Delft University of Technology
Software Engineering Research Group
Technical Report Series

Reconstructing Requirements Traceability
in Design and Test Using
Latent Semantic Indexing

Marco Lormans and Arie van Deursen

Report TUD-SERG-2007-007

%
TUDelft SE

TUD-SERG-2007-007

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

(© copyright 2007, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

Reconstructing Requirements Traceability in
Design and Test using Latent Semantic Indexing

Marco Lorman&* T, Arie van Deurseh?#

1 Delft University of Technology, Delft, The Netherlands
2 CWI, Amsterdam, The Netherlands

Abstract

Managing traceability data is an important aspect of thensoke development process. In this
paper we define a methodology, consisting of six steps, foonstructing requirements views
using traceability data. One of the steps concerns the sémtion of the traceability data. We
investigate to what extent Latent Semantic Indexing (L&h)jnformation retrieval technique, can
help recovering the information needed for automaticabonstructing traceability of requirements
during the development process. We experiment with diffidiek selection strategies and apply LSI
in multiple case studies varying in size and context. Weuwdisdhe results of a small lab study, a
larger case study and a large industrial case study.

KEY WORDS. Requirements Traceability; Traceability Reconstrugtimformation Retrieval

1 Introduction

For many organisations, the purpose of requirements mamagteis to provide and maintain clear
agreements between the different stakeholders involvel@weloping a product, while still allowing
requirements evolution. Requirements management is asiiygprocess that starts in the orientation
phase and continues during the rest of the product develoidifeecycle.

Managing requirements in such a way that useful informattam be extracted from this
requirements set, is hard in practice [20, 23]. This exéddhformation can be used for many
applications such as generating requirements views ordtrgraalysis [9]. The requirements views
we will encounter are coverage views, which include whetranot a requirement is covered by an
acceptance test, by a design artifact, by a system testcemnl §hese requirement views can provide
a major asset for developers and project managers, offérérg a way to monitor the progress of the
development process.

Obtaining accurate information requires that an up-tedaaceability matrix is maintained,
establishing links between, for example, requirementstasticases. Keeping the traceability links
consistent during development of the product is a time comsg, error-prone, and labor-intensive

*Correspondence to: Marco Lormans, Software Technologyabent, Delft University of Technology, P.O. box 5031, NL-
2600GA, Delft, The Netherlands.

8This is a substantially revised and expanded version of apers [31] and [32]

TE-mail: M.Lormans@tudelft.nl

*E-mail: Arie.vanDeursen@tudelft.nl

TUD-SERG-2007-007

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

process demanding disciplined developers [7, 19, 33]. &bty available tools do not support the
feature of automatically recovering traceability links28, 23].

In this paper, we investigate to what extent relevant traitiea links can be reconstructed
automatically from available documents using latent s¢imamdexing (LSI). LSl is an information
retrieval method assuming there is a latent semantic str@iébr every document set [13]. LSI creates
a “semantic” subspace of terms and documents closely agedaiising statistical techniques. This
subspace can be used for retrieving information and, in ase cfor reconstructing traceability links.
For this reason, our approach assumes a document-oriejelements engineering process based
on natural language, which can identify semantic simiksibetween different documents produced
during the development of the product.

The long term objective of our research is to determine halustry can benefit from using LSI
to track and trace requirements and eventually generai@ugarequirements views. In this paper, we
describe three exploratory case studies, that give answére following questions:

1. Can LSI help in reconstructing meaningful traceabiligfations between requirements and
design, and between requirements and test cases?

2. Whatis the most suitable strategy for mapping LS| docursiemilarities to reconstructed links?

3. What are the most important open issues that need to blveddoefore LSI can be applied
successfully in an industrial context?

To answer these questions we offer, in every case study,apsimwhy the particular links can be
reconstructed and what the requirements are for docungthinrelated development work products.

The three case studies in which we applied LSI, vary in size@mtext. The first is a lab study,
Pacman, used in a testing course at Delft University of Teldgy. Available documentation includes
use cases, design decisions, acceptance test cases, as wdava implementation with a JUnit test
suite. The Pacman case gives us the opportunity to explothelpossibilities of the techniques
in a controlled environment. In this study, we varied thefedé#nt parameters of our analysis to
come to a setting giving the best results. The second cadyg &uart of a software engineering
course at Eindhoven University of Technology. In this ceues group of students need to develop a
complete new software system from scratch and properlydeatirequirements, design and test cases
including tracebility links. The last case study is an indascase study carried out at Philips Applied
Technology. In this study, requirements, design decisiand corresponding test suite for a Philips
DVD recorder were analyzed.

The remainder of this paper is organized as follows. In $a@iwe give an overview of background
information and discuss related work, followed by a briefvey of latent semantic indexing in
Section 3. In Section 4 we describe our link reconstructietirodology, MAREV, and in Section 5 we
describe the link selection strategies we use in this metlogg. Next, in Section 6 we describe the tool
we developed to support our approach. The three casesstréipresented in Section 7. In Section 8
we compare and discuss the results of the case studies. \WWeiderthe paper by summarizing the key
contributions and offering suggestions for future researc

2

2 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

2 Background and Related Work

2.1 Requirements Views

The different perspectives on requirements are often septed using views. Views capture a subset of
the whole system in order to reduce the complexity from aageperspective. For example, Nuseibeh
et al. discuss the relationships between multiple views of a requénts specification [41]. This work
is based on the viewpoints framework presented by Finkalstel.in [17]. This framework primarily
helps organizing and facilitating the viewpoints of diéat stakeholders.

Von Knethen also discusses view partitioning, but from &edént perspective [53]. She considers
views on the system, distinguishing, e.g., the static srecfrom the dynamic interactions in the
system.

If we look beyond requirements, the concept of “view” alspegrs in the area of architectural
design. Kruchten introduced his “4 + 1 view model” for arelstiuire, where he defined five different
concurrent perspectives on a software architecture [283hEview of this model addresses a specific
set of concerns of interest to different stakeholders. Ogixamples are the “Siemens’ 4 views” by
Hofmeisteret al.[24], the IEEE standard 1471 [26], and the views discussé&d&mentset al.in their
book “Documenting Software Architetures” [11, 12]. Fiyalan Deurseret al. discuss a number of
specific views for architecture reconstruction [14].

Although much research is done in the area of (requiremei@a)s, there is no general agreement
on what these views should look like or what information tkpuld contain. Every project setting
seems to have its own specific information needs concereipgirements.

2.2 Requirements Traceability and Reference Models

Managing different requirements perspectives (views) lmarsupported through appropriate meta-
models, as shown by Nisset al. [40]. An important area of research in the domain of tradéglis
developing these meta-models. These so called referengelstiscussed in [37,46,52,53,55] define
the development artifacts including their attributes, tredtraceability relations that are allowed to be
set between these artifacts.

Von Knethen proposes (conceptual) traceability models Mianaging changes on embedded
systems [53, 54]. These models help estimating the impaet dfiange to the system or help to
determine the links necessary for correct reuse of req@nésn According to Von Knethen, defining a
workable traceability model is a neglected activity in mamproaches. Our earlier research confirms
the importance of defining a traceability model [33]. Thetiati experiments concerned a static
traceability model. New insights suggest a dynamic modelthich new types of links can be added
as the way of working evolves during the project. The needfformation as well as the level of detalil
changes [16].

2.3 Traceability Reconstruction

To reconstruct coverage views from project documentatiemeed some traceability support. Several
traceability recovery techniques already exist, each rogelifferent traceability issues during the
3

TUD-SERG-2007-007 3

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

development life-cycle. Some discuss the relations betwearce code and documentation, others the
relations between requirements on different levels ofrabson.

Antoniol et al. use information retrieval (IR) methods to recover the teddity relations from C++
code onto manual pages and from Java code to requirementd48jus and Maletic, and Di Penta
et al. use latent semantic indexing for recovering the traceghbiilations between source code and
documentation [38, 39, 45]. The IR methods in these casemastly applied to reverse engineering
traceability links between source code and documentatitegiacy systems.

IR methods can also be used for recovering traceabilityslimétween the requirements themselves
[21, 42]. In these cases, traceability recovery is mainlgdufor managing the requirements after
development when all the documentation needs to be finaineldreleased. Both Natt och Dag
al. and Huffman Hayest al. have developed a tool to support their approach. In [43] digitDaget
al. discuss their approach and tool, called RegSimile, in wthiely have implemented the basic vector
space model and applied it in an industrial case study. Hurffrlayest al. have implemented various
methods for recovering the traceability links in their tealled RETRO [22, 23]. They also applied
their approach in an industrial case study.

De Luciaet al. present an artifact management system, which has beerdextevith traceability
recovery features [34, 35]. This system manages all difteaetifacts produced during development
such as requirements, designs, test cases, and source oddées De Luciat al. also use LSI for
recovering the traceability links. In [36], they improvéetir traceability recovery process and propose
an incremental approach. In this approach they incremgrntglto identify the “optimal” threshold
for recovering traceability links.

Cleland-Huanggt al. define three strategies for improving the dynamic requirgsmé&aceability
performance: hierarchical modeling, logical clusterirfgadifacts and semi-automated pruning of
the probabilistic network [10]. They are implementing thapproach in a tool called Poirot [30].
Furthermore, like De Lucieet al, they have defined a strategy for discovering the optimal
thresholds [56].

Finally, IR techniques are also used for improving the duali the requirements set. Pagkal. use
the calculated similarity measures for improving the gyalf the requirements specifications [44].

3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an information retrieteadhnique based on the vector space model
and assumes that there is an underlying or latent structuelid usage for every document set [13].
This is particularly caused by classical IR issuessgsonymyand polysemy Synonymy concerns
the fact that there are many ways to refer to the same objegtrsUn different contexts, or with
different needs, knowledge, or linguistic habits will déise the same information using different
terms. Polysemy involves the fact that most words have ni@e dbne distinct meaning. In different
contexts or when used by different people the same term takearying referential significance [13].

LSI uses statistical techniques to estimate the latenttstre of a set of documents. A description
of terms and documents based on the underlying latent sersinicture is used for representing
and retrieving information. This way LSI partially overcemsome of the deficiencies of assuming
independence of words, and provides a way of dealing witbbisymy automatically.

4

4 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

LSl starts with a matrix of terms by documents. Subsequghtlges Singular Value Decomposition
(SVD) to derive a particular latent semantic structure nh&rden the term-by-document matrix [5, 50].
Any rectangular matrix, for exampletax d matrix of terms and documentX, can be decomposed
into the product of three other matrices:

X = ToSoD]

such thaflp andDg have orthonormal columns aisd is diagonal (andDg is the transpose d@g). This
is called the singular value decompositionXafTop andDg are the matrices of left and right singular
vectors andy is the diagonal matrix of singular values.

SVD allows a simple strategy for optimal approximate fit gsémaller matrices. If the singular
values in& are ordered by size, the fidstargest values may be kept and the remaining smaller ones
set to zero. The product of the resulting matrices is a matrixhich is only approximately equal 6,
and is of rankk. Since zeros were introduced irB, the representation can be simplified by deleting
the zero rows and columns & to obtain a new diagonal matri® and deleting the corresponding
columns ofTp andDg to obtainT andD respectively. The result is a reduced model:

X' =TSD ~ X

which is the rankk model with the best possible least square fiXtf 3].

Note that the choice df is critical: ideally, we want a value df that is large enough to fit all the
real structure in the data, but small enough so we do not alsbefisampling error or unimportant
details. Choosing properly is still an open issue in the factor analytic litera [13]. Our choice will
be discussed when we apply LSl in our case studies.

