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ABSTRACT Sand nourishment is widely adopted as an effective soft approach to provide long-term coastal
safety, protect the ecology environment, and promote tourism and recreation. With the increase in frequency
and expenses in beach nourishment worldwide, an adequate prediction of morphology evolution is greatly
desired for coastline management. Based on detailed monitoring data of the mega-nourishment Sand Engine,
this article integrates a convolutional neural network (CNN) and long short-term memory (LSTM) to predict
the nourishment morphology evolution. The historical surveyed data are transformed into sequence grids,
which are input into the CNN to obtain the spatial features of beach nourishment. The CNN is constructed by
performing the convolutional and pooling operation on the historical data, which can extract actual spatial
features and reduce network complexity. The output of the CNN is input to LSTM to learn the temporal
relationship to predict future nourishment terrain using past time-series features. Finally, the LSTM output is
decoded by the fully connected layer to obtain the prediction result. The complex spatiotemporal correlations
among the input data are identified through effective training of the proposed model. The major contribution
of this article is to propose a data-driven model that combines CNN and LSTM for the morphology evolution
prediction of beach nourishment, and validate the effectiveness of the proposed model by comparing with
the performances of other popular methods in predicting the nourishment changes.

INDEX TERMS Mega-nourishment, long short-term memory, convolutional neural network, nourishment
morphology evolution prediction.

NOMENCLATURE
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
RTK Real-Time Kinematic
GPS Global Positioning System
ReLU Rectified Linear Unit
MSE Mean Squared Error
MAE Mean Absolute Error
RMSE Root Mean Square Error

The associate editor coordinating the review of this manuscript and

approving it for publication was Waleed M. Alsabhan .

IA Index of Agreement
SVM Support Vector Machine
BP Back Propagation

I. INTRODUCTION
Climate change and human-induced factors cause extensive
crucial environmental problems such as accelerated sea level
rise and increased storm surge, which lead to extensive and
frequent flooding and pose a significant threat to low-lying
coastal areas [1]. Since coastal regions are usually the most
productive urban, commercial, industrial, agricultural, and
populated regions around the globe, effective intervention
approaches are required to provide long-term sustainable
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preservation of safety against the enhanced coastal recession
and increased flood risk [1], [2].

Sand nourishment is a soft approach to elevate and widen
a beach by placing imported sand along the coast, and this
approach has multiple functions including mitigating floods
and erosion, protecting the ecological environment, and pro-
moting tourism and recreation [1], [3]. Compared with con-
ventional hard approaches of constructing hard structures
such as seawalls and breakwaters, sand nourishment has been
considered a more efficient, economical, and environmen-
tally friendly countermeasure that constitutes the first line of
coastal protection from sea flood.Moreover, nourishment can
boost natural and leisure activities along coastlines because
of the creation of additional attractions [4]. Thus, sand nour-
ishment is presently the preferred and widely applied inter-
vention to stabilize coastlines, widen beaches and enhance
coastal safety [5], [6]. The volume of sand nourishment
around the globe has greatly increased over the last decades,
and the nourishment demand is anticipated to increase due
to the sea level rise in the coming decades [7]. The Torrey
Pines nourishment, which is one of 12 San Diego County
sand nourishment projects in 2001, costs $17.5 million [3].
Cardiff, Solana, Imperial Beaches, and five other sites were
nourished in 2012 [8]. North San Diego County has designed
a 50-year period of continual beach nourishment, which is
predicted to cost $160 million [9]. A similar system that com-
bines shore nourishment, beach nourishment, and bypassing
is considered in Gold Coast, Australia [10].

