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Abstract
Crowd-control is an emerging problem in urban
areas and cameras are commonly seen as the
solution, however, there are major concerns
regarding privacy. To overcome these issues, while
still maintaining the ability to keep track of people,
mmWave sensors can be utilized instead, but this
introduces new challenges when it comes to people
counting. They work by recording the data as
point clouds, making it difficult to determine the
real number of people when they are occluded.
To address this challenge, we combine the spatial
and temporal information of the point clouds into
graphs, and explore the possibilities of Graph
Neural Networks. Our system classifies up to 5
people and bikes with an accuracy of 80.47%. This
accuracy is 2.53% worse than the state of the art
people counting system for mmWave radar point
clouds.

1 Introduction
Our cities are growing at a rapid pace. By 2050, two-thirds of
the world’s population is expected to live in urban areas [1].
This emphasizes the challenges faced during urban planning
and safety measures. To achieve smart planning, people
counting, and crowd sensing gives an important metric and
are therefore an important assistance. They can be utilized in
several cases, such as keeping track of the number of people
entering a building or tracking the number of people passing
by on the street. This could help prevent overcrowding and
gives useful insights about the popularity of certain locations.
Further, applications in urban scenarios provide valuable
insights into urban planning by showing patterns in traffic and
usage trends [2].

There have been several experiments done in the field of
people and crowd counting. These can be divided into 2
main categories: vision based and device based. Vision based
people counting relies on pictures and videos and therefore
uses cameras to collect information. These approaches
use deep learning techniques to determine the number of
people seen by the camera [3], [4], [5]. Cameras however
record identifiable information of the people and are therefore
raising privacy concerns. In certain scenarios, such as people
counting on the street, respecting people’s privacy is of
utmost importance. In the European Union, the General Data
Protection Regulation (GDPR) specifies in Article 5(1)(c)
that the minimum amount of personal data necessary should
be collected [6]. For these reasons, visual-based people
counting are not always an appropriate option. Device based
crowd sensing determines the number of people through their
devices. This could include, the Bluetooth signals [7] or the
location of these devices. This however requires people to
always carry their devices with themselves, and can only give
an accurate estimation when everyone does so. To overcome
these limitations while preventing privacy issues, mmWave
sensors can be utilized for monitoring people.

MmWave radars work by emitting short-wavelength
electromagnetic waves and collecting the reflected signals

Figure 1: One frame of the mmWave radar recording 2 people as
point clouds. The radar is represented with an orange triangle at
(0, 0). The people walking in the left image corresponds to the red
points in space in the right image.

[8]. The collected signals contain information about the
object’s range, velocity, and angle. These features can be used
to convert the data into point clouds (i.e., a set of data points
in 2D space). This representation is visualized in Figure 1,
where the people sensed by the radar are represented as points
in space and are therefore non-identifiable from the data. As
the signals are transmitted with a frequency of 76–81 GHz,
the detected movements can be in the range of a fraction of a
millimeter. This assures that the sensor has a high accuracy.
Moreover, the sensing is independent of weather [9], and time
of day, whereas, the performance of cameras can significantly
worsen in adverse weather or lighting conditions such as rain
or during the night.

As mmWave sensors represent the data as point clouds, it
is challenging to determine the number of people detected by
the sensor. Figure 1 shows the occlusion caused by 2 people
walking together. To address this challenge, there has been
previous work done for people counting with the use of deep
learning algorithms on mmWave sensor data [10]. This model
focuses only on the spatial information of the point clouds,
i.e., the frames are independent of each other and their order
does not affect the performance of the model. The aim of this
paper is to explore the possibility of including the temporal
properties, i.e., build a model which takes into account the
order of the frames as well as the spatial properties. This
approach will be tackled by forming successive frames into
graphs and training a Graph Neural Network (GNN) on them.

Our main contributions:

• Temporal Graph Formation algorithm which models
points clouds as temporal graphs.

• Performance evaluation of GNNs with temporal graphs
for people counting.

• Publicly available code 1

In this paper, we propose an alternative solution for people
counting with GNNs by first explaining the state of the art in
Section 2. Then we describe the proposed model in Section
3. Afterward, the evaluation of the proposed architecture is
conducted in Section 4. The ethical aspects of the research
are discussed in Section 5. A discussion about the results is
given in Section 6. Finally, the conclusions are presented in
Section 7.



