Aerial Vehicles (UAVs). It is identified that a major factor playing a role in fatal accidents of UAVs in-
volves loss of control (LOC) [2]. Since the use of (commerical) UAVs has been rising and is expected
to grow even more in the future [1], it is of utmost importance to prevent LOC conditions to [12]. Op-
erating outside the Safe Flight Envelope (SFE) of an aircraft is linked to loss of control [3][4], which
is the main cause of failures for UAVs [2][12]. The SFE is defined as all the possible states which an
aircraft can both reach from- and be controlled back to a set of initial flight conditions within a given
time-window [8]. A promising technique that prevents the system to cross the envelope boundaries
is called flight envelope protection (FEP) and consequently prevents LOC conditions. It is decided
to focus on global flight envelope prediction, instead of local prediction. This is because having prior
knowledge on the global envelope has as advantage that the FEP system can be developed to balance
safety and performance for the specific application. From the literature research it can be concluded
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that treating the boundaries as probabilistic is preferred. The reason is because classical deterministic
flight envelopes tend to overestimate envelope leading to dangerously optimistic FEP systems [13][14].
Furthermore, in [8] it was shown that the envelope changes shape and size when changing system
dynamics, hence in case of system model uncertainties it is more suitable to model the boundaries
as probabilistic. Moreover, treating the boundaries as probabilistic allows for earlier responses and
gentler protective FEP measures as shown in [8]. Improving techniques and expanding knowledge on
(probabilistic) flight envelope prediction could enhance the development of FEP to increase UAV safety
as implemented successfully as found in recent UAV literature. Therefore, the next chapter will explore
the existing, mainstream and state-of-the-art methods for prediction of the global safe flight envelope.



5
Methods for Predicting the Global

Flight Envelope

In literature it is found that in roughly the past ten years there is a trend in developing and investigating
methods for determining the (adaptive) Safe Flight Envelope (SFE) for aircraft, usually under various
damage case scenarios, see the following references [5][6][36][7][42][50][64][65][66][67][68]. The mo-
tivation for improving the techniques for determining the SFE of an aircraft arises from the need for im-
proved flight control in order to enhance safety with regards to post-failure flight due to vehicle damage
or abnormal flight conditions [65]. In general, this requires a fault detection and identification system,
in order to detect flight anomalies, a method to update the SFE boundaries, and a flight envelope pro-
tection system. The application of global SFE determination for multirotor Unmanned Aerial Vehicles
(UAVs), however, has only be applied and investigated marginally [11][39][69][70]. This chapter will
focus on summarizing the mainstream and state-of-the-art methods for SFE prediction.

Various methods have been used to estimate the global SFE. In the past, due to the lack of analyt-
ical tools and simulation capabilities, prediction of solutions to nonlinear aircraft dynamics and control
was limited and approximate analytical solutions were used, which were not always reliable [6]. The ini-
tial flight envelopes were determined by using windtunnel test and computational fluid dynamics (CFD)
analysis, which were verified by expensive flight tests [71]. With improved computational power, the
focus turned towards numerical simulations to predict nonlinear (aircraft) dynamics and instabilities. A
very important development to allow for flight envelope prediction were the bifurcation and continuation
methods introduced by Carroll et al. [72]. With these methods it is possible to compute steady-state
solutions for all possible control inputs and was mainly used as analysis during design of flight control
laws and flight envelopes [6]. This further branched into the reachability analysis. A state-of-the-art
method for determining SFE boundaries are through bio-inspired methods such as artificial neural net-
work models (or neural networks in short) [37][73]. The methods for flight envelope prediction can
be roughly divided into two main branches: model based methods and experiment based methods.
Although reliable results can be obtained through experiment based methods, they are usually expen-
sive and time-consuming. Hence, model based methods are more extensively applied. A drawback of
model based methods is that the results depend on the quality of the model, which always contains dif-
ferences with the real system. In Figure 5.1 a graphical overview of the in literature identified methods
can be found, subdivided over the two main branches.

In section 5.1 model based methods with regards to stability and trim analysis, together with sys-
tem identification techniques are discussed. Reachability analysis with its corresponding methods are
worked out in detail in section 5.2. Neural network models with regards to flight envelope prediction
are discussed in section 5.3 and the chapter ends with a conclusion on the findings in section 5.4.

69
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Figure 5.1: An overview of flight envelope prediction techniques with their interconnections.

5.1. Trim and Stability Margin Analysis on High Fidelity Models
The sudden demand of fighter aircraft design pushed the development of aircraft operating outside
the linear aerodynamic regions expanding the flight envelope. This introduced challenges regarding
nonlinear aircraft dynamics. The introduction of bifurcation and continuation methods by Carroll et al.
[72] was a key development to combat this nonlinear dynamics modelling challenge.

5.1.1. Bifurcation and Continuation Methods
The bifurcation and continuation methods have allowed tools to be developed for aircraft stability and
trim analysis [71]. An entire set of steady-state (trim) conditions can be calculated for different control
inputs, e.g. for elevator deflections in longitudinal dynamics analysis. At each trim condition the dy-
namics can be linearized and consequently the stability of each trim condition can be computed. The
methods can be used to consistently analyze global nonlinear dynamics, to evaluate performance and
maneuvering capabilities [74], to verify control laws and flight envelopes [75], to design control inputs
to accomplish a desired maneuver [75], to determine operational limits from trim maps that are within
system constraints [65] and to analyze the stability of a trim point for prediction and prevention of unsta-
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ble nonlinear flight phenomena [76]. Disadvantages of the methods include that they cannot intuitively
result in a SFE in state space [77] and it is computationally inefficient to find all trim points for nonlinear
dynamics [73]. References to bifurcation analysis applied to flight dynamics can be found in Goman et
al. [74] and Yuan et al. [77].

5.1.2. Region of Attraction Method
With the Region of Attraction (ROA) method a stable set of the state space around a trim condition
is predicted in which the system is able to return to equilibrium, whereas in reachability analysis all
possible reachable states are predicted.

An advantage of ROAmethods with regards to safety is that the analysis allows to estimate whether
a certain trim point has enough safety margin to ensure recovery to an equilibrium condition in case
of a (predefined) disturbance [78]. Hence the larger the ROA for a certain trim point, the higher the
disturbance can be to still being able to return to an equilibrium condition. Therefore the size of the
ROA can be seen as a measure of the stability of a nonlinear system at a trim condition [78].

A disadvantage of ROA is that computing the exact ROA of nonlinear dynamic systems is challeng-
ing and unsolved for higher order systems [78][79]. Significant research has been done on estimating
invariant subsets of the ROA, see references in Pandita et al. [78] and Sidoryuk et al. [79]. Often the
ROA search is restricted to ellipsoidal approximations [78][79] of which the lower bounds are computed
using the Lyapunov function, which is very conservative [77][78]. In Pandita et al. [78] both reachability
analysis along with nonlinear ROA is applied on a transport aircraft model. The reachability analysis
is used to determine the reachable states, given a control authority, in order to advise the flight crew
on possible reachable states and unreachable states. The ROA results can be used to support the
guidance algorithm to predict whether future planned trim conditions have enough safety. In Pandita
et al. [78] the ROA is estimated by the largest ellipsoid contained in the ROA because determining the
best approximation to the ROA is difficult to determine [78], this however leads to conservative results
[77]. Similar work has been performed in Chakraborty et al. [80] for control verification and validation
and Sidoryuk et al. [79] for aircraft spin mode analysis. In Chen et al. [81] a stability analysis is pro-
posed together with overlapping ROA to evaluate the aircraft stability in case of sudden aerodynamic
changes, such as damage to facilitate control design for extreme conditions. Due to the conservative
results Yuan et al. [77] employed the stable manifold technique to reduce this conservatism.

Stable Manifold Method In Yuan et al. [77] the stable manifold method is used in order to reduce the
previously mentioned conservatism. In the stable manifold method an explicit characterization of the
dynamic flight envelope is used which allows computation only on the envelope instead of the entire
state space. Compared to the Level Set Method this method is more computationally efficient [77].

Main restrictions of the ROA method is the high computational demand which scales badly with the
amount of dimensions of the system [78].

5.1.3. System Identification Techniques
In order to explore and improve the high fidelity dynamical models, the use of system identification
has been used extensively in order to model varying dynamics over the flight regime which allows for
computation of an updated flight envelope [4][5][36][67][68]. Use of differential vortex lattice algorithm
with and extended Kalman filter has been investigated for onboard system identification of impaired
aircraft [82]. Furthermore, the concept of model stitching has been employed for quasi-linear parameter
varying modelling [83][84][85]. These methods focus on model identification to establish high fidelity
models over a flight regime for stability and trim analysis and for design of (adaptive) controllers. More
information on system identification can be found in chapter 6.

5.2. Reachability Analysis
A mainstream method that has been applied to various systems with regards to safety verification is
called the reachability analysis. Development to adopt the reachability analysis approach originates
from the analysis of graphs, to continuous and hybrid system theories in which formal verification of
the system is necessary to ensure safety as seen in Althoff et al. [15] and references therein. A way to
ensure safety is for instance by staying away from the unsafe set of the state space [86]. Applications
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in which reachability analysis is used include safety of flight control (see Lygeros [87] and references
therein), autonomous robotic systems [88] and aerobatic UAV maneuver and UAV collision avoidance
[39][89]. The main goal of the reachability analysis for most applications is to develop controllers to
stay within the safe part of the state space [90].

Determination of the set of all solutions is usually referred to as reachability analysis [15]. In reach-
ability analysis a specific set of the state space of a system is determined that can be reached by the
system. Three main sets can be identified: the invariance set, the viability set, and the reachability set.
In this chapter the reachability set is defined, see Nabi et al. [66] for an elaboration on the definitions
of the other sets.