Due to the growing costs and frequency of sand nour-
ishment projects worldwide [3] and the gradual increase
in size and complexity of nourishments, the morphologi-
cal evolution prediction of sand nourishment is of major
importance [7], [11]. The periodical assessment of nour-
ishment based on measurements plays a crucial role in the
necessary adjustments of subsequent nourishment measures
and execution [1]. Furthermore, the study on modeling of
morphological evolution can provide a guide for the appli-
cation of sand-related strategies such as mega-nourishment,
land reclamation, and artificial islands. However, the detailed
monitor data on the nourishment terrain evolution are scarce
and previous studies are limited [3], [7], [12].

A mega-nourishment project named ‘‘Sand Engine’’ pro-
vides a good opportunity to study the nourishment evolu-
tion prediction [4]. The Sand Engine is performed as an
innovative pilot project to feed adjacent coastal areas and
stabilize coastlines in the long-term for sustainable coastline
management [4]. The Sand Engine, which has been per-
formed at the Delfland Coast in the Netherlands, used a total
volume of 21.5 million m3 of sand [13]. Since the project
initiation phase, the Sand Engine has been well monitored
for further studies [2], [5]. The morphology evolution of the
Sand Engine has been intensively measured on a monthly
basis [1], [5]. However, related studies indicate that the nour-
ishment morphology evolution is influenced by complex and
hybrid forcing conditions [14]–[17]. Therefore, the predic-
tion of the dynamic evolution of the Sand Engine is a major

challenge [1]. Since the ultimate terrain development is the
accumulated result of various effects, this article focuses
on applying data-driven methods to study the nourishment
morphological evolution and prediction based on time-series-
observed terrain measurements.

The prediction of nourishment morphology evolution
belongs to the sequence prediction problem, which inputs
historical data and outputs future data. Unlike conventional
prediction methods, the deep learning method can employ
time-series monitoring data in a prediction model. Hence,
spatiotemporal changes from historical data can be consid-
ered to obtain predicted data. The deep learning model can
reduce the prediction error and achieve optimal performance
by gradually training and adjusting [18], [19]. Although deep
learning has not been employed in nourishment morphology
prediction, deep learning based on spatiotemporal data has
become prevalent in many related fields, such as predicting
the air pollutant concentration, precipitation distribution, sea
level changes, and sea surface temperature [18], [20]–[29].

The recurrent neural network (RNN) has been widely
applied in many fields of the sequence prediction prob-
lem [22]. The long short-term memory (LSTM) network
improves the hidden layer of RNN, which can handle
long-term dependence problems and enhance the prediction
performance [19], [24]. Thus, the LSTM network has proven
to be successful in various applications such asmachine trans-
lation, video classification, image interpretation, and behav-
ior recognition [30]–[34]. The memory blocks in LSTM are
adopted to retrieve and store information over time. Tempo-
ral dependencies between time-series frames can be learned
by recurrently connected cells in the memory block [22].
LSTM has various frameworks such as stateful LSTM, which
is designed to learn time-dependent information of long
sequences.

Although LSTM has remarkable performance in process-
ing time dependent information, this type of network ignores
the spatial relationship in nourishment terrain data. However,
nourishment terrain changes depend on time and have corre-
lation with different spatial locations. The accretion or ero-
sion of nourishment sand is a gradual process, and the result
is that the beach extent increases or shrinks, and the coastline
moves seaward or landward [4]. The historical data have
time-dependent and spatial correlation information to learn
to predict nourishment terrain changes. Thus, considering
spatial information and temporal relation is necessary. The
convolutional neural network (CNN) has a powerful ability
to analyze spatial information, which is widely applied in
spatial data processing issues such as image classification
and recognition [35]–[37]. Since the accretion or erosion
of nourishment sand has spatial correlation, using CNN to
extract context spatial features is reasonable.

The main objective of this study is to present a data-driven
approach that combine CNN and LSTM by fully exploit-
ing the information in temporal and spatial dimensions
for the nourishment morphology prediction. The histori-
cal surveyed data should be preprocessed and formulated
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FIGURE 1. Data of the study area.

as the supervised time sequence prediction task. Then, the
CNN is employed to learn and derive the specific spatial
features of elevation values at different locations in the
mega-nourishment. The correlations of accretion or ero-
sion of neighbors on the target location can be reflected
by the derived spatial features. The output of CNN is
input to LSTM to learn the temporal relationship to pre-
dict future nourishment terrain using past time-series fea-
tures. The complex spatiotemporal correlations among the
input data are identified by effectively training the proposed
model.

