
Methods for
improving the
computational
performance of
sequentially linear

analysis
by

W. Swart
to obtain the degree of Master of Science in Applied Mathematics

at the Delft University of Technology,

to be defended publicly on Thursday August 30, 2018 at 10:00 AM.

Student number: 4234898
Project duration: December 1, 2017 – September 1, 2018
Thesis committee: Dr. ir. M. B. van Gijzen, TU Delft, supervisor

Dr. ir. G. J. Schreppers, DIANA FEA
Prof. dr. ir. J. G. Rots TU Delft
Dr. ir. W. T. van Horssen TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Copyright © 2018 by Wouter Swart. All rights reserved.

http://repository.tudelft.nl/




Summary

The numerical simulation of brittle failure with nonlinear finite element analysis (NLFEA) re-
mains a challenge due to robustness issues. These problems are attributed to the softening
material behaviour and the iterative nature of the Newton-Raphson type methods used in
NLFEA. However, robust numerical simulations become increasingly important, for example
due to recent developments in Groningen.

To address these issues, sequentially linear analysis (SLA) was developed which exploits the
fact that a linear analysis is inherently stable. By assuming a stepwise material degradation
the nonlinear response of a structure can be approximated with a sequence of linear analyses.
Although this approach has been proven to be effective for several case studies, the numerical
performance is still a problem that has to be solved. After every linear analysis, a single
element is damaged resulting in incremental damage. As a result, the system of equations
only changes locally between these linear analyses. Traditional solution techniques do not
exploit this property and calculate a matrix factorisation every linear analysis, resulting in high
computational times per analysis step. Since SLA typically requires many linear analyses to
obtain the desired structural response, this leads to unacceptable analysis times.

The aim of this thesis is to improve the computational performance of SLA by developing
numerical solution techniques which exploit the incremental approach of SLA. To this extend,
the following methods have been developed.

1. A direct solution technique has been developed which is based on theWoodbury matrix
identity. This identity allows for the numerically cheap computation of the inverse of a
low-rank corrected matrix. In this approach, the expensive matrix factorisation does not
have to be calculated every linear analysis step. Instead, the old factorisation can be
reused along with some additional matrix- and vector multiplications and solving a sig-
nificantly smaller linear system of equations. An optimal strategy is derived to determine
at which point a new factorisation should be calculated.

2. An improved preconditioner for the conjugate gradient (CG) method has been devel-
oped. Instead of an incomplete factorisation, the complete factorisation is used as a
preconditioner which reduces the number of required CG iterations significantly. The
point at which too many CG iterations are required and a new factorisation is necessary,
is determined using the same strategy as the first method.

From numerical experiments it follows that both methods perform significantly better than the
direct solution method, especially for large 3-dimensional problems. The best performance
is achieved using the Woodbury matrix identity resulting in the solver no longer being the
dominant factor in SLA. Furthermore, significantly larger problems are not solvable in time
frames in which previously only smaller problems were solved.
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1
Introduction

1.1. Background and motivation

In the recent years, structural failures of buildings have lead to increased attention to the
(re)assessment of structural risks. Recent examples are the cracking of masonry buildings
in Groningen due to gas extractions, or the partial collapse of a concrete parking garage in
Eindhoven due to technical errors. Not only consumers but also insurance companies and
governing bodies are interested in having a clear view of the risks involved and what measures
should be taken.

To assess these risks, accurate numerical simulations are required to predict the structural
behaviour. To this extend, a nonlinear finite element analysis (NLFEA) is typically carried
out. In order for these predictions to produce reliable results, it is important that the adopted
numerical method used is robust. However, when analysing for example masonry or concrete
structures robustness issues can arise. These issues are inherent to the iterative nature of
NLFEA in which loads are typically applied incrementally. After increasing the structural load,
the iterative process attempts to establish an equilibrium between external and internal forces.
Once the imbalance is sufficiently small the solution is said to have converged after which the
applied load is incremented and the process is repeated. In most cases this iterative process
works relatively well. However, problems arise when large deformations occur in-between load
increments. In these situations the Newton-Raphson type methods that are used to establish
force equilibriummay not find a converged solution. Furthermore, convergencemay be difficult
when numerous cracks develop simultaneously such that the method has to determine where
new cracks will appear and which existing ones will propagate or close. The masonry and
concrete structures which are often subject to theNLFEA are characterized by brittle behaviour
meaning that cracks can occur instantaneous and propagate rapidly. As a result, the iterative
procedure may not be able to find a converged solution.

To address the outlined issues, Rots proposed a robust finite element analysis (FEA) technique
named sequentially linear analysis (SLA) [14]. The main assumption of this method is that the
material degrades incrementally, that is the stiffness and strength properties of the material
decrease stepwise. By applying only one damage increment per analysis step the damage is
controlled such that it is not possible for multiple cracks to form simultaneously. To locate at
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2 1. Introduction

which point in the model the damage is applied an automated selection procedure is applied
which compares the current strength to the stresses as obtained with a linear analysis. This
way a critical load factor can be determined with which the linear analysis can be scaled such
that the stress reachesmaximal strength only in one element, resulting in progressive damage.
After the damage is incremented, the system of equations is reassembled and the process is
repeated. With this method, the nonlinear behaviour of structures can be approximated with
a sequence of linear analyses. In this incremental method no nonlinear system of equations
has to be solved, making SLA robust.

SLA has been implemented intoDIANA (DIsplacement ANAlyzer), a specialized civil engineer-
ing software package developed by DIANA FEA BV. Although the implementation of SLA has
been proven to be effective in robustly simulating brittle failure [16], it can be computationally
intensive. Since only a single element is damaged per analysis step, and cracks constitute of
numerous elements failing, typically many linear analyses have to be performed to obtain a
desired structural response. To illustrate the effect on performance of the different procedures
in SLA, Figure 1.1 shows how the computational times of the dominant procedures scale with
the problem size.
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Figure 1.1: Total CPU time of the most dominant building blocks of SLA.

From the Figure 1.1 it is clear that for increasing problem sizes, solving the linear system
(SOLVE) of equations becomes the bottleneck of SLA. This poor numerical performance can
be attributed to the absence of efficient reusage of solutions from previous analysis steps.
Since only one element is damaged after each linear analysis, the resulting system of linear
equations remains mostly unchanged between analysis steps. Only a small number of en-
tries corresponding to the particular damaged element are adjusted meaning that the system
matrix is given a low-rank correction. Therefore, calculating the solution without exploitation
of this property comes at the cost of significant additional computing time, especially for large
problems.

As a result of these performance issues, a master thesis position wasmade available atDIANA



1.2. Research question 3

FEA BV with the aim of addressing the mentioned problems. Although the required number of
analysis steps is an inherent result of the stepwise material degradation assumption of SLA,
the reusage of solutions from earlier analysis steps is the result of the implementation of the
SLA solver procedure. Therefore, the aim of this master thesis is to develop numerical solution
techniques which exploit the incremental approach of SLA to achieve improved computing
times.

1.2. Research question

The main research question that will be addressed in this thesis is the following

How can the computational performance of sequentially linear analysis be improved such that
it requires reduced computing time?

In this thesis the computing time is understood to be the elapsed time of the analysis. To
answer the main research question the following sub-questions will be addressed

1. Can the computational performance of SLA be improved using the Woodbury matrix
identity for low-rank matrix corrections?

2. How can the conjugate gradient method be used to exploit the low-rank nature of SLA
in terms of performance?

3. Which of the two mentioned approaches performs best and how do they compare to
each other?

Reducing the analysis times allows for larger problems to be solved in the same amount of time
as smaller problems were previously solved. The thesis presented here is aimed at increasing
the size of problems that can be solved using SLA. Next, an outline is given of this thesis.

1.3. Outline

In the overview below an outline is given of the structure of this thesis. First an introduction is
given on the finite element method including a brief description on its application in structural
mechanics. Then NLFEA and the proposed method of SLA are introduced. Subsequently, two
different classes of solution methods are discussed for the linear analyses in SLA followed by
techniques for improving these methods by exploiting the event-by-event strategy of SLA.
Finally, results of both methods are presented and conclusions are drawn.

Chapter 1: Introduction and motivation to the problem.

Chapter 2: Introduction to the displacement based finite element method and its application
to structural problems.

Chapter 3: Explanation of incremental-iterative solution techniques for solving nonlinear prob-
lems.



4 1. Introduction

Chapter 4: Explanation of the general idea of sequentially linear analysis, an alternative ap-
proach to nonlinear finite element analysis.

Chapter 5: Elaboration on two solution classes for solving systems of linear equations.

Chapter 6: Derivation and implementation details ofWoodbury’s identity, a mathematical tech-
nique for reusing solutions of linear systems after a low-rank matrix correction.

Chapter 7: Parametric analysis and validation of Woodbury’s identity.

Chapter 8: Numerical results of both solution methods.

Chapter 9: Conclusions and discussion.

1.4. Notation and conventions

To maintain consistency throughout the report the following notation and conventions will be
used.

Vectors will be denoted as bold lower case letters:

v = [𝑣Ꮃ, 𝑣Ꮄ, … 𝑣ᑟ]
ᑋ

and matrices as upper case letters:

𝑀 = (
𝑚Ꮃ,Ꮃ ⋯ 𝑚Ꮃ,ᑟ
⋮ ⋱ ⋮

𝑚ᑞ,Ꮃ ⋯ 𝑚ᑞ,ᑟ
) .

Vector and matrix elements are indexed using the Matlab convention:

v(𝑖 ∶ 𝑗) = [𝑣ᑚ, 𝑣ᑚᎼᎳ, … , 𝑣ᑛ]
ᑋ

and

𝑀(𝑖 ∶ 𝑗, 𝑘 ∶ 𝑙) = (
𝑚ᑚ,ᑜ ⋯ 𝑚ᑚ,ᑝ
⋮ ⋱ ⋮

𝑚ᑛ,ᑜ ⋯ 𝑚ᑛ,ᑝ
) .

1.5. Definitions

Definition 1. Let 𝐿 ∶ 𝑈 → 𝑉 be a linear space and suppose

𝐿 (𝛼u+ 𝛽v) = 𝛼𝐿u+ 𝛽𝐿v ∀u,v ∈ 𝑈, 𝛼, 𝛽 ∈ ℝ .

Then 𝐿 is a linear operator on 𝑈.



1.5. Definitions 5

Definition 2. Let 𝐿 ∶ 𝑈 → 𝑉 be a linear space. Then 𝐿 is self-adjoint if and only if

∫
ᐎ
u𝐿v dΩ = ∫

ᐎ
v𝐿u dΩ ∀u,v ∈ 𝑈 .

Definition 3. Let 𝐿 ∶ 𝑈 → 𝑉 be a linear space. Then 𝐿 is positive if and only if

∫
ᐎ
u𝐿u dΩ ≥ 0 ∀u ∈ 𝑈 .

Definition 4. Let Ω be bounded by 𝜕Ω. Then the following function spaces are defined:

𝐶(Ω) ∶= {𝑓 ∶ Ω → ℝ | 𝑓 continuous over Ω}

𝐶ᑡ(Ω) ∶= {𝑓 ∶ Ω → ℝ | 𝑓 is up to p times continously differentiable over Ω}

𝐶Ꮂ(Ω) ∶= {𝑓 ∈ 𝐶(Ω) | 𝑓|ᒟᐎ = 0}

Definition 5. Let u ∈ ℝᑟ and 𝐴 ∈ ℝᑟ×ᑟ. Then 𝐴 is:

Symmetric if and only if 𝐴ᑋ = 𝐴
Positive definite if and only if uᑋ𝐴u > 0 , ∀u ≠ 0

A matrix 𝐴 that is both symmetric and postive definite is called symmetric positive definite
(SPD).

Definition 6. Given 1 ≤ 𝑝 < ∞, the 𝑝-norm (Hölder norm) of a vector u ∈ ℝᑟ denoted as
‖u‖ᑡ is defined by

‖u‖ᑡ = (
ᑟ

∑
ᑚᎾᎳ
|𝑢ᑚ|ᑡ)

Ꮃ
ᑡ

.

In particular it holds that

‖u‖Ꮃ =
ᑟ

∑
ᑚᎾᎳ
|𝑢ᑚ| .

Definition 7. Given 1 ≤ 𝑝 < ∞, the 𝑝-norm (Hölder norm) of a matrix 𝐴 ∈ ℝᑞ×ᑟ denoted as
‖𝐴‖ᑡ is defined by

‖𝐴‖ᑡ = sup
u∈ℝᑟ\{0}

‖𝐴u‖ᑡ
‖u‖ᑡ

.

For 𝑝 = 1 the following expression for the matrix norm exists

‖𝐴‖Ꮃ = max
Ꮃᐶᑛᐶᑟ

ᑞ

∑
ᑚᎾᎳ
|𝑎ᑚ,ᑛ| .

Definition 8. Let 𝐴 ∈ ℝᑟ×ᑟ and 𝑝, 𝑞 ∈ ℕ. Then 𝐴 is said to have lower bandwidth 𝑝 if and
only if 𝑝 is the smallest number such that 𝑎ᑚᑛ = 0 whenever 𝑖 > 𝑗 + 𝑝. Analogously, 𝐴 is said
to have upper bandwidth 𝑞 if and only if 𝑞 is the smallest number such that 𝑎ᑚ,ᑛ = 0 whenever
𝑗 > 𝑖 + 𝑞.

If 𝑝 = 0 (𝑞 = 0) the matrix 𝐴 is upper (lower) triangular.





2
Finite element method

The finite element method (FEM) is a numerical method for solving boundary value problems
(BVP). The method is employed extensively in various areas such as the analysis of solids
and structures or heat transfer. The flexibility of FEM in dealing with complex geometries is
one of the reasons why the method is preferred over other numerical methods.

Generally speaking, two different approaches exist to derive a linear system of equations from
a given BVP. The first is known as Ritz’ method and determines the solution by converting the
BVP to a minimisation problem. The second method determines the solution to the BVP by
first translating it to a weak formulation, which is known as Galerkin’s method. An introduction
will be given for both methods. For a complete overview of FEM the interested reader is
referred to classic textbooks such as Zienkiewicz [19] or Bathe [12].

2.1. Ritz’ method

Ritz’ method is a method which can be used to find an approximate solution to a BVP by
solving an equivalent minimisation problem that is in some sense equivalent to the BVP [18].
These minimisation problems often aim at minimising an underlying energy potential or short-
est path to solve the equivalent BVP. The advantage of the minimisation problem is that fewer
boundary conditions are necessary meaning that a larger class of solutions is allowed. The
boundary conditions that are still present in the minimisation problem are called essential.
Boundary conditions that follow implicitly from the minimisation problem are referred to as
natural boundary conditions. To derive the equivalent minimisation problem consider a BVP
written in the general form

𝐿𝑢 = 𝑓 , (2.1)

with 𝐿 ∶ 𝑈 → 𝑉 a linear operator. Assuming self-adjointness and positivity of 𝐿, it can be shown
that an equivalent minimisation exists. Under these assumptions, the solution 𝑢 to the BVP of
Equation (2.1) minimises the functional

𝐹(𝑢) = ∫
ᐎ

1
2𝑢𝐿𝑢 − 𝑢𝑓dΩ (2.2)

7



8 2. Finite element method

over the space 𝑈. The original BVP is thus rewritten to finding 𝑢 that satisfies the boundary
conditions and for which Equation (2.2) is minimised. Direct minimisation is only possible
if there are a finite number of unknowns. To this extend, the solution 𝑢 to the minimisation
problem is approximated as

𝑢(x) ≈ 𝑢ᑟ(x) =
ᑟ

∑
ᑛᎾᎳ

𝑎ᑛ𝜑ᑛ(x) , (2.3)

where {𝜑ᑛ(x)} are chosen linear independent basis functions, 𝑎ᑚ are the weights of these
functions and x = (𝑥, 𝑦)1. Using this approximation, the only unknowns in the minimisation
are the weights 𝑎Ꮃ, … , 𝑎ᑟ. The necessary condition for the existence of a minimum is then
given by

𝜕𝐹 (𝑢ᑟ (x))
𝜕𝑎ᑚ

= 0 , 𝑖 = 1,… , 𝑛 . (2.4)

Equation (2.4) forms a set of 𝑛 equations with 𝑛 unknowns which can be solved uniquely if the
linear operator 𝐿 from Equation (2.1) is positive definite.

As mentioned, an equivalent minimisation problem does not necessarily exist for arbitrary
BVP’s. In these cases, an alternative formulation is required. Galerkin’s method provides this
alternative formulation which is applicable to all kinds of BVP’s.

2.2. Galerkin’s method

Galerkin’s method is a direct generalisation of Ritz’ method for solving BVP’s. In the case
that an equivalent minimisation exists, Ritz’ and Galerkin’s method are equivalent, making
Galerkin’s method more generally applicable. Before applying Galerkin’s method, a weak
formulation is derived from the BVP. The aim of the weak formulation is to allow a larger
solution class than the BVP admits. To illustrate how to obtain the weak formulation of a given
BVP, consider the classical Poisson problem

{−Δ𝑢 = 𝑓 in Ω
𝑢 = 𝑔(𝑥, 𝑦) on 𝜕Ω (2.5)

Multiplication with a test function 𝜑 ∈ 𝐶ᎳᎲ (Ω) and integration over the domain Ω the BVP from
Equation (2.5) can be written as

−∫
ᐎ
𝜑Δ𝑢dΩ = ∫

ᐎ
𝜑𝑓dΩ , ∀𝜑 ∈ 𝐶ᎳᎲ (Ω) . (2.6)

Applying integration by parts and Gauss’s divergence theorem to Equation (2.6) allows it to
be rewritten as

−∫
ᐎ
∇ (𝜑∇𝑢) − ∇𝜑∇𝑢dΩ = ∫

ᐎ
𝜑𝑓dΩ , ∀𝜑 ∈ 𝐶ᎳᎲ (Ω)

⟺ −∫
ᒟᐎ
(𝜑∇𝑢) ⋅ ndΓ + ∫

ᐎ
∇𝜑∇𝑢dΩ = ∫

ᐎ
𝜑𝑓dΩ , ∀𝜑 ∈ 𝐶ᎳᎲ (Ω) (2.7)

1x  (፱, ፲, ፳) for 3-dimensional problems.
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Since it holds that 𝜑 ∈ 𝐶ᎳᎲ (Ω), the integral over the boundary 𝜕Ω vanishes and Equation (2.7)
simplifies to

∫
ᐎ
∇𝜑∇𝑢dΩ = ∫

ᐎ
𝜑𝑓dΩ , ∀𝜑 ∈ 𝐶ᎳᎲ (Ω) . (2.8)

The weak formulation corresponding to the BVP of Equation (2.5) is thus

{
Find 𝑢 ∈ 𝐶ᑘ(Ω) such that

∫
ᐎ
∇𝜑∇𝑢dΩ = ∫

ᐎ
𝜑𝑓dΩ , ∀𝜑 ∈ 𝐶ᎳᎲ (Ω)

(2.9)

In the original BVP the solution 𝑢 had to be twice differentiable due to the Laplace operator.
However, in the weak formulation of Equation (2.9) it can be seen that 𝑢 only needs to be
once differentiable. This illustrates the fact that the weak formulation allows a larger class of
solutions than the corresponding BVP.

