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Abstract. Extreme waves and their impact on (fixed and floating) offshore structures have
long been subjects that could only be studied with experimental methods; sufficiently accurate
existing numerical methods (CFD) are only recently emerging. Phenomena like green water
loading and slamming are highly dependent on the relative motion of a ship versus the on-
coming wave crests, as influenced by the preceding wave groups. Thus, accurate prediction of
the hydrodynamic forces requires methods that can reliably predict the interaction between ex-
treme waves and body dynamics. Over the years, the ComFLOW simulation method has been
developed to cover this CFD niche. A novel ingredient devceloped in the ComMotion project
is an unsteady coupling algorithm that is numerically stable under all circumstances (such as
ratio of body mass versus added mass). Also, a new class of absorbing boundary conditions has
been extended to include the effects of current. Several applications will be presented, including
esperimental validation.

1 INTRODUCTION

Under extreme weather conditions, waves and currents can induce large forces and stresses
on sea-going ships and offshore constructions (production and offloading platforms, mooring
systems, wind turbine farms) [1]. For example, in heavy storms solid amounts of seawater,
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called ‘green water’, flow over the deck, thus threatening the safety and operability of the ship.
The amount of shipped water obviously depends on the phase between ship and wave motion,
and hence on the preceeding wave group and its interaction with the ship dynamics. The same
holds for slamming impacts against a ship’s bow. As a special case, free fall lifeboats (Fig. 1)
face these challenges when a ship or platform needs to be evacuated.

Figure 1: Simulated snapshots of a free-fall life boat.

Until recently, these violent flow phenomena were mainly studied experimentally, but there is
a growing need for a numerical simulation tool capable of predicting in detail the hydrodynamic
loads due to slamming and green water; see, e.g., [2–4]. However, the tools currently available
are based on e.g. linear potential flow theory or shallow-water theory; see e.g. [5]. These tools
based on simple models are hardly capable of predicting such events to an acceptable level of
accuracy. The physical phenomena accompanying extreme events are both highly non-linear
and highly dispersive due to the occurring wave steepness, and require new methods as a basis
for the prediction of the water flow and its induced hydrodynamic loads.

It is only recently that the Navier–Stokes equations can be solved for large-scale complex
free-surface flow problems, thanks to novel numerical algorithms and the increase in computer
power [6–8]. For an overview of basic Navier–Stokes methods for free-surface flow we refer to [9],
with some offshore applications in [10–12].

In this paper we will present the main physical and numerical ingredients of the ComMotion
project:

– Interactively moving bodies.
– Hydroelasticity.
– Absorbing boundary conditions incorporating current.
– Experimental validation.

For reliable load predictions in these examples, it is necessary to determine the position and
dynamics of the objects as part of the flow simulation. The ComMotion project makes this major
step by extending the ComFLOW simulation method to interactively moving and deforming
objects in extreme waves. Also, attention is paid to numerical absorbing outflow boundary
conditions in the presence of current. The new developments will be illustrated with a number
of maritime applications.
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2 MODELLING

2.1 Flow model

Incompressible, turbulent fluid flow can be modelled by means of the Navier–Stokes equations.

Mu = 0,
∂u

∂t
+ C(u)u+Gp− V u = f . (1)

The divergence operator is denoted M ≡ ∇·, the convection operator C(u)v ≡ ∇ · (u⊗ v), the
pressure gradient operator G = ∇, the viscous diffusion operator V (u) ≡ ∇·ν∇u and f a forcing
term. The kinematic viscosity is denoted by ν. Turbulence is modelled by means of large-eddy
simulation (LES) using a state-of-the-art low-dissipation QR/AMD-model [13–16]. For its use
in maritime applications, see [17, 18].

The evolution of the free water surface is described by an adapted and improved version of the
Volume-of-Fluid method (VOF) introduced in [6] and [19]. The free surface is reconstructed by
Youngs’ PLIC method [20,21] and advanced by a local height function [21,22]. Specifically, use
will be made of the ComFLOW simulation method, developed at the University of Groningen
in cooperation with the Technical University of Delft and MARIN. It is described in full detail
in a handful of PhD theses [18, 21–27].