The developed model can be applied for the impact
assessment and maintenance of beach mega-nourishments.
The mega-nourishments are generally divided into two
types: permanent mega-nourishments and feeder-type mega-
nourishments [38]. Permanent mega-nourishments are
mainly beach extensions, whichmust be frequently nourished
to maintain their size and shape for safety preservation.
Feeder-type mega-nourishments freely spread and erode to
feed adjacent beaches and dunes with sand. Both types of
mega-nourishments require a detailed morphology evolu-
tion prediction that can provide insight in the erosion and
accretion zones. The morphological prediction results can be
applied to determine the nourishment requirements to main-
tain the size and function of permanent mega-nourishments
and assess the details on erosion rates and life span of
feeder-type mega-nourishments.

The major contributions of this article are: (1) to the best
of our knowledge, the research presented in this article is the
first to employ CNN and LSTM for themorphology evolution
prediction of beach nourishment; (2 this study validates the
effectiveness of the proposed model; (3) this article compares

the performances of several popular methods in predicting
nourishment changes.

Section II presents the nourishment study data and pro-
posed model combining CNN and LSTM. Section III intro-
duces the qualitative and quantitative experiments and ana-
lyzes the experimental results. Finally, Section IV presents
the conclusion.

II. DATA AND METHODOLOGY
A. STUDY DATA
The Sand Engine, which is a mega-nourishment project con-
structed in 2011 in the Netherlands, used 21.5 million m3

of sand for coastal protection, coastline maintenance, and
ecological and recreational purposes [2], [4]. The initial nour-
ishment spanned the coastal area, which has an alongshore
length of approximately 2.4 km and a cross-shore width of
up to 1 km. As shown in Fig. 1(a), the Sand Engine has a
specific shape, which is designed to form an appealing region
for nature and recreation [2].

The Sand Engine has been monitored since its completion
in the summer of 2011. The Sand Engine morphological
evolution is surveyed on a monthly scale using an RTK-GPS
and an echo sounder [2]. The surveyed area measures 1.6 km
in cross-shore width and 4.7 km in alongshore length. Three
days are usually required to perform the monthly surveys of
the entire area under calm weather conditions.

To facilitate the display and analysis of terrain changes and
the usage of CNN, raw measurement data are rotated to the
alongshore direction as depicted in Fig. 1(b). The irregular
distributed measurements are transformed to the grids using
the inverse distance weighting interpolation as depicted in
Fig. 1(c). The grid cell size is 20 m × 20 m.
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B. CNN FOR SPATIAL CORRELATION
The spatial correlation of the nourishment terrain can be
obtained using the CNNmodel. A CNN connects neural cells
with cells in a local window of the previous layer, which can
be used to explore the spatial relationship among nearby loca-
tions. The spatial correlation features among long-distance
locations can be identified by deep neural layers [34]. CNN
has the advantages of spatial arrangement and local connec-
tivity among layer nodes, which enable the architecture to
well extract features from the input grids of a sand nour-
ishment terrain. A CNN is mainly composed of two types
of layers: convolutional layers and pooling layers. Convolu-
tional layers are employed to extract the spatial features of a
nourishment terrain, whereas pooling layers can remarkably
enhance the computing efficiency by decreasing the number
of links between layers. The sameweight is shared by all cells
in the same layers, which further relieve the computational
burden [25]. The spatial features of a nourishment terrain are
exported after convolutional and pooling operations.