The weak formulation from Equation (2.9) can be solved using Galerkin’s method. Dividing the
area of interest Ω into 𝑛ᑖᑝ non-overlapping elements then allows the domain to be decomposed
as

Ω ≃
ᑟᑖᑝ
⋃
ᑜᎾᎳ

𝑒ᑜ . (2.10)

Similarly to Ritz’ method, the solution to the weak formulation is approximated as a linear
combination of basis functions defined on these elements

𝑢(x) ≈ 𝑢ᑟ(x) =
ᑟ

∑
ᑛᎾᎳ

𝑢ᑛ𝜑ᑛ(x) . (2.11)

To be able to ensure that 𝑢(xᑚ) = 𝑢ᑚ the basis functions have to be chosen such that 𝜑ᑛ = 1
only at x = xᑛ and 0 elsewhere. Therefore, the basis functions should equal the Kronecker
delta function

𝜑ᑚ(xᑛ) = 𝛿ᑚᑛ = {
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗 (2.12)

Substitution of the approximation of 𝑢 in weak formulation of Equation (2.9) then yields

∫
ᐎ
∇𝜑ᑚ∇(

ᑟ

∑
ᑛᎾᎳ

𝑢ᑛ𝜑ᑛ)dΩ = ∫
ᐎ
∇𝜑ᑚ

ᑟ

∑
ᑛᎾᎳ

𝑢ᑛ∇𝜑ᑛdΩ

=
ᑟ

∑
ᑛᎾᎳ

𝑢ᑛ∫
ᐎ
∇𝜑ᑚ∇𝜑ᑛdΩ = ∫

ᐎ
𝜑ᑚ𝑓dΩ (2.13)
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Typically, two new variables are introduced for the integrals over the elements

𝐾ᑚᑛ = ∫
ᐎ
∇𝜑ᑚ∇𝜑ᑛdΩ =

ᑟᑖᑝ
∑
ᑜᎾᎳ

∫
ᑖᑜ
∇𝜑ᑚ∇𝜑ᑛdΩ ∶=

ᑟᑖᑝ
∑
ᑜᎾᎳ

𝐾ᑖᑜᑚᑛ (2.14)

𝑓ᑚ = ∫
ᐎ
𝜑ᑚ𝑓dΩ =

ᑟᑖᑝ
∑
ᑜᎾᎳ

∫
ᑖᑜ
𝜑ᑚ𝑓dΩ ∶=

ᑟᑖᑝ
∑
ᑜᎾᎳ

𝑓ᑖᑜᑚ (2.15)

In structural settings, the terms 𝐾ᑖᑞᑚᑛ are referred to as element stiffness matrices and 𝑓ᑖᑞᑚ
element force vectors which add elementary contributions to the system stiffness matrix and
force vector respectively. By substitution of Equations (2.14) and (2.15) into Equation (2.13)
the expression simplifies to

ᑟ

∑
ᑛᎾᎳ

𝐾ᑚᑛ𝑢ᑛ = 𝑓ᑚ , 𝑖 = 1,…𝑛 , (2.16)

which defines a set of 𝑛 equations with 𝑛 unknowns. These equations can be assembled to
obtain the matrix-vector notation of the linear system of equations

𝐾u = f . (2.17)

The next section will provide an introduction on how the finite element method is applied to
derive the system of equations in structural mechanics.

2.3. Application to structural problems

In static structural problems, the user is interested in finding the structural response as a result
of a given load. This response is given by displacements from which the stresses and strains
can be derived.

The two quantities (mechanical) stress and strain are closely related. Where stress, denoted
by 𝜎, is a quantity that expresses the internal forces per area that neighbouring particles exert
on each other, strain, denoted by 𝜀, is a measure for the deformation of a material. Stresses
can occur in the absence of strains, for example in a beam supporting a weight. The presence
of the weight induces stresses in the beam, but it does not necessarily have to strain. It is even
possible for stresses to occur it the absence of external forces due to, for example, self-weight.
The relation between stresses and strains is typically expressed using a material dependant
stress-strain curve.

To derive a system of equations, the area of interest Ω with boundary Γ is again divided into
non-overlapping elements on which basis functions are defined. The displacement can then
be approximated as a linear combination of these basis functions as

𝑢(x) ≈ 𝑢ᑟ(x) =
ᑟ

∑
ᑛᎾᎳ

𝑢ᑛ𝜑ᑛ(x) . (2.18)

In structural mechanics, Equation (2.18) is typically written in matrix-vector notation as

𝑢ᑟ(x) = 𝑁(x)u , (2.19)
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where 𝑁(x) = [𝜑Ꮃ(x)…𝜑ᑟ(x)] and u = [𝑢Ꮃ, … , 𝑢ᑟ]
ᑋ. The strain in an element can be calcu-

lated using the well-known strain-displacement relation [19]

𝜀𝜀𝜀ᑚ = 𝐵ᑚ(x)u . (2.20)

The matrix 𝐵ᑚ contains the spatial derivatives of the basis functions. In the case of linear basis
functions, these derivatives are constant over the element. However, for higher-order basis
functions 𝐵ᑚ should be evaluated for every node in the element.

Assuming linear elastic behaviour in the structure, the local stresses can be calculated from
the strains as:

𝜎𝜎𝜎ᑚ = 𝐷ᑚ (𝜀𝜀𝜀ᑚ −𝜀𝜀𝜀Ꮂ) + 𝜎𝜎𝜎Ꮂ . (2.21)

In this equation 𝐷ᑚ is the stress-strain-relation which is a function of the related material proper-
ties such as Young’s modulus2 and Poisson’s ratio3. Furthermore, it is possible that a structure
is under stresses and strains prior to the analysis. This is taken into account with the terms
𝜎𝜎𝜎Ꮂ, 𝜀𝜀𝜀Ꮂ respectively.

Instead of deriving the system of equations using the previously mentioned methods, a sim-
pler way of deriving these is using the principle of virtual displacements. This principle states
that an elastic structure is in equilibrium under a given loading system if, for any virtual dis-
placement from a compatible state of deformation, the virtual work is equal to the virtual strain
energy [2]. The virtual work equation is then

∫
ᐎ
𝛿𝜀𝜀𝜀ᑋ𝜎𝜎𝜎dΩ = ∫

ᐎ
𝛿uᑋgdΩ +∫

ᏹ
𝛿uᑋtdΓ , (2.22)

where 𝛿𝜀𝜀𝜀 are the virtual strains corresponding to the virtual displacements 𝛿u, g is the vector
of known body forces and t the vector of traction forces4. Using the strain-displacement and
stress-strain relations from Equations (2.20) and (2.21) and using the fact that Equation (2.22)
should hold for any displacement 𝛿u, it can be written as a set of 𝑛 equations with 𝑛 unknowns.
It follows that the elemental contributions to the stiffness matrix are given by

𝐾ᑖᑞᑚᑛ = ∫
ᐎ
𝐵ᑋᑞ𝐷ᑞ𝐵ᑞdΩ . (2.23)

Introducing a mapping 𝑇ᑚ which maps the local element numbering to the global numbering,
assembling the element stiffness matrices yields

𝐾ᑚᑛ =
ᑟᑖᑝ
∑
ᑞᎾᎳ

𝑇ᑋᑞ𝐾ᑖᑞᑚᑛ 𝑇ᑞ . (2.24)

Similarly, the principle of virtual displacements can be applied to find an expression for the
element force vectors. Assembling the element matrices and force vectors defines 𝑛 equations
with 𝑛 unknowns of the familiar form

𝐾u = f . (2.25)

2Measure for stiffness of solids.
3Measure for expansion/contraction perpendicular to the direction of applied compression/tension.
4For example surface, edge or point loads.
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In the above derivation of the system of equations many of the details are left out. The clas-
sical textbooks by Zienkiewicz [19] and Bathe [12] provide extensive elaborations on how the
principle of virtual displacements can be applied to derive the system of equations, as well as
numerous examples.

In the definitions of the element stiffness matrices and element force vectors, an integral over
the element has to be evaluated. For practical problems, this is not possible analytically and
hence numerical integration has be applied. The next section will elaborate on how the ele-
ment integrations are performed which are necessary to obtain a set of linear equations that
can be solved.

2.4. Numerical integration

In the previous sections it was shown how a system of linear equations can be assembled
from elemental contributions. These elemental contributions are defined as integrals over the
element which can in general not be evaluated analytically. Therefore, before the system of
equations can be solved these integrals need to be approximated numerically. Numerical in-
tegration is typically performed using Newton-Cotes, Simpson, Lobatto or Gauss integration.
These integration schemes approximate the integral over an element by evaluating the inte-
grand at equally spaced points 𝜉𝜉𝜉ᑚ, referred to as integration points. The integral can then be
approximated as

∫
ᑖᑞ
𝑔 (x)dΩ ≈

ᑟᒓ

∑
ᑚᎾᎳ
𝑤ᒓᑚ𝑔 (𝜉𝜉𝜉ᑚ) , (2.26)

where 𝑛ᒓ is the chosen number of integration points and 𝑤ᒓᑚ is the weight function of the cho-
sen integration scheme. The minimal number of integration points depends on the integration
scheme and the order of the used basis functions. Increasing the number of integration points
improves the approximation of Equation (2.26), however, more calculations have to be per-
formed to obtain the stresses and strains which are defined on integration point level.



3
Nonlinear analysis

In nonlinear finite element analysis the relation between the exerted forces and the displace-
ment is no longer linear, resulting from material-, geometric- or contact nonlinearities, or a
combination. The problem is to find the displacement of the structure which equilibrates the
external and internal forces such that a stationary state is found. To find this equilibrium, the
problem is not only discretised spatially but also temporal (increments). Note that the notion of
time here is artificial. Since static structural analyses are performed there is no real notion of
time. Instead, it refers to the incremental application of the external load. To obtain a feasible
solution within such an increment, an iterative procedure is used to balance the forces. Due to
the combination of incremental increase of the load and the iterative nature within increments,
this solution procedure is referred to as incremental-iterative.

Discretizing the displacement vector in time (increment) as

uᑥᎼᏺᑥ = uᑥ + Δu , (3.1)

the problem can then be defined as finding the displacement increment Δu such that the re-
sulting displacement equates the internal and external forces

fint(uᑥᎼᏺᑥ,uᑥ, … ,uᎳ) = fext(uᑥᎼᏺᑥ) . (3.2)

Due to the possibility of the internal forces depending on the history of the displacements these
previous displacement vectors are included in Equation (3.2) in the argument of the internal
force. To be able to solve the above problemwith a iterative method such as Newton-Raphson,
Equation (3.2) is rewritten as follows. Find a displacement increment Δu such that

g(Δu) ∶= fext(uᑥᎼᏺᑥ) − fint(uᑥᎼᏺᑥ,uᑥ, … ,uᎳ) = 0 . (3.3)

All methods available in DIANA adapt the displacement vector using iterative increments 𝛿u
ΔuᑚᎼᎳ = Δuᑚ + 𝛿uᑚᎼᎳ , (3.4)

where 𝑖 is the iteration number.

This process is repeated until a displacement increment is found for which the residual force
vector g reaches 0, up to a prescribed tolerance. At that point, a new increment is determined
and the process repeats.

13



14 3. Nonlinear analysis

The difference between the available methods is the way in which the iterative increments
are determined. The following sections will discuss the different iterative procedures that are
available withinDIANA. Note that it is not necessary to use the samemethod for all increments,
in theory the force equilibrium can be reached with a different method for every increment.

3.1. Newton-Raphson methods

In the class of Newton-Raphson methods, generally two variants can be distinguished; reg-
ular- and modified Newton-Raphson. Both methods determine the iterative increment using
the Jacobian, which in structural problems is the stiffness matrix. Contrary to Chapter 2 in
which stiffness matrix represented the linear relation between force and displacement, such
linear a relation does not exist in nonlinear problems. Hence some kind of linearized form of
the relation between the force and displacement vector is calculated. The difference between
regular- and modified Newton-Raphson is the point at which this stiffness matrix is evaluated.

Regular Newton-Raphson determines the equilibrium between the external and internal forces
by calculating the stiffness matrix in every iteration. As a result, every prediction is based on
the most recent information. This property is illustrated in Figure 3.1.

Figure 3.1: Example of regular Newton-Raphson.

Figure 3.1 shows the force-displacement curve, which is common in structural mechanics.
From the figure it is not immediately clear that the roots of Equation (3.3) are searched. As
illustration, consider a displacement uᑥ is found for which the internal force equals ᑥfext. The
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external force is then incremented to ᑥᎼᏺᑥfext. In order to determine the new displacement
uᑥᎼᏺᑥ for which the new internal force equals ᑥᎼᏺᑥfext, the stiffness matrix is evaluated at uᑥ
with which a new estimate for the displacement is calculated. The internal force at this new
displacement is then calculated, and if it is not equal to ᑥᎼᏺᑥfext, the process is repeated until
a displacement is found which equilibrates internal and external forces.

The main advantage of using regular Newton-Raphson is its quadratic convergence. This
implies that usually few iterations are required to attain the root of the residual force vector.
However, due to the required evaluation of the stiffness matrix in every iteration it is relatively
expensive. Furthermore, convergence of the approximations can not be guaranteed for suffi-
ciently bad initial guesses.

The modified Newton-Raphson method, on the other hand, only computes the stiffness matrix
at the start of every increment. This implies that all predictions within an increment are based
only on the information available at the start of the increment. An illustration of the modified
Newton-Raphson can be seen in Figure 3.2 in which the constant tangent can be observed
within an increment.

Figure 3.2: Example of modified Newton-Raphson.

Usually modified Newton-Raphson requires more iterations than regular Newton-Raphson to
obtain the force equilibrium due to the fact that only information from the start of an increment
is used. However, since the stiffness matrix is only set-up once at the start of an increment,
the iterations of modified Newton-Raphson are faster. In figure 3.2 it can be seen that for the
same function, starting point and number of iterations the modified Newton-Raphson method
is considerably further from the root than regular Newton-Raphson as was seen in Figure 3.1.
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3.2. Quasi-Newton methods

In situations where the computation of the stiffness matrix in every iteration is too expensive,
an approximate of the stiffness matrix can be used instead. Quasi-Newton methods use the
information from previous solution vectors and out-of-balance force vectors to achieve this
approximation. Any method that replaces the exact stiffness matrix with such approximation
is referred to as a quasi-Newton method. Note the misleading use of exact stiffness matrix,
which in fact is already some linearised form of the relation between the force and displacement
vector. Two well-known quasi-Newton methods are

Broyden: 𝐾ᎽᎳᑚᎼᎳ = 𝐾ᎽᎳᑚ +
(𝛿uᑚ − 𝐾ᎽᎳᑚ 𝛿gᑚ) 𝛿uᑋᑚ 𝐾ᎽᎳᑚ

𝛿uᑋᑚ 𝐾ᎽᎳᑚ 𝛿gᑚ
(3.5)

BFGS: 𝐾ᎽᎳᑚᎼᎳ = (𝐼 +
𝛿uᑚ𝛿gᑋᑚ
𝛿uᑋᑚ 𝛿gᑚ

)𝐾ᎽᎳᑚ (𝐼 −
𝛿gᑚ𝛿uᑋᑚ
𝛿uᑋᑚ 𝛿gᑚ

) +
𝛿uᑚ𝛿uᑋᑚ
𝛿uᑋᑚ 𝛿gᑚ

(3.6)

where 𝛿gᑚ = gᑚᎼᎳ−gᑚ. The inverses of the stiffness matrices 𝐾ᎽᎳᑚᎼᎳ are not calculated explicitly,
but are calculated by successive application of the above equations with the Jacobian 𝐾Ꮂ from
the start of the increment and the iterative increments. This approach implies that for every
iteration an additional iterative increment vector has to be stored and that additional vector
calculations are required.

3.3. Additional methods

Besides the mentioned Newton-Raphson methods some other iterative methods are available
to obtain the force equilibrium of Equation (3.3).

The first method is the linear stiffness method. This method uses the same stiffness matrix for
every increment. As a result, the costs per iteration of this method are the cheapest. However,
since no new information is used many iterations are typically required.

The second method is the constant stiffness method, which uses the stiffness matrix left be-
hind by the previous increment. Since relatively new information is used, fewer iterations are
typically required than the linear stiffness method. Note that if the constant stiffness method
is used from the first increment, the method is the same as the linear stiffness method. A third
method is the continuation method. If a displacement is relatively continuous, the displace-
ment of the previous increment can be used as an initial guess for the next increment. This
initial guess can then serve as a starting point for one of the other mentioned methods.

The last method that is available in DIANA is line search. The problem with most former
mentioned methods is that divergence can occur for a poorly chosen initial guess. If these
methods fail, line search can still be useful. The method uses the iterative increments 𝛿u from
one of the formerly mentioned methods and then scales Equation (3.4) to obtain

ΔuᑚᎼᎳ = Δuᑚ + 𝜂𝛿uᑚᎼᎳ . (3.7)

The scaling parameter 𝜂 is determined by minimizing the energy potential from which the
scaled iterative increment can be considered as the best solution in the predicted direction.
For an in-depth elaboration on this topic, Crisfield [3] provides an excellent starting point.
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3.4. Convergence criteria

The iterative process of the methods mentioned in the previous sections have to be terminated
once force equilibrium has been reached with sufficient accuracy. Not only is the iterative pro-
cess stopped once it reaches the prescribed accuracy, but also once a predefined maximum
number of iterations is attained which prevents excessive iterations due to poorly chosen stop-
ping criteria. Two of the most frequently used stopping criteria in DIANA are discussed below.

The first stopping criterion is based on the force norm, which is the Euclidean norm of the

out-of-balance force vector gᑚ: √gᑋᑚ gᑚ. Checking this norm against the force norm at the start
of the increment allows to check for convergence and yields the force norm ratio:

Force norm ratio: 𝑟 =
√gᑋᑚ gᑚ

√gᑋᎲgᎲ
.

The second stopping criterion is similar to the force norm ratio but instead is based on the

displacement norm, which is the Euclidean norm of the iterative increment 𝛿uᑚ: √𝛿uᑋᑚ 𝛿uᑚ.
Checking for convergence can then be achieved by checking this norm against the displace-
ment norm at the start of the increment. This yields the displacement norm ratio:

Displacement norm ratio: 𝑟 =
√𝛿uᑋᑚ 𝛿uᑚ

√ΔuᑋᎲΔuᎲ
.

3.5. Incremental procedures

The incremental-iterative procedure consists of two parts; an incremental and iterative part.
The preceding sections have focused on iterative methods. For the increment part several
solution methods exist. The most simple of these methods are load control and displacement
control. A more advanced method is given by the arc-length control method. For a detailed
description on these and related methods, the reader is referred to the DIANA Theory manual
[2].





4
Sequentially linear analysis

Most nonlinear finite element codes use some kind of incremental-iterative scheme. As de-
scribed in Section 3, the general idea of such schemes is to apply the loads in increments.
After each increment an iterative procedure, typically some variation of Newton-Raphson, is
used to solve the nonlinear system of equations. Convergence issues may occur frequently in
the analysis of quasi-brittle structures using incremental-iterative schemes. These problems
can be attributed to the non-smooth response of quasi-brittle structures, an example of which
is shown in Figure 4.1. This figure shows a typical force-displacement curve of a brittle mate-
rial. The high level of irregularity in the curve results from the characteristic behaviour of these
materials, referred to as local snapbacks.

Figure 4.1: Example of a non-smooth load-displacement curve. Source: van de Graaf [16].

Due to these types of irregularly shaped equilibrium paths, path-following algorithms such as
the Newton-Raphson type methods may experience convergence issues, if any is reached at
all. To address these issues incremental-iterative methods pose, Rots proposed sequentially
linear analysis (SLA) as an alternative [14]. The main idea of SLA is to assume incremental

19
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material degradation and to reduce the material stiffness in areas where cracking is expected.
In this way, the stress redistribution due to the cracking can be taken into account with a sim-
ple linear-elastic analysis [16]. Reducing the stiffness incrementally and using an automated
selection procedure for reducing material stiffness, the nonlinear material behaviour can be
approximated with a series of inherently stable linear analyses.