Bodies can move and deform through the fixed Cartesian grid, with their position described
in a cut-cell fashion by edge and volume apertures, as is done for non-moving objects [28] (see
also [29, 30]). Local grid refinement [31] can be applied in ‘interesting’ regions.

The Navier–Stokes equations (1) are discretized on a staggered computational grid [32]. The
second-order finite-volume discretization of the continuity equation at the ‘new’ time level ·n+1

is given by
M0u

n+1 = −MΓu
n+1
Γ , (2)

where M0 acts on the interior of the domain and MΓ acts on the boundaries. The discretization
keeps convection C(uh) skew symmetruc and diffusion V symmetric. In this exposition, for
simplicity reasons the first-order forward Euler time integration will be used. In the actual
calculations, a second-order Adams–Bashforth method for convection and a fully implicit method
for diffusion is applied.

The discrete momentum equation can be formulated as

un+1 = ũ− δtΩ−1Gpn+1, where ũ = un + δtΩ−1[−C(un)un + Vun + f ]. (3)

Here, the diagonal matrix Ω contains the geometric size of the control volumes. This discretiza-
tion does not produce artificial diffusion and convectively preserves the energy of the flow [15,33].
The discrete gradient operator and the divergence operator are each other’s negative transpose,
i.e. G = −MT

0 mimicking the analytic symmetry ∇ = −(∇·)T , such that the work done by the
pressure vanishes discretely.

Imposing discrete mass conservation (2) at the new time level, substitution of (3) results in
a discrete Poisson equation for the pressure:

δtM0Ω
−1Gpn+1 = M0ũ+MΓu

n+1
Γ . (4)

3
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Here Γ is the boundary of the fluid domain where boundary conditions involving the velocity
are prescribed; it includes the fluid-solid interface ΓFS.

For future reference, the fluid dynamic problem will be formally abbreviated as

Madd̈ΓFS
= −fΓFS

. (5)

Here, Mad is the so-called fluid added-mass operator, which governs the relation between the
motion of an immersed body and the reactive forces excerted by the fluid. Further, d is the
displacement of the fluid-solid interface.

2.2 Structural model

For simplicity in this study, the structure is selected to be a one dimensional Euler–Bernoulli
beam. Assuming a constant cross section A = TW for the beam (thickness T and width W ),
its equation of motion is

ρsA
∂2d

∂t2
+ EI

∂4d

∂s4
= f, (6)

with appropriate initial and boundary conditions. Here, s denotes a coordinate along the beam,
d the beam deformation, ρs the beam density, E Young’s modulus, I the second moment of
inertia and f the load per unit length of the beam.

The structural response is modeled with a finite element method. Omitting the technical
details, the resulting discrete set of equations can be written in the form

Mebd̈+ Kebd = fΓFS
, (7)

where Meb is the discrete mass operator and Keb the discrete stiffness operator. The temporal
integration of the structure equations is performed by means of the generalized-α method [34].

2.3 Fluid-solid coupling conditions

The coupling relations along the fluid-solid interface ΓFS consist of two relations. The kine-
matic condition states that the motion of the interface on both sides matches, whereas the
dynamic condition ensures equilibrium of stresses:

kinematic u =
∂d

∂t
n ; dynamic σf · n = σs · n. (8)

3 NUMERICAL COUPLING METHODS

3.1 Numerical coupling with a solid body

Traditional weak (hierarchical) coupling methods, with information exchange once per time
step, are only numerically stable within a restricted range of added-mass ratios. If the application
covers a larger range, one has to resort to strong (simultaneous) coupling [35]. Usually, some
form of subcycling within each time step is applied, where information is exchanged at the
‘hearts’ of the numerical algorithms (like in a monolithic code). For two-way coupled problems, a
monolithic procedure of the subdomains would be most powerful. However, such a simultaneous
approach is not always possible, e.g. when ‘black-box’ commercial codes are being used, as the

4
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subdomain solvers have to be coupled at a deep iterative level. In this section we will describe
an approach that tries to combine the simplicity of a hierarchical coupling approach with the
iterative power of a monolithic approach.