The reachable set consists of all states for which at least one input exists to bring the system to these
states within a given time-window [66]. Thus, the reachable set is a function of the initial condition, the
time-window used, and the input constraints [39]. The reachable set can be subdivided into the forward
reachable set and the backward reachable set, as the system can be propagated forward and backward
in time. In this physical approach a global model of the system is required to model the aerodynamic
forces and moments. This allows to estimate the forward- and backward reachable set from a certain
trim set. The forward reachable set can be defined as the set of states for which a control input exists
such that the system can reach those states within the time-window [66]. The backward reachable set
can be defined as the set of all states for which a control input exists such that the system can reach
at least one state of the trim set within the given time-window [66]. The intersection of the forward-
and backward reachable set is then defined as the SFE which includes all the states that the system,
within a time-window and given input constraints, can reach and also safely return to the trim set from
which the forward- and backward reachable sets were predicted [11]. A graphical representation of the
definition of the SFE can be found in Figure 5.2.

Figure 5.2: The Safe Flight Envelope (SFE) defined as the intersection of the forward- and backward reachable set determined
from an initial safe set of states for a given time duration [6].

The advantage of using the reachable set analysis is that it is possible for certain continuous dy-
namical systems to exactly calculate the reachable states. Consequently tools have been developed
to compute the reachable states in an exact manner. For more general systems, methods of numer-
ically approximating these sets have evolved, see Lygeros [87] and references therein. It should be
noted that a global model is required to model the (nonlinear) dynamics and the analysis is only valid
for this specific model and the corresponding assumptions used. Model uncertainties can be taken into
account by modelling them as disturbances [39].

The SFE prediction problem can be constructed into a reachability problem. There are various
methods for determining the SFE through reachability analysis. These include through an optimal
control problem, a zonotopic based method, and through a Monte-Carlo (MC) simulation. Each method
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is described in the succeeding subsections.

5.2.1. Optimal Control Method
Solving the reachability problem may be done by solving for the time-dependent Hamilton-Jacobi-
Bellman partial differential equation (HJB PDE) or the Hamilton-Jacobi-Isaac partial differential equation
(HJI PDE) in case of disturbances are included in the analysis [14][39][66]. The flight envelope can be
described as the intersection of two nonlinear, non-convex reachability problems described by the HJ
PDE as supported by Tang et al. [36].

The SFE determination problem can be formulated as a dynamic interaction between control input
and disturbances, consequently by using reachability analysis the region of the state space that the
system can reach in case of worst case disturbance conditions and the best case controller strategy
can be determined [39]. This approach to the reachability analysis uses optimal control methods. The
formulation of the reachability problem into an optimal control problem was introduced by Lygeros [87].
The solution can be described by variants of the HJB or HJI PDE and the link between the solution
to the PDE and reachability problem is usually established in the framework of the viscosity solutions
[87]. It is called the viscosity solution because an artificial viscosity term is added to support stability of
the numerical integration for numerically solving the PDE on a grid over time (usually, a Lax-Friedrichs
approximation of the Hamiltonian) [91]. It has been proven that by solving for the viscosity solution
of a time-dependent HJ PDE the continuous reachable set can be determined since the reachable
set is proven to be the zero sublevel set of this viscosity solution [92]. As the level sets of the value
function of an optimal control problem can be characterized as the reachable sets, by using dynamic
programming without state constraints the value function of the optimal control problem can be identified
as the viscosity solution to a first order PDE in the standard HJ form [87][90].

Advantages of the time-dependent HJI PDE over stationary HJI methods include that the viscosity
solution is continuous and well-defined [92]. This allows for the application of well developed numerical
approximation methods [92][93][94][95]. The solution exists both inside and outside the reachable set,
which allows for application of SFE protection [92].

Level Set Method The most popular method for numerically solving for the viscosity solution in the
context of reachability analysis is called the Level Set method and has been used to numerically solve
for dynamic flight envelopes for (fixed-wing) aircraft [68][66][5][64].The HJ approach to numerical so-
lutions of time-dependent equation for a moving implicit surface has started the development of the
Level Set method [91], which adds dynamics to these implicit surfaces [91], as first introduced by Os-
her et al. [93]. The Level Set method is a subclass of the Euler method in which the state space is
discretized in grids and the solution is calculated on each grid point for each dimension [5]. A funda-
mental disadvantage of the Level Set method is the computational inefficiency. It suffers from the curse
of dimensionality as it scales exponential with the number of states and it becomes impractical to use
for systems with more than four states [5][11][15][16].

Variants of the Level Set Method Due to limitations of the Level Set Method, various variants of this
method have been developed. A complete overview of various variants are summarized in Stapel et
al. [14] with relevant references. The following methods are worked out in more detail:

• Time-scale Separation In order to combat the curse of dimensionality in Van Oort et al. [64] it
was advised to investigate splitting fast and slow dynamics by time-scale separation. Nonlinear
aircraft dynamics with higher dimensions can be simplified by using the time-scale separation
method [68][16]. In Nabi et al. [66] it was found that time-scale separation is useful for slower
dynamics whereas it is not feasible for faster dynamics when considering aircraft control surfaces
as inputs.

• Grid Free Methods A recent trend in literature is on research to eliminate the use of grids. This
idea originates from the exponential cost in both space- and time domain of the Level Set method
as the amount of grids increases per dimension. Darbon [96] proposes a method without using
grids or numerical approximations but uses classical Hopf formulas. Another method is through
the use of neural network models to eliminate grids by using physics-informed neural networks
[97].
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• Semi-Lagrangian Method The semi-Lagrangian method uses semi-Lagrangian time-stepping
schemes to overcome timestep limitations, which concerns theCourant-Friedrichs-Lewy-condition
[98], as a result of using Euler-methods [6].

• Minimal Time Problem In a minimal time problem the reachability problem is not modeled as a
differential game, but as a minimal time problem in which a time to reach optimisation is solved.
This results into an assigned value of∞ for those states that cannot be reached [14]. This problem
formulation has various numerical schemes as summarized in [14], such as the Iterative Method
or non-interative method such as the Fast Marching Method.

Polyhedral Set Representations Besides the Level Set method, polyhedral set representations can
be used. ”This method scales more favorably with the number of state variables compared to level-
set methods, but requires projections of the reachable set onto the constraint manifold determined by
the algebraic equations. This projection is computationally expensive and it is not guaranteed that the
computed approximation of the reachable set projection onto the manifold is an over-approximation.”
[99].

Besides the high computational cost and curse of dimensionality that the Level Set suffers from, it
also tends to produce conservative results. In Stapel et al. [14] a reachability simulation was performed
and ”on average the successful trajectories from the Monte-Carlo simulation predict approximately 60%
faster arrival times than the Level Set and safe Fast Marching method” [14]. In case of multirotor UAV
application this conservativeness may limit protection systems to benefit from the high maneuverability
multirotor UAVs have to offer.

5.2.2. Zonotopic Based Methods
Besides optimal control methods, reachability analysis can be applied using set-propagation methods,
see Delansnay et al. [100] and references therein. In set-propagation methods the reachable sets in
state space are represented by geometric shapes. This method is more efficient even with a larger
amount of state variables, and is determined by the type of set representation [100]. A representation
can be e.g. ellipsoids [69][101], polytopes and zonotopes. According to Althoff et al. [102] using zono-
topes for reachable set calculation is relatively more efficient for higher dimensions and ”yields tight
results without a wrapping effect” [100]. Furthermore, the accuracy of the sets can be designed by
the amount of zonotopes used to balance accuracy and computational time [103][104]. A restriction of
zonotopic based methods is that they are not closed under intersection (”i.e. the intersection of zono-
topes is not a zonotope in general” [103][104], which is key for reachability analysis of nonlinear and
hybrid systems [104]. In Althoff et al. [104] this is bypassed by using zonotopic bundles. Another re-
striction of the zonotopic basedmethods is that the systemmust be linearized [104] which can introduce
linearization errors.

In Harno et al. [105] the zonotopic reachability analysis has been applied on helicopters with icing
conditions showing the capability for flight envelope estimation (although only the forward reachable
set has been used in this paper). In Delansnay et al. [100] a zonotopic reachability analysis is applied
on a multirotor UAV using linear model identification, with implementations of algorithms to accomplish
underestimated reachable sets as proposed by Hespanha et al. [106] due to safety concerns. Satis-
factory results on the forward reachable set can be found when compared to a Monte-Carlo simulation
of the linear and nonlinear model [100].

Kalman Filter A new approach for predictive flight envelope monitoring and warning for off-nominal
flight conditions is the combination of a Zonotopic Kalman filter (ZKF) and reachability analysis of a
closed-loop system for online reachable states prediction. This is presented in Eyang et al. [107].
A ZKF observer can estimate all possible states in terms of zonotopes of the open-loop dynamics,
while the reachability analysis consists of computations based on the closed-loop model to predict the
future states of the aircraft. This is done over a specified time-window, for the observed set of initial
states, and based on assumed (future) control inputs. ”In order to get as less conservative as possible
reachable regions under various flight conditions, an adaptive set-membership observer minimizes
the size of the consistent state sets based on the past measurements.” [107]. The initialization of
the reachability analysis using the observed states results in more accurate information that is less
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conservative [107]. It should be noted that Eyang et al. [107] uses a linear time-variant system, without
external atmospheric disturbances, and with bounded disturbances and uncertainties (originating from
the model and sensors). This approach results in a prediction of all possible future states and thus
gives a prediction of the future behaviour of the aircraft. This can be used to check whether the system
remains within a predetermined set of states considered to be safe and support flight crew alertness.

