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Abstract
FOWTs pose several control challenges. This work addresses reduced order modelling of
FOWT to develop an MPC. They key objective is tackle the platform pitch instability
while improving the performance in other KPIs. An existing reduced order model, which
considers platform pitch and surge, and rotor speed DOFs is adapted and extended,
with tower flexibility. The models are validated with open and closed-loop simulations
in HAWC2, using the IEA-15MW RWT and the WindCrete spar-buoy floater. Based
on these models, an ADKF is designed to estimate several unmeasured states and the
wind speed. The MPC aims at reducing the platform pitch motion and tracking the
reference rotor speed utilising collective blade pitch angle. The proposed holistic weight
tuning procedure conveys the use of Pareto fronts and metrics from several relevant
KPIs to guarantee an effective trade-off. Results show a major effects of the simulated
wind conditions on the optimal tuning, therefore the process should account for realistic
met-ocean conditions. The final tuning is compared to the baseline PI controller with
torque compensation. Significant improvements are observed in terms of platform motion
reduction in surge, pitch and roll, improved power quality, and greatly reduced fatigue
and extreme loads on the tower base and shaft, under all simulated wind conditions.
Limitations on rotor speed tracking near rated wind speed show that further development
could lead to increase performance.
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Nomenclature
The next list describes several symbols that will be later used within the body of the
document

Acronyms

ADKF Augmented Dynamic Kalman Filter

AEP Annual Energy Production

BRM Blade-Root Moment

DARE Discrete Algebraic Riccati Equation

DKF Dynamic Kalman Filter

DOF Degree of Freedom

DTU Denmark Technical University

DTUWEC DTU Wind Energy Controller

FOWT Floating Offshore Wind Turbine

FSI Fluid Structure Interaction

IPBES Intergovernmental Science-Policy
Platform on Biodiversity and Ecosys-
tem Services

IPCC Intergovernmental Panel on Climate
Change

LCoE Levelised Cost of Energy

LiDAR Light Detection and Ranging

LTI Linear-Time Invariant

MIMO Multiple-Input Multiple-Output
controller

MSL Mean Sea Level (equivalent to Still
Water Level)

NREL National Renewable Energy Labora-
tory

O&M Operation and Maintenance

OCP Optimal Control Problem

OCP Optimal Control Problem

ODE Ordinary Differential Equation

QP Quadratic Program

RHPZ Right Half Plane Zero

SCADA Supervisory Control And Data Ac-
quisition

SISO Single-Input Single-Output con-
troller

SP Spar-buoy platform

SWL Still Water Level

TI Turbulence Intensity

TLP Tension-Leg Platform

Controller parameters and variables

z̄ Reference set-point for output vari-
ables

ϕ Objective function

N Number of time steps of the receding
horizon

Qz Weight matrix on reference deviation

z Output variable

Wind turbine parameters and variables

ζt,1 Damping tower FA motion 1st mode

α Generator viscous friction

λ Tip-speed ratio

ρw Water density



iv

ζθ Damping platform pitch motion 1st
mode

ak Nacelle motion contribution from
pitch and tower FA modes

Ch Hydrodynamic damping matrix

cQ Aerodynamic torque coefficient

d Disturbances of the system

Dp,O Diameter of the spar-buoy platform
at the flotation level

fθ Natural frequency platform pitch mo-
tion 1st mode

ft,1 Natural frequency tower FA motion
1st mode

Hh Hub height

Idr Drive-train moment of inertia around
its rotation axis

IO,p Moment of inertia of the platform
around the centre of flotation

kmoor Mooring line linear stiffness constant

Mk Structural mass matrix of k body

Qa Aerodynamic torque

Qg Generator torque

u Inputs of the system

V∞ Undisturbed wind speed

x States of the system

xr Fore-aft displacement of the rotor (at
hub-height)