Segregated coupling The stability of the two-way coupled system can be investigated in
an abstract setting. On both sides of the fluid-body interface ΓFS physical properties need to
be continuous, as expressed in the kinematic and dynamic conditions (8). Thus the coupling
problem can be formulated in terms of interface variables only: the velocity along the interface
uΓ and the local or total load exerted by the fluid to the structure fΓ (for an elastic body found
from the local stresses, for a solid body found from their integration along the interface).

The solid body reacts by accelerating due to the exerted force from the fluid. For a solid
body a six degrees of freedom (DOF) mass operator (Msb) containing inertial properties of the
body rules its dynamic response. The fluid, on the other hand, reacts to the accelerated solid
body with a new pressure field. The so-called added-mass operator (Mad) describes the fluid’s
response. Thus we can formulate the coupled problem in abstract notation as

solid body dynamics Msbd̈
k+1
Γ = fkΓ ; fluid dynamics fk+1

Γ = −Madd̈
k+1
Γ . (9)

We have already indicated the usual iterative process which is used to solve this set of, basically,
2 equations in 2 unknowns. Its formal amplification operator follows as

fk+1
Γ = −MadM

−1
sb fkΓ , which is stable if and only if ρ(MadM

−1
sb ) < 1. (10)

In other terms, the ratio of the added mass to the solid body mass for each DOF, more precisely
all eigenvalues, should be less than one. If the problem violates this requirement, methods like
the under-relaxation method, can only keep this value below unity at the cost of (severely)
increasing computational effort.

Figure 2: Coupling strategy for simulaing the interaction between a solid-body/structure and a fluid.
To improve the numerical stability, an interaction law is used consisting of an approximate model for the
solid-body/structure dynamics.

Quasi-simultaneous coupling It is not necessary to perform a fully simultaneous coupling.
A good approximation of one of the two submodels is sufficient to be fully intertwined with the
other submodel. The difference between the approximation and the original submodel can be
dealt with in the traditional, weak fashion. Such a coupling is called quasi-simultaneous, and

5

824



Arthur E.P Veldman, et al.

was introduced in a steady, aerodynamic context in the late 1970s [36,37]. Recently, the method
has been re-discovered in the FSI community [11, 38].

In time-integration terms, the bulk of the interaction is treated implicitly, the remaining part
explicitly. Numerical stability of this approach requires that, roughly spoken, the implicit part
contains at least ‘half of the physics’, which is a very weak requirement. An essential step is that
the equations approximating the other submodel, such as an elastic wall model, are considered
boundary conditions for the fluid flow equations. In particular, they will show up as a boundary
condition in the pressure Poisson equation.

In this quasi-simultaneous method an approximation of the body dynamics is solved simul-
taneously with the fluid. This interaction law anticipates the body response in advance of the

actual solid dynamics computation. As such, the interaction law is an approximation ˜M−1
sb to

the inverse mass operator M−1
sb of the solid body dynamics (9a). In the iterative process within

each time step, the interaction law is exploited as

solid body d̈k+1
Γ = M−1

sb fkΓ , (11)

interaction law u̇Γ − ˜M−1
sb fk+1

Γ = d̈k+1
Γ − ˜M−1

sb fkΓ , (12)

fluid fk+1
Γ +Madu̇Γ = 0. (13)

Eliminating üΓ leads to the following iterative process, which can be compared to (10):

(

I+Mad
˜M−1
sb

)

fk+1
Γ = −Mad

(

M−1
sb − ˜M−1

sb

)

fkΓ , (14)

where I is the unit operator. In mathematical terms, the interaction law should neutralize the
most cumbersome eigenvalues of the iteration matrix.