Figure 2: The proposed model, adapted from the Tesla architecture [11]. The elements that are colored with red (TFNet) are excluded, the
yellow colored ones (Temporal Graph k-NN, Max pooling) are modified, and the green blocks are kept. Modification for the Temporal Graph
K-NN: providing an option between furthest, random, and nearest neighbors. Modification for Max pooling: Average pooling instead of max.

2 Related Work
There are commercially available products for people
counting, such as cameras from HIKvision [12] and Canon
[13] and sensors from Terabee [14]. These have a high
accuracy for people counting, HIKvision and Canon however
uses cameras and therefore maintains privacy concerns. The
Terabee products uses Time-of-Flight (ToF) sensors, which
uses the reflection of light to calculate the distance between
points [15], and are therefore more privacy-friendly. Their
products are however only for indoors applications currently.

As all current products for people counting come at a trade-
off, there is emerging research into alternative solutions, such
as LiDAR (utilizes pulsed laser light for distance calculation)
and mmWave sensors.

LiDAR provides higher resolution data than ToF, it is
however more expensive [16]. Studies have shown that
LiDAR sensors provide high accuracy performance for
people counting indoors [17]. In comparison to mmWave
sensors, they are less resilient to weather conditions and have
a shorter range, and therefore are less optimal for outdoor
applications. LiDAR sensors are less privacy invasive
than cameras, they however still record the human skeletal
structure.

MmWave radars provide the least invasive crowd
monitoring solution. Recently, this technology has become
popular for several human related monitoring tasks, such as
people tracking, gesture recognition, human joint estimation,
and people counting. These experiments show the potential
of mmWave radars. For people tracking, the proposed model
[18], using a Deep Recurrent Network, has achieved 89%
accuracy for identifying 12 people based on the spatial and
temporal properties of the radar point clouds. The Tesla-
Rapture model [11] has been proposed for gesture recognition
with a 90.53% accuracy, using GNNs on both the spatial and
temporal information. MARS [19] was proposed for human
joint estimation. It uses a Convolution Neural Network
to estimate the location of the joints based on the spatial
properties of the point clouds. The estimation performs with
an average error of 5.87 cm for all joint positions. With
focusing only on the spatial properties of the point clouds, the

1https://github.com/detti456/temporal-graph-neural-network

PointNet architecture [20] achieved 83% accuracy for people
counting in outdoor scenarios [10].

As can be seen in the aforementioned experiments, several
approaches have been proposed to handle mmWave data.
Some of them considering only spatial properties and some
both spatial and temporal properties. For people counting,
the combination of spatial and temporal properties have not
yet been explored. For these reasons, we adapt the proposed
Tesla architecture [11] to fit the purposes of people counting.
GNNs use graphs as their input, which offers a wide range
of possibilities for capturing the temporal information. The
relevance of this model is given by having the same type
of data with multiclass classification. There are however
notable differences between the use cases. We classify into
the number of people, while they classify into the different
type of gestures. This therefore also means that the datasets
are different by nature. Their dataset focuses on the different
types of gestures and has mainly a single person standing in
front of the radar. Our dataset however represents different
number of people walking in front of the radar. A further
difference is that they use 3-dimensional point clouds, while
our data contains 2-dimensional points.

3 Proposed Model
Inspired by the Tesla architecture [11], the proposed model
builds on GNNs, capturing the spatial and temporal properties
in the form of graphs. The overview of the model can be
seen in Figure 2, where the colors indicate the parts that were
kept, modified or excluded in comparison to the Tesla model
to adapt for the purposes of people counting.

The Tesla model contains a TFNet (Spatial Transformer
Network) component which is responsible for increasing the
spatial invariance of the model and therefore making the
classification easier. This is a useful component for gesture
recognition, since making the same gestures look similar
to each other can make the classification more precise. In
our case however the same number of people can walk past
the sensor in very different shapes, moreover when multiple
people pass by as a group, occlusion can occur and the point
cloud for different number of people can look very similar.
For these reasons, the TFNet would not improve the accuracy
in our case and is therefore excluded from the model.

https://github.com/detti456/temporal-graph-neural-network


Figure 3: The steps of the graph processing, adapted from the Tesla architecture [11]. First, message passing is utilized where the nodes share
information via edges. Second, self attention is applied to determine the importance of the information. Third, the collected information
is aggregated at the nodes via an aggregation function. This pipeline shows how the temporal depth of the data is included in the learning
process.