Once all documents have been represented in the LSI suhspaaan compute the similarities
between the documents. We take the cosine between the@spomding vector representations for
calculating this similarity metric. This metric has a vahetween [-1, 1]. A value of 1 indicates that
two documents are (almost) identical.

These measures can be used to cluster similar documentsy ddentifying traceability links
between the documents. We can also define new queries andhes ihto the LSI subspace. In
this case, we can identify which existing documents arevagieto the query. This can be useful for
identifying requirements in the existing document set.

Finally, LSI does not rely on a predefined vocabulary or gramnfor the documentation (or source
code). This allows the method to be applied without largeammof preprocessing or manipulation of
the input, which drastically reduces the costs of tracégltihk recovery [34,37]. However, some text
transformations are needed to prepare the documentatfomicthe corpus of LSI. This user-created
corpus will be used as the input for creating the term-byudoent matrix.

4 MAREV: A Methodology for Automating Requirements

Evolution using Views
The long term objective of our work is an approach that suggpgarge organizations in the software
industry in managing requirements throughout the lifeleyaf, for example, consumer electronics

products or document systems such as copiers. Such pravkedgo fulfil hundreds or thousands of
5

TUD-SERG-2007-007 5

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

requirements. Furthermore, these requirements can cloegeime when new product versions are
created and shipped.

Our focus is on reconstructirrgquirements views.e., views on the set of requirements that can be
used to monitor the progress in requirements developmesigd, and testing. In this paper we focus
on the reconstruction of requirements traceability ne¢degtnerate the requirements views.

In order to answer the questions raised in the introductien¢onducted three case studies, which
are described in Section 7. In this section we discuss 1) tiyes ©f our methodology WREV, to
reconstruct the traceability links and generate requirdmeiews, and 2) the approach we used to
assess the reconstructed links. In Section 5 we describlnthselection strategies (step 5) in more
detail and in Section 6 we discuss the tool that we develapedder to carry out these steps.

4.1 Link Reconstruction Steps

We have developed an approach for reconstructing our remeints views automatically. In this
particular case we experimented with LSI for reconstrugctime traceability links (step 4), which
resulted in reasonably good traceability recovery restilie steps are:

Defining the underlying traceability model;
Identifying the concepts from the traceability modeltie aivailable set of documents;

Preprocessing the documents for automated analysis;

1.
2.
3.
4. Reconstructing the traceability links;
5. Selecting the relevant links;

6.

Generating requirements views.

In this paper, we will primarily focus on techniques for ewtieg step 4 and 5 handling the
traceability recovery and selection of correct links. Oficse, step 1, 2 and 3 are of major importance
for executing step 4 and 5 successfully. We have defined sequerements views for step 6, but this
remains future work for now. We will discuss all steps brieftyd then focus on the steps 4 and 5 in
the case studies.

4.1.1 Traceability Model Definition

Traceability relations establish links between requireteeon the one hand and various types of
development work products on the other. A traceability nhddénes the work products and the types
of links that are permitted within the development process.

The choice of traceability model mainly depends on the psepdor which it is to be used. For
example, Ramesh and Jarke [46] discuss a range of diffeargability models. Other examples of
reference models can be found in [37,52, 53, 55].

An example of a traceability model relevant for coverage itaoimg is shown in Figure 1.
This model and the work products, including their depen@encontained in it reflect the way of
working at a big industrial company, Philips Applied Teclogies, in the embedded systems domain.

6

6 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

Customer Acceptance
Requirement Test
Requirement Technical System
Evaluation Requirement Test
Design Report
Artifact Test run

Figure 1: Traceability Model

For example, it distinguishes betweercastomer requiremen(icast in terms familiar by customer
representatives) aridchnical requirement&ast in terms familiar by developers). Moreover, the model
supportevaluationof requirements: after shipping the product, field studrescanducted in order to
evaluate the working of the requirement in real life. Theleation results are taken into account when
shipping a new version of the product. This traceability glaghables us to derive, for example, the
following coverage information that can be included in auiegments view:

o |dentification coverage The information in this view indicates the links betweerstomer
requirements and technical requirements. The technicglirements specify the product that
actually will be built. Every system requirement should éavlink with at least one customer
requirement, and vice versa.

e Design coverageDesign coverage captures the information to ensure tleateifjuirements in
the system’s requirements specification are addressee idetsign. This view shows how well
the design reflects the requirements. Note that the presdrecéink does not mean that these
requirements are correctly designed or implemented. la&irequirements coverage of 100%
after the design phase tells management that the systerfdsteme all functionality covered in
the design as agreed in the contract.

e Test case coverageA comparable situation applies to the requirements cageema the test
specifications. Most test specifications are created ingsiyd phase in parallel with the design.
This view shows how well the test specification reflects tlgpirements. Again this does not
mean the functionality is correctly implemented. Havingpaarage of 100% tells management
that all functionality will be tested in the test phase.

7

TUD-SERG-2007-007 7

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

e Test pass coverageA system test is an internal test, often called factory, testheck if the
system is working correctly. If all system tests pass, thelbpmentteam can show the customer
that all functionality is implemented and that all functédity is working correctly as agreed. This
view shows which requirements are tested and ready for thtemer acceptance test.

e Acceptance coverageThe customer can approve the results by means of the finaptae
test. This view shows which requirements are accepted byustemer and are ready for release.

o Evaluation coverage After delivery, the evaluation coverage view indicateschirequirements
have been evaluated and are suitable for reuse in ongoinfyiurd projects.

The above discussed examples of coverage views each rdftdcirethe traceability model depicted
in Figure 1. Of course other examples can be defined such abications of these views, e.g.,
capturing information about the coverage in the test spadifin and the actual execution of these
system tests.

The work products and traceability links that actually neebte captured in the traceability model
depend on project-specific information needs [16], butatstactors such as schedule and budget [47].

4.1.2 Concept Identification

Every concept contained in the traceability model shouldub&uely identified in the available
documentation. Since the documents are typically seraestred (typically being just MS Word
files), this requires a certain amount of manual procesdihg. more systematically the documents
are organized (for example through the use of templates asidfilL-std 498 or IEEE-1233-1998),
the easier it is to make this structure explicit and identifg texts for each of the entities from the
traceability model.

In general, identifying individual requirements and teases in the documentation is relatively
easy compared to identifying the design artifacts. Requérgts and test cases in most development
approaches are tagged with a unique identifier. For desigisidas it is often not so clear how
they should be documented and identified. Key decisions tiem @aptured in diagrams, e.g., in
UML. Here, we encounter the well known problem of estabiightraceability relations between
requirements and design [51]. Solutions exist to make gchiral knowledge more explicit such
as capturing architectural assumptions explicitly [29faftunately these solutions are often not yet
used in practice [20].

4.1.3 Text Preprocessing

After defining the entities and the texts belonging to eacthef, some pre-processing of these texts
is needed. The first step is extracting the texts from theralglocuments, bringing them in the (plain
text) input format suitable for further automated procegsirhis often is a manual or semi-automatic
task. In the semi-automatic case, scripting techniquesgusi.g., Perl, can be used to transform the
original text into the format needed for further processiMhether such scripting techniques can
be used depends very much on the document structure of thi@ardocumentation. The next step
is to conduct typical IR steps such as lexical analysis, stof elimination, stemming, index-term
selection, and index construction.
8

8 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

UCI1||UC2|[UC3|[UCH||UCS||UCS|[UCT|UCE|UCS||GLI
D1 0.96/0.87(/0,89(|0,77 ||0.850,79]|0.89(|0.96 (|0.81|0,95
D2 0.89/0.79(/0.83||0,79||0.81 0.8 ||0.85/0.89(/0.83||0.91
D21 |0.81(0.73]0,76]|0.59(0.69{|0.65 (10,77 ((0.87|0.69]|0.82
D2.2 |0.74(0.83]0,88)0.9 |[0.8 ||0.9 [0.81]0.66|0,79]/0.73
D23 ||0.840.96|0,85]/0,72(0,98|0.77 [|0.840.81]|0,77]|0.83
D24 |0.95(0.86(0,95]|0.81|(0.81|0.85(0.96((0.94|0.94]|0.96
D25 |0.96(0.88(0,89]|0.77(0.86|0.83 [|0.94(0.94]/0.9]|0.96
D3 0.96/0.89(10,89(|0,77||0.89(0,82]10.92 /0,93 [|0.86|0,95
D3.0 |0.91(0.85|0,91]|0.880,81|0.92/0.970.84|0,98](0.91
D31 |0.97(0.87|0,88]|0.78|(0.85||0.83 [|0.940.93||0.87](0.97
D3.2 ||0.91(0.96|0,91)|0.87[0,93]|0.91|0.96(0.84||0.92]|0.88
D3.2.1)|0.86(0.95|0.91]|0.8 |[0.95]|0.85(0.9 [(0.8 ||0.85]/0.86
D3.2.2)|0.88(|0.95|/0,95]|0.870,911|0.91 (10.940.81]|0,92](0.87
D3.2.3|0.79(0.92{/0,82]|0.86|(0.92{|0.89 |0.87[(0.7 ||0.84]|0.76
D3.3 ||0.83(0.,92|/0,83]|0,88[0,93]|0.91(0.890,73],0.86||0.8
D34 |0.98(0.87(0.9 ||0.8 |[0.85]|0.85(0.96(0.94|/0.91](0.98
D35 |09 (0.84]0,92]|0.9 |[0.77]|0.93(0.970.83]0,99](0.89

Figure 2: Example of Similarity Matrix

The collection of documents (the “corpus”) to be used astifipulLSI may be larger than the
texts corresponding to the entities from the traceabilibded. In fact, LS| analysis may benefit from
including additional documents containing texts aboutgfcample, the application domain. It allows
LSl to collect more terms that are typically used in comhborathelping LSI to deal with, for example,
synonymes. If such extra documents are used, these docunemtgo be preprocessed as well.

4.1.4 Link Reconstruction

After generating the term-by-document matrix we can retaosthe traceability links using LSI.
First of all, this creates the rarkmodel on the basis of which similarities between documestshe
determined. Here we need to choose the numbét.f8econdly, for every link type in the traceability
model (for example tracing requirements to designs) a aiitjl matrix is created containing the
similarities between all elements (for example betweemyerarjuirement and design artifact).

The result of our LSI analysis is a similarity matrix coniagpthe recovered links, represented as
their similarity measures. Figure 2 shows an example of #agiity matrix calculated for 10 use cases
and 3 design components. This similarity matrix allows ustige the quality for every recovered link.

4.1.5 Link Selection

Once LSI has created the similarity matrix, a choice has tmaée if the similarity number is indeed a
traceability link or not. There are several different stgags for doing this: the cut point, cut percentage,
constant threshold, and variable threshold strategy [3%4

9

TUD-SERG-2007-007 9

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

10

uci|ucucs|ucd]ucs]uceucT]ucgucs||eut
D1k] K]
D2
D2.1
D22 k]
D23 k]
D24 |x x x |x |)
D25 |x x |x x|
D3 x x Z
D3.0 x
D31 |k] x
D3.2 x x
D3.2.1 x
D32 Rk x|
D323 x x
ID3.3 x |x |1
D51 5]]
D33

Figure 3: Example of Traceability Matrix

All these strategies have their strenghts and shortcomingsrder to benefit from the specific
characteristics of applying LSI to traceability reconstion, we propose two new link selction
strategies: a one and two dimensional vector filter stragdtich we will discuss in detail in Section 5.

The result of the link selection step is a traceability matontaining the links not filtered by the
chosen link selection strategy. The link selection styatagl its corresponding parameters determine
which similarity measures will become the final traceapilinks. In Figure 3, an example of a
reconstructed traceability matrix is shown using our twaoehsional vector filter strategy. In Section 5,
we will explain, using an example, how to construct this éguility matrix with our link selection
strategies.