The CNN has four types of layers: input, convolutional,
pooling, and output layers. The grid data transformed from
the nourishment measurements are input to the CNN model.
The input and output of convolutional layers are presented as
follows [32]:

Xl = f (Wl ⊗ Xl−1 + bl) (1)

where Xl and Xl−1 are the lth and (l − 1)th layer matrix; f
is the activation function; the weight and bias of lth layer are
Wl and bl , respectively. For the convolutional layers in the
model, the activation function of rectified linear unit (ReLU)
is used as (2).

f (x) = max(0, x) (2)

Spatial information from a mega-nourishment project can
be effectively extracted, and the network scale can be reduced
by the combination of activation functions and convolu-
tional layers. To further optimize the network structures
and enhance the computation efficiency, the pooling layer
is added after the convolutional layers to decline the layer
dimension. The max pooling function expressed as (3) is
applied in the pooling layer of this model.

poolingmax(Xl) = max(xi,j|i,j ∈ Dpooling) (3)

where xi,j is the element of layerXl , andDpooling is the domain
of the pooling layer.

The spatial correlation features of a mega-nourishment
project acquired from the CNN model are flattened to a
highly concentrated one-dimensional vector and placed into
the subsequent LSTM model.

C. LSTM FOR SEQUENCE EXPRESSION
Temporal dependency plays another crucial role in the nour-
ishment terrain evolution prediction. The erosion or accre-
tion of nourishment terrain usually has a tendency that can
be learned from historical data. Therefore, considering the

correlation and influence among the time-series features is
necessary for nourishment morphology prediction.

The LSTM network can store long-term dependencies by
introducing the structure of memory units, which solve the
problems of gradient vanishing or explosion in the recurrent
neural network. The storage unit contains three types of gates:
input gate, forget gate, and output gate. The input gate is
employed to control how the units select new features to
store. The forget gate is designed to selectively abandon some
past nourishment data information. The output gate is used
to determine which information is delivered from memory
units. The three gates and memory units are presented as
follows [20]:

it = σ (Wi[ht−1, xt ]+ bi) (4)

ft = σ (Wf [ht−1, xt ]+ bf ) (5)

c′t = tanh(Wc[ht−1, xt ]+ bt ) (6)

ct = ft � ct−1 + it � c′t (7)

ot = σ (Wo[ht−1, xt ]+ bo) (8)

ht = ot � tanh(ct ) (9)

where xt is the input at time t; it , ft , and ot are three
types of gates: input, forget, and output gates; h, W, and
b are the state of the hidden layer, corresponding weight
matrix, and bias, respectively; σ is the sigmoid function;
c′t is the input memory cell; ct is the output memory cell.
The hyperbolic tangent function is represented by the term
tanh.

D. NOURISHMENT TERRAIN PREDICTION
The spatial and temporal features are extracted by the CNN
and LSTM as shown in Fig. 2. Finally, the output of the
LSTM is decoded by the fully connected layer to obtain
the prediction result of the nourishment terrain. The frame-
work of the proposed model for nourishment morphology
evolution prediction is shown as Fig. 2. The convolution
processes in our implementation are performed with a ker-
nel size of 3 × 3, a stride of 1 × 1, and the ‘‘Same-
Padding’’. Hence, the spatiotemporal features have identical
spatial size after the convolution processes. The convolutional
layers and LSTM layer exploit the activation function of
ReLU.

In addition, stateful LSTM is adopted to achieve the stable
long-term prediction of nourishment morphology evolution.
To build the relationship in the long time-series sequence,
stateful LSTM initializes the state of the sample batch by
using the state of the memory cell of the previous batch.
Thus, stateful LSTM can maintain the state information over
a long sequence, which is suitable for the modeling based
on the long time-series data of nourishment [39]. The time
lags are set to 3 in this research. The time-series grids are
processed by the CNN and stateful LSTM, which enable the
spatiotemporal features to have an efficient representation.
This proposed architecture is an end-to-end model whose
output has identical spatial dimensions to the input grids.
Table 1 presents the parameters of the proposed model.
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FIGURE 2. Framework of the proposed method to predict the nourishment morphology evolution.