The model consists of three main steps. Firstly, data
preprocessing is taking place to prepare the data for the GNN.
Secondly, the preprocessed data is formed into graphs, to
represent the spatial and temporal properties, as the GNN
expects graphs as its input. Lastly, the generated graphs get
processed through a GNN pipeline.

3.1 Data Preprocessing
The input data consist of 5 features, namely: Doppler, SNR
(signal-to-noise ratio), x, y and frame number. The frame
number works as an identifier for each point to separate the
frames from each other. To avoid overlapping frame numbers
across different measurement times, the frame numbers are
shifted by the maximum frame number from the previous
measurement:

fdi =

{
fdi if d = 0,

fdi +max(fd−1) + s otherwise, (1)

where fdi is the frame number of the i-th frame on day
d, max(fd−1) is the largest frame number on the previous
day, and s is some constant s > 3 to reserve a time gap
between two days (as frames from different days should
not be successive to each other). This enables to have a
unique identifier for all frames, while preserving their relative
relationship.

3.2 Graph Generation
The graphs are generated directly from the pre-processed
point clouds before passing them into the Neural Network.
We opted for a static graph formation mechanism (generating
the graphs once, before the learning algorithm) instead
of dynamic graph generation (updating the graph structure
during training). The reason for this is the fact that we do not
use any spatial transformation component (such as TFNet),
therefore, the location of the points remain the same in each
iteration.

Each graph is composed of f consecutive frames. The
order of the frames is determined by the frame number, and

the difference between the frame numbers represent the time
gap between frames. To ensure that all frames in a graph are
relevant to each other (i.e., represent the motion of the same
object moving), the time gap between any two consecutive
frames in one graph should be limited. The frames, that
do not have at least f − 1 successive frames, satisfying this
requirement, are excluded from the data. We set this limit to
be at most 8, which is equivalent to skipping 4 frames (two
consecutive frames have a time gap of 2). This allows for a
larger number of graphs to be created while their relevance is
still preserved.

(a) 3 consecutive frames of
5 people

(b) Graph generation from
3 consecutive frames with 1
farthest neighbor

Figure 4: 3 consecutive frames visualized as a point cloud (a) and a
simplified example of forming them into a graph (b)

The graphs consist of nodes and edges. The nodes in the
graphs represent individual data points from the point clouds,
and capture their features (Doppler, SNR, x, y). The frame
number is not stored at the nodes, as it is independent of the
radar measurements and functions solely as an identifier for
the frames.

The edges in the graphs are pointing from each frame to
its subsequent frame (leaving the last frame without outgoing
edges). Each point pi in frame fj are connected to k points
from the next frame fj+1. The k connections are determined
based on some function F ordering the Euclidean distances
between points. The Euclidean distances are calculated
for each combination of points (x and y coordinates) in



consecutive frames. These distances are then sorted based
on some function F for all points, and the first k distances
are formed into an edge. We have used three different
functions for F for metrics: sorting in ascending (nearest
neighbors) and descending (farthest neighbors) order, and
random shuffling. The comparison of these functions can be
seen in Section 4.3. An example of graph generation can be
seen in Figure 4. Three consecutive frames are plotted as
point clouds in Figure 4a and are formed into a simplified
graph in Figure 4b. The colored nodes in the graph represent
data points from the frame with the matching color. The
graph connects each point to its furthest neighbor.

3.3 Graph Processing
The graph processing is composed of three main steps
as show in Figure 3: message passing, self-attention and
aggregation. These steps are achieved through a Message-
passing neural network (MPNN) introduced by Gilmer et al.
[21] as shown in Figure 2. This component is responsible
for the communication of the nodes through the edges. As
the temporal depth of the data is preserved in the edges, it is
included in the learning process through MPNN.