4.1.6 Requirements View Generation

The final step is to use the reconstructed traceability ltoksbtain requirements views. Currently we
have defined a number of different views concerning the stama coverage of requirements, as well
as a view to browse the reconstructed traceability links.

For example, given the presence of a link, the status of ainemgent can be appropriately set.
Moreover, management information can be obtained by camgppercentages of requirements that
have reached a certain status.

The reconstructed traceability matrix can also be usedltulede coverage metrics. Currently, for
every link defined in the traceability model we calculate peecentage of all requirements covered
by the specific link. Thus, we get a list of requirements cagerpercentages in the design, test cases,
and so on. Another view shows the requirements that are neted by, e.g., the design or test cases.

10

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

The developers can use this information to check if the reguénts are indeed not covered and can
undertake appropriate action.

4.2 Assessment of the Results

In order to assess the suitability of the reconstructedslinke conduct a qualitative as well as a
guantative analysis of the links obtained.

The qualitative assessment of the links is primarily doneekperts exploring the documents.
The structure of the documents set is of major influence am phdcess. It helps significantly if
the documents are structured according to an (interndji@t@andard or template such as IEEE
standard 830-1998, IEEE standard 1233-1998, ESA [1] orrgd#9]. Beforehand, such a structure
helps choosing the concepts and preprocessing the docsinadtérwards it helps in assessing the
reconstructed traceability links as it is easier to browseugh the documents. A tool for exploring
the links in order to support the qualitative assessmeris@idsed in Section 6.

The quantitative assessment consists of measuring two-kweWn IR metrics: recall and
precision[4, 18,48, 50]:

|correctnretrieved

recall =
|correct]

|correctnretrieved

recision= .
P [retrieved

The number otorrecttraceability links are specified in a reference traceahifiaitrix provided by
the experts developing the system. The numbeetrfevedtraceability links is derived from the LSI
analysis.

Both metrics have values between [0, 1]. A recall of 1 meaatsatcorrect links were reconstructed,
however the total set of links can contain incorrect linkgrAcision of 1 indicates that all reconstructed
links are correct, but there can be correct links that wetgeapnstructed. The link selection strategy
and its corresponding parameters influence the performadmators recall and precision, as we will
see in the case studies.

5 Link Selection Strategies

For selecting the relevant links in a similarity matrix seadink selection strategies are available. In
their application of LSI, De Luciat al. present a number of strategies for selecting traceabitikg!
The following are discussed [34]:

1. cut point In this strategy we select the tpginks regardless of the actual value of the similarity
measure [3, 39]. This strategy always returns exgcthaceability links.

2. cut percentageln this strategy we select a percentggef the ranked list to be considered as
links regardless of the actual value of the similarity meastihis strategy always returns exactly
the p% of the total reconstructed candidate links.

11

TUD-SERG-2007-007 11

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

3. constant thresholdin this strategy we select those links that have a simylarieasure higher
thanc, wherecis a constant (a commonly used threshold is 0.7). Note teataimber of returned
links is flexible.

4. variable thresholdin this strategy, proposed by De Lu@gal., we select those links that have a
similarity measure higher tham wheree is calculated through a percentagef the difference
between the maximum and minimum similarity measures ofdted set of similarity measures,
e.g., the besy% of the interval defined by the maximum and minimum [34]. T$timtegy is
useful if the difference between the maximum and the mininsilow.

5. scale thresholdIn this strategy, proposed by De Luc# al, the links are obtained as a
percentage of the maximum similarity measures, ees, ¢+ MaxSimilarity, where 0< ¢ <
1[3, 34]. This measure is most useful if the maximum simijaig low.

In our case studies, we have experimented with each of thegegies, which again all have their
strengths and shortcomings. Except for strategy condtaeshold, all strategies return at least one
or more traceability links as correct links, while in our easgtudies situations exist where no links
should be found, e.g., when the quality of the document sedds. Note however, that it is possible
for individual rows or columns to have no links, since theesifrold is calculated using the complete
set of similarity measures in the matrix.

Furthermore, the first two strategies do not take the siitylaneasure into account and make a
selection independent of the calculated result. They sinsplect theu best orp% best similarity
measures as traceability links. A typical question is whahher should we choose for theand p?

In most cases, we do not know the exact number of tracealiilkyg to return and it is hard to predict
this number.

The last two strategies define an interval containing thecsiein of similarity measures that are
correct traceability links. Both strategies are very vuttide for extremes. For example, if the minimal
similarity measure is very low with respect to the other nees, it is possible that the top 20%
contains almost all measures.

To deal with these issues, we have experimented with a nevoagip, that tries to take advantage
of the specific characteristics of our setting. For requeeta traceability purposes, it is not very likely
that there are, e.g., requirements that link to all testg;asedesign decisions that may be inspired by
all requirements together. For that reason, we proposaftegyrthat works on a per column basis.

5.1 One Dimensional Vector Filter Strategy

This strategy takes into account each column of the simylanatrix separately (see 1st dimension in
Figure 4a). Each column vector of the similarity matrix ikga as a new set of similarity measures.
Then, for each column, it combines the constant and varititskshold approaches: if there are
measures above the constant threstlde take the besi%, e.g., 20% of the similarity measures
in that column.

The constant threshold is used to indicate if there is aniasiity between this specific work product
(in the example a use case) and the other work products (iexhmple the design artifacts)(see
Figure 4a). If all similarity measures in the column vectoe amaller tharc, there is not enough

12

12 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

-
«
ry
F

1% dimension.

VE1[Ug2|uds|luc4]ucs|uce|ucT|lUcs||lucs||Gul ucifuc2fucs|ucs]ucs|ucs|ucT|ucsucs|cu
b1r—Jepsliopr|oge o7 7]loss]les7s 593 b1 Jo.os 0.96 0.95]
2__Jlokalln Folin #2]lo.7elln 21]ln albo1] o2
D21+ ok o.rz]odsllo.s0]e.s0]f0-55][. 282 |p21
D22 Job4]p.p3]o.$2]o.0 o8 Je.o Jo.st R SRE
D23 Jok4]p.ps]o.45 77]0.84 770083 D23
D24 [obs][o.pe]0.45 0.96 4llo.06] D24 Jo.gs 0.95 0.96][0.94][0.94][0.96
D2.5 [|0P6||0.p8) 0.8 0,94 0,96 D25 096 0,94(/0,94 0,96
D3 Jobs|jo.ps]o.$2 0.92 095 D3 Jo.s 093] [0
D3.0 Job1]obslod 0,97 091 D30 po2lposr] [o.ss]
D3.1 Job7][0.f7][o.4s 0.94 7087 D31 Jog7] 0.94]0.93]
D3.2 Jok1]o.pelg1 0.96 s8] |D32 0.96][0.91][0.87][0.93][0.91][0.96
D3 2 1]oks]o.ps]o.41 0.9 086 D321 0.95 0.95

£ |[p3.22]oks]ops]o.$s 0.94 7| D322 esfossfosr] [psifosd]

2 |Dp323[oro]o.p2]o.d2 0.87]Jo. t]o.7e] D323 0.92 0.36] [0.89]

€ |pas Jokspp2lods 0.89]0.73]o.86]jos | (D33 0.92 0.88][0.93][0.51

= [D34 |obs|ob7]od o8 o.85]0.85]0.96]00a]o.01]00s| |D34 [o.ss] 0.96][0.94]
b3 0% |p%e]o2]os Jo.770.03 007 o83 0ssoss]| D= [p.02]po | [o.03]0.97

(a) Reconstructed Similarity Matrix (b) Applied One Dimensional Vector Filter Strategy

ueiuciucs|ucdues|ucsucTucducs|cur uctucaucs]ucaucs|uce[ucr|ucs|ucs|eu
D1 |o.96 o9s] [oos| (DL Ix x|
D2 D2
D21 D21
D22 D22
D23 D23
D24 .95 .95 0.96][0.94]0.94][o.56] (D24 |x
D25 [o.96 0.94([0.94 pog| D25 Jix
D3 096 po3] [oos| D3k
D3.0 0.57] D3.0
D31 J0.97] [0.94] D31 |k
D3.2 [0.96] [0.96] D3.2
D321 [o.3] o D321
D322 [0.95]o95] D322 [|x |
D323 oSz [0.89] D323 [x
D33 0.92 [0.93j0.01 D33 x =
D34 Jo.9g] D34 |x |
D35 D35

(c) Applied Two Dimensional Vector Filter Strategy (d) The Final Reconstructed Traceability Matrix
Figure 4: Applying the One and Two Dimensional Vector Fitiarthe example Similarity Matrix using

c=0.7 andg = 20%

13

TUD-SERG-2007-007 13

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

similarity between the work products and thus there are axetbility links at all. This way we can
guarantee a certain level of quality for our reconstruatadgability links.

If there are measures greater than the constant threshdlke¢he variable threshold for selecting
the traceability links. With the variable threshold, a darity interval is defined by the minimum and
maximum similarity measures of the column vector (taking dhiginal column vector, including the
possible measures smaller the)a We useq to calculate the variable threshaddper column. This
thresholck retains the besi% of the similarity measures in that vector representatimhselects them
as traceability links independent of the other column vecto

In the example, depicted in Figure 2 and Figure 4a, we carhse¢hte constant threshold£ 0.7)
has no influence on the result. All the similarity measuretstagher tharc = 0.7. Consequently, every
use case in this example has at least one link (in this caseatiiable threshold always returns a link
per column).

The variable thresholdis calculated per column, and differs for each column; UEE = 0.916,
UC2 = £ =0.914, UC3= ¢ = 0912, UC4= ¢ = 0.838UC5 = £ = 0.922, etc... We see that the
relatively high variable threshold of UC5 would cause UC#toaeturn any links, and that the relative
low variable threshold of UC4 would cause that only 2 linkdJgE2 are filtered (see Figure 4a and
Figure 4b). Besides that, every column can have a differantber of returned links. Note that the
standard variable threshold strategy would use a sinfgeall columns.

With respect to applying only the variable threshold stygiteve will see in our case studies that
our strategy increases the precision of the result with€fatting the recall. The variable threshold
€ in case of takingy = 20% results ire = 0.91 for all columns. Consider, as an example, the effect
of this threshold on UC4. With this threshold, UC4 would haedlinks, while for the given example
we know there should be two links returned. This decreasesdtall with respect to using our one
dimensional vector filter strategy. On the other hand, aategyy does filter more of the relative high
similarity measures of UC9. Our strategy witl & 0.930 for UC9 returns only three links, while with
the “normal” variable threshold (= 0.91) it returned five links. As we will see in the case studiks, t
correct link is indeed in that set of three links.

The benefits of our one dimensional vector filter strateggmmared to the strategies discussed by
De Luciaet al.[34], are the following:

e Our strategy is flexible in the number of returned candidatedability links. Thus, it does not
always return an absolute number of links, like the cut paimtt cut percentage strategies.

e Our strategy takes into account the calculated similaridasures and uses a constant threshold
to guarantee a certain level of quality. It is possible thahwur strategy no traceability links
are returned.

e Our strategy is less vulnerable for extremes in the totabEsimilarity measures. It only takes
a subset (the column vector) to set the variable threshalde&ch individual work product, it
returns a more precise set of traceability links that is fiflgicéed by the similarity measures in
the other column vectors.

We have shown some arguments why our strategy improvesrtkesdilection step compared to

the other available strategies. However, there are still fwoblems with this strategy: 1) it does not
14

14 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

consider the other dimension (row) of the similarity matffixx our case example the design vectors)
and 2) it always returns a link for each column if the constargshold is too low.