5.2.3. Monte-Carlo Simulation Approach
A recent trend in literature with regards to reachability analysis is the use of a Monte-Carlo (MC) simu-
lation. A MC simulation is a numerical simulation method used for problems that cannot be analytically
solved, or in case experiments take too much time and effort. Through the simulation, the behaviour of
complex systems can be explored and the simulation can be repeated as often as required [108]. A MC
simulation is an algorithm that uses random sampling to obtain system outputs and consequently find
an approximation for the probability density function of the system response. A random sequence of
input parameters is sampled, consequently, the system dynamics are integrated in time via a system of
ordinary differential equations (ODE) to find the system states after the given random input sequence.
In this way, the reachable set of a system model can be analyzed. The ODE can be mathematically
described as follows:

˙⃗x(t) = f(t, x⃗(t), u⃗(t)) (5.1)
x⃗(t0) = x⃗0

With x⃗(t) the state vector, u⃗(t) the input vector and x⃗0 containing the initial states at t0. Various
numerical integration schemes exist, which can be subdivided into explicit methods (e.g. Euler and
Adams-Bashfort) and implicit methods (e.g. the Runge-Kutta schemes). Explicit methods are cheaper,
however they become unstable for stiff systems and large time-steps. Implicit methods are more ex-
pensive but become unstable with large time-steps. Hence careful selection of numerical integration
scheme and timestep duration is required to prevent instability. For reachability analysis this can be
done by increasing the amount of timesteps used within a certain reachable time-horizon. Note that
the time-window used for each trajectory is system dependent.

The trend of using such a simulation originates from evading the high computational inefficiency of
the Level Set method which is limited to problems of at most four dimensions [5][11][15][16].

In Sun et al. [11] it is shown that the MC approach can estimate a 6 dimensional reachable set and
solve this high dimensional problem more efficiently compared to the Level Set method (in a matter of
seconds). The method has been applied to the longitudinal SFE of a quadcopter, including actuator dy-
namics, using an aerodynamic model identified from high-speed flight data (<16 m/s) and the forward-
and backward reachable sets have been validated in a 6 degree of freedom simulation platform.

In Yin et al. [8] a similar method of the MC simulation is applied for generating a probabilistic
estimation of the flight envelope of a fixed-wing aircraft by simulating flight trajectories with extreme
control effectiveness. In this paper kernel density estimation was used to produce a probabilistic or
fuzzy flight envelope in which the final states are assumed to be stochastic variables. It is shown
that this method can significantly reduce the computational load compared to previous optimization-
based methods and guarantees feasible and conservative envelope estimation of no less than seven
dimensions [8].

An advantage of the MC approach is the less computational load with increased number of dimen-
sions compared to the Level Set method. Although in Terrell et al. [9] it was shown that the mean
integrated square error of the reachable set is related to the used sample size for each simulated tra-
jectory, which in turn depends on the state dimension. Hence, the MC simulation also suffers from the
curse of dimensionality however less than the Level Set method. Moreover, parallel computing can be
applied on MC simulations for more efficient code execution.

A disadvantage is that the simulation can be time consuming when applying a random-walk MC
simulation approach as many simulations are required (i.e. performing simulations with many random
inputs). A bang-bang control is proven optimal to be used in the MC simulation to reach the boundaries
of the reachable set and consequently reduce the input space and the amount of simulation time re-
quired, although the switching time is still an unknown [8][11]. The bang-bang control as formulated in
Sun et al. [11] considers the boundary of the control constraint for each timestep. To further decrease
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the amount of trajectories to reach the boundary, in the paper a tuning parameter is set up to control
the probability of adapting the control input to and from extreme value inputs [11]. With this parame-
ter the conservativeness is controlled of trajectories reaching the reachable set boundary. Hence, it
should be noted that the probability distribution of the input determines the probability distribution of
the corresponding output.

Another disadvantage of the MC simulation reachability method is that the output of the simula-
tion results in a discrete point cloud in state-space representing the reachable set. As a result, the
boundaries of the envelope are less well defined compared to the result from the Level. Consequently,
interpolation between reachable set points is necessary to provide a well-defined reachable set esti-
mate which could be over- or underestimating the boundary. Furthermore, the amount of simulations
required to construct the reachable set with a certain level of accuracy is difficult to determine. It should
be noted that the quality of the results obtained depends on the model accuracy and input distribution
used in the simulation.

5.3. Neural Network Models
A neural network model is generally applied in the framework of modelling system dynamics. The
identification of the system dynamics can be done by training a neural network model based on inputs
to the system and outputs of the real system. Feedforward neural networks have been implemented
successfully for fixed-wing aircraft models [109][110]. Also neural network on quadcopter system iden-
tification has been implemented before [111][112][113][114]. A summary of literature work with regards
to quadcopters can be found in Pairan et al. [115]. Neural networks can be also be used to capture
model residuals in order to improve model accuracy and performance [29][116]. Application of neural
networks on flight envelope prediction however is scarce. The main application fields identified include
approximating the Level Set method, interpolation of various flight envelopes and using flight data for
prediction of (local) envelope boundaries which are described in more detail below.

Approximating the Level Set Method As described earlier, for the Level Set method it is required to
solve the viscosity solution of a Hamilton-Jacobi partial differential equation (HJ PDE) which is done by
numerically approximating implicit functions over a grid. However, this method suffers from the curse
of dimensionality as the amount of grid points increases with the amount of dimensions. In Darbon
et al. [97] an attempt is made to overcome this curse by using neural network models. In this paper
it is proven that ”some classes of neural networks correspond to representation formulas of the HJ
PDE solutions whose Hamiltonians and initial data are obtained from the parameters of the neural
networks” [97]. Furthermore, their findings result into efficient neural network models for evaluating
solutions of some HJ PDEs in high dimension, in which no grid and numerical approximations are used
[97]. In Darbon et al. [97] it is shown that ”some classes of neural network architectures naturally
encode the physics contained in some HJ PDEs” [97]. These models are called physics-informed
neural networks [117] which have the advantage that less dense grids are required. See Raissi et
al. [117] for more information on physics-informed neural networks. However, Campbell et al. [118]
questions the obtained accuracy and recommends to use the neural network prediction as reference
only.

Flight Envelope Interpolation The high computational load of flight envelope determination tech-
niques mainly restrict the use of real-time implementations of SFE determination. A data-based driven
approach is worked out by Zhang [5] in which an aircraft structural failure case is classified based on
system identification from flight data. The failure type in combination with the current flight condition
allows to select the offline calculated envelopes stored in a database onboard and interpolate those
envelopes. This strategy has been researched in Zhang [5], Tang et al. [36], Lombaerts et al. [7][119],
Bordeneuve-Guibé et al. [68] and Nabi et al. [66] for aircraft damage cases, in which it was shown
that interpolating envelopes that have connections in their physical origins can approximate the result
of the Level Set method with high accuracy and interpolation of envelopes result in quick prediction
[5]. However, this online interpolation requires carrying databases on board. In Norouzi et al. [73] a
method is presented to estimate the global SFE in real-time for unknown failure degree of an aircraft by
predicting the interpolation of envelopes based on flight condition and failure degree. Flight envelopes
are determined for known failure cases and used as training data for feedforward neural networks. Re-
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sults on a aircraft transport model with rudder and aileron failure cases show good approximations of
the high fidelity global flight envelopes and fast computation in the order of seconds (only control sur-
face failures are considered) [73]. It should be noted that in Norouzi et al. [73] the maneuvering flight
envelope is used which is defined as boundaries containing steady-state maneuvers by determining
the region of attraction of equilibrium points. This envelope consists of all (stable or controllable) trim
points which are iteratively solved using the nonlinear equations of motion. An advantage of using a
trained neural network is the fast output delivery as argued by Norouzi et al. [73] which could be applied
in a real-time fashion.

Flight Envelope Prediction using Flight Data Neural networks have been applied on multirotor
UAV model identification from flight data [111][115][120] due to their capability of modelling high non-
linearities. Global determination of a flight envelope based on flight data has not yet been done in the
past as far as the author is aware. For local boundary detection Altena [37] showed promising results
on the generalizability of neural network models based solely on real flight data. It was shown that
neural network models can generalise time to loss of control (LOC) prediction for varying quadcopter
aerodynamic characteristics from real flight data (”however it is required to compensate the output of
the network for expected deviations in predictions in predicted time to LOC” [37]).

A large advantage of using a neural network to predict the flight envelope through flight data is the
circumvention of both the need for high fidelity nonlinear models and the use of high computational
expensive methods for SFE prediction. These are the main limitations identified from this literature
research. To investigate the possibility of using flight data to predict the global SFE, the subsection
below will further briefly elaborate on this topic.

5.3.1. Neural Networks and Global Flight Envelope Prediction
To examine ways to predict a SFE of a multirotor UAV based on flight data using a neural network
model, first the input and output formats for this application are identified as follows:

• Input The input could consist of time-series of sensor data of various parameters such as linear
and rotational accelerations, rotor commands, rotor outputs, and heading angle.

• Output A flight envelope has a multi-dimensional geometrical shape in state space, which is usu-
ally visualized in two- or three dimensions [5][68][7][66]. When using a MC simulation approach,
the flight envelope is represented by a multi-dimensional cloud of points [19].

Based on flight data, the neural network has to capture the dynamics of the system based on its
response to system inputs and consequently link this to the boundaries of its SFE. The dynamical
response of a system is time-dependent as the system responds to a time sequence of control inputs.
Therefore a key characteristic of the neural network model is the ability to capture features in time-
dependent sequences of its input data.