Generally speaking SLA consists of five main steps. First of all, a fundamental assumption
is made by adopting some stepwise material law to approximate the underlying nonlinear
relation of the model. Secondly, assuming a unit load the system of equations is assembled
and solved. Thirdly, an automated procedure is applied to the linear analysis results to obtain
a minimal scaling factor under which the first element reaches its stress limit. Fourthly, the
results of the linear analysis are scaled according to the scaling factor. The final step is to apply
a damage increment to thementioned element according to the adopted stepwisematerial law.
The last four steps are repeated until some stopping criteria is met. In the context of SLA the
initiation or propagation of damage to an element is referred to as an event. Hence SLA can
be seen as a event-by-event strategy. An overview of this strategy is shown in Figure 4.2.

Start

1. Define saw-tooth law(s)

2. Solve linear analysis

3. Trace next event

4. Scale analysis results

Continue?

Stop

5. Apply damage increment

No

Yes

Figure 4.2: Flowchart of SLA’s event-by-event strategy.

In the following sections, more detail will be given on some of the main steps of SLA. An
elaboration of step four, the scaling of a linear analysis, will be omitted due to the trivial nature
of this step.

4.1. Saw-tooth laws

A fundamental assumption of SLA is to approximate the nonlinear material response with a
series of linear relations. In structural engineering material behaviour is represented using
stress-strain curves which define the relation between strain 𝜖 and (tensile) stress 𝜎. Three
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simple stress-strain curves are shown in Figure 4.3.

𝜖

𝜎

(a) Constant

𝜖

𝜎

(b) Brittle

𝜖

𝜎

(c) Linear

Figure 4.3: Three examples of stress-strain curves.

The stress strain curves of Figures 4.3b and 4.3c display a decrease in stress after the tensile
failure point. This type of behaviour is referred to as tensile softening, which is a typical char-
acteristic of brittle materials such as concrete and masonry. When adopting an approximating
stepwise material law (referred to as saw-tooth law) to this behaviour, a balance should be
found between the step size of saw-tooth law (accuracy) and the resulting number of linear
analyses (performance). An example of such a saw-tooth law is shown in Figure 4.4a.

(a) Example saw-tooth law. (b) Reduction of Young’s modulus

Figure 4.4: Example of a saw-tooth law and corresponding decrease in Young’s modulus. Source: van de Graaf
[16].

Each jump in Figure 4.4, the so-called secant branches, corresponds to a stepwise decrease
in the Young’s modulus. The Young’s modulus 𝐸 is defined as

𝐸 = 𝜎(𝜖)
𝜖 . (4.1)

Hence, the stepwise reduction in Young’s modulus shown in Figure 4.4b corresponds to the
slopes of the saw-tooth law of Figure 4.4a. Each jump in the saw-tooth law can thus be seen
as a damage increment to the element, reducing its material strength properties. Decreasing
the step size of the saw-tooth law increases the number of secant branches. As a result,
an increased number of linear analyses is required to reach (partial) failure of an element.
Therefore, a good saw-tooth law balances the accuracy of the approximation of the nonlinear
behaviour with the analysis time required for the linear analyses.
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4.2. Linear analysis

Once the saw-tooth law(s) are adopted, only a load on the structure has to be defined to
assemble the entire system of linear equations. Since the linear analysis will be scaled with a
suitable factor after the analysis, the magnitude of this force is irrelevant and a simple unit load
is assumed. After assembling the system stiffness matrix and the force vector, the system
of linear is equations is solved. Several solution methods are available, most importantly
direct- or iterative solution techniques. The topic of this thesis is aimed at improving these two
methods in the framework of SLA. Section 5 provides a detailed description of both methods.

4.3. Trace event

The results from the system of linear equations yield the displacements of all degrees of free-
dom. From these displacements, the stresses and strains can be calculated. To determine
in which element the next damage increment occurs, a critical load factor has to be deter-
mined for every integration point. This factor indicates by what factor the linear analysis can
be scaled to reach the peak stress limit for the particular integration point. The critical load
factor in analysis step 𝑗 is defined as:

𝜆(ᑛ)crit;ᑚ =
𝑓(ᑛ)ᑚ
𝜎(ᑛ)gov;ᑚ

, (4.2)

where 𝜎(ᑛ)gov;ᑚ is the governing stress component for integration point 𝑖 and 𝑓(ᑛ)ᑚ the current peak
stress limit as defined by the current secant branch of the saw-tooth law. To ensure that only a
integration point reaches its peak stress limit, the linear analysis is scaled with the minimum of
all load factors. The minimal load factor is referred to as the critical load factor and is defined
as

𝜆(ᑛ)crit =min
ᑚ
(𝜆(ᑛ)crit;ᑚ) for all 𝜆(ᑛ)crit;ᑚ > 0 . (4.3)

In the situation where multiple integration points have the same minimal load factor, one of the
integration points is selected. Scaling of the linear analysis with the critical load factor then
results in the smallest load that will lead to progressive damage.

4.4. Stopping criteria

The event-by-event strategy of SLA captures the structural response using a sequence of
events. At some point in the analysis, the desired response is achieved and the analysis
should be terminated. Therefore, some stopping criteria should be defined and checked after
each linear analysis. The most trivial stopping criteria is checking whether the number of linear
analyses has reached a predefined maximal number [16]. However, this requires some a priori
knowledge of the number analysis steps needed to reach the desired structural response. An
alternative is to stop the analysis as soon as a predefined displacement is attained or to stop
as soon as an element reaches a certain secant branch, meaning that the material stiffness
has decreased with a certain percentage.

After scaling of the linear analysis with the critical load factor, the stopping criteria is checked.
If the stopping criteria is not yet attained, the damage to the critical element is applied by



4.4. Stopping criteria 23

recalculating the reduced element stiffness matrix according to the adopted saw-tooth law.
The new system of linear equations is then reassembled and the analysis is repeated.





5
Solution methods for linear systems

In Section 4 an overview of the event-by-event strategy of SLA was provided. To approximate
the nonlinear material behaviour, the analysis of SLA requires repeated solving of a linear
system of equations,

𝐾u = f , (5.1)

where the stiffness matrix 𝐾 is large, sparse, symmetric positive definite, of dimension 𝑛 × 𝑛
and the solution vector u and force vector f are of dimension 𝑛. This section will distinguish
between two classes of numerical solution methods; direct solution methods and iterative so-
lution methods. Direct solution methods solve Equation (5.1) by matrix factorisation and obtain
the solution u using forward elimination and back substitution. Iterative solution methods solve
Equation (5.1) by constructing a sequence of successive approximations.

Section 5.1 will discuss direct solution methods and Section 5.2 Krylov subspace methods.
These sections are based on the well-known works of Golub and van Loan, and Saad [7,
15]. The scope of this thesis limits itself to the two formerly mentioned solution classes. For
a description of the class of multigrid methods, or more detailed descriptions on direct- or
iterative solution methods the reader is referred to [7, 8, 15, 17].

5.1. Direct methods

Direct solution methods solve Equation (5.1) by factorisation of matrix 𝐾 and applying forward
elimination and backward substitution to obtain the solution u. In this section, a detailed de-
scription of the most basic matrix factorisation will be presented which factorises the matrix as
𝐾 = 𝐿𝑈 with 𝐿 a lower triangular matrix and 𝑈 an upper triangular matrix. This type of factori-
sation will be referred to as the LU factorisation. It will be shown that under certain properties
of the matrix 𝐾, the LU factorisation factorisation reduces to the more favourable Cholesky
factorisation 𝐾 = 𝐶𝐶ᑋ with 𝐶 a lower triangular matrix. The performance of a matrix factorisa-
tion depends on the dimension, bandwidth and conditioning of the matrix. Some remarks will
be made on the latter two.

25
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5.1.1. LU factorisation

Let 𝐾 be a non-singular matrix of dimension 𝑛 × 𝑛 and assume all submatrices of 𝐾 are non-
singular. The general idea of the LU factorisation is to reduce 𝐾 to upper triangular form by
successive Gauss eliminations [1]. Each Gauss elimination performs row operations such that
only 0’s appear below the diagonal element. To formalize the process of Gauss elimination
write Equation (5.1) as

𝐾(Ꮃ)u = f(Ꮃ) , (5.2)

with 𝑘(Ꮃ)ᑚ,ᑛ , 𝑓
(Ꮃ)
ᑚ , 𝑢ᑚ the elements of 𝐾(Ꮃ), f(Ꮃ),u respectively.

The first Gauss elimination step ensures that only 0 values appear below the first diagonal ele-
ment. Therefore, assume the first row has a non-zero pivot; 𝑘(Ꮃ)Ꮃ,Ꮃ ≠ 0. Under this assumption,
the definition of the row multipliers is well-defined

𝑚ᑚ,Ꮃ =
𝑘(Ꮃ)ᑚ,Ꮃ
𝑘(Ꮃ)Ꮃ,Ꮃ

, 𝑖 = 2,… , 𝑛 . (5.3)

The rowmultipliers quantify howmany times the first row has to be subtracted to the other 𝑛−1
rows in order to obtain 0 entries below the diagonal in the first column. The Gauss transform
𝑀Ꮃ is then the matrix notation of the row multipliers

𝑀Ꮃ = ⎛

⎝

1 0 ⋯ 0
−𝑚Ꮄ,Ꮃ 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

−𝑚ᑟ,Ꮃ 0 ⋯ 1

⎞

⎠

. (5.4)

Multiplication of the Gauss transform with 𝐾(Ꮃ) eliminates 𝑢Ꮃ from equations 2,… , 𝑛. The re-
sulting system of equations is then

𝐾(Ꮄ)u = f(Ꮄ) , (5.5)

where 𝐾(Ꮄ) = 𝑀Ꮃ𝐾(Ꮃ) and f(Ꮄ) = 𝑀Ꮃf(Ꮃ). By construction of 𝑀Ꮃ it then holds that 𝐾(Ꮄ) is of the
form

𝐾(Ꮄ) = ⎛⎜

⎝

𝑘(Ꮃ)Ꮃ,Ꮃ 𝑘(Ꮃ)Ꮃ,Ꮄ ⋯ 𝑘(Ꮃ)Ꮃ,ᑟ
0 𝑘(Ꮄ)Ꮄ,Ꮄ ⋯ 𝑘(Ꮄ)Ꮄ,ᑟ
⋮ ⋮ ⋮
0 𝑘(Ꮄ)ᑟ,Ꮄ ⋯ 𝑘(Ꮄ)ᑟ,ᑟ

⎞
⎟

⎠

, (5.6)

with

𝑘(Ꮄ)ᑚ,ᑛ = 𝑘
(Ꮃ)
ᑚ,ᑛ −𝑚ᑚ,Ꮃ𝑘

(Ꮃ)
Ꮃ,ᑛ , 𝑖, 𝑗 = 2,… , 𝑛

𝑓(Ꮄ)ᑚ = 𝑓(Ꮃ)ᑚ −𝑚ᑚ,Ꮃ𝑓(Ꮃ)Ꮃ , 𝑖 = 2,… , 𝑛 .

The described Gauss elimination step is repeated 𝑛 − 1 times to obtain a sequence of Gauss
transforms 𝑀Ꮃ, … ,𝑀ᑟᎽᎳ with the property that

𝑀ᑟᎽᎳ𝑀ᑟᎽᎴ…𝑀Ꮃ𝐾 = 𝑈 , (5.7)
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with 𝑀Ꮃ, … ,𝑀ᑟᎽᎳ lower triangular matrices and 𝑈 an upper triangular matrix. Using Equation
(5.7), Equation (5.1) can be written as

𝑈u = 𝑀ᑟᎽᎳ𝑀ᑟᎽᎴ…𝑀Ꮃf . (5.8)

By construction, the matrices 𝑀Ꮃ, …𝑀ᑟᎽᎳ have a unit diagonal and a lower triangular. It can
easily be verified by direct multiplication that the inverses 𝑀ᎽᎳᑚ are equal to 𝑀ᑚ with all off-
diagonal elements changed in sign. As a result, the inverses 𝑀ᎽᎳᑚ are lower triangular. Using
(𝑀ᑟᎽᎳ𝑀ᑟᎽᎴ…𝑀Ꮃ)

ᎽᎳ = 𝑀ᎽᎳᎳ …𝑀ᎽᎳᑟᎽᎴ𝑀ᎽᎳᑟᎽᎳ, Equation (5.8) can be written as

𝑀ᎽᎳᎳ …𝑀ᎽᎳᑟᎽᎴ𝑀ᎽᎳᑟᎽᎳ𝑈u = f . (5.9)

Since the product of lower triangular matrices is again lower triangular, setting 𝐿 as the product
𝐿 = 𝑀ᎽᎳᎳ …𝑀ᎽᎳᑟᎽᎴ𝑀ᎽᎳᑟᎽᎳ completely defines the LU factorisation of 𝐾 such that Equation (5.1)
can be written in the factored form

𝐿𝑈u = f , (5.10)

with 𝐿 a lower triangular matrix and 𝑈 an upper triangular matrix.

In Section 5.1.5 it will be illustrated that such factorisation will prove convenient in solving a
linear system of equations.

5.1.2. Cholesky factorisation

The 𝐿𝑈 factorisation exists whenever all submatrices of 𝐾 are non-singular [1]. The 𝐿𝑈 fac-
torisation can be written slightly different by factorising the matrix 𝑈 further as 𝑈 = 𝐷𝑀ᑋ with
𝐷 = diag (𝑈) and 𝑀ᑋ = 𝐷ᎽᎳ𝑈. Since the matrix 𝐷 is diagonal, its inverse is easy to compute.
The inverse 𝐷ᎽᎳ exists since 𝐾 is non-singular and thus has non-zero determinant. Further-
more, since left multiplication with a diagonal matrix only scales the rows, the matrix𝑀ᑋ is still
upper triangular. The matrix factorisation then becomes

𝐾 = 𝐿𝐷𝑀ᑋ , (5.11)

where 𝐿 is lower triangular, 𝐷 diagonal and 𝑀ᑋ upper triangular. The factorisation from Equa-
tion (5.11) is referred to as the LDM factorisation.

Now consider a matrix 𝐾 that is symmetric positive definite (SPD). Since all submatrices of a
SPD matrix are non-singular, an 𝐿𝑈 decomposition exists. Transforming the 𝐿𝑈 factoriastion
to a 𝐿𝐷𝑀 factorisation it immediately follows from the symmetry of 𝐾 that 𝐿 = 𝑀. Hence the
𝐿𝐷𝑀 factorisation for SPD matrices reduces to a LDL factorisation

𝐾 = 𝐿𝐷𝐿ᑋ . (5.12)

Due to the positive definiteness of 𝐾, the (diagonal) entries of 𝐷 are positive. Hence, it can
be written as 𝐷 = √𝐷√𝐷 with which the factorisation of 𝐾 can be written as the Cholesky
factorisation:

𝐾 = 𝐶𝐶ᑋ , (5.13)

where 𝐶 is lower triangular and 𝐶 = 𝐿√𝐷. The advantage of the Cholesky decomposition over
the 𝐿𝑈 decomposition is twofold. Not only are the memory requirements reduced by half with
respect to the 𝐿𝑈 decomposition, but also the required number of computations to determine
the decomposition are halved.
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5.1.3. Scaling and pivoting

In the derivation of the 𝐿𝑈 decomposition, every Gauss elimination step assumes a non-zero
pivot. This assumption is not necessary when the rows are permuted such that the pivot ele-
ment is non-zero. However, some elements might be 0 in exact arithmetic but due to rounding
errors become non-zero. Using such element as a pivot element can result in significant er-
rors building up in the solution. Furthermore, if the entries of the matrix vary several orders
of magnitude it is likely that large rounding errors will occur. To address these issues, the
methods of scaling, partial- and complete pivoting are introduced.

If the matrix entries of 𝐾 vary several orders of magnitude it is possible that rounding errors
occur due to the machine precision. The conditioning of the matrix can be improved by scaling
the rows of the matrix. However, there is no a priori strategy to determine scaling factors such
that the effects of rounding errors are always decreased. Empirical results have provided a
possible approach which is to construct a diagonal scaling matrix 𝐷ᑤᑔᑒᑝ such that the rows of
𝐷ᑤᑔᑒᑝ𝐾 all have approximately the same ∞-norm [1]. Not only is it possible to scale the rows
of 𝐾, but also techniques exist to scale the columns of 𝐾 in order to improve the conditioning
of 𝐾 [5, 7].

In Gauss elimination, every step assumed a non-zero pivot. In order to omit this assumption
and to avoid small pivot elements partial pivoting (row interchanges) can be applied prior to
calculating the row multipliers from Equation (5.3). In the 𝑘-th step of Gaussian elimination,
1 ≤ 𝑘 ≤ 𝑛 − 1, define

𝑐ᑜ = max
ᑜᐶᑚᐶᑟ

|𝑘(ᑜ)ᑚ,ᑜ | . (5.14)

Let 𝑖 be the smallest row index such that the maximum for 𝑐ᑜ is attained. If 𝑖 > 𝑘 switch rows
𝑖 and 𝑘 in both 𝐾(ᑜ) and f. By construction it then holds that all row multipliers satisfy

|𝑚ᑚ,ᑜ| ≤ 1 , 𝑖 = 𝑘 + 1,… , 𝑛 . (5.15)

This property prevents the excessive growth of elements in 𝐾(ᑜ) and thus decreases the prob-
ability of rounding errors. Partial pivoting in step 𝑘 of Gaussian elimination is typically denoted
with a permutation matrix 𝑃ᑜ such that after 𝑛 − 1 steps of Gaussian elimination the system of
equations is given by

𝑀ᑟᎽᎳ𝑃ᑟᎽᎳ𝑀ᑟᎽᎴ𝑃ᑟᎽᎴ…𝑀Ꮃ𝑃Ꮃ𝐾u = 𝑀ᑟᎽᎳ𝑃ᑟᎽᎳ𝑀ᑟᎽᎴ𝑃ᑟᎽᎴ…𝑀Ꮃ𝑃Ꮃf . (5.16)

Instead of only interchanging rows, it is also possible to switch both rows and columns which
is referred to as complete pivoting. Let again 1 ≤ 𝑘 ≤ 𝑛−1. Similarly to partial pivoting, in the
𝑘-th step of Gaussian elimination define

𝑐ᑜ = max
ᑜᐶᑚ,ᑛᐶᑟ

|𝑘(ᑜ)ᑚ,ᑛ | . (5.17)

Let 𝑖, 𝑗 be the smallest row- and column indices such that the maximum for 𝑐ᑜ is attained. If
𝑖, 𝑗 > 𝑘 switch rows 𝑖, 𝑘 of 𝐾(ᑜ), f and the columns 𝑖, 𝑗 of 𝐾(ᑜ). This ensures that the resulting
row multipliers are minimal due 𝑐ᑜ being the maximum of the remaining untransformed block
matrix. As a result, complete pivoting results in a small growth factor of matrix elements
decreasing the probability of rounding errors. It is important to note that the column switch
implies a switch in variables. Once the resulting system of equations has been solved this has
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to be reversed in order to obtain the solution to the original problem. Since the computation
cost of complete pivoting is higher than for partial pivoting, and the error behaviour is often the
same for both methods, in many practical problems it is chosen only to use partial pivoting.

When 𝐾 is SPD (and hence its Cholesky decomposition exists) the use of scaling or pivoting
is not necessary [1].

5.1.4. Matrix reordering

The discretisation of the structural equations using the finite element method typically results
in a system stiffness matrix 𝐾 that is large, symmetric and sparse. When solving the system
of linear equations, it is desirable to exploit the sparseness property as it reduces the number
of floating point operations to be performed. However, as a result of Gaussian elimination
the sparsity pattern is often destroyed and fill-in occurs such that the resulting factors 𝐿, 𝑈
contain significantly more non-zeros than 𝐾. The penalty to fill-in is twofold; additional storage
is required for the non-zero values and extra floating point operations have to be performed
when solving the system of linear equations. To illustrate the importance of preventing fill-in,
consider a sparse stiffness matrix 𝐾 of dimension 4500 × 4500 as shown in Figure 5.1.