The message passing and aggregation form the basis of
MPNN. Therefore, we start by explaining these two concepts.
Each node in the graph collects and aggregates the features
of the neighboring nodes, as well as the values of the edges,
according to:

xl
i = Γj∈N(i)(MΦ(x

l−1
i , xl−1

j , ej,i)), (2)

where, xl
i denotes the features of node i in layer l of

the MPNN and ej,i denotes the edge features. Γ represents
a differentiable, permutation invariant aggregation function
(e.g., sum, mean or max). MΦ is the message passing
function, i.e., a nonlinear function with a set of learnable
parameters Φ (here, implemented as Multi Layer Perceptrons
(MLP)). This operation is applied to the F-dimensional
features of n points (nodes), resulting in the same number
of points with dimension F ′. Here, F is the number of nodes
in a given layer of the neural network, and F ′ is the number
of nodes in the next layer.

The choice of M and Γ makes a significant impact
on the performance of the model. For example, setting
MΦ(xi, xj , ej,i) = MΦ(xi) captures only the global
information of the graph, excluding the local interconnection.
This type of message passing function is utilized in the
PointNet model. For our proposed model, we opted for an
asymmetric function:

MΦ(xi, xj , ej,i) = MΦ(xi, xj − xi, ei,j). (3)
This captures the global information, as well as the

local structure of the graph [22]. For a comparison of
messaging with edge features (MΦ(xi, xj − xi, ei,j)) and
without edge features (MΦ(xi, xj − xi)), see Section 4.3.
For the aggregation function Γ, we chose mean, to preserve
information from all nodes.

The message passing is enhanced with a Scaled Dot-
Product Multi-Head Self-Attention algorithm [23], which
assigns weights to each messages from the neighboring

nodes, to determine their importance. First, the messages for
each node are concatenated according to:

Mi = ∥j∈N(i)MΦ(xi, xj − xi, ei,j), (4)

where ∥ is the concatenation operator along the first
dimension. This results in a matrix representation Mi of the
messages with a shape of k × F ′.

Figure 5: Scaled Dot-Product Multi-Head Self-Attention [23].
Firstly, the Linear components project the messages (Equation (5))
in each head. Secondly, the Scaled Dot-Product Attention processes
the projected messages for each head, as described in Equation (6).
Finally, the heads are concatenated and projected to achieve the
output (Equation (7)).

The attention mechanism is shown in Figure 5. In case of
single-head attention, the algorithm maps queries (Qi

b), keys
(Ki

b), and values (V i
b ) to an output, which all are matrices. In

our case, these matrices are formulated by:

Qi
b = MiW

Q
b | WQ

b ∈ RF ′×dk

Ki
b = MiW

K
b | WK

b ∈ RF ′×dk

V i
b = MiW

V
b | WV

b ∈ RF ′×dv ,

(5)

where WQ, WK , WV are learned linear projection
matrices to dk, dk and dv dimensions, respectively. The
projected messages are processed through a Scaled Dot-
Product Attention (Figure 5):

Si
b(Q

i
b,K

i
b, V

i
b ) = softmax(

Qi
b(K

i
b)

T

√
dk

)V i
b . (6)

The query and key matrices are multiplied together, and
scaled with

√
dk. Afterward, softmax is applied to achieve

the weights of the values.
This pipeline describes a single-head approach, whereas in

our work, we apply a multi-head approach with h = 8 heads.
This means that the linear projections and Scaled Dot-Product
Attention are utilized h times in parallel, with different
learned WQ

b , WK
b , WV

b matrices. Multi-head attention
allows the model to simultaneously focus on different aspects
of the input. Moreover, it allows for a more stable learning



process, since it requires fewer layers than the single-head
attention, when applying the same number of projections.

To obtain the output of the attention mechanism the results
from the Scaled Dot-Product Attention across all heads are
concatenated and projected:

A(Mi) = (∥hb=1S
i
b(Q

i
b,K

i
b, V

i
b ))W

O, (7)
where ∥ is the concatenation operator and WO ∈ Rhdv×F ′

are learned weights. Therefore, updating the message passing
function in Equation (2) to include attention, results in:

xl
i = Γj∈N(i)A(Ml−1

i ). (8)

4 Experimental Setup and Results
In this section, we evaluate the proposed model. We describe
the dataset and its division in Section 4.1. The specifications
about the model training are provided in Section 4.2. The
impact of the hyperparameters is explored in Section 4.3.
Finally, the results are presented in Section 4.4.