xtt Fore-aft displacement of the tower
top

y Measured variables of the system

z Output variables of the system

zcb Center of buoyancy

zcg,k Centre of gravity of body k

zmoor Mooring line fairlead vertical posi-
tion
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CHAPTER 1
Introduction and literature

review
Human activities, principally through emissions of greenhouse gases,
have unequivocally caused global warming, with global surface
temperature reaching 1.1°C above 1850-1900 in 2011-2020. Global
greenhouse gas emissions have continued to increase, with unequal
historical and ongoing contributions arising from unsustainable energy
use, land use and land-use change, lifestyles and patterns of
consumption and production across regions, between and within
countries, and among individuals (high confidence)., IPCC, 2023 [1]

Climate change, biodiversity loss, and global warming effects are already noticeable
worldwide. The primary cause of temperature increase is the emission of greenhouse
gases, like carbon dioxide and methane, which change the atmospheric composition and
thus affect the global air temperature, as discovered by Eunice Foote back in 1856 [2].
The global economy heavily relies on burning fossil fuels, massive extraction of natural
resources, expanding farming and croplands, as well as exploiting the ocean environment
through fisheries and shipping routes, as reported by the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES) in [3].

The IPBES report reveals concerning findings: 75% of the land surface is significantly
altered, 66% of the ocean area experiences increasing cumulative impacts, and over 85%
of the wetland areas have been lost. Human activities pose an unprecedented threat
to species, pushing them towards global extinction. Without transformative change,
negative trends in nature, ecosystem functions, and the contributions of nature to human
well-being are projected to persist beyond 2050. The main drivers behind these negative
trends are increasing land and sea use changes, exploitation of organisms, and climate
change. The last finding mentioned is probably one of the most insightful, as it highlights
the need to radically transform our societies, especially the way wealthy populations live
and consume resources, to tackle climate change.

Figure 1.1 shows the increase in global annual average temperature during the last
century, particularly in the last and current decades. According to the 2018 Special Report
by the Intergovernmental Panel on Climate Change (IPCC) [4], the Paris Agreement’s
1.5ºC limit for global warming was predicted to be likely reached within the 2030-2050
period based on policies implemented up to that year. However, the current global
average temperature increase has already reached about 1.15ºC, according to the World
Meteorological Organisation [5], and 1.26ºC according to [6] and the likelihood of
surpassing the 1.5ºC limit within the current decade is rapidly increasing [5] due to the
lack of necessary policies and actions to reduce global CO2 emissions.
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Figure 1.1: Climate stripes representing the global increase in temperature from 1850 to
2021. Reprinted from #ShowYourStripes (https://showyourstripes.info/s/globe).

To achieve the transformative change recommended by the IPBES and IPCC reports,
society must reduce consumption and transition to renewable energy sources. Significant
strides have already been made in addressing electricity generation by increasing the
adoption of solar and wind energy.

The global deployment of wind energy has witnessed exponential growth in recent
decades. In 2019, the cumulative installed capacity reached 60GW [7], and by 2020,
it soared to 93GW despite the challenges posed by the COVID-19 pandemic [8]. The
same capacity of 93GW was reported in the IEA Wind TCP Report for 2021, bringing
the total global installed capacity to 837GW [9]. Governments worldwide have set even
more ambitious targets for wind energy installation, aiming to more than double these
numbers by the end of the decade.

As indicated in [7–9], the majority of installed wind capacity is onshore, exceeding
700GW, while offshore capacity reached 57GW in 2021. However, the offshore sector is
expected to experience a larger expansion in the coming years due to the maturity of the
technology and the availability of vast areas with better wind resource, lower turbulence
levels, and reduced environmental and social impact.

The floating wind energy technology review by Ørsted [10] indicates that most
European sea areas are ideally suited for floating technology. Countries and regions like
France, Spain, Portugal, and Scotland could experience significant development in the
near future. For instance, in the Scottish auction of 25GW of offshore wind energy, 14GW
were allocated to floating wind farms, making the United Kingdom the leader in floating
capacity, with just over 100MW at the time of writing. This illustrates the pressing

https://showyourstripes.info/s/globe
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challenge of rapidly advancing floating wind energy to meet governments’ ambitious
targets.