Theweights and bias of thismodel are updated, and the net-
work prediction performance is optimized through the train-
ing process as shown by the flowchart in Fig. 3. To minimize
the difference between predicted and surveyed terrain grids of
nourishment, the mean squared error (MSE) is adopted as the
loss function of the model, which can be presented as follows.

MSE =
1
n

n∑
i=1

(z′i − zi)
2 (10)

where z′i and zi are the predicted and surveyed elevation values
of nourishment terrain, respectively.

III. EXPERIMENT AND RESULTS
The dataset in this article contain the mega-nourishment ter-
rain data from August 2011 to September 2015, which were
collected as described in the above introduction of study data.
Thirty-two terrain grids were generated from the time-series
measurements of the mega-nourishment. In total, 23 grids in
August 2011 to April 2014 were employed as the training set,
and 9 grids from July 2014 to September 2015 were used as
the test set.

We used the interpolated grids as input to our model.
Each input sample consists of three past grid data. The
output is a predicted next terrain grid representing eleva-
tion values. Thus, the model in this study is a one-step
prediction model using past surveying data. The number of
training iterations was 30 epochs. To perform multiple-step
prediction, the recursive method is used to predict the future

mega-nourishment terrain after the time steps for training.
In the recursive prediction process, the predicted values are
used as inputs with the last data for the next prediction.

In the experiments, the effectiveness of different prediction
methods is evaluated by four evaluation indices including
the Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Pearson correlation coefficient and Index of Agree-
ment (IA) as follows:

MAE =
1
n

n∑
i=1

∣∣z′i − zi∣∣ (11)

RMSE =

√√√√1
n

n∑
i=1

(z′i − zi)
2 (12)

ρ =

n
n∑
i=1

ziz′i −
n∑
i=1

zi
n∑
i=1

z′i√
n

n∑
i=1

z2i − (
n∑
i=1

zi)2
√
n

n∑
i=1

z′2i − (
n∑
i=1

z′i)2
(13)

IA = 1−

n∑
i=1

(
∣∣z′i − zi∣∣)2

n∑
i=1

(|zi − z| +
∣∣z′i − z∣∣)2 (14)

where zi and z′i are the surveyed and predicted values of the
nourishment terrain elevation, respectively; z is the average
of zi; n is the number of grid cells; ρ is Pearson correlation
coefficient.
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FIGURE 3. Flowchart of the methodology of this article (δ, 1, s, and ∇ represents the training errors, weight changes,
neurons, and gradients, respectively).

Five popular methods are selected for the prediction perfor-
mance comparison with the proposed model: Support Vector
Machine (SVM), Back Propagation (BP) neural network,
CNN, RNN, and LSTM. Table 2 presents the parameters
for different methods. Each model adopted the recursive
prediction process and the same dataset as the proposed
model.

Fig. 4-7 shows the variation of four evaluation indices of
each model over the prediction time. The recursive method
tends to be influenced by error accumulation, so theMAE and
RMSE of each model generally increase, and the correlation
coefficient and IA values decrease during the recursive pre-
diction. From the statistical results, all of these methods have
high Pearson correlation coefficient, which implies that the
trend of terrain changes predicted for each time are consistent
with the corresponding true terrain. Except for SVM, all
methods have relatively low MAE and RMSE and high IA.

The average MAE, RMSE, Pearson correlation coefficient
and IA values of the six different models are shown in
Figs. 8-11. In terms of Pearson correlation coefficient, all
six models are larger than 0.98, which implies that these
models have predictability. In terms of MAE, RMSE and
IA, the proposed model has the best performance as shown
in Figs. 8, 9 and 11. CNN can effectively abstract spatial
features, so CNN acquires a slightly lower RMSE than the
BP-based method. Compared to the performance of the CNN,
the RNN can improve the nourishment terrain change pre-
diction performance because the RNN considers the tem-
poral dependence. In contrast, the LSTM-based method has
smaller MAE and RMSE than the RNN-based method at
0.11 and 0.06. This result implies that LSTM can better
handle the relationship of long-term sequence. Furthermore,
the proposedmodel, which combines CNN and LSTM, yields
better results than LSTM. The results indicate that the pre-
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FIGURE 4. MAE in meters of each model on the prediction over time.