4.1 Dataset
The data we evaluate our model on was also used for the
classification for people counting with PointNet architecture
[10]. It was obtained through a Frequency Modulated
Continuous Wave (FMCW) radar, which is a special subclass
of mmWave sensors. The data was obtained outdoors and
captures people walking in front of the radar. The dataset
contains frames of 1, 2, 3, 4 and 5 people walking in front of
the sensor as well as bikes passing by. Each frame has been
manually classified to one of the aforementioned categories
based on a camera recording, to obtain a labelled dataset.

Figure 6: Distribution of the data over the different classes occurring
in the dataset.

The direct information collected by the radar includes:
range, azimuth (angle), Doppler frequency and signal-to-
noise ratio (SNR). From the range and azimuth values, the
Cartesian coordinates are calculated with polar to Cartesian
conversion:

x = rcos(az)

y = rsin(az)
(9)

where r is the range and az is the azimuth. This forms the
2D point cloud. Each point in the data is assigned a frame
number (increasing over time, but the counter is reset with
the device), to preserve the temporal property of the data.

As shown in Figure 6, the data is highly unbalanced. Most
frames are captured of 2 people, while 4 and 5 people have
more than 2000 frames less than 2 people. Bikes have the
least, with only 20% of the maximum number of frames.

The number of frames presented in Figure 6 are however an
upper limit on the frames used by the model. In reality, some
of these frames get excluded during graph generation, as they
contain less than k points (at least k points are required for
edge creation). Frames having less than f successive frames
are also excluded from the data.

Figure 7: Division of the data into train-test-validation sets, with
dividing each classes into 16 chunk and applying the 70:15:15 ratio
on each of them.

The data is split into training, testing, and validation sets
with a 70:15:15 ratio. As the model requires consecutive
frames for graph generation, the data cannot be split
randomly. To preserve some variance between the training,
testing, and validation sets, the data has been sorted by the
frame number. Then, each class is divided into 16 chunks
and each chunk, is further divided with a 70:15:15 ratio as
illustrated in Figure 7.

4.2 Model Training
The proposed model has been trained and evaluated on the
dataset mentioned in Section 4.1. The training was performed
on an NVIDIA GTX 1060 6GB GPU. We implemented the
model in Python using PyTorch2 and PyTorch Geometric3.
We apply batch-wise training with a batch-size of 32 graphs.
The model is trained for at most 50 epochs, with early

2https://pytorch.org/
3https://www.pyg.org/

https://pytorch.org/
https://www.pyg.org/


(a) Accuracies with farthest neighbors (b) Accuracies with random neighbors (c) Number of training graphs generated

Figure 8: The effect of hyperparameters on farthest neighbors, random neighbors, and number of graphs.

stopping integrated. The learning stops after having no
improvement in the performance of the validation set within a
patience time of 10 epochs. The model with the best accuracy,
on the validation set, is saved. The loss is calculated through
a negative log likelihood loss function and the step size is
determined by the Adam Optimizer with an initial learning
rate of 0.001.

Data Augmentation
To increase the resilience of the model, we use data
augmentation. We augment by altering all generated graphs
and therefore double the number of graphs used for training.
The following augmentations are performed on the generated
graphs:

• Random point-wise shifting (jitter) of the points in the
graph based on a Gaussian distribution with µ = 0 and
σ = 0.1

• Addition of Gaussian noise to the distance feature of the
edges with µ = 0 and σ = 0.1

4.3 Hyperparameter Tuning
In this section, the performance of the model is evaluated
across different selection of hyperparameters. Firstly, we
investigate the impact of the distance feature in the message
passing step, together with the different edge creation
functions. Secondly, we explore the impact of the number
of frames and edges in the graphs.

With distance Without distance
Nearest neighbors 67.72% 69.61%
Farthest neighbors 79.11% 77.73%
Random neighbors 81.41% 80.75%

Table 1: Accuracy achieved for different edge creation method
and usage combinations. The rows represent the different edge
generation functions, and the columns provide the edge feature
inclusion and exclusion from message passing.