Numerous floating wind turbines have been successfully installed since the debut of
the first installation, Blue-H (80kW) [11], in 2008. Operating small wind farms include
HyWind Scotland, the first floating offshore wind farm with a capacity of 30MW, and
WindFloat Atlantic, installed in 2020, with a capacity of 25.2MW. Additionally, HyWind
Tampen, being installed in 2022 and 2023, has become the largest floating offshore wind
farm, with an 88MW capacity.

Several floater prototypes are currently being tested in both experimental facilities and
the ocean. An overview of the most relevant concepts is shown in Figure 1.2a. In Spain,
two floating wind facilities, the Biscay Marine Energy Platform (BiMEP) and Oceanic
Platform of the Canary Islands (PLOCAN) test facilities. The former is being utilised to
test Saitec’s semi-submersible 2MW prototype, whereas X1 is testing a novel concept
using a single-point mooring line and a wind turbine in a downwind configuration at the
Canary Islands test site. Another semi-submersible concept, SAIPEM’s HexaFloat, will
be first demonstrated at the Site d’Expérimentation en Mer (SEM) pour la Récupération
de l’Energie des Vagues (REV) on the French Atlantic coast, where BW Ideol is already
testing a barge-type floater. A scaled version of HexaFloat is currently being tested
in MaRELab, Italy. These developments showcase the concerted efforts by research
institutions and the industry to scale the floating wind industry to meet targets rapidly.
However, several challenges remain to be overcome.

fluctuations Ω̃ by actuating generator torque inversely with
speed, τgen = Prated

Ωgen
. This so-called constant-power control

law typically leads to increased variations in generator speed
while improving power quality. Details on corresponding
control laws can be found in [17, 36].

III. FOWT CONTROL FUNDAMENTALS

In this section, we first discuss some practical aero-hydro-
structural engineering challenges in FOWT design, and then
turn to control approaches that build on the fixed-bottom
baseline controller.

A. The Floating Environment

Early work in system design for floating wind turbines
was inspired by pre-existing offshore oil and gas rigs. The
realization that some fundamentally different requirements
govern floating wind plants quickly showed that floaters
optimized for a wind turbine application could reduce costs
more than trying to adapt previous work from another field,
despite a few technological hurdles [40].

A FOWT’s operating environment is certainly more hostile
than that of its land-based and fixed-bottom counterparts.
Over long timescales (years), corrosive seawater and repeated
wave impacts cause erosion and fatigue of substructure com-
ponents, necessitating maintenance and replacement. Over
shorter timescales (seconds), underdamped platform motion
and irregular wave forces cause a dynamic disturbance on
the FOWT, resulting in additional component fatigue and
reduced grid power quality. Solving these challenges in a
cost-competitive manner requires innovative approaches in
turbine, platform, and controller design [41].

B. Floating Platform Types

A FOWT sits atop a platform which must provide stability
from tipping in the presence of wind and wave forces while
withstanding loading on its own substructure. An overview
of common FOWT platform substructures (pictured in Fig. 3)
is briefly given here, and other authors have previously
examined the topic in more depth [9, 40, 42].

Barge platforms have been adapted from their success in
other maritime domains including oil and gas extraction,
where they achieve stability from their large areas spread
over the sea surface [9]. While the large exposed surface
area of a barge is advantageous for human-centric operations
such as fully-staffed oil and gas rigs [40], different objectives
govern FOWT operation, so barges have been all but replaced
with FOWT-oriented platforms in recent project designs [6].

Spar-buoy platforms consist of a massive central rod
extending from sea level down to approximately the same
extent under the sea as the tower reaches above the sea
surface [9]. The spar acts as a counterbalance against the
weight of the turbine and tower, providing stability and
damping, but requiring significant material to manufacture.