FIGURE 5. RMSE in meters of each model on the prediction over time.

FIGURE 6. Pearson correlation coefficient of each model on the prediction over time.

diction performance can be improved by adding the CNN
to LSTM to consider time-dependent information based on
the spatial correlation features of the mega-nourishment ter-
rain. In summary, the proposed method is more suitable for

the spatiotemporal sequence prediction of mega-nourishment
terrain.

Furthermore, to examine the statistical significance of the
improvement of the proposed method, the prediction RMSEs

184518 VOLUME 8, 2020
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FIGURE 7. Index of Agreement of each model on the prediction over time.

TABLE 1. Parameters of the proposed model.

TABLE 2. Parameters of the comparison methods.

of those models are statistically compared by conducting the
t-test method. The p− values to compare the proposed model
with SVM, BP, CNN, RNN and LSTM are 7.66 × 10−4,
1.71 × 10−4, 2.67 × 10−4, 1.04 × 10−2, and 2.52 × 10−6

(p<0.05). The results show that the proposed method can
improve the prediction performance.

Different models are performed with Python 3.5.2 and
Keras 2.1.6 using a computer with i7-8700 processor,
3.7 GHz CPU, and 16 GB RAM. The average running time
of executing SVR, BP, CNN, RNN, LSTM and the proposed
model for 30 times is 5.63, 11.29, 183.33, 17.64, 61.92,
46.36 seconds, respectively. The running time of the proposed

model is more than that of the SVR, BP and RNN, but less
than that of CNN and LSTM. According to the calculation
rules of big O notation, the computational complexity of the
proposed model is:

T = O(
D∑
i=1

Mi · Ni · K 2
i · Ci−1 · Ci)

+O(4 · H · (Sin + Sout ))+ O(m · n)

= O(
D∑
i=1

Mi · Ni · K 2
i · Ci−1 · Ci)

+O(H · Sin + H2)+ O(m · n) (15)
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FIGURE 8. Average MAE in meters of each model on prediction over time.

FIGURE 9. Average RMSE in meters of each model on the prediction over
time.

FIGURE 10. Average Pearson correlation coefficient of each model on the
prediction over time.

where D is the number of convolutional layers; M and N
are the width and height of the feature map derived by each
convolutional kernel; K is the size of convolutional kernel;
Ci−1 is the input channels or output channels of the previous
layers;Ci is the output channels of the ith layer, which is equal
to the number of convolutional kernels; H is the number of
LSTM nodes; Sin and Sout are the input and output sizes of
LSTM. Since Sout is generally equal to H , the time complex-
ity O(4·H · (Sin+ Sout )) can be simplified as O(H · Sin+ H2).
m and n are the input and output sizes of the fully connected
layer.

The average MAE, RMSE, correlation coefficient, IA and
running time of different models are compared in Fig. 12.

FIGURE 11. Average IA of each model on prediction over time.

FIGURE 12. Comparison of the average MAE, RMSE, correlation
coefficient, IA and running time of different models.

The proposed model has the lowest MAE and RMSE, the
second highest correlation coefficient, the highest IA and the
fourth smallest running time. Thus, the proposed prediction
model has improved the prediction performance compared to
the other five prediction models.

Fig. 13, Fig. 14 and Fig. 15 illustrate the observed terrain
and predicted results of this proposed model in July 2014,
March 2015, and September 2015, respectively. The pre-
dicted terrain is generally consistent with the measurements.
Relatively large changes are more likely to appear on rugged
terrain, which poses greater challenges for the morphology
evolution prediction of nourishment. Therefore, the major
differences occur at the location with a steep slope.