Figure 5.1: Example of a sparse stiffness matrix before reordering.

From the dimension and the number of non-zero elements of 𝐾 it can be derived that only
∼0.14% of the elements are non-zero. In Figure 5.2 the corresponding LU factorisation of 𝐾
is shown.



30 5. Solution methods for linear systems

Figure 5.2: LU factorisation of a sparse stiffness matrix without reordering.

The total number of non-zero elements after factorisation increased dramatically resulting in
a severe memory and performance penalty of the direct solution method. To motivate the
importance of applying a reordering scheme prior to factorisation, the same matrix 𝐾 is shown
in Figure 5.3 after reordering.

Figure 5.3: Example of a sparse stiffness matrix after AMD reordering.

As a result of the reordering scheme, the sparsity pattern has completely changed such that
most non-zero elements are clustered around themain diagonal. In Figure 5.4 the correspond-
ing LU factorisation is shown.

Figure 5.4: LU factorisation of a sparse stiffness matrix with AMD reordering.
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From the number of non-zero elements it is clear that the factorisation after reordering has
largely maintained the sparsity. This example motivates the use of reordering schemes espe-
cially when solving large sparse systems of linear equations.

In general, a matrix reordering can be written as the product of permutation matrices 𝑃, 𝑄 with
the matrix 𝐾

(𝑃𝐾𝑄ᑋ) (𝑄u) = 𝑃f , (5.18)

where 𝑃 permutes the rows and 𝑄 the columns of 𝐾. Note that for symmetric matrices it
must hold that 𝑃 = 𝑄 in order to maintain symmetry of the reordered matrix 𝑃𝐾𝑄ᑋ. Several
reordering schemes to compute the permutations 𝑃, 𝑄. Generally, two classes of reordering
schemes can be distinguished. The first class of methods aim to minimise the bandwidth
and exploit the fact that fill-in only occurs within this band. The second class aims to find a
reordering which minimises fill-in. The bandwidth of the resulting reordered matrix does not
necessarily decrease using the second class of reordering schemes. Finding permutations
𝑃, 𝑄 for which fill-in after factorisation is minimal is a NP-hard problem, meaning that no known
efficient way of finding such permutations exists. Despite this, several well-known reordering
heuristics exist. From each of the two classes, a widely used reordering scheme is briefly
discussed.

Cuthill-McKee reordering

The Cuthill-McKee (CM) reordering scheme is a well-known reordering heuristic for reducing
the bandwidth of sparse symmetric matrices [4]. Assuming a square matrix 𝐾, consider 𝐾 as
the adjacency matrix of a graph. Every non-zero element of 𝐾 represent a connection between
the corresponding nodes in the graph. The algorithm then finds the node with minimal vertex
degree (number of adjacent nodes). From this node, a breadth-first search is performed.
For every depth level, the nodes are relabelled according to the ascending vertex degree
order. Once all nodes in the depth level are relabelled, another depth level is considered. This
process repeats until all nodes are relabelled. The above algorithm can in short be written
using the pseudocode from Algorithm 1.

Algorithm 1 CutHill-Mckee pseudo-algorithm
1: Represent given matrix 𝐾 ∈ ℝᑟ×ᑟ as the adjacency matrix of a graph
2: Find vertex 𝑥 with minimal degree, set 𝑅Ꮃ ∶= ({𝑥})
3: while |𝑅ᑚ| < 𝑛 do
4: Find the adjacency set 𝐾ᑚ of 𝑅ᑚ
5: Sort the nodes in 𝐾ᑚ with ascending vertex order
6: Relabel the nodes in 𝐾ᑚ according the sorted vertex orders
7: Set 𝑅ᑚᎼᎳ = 𝑅ᑚ ∪ 𝐾ᑚ
8: end while

Instead of the CM algorithm, often the reversed CM algorithm is used as proposed by George
[6]. This method inverts the labelling as provided by the CM algorithm and has been shown to
often produce a superior ordering in terms of fill-in while the bandwidth remains unchanged.

Minimum degree reordering
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The Minimum Degree (MD) algorithm is a well-known reordering scheme that can be used to
reduce the occurrence of fill-in for symmetric matrices. The general idea of MD is that it simu-
lates 𝑛 steps of Gaussian elimination. In each of these steps, one row and one corresponding
column interchange is applied to the part of the matrix that remains to be factored such that
the number of non-zero entries in the pivot row and column are minimized.

Many different implementations of the MD algorithm exist, such as Approximate Minimum
Degree (AMD) and Symmetric Approximate Minimum Degree (SYMAMD).

5.1.5. Forward and back substitution

In Section 5.1.1 it was shown how Gaussian elimination can be applied to factorise a matrix
𝐾 into the factors 𝐿, 𝑈 such that Equation (5.1) can be written as

𝐿𝑈u = f , (5.19)

with 𝐿 a lower triangular matrix and 𝑈 an upper triangular matrix. These favourable properties
can be used to efficiently solve the system of equations. Introducing an auxiliary vector y of
same size as f, the system of equations can be written as

𝐿y = f , (5.20)
𝑈u = y . (5.21)

Due to the triangular properties of 𝐿 and 𝑈, Equations (5.20) and (5.21) are efficiently solvable
using forward and back substitution respectively. The general algorithm for forward substitu-
tion is shown in Algorithm 2 and for back substitution in Algorithm 3.

Algorithm 2 Forward substitution
for 𝑖 = 1,… , 𝑛 do
y (𝑖) = [f (𝑖) − 𝐿 (𝑖, 1 ∶ 𝑖 − 1) ⋅ y (1 ∶ 𝑖 − 1)] /𝐿 (𝑖, 𝑖)

end for

Algorithm 3 Backward substitution
for 𝑖 = 𝑛,… , 1 do
u (𝑖) = [y (𝑖) − 𝑈 (𝑖, 𝑖 + 1 ∶ 𝑛) ⋅ u (𝑖 + 1 ∶ 𝑛)] /𝑈 (𝑖, 𝑖)

end for

Note that by construction it holds that 𝐿(𝑖, 𝑖) = 1 for every 𝑖 = 1,… , 𝑛. The same algorithms
can be used for a Cholesky factorisation since in that case 𝑈 = 𝐿ᑋ.

It can be shown that in the presence of round-off errors solving the linear equations 𝐿y = f
obtains the solution vector ŷ such that

(𝐿 + 𝐹) ŷ = f , (5.22)

where 𝐹 is a perturbationmatrix to 𝐿 as a result of round-off errors. Onmost modern computers
with double precision it can be shown that the entries of 𝐹 are relatively small compared to
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those of 𝐿. This implies that the forward substitution from Equation (5.20) is numerically stable.
For a proof of the numerical stability the reader is referred to Higham [8]. Analogously it can
be proven that the back substitution from Equation (5.21) is also numerically stable.

The implementation of the direct solution method in DIANA uses Intel’s Parallel Direct Sparse
Solver Interface (PARDISO). This interface enables high-performance serial and parallel solv-
ing of sparse linear system of equations. One of the main advantages of PARDISO is its
excellent parallel scaling, where speed ups of a factor of 7 have been realised when running
on 8 threads1.

5.2. Krylov subspace methods

The class of direct solution methods from Section 5.1.1 solve Equation (5.1) by factorisation of
𝐾. These methods can be impractical when 𝐾 is large. In contrast to direct solution methods
are Krylov subspace methods. These methods generate a sequence of approximate solutions
by solving a minimisation problem over a particular type of subspace. Instead of factorisation,
the matrix 𝐾 is only involved in matrix-vector multiplications and Krylov subspace methods
determine the solution to Equation (5.1) using inner-products, vector updates, scalar-vector
and matrix-vector products. As a result, Krylov subspace methods require a relatively small
amount of memory to solve the problem compared to direct solution methods. This makes
Krylov subspace methods suited for solving problems where 𝐾 is large.

As an introduction to Krylov subspace methods, first basic iterative methods (BIM) are briefly
discussed. These methods are not efficient for solving Equation (5.1) but serve as building
blocks for more advanced solution methods. The main step in the construction of a BIM is to
define a splitting of 𝐾

𝐾 = 𝑃 − 𝑅 , (5.23)

in which 𝑃 ∈ ℝᑟ×ᑟ is non-singular. Using the splitting, Equation (5.1) can be written as 𝑃u =
𝑅u+ f. Multiplying both sides of the equation with 𝑃ᎽᎳ an iterative scheme can be derived as
follows

uᑜᎼᎳ = 𝑃ᎽᎳ𝑅uᑜ + 𝑃ᎽᎳf
= 𝑃ᎽᎳ (𝑃 − 𝐾)uᑜ + 𝑃ᎽᎳf
= (𝐼 − 𝑃ᎽᎳ𝐾)uᑜ + 𝑃ᎽᎳf (5.24)
= uᑜ + 𝑃ᎽᎳ (f− 𝐾uᑜ)
= uᑜ + 𝑃ᎽᎳrᑜ

Each iteration requires solving a linear system with matrix 𝑃. Hence, the matrix 𝑃 should be
chosen such that this operation is as cheap as possible. This is the case when 𝑃 is either a
diagonal-, upper- or lower triangular matrix.

Some well-known choices for the preconditioner 𝑃 exist. Two preconditioners that will be
used in this thesis are discussed, the incomplete LU (ILU) decomposition and the complete
decomposition.

1On artificial test problems.
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Complete factorisation
Two extreme choices for preconditioners exist, 𝑃 = 𝐼 or 𝑃 = 𝐾. Taking 𝑃 = 𝐼 the preconditioner
is extremely cheap to compute and apply, however, the rate of convergence does not improve.
On the other hand, taking 𝑃 = 𝐾 the preconditioner is extremely expensive to compute since
this requires a factorisation, however, convergence is reached within one iteration. Typically,
a preconditioner is chosen somewhere in between these two extremes such that the applying
and computing 𝑃 is relatively cheap while the rate of convergence is also improved. However,
due to the event-by-event strategy of SLA the choice 𝑃 = 𝐾 can still be a good choice when
not calculating the factorisation every analysis step.

ILU factorisation
One of main disadvantages of computing a factorisation of 𝐾 is the fill-in the the factors 𝐿, 𝑈.
Discarding some of these non-zero elements results in the ILU factorisation which computes
the factors 𝐿, 𝑈 such that

𝐾 = 𝐿𝑈 − 𝑅 , (5.25)

in which the matrix 𝑅 indicates the error in the factorisation. The most basic choice for the
ILU factorisation is to take the zero pattern of 𝐾 and only calculate non-zero elements of 𝐿, 𝑈
where the corresponding element of 𝐾 is non-zero. This choice is referred to as zero fill-in
(ILU(0)) as the number of non-zero elements of 𝐿, 𝑈 combined is almost the same as that of
𝐾, only having to store an additional diagonal.

The accuracy of the ILU(0) may be inadequate to obtain an acceptable rate of convergence
in the iterative scheme [15]. Therefore, it can be beneficial to include some level of fill-in
which results in the ILU(𝑝) factorisation where 𝑝-th order fill-ins are allowed. To illustrate this
concept, consider 𝐿Ꮂ, 𝑈Ꮂ to be the factors of the ILU(0) factorisation. Due to inaccuracy of the
factorisation, the sparsity pattern of 𝐿Ꮂ𝑈Ꮂ will differ from that of𝐾. The ILU(1) is then calculated
by calculating only the non-zero elements of 𝐿Ꮃ, 𝑈Ꮃ where the corresponding elements of 𝐿Ꮂ𝑈Ꮂ
is non-zero. Applying this process recursively allows the computation of an increasingly more
accurate incomplete factorisation.

The iterative scheme of (5.24) is repeated until the approximate solution is sufficiently accurate.
To determine when the algorithm stops, a stopping criterion has to be defined. A commonly
used stopping criterion is to iterate until

‖rk‖
‖f‖ ≤ 𝜀 (5.26)

for some 𝜀. This stopping criterion is scaling invariant and the required accuracy does not
depend on the initial guess. Higham [8] provides a detailed elaboration on this and more
preferable stopping criteria.

Writing out some iterations of a BIM it follows that the approximate solution uᑚ belongs to the
subspace

uᑚ ∈ uᎲ + span {𝑃ᎽᎳrᎲ, (𝑃ᎽᎳ𝐾) (𝑃ᎽᎳrᎲ) , … , (𝑃ᎽᎳ𝐾)
ᑚᎽᎳ (𝑃ᎽᎳrᎲ) } .

Definition 9. Let 𝐾 ∈ ℝᑟ×ᑟ, vᑟ. The Krylov subspace Kᑚ generated by 𝐾 and v is defined as

Kᑚ (𝐾;v) = span {v, 𝐾v, … , 𝐾ᑚᎽᎳv} , (5.27)
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where

∀x ∈ Kᑚ (𝐾;v) ∃𝜆Ꮂ, … , 𝜆ᑚᎽᎳ ∈ ℝ ∶ x = 𝜆Ꮂv+ 𝜆Ꮃ𝐾v+…+ 𝜆ᑚᎽᎳ𝐾ᑚᎽᎳv . (5.28)

Hence, a BIM finds the 𝑖-th approximate solution in the subspace uᑚ ∈ uᎲ+Kᑚ (𝑃ᎽᎳ𝐾; 𝑃ᎽᎳrᎲ).

Krylov subspace methods generate a sequence of approximate solutions by solving a min-
imisation problem over a Krylov subspace. Since the Krylov subspace Kᑚ is of dimension
𝑖, 𝑖 constraints must be imposed to find an unique approximate solution. Typically, these
constraints are imposed as independent orthogonality conditions, meaning that the residual
rᑚ = f− 𝐾uᑚ is constrained to be orthogonal to 𝑖 linear independent vectors.

Assuming 𝐾 is symmetric, Lanczos algorithm can be used to construct an orthogonal basis
{vᎳ, … ,vᑚ} for Kᑚ using Algorithm 4.

Algorithm 4 Lanczos Algorithm
1: Choose a vector vᎳ, such that ‖vᎳ‖Ꮄ = 1
2: Set 𝛽Ꮃ = 0, vᎲ = 0
3: for 𝑗 = 1,… ,𝑚 do
4: wᑛ = 𝐾vᑛ − 𝛽ᑛvᑛᎽᎳ
5: 𝛼ᑛ = (wᑛ,vᑛ)
6: wᑛ = wᑛ − 𝛼ᑛvᑛ
7: 𝛽ᑛᎼᎳ = ‖wᑛ‖Ꮄ
8: if 𝛽ᑛᎼᎳ = 0 then
9: Stop

10: else
11: vᑛᎼᎳ = wᑛ/𝛽ᑛᎼᎳ
12: end if
13: end for

In exact arithmetic, Lanczos algorithm ensures that the vectors vᑚ are orthogonal. In reality,
however, orthogonality is lost rapidly after a few iterations due to rounding errors. To address
this issue, many improvements have been developed to reduce the loss of orthogonality. An
overview of some of these improved orthogonalization schemes is provided by Saad [15].

The Lanczos is a short recurrence algorithmmeaning that only a few vectors have to be stored.
To illustrate this steps 4, 6, 11 can be combined to obtain

𝛽ᑛᎼᎳvᑛᎼᎳ = 𝐾vᑛ − 𝛽ᑛvᑛᎽᎳ − 𝛼ᑛvᑛ . (5.29)

Rearranging terms yields

𝐾vᑛ = 𝛽ᑛvᑛᎽᎳ + 𝛼ᑛvᑛ + 𝛽ᑛᎼᎳvᑛᎼᎳ . (5.30)

Writing 𝑉ᑞ = [vᎳ, … ,vᑞ] and

𝑇ᑞ = ⎛

⎝

𝛼Ꮃ 𝛽Ꮄ 0
𝛽Ꮄ 𝛼Ꮄ ⋱

⋱ ⋱ 𝛽ᑞ
𝛽ᑞ 𝛼ᑞ

⎞

⎠

(5.31)
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allows the short recurrences to be rewritten as

𝐾𝑉ᑞ = 𝑉ᑞ𝑇ᑞ + 𝛽ᑞᎼᎳvᑞᎼᎳeᑋᑞ . (5.32)

Multiplication with 𝑉ᑋᑞ and using the orthogonality of the vectors vᑚ then yields the expression

𝑉ᑋᑞ𝐾𝑉ᑞ = 𝑇ᑞ . (5.33)

Since the matrix 𝑇ᑞ is tridiagonal, only two additional vectors have to be stored in order to be
able to compute the next vector. This is a significant advantage over the analogous Arnoldi’s
algorithm for the unsymmetrical case which is characterized by long recurrences. For a de-
scription on the unsymmetrical case and Arnoldi’s algorithm the reader is referred to Saad
[15].

The Krylov subspace method of choice for solving large sparse SPD linear systems is the
conjugate gradient (CG) method. The next section will provide an intuitive introduction to CG.

5.2.1. Conjugate Gradient

The stiffness matrix 𝐾 from Equation (5.1) is symmetric and positive definite for the problems
considered with SLA. For problems with this property, the Conjugate Gradient (CG) method is
the Krylov subspace method of choice. This section will give the derivation of CG as well as
how the method can be combined with preconditioners.

To derive CG the method of steepest descent is first introduced. Therefore, consider the
solution to Equation (5.1) as the unique minimiser of the function 𝜙(u)

𝜙(u) = 1
2u

ᑋ𝐾u− uᑋf . (5.34)

Since it holds that ∇𝜙(u) = 𝐾u − f it follows that minimising Equation (5.34) is equivalent to
solving Equation (5.1). The fastest way of finding the minimum is to follow the direction of
steepest descent −∇𝜙(u). It holds that

−∇𝜙(uᑜ) = f− 𝐾uᑜ = rᑜ , (5.35)

hence we find a new approximate solution uᑜᎼᎳ from uᑜ by choosing a point along this search
direction

uᑜᎼᎳ = uᑜ + 𝛼rᑜ . (5.36)

The value 𝛼 should be chosen such that it minimises 𝜙(uᑜᎼᎳ) along that line. Hence, the value
of 𝛼 can be found by solving

d
d𝛼𝜙(uᑜᎼᎳ) = 0 .

Expanding the left-hand side it follows that

d
d𝛼𝜙(uᑜᎼᎳ) =

d
d𝛼 (

1
2 (uᑜ + 𝛼rᑜ)

ᑋ 𝐾 (uᑜ + 𝛼rᑜ) − (uᑜ + 𝛼rᑜ)
ᑋ f)

= d
d𝛼 (

1
2u

ᑋ
ᑜ𝐾uᑜ + 𝛼rᑋᑜ𝐾uᑜ +

1
2𝛼

Ꮄrᑋᑜ𝐾rᑜ − uᑋᑜf− 𝛼rᑋᑜf)

= rᑋᑜ𝐾uᑜ + 𝛼rᑋᑜ𝐾rᑜ − rᑋᑜf
= 0
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such that 𝛼 should be chosen as

𝛼 =
rᑋᑜf− rᑋᑜ𝐾uᑜ

rᑋᑜ𝐾rᑜ
=
rᑋᑜ (f− 𝐾uᑜ)

rᑋᑜ𝐾rᑜ
=

rᑋᑜrᑜ
rᑋᑜ𝐾rᑜ

.

Using the search directions from Equation (5.36) convergence may be slow if 𝐾 is badly con-
ditioned [7]. To avoid this, CGminimises 𝜙(u) along a set of search directions {pᎳ, … ,pᑟ} that
are linear independent, 𝐾-orthogonal and for which it holds pᑋᑜrᑜᎽᎳ ≠ 0. A new approximate
solution is then searched along these search directions

uᑜᎼᎳ = uᑜ + 𝛼ᑜpᑜ . (5.37)

The energy norm of a vector v is defined as

‖v‖ᑂ = (vᑋ𝐾v)
Ꮃ
Ꮄ , (5.38)

and define the error 𝛿uᑜ in the 𝑘-th approximate solution as

𝛿uᑜ = u− uᑜ , (5.39)

with u the exact solution. In Equation (5.37) 𝛼 is chosen such that it minimises the energy norm
of the error 𝛿uᑜ over the Krylov subspace KᑜᎽᎳ (𝐾; rᎲ), which can be shown to be equivalent
to minimising Equation (5.34) [11]. The complete CG method is summarised in Algorithm 5.