Semisubmersible platforms attain stability from buoyant
elements spread over a wide lateral area like a barge but
keep most of the substructure submerged to avoid the high
wave energy at the sea surface.

Fig. 3. Depiction of four platform types discussed in Section III-B with
a mounted DTU 10 MW reference wind turbine [43]. The example barge,
spar-buoy, and TLP are based on the case studies in [9], and the semi-
submersible is based on the OC4-DeepCwind platform [44].

These platform types typically use catenary or semi-taut
mooring lines attached to anchors on the seafloor to keep the
platform position close to its installed location. However,
such mooring configurations still allow some variation in
lateral platform position during operation, depending on the
dominant wind direction and control strategy.

In contrast, tension-leg platforms (TLPs) rely on balancing
excess platform buoyancy with nearly vertical taut mooring
lines to keep platform displacements small. The wind-loaded
stiffness allows for imbalanced cable tensions, and snap-
tension loads of significant force pose a risk of catastrophic
failure. While the TLP has been studied in simulations and
some lab experiments, the technology has yet to be validated
at utility scale.

Regardless of platform type and mooring configuration,
some platform motion will be transferred to the RNA to cou-
ple with generator dynamics. While a source of disturbance,
this coupling grants the turbine controller considerable au-
thority over platform fore-aft motion.

C. Floating Wind Turbine Dynamics

The main challenge in controlling a FOWT is the fore-
aft motion of the RNA at the top of the tower. Fixed-
bottom turbines experience some RNA motion due to tower
flexibility that can be excited by the blade pitch controller,
but the range of motion is limited by the deflection of the
tower [45]. In a FOWT, platform surge translation xptfm and
pitch rotation ϕptfm (both fore-aft motions—see Fig. 4) are
transferred to the RNA through the tower (whose flexible
deflections are negligible compared to the rigid motion of
the platform):

xRNA = xptfm +Ht sinϕptfm ≈ Htϕptfm

ϕRNA = ϕptfm + ϕshaft, (10)

where xRNA and ϕRNA are the fore-aft translational (surge)
and rotational (pitch) deflections of the RNA, respectively,
Ht is the distance between the RNA and axis of rotation
(≈ tower height), and ϕshaft is the shaft tilt angle (see Fig. 10).
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(a) FOWT platform types
Fig. 4. Six degree-of-freedom representation of a FOWT platform. Black
arrows indicate translational degrees of freedom and red arrows indicate
rotational degrees of freedom. Original image created by Josh Bauer, NREL.

If the translational stiffness due to mooring forces on the
wind-loaded FOWT system is high, then xptfm stays near its
steady-state settling position and the FOWT RNA motion is
captured using a single degree of freedom for platform pitch
(some designs instead account for the surge DOF and neglect
pitch, such as when using a tension-leg platform [46]). The
small-angle approximation holds for modeling platform pitch
rotation in typical operation.

Both RNA fore-aft velocity and tilt deflection affect
FOWT power extraction by changing the magnitude and
direction of the wind speed vector from the inflow veloc-
ity vinflow. The RNA velocity ẋRNA adds to vinflow and the tilt
offset ϕRNA requires a projection normal to the rotor plane:

v = vinflow cosϕRNA − ẋRNA ≈ vinflow −Htϕ̇ptfm. (11)

In below-rated winds, this rotor-relative wind vector (non-
linear form) affects mean power as a cubic in (1). The tilt
offset and fore-aft velocity compete in their effects on mean
power production [47]. A simplified model of the power
available to a FOWT with static and dynamic platform pitch
activity is shown in Fig. 5. Because much of the dynamic
platform motion occurs in response to higher-frequency wind
speed variations, accurately describing the impact of the
dynamic motion on power output requires dynamics that
are neglected in this static model, and the benefits expected
from dynamic motion are difficult to realize in a higher-order
system model [47]. Power losses due to mean platform tilt
are confirmed by higher-order simulations, and by actuating
the platform to tilt forward (compensating the shaft tilt), there
is the potential for a Region-2 platform controller to boost
mean power beyond that of a fixed-bottom turbine.