We experiment with different combinations of edge
generation functions, and distance inclusion to determine
how the edge creation and usage in the graphs influences the
model. The included edge generation functions are nearest,
farthest, and random neighbors. Each of these functions
are combined with distance inclusion or exclusion from the
message passing, resulting in six different model settings.

The model has been trained for each setting, with f = 6
frames and k = 4 neighbors in each graph.

The trained models are evaluated on the validation set. The
resulting accuracies are presented in Table 1. Here, we can
see that the graphs, created by the nearest neighbors policy,
perform 10% worse in accuracy, both in case of distance
inclusion and exclusion. Random neighbors outperform both
nearest neighbors (by around 14%) and farthest neighbors
(by around 2%). When looking at the usage of the edges,
we can see that including the edge feature (distance) in the
training, improves the classification in case of farthest and
random neighbors by around 1% and decreases in case of
nearest neighbors by around 2%.

In the aforementioned results, we can observe that the
performance of nearest neighbors are significantly worse than
the others. The reason for this is that most of the frames
have overlapping points. This means that some points in a
frame are still present in the next frame in the exact same
location. With the nearest neighbors connection, these points
get connected to each other with a distance of 0 and therefore
provide less useful information in the classification process.
Connecting frames to farthest neighbors create graphs that
are prone to emphasize noise. Moreover, this approach will
create edges that are connecting to the outside of the shape,
leaving the inside without edges. Whereas random neighbors
by definition connect random points and, therefore, ensure
a more diverse inclusion into the edge system. We can see
that the inclusion of the distance between points gives a slight
increase in the accuracy, except for nearest neighbors, where
a significant amount of edges have a distance of 0.

Since farthest and random neighbors have a similar
performance in case of graphs with f = 6 frames and k = 4
neighbors, these two edge formation mechanisms are further
explored with different number of frames and edges. The
distance is included in the training process for all settings.

Figure 8a and 8b shows the effect of frames and edges
in terms of accuracy. We can see that the performance of
the model is increasing with the number of frames in case
of random neighbors (Figure 8b). The number of neighbors
and transitively the number of edges however do not have a
significant impact on the performance. On the contrary, for
farthest neighbors (Figure 8a), the performance is increasing
until 7 frames and turns inconsistent afterward. No trend
can be observed in terms of number of neighbors. These
observations prove that a more diverse edge inclusion leads
to a more accurate classification when applied to more than 7



consecutive frames.
The largest amount of frames, considered, was 13. The

reason for this is the fact that the more frames are included in
a graph, the less graphs can be generated from the data (due
to graph formation requirements). This relation is depicted
in Figure 8c. Here we can see a 66% drop in the number
of graphs between 3 and 13 frames. It is important to note
however that the number of graphs doesn’t directly translate
to the number of frames (as each graph is composed of
multiple frames). This is especially relevant for bikes, as they
are largely underrepresented in the data (Figure 6). Including
more than 13 frames in the graphs would lead to having little
to no data representing the bikes.

Figure 9: Amount of time taken for training the model, with random
neighbors

Taking the aforementioned reason into account, we chose
f = 11 as the optimal number of frames in combination
with random neighbors. The model performs well under this
condition while still maintaining enough information about
all classes. Since the number of edges does not impact the
accuracy of the model, we chose the number of neighbors
based on the running time of the model. In Figure 9, we can
see that the time taken to train the model decreases with the
number of edges. Therefore, we chose k = 2 neighbors for
each point.

4.4 Results
For the final evaluation we chose the model to have f = 11
number of frames, k = 2 number of random neighbors and
inclusion of the distance feature, based on the observations
made in Section 4.3. We trained the model 10 times and
evaluated it on the testing set, achieving an average accuracy
of 80.47% with a standard deviation of 1.93%. Comparing
these results to the 83% accuracy of the PointNet architecture
[10] we can observe a 2.53% decrease in accuracy.

The confusion matrix can be seen in Figure 10. Here,
we can observe that the model performs the best in case
of 5 people and bikes. The bikes tend to have a different
shape and speed in comparison to the walking people, which
could be the reason for the better classification. We can
also see that the model is more prone to overcounting than
undercounting. Almost 66% of the mistakes were made by
overcounting. This also explains the high accuracy for 5
people, as there is no other class with a larger amount of
people. The most misclassification happened for 4 people,
where 23% got misclassified as 5 people and 14% as 3 people.
Furthermore, we can observe that most mistakes were made

Figure 10: Confusion matrix of the evaluated model for k = 2 and
f = 11

Figure 11: Comparison of our model size with the reduced PointNet
and the original Tesla model

with neighboring classes, meaning that the model is confused
with ± 1 person.