The first is a problem because of the following. Imagine theasion that a design vector has
relatively high values for the similarity measures comparethe other design vectors in the matrix,
e.g., D3.2 compared to D2.2. In this case, this design attiEgurns many traceability links using our
one dimensional vector filter strategy; the similarity meas are higher than the constant threshold
¢ and also belong to the interval defined dgf each column. This is an undesirable situation as one
design artifact (or one test case) should not cover all (strobthe) use cases.

The second is a problem because it should be possible fomealto return no links. For example,
when a use case is not yet covered in the design, the colunirabtise case should not return any
links. Both problems are solved using our second stratelgigwis an extension to the one dimensional
vector filter strategy.

5.2 Two Dimensional Vector Filter Strategy

This two dimensional vector filter strategy is basically Hzene as our one dimensional vector filter
strategy except that it is executed on both dimensions oithéarity matrix (see Figure 4a). It also
filters the relatively weak similarity measures of the rowdur example the design vectors). In general,
this should improve the quality of the reconstructed tradi links; the precision further increases.

When applying our two dimensional vector filter strategy im example we see that for D3.2, four
extra links are filtered. The same results can be observed.tpr D3.2.2 and D3.5 (see Figure 4c).

However, with this second strategy the risk increases Hefilter is too precise and also eliminates
correct links, thus decreasing recall. If we look again a#llMie see there only remains one link after
applying our two dimensional vector filter strategy. Aft@péying the two dimensional vector filter
strategy, we transform the remaining similarity measuodsaceability links. Finally, these form the
traceabilty matrix depicted in Figure 4d.

The additional benefits of our two dimensional vector filteategy with respect to the benefits
discussed in Section 5.1 are the following:

e |treturns a more precise result for each pair of work prosl(iotour example; use case - design
artifact pairs).

e It possible that a column returns no links even if the cortstareshold has no influence on the
result. The second filter dimension (per row) makes thisiptess

6 The RegAnalyst Tool Suite

In order to support the traceability reconstruction apphoave developed a tool called RegAnalyst
The objectives of this tool are:

TThis tool suite replaces the tool support (TMG toolbox, Er&econstructor and Trace Explorer) used in our paper at CSMR
2006 [32]. The tool is available frommt t p: // swerl . t udel ft. nl /bi n/vi ew Mai n/ ReqAnal yst .

15

TUD-SERG-2007-007 15

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

16

e To offer a test bed for experimenting with different tracdégbreconstruction approaches and
algorithms;

e To support the application of these approaches to indliptdgects.

The tool has been implemented in Java, and follows the Bx@aery-View approach adopted
by many reverse engineering tools [15]. In this approach vet éixtract the relevant data from the
provided documents. This data, the work products and i@ the reference traceability matrices,
are stored in a database. For reconstructing the tradgdlnks, queries can be done on the database.
The reconstructed information combined with the data frtve database is used to generate the
requirements views.

6.1 Tool Requirements

In order to make RegAnalyst useful in practice, it needs tffilfthe following requirements. One
of the key requirements for ReqAnalyst is that it should eedthe effort for maintaining consistent
traceability support and reduce the search time for chariggsove impact analysis and coverage
analysis. Besides that, ReqAnalyst should be able to eagigort different development environments
and different domains with a minimum of tailoring effort. ishncludes environments such as global
distributed software development, offshoring and outsimgr. Also the deployment of RegAnalyst
should be simple for such heterogeneous environments.

The input for RegAnalyst consists of the work products thegdhto be traced and of which the
requirements views should be generated. The tool shouldekiblf in the structure of these work
products, minimizing the amount of tailoring required téeofa document as input to RegAnalyst. In
addition to that, it should be able to cluster the work prddirtan easy and flexible way.

Futhermore, RegAnalyst should be scalable. It should be @wbhandle a large number of work
products, but it should also be easily expandable with iigpehe number of predefined requirements
views (or other views, if necessary).

Since we anticipate that the maintenance of such a tradgamitrix cannot be fully automated,
RegAnalyst should support manual traceability identifaratis well. In particular, it should be possible
to read in a hand-written matrix, to compare the manual viighautomatically obtained results, and to
easily inspect the documents for which the two matriceediff

In order to support the evaluation of reconstruction apghes, the latter comparison feature can be
used for conducting a qualitative analysis of the recorsitsa results. In order to support a quantitative
analysis as well, the tools should be able to compute poecand recall figures from the traceability
matrices.

6.2 Technology Used

RegAnalyst is implemented using standard web-technolegystoring the data we use a MyS®L
database. On top of the database we have implemented a Jaegplecation using Java Servlets (for

*http: // waw. mysql . com
16

TUD-SERG-2007-007

SE

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

Case Studies Pacman | Calisto Philips
2.2
Number of Requirements (work products) 14 12 7
Number of Design Artifacts 24 48 16
Number of Test Cases 20 79 326
Total number of indexed terms 1366 2251 2502
Number of “requirement - design artifact” links 28 59 nk
Number of “requirement - test case” links 19 80 nk

Table 1: Case Study Statistics

collecting data and link reconstruction) and Java Servge®#&or presenting the results). The choice
for building a dynamic web application in Java made it easfutfil a number of the practical tool
requirements mentioned in the previous subsection, suehsasof deploymeritFurthermore, the use
of a browser provides access to the tool from any locatiorkimggait suitable for global distributed
software development.

6.3 Functionality and Implementation

The functionality of the present version of RegAnalystiislatively simple. RegAnalyst currently is
primarily a research prototype, allowing us to experimeitt the use of LSI for requirements coverage
view reconstruction.

A RegAnalyst session starts by choosing a project, whichbgaa new one, or one that has been
stored in the database already. Once the user has choségeet,fRegAnalyst shows a menu with the
steps that can be executed next.

ReqgAnalyst first of all offers a menu to extract the data fromprovided documentation. The work
products and the reference traceability matrices can bhacrt. Secondly, it provides a menu for
setting the parameters of the LSI reconstruction and thicelor a link selection strategy.

Once the tool has executed a reconstruction an intermedite appears showing the reconstructed
traceability matrix and some options for generating vasicequirements views. These views should
make it possible to obtain continuous feedback on the pesgoé ongoing software development or
maintenance projects. Futhermore, they facilitate conioation between project stakeholders and
different document owners. In addition to that, RegAnabftrs views that support the comparison
of traceability matrices obtained in different ways, foaeple manual versus automatically via LSI.
Examples are shown in Figures 7 and 8 discussed in the ndidrsec

17

TUD-SERG-2007-007

17

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

18

Requirement Test

Design -
Artifact

Figure 5: Traceability Model for our Case Studies

7 Case Studies

We have conducted three case studies where we applied ouwaapfor reconstructing requirements
traceability using LSI. The case studies vary in size andecdnThe first case study, Pacman, is a
small case we developed within our university. This casdystyives us the opportunity to explore
all the possibilities of the techniques in a controlled emwiment. We varied the different parameters
of our analysis to come to a setting giving the best resultee Jecond case study, called Calisto,
is somewhat bigger. Although developed within a univerghg system at hand was developed for
an external (industrial) client. The last case study ingslan industrial project carried out at Philips
Applied Technologies. This case study represents a regbtidject for commercial purposes.

In our case studies, we will focus mainly on two types of tedukty links; links between
requirements and design, and links between requirementsemsh The corresponding traceability
model is shown in Figure 5. By combining these two link typesoan furthermore obtain traceability
from design decisions to system tests, as indicated by tsteeddine in the figure.

An impression of the size of the cases is provided by Tableshdws the number of work products
involved relevant to our traceability model for each casayall as the number of indexed terms for the
total set of documents, including additional context (dayadoc). Besides that, it shows the number
of links between the different work products as set in thevioled reference traceability matrides

For each case study, we will conduct link reconstructiongiie following link selection strategies:
constant threshold, variable threshold, one dimensiogetbv filter and two dimensional vector filter,
and reflect on the lessons learned from this case.

7.1 Case Study I: Pacman 2.2

Our first results are obtained from a lab experiment execat&klft University of Technology. The
system at hand is a simple version of the well-known Pacmamegiat is used by students in a
lab course for testing object oriented software followinpd®r’s testing approach [6]. An initial

8For our case studies we used the Apache Tomcat 5.5 web sendefloyment
For the Philips case study, we do not have the referencebifiagenatrices. So we do not know the number of links and cann
calculate the link density (nk — not known).

18

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

uc7 Suspend

Actor player

1. Entry condition: The player is alive and playing

2. The player presses the quit button in order to suspend glahngame

3. During suspension, no moves are possible, neither from lyeepnor from the
monsters

3a. The user can press undo in order to undo monster and playaramov

4. Pressing the start button re-activates the game

Figure 6: Full text for use case UC7 of the Pacman case study

implementation for the system is given, and students areag(to extend the test suite according
to Binder’s test design patterns, and enhance the systemadditional features (which they should
test as well).

7.1.1 Case Configuration

The available documentation for Pacman consists of

e A requirements specification including a concise domainlysis® ten use cases, and a
description of the user interface.

e A design document listing the design decisions at architattis well as detailed design level.
This covers the (model-view-controller) layering usedeftected in the package structure, the
static view explaining the main classes and their assatst® dynamic view summarizing the
system’s main state machine, and a description of the imgrstion of the user interface.

e A testing document explaining the acceptance test suitehBbapplication. For each use case
one or more test cases are provided as well as a test casdidiativg the proper working of the
user interface.

Pacman is shipped with a traceability matrix. As can be semn the above description, Pacman’s
documentation has been organized with traceability in milidis, for the acceptance test suite, there
is a natural mapping from test case to use case. For the diesgysomewhat harder to setup the
documentation with clear traceability objectives. As amraple, to what requirements should the
decision to opt for a model-view-controller architectueelinked?

For the requirements specification the use cases are chesaeaia requirement entities. Besides
the use cases we also included the domain analysis, usefacgeand the requirements for the
development environment. The design is listed accordingstdesign decisions, which we used as
design entities in our analysis. Finally, every test caseiisidered as a test case entity for our analysis.
In total there are 14 requirement entities, 24 design atifsand 20 test cases. In Figure 6 we show
an example of an use case description. The documents werie@dan plain text, and the traceability
matrix as an MS Excel spreadsheet. They could be directlygubas input to RegAnalyst.

19

TUD-SERG-2007-007 19

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

As corpus, the collection of all documents was used, inclgdie Javadoc of the implementation.
This resulted in a corpus of almost 1366 terms. Furthernfiore,we took the value 0.7. The other two
valuesk andqg we varied to get an impression of the impact of these values.

7.1.2 Case Results

The recall (R) and precision (P) for this case study are shiowffiable 2 for the constant threshold,
variable threshold, one dimensional vector filter and twuoetisional vector filter strategies discussed
in Section 5. For the two dimensional vector filter strategy also recorded the link density (LD).
In Figure 7 and Figure 8 the reconstructed traceability iwedrof the Pacman case study are shown
using the various filter strategies. Figure 7 shows the r&icocted matrices of the links between the
requirements and the design, and Figure 8 shows the reootedrmatrices of the links between the
requirements and the test cases.

The reconstructed matrices are compared with the providéstence traceability matrix. The
correctly reconstructed links are colored grey and eacled¢iecontains an “X”. The empty cells are
correctlynot reconstructed links. According to the reference trac@gbiatrix these cells should not
return a link.