Above rated, where blade pitch is used to regulate power,
the relative wind speed induced by the platform (11) (with
small-angle approximation) causes dynamic coupling be-
tween the generator and platform and acts as a disturbance on
the primary control loop (6). The platform pitch DOF ϕptfm
is modeled simplistically as a damped rotational spring:

Jϕϕ̈ptfm +Dϕϕ̇ptfm +Kϕϕptfm = HtFaero (Ωgen, v, β) , (12)

where Jϕ is the total rotational inertia about the platform
pitch axis, Dϕ is the hydrodynamic damping, and Kϕ is the
hydrostatic stiffness (a combination of buoyancy, mooring,
and gravitation forces). The parameters Jϕ, Dϕ, and Kϕ

can be identified from a nonlinear model using numerical

Fig. 5. Fractional difference in mean power available to a FOWT at a
below-rated wind speed relative to the same turbine with constant zero
platform pitch (fixed-bottom). This analysis uses a static power model
averaging over FOWT relative wind velocity, (1) combined with (11). The
relative wind vector is generated by an ideal FOWT undergoing undamped
sinusoidal platform pitch oscillations of a given RMS amplitude (y-axis) at
a frequency of 0.06 Hz combined with a mean offset (x-axis). Rotor-shaft
tilt is ϕtilt = +5◦ (see Fig. 10). Dynamic motion increases the available
power because of the biased mean resulting from the cube of a mean-offset
sinusoid. Due to FOWT dynamics, power gains from dynamic motion are
difficult to realize, but power losses due to mean platform pitch are well-
known. ◦ indicates the mean platform pitch for USFLOWT [21], and ∗
indicates the optimal mean platform pitch ϕptfm = −ϕshaft.

linearization or through system identification [48]. Faero is
the aerodynamic thrust force on the rotor (similar to Taero
in (4)), which generates a pitching moment on the platform
through the lever-arm Ht of the tower. For the purpose
of control design, (12) is linearized about a steady-state
platform pitch ϕ ≈ 0 with the turbine in the rated equilibrium
(Ω = Ωrated and τ = τrated):

Jϕ
˜̈
ϕ+Dϕ

˜̇
ϕ+Kϕϕ̃

= Ht

(
∂Faero

∂Ω
Ω̃ +

∂Faero

∂v
ṽ +

∂Faero

∂β
β̃

)
, (13)

where the thrust force sensitivities ∂Faero
∂× are calculated in the

same way as the torque Taero sensitivities in (5). Example
values of the torque and thrust sensitivities for the DTU
10 MW reference wind turbine [43] are compared in Fig. 2.

Beyond the rotor’s effect on the platform pitch
through Faero, the platform motion further influences the
dynamics through the linearized relative wind speed (11),
which is substituted into the disturbance perturbation ṽ

in (5) and (13): ṽ = −Ht
˜̇
ϕ. The coupled dynamics form

a third-order system, which is represented in state-space

with state x =
[
Ω̃ ϕ̃

˜̇
ϕ

]⊤
and control input u =

[
β̃ τ̃

]⊤
as ẋ = Ax+Bu:

ẋ =

 AΩ 0 AΩ
ϕ

0 0 1

Aϕ
Ω Aϕ

K Aϕ
D

x+

 BΩ
β BΩ

τ

0 0

Bϕ
β 0

u, (14)

where the individual matrix elements are given in the
Appendix. The block form of the system matrix A and
input matrix B indicates the separation into generator (5)
and platform (13) dynamics. The off-diagonal blocks AΩ