A challenging design choice with regards to a neural network model is the output format. The
network output format has to represent the flight envelope boundary in a multi-dimensional state-space.
When using a MC simulation, the boundary is not well defined and consists of an integer number of
reachable states. A way of representing the flight envelope is to define it as a geometrical shape in
2D or 3D space. In Romaszko et al. [121] a pipeline was developed to construct 3D Left Ventricular
(LV) geometry from cardiac magnetic resonance images using a convolutional neural network (CNN).
Due to the high dimensions for both input and output, measures were taken to prevent overfitting and
dimension reduction. In this paper principal component analysis (PCA) is carried out on many LV
geometries to reduce dimensions [121]. The LV geometries are mapped to a lower dimensional space
spanned by some main identified principal components (reduction from 17,000 to 10 dimensions) [121].
Consequently the weights to the output layer of the network are pre-trained and kept fixed, reducing
the model complexity due to this added preprocessing step [121]. Each weight (and neuron in the
output layer) represents a projection to one principal component. The principal axes coefficient are
added together to end up with the final geometry prediction. This is a trade-off between model flexibility
(preventing overfitting) but still having enough freedom in the number of dimensions [121]. Another
way of predicting a geometry is by defining preset parameters to fully describe the geometry. For
example this can be done to predict the bead geometry of a welding technique using a feedforward
neural network as done in Manikya Kanti et al. [122] by defining the geometry of the bead by the
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width and height. For the application of the so-called parameter variation [123], sufficient amount of
distinct geometry parameters must be defined based on the complexity of the geometry and hence
prior knowledge is required on the shape and amount of dimensions of the predicted geometry. A
more generic approach is to use Fourier Series expansion in which the neural network can predict the
coefficients of the series to describe the geometry. This has been done, with a parabolic coordinate
system, in Strijhak et al. [124] in which a neural network is used to predict the shape of an airfoil
including ice accretion. Another method for outputting geometric shapes is via a 2D pixel representation.
Applying neural networks for outputting such shapes are mainly found in the semantic segmentation
literature using CNN (see Pohlen et al. [125]). A derivative of this method can be found in Fan et al.
[126] where acoustic scattering information is used to predict the 2D shape of (convex) objects with
various geometry.

A disadvantage of using neural networks is that preparing training data and training the model are
time consuming. Due to training data inefficiency it is very challenging to use in real-world applications.
Another disadvantage is due to the lack of a mathematical framework the correctness of the trained
model is not guaranteed and is valid only for datasets similar to the training set, which can lead to safety
concerns.

5.4. Conclusion
Improving techniques and expanding knowledge on flight envelope prediction could enhance the de-
velopment of flight envelope protection systems to increase UAV safety. The aim of this chapter was
to summarize the mainstream and state-of-the-art methods for Safe Flight Envelope (SFE) prediction
methods. SFE prediction can be done in multiple ways as explored in this chapter.

Reachability analysis results in a set of all reachable states for any given time span duration, ini-
tial states and control capability. The analysis establishes a firm framework of boundaries within a
safe flight is guaranteed. This allows for the development of flight envelope protection systems, such
as control law design, to prevent loss of control conditions by preventing the system from crossing
the envelope boundaries. Hence, reachability analysis is the preferred method for this research. The
reachability analysis comes with an arsenal of well established and widely applied methods such as
solving for the Hamilton-Jacobi partial differential equations via the Level Set method. However, due to
the high computational load and impracticality for implementation of systems with more than four states
[5][11][15][16], application of this method is not preferred for high dimensional multirotor UAV applica-
tions. Furthermore, the Level Set method tends to produce underestimated sets [13][14] which are not
desirable as it prevents to exploit the ability of highly maneuverable flight which multirotor UAVs have
to offer. To conquer these limitations, the Monte-Carlo (MC) simulation seems to be the most promis-
ing method to be used as it can be applied on higher dimensional nonlinear systems and is recently
successfully applied on quadcopter models [11]. It should be noted that extreme control effectiveness
methods, such as bang-bang control, should be employed to mainly reach the boundary states, pre-
vent conservative results and reduce the amount of simulations required. Important to mention is that
the time-window (which is system dependent), as well as the input distribution, used for reachability
analysis in the MC simulation have a large influence on the obtained results.

Although the Bifurcation and Continuation methods, the Region of Attraction Method and Zonotopic
Based Methods seem promising methods, the required trim envelope for nonlinear systems are com-
putational expensive and local linearization of the model limits the analysis of global envelope analysis,
while the MC simulation can produce global boundary estimates from the nonlinear model directly. In
order to gain insight into SFE prediction of UAVs, a black-box model such as neural network models for
envelope prediction will limit this ability and hence does not seem suitable to gain more knowledge on
envelope prediction. It should be noted, however, that the use of neural network models for envelope
prediction based on flight data seems promising [37][73], and could prevent the two main limitations of
mainstream prediction methods which includes the need for high fidelity nonlinear models and the high
computational load.

The results from this model-based approach heavily relies on the model quality and model validity
used in the reachability analysis. A way of determining high quality models can be done through system
identification as already briefly touched upon in this chapter. Hence, next chapter will further elaborate
on system identification techniques for multirotor UAV.



6
System Identification of Multirotor

UAV Models

This chapter focuses on system identification with the application onmultirotor Unmanned Aerial Vehicle
(UAV). As seen in the previous chapter, most flight envelope prediction techniques rely on a model
based approach. Hence, the quality of the results depends on the model quality and validity as used in
the reachability analysis. A way of determining high quality models can be through system identification.
As identified in chapter 4 investigating the behaviour and sensitivity of the boundaries of the envelope
can enhance probabilistic flight envelope protection (FEP) systems, and consequently the safety of the
system. When investigating the behaviour of the envelope on changing system dynamics, the models
must be able to capture the resulting differences in dynamics. Therefore, the goal of this chapter
is to explore and identify techniques for determining multirotor UAV models. First, basic multirotor
UAV dynamics are explored in section 6.1 in which focus is on the widely used quadcopter model
configuration. In section 6.2 system identification techniques are described with focus on multirotor
UAVs. In section 6.3 excitation maneuvers are identified which can be used to excite the dynamics of a
system for model identification. Finally, the chapter ends with a conclusion on the findings in section 6.4.

6.1. Basic Quadcopter Dynamics
For designing a controller in hover flight, often a reduced model of the quadcopter is used. The body
reference frame as defined in Figure 6.1 is used. Assuming the quadcopter is a rigid body and using
Newton’s law of motion the following linear and rotational dynamic equations apply:
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Withm the mass of the quadcopter, u, v, w and u̇, v̇, ẇ the body linear speeds and accelerations. G⃗
and F⃗ represent the gravity vector and F⃗ the resultant force vector without gravity in the body frame.
p, q, r and ṗ, q̇, ṙ are the body angular speeds and accelerations. M⃗ represents the resultant moment
vector on the quadcopter in the body frame and I⃗ represents the inertia matrix.

The forces and moments that act on the quadcopter can be split into the effect from the motors (F⃗r

and M⃗r) and the aerodynamic effects (F⃗a and M⃗a) as follows:

F⃗ = F⃗r + F⃗a (6.3)

M⃗ = M⃗r + M⃗a (6.4)

The forces of the motors in this simpler hover model is reduced to hover condition:
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In which the force Th is the resultant thrust provided during hover flight, ωi is the ith motor speed
and κ0 is a rotor property coefficient dependent on the air density and is assumed to be constant
[19][127][128]. Any aerodynamic effects on the motors are neglected.

The moment induced by the motors can be described by the roll, pitch and yaw control respectively.
The roll control moment M⃗x and the pitch control moment M⃗y are induced by differential thrust of the
motors:

M⃗x = bκ0(ω
2
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2 − ω2
3 + ω2

4) (6.6)

M⃗y = lκ0(ω
2
1 + ω2

2 − ω2
3 − ω2

4) (6.7)

b and l indicate the distance to the center of gravity in the yb and xb axis respectively.
The yaw control moment, however, uses moment differences produced by the individual motors,

and hence it is configuration dependent [129]. There are two configurations, a ”bear-hug” configuration
in which motor 1 rotates clockwise, and a ”breaststroke” in which motor 1 rotates counter clockwise. In
case of the latter configuration, a positive yaw moment is given by:

M⃗z = τ0(−ω2
1 + ω2

2 − ω2
3 + ω2

4) (6.8)

τ0 is the rotor torque coefficient determined from hover measurements and is assumed to be con-
stant. The complete control moment of the motors is then as follows:
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So far, this simple hover model is only valid in the near-hover regime which is below 2 m/s [17], no
aerodynamics are assumed and consequently it is not valid in case of translational velocities.

It has been found that the aerodynamic effects affect the external forces and moments significantly
[19][17]. Hence the forces and moments due to the aerodynamic effects F⃗a and M⃗a play a significant
role and should be included. Therefore, in order to identify models that are valid in fast forward flight,
the main goal of the system identification is to determine the model for F⃗a and M⃗a. In Sun et al. [19]
this gray-box model has been used and showed great improvements in the prediction ability compared
to the basis quadcopter dynamic model.