This relation simplifies to (10) if the interaction law is zero, or in other words not employed,
which breaks down if Mad is large. Similar to the segregated method, the iterative procedure
is stable if and only if the spectral radius of the amplification matrix is less than one, i.e.

ρ((M−1
ad + ˜M−1

sb )−1(M−1
sb − ˜M−1

sb )) < 1. When (˜M−1
sb −M−1

sb ) is sufficiently small, this process will
converge, in spite of a possibly large Mad.

3.2 Numerical coupling with an elastic body

Because the structural equation (7) contains both d̈ and d, first a discrete time integration is
carried out. Thereafter, an analysis similar to the above can be carried out. Then the discrete
version of the hierarchically coupled problem at the new time level can be denoted as

elastic body

(
Meb

δt2
+ Keb

)

dk+1
Γ = fkΓ + . . . , (15)

fluid fk+1
Γ = −Mad

δt2
dk+1
Γ . (16)

Here, Meb denotes the discrete elastic body mass operator, while Keb is the discrete elastic body
stiffness operator; compare (7). The contributon from the previous time steps is omitted in view
of clarity; it is just an inhomogeneous term in the right-hand side, which is not relevant for the
convergence of the subiterations per time step.

6
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Matrices Meb and Keb can be simultaneously diagonalized as QTMebQ = I and QTKebQ = Λ,
where Q contains the normalized elastic body eigenvectors with eigenvalues Λ. In this way, the
elastic body dynamics (15) can be rewritten as

elastic body Q−T

(
I

δt2
+ Λ

)

Q−1dk+1
Γ = fkΓ . (17)

The displacement dk+1 can be eliminated from the system of equations (16) and (17), after
which the iterative process can be written as

fk+1 = −MadQ(I+ δt2Λ)−1QT fk. (18)

For small enough δt, the amplification factor simplifies to MadQQ
T . For a solid body with 6

DOF, QQT can be replaced by the inverse solid-body mass M−1
sb .

It can be shown [39] that the lower modes are most delicate, as they correspond with the
largest fluid added mass. Therefore we take care that these modes are treated more simultaneous.
Thus we construct an approximation of the full elastic equations, built from the lowest elastic
modes of the structure.

4 EXAMPLES

4.1 Tank with membrane bottom

In order to assess the performance of the quasi-simultaneous approach for different mass
ratios, a test case has been designed in which this ratio can be varied. Also, the physical
contents of the interaction law has been varied.

Figure 3: Schematic of the first test case; the domain with free-surface flow on top and flexible beam at
the bottom.

At the bottom of a rectangular container (1.0 × 0.1 × 0.5m3) filled with 50 kg of water, a
flexible beam is placed, as illustrated in Fig. 3. The mass of the beam is varied between 1 kg and
50 kg; its module of elasticity is 1 MPa. The interaction law is made out of truncated structural
modes; the number of modes dictates its accuracy.

Cases with mass ratio 1 and 50 are presented, where the number of included modes is increased
in order of relevance. Figure 4 shows the convergence history during the first time step. The
effect of the number of modes in the interaction law can be inferred. For a small added-mass
ratio one mode suffices, but for the more difficult mass ratio 50 it is profitable to include more
modes in the interaction law. This behaviour is perfectly in line with the theoretical stability
analysis in [39].

7
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(a) Convergence history for added-mass ratio 1 (b) Convergence history for added-mass ratio 50

Figure 4: Convergence history of the quasi-simultaneous method for the first time step for an increasing
number of included modes.

4.2 Free-fall life boat

The second example concerns a simulation of a free-fall life boat (Fig. 1). During the penetra-
tion of the free water surface the added mass can become quite large with added-mass ratios upto
40. Hence it is a perfect test case to evaluate the performance of the quasi-simultaneous coupling
method. The main finding is summarized in Fig. 5(right). It shows the amount of floating-point
operations to solve the pressure Poisson equation including the FSI-iterations that are required
per time step to converge the coupling with the moving solid body. In particular, the depen-
dence of this computational effort with the added-mass ratio is shown. The graph shows that
at larger added-mass ratios the quasi-simultaneous coupling method is much more efficient than
the ‘classical’ segregated coupling; it is even more efficient at small added-mass ratios.