The cells that are colored light grey are invalid comparetht® provided reference traceability
matrices. These cells containing “fp” are the false pos#ivi hese links should not be reconstructed as
traceability links and are therefore incorrectly reconsted. The dark grey cells containing “fn” are
the false negatives (missing links). A link should have besonstructed between these two particular
work products, but our approach did not select this candiliiak as a traceability link. In RegAnalyst,
each cell in these matrices is clickable leading to the téxtobh documents. This makes it easy to
analyze why a certain reconstructed link was present omabse

7.1.3 Results “Requirements — Design”

The results in Table 2 show a relatively low precision of thid between the requirements and design.
This is caused by the many false positives. The constanstibte strategy returns the most false
positives (and this way returns the lowest precision). Tineshold oft = 0.7 has almost no influence
on the result (see Figure 7a). Most similarity measureslaoge0.7.

If we apply the variable threshold strategy we filter many loé false positives. This strategy
generally increases the precision, but decreases thd,reap| forq = 30%. Figure 7b shows that
5 correct links are filtered using these settings. We can sdgothat many of the false positives are
located in specific rows and columns. In the casg 8f30%, design artifacts DO, D3.3 and D3.7 and
requirement artifacts DA, UC7 and GUI return many false fhsi

Our one dimensional vector filter strategy filters many ofthfalse positives in the columns of the
traceability matrix. For example for the column with labéd [IDomain Analysis) it filters an additional
8 false positives compared to the variable threshold gtyat®ee Figure 7b and Figure 7c). The same
can be observed for UC7 (4 additional false positives) and Bladditional false positives). In this
case, withg = 30% the filter increases the precision and does not infludreceetall (see Table 2 with
g = 30%). However, the filter has limited influence on the rowstaoting many false positives such
as DO, D3.3 and D3.7.

20

20 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

Constant | Variable One Two

Threshold| Threshold | Dimensional| Dimensional
Linktype | ¢ q R P R P R P R P

Usecase| 0.7 | 10% | 1.0| 0.09| 0.36| 0.25| 0.29| 0.13 | 0.21| 0.15
todesign | 0.7 | 20% | 1.0 | 0.09 | 0.54| 0.15| 0.64 | 0.17 | 0.46| 0.17
0.7 30% | 1.0| 0.09| 0.82| 0.13| 0.82| 0.16 | 0.71| 0.17
0.7]| 40% | 1.0| 0.09| 0.93| 0.11| 0.89| 0.13 | 0.82| 0.14
0.7 50% | 1.0| 0.09| 0.93| 0.09| 0.93| 0.11 | 0.86| 0.12
0.7]|60% | 1.0 0.09| 1.0 | 0.09| 0.97| 0.10 | 0.93| 0.10
Usecase| 0.7 | 10% | 1.0 | 0.07| 0.42| 0.36| 0.58 | 0.27 | 0.53| 0.42
to test 0.7]| 20% | 1.0 | 0.07| 0.74| 0.24| 0.68| 0.19 | 0.68| 0.27
0.7]| 30% | 1.0| 0.07| 0.95| 0.17| 0.84| 0.18 | 0.79| 0.21
0.7 40% | 1.0| 0.07| 0.95| 0.13| 0.95| 0.14 | 0.95| 0.16
0.7 50% | 1.0| 0.07| 0.95| 0.10| 0.95| 0.11 | 0.95| 0.13
0.7 60%|1.0| 0.07| 1.0 | 0.09| 0.95| 0.10 | 0.95| 0.11

Table 2: Recall and precision for the reconstructed traigatmatrices of Pacman 2.2 with rark-
subspace of 20% arak= 0.7

Using our two dimensional vector filter strategy also afebe rows of the matrix. Compared with
the one dimensional vector filter strategy we filter an addi 1 false positive for DO, 3 false positives
for D3.3, and 4 false positives for D3.7. In this case we dictéase the precision a little, but also
decreased the recall; 3 correct links are now filtered (deel gells containing “fn”).

The two dimensional vector filter strategy did also filter cadlitional false positive in UC7.
Still UC7 contains many false positives. The quantitatimalgsis did not help us to understand this
phenomenon so we needed to explore the text. We used the sermsgults view” of RegAnalyst
for this. We investigated the text of the correct links and thturned links with the best score. We
manipulated the text to improve our understanding of thie&s.| Improving the similarity measure of
the correct links was not that difficult, but understandirighe other links had such a high similarity
score was not always that obvious.

To improve the correct similarity measure of UC7 (See Figi)réhe state conditions were made
more explicit in the design text. So documenting that a $tatechanged, e.qg., to “playing state” again,
is not sufficient. Explicitly documenting that the playefadive and playing” helps to link the design
artifact to the use case.

Furthermore, in the design artifact the term “pause” was fiseindicating a suspension. So we also
introduce the term “pause” in the use case description. astestep of the use case description was
changed in: “4. Pressing the start button ends the pausegaativates the game”. These changes in
the text increased the similarity measure of the correkt lHowever, this did not influence the total
result of use case UC7. UC7 still returned 12 false positifé® other similarity measures did not
sufficiently decrease for the link selection strategy terféd them.

21

TUD-SERG-2007-007 21

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

SE

[izro R]DAJ[UC]Uc2|uc3|uc4]ucs|ucsucTucs]uce|ucidcuipev] Iniro R|DAUCH[UC2|UCH|UCHUCs[UcsucTucs]ucs|ucio]cuiDey]
0 e fele e o ko Je e o ko e e & Bl ke b 15 |
Pt Eele o o o o o o b o |p Kk | e o | X]
D2 e le o ke o ok e le o o & | o] |
D21 e o o b | o] o]
P22 o | P P p e &
P e K b ke o b e lele e e o P&
Pt o Xk o o o o o o e & o Jo B e o b & [o
P e Jele o o o lo o o b Je o e & | o P e ke |&
D3 & el o o Ik o o e |k o p Jp o | o | Bl kel R |o
il feple ol & o e ol o o b e | kb bl |
P2l plEde o ko e o b o o o k| b i b e] R o
e el WIEIE]e | o e |» o o o | EIX[Ee e e ke |e
Dl Jele EETR o o o ke e e |e B R 5 | b o
P Jele o Bk o o o Ik e o o Bl e B & e @ e |k
i el o o e & o o & & Jo Bl k| Ele e e |
il oo b ko o BN & o b o] Bl k] & K] B |
s e fele o o ko o o e o e oo | D5k o | e b o ||
s e Jele o o o | o o ke B0 |e D36 b [B o] B o Ele &
D le (el e o o le o (o o e bk | Bk kbl b | Bl o o o B0 |
D o oo ol le o oo oo e D4 B e o e & x|
paife ol o o ko o o o o ko o Ee D41 bl o @ | b |X
P2 e Jele e o b o o o [E: |» Bk p2 o Jele o Ik Bl kB & _[E]
Pl |k b e Be e le e oo D43 o K | =] |
s o fole ol oo b o e o o b X D5k b b o | e [r A |
(a) Constant Threshold Strategy (b) Variable Threshold Strategy
[imro RDAJUC|Uc2[UcH|[ucs|ucs|[ucsuc]ucs|uceuciofcuipey] [Intro R]DA[ucuc2uc3|ucucs]ucs|ucT|ucsuce]ucioculpev]
Do ® o |» | b s | po o | B o] b |5 | &
p1 & | N e || (o Sl F] e | x
o | 5] b: b]
p21 |
pz |
| M]
B] b o b » o 2+ EE | B b le [» o]
B | o o o e | |D2s B | P e e |
o] b |» oo | P> Bl B | b o o |
& Bl Bl Ble Jr . o e e] Bkl B e o |
x| o |5] o 5 |] b | o]
P TR |» o P b b |] e o
X |x B o |k B | o |
B [Ee [» o & B e | B B e |
B | Kl o o | i |
, Bl & =]]
pis o] B | e] b] e |
D6 b & Bl | & e e] e bl bl e |
e ol o le oo lk el | Elb & | bl o & | e | Ele
ps | 5 o | e | & b o | e | [|
D41]] e | Ele Fl B |]
D2 |l B e o | B = e | :] x] x|
P43 e K | Bl P2l | E
b B | BT |Bs b] 2l |

(c) One Dimensional Vector Filter Strategy

(d) Two Dimensional Vector Filter Strategy

Figure 7: Reconstructed traceability matrices betweenirements and design using different link
selection strategies with rarksubspace of 20%;,= 0.7 andg = 30%

22

22

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

7.1.4 Results “Requirements — Test”

Looking at the links between the requirements and test casebserved similar results. The constant
threshold strategy does not have much influence and onlysfitesmall number of candidate links
resulting in many false positives (see Figure 8a).

The variable threshold strategy does a much better job @adsfihany of the false positives. Again
we can see that a number of rows and columns cause the maeypftadgives. In this case the rows
Intro TC, TC6 and TC11, and the columns DA, UC10 and GUI (seeitei 8b).

Our one dimensional vector filter strategy again filters medgitional false positives, but in this case
it also filters some correct links causing the recall to dasegsee Table 2 witlh= 30%). Two correct
links are filtered (see Figure 8b and Figure 8c). For the btgithreshold strategy the thresheald
0.88. For the column UCS5 the thresheald 0.91, and for column UC10 the thresheald 0.92. So, for
both UC5 and UC10 the threshold is higher filtering more delthat column. Cel{lUC5, T C5a) has a
similarity of 0.9 (< 0.91) and because of that it will be (incorrectly) filteredhgsthe one dimensional
vector filter strategy. The same holds for c@lIC10, TC10a), which has a similarity of 0.91 and the
threshold for that column is 0.92.

The two dimensional vector filter strategy shows the expkisult. It filters some additional false
positives in the rows of the matrix increasing the precisidmfortunately, again one additional correct
link is filtered (see Figure 8c and Figure 8d).

7.1.5 Lessons Learned

The key lessons learned from this case study are:

e Reconstructing traceability between use cases and test sasasier than between use cases and
design.

e The design activity and traceability activity is a hard canaltion. The designer should structure
the design decisions so that clear traceability can be lesial.

e For larger case studies we do not expect results to beconer leéin for Pacman. Pacman
is designed to incorporate traceability and for most indalsprojects this only limitedly
done [19, 20].

e Eliminating false positives in columns with many hits isegffively done by the one dimensional
vector filter strategy.

o Eliminating false positives in columns, as well as rows withny hits is effectively done by the
two dimensional vector filter strategy.

7.2 Case Study Il: Calisto

In this section we discuss our results from the second casky.sthis case study involves software
developed by students from Eindhoven University of Techgglin a software engineering project
where the students needed to carry out a complete develdfifeerycle.