Figure 6.1: Figure of a quadcopter and the body reference frame with origin at the center of gravity [30] (adjusted). Motors are
numbered from one to four.
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6.1.1. More Advanced Quadcopter Model Dynamics
The basic quadcopter model as described above is only valid for the low-speed regime. The inaccu-
racies increase when speed increases as a result of aerodynamic effects which are neglected in the
hover model. Hence this model detriments significantly in higher speed regimes, as shown in Sun et
al. [19]. Various effects can be implemented to extend the hover model:

• Gyroscopic Moment EffectDue to the rotation of the propellers a gyroscopic moment is induced
on the quadcopter. This moment can be included in which usually it is assumed that the rotors are
on the xb−yb-plane (flat on the z-axis), hence for the rotors it can be assumed that Irxz = Iryz = 0.
Furthermore, since generally the propellers do not have a large moment of inertia, the relevant
precession terms are those with high rotational speed. The rotors spin around the z-axis, hence
it can be assumed that for every ith motor, ωix « ωiz and ωiy « ωiz and thus can be neglected.
This also applies to ˙ωix and ˙ωiy which are neglected. With these assumptions the gyroscopic
moment effect is usually implemented as [30][19]:

M ri =

 Mrii
Mriy

Mriz

 =

 Irzzqωiz

−Irzzpωiz

Irzz ω̇iz
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• Variations in Thrust When flying at increasingly high speeds, the thrust is more dependent on
the relative velocity of the air with the rotors and the angle of attack of the rotor disks [130][131].
The resulting thrust can be obtained using momentum theory [128] or via blade element theory
[132].

• Blade Flapping Blade flapping is an aerodynamic phenomenon which effects the attitude control
of a quadcopter. Blade flapping occurs due to the difference in relative velocity of a blade going
into the direction of the flow while another travels away from the flow. As a result, at every
revolution the blades flap up and down due to the imbalance in lift. Consequently, the rotor plane
tends to tilt away from the direction of flight. This will introduce a moment when the drone is not
flying level [130][131]. Furthermore, there is a net drag force as a result which could be significant
for smaller drones [131]. See Mahony et al. [133] for more information on how to model this effect.
It should be noted that usually with blade flapping effect modelling [130][133] only conditions at
low speeds with no wind (indoors) are examined.

6.2. System Identification Techniques
The goal of system identification is to identify a model that maps input to a desired output behaviour
as observed from (training) data or measurements. Hence the technique can be considered as a data-
driven approach for model identification. In order to optimize the input-output relation of the model,
the parameters of the model are estimated such that the model minimizes the difference between the
measured data and the model predicted data (i.e. model residuals). This is called parameter estimation.
An estimator estimates these parameters in order to minimize a cost function of the residuals, which
is a function of the measurements. It should be noted that the measurements often originate from
sensor data, which contain random noise. Hence the estimated parameters should be considered as
random variables [134]. The estimator must be defined to estimate the parameters of the chosen model
structure to minimize residuals. The way the residuals are minimized is defined in the cost function.

Quadcopter system identification literature consists mainly of identifying forces and moments mod-
els of the system. This is often not well understood due to the high nonlinearity and unknown aerody-
namic coupling effects that arise, especially in the high speed regime [17]. Hence it should be noted
that the resulting model from system identification is only valid for the flight regime from which data
was collected to ”train” the model on. In case of traditional aircraft modelling, the aerodynamic model
parameters vary with flight condition, which concerns the flight velocity and altitude.

6.2.1. Model Structures
The model, or plant, can be treated as a white-box model, a black-box model or a gray-box model.
In a white-box model the model structure is based on first principles which are often well understood
(e.g. a physical model). A black-box model maps solely input to output without knowledge on how
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this mapping occurs. Whereas a gray-box model uses characteristics of both previously mentioned
models.

Many model structures exist and the selection of a certain structure depends on the amount of
approximation power required and the allowed computational complexity. The latter is affected by the
optimization method of the cost function and the model structure chosen. In literature on quadcopters,
the following used model structures are found:

• Polynomial Models Polynomial models are white-box models which have the advantage that
they are often simple and easy to implement [17]. In the aerospace industry polynomials are often
used as a first modelling approach [134]. According to the Weierstrass approximation theorem
(1885) every continuous function defined on a closed interval can be approximated as closely
as desired by a polynomial function. However, in practice when using higher-order polynomials
numerical instability is encountered due to the fact that ordinary polynomials do not have a stable
basis. Furthermore, when using polynomial interpolation the approximating function tends to
oscillate towards the end of the interval which increases with the degree of the polynomial. This
is called the Runge’s phenomenon (1991). In order to circumvent these phenomena, the domain
can be split into subdomains. For each subdomain, a polynomial of lower order can be fitted. This
is called a piecewise interpolation [135]. In quadcopter literature these are mainly implemented
with regards to trajectory planning [136]. Piecewise linear polynomials have been implemented
in Sun et al. [17].

• Neural NetworksNeural networks are a type of black-boxmodels which do not depend on a phys-
ical based mathematical model. In quadcopter literature the application of feedforward networks
with multilayer perceptrons (MLP) have proven to reach good accuracy for nonlinear system iden-
tification [111]. Bansal [111] showed the feasibility of feedforward neural networks to approximate
a quadcopter model for real flight test data, even with the use of decoupled dynamics. For regres-
sion, approximation and forecasting the Radial Basis Functions (RBF) are widely used and show
improved accuracy on prediction and training time compared to the MLP models [137] and are
successfully applied on quadcopter models [120][138]. Furthermore, Al-Mahasneh et al. [139]
explored the use of evolutionary algorithms on quadcopter model prediction, although this turned
out to take too much time to be practical for dynamical systems. Proper selection of hyperparam-
eters have a large influence on the performance of the network and finding this optimum can be
time consuming when using a trial and error approach. Another disadvantage of using a neural
network is the high computational complexity with nonlinear optimization resulting in long required
training time.

• Fuzzy Models The dynamics of a quadcopter is very nonlinear with time-varying behaviour and
uncertainties which make it difficult to model the dynamics mathematically. An advanced way
of circumventing this challenge is through the use of model free identification. In Santoso et al.
[140] and Ferdaus et al. [31] this is done on a quadcopter by using a fuzzy clustering based
system identification technique based on input and output data. In these papers it is shown that
fuzzy models can be applied to quadcopter system identification with good accuracy. Besides
other black-box approaches such as a neural network, an advantage of a fuzzy system is that is
it transparent and hence human readable [141] which allow for insight into the uncertainty.

• Hybrid Model Structures As summarized in Sun et al. [17] and Van Beers [29] a quadcopter
has many complex interaction effects resulting in highly nonlinear forces and moments compared
to when it is in hover flight. In these papers the motivation to use a gray box model (or hybrid
model) originates from the possibility to combine prior knowledge of rotorcraft aerodynamics and
assumptions in order to select the model structure components, with data observations to model
the not well understood interaction effects (at high speeds). In Sun et al. [19] a gray-box model
was used combining prior knowledge on quadcopter aerodynamics and stepwise regression was
used to identify themodel structure. In the paper it was found that the gray-model structure outper-
forms the standalone physical model and the widely used reduced quadcopter model. However it
should be noted that the model was more complex and more independent variables were needed,
hence a a trade-off between simplicity and accuracy must be made for the specific application of
the model [19]. In Mohajerin et al. [114] a hybrid model was developed consisting of a quadcopter
model with a recurrent neural network to account for deviations in the output. Simulations showed
that it outperforms the stand-alone model. This motivated Van Beers [29] to couple a polynomial
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model with a neural network. In the paper it was found that the polynomial model consistently
produced the most useful models and that the hybrid approach as applied in the paper did not
achieve better performance than the polynomial model [29].

6.2.2. Model Estimators
The simplest model estimator method is called linear regression in which the goal is to minimize the
model residual, which is the error between the output data and the prediction of the regression model.
Linear regression requires a linear-in-the-parameters model structure, which can still be used for non-
linear in the states models. The linear regression model is generally formulated as follows:

y⃗ = A⃗(x⃗)θ⃗ + ϵ⃗ (6.11)

With y⃗ an Nx1 measurement vector, A⃗(x) the Nxn regression matrix, x⃗ themx1 state vector, θ⃗ the
nx1 parameter vector and ϵ⃗ theNx1model residual vector. The regression matrix consists of regressor
functions p:

A =


1 p1,1 p1,2 . . . p1,m
1 p2,1 p2,2 . . . p2,m
...

...
...

. . .
...

1 pN,1 pN,2 . . . pN,m

 = [1,p1,p2, . . . ,pm] (6.12)

The regressor function pN,m(x(n)) is a function in terms of the states x and describes the relationship
between the state variables. The most widely used regressor functions are polynomials and are often
used for aircraft model identification [134][142][143].

Variations on the linear regression method exist, such as the well-known ordinary least-squares
(OLS) regression in which a quadratic cost function is used for minimizing the model residual. The
OLS estimator for θ can be derived as:

⃗̂
θ = (A⃗T (x⃗)A⃗(x⃗))−1A⃗T (x⃗)y⃗ (6.13)

Important to note is that the OLS estimator uses the following assumptions in order to be a best-
linear unbiased estimator:

1. The residuals have a constant variance for all measurements and are uncorrelated (i.e. they
resemble white noise).

2. The residuals have zero mean.
3. No process noise, i.e. the states are deterministic. The measurements are considered to be

stochastic.

Very often residuals do not resemble white noise and do not have a constant variance, hence the
parameter (co)variances and the residuals must be analyzed to identify correlated parameters. Further-
more, process noise is often present. Hence variants have been developed to extend the regression
method, e.g. the weighted least squares, generalized least squares and total least squares estimation.

Besides these linear estimators, in order to take into account correlated residuals, nonlinear regres-
sion models have been developed. An example is the maximum likelihood estimation which uses a
nonlinear solver. Although less assumptions on the residuals apply, the computational complexity of
these methods increases.

In addition to the time domain system identification, the time-series data and model can also be
converted to the frequency domain in which model identification and analysis can be performed. More
details can be found in Klein [134]. An application of frequency response system identification has
been done in Sakulthong et al. [144].