Algorithm 5 Conjugate gradient algorithm
1: Set rᎲ = f− 𝐾uᎲ, pᎲ = rᎲ.
2: for 𝑘 = 0, 1, … until convergence do
3: 𝛼ᑜ =

rᑋᑜrᑜ
pᑋᑜᑂpᑜ

4: uᑜᎼᎳ = uᑜ + 𝛼ᑜpᑜ
5: rᑜᎼᎳ = rᑜ − 𝛼ᑜ𝐾pᑜ
6: 𝛽ᑜ =

rᑋᑜᎼᎳrᑜᎼᎳ
rᑋᑜrᑜ

7: pᑜᎼᎳ = rᑜᎼᎳ + 𝛽ᑜpᑜ
8: end for

Due to the fact that the search directions {pᎳ, … ,pᑟ} are linear independent, CG guarantees
convergence in at most 𝑛 iterations. A well-known error-bound exists of the approximate
solution [7]. Denote the 𝑖-th eigenvalue of 𝐾 in nondecreasing order by 𝜆ᑚ.

Definition 10. Let 𝐾 ∈ ℝᑟ×ᑟ. The spectral condition number measured in the 𝑝-norm 𝜅ᑡ(𝐾)
of 𝐾 is defined as

𝜅ᑡ(𝐾) = ‖𝐾‖ᑡ‖𝐾
ᎽᎳ‖ᑡ .

After 𝑘 iterations, the error is bounded by

‖𝛿uᑜ‖ᑂ ≤ 2‖𝛿uᎲ‖ᑂ (
√𝜅 − 1
√𝜅 + 1

)
ᑜ

. (5.40)
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In badly conditioned problems where 𝜅 is large the error reduction of CG is limited. A solution
to this problem is applying a preconditioner to Equation (5.1) to improve the conditioning.

Preconditioning

The convergence speed of 𝐶𝐺 is highly dependent on the extreme eigenvalues of 𝐾. To im-
prove the convergence behaviour of CG preconditioning can be applied to the problem to ob-
tain more favourable eigenvalues. The first step in preconditioning is finding a preconditioner
𝑃 such that the preconditioned problem is defined as

𝑃ᎽᎳ𝐾u = 𝑃ᎽᎳf , (5.41)

where 𝑃 is assumed to be non-singular. The error bound of Equation (5.40) still holds for the
preconditioned problem. As preconditioned CG converges fast when 𝜅 (𝑃ᎽᎳ𝐾) ≈ 1, ideally 𝑃
should be chosen such that the eigenvalues of 𝑃ᎽᎳ𝐾 are clustered. The preconditioned CG
(PCG) algorithm is shown in Algorithm 6.

Algorithm 6 Preconditioned conjugate gradient algorithm
1: Set rᎲ = f− 𝐾uᎲ, zᎲ = 𝑃ᎽᎳrᎲ, pᎲ = zᎲ.
2: for 𝑘 = 0, 1, … until convergence do
3: 𝛼ᑜ = rᑋᑜzᑜ/pᑋᑜ𝐾pᑜ
4: uᑜᎼᎳ = uᑜ + 𝛼ᑜpᑜ
5: rᑜᎼᎳ = rᑜ − 𝛼ᑜ𝐾pᑜ
6: zᑜᎼᎳ = 𝑃ᎽᎳrᑜᎼᎳ
7: 𝛽ᑜ = rᑋᑜᎼᎳzᑜᎼᎳ/rᑋᑜzᑜ
8: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
9: end for

Only one step is added to the CG algorithm to obtain PCG. Since in every iteration the linear
system 𝑃zᑜᎼᎳ = rᑜᎼᎳ is solved, 𝑃 should be chosen such that this is as cheap as possible.
Furthermore, since we want the eigenvalues to be clustered, the matrix 𝑃 should resemble
𝐾 in some way. A popular choice for 𝑃 is an incomplete LU factorisation (ILU) such that
𝐿𝑈 ≈ 𝐾 in some sense, as described in Section 5.2. The accuracy with which the factorisation
𝐿𝑈 approximates 𝐾 can be controlled by varying the allowed fill-in within the bandwidth of 𝐾
using the drop tolerance. A good choice for the drop tolerance makes a trade-off between
the increased computational cost of calculating the factorisation and the decrease in work of
PCG. A detailed analysis on the choice of the drop tolerance can be found in [13].

Besides the error-bound in Equation (5.40), it is known that if 𝐾 has 𝑟 distinct eigenvalues con-
vergence is guaranteed in at most 𝑟 + 1 iterations [7]. This suggests the use of the complete
factorisation of 𝐾 as a preconditioner. Taking 𝑃 = 𝐾, it follows that in the first analysis step
𝑃ᎽᎳ𝐾 = 𝐼 and the solution method basically becomes a direct solution method. However, sub-
sequent analysis steps require considerably less iterations due to the event-by-event nature
of SLA. Therefore, the optimal point at which a new factorisation is calculated should be deter-
mined such that the computing times are minimised. In Section 7.2.4 some remarks are made
on determining this restarting point. Section 8 then presents the results of preconditioned CG
using the complete factorisation, as well as the results of Woodbury’s identity, a method that
will be introduced in Section 6.



6
Low-rank matrix update

In Section 4 a description of the event-by-event strategy of SLA was given. After every lin-
ear analysis, a scaling procedure is applied such that only one integration point reaches its
peak stress limit. As a result of this strategy only one element stiffness matrix is updated
between analysis steps resulting in a low-rank update to the system stiffness matrix 𝐾. The
direct solution methods discussed in Section 5.1 do not exploit this property and compute the
solutions by repeated factorisation of the 𝐾. This section will introduce a method that exploits
the low-rank nature of SLA such that the stiffness matrix need not be factorised every analysis
step but instead the solution is obtained by factorisation of a considerably smaller matrix along
with some additional matrix and vector operations. First, Section 6.1 derives the method for
rank-1 updates. Section 6.2 generalizes the method to rank-𝑘 updates for an arbitrary value
𝑘. Finally, some implementation details are given.

6.1. Sherman-Morrison formula

The Sherman-Morrison formula presents a method for computing the inverse of a rank-1 up-
dated matrix. The statement of the formula is as follows.

Theorem 1 (Sherman-Morrison Formula). Let 𝐴 ∈ ℝᑟ×ᑟ an invertible square matrix and u,v ∈
ℝᑟ column vectors. Then 𝐴 + uvᑋ is invertible, (𝐴 + uvᑋ)ᎽᎳ = 𝐴ᎽᎳ − ᐸᎽᎳuvᑋᐸᎽᎳ

ᎳᎼvᑋᐸᎽᎳu if and only if
1 + vᑋ𝐴ᎽᎳu ≠ 0

This formula allows for the computation of the rank-1 updated matrix 𝐴 + uvᑋ. Assuming the
inverse 𝐴ᎽᎳ is already known, this formula presents a computationally cheap way of deter-
mining the inverse of the rank-1 updated matrix without having to perform the computationally
intensive inverse operation. The proof of Theorem 1 is given below.

Proof. (⟸): Assume that 1 + vᑋ𝐴ᎽᎳu ≠ 0. It remains to be proven that the matrix 𝐴 + uvᑋ
is invertible. This implies that there should exists some matrix 𝐵 such that (𝐴 + uvᑋ)𝐵 =
𝐵(𝐴 + uvᑋ) = 𝐼. It will be shown that 𝐵 = 𝐴ᎽᎳ − ᐸᎽᎳuvᑋᐸᎽᎳ

ᎳᎼvᑋᐸᎽᎳu satisfies this condition. By

39
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substitution it follows that

(𝐴 + uvᑋ) (𝐴ᎽᎳ − 𝐴ᎽᎳuvᑋ𝐴ᎽᎳ
1 + vᑋ𝐴ᎽᎳu) = 𝐴𝐴

ᎽᎳ − 𝐴𝐴
ᎽᎳuvᑋ𝐴ᎽᎳ

1 + vᑋ𝐴ᎽᎳu + uvᑋ𝐴ᎽᎳ −
u (vᑋ𝐴ᎽᎳu)vᑋ𝐴ᎽᎳ
1 + vᑋ𝐴ᎽᎳu

= 𝐼 − uvᑋ𝐴ᎽᎳ
1 + vᑋ𝐴ᎽᎳu + uvᑋ𝐴ᎽᎳ −

(vᑋ𝐴ᎽᎳu)uvᑋ𝐴ᎽᎳ
1 + vᑋ𝐴ᎽᎳu

= 𝐼 + (− 1
1 + vᑋ𝐴ᎽᎳu + 1 −

vᑋ𝐴ᎽᎳu
1 + vᑋ𝐴ᎽᎳu)uv

ᑋ𝐴ᎽᎳ

= 𝐼 + (−1 + vᑋ𝐴ᎽᎳu
1 + vᑋ𝐴ᎽᎳu + 1)uv

ᑋ𝐴ᎽᎳ = 𝐼

where in the second equality it was used that vᑋ𝐴ᎽᎳu is a scalar. Using the assumption
1+vᑋ𝐴ᎽᎳu ≠ 0, it follows that all fractions are well-defined. Similarly, for the left-multiplication
the following holds.

(𝐴ᎽᎳ − 𝐴ᎽᎳuvᑋ𝐴ᎽᎳ
1 + vᑋ𝐴ᎽᎳu) (𝐴 + uvᑋ) = 𝐴ᎽᎳ𝐴 + 𝐴ᎽᎳuvᑋ − 𝐴

ᎽᎳuvᑋ𝐴ᎽᎳ𝐴
1 + vᑋ𝐴ᎽᎳu −

𝐴ᎽᎳu (vᑋ𝐴ᎽᎳu)vᑋ
1 + vᑋ𝐴ᎽᎳu

= 𝐼 + 𝐴ᎽᎳuvᑋ − 𝐴ᎽᎳuvᑋ
1 + vᑋ𝐴ᎽᎳu −

(vᑋ𝐴ᎽᎳu) 𝐴ᎽᎳuvᑋ
1 + vᑋ𝐴ᎽᎳu

= 𝐼 + (1 − 1
1 + vᑋ𝐴ᎽᎳu −

vᑋ𝐴ᎽᎳu
1 + vᑋ𝐴ᎽᎳu)𝐴

ᎽᎳuvᑋ

= 𝐼 + (1 − 1 + vᑋ𝐴ᎽᎳu
1 + vᑋ𝐴ᎽᎳu)𝐴

ᎽᎳuvᑋ = 𝐼

This proves that 𝐴 + uvᑋ is invertible with (𝐴 + uvᑋ)ᎽᎳ = 𝐴ᎽᎳ − ᐸᎽᎳuvᑋᐸᎽᎳ
ᎳᎼvᑋᐸᎽᎳu .

(⟹): Now assume that 𝐴 and 𝐴 + uvᑋ are invertible and let (𝐴 + uvᑋ)ᎽᎳ = 𝐴ᎽᎳ − ᐸᎽᎳuvᑋᐸᎽᎳ
ᎳᎼvᑋᐸᎽᎳu .

Furthermore, assume u ≠ 0 otherwise the statement is trivial. Then

(𝐴 + uvᑋ) 𝐴ᎽᎳu = u+ u (vᑋ𝐴ᎽᎳu) = (1 + vᑋ𝐴ᎽᎳu)u .

Since the product of two invertible matrices is again invertible it holds that (𝐴 + uvᑋ) 𝐴ᎽᎳ is
invertible. A matrix 𝐵 is invertible if and only if it holds that the only solution to 𝐵x = 0 is the
trivial solution x = 0. Therefore, with the assumption that u ≠ 0 and the above identity it
follows that 1 + vᑋ𝐴ᎽᎳu ≠ 0.

The Sherman-Morrison formula can be used to efficiently compute the inverse of a rank-1
corrected matrix. However, in practical applications the rank correction is often off higher
order. Hence, the next section will generalise the statement for arbitrary rank corrections.

6.2. Woodbury matrix identity

The previous section presented a formula which allows for the numerically cheap computation
of a rank-1 corrected matrix. However, in real-life applications it often occurs that a matrix
is corrected with a higher rank. To this extend, this section presents the Woodbury matrix
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identity which is a generalization of the Sherman-Morrison formula in the sense that it allows
for a k-rank correction for an arbitrary value 𝑘.
Theorem 2 (Woodbury matrix identity). Let 𝐴 ∈ ℝᑟ×ᑟ, 𝑈 ∈ ℝᑟ×ᑜ, 𝐶 ∈ ℝᑜ×ᑜ, 𝑉 ∈ ℝᑜ×ᑟ. Further-
more, assume𝐴 and 𝐶 are invertible. Then (𝐴 + 𝑈𝐶𝑉)ᎽᎳ = 𝐴ᎽᎳ−𝐴ᎽᎳ𝑈 (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ 𝑉𝐴ᎽᎳ.

Proof. To prove the theorem, 𝐴 + 𝑈𝐶𝑉 will be multiplied with the stated inverse and it will be
shown that this indeed equals the identity. The proof is only given for multiplication on the
right-hand side since the proof with multiplication on the left-hand side is analogous.

(𝐴 + 𝑈𝐶𝑉) (𝐴ᎽᎳ − 𝐴ᎽᎳ𝑈 (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ 𝑉𝐴ᎽᎳ)

= 𝐼 − 𝑈 (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ 𝑉𝐴ᎽᎳ + 𝑈𝐶𝑉𝐴ᎽᎳ − 𝑈𝐶𝑉𝐴ᎽᎳ𝑈 (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ 𝑉𝐴ᎽᎳ

= 𝐼 + 𝑈𝐶𝑉𝐴ᎽᎳ − (𝑈 (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ + 𝑈𝐶𝑉𝐴ᎽᎳ𝑈 (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ)𝑉𝐴ᎽᎳ

= 𝐼 + 𝑈𝐶𝑉𝐴ᎽᎳ − ((𝑈 + 𝑈𝐶𝑉𝐴ᎽᎳ𝑈) (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ)𝑉𝐴ᎽᎳ

= 𝐼 + 𝑈𝐶𝑉𝐴ᎽᎳ − 𝑈𝐶 ((𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈) (𝐶ᎽᎳ + 𝑉𝐴ᎽᎳ𝑈)ᎽᎳ)𝑉𝐴ᎽᎳ

= 𝐼 + 𝑈𝐶𝑉𝐴ᎽᎳ − 𝑈𝐶𝑉𝐴ᎽᎳ
= 𝐼

Taking 𝑘 = 1 it is clear that this is indeed a generalisation of the Sherman-Morrison formula.

In the situation in which the low-rank correction is symmetric, it can be written as 𝑈𝐶𝑈ᑋ with
𝐶 a symmetric matrix. The Woodbury matrix identity then simplifies to

(𝐴 + 𝑈𝐶𝑈ᑋ)ᎽᎳ = 𝐴ᎽᎳ − 𝐴ᎽᎳ𝑈 (𝐶ᎽᎳ + 𝑈ᑋ𝐴ᎽᎳ𝑈)ᎽᎳ 𝑈ᑋ𝐴ᎽᎳ . (6.1)

Next, the construction of the matrices 𝑈, 𝐶 will be discussed in the context of the underlying
finite element model and how the solution is calculated once the matrices are set-up.

6.2.1. Set-up and implementation

Since the construction of the matrices 𝑈, 𝐶 of the Woodbury identity is dependent on the ele-
ments of the underlying finite element model, the following notation will be adopted.

Subscripts will be used to denote the element that the matrix corresponds to wheras super-
scripts will be used to indicate the analysis number. A matrix 𝑀 corresponding to an element
𝑒ᑚ in analysis step 𝑛 will thus be denoted as 𝑀(ᑟ)ᑖᑚ . Furthermore, the initial system stiffness
matrix before any damage increments is denoted as 𝐾(Ꮂ), and the low-rank corrected system
stiffness matrix of the 𝑛-th analysis step as 𝐾(ᑟ).

Now assume some element 𝑒ᑚ is damaged in the 𝑛-th analysis step. Using the introduced
notation, the low-rank corrected system stiffness matrix can be written as

𝐾(ᑟᎼᎳ) = 𝐾(ᑟ) + 𝑁ᑖᑚ (𝐾
(ᑟᎼᎳ)
ᑖᑚ − 𝐾(ᑟ)ᑖᑚ )𝑁ᑋᑖᑚ

∶= 𝐾(ᑟ) + 𝑁ᑖᑚ𝐷
(ᑟ)
ᑖᑚ 𝑁ᑋᑖᑚ , (6.2)
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where 𝐷(ᑟ)ᑖᑚ is the update to the element stiffness matrix of element 𝑒ᑚ. The matrix 𝑁ᑖᑚ is the
transformation matrix which maps the local numbering of the element to the global numbering.

Constructing the eigendecomposition of 𝐷(ᑟ)ᑖᑚ

𝐷(ᑟ)ᑖᎳ = 𝑄(ᑟ)ᑖᑚ Λ
(ᑟ)
ᑖᑚ (𝑄

(ᑟ)
ᑖᑚ )

ᑋ
, (6.3)

Equation (6.2) can be written as

𝐾(ᑟᎼᎳ) = 𝐾(ᑟ) + 𝑁ᑖᑚ𝑄
(ᑟ)
ᑖᑚ Λ

(ᑟ)
ᑖᑚ (𝑄

(ᑟ)
ᑖᑚ )

ᑋ
𝑁ᑋᑖᑚ . (6.4)

The matrix Λ(ᑟ)ᑖᑚ is a diagonal matrix whose elements are the eigenvalues of 𝐷(ᑟ)ᑖᑚ and 𝑄(ᑟ)ᑖᑚ con-
tains the corresponding eigenvectors. In the above eigendecomposition, only the sufficiently
large eigenvalues are considered and the small eigenvalues are discarded. Section 7 will dis-
cuss the effect of this choice on the convergence behaviour and discusses the exact choice
of eigenvalues.

To bring Equation (6.2) in a suitable form for Woodbury’s identity it is rewritten as follows

𝐾(ᑟᎼᎳ) = 𝐾(ᑟ) + 𝑁ᑖᑚ𝑄
(ᑟ)
ᑖᑚ Λ

(ᑟ)
ᑖᑚ (𝑄

(ᑟ)
ᑖᑚ )

ᑋ
𝑁ᑋᑖᑚ

= 𝐾(ᑟ) + (𝑁ᑖᑚ𝑄
(ᑟ)
ᑖᑚ ) Λ

(ᑟ)
ᑖᑚ (𝑁ᑖᑚ𝑄

(ᑟ)
ᑖᑚ )

ᑋ

∶= 𝐾(ᑟ) + 𝑈(ᑟ)𝐶(ᑟ)𝑈(ᑟ)ᑋ (6.5)

Equation (6.5) is defined recursively. Writing out this recursion in terms of the initial stiffness
matrix 𝐾(Ꮂ) yields

𝐾(ᑟᎼᎳ)∶ = 𝐾(Ꮂ) +
ᑟ

∑
ᑛᎾᎳ

𝑈(ᑛ)𝐶(ᑛ)𝑈(ᑛ)ᑋ

∶ = 𝐾(Ꮂ) + [𝑈(Ꮃ) … 𝑈(ᑟ)] [
𝐶(Ꮃ)

⋱
𝐶(ᑟ)

] [
𝑈(Ꮃ)ᑋ

⋮
𝑈(ᑟ)ᑋ

]

∶= 𝐾(Ꮂ) + 𝑈ᑟ𝐶ᑟ𝑈ᑋᑟ . (6.6)

Equation (6.6) is of the form as required by Theorem 2. Furthermore, by writing

𝑈ᑟ = [𝑈ᑟᎽᎳ 𝑈(ᑟ)] , (6.7)

𝐶ᑟ = [
𝐶ᑟᎽᎳ

𝐶(ᑟ)] , (6.8)

it is clear that in every analysis step the rank increases with the number of eigenvalues of the
eigendecomposition from Equation (6.3).