23

TUD-SERG-2007-007 23

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

24

SE

Iawo RDAJUCHUCUC3[UCHUCH|[UcsucTucgucsucioculpEy] [fare R|DAJUCH]UC|UC]Uc4|UCs|UcsucTucs|ucs]uciocuipEy]
ot ol o o o o o o o o o o o | ide bl o & | & Ble] B Jo]
o e e e b ke b e e |6 1C1 K] - o | o |
2 o el Bk b ke o o k| TC2a | oo
e o ole e b o b e o o b o TC2b | ®
e o el Bk o e kb ko o kb | |5 TC2e | Ll
tcsa o el o e o o o o o & o TC3a
i o Jele & e o o o & |k o o TC3b Bk
et o ele o o e o o o e ko |o TC4 e o & | B e |
csa o e e @ p Be & & P & TC5a K]

i o e le o b o Kk o o o b o TC3b]

ese o fele o o b Bk & o e & TCSe |

tcsd o ol o o e o o AR TC5d |

cs o el ko ik b b [Ee e e o |6 TC6 Bl kb Ik ek Kk b lp e
<7 o el o o e kb o K ke oo | [B |k e | b o
et o ol o ko o o o o Kk o e e | [cs S > B B e
e o Jele o e e o o o o Bk |o TCoa B Jp b le] ko Ele |
e o Jele o e e o o o & K1k |o TCob B | b le] kb Ele |
e e efe o o o b o o o [BOe & | [coule & E e |
TCI0b b |l Bl kB |k e |® K & TC10b []

i o oo o b lo o o le o oo K5 | o ke o o Pl B IEA

(a) Constant Threshold Strategy (b) Variable Threshold Strategy

[Inwro RDAJUC[UC2|uc3|uc4|ucs|uce]ucT|ucs[ucs]uciocul[pEv] [intro RDAJUC1[UC2][UC3][Uc4|ucs|[uce]ucT]ucs|ucs|ucto[cui[pEv]
froTcle | B o B B e | [t] B & | o o]
IC1 & e]] IC1 B Ell]
C2a e | B] TC2e K0 Fll
TC2b K b B TC2b B B |
TCae Bl B k] TC2e E Fll
TC3a K] TC3a E
x| K
e o Jo] BN B k] rcs k] Ed
TCsa B TC5a B
TCSb K] TC3b K
TCsc E TCSc K
TCsd K TCsd K
1C6 Ble e o o | e Bk] TC6 Bl bl o] Ep] kle |
7 o | B [e | 5 p || |1 B] B | e]
cta e | B [| b e B i | [1ca | f |
TC9a B | e e | B o e | TCo2 B | ble] &lr] Ele |
TCob B e e o] b e |5 | TCob P ble]l b le] Ele Je]
e p] Bk [| i o J& [|
TC10b [] TC10b []
el o |5 e o b | b1k] E rCil bl o o | b e | EJ

(c) One Dimensional Vector Filter Strategy

(d) Two Dimensional Vector Filter Strategy

Figure 8: Reconstructed traceability matrices betweeunirements and test cases using different link
selection strategies with rarkksubspace of 20% = 0.7 andq = 30%

24

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

In this project an Interface Specification Tool is constedctThis tool is designed to support the
ISpec approach, a specification method in the context of compt technology [27]. The purpose of
the tool is to create Interface Specification Documents dsageexporting these documents to other
software components.

7.2.1 Case Configuration

The provided documentation for Calisto consists of:

e A user requirements specification (URD), which states whatproduct is supposed to do
according to the client. It is used as the contract betweerclient and the developers of the
product.

e A software requirements specification (SRS), which forgndéiscribes the functionality of the
product to be made. The document translates all user regeis into software requirements.
It defines a logical model that contains the functionaligttivas found in the user requirements.
The functional requirements are described using the dadséined in the logical model
including attribute and method descriptions.

e An acceptance test plan (ATP), which describes the plarekiing the developed software tool
against the user requirements. It lists the test caseshbatdscover the user requirements.

The documents all comply with the equally named specifioativom the Software Engineering
Standard, as set by the European Space Agency (ESA) [1]. Wadmr the SRS as a design document
as it specifies classes and interfaces. Thus, in our anabhgsill refer to the software requirements as
our design artifacts.

All requirements have a unique identifier; the user requénetsicomply to the prefix URCARXxx
and the software requirements to the prefix SRFURxx were axusique number. The test cases are
directly related to the user requirements as they have the saique identifier, namely URCARXX.

We did the analysis including with the code included in ad welexcluded from the corpus. In the
first case the corpus consisted of almost 5500 terms, in tendecase it consisted of almost 2300
terms. The second case did contain additional context frarptovided documents. This additional
text includes the introductions to specific groups of regmients or “glue” text to make the document
readable and not just a list of requirements. In this papedis®uss the results of the second case not
including the code. We started with the same value&forandq as in the Pacman case.

7.2.2 Case Results

The precision and recall for all link selection strategiesthe Calisto case study are summarized in
Table 3. In this case study we observed that the constargttbicthas a major impact on the results.
When using the commonly accepted threshold ©f0.7 LS| returns only few links. Using a threshold
of ¢ = 0.4 makes that the constant threshold has almost no inffuemthe results, but gives the best
results. Filtering only on the constant threshaid:(0.4) will cause the recall of design never to exceed
0.54 and the recall of test never to exceed 0.94.
Remarkable is the difference between the variable thrdstiohtegy and one dimensional vector
filter strategy for both link types. This can be explained bg tistribution and the stretch in the
25

TUD-SERG-2007-007 25

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

Constant Variable One Two
Threshold | Threshold | Dimensional| Dimensional
Link type c q R P R P R P R P

Requirements 0.4 | 10% | 0.54 | 0.12| 0.07| 1.0 | 0.19| 0.39 | 0.15| 0.69
to design 04| 20% | 0.54| 0.12| 0.10| 0.60| 0.27| 0.28 | 0.22| 0.43
04| 30% | 0.54| 0.12| 0.15| 0.35| 0.41| 0.21 | 0.31| 0.29
04| 40% | 054| 0.12| 0.31| 0.26| 0.51| 0.17 | 0.44| 0.27
0.4|50% | 054| 0.12| 0.41| 0.15| 0.53| 0.14 | 0.49| 0.18
0.4 | 60% | 0.54| 0.12| 0.58| 0.12| 0.54| 0.13 | 0.51| 0.15
0.3|50% | 0.69|0.11| 041 0.15| 0.63| 0.14 | 0.54| 0.19
0.3| 60% | 0.69| 0.11| 0.58| 0.12| 0.68| 0.12 | 0.58 | 0.15
Requirementy 0.4 | 10% | 0.94| 0.16| 0.05| 1.0 | 0.23| 0.44 | 0.20| 0.70
to test 04| 20% | 0.94| 0.16| 0.16| 1.0 | 0.51| 0.41 | 0.45| 0.69
04| 30% | 094|0.16| 0.36| 0.69| 0.71| 0.28 | 0.61| 0.50
04| 40% | 0.94| 0.16| 0.60| 0.35| 0.83| 0.21 | 0.75| 0.37
0.4|50% | 0.94| 0.16| 0.79| 0.20| 0.85| 0.17 | 0.79| 0.25
04| 60%| 094| 0.16| 0.96| 0.14| 0.94| 0.16 | 0.89| 0.20

Table 3: Recall and precision for the reconstructed tratigaimatrices of Calisto with rankesubspace
of 20%

data set. For example when we take the reconstructed lirkeeba requirements and design fipr

= 10%. In the case of appyling the variable theshold strategythreshold = 0.86 explaining the
low recal and high precision. When applying the one dimeraioector filter strategy the = 0.57

for a specific column. The lower threshold return more links@asing the recall and decreasing the
precision compared to the variable threshold.

As for Pacman, we can see that the precision obtained usimgouaimensional vector filter strategy
is higher in all cases — in fact the improvement is even highan we had for the Pacman case.
However, the recall was consequently lower with respedieditst strategy using similar parameters.
This can be explained as follows. First, again we have ¢edasign artifacts containing many false
positives. For example, one has 7 and another has 5 falstvpsesiThe second strategy reduced the
number of false positives to 0 for the first case (causingrtbeease in precision). For the second case
4 false positives are filtered, but in this case also 2 coiigks are filtered. This causes the recall to
decrease.

When looking at the results of the reconstruction of thedibktween the requirements and design
we can identify a separation between the part that desdtieedasses (functionality) and the part that
describes the additional non-functional aspects such dahplity and maintainability. In the part that
describes the functionality of the system we have quite anfésging links (causing the low recall). In
the part that describes the non-functional aspects we hawy false positives (causing a decrease in
precision). Looking at the text we see that the structurdefdescription is not that different, so this
cannot be the reason for this separation. The cause forgpé@ation should then be in the description

26

26 TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

itself. Indeed the non-functional aspects are more extelysilescribed by text, as the classes are more
described by diagrams, pseudo-code and data types.

7.2.3 Lessons Learned

e Reconstructing traceability between requirements anddases again performs better than
between requirements and design.

e In this case the description of the design was often captimetiagrams, pseudo-code or
datatypes. This information is ignored by our analysis easpting the difficulties of treacing
requirements to design.

e Eliminating columns with many hits is effectively done byetbne dimensional vector filter
strategy.

o Eliminating rows with many hits is effectively done by theatdimensional vector filter strategy.

e The Software Engineering Standard by the European Spaacecidg#luences the choice for the
work products to be analysed and has a direct impact on th#é (ese descripsion of functional
and non-functional aspecs)

e |t is indeed hard to get better results in a real-life indasiproject compared to the Pacman
case study. However, the results for “requirements — testirn comparible results in both case
studies. With a similar recall the precision for Calistovee better.

7.3 Case Study llII: Philips Applied Technologies

For most products Philips Applied Technologies developapat 80-90% is reused from previous
projects. The majority of new products has only limited nemdtionality that needs to be developed
from scratch. The existing functionality is delivered byieas Philips units.

In this case study the document set of an extension of a DVD+#REérder is analyzed for
requirements coverage. We want to know if all the requiramegreed in the contract are covered
in the product. That is, we trace the requirements in theafetste work products.

During product development a large number of requiremaritiglly identified cannot be traced
back to test cases or design documents: in a way they “gét 148t gets even worse when the system
evolves over time. First ad-hoc attempts in two case stushiesved that less than 10% of the total
requirements can be recovered from the design and test dodarfsee Section 7.3.2). Furthermore,
as the system evolves, new requirements are introduced syiem that cannot be traced back to the
original requirements specifications.

7.3.1 Case Configuration

In this case the total set of documentation consists of omergé document, which describes the

document structure for this component. Furthermore therenie requirements document, which

describes the requirements of the component, and an arthi#gedocument, which describes the

delta that is introduced due to the new functionality. Hinahere are 5 interface specifications, 11
27

TUD-SERG-2007-007 27

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

28

component specifications, which together form the desigh@tomponent and one test specification
containing all the test scenarios and test cases.

In total, 20 documents are analyzed in this case study. Ttiesements are all Microsoft Word
documents and are based on the IEEE-1233-1998 standaydfensrequirements specifications [25].
Furthermore, they are not explicitly related. Thus, no mefiee traceability matrix is provided or
anything comparable.

In this case it was not very obvious how to identify the consep the documentation. The
requirements all have a unique identifier, but one of the lprob is that the requirements specification
consists of a requirements hierarchy. We need to chooseighe granularity for our requirement
concept. In this case study we took the highest level of requénts including their sub-levels as
documents in the LSI analysis. This resulted in 7 high-lesglirements as input for the LS| analysis.

For design artifacts our choice was not very obvious eitBeery document contains the design of
one component or interface in the system. Taking a compagedesign artifact makes sense as the
internal structure of the design documents is not realltable for subdividing into smaller parts. So
each design document will be a design artifact for the LSlyeama In total this makes it 16 design
artifacts.

The identification of concepts in the test specification watg@ally difficult. Test scenarios and test
cases were easily recognizable in the test specificationremefore very suitable as input for the LSI
analysis. In total we have 326 test cases. After prepraegsse documents this resulted in a corpus
of more than 2500 terms representing the engineering domain

7.3.2 Preliminary Analysis of Documents

Before we executed the LSI analysis on the document set wiedaut a simple exploring analysis
on the documents using Xpath expressions [8]. In practitenadfimple search facilities are used to
reconstruct links, for example, when a new requirement ieed)and needs to be processed in the
documentation [43]. In this first analysis we transformee Microsoft Word documents to XML
format and did some searching on the document set using Xpatiessions. Somewhat surprisingly,
this analysis showed no direct links between the requirésngmcuments and any other document.
The unique identifiers were not traceable in the rest of thrudhents. Querying with the labels of a
requirement identified only few links.