6.2.3. Model Components Selection
In case of a white- or a gray-model structure, the regressor functions within the regression model
must be determined which define the relation between the state variables and produce a candidate
pool of regressor terms or regressor candidates. As can be seen in Equation 6.13, the regressor
function, p, within the regressor matrix, A, have an influence on the complexity of the regressor model.
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A higher complexity of the regressor function (and the amount of regressor terms used) will decrease
the model residuals at a cost of overfitting (i.e. noise within the data is more strongly captured within
the model). Whereas a too simple regressor function (or very little regressor terms are used) will lead to
underfitting in which themodel cannot capture the dynamics as present in the data. Hence it is important
to determine the most suitable regressor function and the selection of regressor terms thereof for the
specific system at hand. A selection can be made based on physics theories, experience, or they result
from assumptions that are made [19]. A widely applied method is stepwise regression.

Stepwise Regression In Sun et al. [19] a data driven stepwise structure selection method [134] was
used, which is called stepwise regression. This technique has been widely used for aircraft models
however it has not been widely applied to quadcopter applications [19]. Stepwise regression consists
of three steps: the forward selection, backward elimination and stepwise regression. It has as goal to
select and eliminate regressor terms from the model in order to improve the accuracy of the model. An
elaborate explanation can be found in Klein [134]. Regressor terms are selected from a predesigned
pool of regressor candidates produced from a regressor function. The design of the regressor function
have an influence on the complexity of the model structure. For example, in Sun et al. [19] it was recom-
mended to further investigate flexible regressor functions to improve the gray-box model performance,
which was performed using piecewise polynomial functions [17].

Quadcopter Regressor Functions As identified above, the form of the regressor functions have an
influence on the model complexity and hence on its performance. Examples of regressor functions
are logarithmic, exponential and polynonial functions. In quadcopter literature not much can be found
on system identification using linear regression and covers mostly identification using neural network
models. When inspecting a widely used simplified model that is used for designing a controller for
hover conditions [19] it can be observed that polynomial functions could be sufficient for describing the
relationship between state variables. The literature in which quadcopter system identification is applied
using linear regression use indeed polynomial functions as the regressor function [29][19][17].

Polynomial Functions When using polynomial functions as regressor functions, the candidate
pool of regressor terms are formed by a combination of state variables which depend on the order
of the polynomial and the states selected. For example in case a second order polynomial is used
as a function of state x1 and x2:

ŷ = P 2(x1, x2) (6.14)

The pool of candidates for this regressor function consists of: x1, x2, x2
1, x2

2, x1x2. The candidate
pool d̂ grows as a function of polynomial degree d and number of independent states n as [145]:

d̂ =
(d+ n)!

n!d!
(6.15)

6.3. Multirotor UAV System Identification Maneuvers
The input must be designed such that it excites all relevant dynamics of the system, hence the input
signal must cover sufficient and relevant frequencies as allowed by the experimental set-up. A quad-
copter has four motors which are usually located on the same plane facing the same direction. Hence it
is important that, in order to identify control effectiveness for each individual motor, the excitation input
signals to each motor are uncorrelated [134]. As mentioned before, it should be noted that the identified
model is only valid for the flight condition in which the data has been obtained. Quadcopter models
are usually determined with respect to a certain airspeed [19]. The airspeeds can be accomplished in
either a windtunnel [19] or by (outdoor) free flights [29].

The following maneuvers are identified which have been used in past literature:

•• Classical (fixed-wing) aircraft excitation maneuvers which include:

– Impulses A spike control input which could be two sided to return to the initial condition.
However they are often low energy inputs and hence not always practical [134].
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– Frequecy sweeps A continuous input of sinusoids with varying frequency and amplitude
resulting in good prediction performance [134]. Piloted inputs are preferred over automated
inputs because it introduces some variety in the data enhancing the information content [134].
A challenge of a frequency sweep is keeping the flight condition constant when performing
the maneuver. An example in which the frequency sweeps were performed on a quadcopter
can be found in Sakulthong et al. [144] in which longitudinal and lateral dynamics were
assumed to be decoupled.

– Multisines or (varying-amplitude) orthogonal multisine input signals [146] which is a sum
of sinusoids with various frequencies (of interest), amplitudes (to achieve a certain power
distribution over the frequency band) and phase angles (usually chosen arbitrarily) [134].
Multisine input signals are used to excite the dynamics such that the information content in
the response are maximized while minimizing flight trajectory excursions [146]. The multi-
sines must be designed carefully as described in Alabsi et al. [146] in which four uncorre-
lated orthonormal multisine signals were generated for each of the four quadcopter motor
commands and used for real-time system identification.

– Doublets An approximation of a double sided square wave which produces as wider fre-
quency spectrum than when a single sinusoid was used [134]. A cascade of doublets can
be used with various pulse duration based on natural frequencies of the eigenmotions of the
system (e.g. 3211 maneuver for fixed-wing aircraft). The amplitude is determined to achieve
good signal-to-noise ratio while remaining within the allowable flight condition [134].

• Multirotor UAV free flights in a windtunnel which include:

– Maneuvers along the wind flow, a horizontal maneuver perpendicular to wind flow, climbing
and descend flight and yawmaneuvers [19] Except for the yawmaneuver, for each excitation
maneuver the heading angle changes over time in order to identify cross-coupling between
longitudinal and lateral dynamics [19].

• Multirotor UAV free flights outdoors using aggressive maneuvers which include [29]:

– Sinusoidal Maneuvers These are sinusoidal inputs along a certain axis while trying to keep
other axis unchanged (and remaining at a constant altitude).

– Throttle Pulses Pushing the throttle almost ON and OFF repeatedly.
– Acrobat Maneuvers Such as loopings, barrel rolls and punch outs.

An important factor in flying outdoors are the uncontrollable factors present, such as wind and
gusts, which will have a (stochastic) influence on the measurement data and consequently on the
resulting model validity.

• White noise and pseudo-random binary sequences Since these have low identification effi-
ciency these signals are not widely used in aircraft system identification [134].

6.3.1. Data Logging and Normalization
For logging flight data, the available sensors introduces constraints on the quality of the obtainable
data. A measure on the quality of the measured data is the signal-to-noise ratio (SNR). The measured
signal is considered to be deterministic whereas the measurement noise is stochastic. These signals
can be separated through an optimal Fourier smoothing method which allows for calculation of the SNR
[134]. In case of aircraft response modelling, results are usable with SNR ratios from three to ten (good
modelling results) [134].

The following state parameters are usually logged for quadcopter system identification [19]:

• Position, Velocity and Attitude These can be obtained through an external motion tracker sys-
tem.

• Specific Forces and Angular Rates These can be obtained through an accelerometer and gyro-
scope (through an inertial measurement unit (IMU)). The forces can be computed with the known
mass of the quadcopter, while for the resultant moments the moments of inertia of the quadcopter
are required. Note that IMU data are often noisy and hence a smoothing filter is needed [19]
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Normalization Non-dimensionalization of states is often applied in the aircraft literature in order to
allow for model comparison between different systems and conditions. Furthermore, aerodynamic
forces and moments are often described in non-dimensional coefficients [147]. In Sun et al. [19] a non-
dimensionalization approach is described for quadcopters, under the assumption that the aerodynamic
forces and moments are produced by the motors.

6.4. Conclusion
Most flight envelope prediction techniques rely on a model based approach. Hence, the quality of the
results depends on themodel quality used in the reachability analysis. A way of determining high quality
models can be through system identification. The goal of system identification is to find the input to
output behaviour in terms of a model to capture the dynamics of the system. For multirotor UAV model
identification a widely used simplified hover model is often used for quadcopter model identification.
In this model the aerodynamic effects are neglected, whereas aerodynamic effects have a significant
effect on the forces and moments on the quadcopter, hence the main goal of system identification of
multirotor UAV involves the identification of these aerodynamic effects.

As identified in chapter 4 investigating the behaviour and sensitivity of the boundaries of the enve-
lope can enhance probabilistic flight envelope protection systems, and consequently the safety of the
system. When investigating the behaviour of the envelope on changing system dynamics, the models
must capture the resulting differences in dynamics. Hence it is of utmost importance that the quality
between the identified models of various UAV configurations are as similar as possible, such that the
differences between the models originate from the difference in the dynamics.

In order to perform an analysis on the obtained models to compare dynamical differences as a result
of varying configurations, it is preferred to use a white-box model structure. Polynomial functions seem
to be the most promising ones available for the application on multirotor UAV.

To achieve similar model qualities among the multirotor UAV configurations, stepwise regression
could be used to meet the desired performance. This can be done by using datasets in which similar or
identical system inputs are performed on the configurations. Additionally, polynomial functions used in
Sun et al. [19] can be adopted to create a starting regressor candidate pool. Ideally, the same model
structure parameters for each multirotor UAV configuration can be used to directly see the effect on the
estimated parameters between configurations.

Multirotor UAV models are identified (and hence valid) along a certain airspeed range. For identifi-
cation of the model, excitation maneuvers should be designed. A trade-off between maximum allowed
excursions and capturing the amount of dynamics should be made, which depends on the airspeed
in which the models should be valid. In case of low flight speeds, frequency sweeps could be ap-
plied starting from a hover condition while keeping a constant altitude. In case of high flight speeds,
throttle pulses and multisine signals could be employed. Although in aircraft dynamics identification
it is recommended to use piloted inputs, for the identification of multirotor UAV dynamics for various
configurations it might be more desirable to program automated control inputs. This is because the
same maneuver can be applied on the various configurations, and repeated more easily to reduce the
amount of stochastic influences as much as possible. Indoor flights are for similar reasons preferred.
If such automated procedures cannot be implemented, manual flights suffice and maneuvers should
be repeated as often as possible.