Assuming that the factorisation of𝐾(Ꮂ) is known and the above set-up is performed, the solution
to the system of equations 𝐾(ᑟᎼᎳ)u = f of the (𝑛+1)-th linear analysis step can be calculated
by performing the following steps.
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Step 1
Solve the system

𝐾(Ꮂ)x = f , (6.9)

for x by using the known factorisation of 𝐾(Ꮂ).

Step 2
Solve the system

𝐾(Ꮂ)𝑍 = 𝑈ᑟ , (6.10)

for 𝑍 by using the known factorisation of 𝐾(Ꮂ).

Step 3
Calculate

𝐸 = 𝐶ᎽᎳᑟ + 𝑈ᑋᑟ𝑍 (6.11)

Step 4
Calculate

y = 𝑈ᑋᑟx . (6.12)

Step 5
Solve the system

𝐸z = y (6.13)

for z by calculating a factorisation of 𝐸 and applying subsequent forward and backward sub-
stitutions.

Step 6
Calculate the solution to the system of equations by

u = x− 𝑍z . (6.14)

Instead of having to calculate a new costly matrix factorisation, Woodbury’s identity allows
for the reusage of an old factorisation to obtain the solution using some additional matrix and
vector multiplications and solving a significantly smaller system of equations in step 5.

When solving repeated linear systems usingWoodbury’s identity two parameters can be tuned.
In Equation (6.3) the eigendecomposition was taken of the stiffness matrix corresponding to
the critical element. After this eigendecomposition, the rank increases with the number of
sufficiently large eigenvalues. However, a decision has to be made what eigenvalues are
considered sufficiently large. Considering too few eigenvalues can result in accuracy loss
whereas too many may result in performance losses. Therefore the eigenvalues have to be
chosen such that a balance is found. Furthermore, it is also possible to restart Woodbury’s
identity. This implies that a new factorisation of the stiffness matrix is computed and the rank
is set back to 0. The penalty in restarting is having to recompute a costly matrix decomposi-
tion while on the other hand the following analysis steps are considerably cheaper than before
restarting. The restarting point has be to be determined such that these effects are balanced.
The next section provides a detailed analysis on the choice of these parameters.
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The implementation of Woodbury’s identity for solving low-rank corrected systems of linear
equations enables the tuning of two parameters. Firstly, a choice is to be made on the size of
the eigenvalues to be considered in the eigendecomposition of the critical element stiffness
matrix. Secondly, the restarting point should be determined at which a newmatrix factorisation
is calculated. Since both these parameters have a direct influence on the performance and
convergence of Woodbury’s identity, it is important to choose these in such a way that the
performance is optimized while convergence remains satisfactory. In this section, a parametric
analysis is performed to obtain optimal values for both parameters.

7.1. Eigenvalue ratio

One of the first steps in the set-up of Woodbury’s identity is calculating the eigendecomposition
of the update to the critical element matrix as shown in Equation (6.3). Since the eigenvalues
are numerically calculated using some iterative scheme, rounding errors can occur resulting in
non-zero eigenvalues which should not be taken into account in the rest of the analysis. The
methodology to determine which of the eigenvalues are sufficiently large to be considered in
the analysis is as follows.

During each analysis step, the absolute value of all eigenvalues will be compared to that of
the largest eigenvalue. If this ratio is above a certain threshold, the eigenvalue is taken to be
large enough. This allows the choice of only dominant eigenvalues which differ a certain order
of magnitudes from the largest value (in absolute sense).

In order to precisely define the selection of eigenvalues consider some element stiffness
matrix of size 𝑛 and let 𝜆ᑚ be the 𝑖-th eigenvalue, 𝑖 ∈ {1, 2, … , 𝑛}. Furthermore, let 𝜆max =
max {|𝜆Ꮃ|, … , |𝜆ᑟ|}. The ratio

𝜖 = |𝜆ᑚ|
𝜆max

(7.1)

will be referred to as the eigenvalue ratio corresponding to the 𝑖-th eigenvalue. Setting a
minimal value for 𝜖 it is possible using this definition to consider eigenvalues which are only
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a certain number of orders of magnitude smaller than the largest eigenvalue. For example,
choosing 𝜖 > 10ᎽᎶ all eigenvalues which are at most a factor 10Ꮆ smaller than the largest
eigenvalue are selected.

To analyse the influence of the choice of the eigenvalue ratio on the behaviour of the accuracy
of the solution, three test problems will be considered as shown in Table 7.1. These examples
will serve to empirically determine a proper value for the eigenvalue ratio 𝜖. Subsequently, the
resulting choice of eigenvalue ratio will be validated using a wide range of test problems.

Table 7.1: Test problems to empirically determine the eigenvalue ratio.

Problem Size DOF per element Description

Intfnp 753 8 3-point bending beam
Lowthe 3268 16 Masonry shear wall
4PB2np 1009 8 4-point bending beam

In the event-by-event strategy of SLA, a relatively small number of elements is damaged re-
peatedly. As a result, the eigenvalue spectrum of the difference in element stiffness matrix
is similar between analysis steps. For each of the mentioned test problems the (absolute)
eigenvalue spectrum of such a typical analysis step is shown in Figure 7.1.

Figure 7.1: Absolute eigenvalue spectrum for the test problems of Table 7.1.

These three spectrums show similar results; a few dominant eigenvalues along with numerous
significantly smaller eigenvalues. To analyse the effect of the choice of eigenvalues on the
accuracy of the solution, several different thresholds for the eigenvalue ratio will be considered.
To indicate what eigenvalues from Figure 7.1 will be taken into account using these thresholds,
similar eigenvalue spectrums will be given for each chosen threshold indicating the sufficiently
large eigenvalues with red. After the thresholds are chosen, the problem is solved using
Woodbury’s identity with the respective eigenvalue threshold. In these examples, Woodbury’s
identity will not be restarted in order to isolate the effect of the eigenvalues on the accuracy of
the results.

For the Intfnp example, two thresholds are chosen based on the clustered behaviour of the
eigenvalues in the first plot of Figure 7.1. The chosen eigenvalue ratio thresholds and the
corresponding eigenvalue spectrums are shown in Figure 7.2.
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Figure 7.2: Selected eigenvalues (red) of the Intfnp problem for different eigenvalue ratios. Note that several ኺ
eigenvalues are not shown.

For each of these thresholds the problem was solved. Figure 7.3 shows the residual norms
per analysis step for the Intfnp problem along with the residual norms when using the default
direct solution method.
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Figure 7.3: Residual norms of the Intfnp problem for the different eigenvalue thresholds. Accuracy of the standard
direct method indicated with red.

Comparing the graphs in both plots, it can be observed that the residual norm of Woodbury’s
identity increases faster than that of the direct method. At the end of the analysis, the residual
norms of Woodbury’s identity method are approximately one order of magnitude larger. This
is a promising result considering the fact that Woodbury’s identity was not restarted in these
analyses, which resets the residual norm back to the direct method’s value as will be illustrated
in Section 7.2. Furthermore, comparing both thresholds it follows that the extremely small
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eigenvalues from Figure 7.2 have little effect on the accuracy of the solution.

Similar figures have been made for the other two test problems. In Figure 7.4 the chosen
thresholds and corresponding eigenvalues of the Lowthe example are shown and Figure 7.5
shows the corresponding residual norms for every analysis step.

Figure 7.4: Selected eigenvalues (red) of the Lowthe problem for different eigenvalue ratios.

0 1,000 2,000
10ᎽᎳᎶ

10ᎽᎳᎳ

10ᎽᎺ

10ᎽᎷ

10ᎽᎴ

10Ꮃ

Analysis step

‖ r
‖ Ꮄ

Lowthe residual norm, 𝜖 > 10ᎽᎳ

Direct
Woodbury

0 1,000 2,000

10ᎽᎳᎵ

10ᎽᎳᎴ

Analysis step

‖ r
‖ Ꮄ

Lowthe residual norm, 𝜖 > 10ᎽᎴ

Direct
Woodbury

Figure 7.5: Residuals norms of the Lowthe problem for the different eigenvalue thresholds. Accuracy of standard
direct method indicated with red.

From Figure 7.4 it follows that with the threshold 𝜖 > 10ᎽᎳ some of the dominant eigenvalues
are discarded. Looking at the corresponding residual norms in Figure 7.5 it can be seen that
the accuracy of the solution is lost and as a consequence the analysis is stopped prematurely.
When the threshold is increased such that all dominant eigenvalues are taken into account,
the analysis produces accurate results as can be seen in the last plot of Figure 7.5. Similarly to
Figure 7.3, the residual norms in Figure 7.5 increase faster for Woodbury’s identity than using
a direct solution method and at the end of the analysis the residual norms differ approximately
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one order of magnitude. Especially considering that the Lowthe problem has significantly
more analysis steps than the previous problem and no restarting is used these results are
promising. Furthermore, again it was observed that including more smaller eigenvalues had
no effect on the accuracy of the solution while significantly increasing computational times.
Since the residual norms where approximately equal to those in the right-hand side of Figure
7.5, these figures are not shown.

Lastly the test problem 4PB2np is considered. The chosen eigenvalue thresholds and the
corresponding selected eigenvalues are shown in Figure 7.6 and the resulting residual norms
can be seen in Figure 7.7.

Figure 7.6: Selected eigenvalues (red) of the 4PB2np problem for different eigenvalue ratios.
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Figure 7.7: Residual norms of the 4PB2np problem for the different eigenvalue thresholds. Accuracy of standard
direct method indicated with dashed lines.

In Figure 7.6 it can be seen that for the threshold 𝜖 > 10ᎽᎳ both the largest eigenvalues are
selected. However, the corresponding residual norms in Figure 7.7 are significantly higher than
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for the direct method. When the threshold is reduced to 𝜖 > 10ᎽᎳᎲ such that also some of the
smaller eigenvalues are selected, as shown in the second plot of Figure 7.6, the convergence
behaviour is similar to that of the previous test problems. Similarly, reducing the threshold even
further to include more eigenvalues barely affects the accuracy of the solution while increasing
the computational times.

From these three test problems it follows that an eigenvalue ratio of 10ᎽᎳᎲ is sufficient to
obtain accurate numerical results even without restarting Woodbury’s identity. This implies
that eigenvalues at least up to 10 orders of magnitude smaller than the largest eigenvalue
have to be taken into account in the eigendecomposition of Equation (6.3). This empirical
choice of the eigenvalue ratio is based only on three test problems. To further validate that
this choice is correct, Section 7.1.1 will consider a wide range of different test problems.

7.1.1. Validation

In the previous section the eigenvalue ratio threshold 𝜖 > 10ᎽᎳᎲ was derived such that the
results of Woodbury’s identity showed similar convergence behaviour as the direct solution
method. This derivation was based only on three test problems. This section will consider
six more problems which will serve as a validation for the choice of the proposed eigenvalue
threshold. The validation examples that will be used are shown in Table 7.2 along with some
general information on these problems.

Table 7.2: Validation problems for the eigenvalue ratio.

Validation problem Size DOF per element Description

Slab 2403 24 Reinforced concrete slab
4PB2pr 1009 8 4-point bending beam
Ifshnp 753 20 3-point bending beam
SG2_B1_10mm 2301 8 3-point bending nodged beam
Shrwal 1560 16 Shear wall

For each of the validation examples mentioned in Table 7.2 the problem was solved both using
Woodbury’s identity using the proposed eigenvalue threshold and the direct solution method.
The solution residual norms of both solution methods for the given validation problems are
shown in the Figures 7.8 - 7.12.
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Figure 7.8: Residual norms of the Slab problem without restarting.
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Figure 7.9: Residual norms of the 4PB2pr problem without restarting.
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Figure 7.10: Residual norms of the Ifshnp problem without restarting.
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Figure 7.11: Residual norms of the SG2_B1_10mm problem without restarting.



7.1. Eigenvalue ratio 53

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
10ᎽᎳᎵ
10ᎽᎳᎴ
10ᎽᎳᎳ
10ᎽᎳᎲ
10ᎽᎻ
10ᎽᎺ
10ᎽᎹ
10ᎽᎸ

Analysis step

‖ r
‖ Ꮄ

Shrwal residual norm, 𝜖 > 10ᎽᎳᎲ

Woodbury
Direct

Figure 7.12: Residual norms of the Shrwal problem without restarting.

As can be seen in Figures 7.8 - 7.12, the solution residual norms of Woodbury’s identity be-
haviour similarly to those of the direct solution method where the former increase slightly faster
than those of the direct solution method, as was also seen in Section 7.1. In all of the above
validation examples the solution residual of Woodbury’s identity remains acceptably close to
those of the direct solution method especially considering that no restarting of Woodbury’s
identity was applied. Besides the validation problems from Table 7.2, the eigenvalue ratio is
also validated against the test suit present in DIANA. This test suit comprises of a wide range
of test problems. The choice of 𝜖 > 10ᎽᎳᎲ also resulted in convergent solutions for all these
problems, further validating this choice.

The choice for the eigenvalue ratio threshold 𝜖 > 10ᎽᎳᎲ resulted in convergent solutions for all
problems that were considered. This serves as a motivation for the choice of the eigenvalue
threshold. All of these problems used Woodbury’s identity without recomputing the factorisa-
tion of the system stiffness matrix and setting the rank back to 0. In Section 7.2 an approach
will be derived for finding the optimal restarting point. However, first some remarks will be
made in Section 7.1.2 on the observed increase of the residual norms for the direct solution
method.

7.1.2. Condition number estimation

In most of the considered examples it was observed that the norm of the residual increases
even the direct solution method. This suggests that the condition number of the stiffnessmatrix
of Equation (5.1) increases. Unfortunately, computation of the condition number is expensive
as it requires a norm of 𝐾ᎽᎳ to be calculated. Luckily, several techniques exist to estimate
the condition number. To this extend, the 1-norm will be considered such that the condition
number is defined as

𝜅Ꮃ(𝐾) = ‖𝐾‖Ꮃ‖𝐾
ᎽᎳ‖Ꮃ .



54 7. Parametric analysis Woodbury’s identity

Calculation of the ‖𝐾‖Ꮃ can be performed directly from the definition by calculating the maxi-
mum absolute column sum

‖𝐾‖Ꮃ = max
Ꮃᐶᑛᐶᑟ

ᑟ

∑
ᑚᎾᎳ
|𝑘ᑚᑛ| . (7.2)

Defining the system of equation

𝐾z = y ,

a lower-bound for ‖𝐾ᎽᎳ‖ can be derived as follows

z = 𝐾ᎽᎳy
⟺ ‖z‖Ꮃ = ‖𝐾ᎽᎳy‖Ꮃ ≤ ‖𝐾

ᎽᎳ‖Ꮃ ‖y‖Ꮃ
⟺

‖z‖Ꮃ
‖y‖Ꮃ

≤ ‖𝐾ᎽᎳ‖Ꮃ . (7.3)

Ideally, the vector y is chosen such that the lower-bound of Equation (7.3) is as tight as pos-
sible. A basic heuristic [9] is to choose y as follows. Firstly, y should be a fast-varying vector
such that ‖z‖Ꮃ is as large as possible. Secondly, y should be chosen such that ‖y‖Ꮃ is as
small as possible, resulting in the bound in Equation 7.3 to be as tight as possible. A choice
for y that has these two properties is

𝑦ᑚ = (−1)
ᑚᎼᎳ , 𝑖 ∈ {1, … , 𝑛} . (7.4)

Using this choice for y and calculating ‖𝐾‖Ꮃ directly, it is possible to calculate a lower-bound
of 𝜅Ꮃ(𝐾). The resulting condition number estimates corresponding to Figures 7.3 and 7.7 are
shown in Figure 7.13.
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Figure 7.13: Conditioning number estimates of the Intfnp and 4PB2np test problems.

The solution obtained with the direct solution method in Figures 7.3 and 7.7 have a rela-
tively large increase in the residual norm. This is also reflected in the corresponding condition
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number estimates in Figure 7.13. This implies that the stiffness matrix becomes increasingly
ill-conditioned for these problems. As a result, accuracy is increasingly lost for these prob-
lems. The increased ill-conditioning of the problem can be attributed to the small number of
elements of these problems. Once an element reaches complete failure, the system of equa-
tions is no longer properly defined as a result of the resulting singularity. A good illustration
of this can also be seen in Figure 7.12 where around analysis step 2800 the residual norm in-
creases sharply. At this point, the model reaches failure resulting in a singularity in the system
of equations.

Furthermore, in Figures 7.3 and 7.7 it was observed that the solution residuals of Woodbury’s
identity increases faster than those of the direct solution method. This can be attributed to
the numerous matrix and vector manipulations necessary in Woodbury’s identity to obtain
the solution. The rounding-errors resulting from all these operations add up and result in the
increased residual norm.

7.2. Restarting approaches

In Section 7.1 and its subsections, the influence of the eigenvalue ratio threshold on accu-
racy of the solution was investigated. To isolate the effect of the eigenvalue ratio, restarting
of Woodbury’s identity was left out of consideration. This section will present two restarting
approaches which aim at minimising the analysis time. The first method is based on theoreti-
cal estimates of the costs of Woodbury’s identity and matrix factorisation and provides a rank
at which Woodbury’s method should be restarted. The second method is based on actual
measured times and is less dependent on theoretical assumptions.

7.2.1. Rank-based restarting

The first restarting approach provides a restarting point based on the rank in Woodbury’s
identity. To this extend, estimates are required for the costs of both Woodbury’s identity and
the direct solution method. In order to derive these costs, consider a system stiffness matrix
𝐾 ∈ ℝᑟ×ᑟ with lower- and upper-bandwidths 𝑝, 𝑞. Let 𝑋, 𝐹 ∈ ℝᑟ×ᑣ be the solution- and
force vectors respectively where 𝑟 is the number of right-hand side vectors1. The system of
equations to be solved is then defined as

𝐾𝑋 = 𝐹 .

Furthermore, assume that the stiffness matrix 𝐾 has been factored as in Equation (6.6)

𝐾 = 𝐾init + 𝑈𝐶𝑈ᑋ ,

with 𝑈 ∈ ℝᑟ×ᑜ and 𝑘 the rank. The theoretical flop counts of the direct solution method and
Woodbury’s identity can then be derived by summing the costs of all necessary steps. The
costs of the steps for the direct solution method are shown in Table 7.3, and for Woodbury’s
identity in Table 7.4.

1It is possible that multiple load cases are considered. For example, self-weight of a model and an external
force.
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Table 7.3: Flop count of direct solution method [7].

Operation flop count

Factorisation 2𝑛𝑝𝑞
Back substitution 2𝑛𝑞𝑟
Forward substitution 2𝑛𝑝𝑟

The values 𝑛, 𝑝, 𝑞, 𝑟 represent properties of the model and are thus constant. As a result, the
cost of the direct solution method is constant and will be denoted with 𝑓ᑕ,

𝑓ᑕ = 2𝑛 (𝑝𝑞 + 𝑟(𝑝 + 𝑞)) . (7.5)

Table 7.4: Flop count of Woodbury’s identity. The steps refer to the solution steps presented in Section 6.2.1.
Costs are taken from [7].