ϕ

and Aϕ
Ω represent coupling between the two DOFs. The

outputs y = Cx+Du can be chosen based on the available
system measurements used for control feedback, typically a
subset of the states in x or generator power P̃ [17]. Note
that under the common definitions of the inputs β and τ ,
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(b) FOWT six DOFs

Figure 1.2: Floating offshore wind turbines. In (a), the DOFs of the floating platform
are shown and (b) depicts general types of FOWT. Both images reprinted from [12]
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1.1 Challenges of floating wind energy
Floating offshore wind turbines (FOWTs) generally face larger extreme loads due to their
longer distance from the shore, which exposes them to harsher wind and wave conditions.
The uncertainty in met-ocean conditions and their impact on the floating substructure,
installation and decommissioning, coupled with the limited technology maturity and the
added complexity of the substructure design compared to bottom-fixed solutions, results
in an increased Levelised Cost of Energy (LCoE) [13,14].

Furthermore, generating electricity far from the customers adds challenges to the
export system, which is also subject to dynamic loads, in contrast to bottom-fixed
offshore cables. Additionally, challenges arise regarding the installation method and the
Operation and Maintenance (O&M) strategy.

There exist important challenges, especially regarding the stability of the platform,
due to the added degrees of freedom to the system, depicted in Figure 1.2b. Shown
in Figure 1.3 is one of the well-known instabilities in floating wind energy affecting the
pitch motion of the platform/fore-aft motion of the wind turbine, namely the pitch
instability [15,16]. The source of this instability is the control strategy above rated wind
speed, that is, the blade pitching to maintain the rated power level while minimising
aerodynamic loads, as it can be seen in the thrust curve Figure 1.3b.

The pitch instability can be visualised intuitively considering a pitch-towards-feather
control strategy, Figure 1.3. In this strategy, the blades are pitched in such a way that the
angle of attack along the blade decreases. When the wind speed increases, the controller
will pitch the blades to keep the rated power level and reduce the thrust. However, this
reduction in thrust causes the nacelle to move forward, resulting in an increase in the
effective wind speed at the rotor. This, in turn, leads to further pitching and thrust
reduction, causing instability in the system.

Furthermore, the platform pitch natural frequency falls within the controller band-
width for offshore wind turbines, and thus the controller could potentially excite this
mode. Especially if the controller is tuned too aggressively. The existence of Right
Half Plane Zeros (RHPZs) limits the controller bandwidth, since the poles will migrate
towards them as the controller gains increase, and the system will become unstable [16].
To address this issue, a series of solutions have been considered in the literature.

The first approach is to reduce the controller bandwidth [15], this is generally called
controller de-tuning, and its main advantage is simplicity, minimising the changes
performed in the controller. Another popular method is the use of parallel compensation
has been explored in several publications, for instance, [18]. This technique is based
on measuring the tower-top motion to reduce it by an additional loop in the controller.
Alternatively, adding a control DOF [19] could further reduce the system’s motions by
means of an active damping system or active ballast control. Switching to pitch-to-stall
operation has also been proposed [15], such that the thrust decreases at a slower pace
or even increases with the wind speed thanks to the added drag force in the rotor. A
summary of these approaches is given in [16].

Most of these solutions present certain limitations. For instance, reducing the
controller bandwidth would worsen the power quality, as there would be larger oscillations
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induced wind 
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(a) Pitch instability

Potential instability problem

• Also follows from steady-state thrust curve

(b) Power and thrust curve of variable-speed pitch-regulated wind turbine

Figure 1.3: Static pitch instability, (a) shows the effect of blade pitch angle in the
pitching motion of the platform (b) The negative slope of the thrust curve above rated
wind speed is the driver of the pitch-control-induced instability. Reprinted from [17].

in the rotor speed. The gains from parallel compensation are limited, as the system
potentially becomes unstable with an increasing gain. The use of an additional degree
of freedom means adding extra actuators and, therefore, maintenance complexity, risks
and costs. Using pitch-to-stall would increase the loads dramatically due to the large
increase of aerodynamic drag on the blades for the above rated operation. Given the
constraints associated with each approach, alternative solutions by considering advanced
control techniques, such as Model Predictive Control (MPC), are shown in the literature.