Still traceability should be incorporated somehow in thecuwtoent set; after all this is the
documentation set of one and the same product extensiomgrakcloser look at the documents
showed that this is indeed true. When analyzing the docwsvesrtt focusing on a specific requirement
it showed that this requirement is transformed to a diffetechnical term during architectural design.
Components in the architecture get a name not directlya@lat the requirement.

From this experiment we learned that it is often very hard rfion-experts to understand the
documentation and use it effectively. This preliminary lgsia emphasizes again that you need an
expert to set up the traceability meta-model (define the eptscthat need to be traced) and to judge
the reconstructed traceability matrix.

28

TUD-SERG-2007-007

SERE

Figure 9: Reconstructed Traceability Matrix for Philipghva rankk subspace of 20% and applying

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

(FR38)

4 NON FUNCTIONAL
[REQUIREMENTS

INON SAPT
[FUNCTIONALITY

N

b o
"

!

the Two Dimensional Vector Filter Strategy usiog 0.4 andg = 20%

TUD-SERG-2007-007

29

29

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

30

7.3.3 Case Results

Executing the LSI analysis resulted in more informativauliss The first remarkable result is that
the similarity measures between the requirements and gigrdeere much better than the similarity
measures between the requirements and the test cases.sThwdicase studies showed the opposite
results. A reason for this is the choice of the granularityttef concepts for analysis; high-level
requirements and complete design components in combimaitb the structure of these documents.
Every design component starts with a general descriptioth®fcomponent. Part of that general
description includes its functionality. This functiortglimatches the functionality described in the
requirements description. Figure 9 shows a reconstrucaedability matrix for the requirements and
designh components. It has a link density of 13% and shoulelgilirection for the experts to find their
requirements.

The similarity measures between requirements and tess sassved results that were not as good.
In this case there is a mismatch in the granularity of the dwmits used for analysis. The requirements
were the same high-level requirements, but the test caselsecaonsidered more as unit tests. These
unit tests are written according to the designs and not theirements. Clustering the 325 test to 16
higher level “test categories”, did not improve the recamstion results. The quality of the similarities
between de requirements and test cases was insufficieeentsthat the terminology has changed
during the design phase making it difficult to reconstruatéability between requirements and test.

Finally, in this case we were not able to compare the restuttsavprovided traceability matrix, so
we had to consult experts knowing the system. Disappoingitige fact that it is hard to validate that
the reconstructed links are indeed correct. We found sklirgka that are correct, but we did not come
to an agreement for all links. For this reason we could natudate the recall and precision.

7.4 Lessons Learned

The key lessons learned from this case study are:

e The choice for the work products to be traced is essentigd. &tpert needs to decide on the
work products that are most suitable to trace and the levgdafularity to get the best results.

e The IEEE-1233-1998 standard for system requirements fap@ns shows a possibility to
improve the reconstruction of traceability links betweeguirements and design. In IEEE-1233-
1998 it is mandatory to provide a general description of thragonent.

e Again we see that is it hard to get better results in a realitiiustrial project compared to
the Pacman case study, which perhaps can be considered pparbound of the quality that
LSI-based link reconstruction can achieve.

8 Discussion

8.1 Link Selection

With respectto the link selection strategies it is very harcbnclude when a strategy performs better. It
very much depends on the application objectives. In the staskes we showed the results of applying
30

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

LSl using different parameter values and compared theablailink selection strategies. If we set our
objective to realizing 100% recall, we can say that our twoetisional vector filter strategy performs
best. With a recall of 100% the corresponding precisiongdéi for all cases.

We have also seen that the strategies cannot always reducearttber of false positives successfully.
A good example of this is use case UC7 in the Pacman case. ihraed links were all quite similar
(between 0.91 and 0.96). The infinity of possible links in stnategies can be a disadvantage. In this
case the cut point and cut percentage strategy will be mareessful. They will, regardless of the
actual value, simply select only the bestimilarity measures (wherpeis a natural number).

Another point of attention is the constant threshold, witigh also be disadvantageous. The constant
threshold protects against losing too much quality in sinty measures, since every link should at
least have a similarity measurec. In some cases a correct link will be filtered only becauséef t
constant threshold. Changing the values for the variabéstold will not help to recover these links.
In this case a recall of 100% can never be reached as can bangberCalisto case and in the Philips
Applied Technologies case concerning the requirementsrege in the test cases. In this case all
similarity measures are simply lower than the constanstiokl. The opposite is also possible, in the
Pacman case the constant threshold was hardly of any influenc

A solution can be to make the constant threshold dependahtaminimal and maximal similarity
measures or the mean of the entire matrix. This way it is mel&ted to the actual output and not
chosen randomly. It also represents the quality of the dhfar example the maximum similarity
measure of the matrix is 0.67 and the constant threshold7is6.links will be found with both
strategies. Taking the mean of the total data set as coribtashold ensures links will be found. Note
that this does not mean that for every requirement a linklvglfound, so for individual requirements
the idea behind the constant threshold is kept. The anagjsther with the expert should decide on the
quality of the data set.

8.2 Link Types

Futhermore we observe a systematic difference in the padoce of LSI for the different link types;
requirements in design and requirements in test cases.ifkeldetween requirements and test case
in general performed better than the links between requirgsnand design. The Philips Applied
Technologies case was an exception, which can be explan#uebwrong choice of granularity of
the test cases. In general, the reason why test cases pdrétienis unclear and is still an open issue
that remains to be answered.

However, one of the reasons LSI performs worse for “requéinety design” relations is the fact that
for designs many diagrams are used for documentation (sée [&J.]). Additionally, the diagrams are
often badly described. Information retrieval techniqueslass suitable for traceability reconstruction
in this case. So, it very much depends on the provided docustreicture. If many diagrams are used
to capture the information of the design, these should adsadzompanied with a clear description.
When defining the traceability model these things need tmbsidered and decided upon.

8.3 Link Density

We expect that there is a general range in the number of lirdésshould be in an “ideal high quality”
traceability matrix. We call this metric the link densityr fa traceability matrix of siz&l x M.
31

TUD-SERG-2007-007 31

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

32

Case Studies Pacman | Calisto Philips
2.2
Number of Requirements (work products) 14 12 7
Number of Design Artifacts 24 48 16
Number of Test Cases 20 79 326
Number of “requirement - design artifact” links 28 59 nk
Number of “requirement - test case” links 19 80 nk
Link density between “requirement - design artifa¢t0.08 0.10 nk
links
Link density between “requirement - test case” links | 0.07 0.08 nk
Link density relation “requirement:design artifact” 1.1,7 1.4 nk
Link density relation “requirement:test case” 1:1,4 1:6,6 nk

Table 4: Link Density Statistics

Initially, we calculated the link density by dividing thetéd number of links set in the reference
traceability matrix by the total number of links that can kée(the total set of possible candidate links).
For example, in our Pacman case we have 28 “requirementgrdasifact” links and we divide that
number by 336 (14 requirements x 24 design artifacts). Ftr the Pacman and the Calisto case study
we calculated the link density We see that the link density for our case studies is alwapsdsn
7% and 10% (see Table 4). This observation can be an indicttat the link density should always
be situated between the 5% and 15% of the total candidate Viflen doing “adequate” traceability.
Maybe this link density can be used as a guideline for traiizakeconstruction. For example, in the
Philips case where we do not have a reference traceabilityixné you reconstruct a traceability
matrix and the link density is 30%, it means that around 19620 the returned links are probably
false positives.

This initial number gives only a general view on a tracesbitiatrix. It gives an indication of how
many links there should be in total. This initial number daes give any direction on the structure
of the traceability matrix, while in most cases we know th&aaeability matrix is structured around
its diagonal; the first requirement is implemented in the fiesign artifact and tested by the first test
case, and so on...

In the ideal case we want to know the specific relation of thle diensity between the requirements
and all other work products (design artifacts and test ¢ages example, each requirement has on
average a link with 2 test cases. If we assume this numbemnistaot, we know that every additional
requirements has 2 corresponding test cases. In Table 4 ladatad this link density relation for
our case studies. It shows that each requirement in thet€abse study has on average 4 links to a
design artifact. Future work should confirm if there is indl@a “ideal” constant link relation between
requirements and other work products as we propose here.

I Again for the Philips case study we cannot calculate thesgbes as we do not have a reference traceability matrix (rit— n
known).

32

TUD-SERG-2007-007

SE

8.4

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

Reserach Issues

On the basis of our case studies we can identify the followésgarch issues that need to be addressed
before LSI can be applied for the purpose of link reconstondh an industrial context:

How can we take advantage of the (few) cross referencesthaypically included already in
the documents? For example, does it make sense to give eatpnt identifiers used in design
documents a high weight in the term-by-document matrix?

How should the hierarchical structure of, for example, glesir requirements documents be
dealt with in link reconstruction? In our present experitseme created a flat set of documents.
How can LSI be adjusted so that if possible links in the mostitkel documents are taken into

account, moving up higher in the hierarchy (aggregatingptiragraphs) when this does not lead
to a sufficient number of results?

What documents should be included in the corpus? For exachplee get better requirements-
to-design links when we also include the test documentsaretnpus? Why (not)?

Can we come up with link reconstruction techniques taildmdards specific types of links?
For example, do we need different strategies for reconstigicequirements-to-design and for
requiements-to-test links?

Are the recall and precision that are achieved sufficienpfarctical purposes? Can we make
sufficiently accurate predictions of certain coverage gidased on the (incomplete) links we
can reconstruct?

Is the link density a good measure to characterize a “go@debility matrix? If so, what will
be the range for the number (5—15%) for various link types?

9 Concluding Remarks

The objective of the paper is to investigate the role latemhantic indexing can play in order to
reconstruct traceability links. From the previous discussve can conclude that LSI can indeed help
increasing the insightin a system by means of reconstigitimtraceability links between the different
work products produced during development. We considénfarhg to be our main contributions:

We have provided a methodology, A®REV, for automating the process of reconstructing
traceability and generating requirements views.

We defined a new two-dimensional vector filter strategy féecteng traceability links from an
LSI similarity matrix.

We provided a tool suite, RegAnalyst, for reconstructimgéability links including support for
guantitative and qualitative assessment of the results.

We applied our approach in three case studies of which onewaslustrial strength case in the
consumer electronics domain.
33

TUD-SERG-2007-007 33

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

34

e For each of the case studies, we offered an analysis of factmtributing to success and failure
of reconstructing traceability links.

o We identified the most important open research issues partgtio the adoption of LSI for link
reconstruction purposes in industry.

Our future work will be concerned with the open issues listettie discussion section. Furthermore,
we would like to extend our work along three lines. First, wanivto study other links than those
between requirements on the one hand and test cases and desigions on the other. Furthermore,
we are in the process of extending our experimental basjsatticular, we are working on two new
case studies in the area of consumer electronics and trafinitoning systems. In these case studies
we want to focus more on our last step: the generation of reménts views that are useful in practice.
Finally, we will further explore how to improve the perfornee of LS| and the link selection strategies
in real-life applications. All can be implemented in RegAsa

Acknowledgments We would like to thank Lou Somers of Eindhoven University etfinology for
his cooperation and providing us the Calisto project woddpicts.

Furthermore we would like to thank the ITEA organizationdoabling and supporting the MERLIN
collaboration. In particular, we would like to thank Rob Kiraren of Philips Applied Technologies
for his cooperation and providing us an industrial caseystud

Partial support was obtained from NWO Jacquard, projecbRstcuctor, and SenterNovem, project
Single Page Computer Interaction (SPCI).

References

[1] European Space Agency. ESA software engineering stdegBSA PSS-05-0 Issue 2). Technical
report, ESA Board for Software Standardization and CorfB&ISC), 1991.