Operation flop count

Step 1 {Forward substitution 2𝑛𝑝𝑟
Back substitution 2𝑛𝑞𝑟

Step 2 {Forward substitution 2𝑛𝑝𝑘
Back substitution 2𝑛𝑞𝑘

Step 3 {Sparse-dense mat-mat multiplication 2𝑛𝑘Ꮄ
Vector update 𝑘

Step 4 { Sparse-dense mat-mat multiplication 2𝑛𝑘𝑟

Step 5 {
Factorisation Ꮄ

Ꮅ𝑘
Ꮅ

Forward substitution 𝑘Ꮄ𝑟
Back substitution 𝑘Ꮄ𝑟

Step 6 {Mat-mat multiplication 2𝑛𝑘𝑟
Vector update 𝑛𝑟

The rank 𝑘 is not constant as it grows with the number of analysis steps. Therefore, the cost
function of Woodbury’s identity will be denoted with 𝑓ᑨ(𝑘),

𝑓ᑨ(𝑘) =
2
3𝑘

Ꮅ + (2𝑛 + 2𝑟) 𝑘Ꮄ + (2𝑛(𝑝 + 𝑞) + 1 + 4𝑛𝑟) 𝑘 + 2𝑛𝑟(𝑝 + 𝑞) + 𝑛𝑟 . (7.6)

The lower- and upper-bandwidths 𝑝, 𝑞 are the bandwidths of the system stiffness matrix after
reordering. Since the reordered matrix is never explicitly formed, approximations for 𝑝, 𝑞 are
used based on the geometry of the problem. For two-dimensional rectangular problems an
estimate for both 𝑝, 𝑞 is given by direction with the least number of degrees of freedom (𝑝 =
𝑞 = √𝑛 for square geometries), and for three-dimensional problems an estimate is given by
the product of the two directions with the least number of DOF2.

To determine the optimal restarting point assume first for simplicity that the rank increases
with 1 every analysis step and let 𝑚 be the maximal number of analysis steps. An example of
restarting at analysis number 𝑡 is shown in Figure 7.14.

2Especially for complex ኽ-dimensional geometries this method poorly approximates the bandwidth.
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Figure 7.14: Example for finding restart point ፭. Assumption: rank increases with ኻ per iteration.

From Figure 7.14 a function can be derived which determines the total cost of using Wood-
bury’s identity as a function of restarting at analysis step 𝑡 assuming that the rank increases
with 1 every analysis step. Defining the indicator function as

Definition 11. The indicator function 1{ᑗ(ᑩ)ᐵᑪ}(𝑥) is a function defined as

1{ᑗ(ᑩ)ᐵᑪ}(𝑥) = {
1 if 𝑓(𝑥) ≠ 𝑦
0 else

(7.7)

The cost for restarting at 𝑡 is then calculated as

𝑐(𝑡) = ⌊ 𝑚
𝑡 + 1⌋ ⋅ (𝑓ᑕ +

ᑥ

∑
ᑚᎾᎳ
𝑓ᑨ(𝑖)) + 1{ᑞᎽ⌊ ᑞᑥᎼᎳ ⌋⋅(ᑥᎼᎳ)ᐵᎲ}

(𝑡) ⋅ ⎛

⎝

𝑓ᑕ +
ᑞᎽ⌊ ᑞᑥᎼᎳ ⌋⋅(ᑥᎼᎳ)ᎽᎳ

∑
ᑛᎾᎳ

𝑓ᑨ(𝑗)⎞

⎠

. (7.8)

The indicator function in Equation (7.8) is needed to adjust for the remaining analysis steps
after the last restart as can be seen in Figure 7.14. For example, with 𝑚 = 100 and restarting
at 𝑡 = 2, after 33 restarts there is still one analysis step left for which the second term in the
right-hand side of Equation (7.8) corrects.

The cost function of Equation (7.8) assumes that the rank increases with 1 every analysis step
such that 𝑓ᑨ has to be evaluated for all integers up to 𝑡. However, in most problems the rank
increases with more than 1. As a result, not all values of 𝑓ᑨ have to be evaluated and the cost
function of Equation (7.11) has to be adjusted accordingly. Therefore, assume that the rank
increases with an arbitrary value Δ𝑘 each analysis step. Under this assumption the following
relation holds between the rank 𝑘 and the analysis number 𝑡

𝑘 = Δ𝑘𝑡 . (7.9)
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The analysis step 𝑡 from Equation (7.8) can then be substituted out by diving both sides of
Equation (7.9) by 𝑛 and taking the floor function due to 𝑡 being an integer value

𝑡 = ⌊ 𝑘Δ𝑘⌋ . (7.10)

Substitution of Equation (7.10) into Equation (7.8), the cost function for Woodbury’s identity
as a function of the rank-based restarting point 𝑘 becomes

𝑐(𝑘) = ⌊ 𝑚
⌊ ᑜᏺᑜ⌋ + 1

⌋ ⋅ ⎛

⎝

𝑓ᑕ +
⌊ ᑜᏺᑜ ⌋

∑
ᑚᎾᎳ

𝑓ᑨ(𝑖)⎞

⎠

+ 1

{ᑞᎽ⌊ ᑞ
⌊ ᑜᏺᑜ ⌋ᎼᎳ

⌋⋅(⌊ ᑜᏺᑜ ⌋ᎼᎳ)ᐵᎲ}
(𝑘) ⋅

⎛
⎜
⎜
⎜

⎝

𝑓ᑕ +

ᑞᎽ⌊ ᑞ
⌊ ᑜᏺᑜ ⌋ᎼᎳ

⌋⋅(⌊ ᑜᏺᑜ ⌋ᎼᎳ)ᎽᎳ

∑
ᑛᎾᎳ

𝑓ᑨ(𝑗)
⎞
⎟
⎟
⎟

⎠

. (7.11)

The optimal rank-based restarting point is the value 𝑘 for which Equation (7.11) is minimised.
This minimisation problem relies heavily on the estimated bandwidth of the stiffness matrix 𝐾.
These estimates are used to estimate the flop counts 𝑓ᑕ, 𝑓ᑨ of respectively the direct andWood-
bury’s identity solution steps. For simple 2- and 3-dimensional geometries these bandwidths
can be accurately estimated. However, for complex geometries this is no longer efficiently
possible. Furthermore, the reordering applied in the PARDISO direct solver is a fill-in min-
imising reordering scheme which does not necessarily minimise the bandwidth. It is therefore
likely that the direct solution method flop counts in Table 7.3 are inaccurate. As a result of the
above, minimising Equation (7.11) is unlikely to predict an optimal restarting point.

Instead of relying on estimates of the system matrix bandwidth for estimating the flop counts
𝑓ᑕ𝑎𝑛𝑑𝑓ᑨ, it is possible to measure the actual required computing times. The next section will
describe how a similar restarting strategy can be derived using measured computing times
which do not rely on estimating the stiffness matrix bandwidth or the rank increase.

7.2.2. Time-based restarting

The rank-based restarting strategy of Section 7.2.1 relies on the estimation of the stiffness
matrix bandwidth to calculate flop counts for both solution methods as well as it assumes a
constant increase in rank. Due to complex geometries and the fill-in reducing nature of the
PARDISO reordering scheme, these estimates are inaccurate. Therefore, a different restarting
strategy will be proposed which does not rely on these estimates.

To this extend, the computing times of the analysis steps are measured and from these times
an estimate is calculated for the expected total time. As an illustration, consider an analysis
with a maximum number of analysis steps 𝑚. The analysis starts with a direct solution step
(factorisation, back- and forward substitutions) which time is measured and denoted with 𝑡ᑕ.
The subsequent analysis steps, say 𝑛, obtain the solution using Woodbury’s identity and the
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respective times are denoted with 𝑡ᑨ(𝑖) where 𝑖 = 1,… , 𝑛. Restarting after the 𝑛-th analysis
step and assuming that the measured sequence of times {𝑡ᑕ, 𝑡ᑨ(1), … , 𝑡ᑨ(𝑛)} repeats until
the end of the analysis, the total computing time of the analysis can be computed similarly to
Equation (7.8)

𝑡(𝑛) = ⌊ 𝑚
𝑛 + 1⌋ ⋅ (𝑡ᑕ +

ᑟ

∑
ᑚᎾᎳ
𝑡ᑨ(𝑖))

+ 1{ᑞᎽ⌊ ᑞᑟᎼᎳ ⌋⋅(ᑟᎼᎳ)ᐵᎲ}
(𝑛) ⋅ ⎛

⎝

𝑡ᑕ +
ᑞᎽ⌊ ᑞᑟᎼᎳ ⌋⋅(ᑟᎼᎳ)ᎽᎳ

∑
ᑛᎾᎳ

𝑡ᑨ(𝑗)⎞

⎠

. (7.12)

Equation (7.12) is only based on two assumptions. Firstly, the maximal number of analysis
steps 𝑚 is assumed to be known which is not true for any realistic problem. The second as-
sumption in calculating the expected total computing time is that the sequence of measured
computing times repeats after each restart. Section 7.2.3 will illustrate that both these as-
sumptions are reasonable and do not affect the restarting point significantly.

7.2.3. Results

This section presents the results of the time-based restarting Woodbury’s identity solution
method. To illustrate the restarting procedure, consider the reinforced concrete slab example
from Section 7.1.1 again. To obtain more realistic computing times, a mesh refinement is
applied to the model. The new model properties are given in Table 7.5.

Table 7.5: Mesh-refined reinforced concrete slab properties.

Problem Size DOF per element Description

Mesh-refined Slab 335331 24 Reinforced concrete slab

Using this problem, it will be motivated that the assumption of the maximal number of analysis
steps has no significant effect on the restarting point. To this extend, the elapsed times of the
first 80 analysis steps of the problem without restarting are shown in Figure 7.15.
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Figure 7.15: Mesh-refined reinforced slab analysis step times.

Using the measured times from Figure 7.15 and using Equation (7.12), the total computing
times can be calculated for several different assumptions of the total number of analysis steps.
Figure 7.16 shows the total expected analysis times as a function of the restarting point. The
optimal restart point is then defined as the minimum of this function.
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Figure 7.16: Mesh-refined reinforced slab total analysis times as a function of the restarting point.

In Figure 7.16, the optimal restart point is indicated with a red dot. Comparing the optimal
restarting points for different values of 𝑚, it is clear that this choice has no significant effect on
the calculation of the optimal restarting point. Therefore, it is chosen to take 𝑚 = 10000 for all
further analyses.

The other assumption in the derivation of the optimal starting point was that the sequence of
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measured analysis steps repeats itself. To motivate that this is a reasonable assumption, the
reinforced slab analysis is performed with restarting, as can be seen in Figure 7.17.
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Figure 7.17: Mesh-refined reinforced slab analysis step times.

Indeed, the pattern of increasing analysis times repeats itself after restarting. With this, both
assumptions in the time-based restarting strategy are motivated to be reasonable. In order to
validate that the presented time-based restarting strategy indeed leads to an optimal restarting
point, the problem is solved using the time-based restarting as well as two strategies which
restart approximately 20 analysis steps earlier and later respectively. The elapsed times of
the first 300 analysis steps of these examples are shown in Figure 7.18.
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Figure 7.18: Validation of time-based restarting approach comparison to restarting earlier and later respectively.
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From Figure 7.18 it can be seen that both alternative (earlier, later) restarting strategies recal-
culate the matrix factorisation at different times than the time-based restarting. To compare
these strategies, the total analysis times corresponding to the three different restarting ap-
proaches of Figure 7.18 are given in Table 7.6.

Table 7.6: Total analysis times for different restarting strategies.

Restart point Earlier Automatic Later

Total analysis time 20:47 (+6.9%) 19:26 21:29 (+10.5%)

FromTable 7.6 it can be seen that restarting either earlier or later than the time-based restarting
results in longer analysis times.

Since the analysis times increase gradually after restarting, continuing longer without restart-
ing results in a performance penalty especially in those last analysis steps. On the other
hand, restarting earlier results in too many expensive matrix factorisations. The time-based
restarting is able to find an optimal point between these two situations.

In Section 7.1.1 it was mentioned that restarting has a positive effect on the accuracy of the
solution. To motive this, the Intfnp from the mentioned section was solved using Woodbury’s
identity with time-based restarting as shown in Figure 7.19.
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Figure 7.19: Residual norms of Intfnp with restarting.

As observed before, the residual norm of Woodbury’s identity increases faster than the default
direct solution method. However, once Woodbury’s identity is restarted the residual norm
resets to the value of the direct solution method. The reason for this is that when Woodbury’s
identity is restarted, a new factorisation is calculated and the rank set back to 0. As a result,
all the error build up due to the numerous matrix and vector manipulations are removed and
the error is determined by the conditioning of the stiffness matrix.
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This thesis considers two alternative solution methods to the direct solution method, a direct
approach using Woodbury’s identity and PCG. In this section, an optimal restarting approach
was derived for Woodbury’s identity. However, PCG requires a similar strategy. Therefore,
in Section 7.2.4 some remarks will be made about restarting PCG. Furthermore, a remark
is made on the implementation of Woodbury’s identity in Section 7.2.5. Section 8 will then
compare and present results of both solution methods and compare these to the default direct
solution method.

7.2.4. Restarting preconditioned conjugate gradients

The two solution methods discussed in this thesis, Woodbury’s identity and preconditioned
CG, are similar in the sense that both require an expensive factorisation step followed by
significantly cheaper steps. To illustrate this similarity, Figure 7.20 shows how the elapsed
time of the analysis steps increase after restarting for preconditioned CG.
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Figure 7.20: Reinforced slab analysis step times for PCG.

Indeed, the preconditioned CG analysis times show similar behaviour to that of Woodbury’s
identity from Figure 7.17, after calculating the factorisation the subsequent analysis steps are
significantly cheaper and costs increase as more analysis steps are performed. Due to this
similarity, PCG will be restarted using the same time-based strategy as Woodbury’s identity.

7.2.5. Implementation details

The idea of Woodbury’s identity is to reuse the factorisation of the stiffness matrix for decreas-
ing the required computations to obtain the solution to Equation (5.1). To this extend, the fac-
torisation is used repeatedly in Equations (6.9) and (6.10). However, it is important to note that
the right-hand side vector of Equation (6.9) is constant throughout the analysis. Furthermore,
the right-hand side of Equation (6.10) is appended every analysis step with the eigenvectors
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corresponding to the considered eigenvalues. Since these right-hand sides are (mostly) con-
stant between analysis steps, it is not necessary to perform back- and forward substitutions
on these vectors every analysis step. Instead, only back- and forward substitutions should be
performed on the new right-hand side columns of Equation (6.10). Therefore, the solutions to
Equations (6.9) and (6.10) are stored in memory in order to prevent these unnecessary sub-
stitutions. To illustrate the effect this has on the performance, the reinforced slab problem was
solved both with and without storing these intermediate solution steps. Figure 7.21 shows the
analysis times for both these implementations.
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Figure 7.21: Illustration of how efficient storage of intermediate steps in Woodbury’s identity can improve compu-
tational performance.

FromFigure 7.21 it is obvious that not storing the solutions to Equations (6.9) and (6.10) and re-
peatedly performing back- and forward substitutions has a significant impact on performance.
By storing the solutions and efficiently reusing these in the subsequent analysis steps, there
is almost no increase in the analysis time. Although this implementation results in improved
analysis times, the drawback is that the memory requirements increase. To motivate that this
is not a problem note that the implementation with the solution storage is restarted at around
analysis step 57. At this point, the rank was 168 resulting in (168+ 1) ⋅ 335331 floating points
to be stored in memory. Assuming a floating point requires 8 bytes (double precision), this
equals approximately 453MB of storage. Obviously, the memory requirements increase with
the problem size and the restarting point of Woodbury’s identity. However, considering that
the given problem size is of the same order as realistic problems, this memory requirement is
acceptable especially considering the memory capacities of modern computers.
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Results

In this section, the performance of Woodbury’s identity and preconditioned CG will be anal-
ysed and compared to the default direct solution method. To this extend, two performance
benchmarks are defined. The two problems that will be used are the reinforced concrete slab
problem from Section 7.2.3 and a mesh-refined version of the shear wall from Section 7.1.1.
The two benchmark problems that will be used are summarized in Table 8.1.

Table 8.1: Performance benchmarks for solution methods.

Problem Size Description

Shear wall 338400 2-dimensional shear wall
Slab 335331 3-dimensional reinforced concrete slab

The benchmark problems from Table 8.1 are shown in Figure 8.1. Note that some of the
reinforcements in the concrete slab are visible. Furthermore, supports are shown with red
arrows, loads with blue arrows and tyings1 as dotted red lines.

1Forcing equal displacements for a group of elements.

65
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(a) Shear wall model (b) Reinforced concrete slab model

Figure 8.1: Visualisation of benchmark problems.

The performance of the solution methods will be tested on these benchmark problems. To
investigate the influence of parallel computing, both problems will be solved while running
single- and multi-threaded using 4 threads.

As mentioned in the introduction, the solver becomes the dominant factor in SLA as the prob-
lem size increases. To illustrate this further, first a remark is made on the structure of SLA.
Sequentially linear analysis has a modular design where each building block has a specific
task such as setting up element stiffness matrices or solving the linear system of equations.
The three building blocks that are most influential on the performance of SLA are the following

• SOLVE: solving the linear system of equations for the unknown displacements.

• STREAC: calculating stresses and strains from the displacements.

• SLSCAL: finding the critical scaling factor and scaling the linear results.

The contributions of these three building blocks to the total analysis time in SLA are shown for
several problem sizes in Figure 8.2.
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Figure 8.2: Contribution of building blocks to the total analysis time as a function of the problem size.

It can be seen in Figure 8.2 that the solver becomes increasingly dominant in the total analysis
time, especially for problems run single-threaded. When running multi-threaded, the domi-
nance of the solver on the total analysis time is reduced. This can be attributed to the fact that
neither STREAC or SLSCAL runs in parallel. As a result, the work of these building blocks can
not be distributed over multiple threads resulting in a larger contribution to the total analysis
time of these building blocks. Reducing the influence of the solver on the total analysis time,
it is likely that these two building blocks become the main bottleneck for the performance of
SLA.

Due to the discussed similarity between Woodbury’s identity and PCG, Section 8.1 will first
compare both methods. Both methods are also compared to the default CG preconditioned
with the ILU factorisation which will illustrate the ineffectiveness of the implementation of this
preconditioner. Section 8.2 then analyses the performance of both PCG and Woodbury’s
identity and puts these results in perspective with respect to the default direct solution method.

8.1. Comparison PCG and Woodbury’s identity

It was argued that Woodbury’s identity and PCG using the complete factorisation are similar
in the sense that both require an expensive factorisation, followed by significantly cheaper
analysis steps. This section will compare both methods along with CG preconditioned with
the ILU factorisation. The ILU factorisation is the default preconditioner for CG in DIANA. To
illustrate how the number of CG iterations compares to the rank of Woodbury’s identity, both
have been given in Figure 8.3.
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Figure 8.3: Comparison between Woodbury’s identity rank and the number of PCG iterations for different precon-
ditioners.

Clearly, the ILU preconditioner performs poorly in reducing the number of distinct eigenval-
ues, as still many iterations are required to obtain convergence, even in the first analysis step
directly after factorisation. Furthermore, it can be observed that the number of required it-
erations using the ILU preconditioner does not increase. The reason for this is that in the
implementation the ILU factorisation is updated each analysis step. As a result, the number
of required iterations remains approximately constant.

Comparing the number of iterations for LU preconditioned CG and Woodbury’s identity, a
clear difference is observed. Where the rank of Woodbury’s identity increases continuously,
the number of PCG iterations increases only fast during the first few analysis steps after re-
calculating the LU factorisation. The reason for this is that the problem is considerably larger
than the ones considered in Section 7. Therefore, the singularities discussed in Section 7.1.2
do not occur as fast. As a result, the conditioning of the system of equations remains relatively
constant as can be seen in Figure 8.4.
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Figure 8.4: Condition number estimates for the LU preconditioner.