7
Conclusion Literature Study

The aim of this literature report is to identify areas of improvement for enhancing safety of multirotor
Unmanned Aerial vehicles (UAVs) and to which extend, and in what form, knowledge can be added
to the body of literature to enhance UAV safety. It could be identified that the applications of UAVs
are expected to grow rapidly in the near future [1], however loss of control (LOC) is the main cause
of failures for UAVs [2]. In order to improve safety of these systems, development of LOC prevention
techniques are of utmost importance. A way to prevent LOC is through the use of flight envelope
protection (FEP) which enables controllers to keep the system within the Safe Flight Envelope (SFE),
which indicates the state space in which the vehicle can be safely operated. Operating outside the
SFE is linked to LOC [3][4][5]. The SFE in this research is defined as all the possible states which an
aircraft can both reach from- and be controlled back to a set of initial flight conditions within a given
time-window [8].

For this research it is decided to focus on global flight envelope prediction (instead of local) because
having prior knowledge on the global envelope has the advantage to develop FEP systems to balance
safety and performance for the specific application. From the literature research it can be concluded
that treating the boundaries of the SFE as probabilistic is preferred. The reason is because classical
deterministic flight envelopes tend to overestimate envelopes leading to dangerously optimistic FEP
systems [13][14]. Furthermore, in Yin et al. [8] it was shown that the envelopes change shape and size
when changing the aircraft system dynamics. Therefore, in case of including system model uncertain-
ties it is more suitable to model the boundaries as probabilistic. Moreover, an advantage of treating the
boundaries as probabilistic is that it allows for earlier responses and gentler protective FEP measures
[8].

The behaviour of the SFE boundaries of a multirotor UAV under varying configurations is yet to be
explored. Therefore, a sensitivity analysis would generate knowledge on the behaviour of the bound-
aries under varying multirotor UAV configurations which directly adds information to the body of litera-
ture of multirotor UAVs. Varying multirotor UAV configurations can be considered as a form of model
uncertainty, thus the analysis of the behaviour of the boundaries will generate knowledge on bound-
ary prediction in a probabilistic way. Consequently, this could enhance the integration of SFE protec-
tion systems on multirotor UAVs to balance safety and performance with novel probabilistic protection
strategies as done in Yin et al. [8]. Furthermore, knowledge on the behaviour of SFE boundaries under
varying system dynamics allows for investigation into methods to interpolate envelopes for different
configurations of the system. Interpolation of envelopes bypasses the need for recalculation of com-
putational expensive envelope prediction methods and hence could allow for real-time application. It
also enables further exploration in the feasibility of the promising database approach for real-time flight
envelope prediction for multirotor UAVs as proposed by Zhang [5]. A promising method is through the
use of neural network models [73][37].

Focus of the research will be on quadcopter models, for the reason that they are widely used, easily
accessible and suitable for conducting (indoor) flight experiments.
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The following literature research questions could be answered:

• How is the Safe Flight Envelope (SFE) defined?
The SFE is defined as all the possible states which an aircraft can both reach from- and be
controlled back to a set of initial flight conditions within a given time-window [8].

• Which available method is most suitable for determining the SFE of a quadcopter?
The Monte-Carlo simulation approach seems to be the most promising method for quadcopter
flight envelope prediction as it can be applied on higher dimensional nonlinear systems [8], it has
a lower computational load with increased number of dimensions compared to the mainstream
Level Set method [9], and is recently successfully applied on quadcopter models [11].

• What kind of quadcopter flight maneuvers can be used for identifying quadcopter models?
The type of maneuvers that excite all relevant dynamics of the system. To ensure all relevant
dynamics are covered various maneuvers should be employed that, together, cover the relevant
bandwidth of the system. This depends on the flight speed regime over which the models are
identified (answer to subquestion 6a) as the maximum allowed excursions must be met. In low
flight speeds this could be frequency sweeps starting from a hover condition while keeping a
constant altitude. While for high speed flight throttle pulses and multisines could be employed.

• What model structure shall be used in the system identification of quadcopter models?
In order to perform an analysis on the obtained models, it is preferred to use a white-box model
structure. Polynomial functions seem to be the most promising ones available for the application
on multirotor UAV. To achieve similar model qualities among the multirotor UAV configurations,
stepwise regression could be used to meet the desired performance.



Part III

Closure
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8
Conclusions & Recommendations

The aim of this work is to examine the behaviour of the (global) Safe Flight Envelope (SFE) of a quad-
copter subjected to varying system dynamics. The definition of the SFE used in this work is defined as
the set of states that can be reached, within a certain time-window, for which a trajectory exist to return
to a safe flight condition within a predefined time-window [5][6][7][8].

The objective of this research was formulated as follows:

Research Objective

The objective of this thesis work is to assess the behaviour of the boundaries of the Safe Flight
Envelope (SFE) of a quadcopter subjected to varying system dynamics.

The effects of longitudinal center of gravity displacements, actuator dynamics and varying time-
windows are explored. In this research the SFE is divided into two sets: 1) the forward reachable set
(FRS), which defines all the states that the system can reach within a time-window, and, 2) the back-
ward reachable set (BRS), which defines all states from which the system can return to the (initial)
safe (set of) state(s) within an arbitrary time-window. For FRS estimation an optimized Monte-Carlo
(MC) simulation approach is developed. The BRS is obtained through a minimum-time optimal control
routine performed on the end states in the FRS.

With the results of the research presented in Part I the research questions as described in chapter 2
can be answered. The answers to the research questions can be found in section 8.1. Furthermore,
the recommendations which follow from this work are presented in section 8.2.

8.1. Conclusions
From the result of this work, the research questions can be answered as follows:

1. How does the FRS vary subjected to:

(a) Displacing the center of gravity position?
• A larger displacement of the center of gravity from the rotor plane center results in a
smaller reachable set area. This is the direct result from the larger moment of inertia of
a quadcopter with a more outer center of gravity location, consequently having a larger
resistance against a change in angular rotation resulting in a smaller reachable set. With
respect to the neutral configuration, the area of the reachable set of the most aft center
of gravity position at T = 0.1 s is reduced by around 45%, for the most forward center of
gravity position the area is reduced by around 65%.

• The location of the centroid of the reachable set is a function of the center of gravity
offset position. It moves into the direction of the sign of the pitching moment bias. A
larger moment can be obtained in the rotation direction of this bias, which shifts the
centroid of reachable set accordingly.
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(b) Actuator dynamics?
• Including the modelling of the actuator dynamics reduces the reachable set substantially.
The reachable set area is reduced by about 85% compared to the set without actuator
dynamics.

(c) Varying the time-window of the reachable set analysis?
• The reachable set expands as a function of time and is dependent on quadcopter dynam-
ics. As the time-window increases, the reachable set area expands and the maximum
and minimum obtainable pitch angles and rates increase. The extend to which the set
grows within a unit of time is dependent on the system dynamics. The area increases
more for the most aft center of gravity position and most forward position. The minimum
pitch angles and rates increase more for the most forward center of gravity position while
a larger increase is observed in maximum angles and rates for the most aft position.

• The forward reachable set expands in time in a similar fashion as a double integrator
system. This is because the rotational quadcopter dynamics are modelled identical to
a double integrator system.

2. How does the BRS vary subjected to:

(a) Displacing the center of gravity position?
• The distribution of the return time over the entire FRS set is a function of center of gravity
offset position. For the neutral position this distribution seems almost symmetric, while
for the extreme offset positions larger return times are found near one of the edges of
the FRS. This can be explained by the pitching moment bias as a result of the center
of gravity offset with the rotor plane center, due to which higher pitching moments are
reached into the direction of this bias. Moreover, a higher moment of inertia restricts
larger changes in rotational rates, which increases the return time.

(b) Actuator dynamics?
• The quadcopters without actuator dynamics modelling obtain larger FRS as well as a
BRS with much lower return times. For a FRS of T = 0.1 s the largest distribution of
the return time of the set without actuator dynamics ranges up to only about 0.3 sec-
onds, despite the much larger pitch angles and pitch rates obtained. This is because
a system without actuator dynamics can apply a change in rotational acceleration in-
stantaneously, while the actuator dynamics introduce a lag, making the system respond
slower. Therefore, including the actuator dynamics in the modelling is essential to obtain
realistic reachable sets.

(c) Varying the time-window of the reachable set analysis?
• The time to return to the safe state generally requires (substantially) more time than the
time-window used to obtain the FRS. A forward reachable set, with time-window of T =
0.1 s, results in a BRS with return times up to 0.7 seconds. This is due to the sampling
along the maximum input range to estimate the boundary of the FRS. These extreme
inputs result in trajectory end states with high rotational rates and accelerations from
which the quadcopter needs to recover. Moreover, due to the modelling of the actuator
dynamics an additional delay is introduced to change the (direction of the) rotor speeds
and generate rotational accelerations towards the safe state.