The Sand Engine Peninsula is the main source of nour-
ishment sand, as denoted by the red polygon in Fig. 16(a).
The volume change of the Sand Engine Peninsula is gen-
erally calculated to analyze the lifetime of nourishments.
The original measured volume of the Sand Engine Peninsula
is 16.35 million m3. The measurements in September 2014
show that a total volume of 2.8 million m3 has decreased
after three years, which is approximately 17% of the original
volume.
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FIGURE 13. True terrain values of nourishment. (a–c) Survey periods of the terrains are July 2014, March 2015, and September 2015.

FIGURE 14. Predicted terrain values of nourishment. (a–c) Predicted terrains by July 2014, March 2015, and September 2015.

FIGURE 15. Error maps of the nourishment terrain prediction. (a–c) Differences between true terrain and predicted terrain in July 2014, March 2015, and
September 2015.

FIGURE 16. Predicted result of nourishment terrain after three years. (a) Original nourishment measurements in August 2011 (The red polygon represents
the Sand Engine Peninsula). (b) Nourishment measurements after three years. (c) Result predicted by the proposed model in this article.

Since data on the morphology evolution of mega-
nourishments is scarce, previous studies focus on hydrody-
namic models. Reference [40] using a standard diffusion
type coastline model to calculate the erosion rate of nour-
ishments. Approximately 70% of the original volume of the
Sand Engine would decrease after three years according to
this model [40]. However, approximately 17% of the volume
of the Sand Engine has decreased after 3 years in reality
(see Fig. 16).

Reference [38] adopts the numerical model of Delft3D,
which is a coastal area model by the advection-diffusion
equation and shallow water equations. The Delft3D model
is calibrated using the measurement data of the Sand Engine.
The result of Delft3D is that the volume erosion is approxi-
mately 20% after three years.

These hydrodynamic models are usually based on pro-
cess formulations considering complex factors such as cli-
mate, wave and sediment. The proposed model in this article
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predicts the nourishment terrain based on historical data
and obtains the result of 12.38% of volume decrease after
three years. Compared to the results by the model in [40],
the results achieved by reference [38] and ours are more
consistent with measurements. Reference [38] overestimates
the nourishment volume decrease, while the proposed model
underestimates the nourishment volume decrease as shown in
Fig. 16.

IV. CONCLUSION
Sand nourishment is a soft approach against environmental
problems, such as accelerated sea level rise and increased
storm surge. With the increase in frequency and expenses
in beach nourishments worldwide, the morphological evo-
lution prediction of sand nourishment is of major impor-
tance. To fully exploit the information in spatial and temporal
dimensions, a data-driven approach combining CNN and
LSTM is constructed to predict the nourishment morphology
evolution. The historical surveyed data is transformed into
sequence grids, which are input into a CNN to obtain the spa-
tial features of the mega-nourishment. The CNN is performed
on the historical data, which can extract actual spatial features
and reduce the network complexity. LSTM is used to account
for the time dependence of nourishment terrain changes.
The output of CNN is input to LSTM to learn the temporal
relationship to predict future nourishment terrain using past
time-series features. The LSTM output is finally decoded
by the fully connected layer to obtain the prediction result.
The complex spatiotemporal correlations among the input
data are identified by effectively training the proposed model.
In comparison with other popular methods, the experimental
results conducted on the Sand Engine dataset show that the
proposed model improved the prediction of the nourishment
morphology evolution.

Improvements can be considered in future studies to
better predict the nourishment morphology evolution. The
spatiotemporal information of nourishment terrain can be
encoded by using various methods such as multimodal learn-
ing to obtain effective features. To transform raw measure-
ment data into sequence grids, a more accurate interpolation
method can be explored to consider the context along tempo-
ral dimension.
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