As can be seen from Figure 8.4 the conditioning of the system barely increases such that the
required number of PCG does not increase.

In the implementation of Woodbury’s identity, the rank increases according to the dominant
eigenvalues as described in Section 7.1. This increase is independent on if an element is
already damaged and as a result the rank increases steadily.

To further illustrate the inefficiency of the ILU preconditioner the analysis times of the three
mentioned solution methods are given in Figure 8.5.
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Figure 8.5: Comparison between analysis times of CG using different preconditioners.
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Note that the analysis time of the ILU preconditioner is significantly higher than that of the
LU preconditioner. Even in the first analysis step, where both the ILU and LU factorisation
are calculated, the LU preconditioner performs better. The reason for this is twofold. Firstly,
calculation of the LU factorisation is highly optimised as a result of PARDISO, whereas the
calculation of the ILU factorisation uses a less optimised algorithm. Secondly, the required
number of CG iterations after applying the LU factorisation is small while many iterations are
required with the ILU preconditioner, even directly after factorisation as was observed in Figure
8.3. The combination of these two factors leads to higher analysis times.

8.2. Performance analysis

In this section the performance ofWoodbury’s identity andPCGwill be analysed and compared
to the default direct solution method. To indicate how the direct solution performs on the given
benchmark problems, Table 8.2 shows the contributions of the three most dominant building
blocks on the total analysis time when using the default direct solution method.

Table 8.2: Contribution of the solver to the total analysis time for the direct solution method.

Shear wall Slab
Single-thread Multi-thread (4) Single-thread Multi-thread (4)

SOLVE 47.9% 41.4% 70.6% 48.8%
STREAC 10.0% 10.8% 11.8% 20.1%
SLSCAL 40.3% 45.6% 15.6% 27.8%

From Table 8.2 it is clear that the solver contributes significantly to the total analysis time,
especially when using single-threading. However, when using multi-threading the contribution
of STREAC and SLSCAL increases. Therefore, decreasing the contribution of the solver to
the total analysis time will result in these building blocks to become increasingly dominant.

The results of the benchmark problems mentioned in Table 8.1 are shown in Figures 8.6 - 8.9.
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Figure 8.6: Benchmark shear wall problem, single-threaded

Figure 8.6 shows the results of Woodbury’s identity and PCG on the shear wall problem run
on a single-thread. Note that every time Woodbury’s identity is restarted, it is equivalent to the
direct solution method. This is also reflected in the figure since the cost of restarting is exactly
that of the direct solution method. The fluctuations in the analysis times of the direct solution
method can be attributed to occupation of the machine the problem was solved on. Numerous
people use these machines, as a result of which calculations slow down when occupation is
high and resources have to be shared amongst users. After restarting Woodbury’s identity,
the costs are approximately reduced by a factor 6. On the other hand, the costs of PCG are
only a factor 2 less than the direct solution method. Furthermore, restarting PCG is more ex-
pensive and the analysis times increase significantly faster. The reason for this disappointing
performance of PCG is the fact that the considered problem is 2-dimensional. As a result, the
bandwidth of the stiffness matrix is relatively small. The costs of performing back- and forward
substitutions are relatively more expensive compared to the cost of a matrix factorisation for
small bandwidths. Since PCG uses these back- and forward substitutions every analysis step
to apply the preconditioner, performance degrades.

In Figure 8.7 the same problem is solved as in Figure 8.6 only now using multi-threading.
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Figure 8.7: Benchmark shear wall problem, multi-threaded

The behaviour of Woodbury’s identity is similar as in Figure 8.6; the cost of the matrix factorisa-
tion is the same as the direct solution method and subsequent analysis steps are significantly
cheaper. However, the performance of PCG is now significantly better with respect to the
default direct solution method. The reason for this is the use of multi-threading. In Figure 8.6
the performance of PCG was disappointing due to the relatively expensive back- and forward
substitutions. However, due to the use multi-threading the cost of the repeated back- and
forward substitutions have decreased. As a result, the overall performance of PCG is better
compared to the direct solution method.

Figure 8.8 shows the results of the reinforced slab problem solved on single-threaded.



8.2. Performance analysis 73

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260
0

10

20

30

40

50

Analysis step

El
ap

se
d
tim

e
(s
ec

)
Analysis times for the slab problem, single-threaded

Default
Woodbury

PCG

Figure 8.8: Benchmark reinforced concrete slab problem, single-threaded

The performance of Woodbury’s identity is again similar as seen in Figures 8.6 and 8.7 in the
sense that when Woodbury’s identity is restarted, the cost is equal to that of the direct solution
method. Furthermore, the performance of PCG is different than for the 2-dimensional shear
wall problem. After restarting, the costs do not increase as sharply as for the 2-dimensional
problem. This can be attributed to the larger bandwidth of the stiffness matrix. Since the
reinforced slab is a 3-dimensional problem, the bandwidth is significantly larger than for a 2-
dimensional problem. As a result, the back- and forward substitutions are relatively cheap
compared to the matrix factorisation.

In Figure 8.9 the same problem is solved as in Figure 8.8 only now using multi-threading.
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Figure 8.9: Benchmark reinforced concrete slab, multi-threaded

Note first the large peak in the cost of the direct solution method. This is typically the result
of the occupancy of the machine the problem was solved on. Again, the performance of
Woodbury’s identity is similar as in Figures 8.6, 8.7 and 8.8. However, the performance of
PCG is now significantly better than in Figure 8.8. Due to the multi-threading, the factorisation
and repeated back- and forward substitutions are cheaper such that the performance of PCG
is close to that of Woodbury’s identity.

Before summarising the results of the benchmark problems, a remark is made on the restarting
ofWoodbury’s identity. In Figures 8.8 and 8.9 it can be seen that the costs have not significantly
increased before the method is restarted. To justify these restarts, the shear wall problem is
solved using both an earlier and later restarting point. The first 125 analysis steps are shown
in Figure 8.10.
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Figure 8.10: Different restarting points single threaded slab.

The corresponding analysis times are given in Table 8.3.

Table 8.3: Total analysis times for different restarting strategies.

Restart point Earlier Time-based Later

Total analysis time 1:26:40 1:24:32 1:26:13

Comparing the total analysis times of the earlier and later restarting to the automated time-
based restarting, it can be concluded that the proposed time-based restarting results in the
best performance.

To summarise the results of the solution methods on the benchmark problesm, the total anal-
ysis times corresponding to Figures 8.6 - 8.9 are shown in Table 8.4 along with a percentual
difference with respect to the direct solution method.
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Table 8.4: Overview of improvements to analysis times on benchmark problems.

Shear wall Slab
Single-thread Multi-thread (4) Single-thread Multi-thread (4)

Base 2:44:16 2:24:48 4:13:11 2:19:07

Woodbury 1:24:35 1:30:42 1:24:32 1:22:42
-48.5% -37.4% -66.6% -40.5%

PCG 2:30:38 2:14:38 2:55:11 1:45:41
-8.3% -7.0% -30.8% -24.0%

Indeed, both Woodbury’s identity and PCG perform significantly better than the default direct
solution method. It can be seen that the performance increase is smaller when the problem
is run on multiple threads. The reason for this is that PARDISO is highly optimized to run
parallel, as can also be seen by comparing the single- and multi-threaded times of the direct
solution method. Furthermore, PCG performs considerably worse thanWoodbury’s identity on
the shear wall problem. This can be attributed to the fact that the shear wall is a 2-dimensional
problem. As a result, the back- and forward-substitutions are relatively expensive compared
to the factorisation and since these substitutions have to be repeatedly performed as precon-
ditioner step, the performance degrades.

At the start of this section, the dominance of the solver in SLA was motivated in Table 8.2. This
table shows the contributions of the dominant building blocks on the total analysis time of the
direct solution method. To analyse the influence of the building blocks on the performance of
the new solution methods, Table 8.5 shows the old contributions along with the building block
contributions using the two new solution methods.

Table 8.5: Contribution of the dominant building blocks to the total analysis time.

Shear wall Slab
Single-thread Multi-thread (4) Single-thread Multi-thread (4)

SOLVE 47.9% 41.4% 70.6% 48.8%
STREAC 10.0% 10.8% 11.8% 20.1%
SLSCAL 40.3% 45.6% 15.6% 27.8%

Woodbury {
SOLVE 16.7% 13.1% 20.0% 16.0%
STREAC 19.3% 19.7% 30.9% 32.3%
SLSCAL 60.6% 63.9% 43.9% 46.3%

PCG {
SOLVE 39.1% 26.0% 29.2% 20.7%
STREAC 9.8% 12.8% 34.8% 30.1%
SLSCAL 49.2% 59.1% 30.8% 44.1%

Comparing the building block contributions of both new solution methods to the contributions
of the default direct solution method, it can be concluded that the effect of the solver on the
performance has been significantly reduced. In particular Woodbury’s identity performs good
such that the solver is no longer the dominant building block in SLA. In particular, the determin-
ing the scaling factor for the linear analysis and scaling the linear analysis becomes dominant
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as the impact of the solver is reduced. When further improving the computational performance
of SLA, the biggest improvements can be achieved when improving this building block.

Finally, to motivate that Woodbury’s identity produces physically meaningful results the model
displacements of both benchmark problems are shown in Figure 8.11.

(a) Shear wall model (b) Reinforced concrete slab model

Figure 8.11: Visualisation of benchmark problem results.

The displacements shown in Figure 8.11 are in line with expectations given the loads as were
shown in Figure 8.1.

The results presented in this section only consider a single problem size. In order to investigate
how the proposed solution methods scale with the problem size, the next section will use the
same problems with different mesh sizes in order to assess the scalability of the solution
methods.

8.3. Scaling of results

This section will consider four different mesh sizes for each of the benchmark problems of
Table 8.1 to analyse the scalability of the proposed solution methods. The different mesh
sizes of the two benchmark problems are given in Table 8.6.
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Table 8.6: Different mesh sizes of the benchmark problems.

Degrees of freedom

Shear wall 24240 96480 150600 338400
Slab 2403 46337 134082 335331

Similarly to Section 8.2, the scalability of the solution methods will be assessed both using
single- and multi-threading. Figure 8.12 shows the scaling on the 2-dimensional shear wall
problem using single-threading.
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Figure 8.12: Scaling of the solution methods on the shear wall problem, single-threaded.

From Figure 8.12 it is immediately clear that both Woodbury’s identity and PCG perform equal
to the direct solution method for small problem. For these problems, the costs of factorisa-
tion and back- and forward substitutions are low. On the other hand, the set-up costs for
Woodbury’s identity and PCG for these problem sizes are relatively expensive. As a result,
most of the performance that is gained with the solution methods is lost with this necessary
overhead. The set-up costs include allocating memory, creating arrays and initialising the
PARDISO interface for the back- and forward substitutions. The cost of these operations are
largely independent of the problem size. Therefore, when increasing the problem size the
relative influence of the set-up on the overall performance will decrease.

For increasing problem sizes, it is observed that the performance ofPCG remains largely equal
to that of the direct solution method. In Section 8.2 it was discussed that this can be attributed
to the fact that for 2-dimensional problems the back- and forward substitutions are relatively
expensive. Note furthermore the linear scaling of the direct solution method. The calculation
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of a matrix factorisation scales cubically with the problem size (O (𝑛Ꮅ)) and the back- and for-
ward substitutions quadratically with the problem size (O (𝑛Ꮄ)). Therefore, a similar scaling of
the direct solution method would seem logical. The fact that a linear scaling is observed can
be attributed to a combination of two reasons. Firstly, the bandwidth of the stiffness matrix in-
creases relatively slowly with increasing problem sizes for 2-dimensional problems. Therefore,
the number of non-zeros (that occur within the bandwidth) increases slowly correspondingly.
Secondly, the mentioned cubic and quadratic scaling does not consider the sparsity pattern
of the matrix. PARDISO is highly-optimised and exploits the sparsity pattern of the stiffness
matrix to minimise the required computations. As a result of a combination of the mentioned
reasons, the method scales linearly for 2-dimensional problems.

From Figure 8.12 it can also be seen that the scaling of Woodbury’s identity is significantly
better than that of either PCG or the direct solution method. This is promising, especially
when there is a desire for solving even larger 2-dimensional problems.

In Figure 8.13 the same problems are solved only now using multi-threading.

24240 96480 150600 338400
0

30:00

1:00:00

1:30:00

2:00:00

2:30:00

Problem size (DOF)

To
ta
la

na
ly
si
s
tim

e

Scaling of the shear wall problem, multi-threaded

Default
Woodbury

PCG

Figure 8.13: Scaling of the solution methods on the shear wall problem, multi-threaded.

Using multi-threading, it can be seen that PCG performs slightly better compared to the direct
solution method than when using single-threading. This is the result of the relatively expensive
back- and forward substitutions being able to performed in parallel, reducing the impact on
performance. Furthermore, the linear scaling of the direct solution method is also observed
when using multi-threading.

Comparing Figures 8.6 and 8.7, it can be seen that Woodbury’s identity scales less favourable
when using multi-threading than for single-threading. The reason for this is that the numerous
matrix and vector manipulations use less optimised linear algebra libraries, some of which
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do not allow for parallel computing. Hence, the implementation of Woodbury’s identity scales
less favourable on multiple threads. However, even though the scaling is less favourable than
on a single thread, the performance is still significantly better than the direct solution method
especially for large problems.

The previous two figures showed the scaling of the results on a 2-dimensional problem. Figure
8.8 shows the scaling of the solution methods on the reinforced slab problem, a 3-dimensional
problem.
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Figure 8.14: Scaling of the solution methods on the reinforced slab problem, single-threaded.

The linear scaling of the direct solution method observed in Figures 8.6 and 8.7 no longer holds
for the 3-dimensional problem. The linear scaling in thementioned figures was attributed to the
small growth of the bandwidth due to the problem being 2-dimensional. The reinforced slab
problem is 3-dimensional, as a result of which the bandwidth increases significantly faster. The
number of non-zeros in the bandwidth increases faster correspondingly, and more calculations
have to be performed on non-zero elements.

Similarly to the 2-dimensional problem, Woodbury’s identity scales significantly better than
the direct solution method and results in a significant performance increase for large problem
sizes. Since the typical problems of interest of SLA are 3-dimensional this is a promising
result.

In Figure 8.9 the scaling of the solution methods is shown on 3-dimensional problems using
multi-threading.
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Figure 8.15: Scaling of the solution methods on the reinforced slab problem, multi-threaded.

The behaviour of the solution methods in Figure 8.9 is similar to those in Figure 8.8. The main
difference is again the less favourable scaling of Woodbury’s identity. Even though Wood-
bury’s identity’s performance does not scale as well when using multi-threading, the increase
in performance is still significant. For the largest problem considered, the analysis time is
almost halved. From Figure 8.15 it can be derived that for even larger problems, the perfor-
mance gain will be even more significant.

The aim of this thesis is to increase the size of problems that could be solved within an accept-
able time frame using SLA. To this extend, consider 24 hours as an acceptable total analysis
time. The typical problems to be solved with SLA are 3-dimensional. Furthermore, any re-
alistic problem problem will not be solved single-threaded especially considering the number
of cores of modern computers. Therefore, to analyse what new problem sizes can be solved
with Woodbury’s identity within the given time, the reinforced slab problem will be considered
using multi-threading (on 4 threads). From Section 8.2 it follows that using the direct solution
method, it is possible to approximately do 2500 analysis steps in 24 hours. Since cracking con-
stitutes of multiple elements of the model failing, increasing the problem size leads to more
analysis steps having to be performed in order to obtain the same structural response. Tak-
ing the above in considertion, it follows from numerical experiments that the problem size for
Woodbury’s identity can be increased by 15.2% such that the analysis still takes approximately
24 hours. The results are summarised in Table 8.7.
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Table 8.7: Increase in problem size using Woodbury’s identity.

Default Woodbury

Problem size 335331 386448 (+15.2%)
Analysis steps 2500 2881 (+15.2%)
Analysis time 23:11:10 23:31:55

From Table 8.7 it can be seen that both the problem size and analysis steps have increased
with 15.2% while the analysis time has large remained constant. One of the main issues of
SLA was the poor numerical performance. The implementation of Woodbury’s identity has
lead to a big step in this regard such that considerably larger problems can be solved in time
frames in which prior to this thesis only smaller problems could be solved.
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Conclusion & discussion

9.1. Conclusion

One of the main issues of SLA is the poor numerical performance. Due to the event-by-event
strategy, typically many linear analyses have to be solved, each requiring an expensive matrix
factorisation. In this thesis, two solution methods have been developed which exploit the
event-by-event strategy of SLA.

Firstly, a new preconditioned was developed for CG. Instead of using an ILU preconditioner,
the complete LU factorisation of the stiffness matrix is used as preconditioner for CG. Due
to the quality of this preconditioner, few iterations are required every analysis step. From
numerical experiments it followed that the performance of this preconditioner was poor on
2-dimensional problems. This was attributed to the fact that the application of the precondi-
tioner on the stiffness matrix for these problems is relatively expensive compared to the matrix
factorisation. For 3-dimensional problems, the performance was of the complete factorisation
preconditioner was significantly better.

Secondly, a new direct solution was developed. To this extend, Woodbury’s matrix identity
has been applied which allows for the numerically efficient computation of the inverse of a
low-rank corrected matrix. This solution method reuses the old matrix factorisation along with
several matrix and vector manipulations to efficiently calculate the solution to a system of linear
equations. An optimal restarting strategy was derived to determine the point at which a new
factorisation should be calculated. The method performs significantly better than the direct
solution method, especially for large problems.

Prior to this thesis, the solver was the main bottleneck of SLA in terms of performance. Using
Woodbury’s identity, the impact of the solver on the analysis time has been significantly re-
duced up to the point at which the solver is no longer the dominant factor in SLA. Furthermore,
usingWoodbury’s identity it is possible to solve significantly larger problemswith analysis times
that previously only smaller problems were solved in. From numerical experiments it followed
that problems up to 15% larger could be solved in a similar time frame as smaller problems
used to be solved in. As a result, the applicability of SLA on real-life problems has increased.

83
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9.2. Discussion

From numerical experiments it followed that Woodbury’s identity does not scale well with par-
allel computing. Many of the linear algebraic libraries that are used in the implementation of
Woodbury’s identity do not enable parallel computing. As a result, the performance increase
is small when going from single- to multi-threaded. An obvious recommendation is therefore
to investigate the use of libraries which allow parallel computing in order to investigate effect
on Woodbury’s identity.

A related issue is the performance of the other building blocks in SLA. Using Woodbury’s
identity, the contribution of the solver on the analysis time has been greatly reduced. As a re-
sult, the building blocks STREAC (calculating stresses and strains) and, especially, SLSCAL
(determining scaling factor) have become dominant. These building blocks perform their cal-
culations on integration point level, meaning that they have to loop over all these points. With
the current implementation, these calculations are performed sequential, not using any paral-
lel processing. Considering that these building blocks now form the bottleneck in terms of the
performance of SLA, a large leap forward can be achieved by introducing parallel processing
in these building blocks.

When assessing the performance of the implemented solution methods, proportional loading
was assumed which means that all loads increase and decrease simultaneously at the same
rate. Since all loads were proportionate, the critical scaling factor for the linear analysis could
easily be found by taking the minimum of a set of values. However, when assuming non-
proportional loading, the loads are not applied proportionally anymore. As a result, the calcu-
lation of the critical scaling factor is no longer possible using the same approach. Instead, a
quadratic (for 2-dimensional problems) or cubic (for 3-dimensional problems) equation needs
to be solved. Therefore, moving from proportional- to non-proportional loading results in a
significant increase in the required computations in the SLSCAL building block. It is therefore
worthwhile to investigate methods for decreasing the impact of this building block, especially
for non-proportional loading.
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