• The return time increases with increasing FRS time-window, until a specific time, after
which the return time distribution shows a repeating pattern along the FRS set. The
repeating pattern can be explained by the looping of the pitch angle around an arbitrary
range in the simulation. Since the commanded input from the optimal control routine
depends on the pitch angle, the found optimal control solution does not always result
in the global optimum. It is recommended to loop the pitch angle interval for an integer
amount of variations and select the routine resulting in the minimum return time for each
end state considered.
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3. To what extend is interpolation of the reachable sets feasible to support a data-base driven ap-
proach for (real-time) envelope prediction and protection?
The effects of the center of gravity displacements on the FRS mainly affect the set area and the
centroid location which can be directly interpolated. From the analysis of the actuator dynamics it
was concluded that the area of the envelope has a fixed reduction in area, independent of system
dynamics. It could be observed that the set with actuator dynamics seems to represent a set for
a smaller time-window compared to the set without actuator modelling. With this knowledge a
procedure can be developed which can estimate the set with- and without actuator dynamics.
Note that these results are only valid for the actuator time constants used in this work. The
FRS as a function of time expands in a similar fashion as the double integrator system. For the
reachable sets of the double integrator analytical solutions exists [72]. With the results from this
research it could be possible to construct an analytical approximation of the FRS of a quadcopter
model, including actuator dynamics, as a function of time.
Interpolation of the BRS subjected to varying center of gravity position could be done using an ap-
proximation of the system specific gradient along the FRS observed in the results. This could also
be applied to the influence of the actuator modelling and varying time-windows as well. Moreover,
implementation of the optimal control routine as developed in this work could be integrated onto
the quadcopter itself. The optimal control surface used in the routine is known in advance and
could be efficiently stored onboard and used to apply bang-bang control to recover the quadcopter
to the safe state.

With an answer provided to all research questions, this concludes the thesis project as the research
objective has been achieved.

The results on the FRS and BRS generate knowledge on the capabilities of the quadcopter in the
framework of reachability analysis. So far, the reachable sets are separated into the FRS and BRS
respectively. In order to determine the SFE, it is required to define the amount of time the quadcopter is
allowed to go from- and return to the safe state (hover condition). This particular time-window is appli-
cation specific and dependent on the safety and performance requirements. For further implementation
of the results in the framework of the SFE it is recommended to further investigate the application spe-
cific safety requirements (e.g. in terms of time-windows) which can then be co-implemented with a
controller for flight envelope protection. More recommendations with regards to this work can be found
in the next section.

8.2. Recommendations
The recommendations of this work have been split into the recommendations which follow from the
research, recommendations for improving the research itself, and finally recommended follow-up re-
search subjects are proposed.

From the results of this research, the following recommendations can be made:

• To obtain the largest possible forward reachable set (FRS) with smallest return times, defined as
the backward reachable set (BRS), it is recommended to place the center of gravity position near
the rotor plane center. Any center of gravity offset reduces the reachable set area and increases
return times in the BRS.

• The actuator dynamics largely affect the results of the reachable sets obtained, hence it is essen-
tial in any quadcopter analysis to include the actuator dynamics in the modelling. The effects of
the actuator dynamics show a larger impact on the reachable sets than the effects of the center
of gravity offsets. Therefore, it is recommended to further develop the performance of the ac-
tuator dynamics as it has a large impact on the reachability of the quadcopter, and thus on the
performance of the quadcopter as a whole.

• The quadcopter is a very fast system and hence it is recommended to consider time-windows for
reachability analysis in the order of less than or about half a second (for the platform as used in
this work).

• For FRS estimation of a quadcopter model, it is recommended to use a Monte-Carlo (MC) sim-
ulation rather than the Level-Set Toolbox [18], as it has been shown to outperform the toolbox
in terms of both accuracy and computation time. Although a more thorough space- and time
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complexity analysis is recommended. The MC simulation is preferred provided that the system
under consideration is control affine, such that bang-bang control can be used which drastically
reduces the sampling space. Additionally, a (system specific optimized) tuning parameter should
be used to optimize for boundary estimation, which reduces the required number of trajectories.

The following improvements can be made on the presented research itself:

• Themodel identification procedures in this work have used signals which have been pre-processed
by the flight control software. In particular the gyro data. This directly influences the identified
model parameters. Hence, it is recommended to use the raw measurement signals for model
identification.

• The data obtained for model identification have been collected from manual piloted (line-of-sight)
flights. Consequently the pitching maneuvers, aimed to only excite the pitching moment, are con-
taminated with unintentional roll- and yaw inputs (although small). Furthermore, manual flights
result in a variance among repeated maneuvers. Although in some applications this is desirable
as more variations in the input result in exploring a wider range of the dynamics, in this work
the goal was to identify the differences between system dynamics which require identical sys-
tem inputs. Hence for this analysis it is more desirable to automate flying maneuvers for model
identification.

• The reachability analysis has been applied on a quadcopter model without including any (non-
rotor) aerodynamic effects. It is recommended to further explore the analysis in the high speed
regime and/or include nonlinear effects, such as propwash, to analyse the effects on the reachable
sets in extreme flight conditions.

• The pitching moment models do not include the effects of the center of gravity offsets for pitch an-
gles greater than ±90 degrees (with a pitch angle bounded between ± 180 degrees). To improve
results for envelopes exceeding these angles, model identification on flights with an extended
flight regime should be performed. The models could also be extended by for example manipu-
lating the sign of the bias to capture the effects of gravity on the mass unbalance when exceeding
±90 degrees.

• The validation data show that the quadcopter has an initial nonzero pitch angle and pitch rate at
the beginning of the maneuvers. This phenomenon occurred when switching from angle mode to
rate mode. To improve future validation analysis it is recommended to eliminate this effect as the
validation analysis was designed to start at a zero angle and rate. Furthermore, a consistently
larger control moment for the pitch down maneuvers was achieved compared to the pitch up ma-
neuvers. It is recommended to investigate the cause of this asymmetry as symmetrical control
moment inputs would benefit the validation analysis. Possible sources are (asymmetrical) differ-
ences between the rotor blades and/or motor functionalities. This could be explored by swapping
the front and aft blades and/or motors and repeating the flight maneuvers.

• The optimal control routine in this work has been applied around a fixed looping range of pitch
angles. Consequently, the trajectory inputs from the control routine do not always provide the
global optimum minimum-time solution. In order to find the global optimum, it is recommended
to loop the pitch angle range for an integer amount of variations and select the control trajectory
resulting in a minimum return time.

• The verification of the BRS has only be performed with respect to the boundary of some selected
analytical sets. It is recommended to further verify the estimated return times also within and
outside the boundaries of the considered sets. This could be done by for example increasing the
amount of analytical sets used in the verification for various time-windows. Furthermore, instead
of checking whether the return time estimation is within time-window of the analytical set, the
estimated return times can be directly compared to the time-window of the analytical set which
intersects the state in question.

• An additional model identification analysis on the actuator dynamics showed substantial different
model parameter estimates when using data from a quadcopter flown in rate mode only. This
motivates further analysis on system identification of the quadcopter model on rate mode data
only and compare its validation performance. Since the possible explanation of these differences
might originate from the differences in control loops, it is recommended to develop a method to
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perform system identification flights in an open-loop fashion for complete controller-free actuator
dynamics model identification.

• The validation analysis has been performed only on the edge cases of the forward reachable
sets, which include the maximum and minimum pitch angle and rate of the set. To improve the
validation on the FRS, an experiment should be designed which extends to the other edges of
the flight envelope as well.
Furthermore, no validation has been performed on the BRS. A validation experiment could be
designed which for example replicates the control inputs from simulation, or implement the bang-
bang optimal control routine onto the quadcopter, in order to validate the optimal control routine
by comparing the time to return to the hover condition from a particular state.

• The results from this work cannot directly be compared to the results from other quadcopter plat-
forms. It is recommended to normalize the states with the dimensions of the platform in order to
compare to other platforms. Furthermore, to account for varying flight conditions, a normalization
can be done with respect to (aerodynamic) conditions, such as the air density.

To further expand upon the results followed from this research in the framework of reachability
analysis of quadcopters, the succeeding follow-up research subjects are proposed:

• In order to apply flight envelope protection (FEP) in the framework of quadcopters, the definition of
loss of control (LOC) with respect to the Safe Flight Envelope (SFE) should be better researched
and defined. This definition, including the time-window(s) considered, can be very application
specific (e.g. how fast the system is and how much space is available) and will depend on the
safety and performance requirements.

• The optimal control routine, as developed in this work, to return from any end state to hover
condition in minimum-time proofs to work in simulation. This optimal control routine can be used
to further investigate its application in for example endpoint control and/or implement the routine
onto a real quadcopter. The bang-bang optimal control in the context of position control has
already be proven to work on quadcopters showing improved performance compared to a PID
controller [148].

• In extension to the item above, the methods as shown in this work, applied on the pitch channel,
can be extended to the roll channel directly. The reachability results could be combined to allow
for FEP on both the pitch and roll channel simultaneously (e.g. in an uncoupled fashion). Position
control using the bang-bang optimal control can be applied, as done in Westenberger et. al [148],
but including a safety guarantee from the FEP system.

• The FRS as a function of time expands in a similar fashion as the double integrator system. For
the reachable sets of the double integrator analytical solutions exists [72]. With the results from
this research, which adds knowledge on how the sets grow in time, as well as to what extend the
actuator dynamics affect the sets, it could be possible to construct an analytical approximation of
the reachable set for a quadcopter model including actuator dynamics. This is relevant for exam-
ple in the framework of a database-driven approach, in which interpolation and/or extrapolation
of sets could be beneficial in terms of efficiency and performance for real-time applications [5].

• Besides the attitude state-space domain as investigated in this research, the reachability analysis
could be extended to include position and/or velocity envelopes. The envelopes could be used
in trajectory planning and/or obstacle avoidance [149]. With the results of this work, the trajec-
tory planning can be extended to not only include the dynamics of the quadcopter, with actuator
dynamics, but also add a safety guarantee based on the reachable set analysis in the framework
of the SFE (e.g. to guarantee a trajectory change within a specified time-window).
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