[2] lan Alexander. Towards automatic traceability in inttizg practice. InProc. of the 1st Int.
Workshop on Traceabilitypages 26—31, Edinburgh, UK, 2002.

[3] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazzadmea De Lucia, and Ettore Merlo.
Recovering traceability links between code and documiemat IEEE Trans. Softw. Eng.
28(10):970-983, 2002.

[4] Ricardo A. Baeza-Yates and Berthier Ribeiro-Netdodern Information Retrieval Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[5] M. Berry, Z. Drmac, and E. R. Jessup. Matrices, vectocepaand information retrievaSIAM
Review41(2):335-362, 1999.

[6] R.Binder.Testing Object-Oriented Systems: Models, Patterns, ansTaddison-Wesley, 2000.

[7] Sjaak Brinkkemper. Requirements engineering resedueindustry is and is not waiting for. In
Proc of the 10th Int. Workshop on Requirements engineefagndation for Software Quality
2004.

34

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

[8] James Clark and Steve DeRose. XML path language (XPatis)on 1.0. Technical report, W3C,
November 1999.

[9] Jane Cleland-Huang, Carl K. Chang, and Jefrey C. Wis¢oiating performance-related impact
analysis through event based traceabilitRequirements Engineerin@®(3):171-182, August
2003.

[10] Jane Cleland-Huang, Raffaella Settimi, Chuan Duad, ¥nchang Zou. Utilizing supporting
evidence to improve dynamic requirements traceability.Ptac. of the 13th IEEE Int. Conf.
on Requirements Engineeringages 135-144, Washington, DC, USA, 2005. IEEE Computer
Society.

[11] Paul Clements, David Garlan, Len Bass, Judith StaffRwbert Nord, James lvers, and Reed
Little. Documenting Software Architectures: Views and Bey®&tahrson Education, 2002.

[12] Paul Clements, David Garlan, Reed Little, Robert Nadd Judith Stafford. Documenting
software architectures: views and beyond.Phoceedings of the 25th International Conference
on Software Engineeringrages 740-741, Washington, DC, USA, 2003.

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landaret R. Harshman. Indexing by latent
semantic analysis.Journal of the American Society for Information Sciend#(6):391-407,
1990.

[14] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonerd @1 Riva. Symphony: View-driven
software architecture reconstruction Rroceedings Working IEEE/IFIP Conference on Software
Architecture (WICSA'04)pages 122-134, 2004.

[15] A.van Deursenand L. Moonen. Documenting softwaressystusing typesScience of Computer
Programming 60(2):205-220, April 2006.

[16] Ralf Domges and Klaus Pohl. Adapting traceability ieomments to project-specific needs.
Commun. ACW41(12):54-62, 1998.

[17] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelsteand M. Goedicke. Viewpoints: A
framework for integrating multiple perspectives in systdevelopment.int. Journal of Softw.
Eng. and Know. Eng2(1):31-58, March 1992.

[18] William B. Frakes and Ricardo Baeza-Yates, editdrdormation retrieval: data structures and
algorithms Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[19] O. Gotel and A. Finkelstein. An analysis of the requigsts traceability problem. IRroc. of the
1st IEEE Int. Conf. on Requirements Engineeripgges 94—101, Colorado springs, April 1994.

[20] Bas Graaf, Marco Lormans, and Hans Toetenel. Embedoieze engineering: state of the
practice.lEEE Software20(6):61-69, November—December 2003.

[21] Jane Huffman Hayes, Alex Dekhtyar, and James Osbomm@rdving requirements tracing via
information retrieval. InProc. of the 11th IEEE Int. Conf. on Requirements Enginegage
138, Washington, DC, USA, 2003. IEEE Computer Society.

35

TUD-SERG-2007-007 35

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

36

[22] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Kartlgtsn Sundaram. Improving after-the-
fact tracing and mapping: Supporting software quality préahs. IEEE Software22(6):30-37,
2005.

[23] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Kartlgn Sundaram. Advancing candidate
link generation for requirements tracing: The study of rodth IEEE Transactions on Software
Engineering 32(1):4-19, January 2006.

[24] C. Hofmeister, R. Nord, and D. SorApplied Software Architecturédddison-Wesley, 1999.
[25] IEEE. IEEE guide for developing system requirementxsijrations (IEEE-std-1233), 1998.

[26] IEEE. IEEE recommended practice for architecturalkcdesion of software intensive systems
(ieee-std-1471), 2000.

[27] H. B. M. Jonkers. Ispec: Towards practical and sounerfate specifications. IRroc. of the 2nd
Int. Conf. on Integrated Formal Methodsages 116—135, London, UK, 2000. Springer-Verlag.

[28] Philippe Kruchten. The 4+1 view model of architectueEE Softw,. 12(6):42-50, 1995.

[29] Patricia Lago and Hans van Vliet. Explicit assumptiensich architectural models. IGSE "05:
Proceedings of the 27th international conference on Saéwagineeringpages 206—214, 2005.

[30] Jun Lin, Chan Chou Lin, Jane Cleland-Huang, Raffaeditii®i, Joseph Amaya, Grace Bedford,
Brian Berenbach, Oussama Ben Khadra, Chuan Duan, and Xg&wan Poirot: A distributed
tool supporting enterprise-wide automated traceabilityRE '06: Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’pages 356—-357, Washington, DC,
USA, 2006. IEEE Computer Society.

[31] Marco Lormans and Arie van Deursen. Reconstructingiregnents coverage views from design
and test using traceability recovery via LSI. Bmoc. of the Int. Workshop on Traceability in
Emerging Forms of Software Engineerjpgges 37—42, Long Beach, CA, USA, November 2005.

[32] Marco Lormans and Arie van Deursen. Can LSI help reconshg requirements traceability
in design and test? IfProc. of the 10th European Conf. on Software Maintenance and
Reengineeringpages 47-56, Bari, Italy, March 2006. IEEE Computer Sgciet

[33] Marco Lormans, Hylke van Dijk, Arie van Deursen, EriodKer, and Aart de Zeeuw. Managing
evolving requirements in an outsoucring context: An indakexperience report. IRroc. of the
Int. Workshop on Principles of Software Evolutitgtyoto, Japan, 2004. IWPSEOA4.

[34] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and GffeoTortora. Enhancing an artefact
management system with traceability recovery feature®rdw. of the 20th IEEE Int. Conf. on
Software Maintenan¢@ages 306 — 315. IEEE Computer Society, 2004.

[35] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and @sffeo Tortora. Adams re-trace: A
traceability recovery tool. IProc. of the 9th European Conf. on Software Maintenance and
Reengineeringpages 32—41. IEEE Computer Society, March 2005.

36

TUD-SERG-2007-007

SE Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test

[36] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and @ffeo Tortora. Can information
retrieval techniques effectively support traceavbilitykl recovery? InProc. of the 10th Int.
Workshop on Prog. ComfEEE Computer Society, 2006.

[37] Jonathan I. Maletic, Ethan V. Munson, Andrian Marcugd &ien N. Nguyen. Using a hypertext
model for traceability link conformance analysis. Rroc. of the 2nd Int. Workshop on
Traceability in Emerging Forms of Software Engineeripgges 47-54, Montreal, Canada, 2003.
TEFSE 2003.

[38] A. Marcus, J.I. Maletic, and A. Sergeyev. Recovery afcaability links between software
documentation and source codit. Journal of Softw. Eng. and Know. Eng5(5):811-836,
October 2005.

[39] Andrian Marcus and Jonathan I. Maletic. Recoveringuhoentation-to-source-code traceability
links using latent semantic indexing. Rroc. of the 25th Int. Conf. on Software Engineering
pages 125-135, Washington, DC, USA, 2003. IEEE Computde§oc

[40] Hans W. Nissen, Manfred A. Jeusfeld, Matthias JarkeorGé&/. Zemanek, and Harald Huber.
Managing multiple requirements perspectives with metagtotEEE Softw. 13(2):37-48, 1996.

[41] Bashar Nuseibeh, Jeff Kramer, and Anthony FinkelsteiA framework for expressing the
relationships between multiple views in requirements #igation. IEEE Trans. Softw. Eng.
20(10):760-773,1994.

[42] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemnaed Bjorn Regnell. Speeding up
requirements management in a product software compankirigrcustomer wishes to product
requirements through linguistic engineering. Rroc. of the 12th Int. Conf. on Requirements
Engineering Confereng@ages 283-294, Washington, DC, USA, 2004. IEEE Computeie§o

[43] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemged Bjorn Regnell. A linguistic-
engineering approach to large-scale requirements mareageiBEE Softw. 22(1):32-39, 2005.

[44] S. Park, H. Kim, Y. Ko, and J Seo. Implementation of ancéffit requirements-analysis
supporting system using similarity measure technigueformation and Software Technolagy
42(6):429-438, 2000.

[45] M. DiPenta, S. Gradara, and G. Antoniol. Traceabil@gavery in rad software systems.Rroc.
of the 10th Int. Workshop on Program Comprehenspages 207-216, Washington, DC, USA,
2002. IEEE Computer Society.

[46] B. Ramesh and M. Jarke. Toward reference models forirepents traceabilitylEEE Trans.
Softw. Eng.27(1):58-93, 2001.

[47] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Impi¢inge requirements traceability:
a case study. IProc. of the 2nd IEEE Int. Symp. on Requirements Enginegpage 89,
Washington, DC, USA, 1995. IEEE Computer Society.

[48] C.J. Van Rijsbergernnformation Retrieval Butterworth-Heinemann, Newton, MA, USA, 1979.
37

TUD-SERG-2007-007 37

Lormans & van Deursen — Reconstructing Requirements Traceability in Design and Test SE

[49] James Robertson and Suzanne Robertson. Volere retgrite specification template. Technical
report, Atlantic Systems Guild, 2000.

[50] Gerard Salton and Michael J. McGilintroduction to Modern Information RetrievaMcGraw-
Hill, Inc., New York, NY, USA, 1986.

[51] Raffaella Settimi, Jane Cleland-Huang, Oussama Begdidy Jigar Mody, Wiktor Lukasik, and
Chris DePalma. Supporting software evolution through dyically retrieving traces to UML
artifacts. InProc of the 7th Int. Workshop on Principles of Software Etiohy pages 49-54,
Washington, DC, USA, 2004. IEEE Computer Society.

[52] Marco Toranzo and Jaelson Castro. A comprehensivedtality model to support the design of
interactive systems. IRroc. of the Workshop on Object-Oriented Technoqmages 283284,
London, UK, 1999. Springer-Verlag.

[53] Antje von Knethen. A trace model for system requirersasftanges on embedded systems. In
Proc. of the 4th Int. Workshop on Principles of Software Htioh, pages 17-26, New York, NY,
USA, 2001. ACM Press.

[54] Antje von Knethen, Barbara Paech, Friedemann Kietlaiaad Frank Houdek. Systematic
requirements recycling through abstraction and tracidabil In Proc. of the Int. Conf. on
Requirements Engineeringpages 273-281, Washington, DC, USA, 2002. IEEE Computer
Society.

[55] A. Zisman, G. Spanoudakis, E. Perez-Mi nana, and Ps&@aulracing software requirements
artifacts. InProc. of Int. Conf. on Software Engineering Research andtftg pages 448-455,
Las Vegas, Nevada, USA, 2003.

[56] Xuchang Zou, Raffaella Settimi, Jane Cleland-Huamg, @huan Duan. Thresholding strategy
in requirements trace retrieval. @iTl Research Symposiypages 100-103, Chicago, 2004.

38

38 TUD-SERG-2007-007

TUD-SERG-2007-007 S E(I
ISSN 1872-5392