The proposed model has a size of 2.890MB. The number of
parameters is compared with the reduced PointNet [10] and
the original Tesla model in Figure 11. Our model is reduced
in size in comparison to the original Tesla model, due to the
exclusion of some components, mentioned in Section 3. It is
however still larger than the reduced PointNet.

5 Responsible Research
In Section 5.1, we discuss the collection and diversity of
the data. The reproducibility of the results are presented in
Section 5.2. Finally, Section 5.3 explains the ethical aspects
of the mmWave radars.

5.1 Dataset
The data was collected for people counting with the PointNet
architecture. A group of five volunteers walked in front of
the radar in different combinations. The collected data has
been manually classified by volunteers, based on a camera
recording, to obtain a labelled dataset. After the labeling, the



data does not contain any identifiable information and is used
in this form by our model. The people count is stored together
with a rough position of the people without any recognizable
human skeletal structure (only sparse points in space). This
dataset is not publicly available. As the dataset is composed
of only five different people, the capability of the model to
generalize for new people is unknown.

As the proposed model requires consecutive frames, to
avoid reusage of frames from the training, we take chunks
of successive frames for testing and validation. These frames
are not involved in the training anyhow.

5.2 Reproducibility
The graph generation component contains steps which use
random numbers. To achieve reproducibility for these steps,
we have set a seed each time a random number is generated.
By using the same seed, the random number generator will
always return the same number. For further reproducibility,
we have made the code public.

On the contrary, due to the nature of neural networks,
two different models cannot be trained the same. To reduce
the impact of this, we have trained the model 10 times and
reported the average of the results as a final result.

5.3 Application
The aim of the paper is to propose a solution for people
counting, that performs well in outdoors scenarios. MmWave
radars do not collect any identifiable data of the people when
utilized individually. However, when it comes to constant
monitoring, by placing radars after each other, a walking
pattern of individuals can be tracked. To this end, it is
important to avoid aggregation of the data.

6 Discussion
The proposed model performs worse than the PointNet
architecture [10] by 2.53%, showing that the inclusion of
the temporal information through the proposed methodology,
does not help the classification process.

There are several differences between the two models in
the data usage aspect. Firstly, the PointNet architecture
applies a random splitting into training, testing and validation
sets, while we divide the data based on sorted chunks as
explained in Section 4.1. This leads to potentially having
more unseen data in the testing and validation sets, as these
contain frames that are not related to the training frames
anyhow. Whereas, when utilizing random splits, a test frame
might be consecutive to a training frame (and therefore have
a more similar structure).

Secondly, The PointNet architecture, uses all the available
data in the training and evaluation process. We however
had to exclude a significant part of the data due to the
graph generation requirements (frames not having enough
consecutive frames or frames having less than k points).
Our used data is therefore significantly less than the original
amount of data. For graphs generated with f = 11 number of
frames and k = 2 number of neighbors, around 1500 frames
are excluded from the classification.

As discussed in Section 4.4, misclassification is common
between consecutive number of people. This could be due

(a) 5 consecutive frames of
3 people

(b) 5 consecutive frames of
4 people

Figure 12: Point clouds of different number of people in front of the
radar

to the similar representation of different number of people
walking together. This similarity can also be observed in
Figure 12, where the point cloud of 3 and 4 people in
5 consecutive frames are plotted. Due to occlusion, the
different number of people are still represented as one cluster.

7 Conclusions and Future Work
In this work, we proposed a model for people counting from
mmWave radar point clouds. The proposed model includes
both spatial and temporal information of the data. The
point clouds are formed into graphs and processed through
a MPNN. We have achieved an accuracy of 80.47% which
performs 2.53% worse than the state of the art PointNet
architecture. Further enhancements can be made by training
the model on a larger and more diverse dataset, which
has longer sequences of consecutive frames. Moreover,
further edge formation mechanisms, such as deep learning
algorithms, can be explored to achieve a dynamic graph
generation.
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