Figure 5: Free-fall life boat being launched (left). The computational effort required per time step for
the FSI coupling (right).

4.3 CALM buoy

The third case is a validation against model tests of a CALM buoy (Fig. 6) in a shallow
water basin at MARIN [40]. These tests include the freely decaying motion of the buoy after
being released from a given position into calm water. This allows us to compare the simulated
and measured natural periods as well as the amount of hydrodynamic damping. The buoy in
its default configuration has been modelled as a cylinder with a diameter of 12m and a height
of 6.5m.

The simulation has been performed at different grids, with approximately 6, 10 and 18 cells

8
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Figure 6: Model of the CALM buoy in the shallow water basin at MARIN (left) and the geometrical
representation in the simulations (right).

per cylinder diameter. The results for heave motion are shown in Fig. 7. Using the approach of
Eca et al. [41], the numerical uncertainty has been assessed from these three grids and is also
indicated. The resulting uncertainty was found quite small, whereas it is understandable that
for later times in the simulation the uncertainty increases. The validation of the simulations
was monitored by a comparison with the experiments at MARIN and also indicated in Fig. 7.
The period as well as damping of the heave motion are found well-predicted.

Figure 7: Heave motions of a free-floating CALM buoy in simulation and experiment.

5 ABSORBING BOUNDARY CONDITIONS

In the CALM-buoy simulations, the computational domain has to be restricted to a finite
region; one has to take care that no numerical reflections from these artificial domain boundaries
enter the physical region of interest. To minimize these reflections a new type of absorbing
boundary conditions (ABC) has been developed, which can adapt itself to the passing waves
[21, 42]. Also, the effect of current (in arbitrary direction) has been included. In 2D, Peregrine
[43] already studied the effect of current on the dispersion relation. In 3D the dispersion relation
involving current U reads, using the abbreviation k = |k|,

ω± =
U · k
k

+ ck0 with ck0 =
√

gh

√

tanh(kh)

kh
. (19)

9
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The ABC is basically of Sommerfeld type, which in 3D reads as
[

cos α

(
∂

∂t
+U · ∇

)

+ ck0
∂

∂n

]

φw = 0, (20)

where α is the angle between the wave k and the normal n. This new condition lets waves
with wave number k pass freely; it is not unique. Further, φw is the wave component of the
potential, which is reformulated in terms of pressure p and velocity u, using the unsteady
Bernoulli equation. This results in a relation between p and u which is used as a boundary
condition to the pressure Poisson equation, similar to the interaction law for fluid-structure
interaction that we discussed above. The phase speed ck0 is replaced by a Padé approximation,
with the unknown wave number k found from the local solution [21,42].

Figure 8 shows a simulation of an oscillating sphere, with prescribed motion, which generates
outgoing waves. A current is present, running in diagonal direction through the domain. The
current makes the radiating circles no longer concentric. The domain has been kept rather small,
in order to study reflections at the boundaries. The figure clearly shows no visible irregularities
near the domain boundaries, demonstrating the potential of the new ABC.

Figure 8: Oscillating buoy in a current, generating non-concentric waves. Observe the regularity of the
results at the boundary of the computational domain.

6 CONCLUSION

Several of the newly-developed ingredients of the ComFLOW simulation method have been
sketched. Firstly, a quasi-simultaneous numerical coupling method has been presented. It can
handle large added-mass ratios efficiently and can also be extended to cover the coupling with
elastically-deforming objects. The lower elastic modes are found the most ’tricky’ and can be
‘tamed’ by including them in the interaction law. Secondly, ComFLOW’s absorbing boundary
condition which adjusts itself to the oncoming waves has been extended to cover the influence
of current. Several examples of verification and validation have been included.
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