Although pitch instability is the most treated in the literature, other aerodynamic
instabilities can arise and must be addressed, that is the case of the roll-yaw lock,
recently discovered and shown in [20]. This instability occurs at large thrust forces due
to the coupling between roll and yaw, it was first observed with hydro-aero-servo-elastic
simulations, and it can be captured with low-order models.

These instabilities could be reduced or mitigated both by means of actively considering
them during the component design phase (as in the case of roll-yaw lock), generally
known as control co-design, or by designing a controller able to increase the stability
margin. This, as mentioned in [20], could have negative side effects, as the use of pitch
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control below rated would reduce the power harvested or affect the loads experienced by
the system. Thus it is important to consider the trade-offs.

1.2 Model predictive control for wind energy
applications

Control strategies for individual wind turbines have significantly evolved over the last
years. Originally, simple Proportional-Integral (PI) controllers were used in a Single-Input
Single-Output (SISO) manner. This approach assumes the inputs and outputs are not
fully coupled. For the full-load region, the rotor speed is controlled using the blade pitch
while keeping the generator torque or the power constant. On the other hand, in the
partial-load region, the rotor speed is controlled using the generator torque and keeping
the pitch angle constant [21]. Over the years, more attention has been given to more
robust and model-based control strategies since the wind turbine system would benefit
from a Multiple-Input Multiple-Output (MIMO) approach. From this perspective, MPC
can play a major role in coupling several objectives, constraints, and the simultaneous
control of blade pitch and generator torque, through the definition of an optimization
problem. The main principle behind MPC is to solve such an optimization problem over
a finite prediction horizon, often referred to as receding horizon, in order to find the
optimal control actions that satisfy the constraints and minimise the proposed objective
function [22].

Historically, MPC was developed in the process industry. However, it is becoming
more popular in other fields, including wind energy. According to [22], the main reasons
for the success of MPC as an advanced control technique are (i) its ease in handling
multivariable systems, (ii) direct incorporation of constraint definitions, and (iii) the
ability to operate close to the aforementioned constraints without violating them, leading
to optimum operation. Additionally, the constant increase of computing power allows for
the deployment of these control systems.

To design an MPC, it is necessary to have a model capable of representing the
system accurately enough while being efficient computationally, such that the trajectory
optimisation can be computed in real-time. Additionally, the performance of MPC is
dictated by the available information on the disturbances affecting the system, that is,
for a FOWT, wind field, wave and, in some cases, sea current.

Therefore, one of the main steps is to develop a low-order model. A number of low-
order models have been developed for onshore and bottom-fixed applications; however,
developing a low-order model for floating wind turbines represents extra challenges due
to the degrees of freedom added by the floating platform, the strong coupling of the
platform motions with the rotor response, and the inclusion of the mooring lines. Existing
literature in the modelling of FOWT is outlined in subsection 1.2.2.

Compared to the classic PI controller, the application of MPC allows to set certain
constraints through the optimisation step, as well as new targets, by including weighted
reference terms in the cost function of the controller. Some of these goals can be increasing
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power quality, reducing fatigue loads, or minimising actuator aggressiveness [23,24]. Such
constraints can be set both on inputs and outputs.

The use of these constraints potentially yields significant benefits with respect to the
classic PI control, where only the magnitude and rate of change of the inputs could be
limited through the addition of saturation outside the PI controller, originating the need
for anti-wind-up techniques. With MPC, surpassing the defined thresholds can either be
penalised by means of the objective function, generally referred to as soft constraints, or
directly limited as a hard constraint when implementing the optimisation algorithm. For
instance, it is mentioned in [25] the possible use of constraints on the platform motion to
limit loads on the mooring lines or dynamic cables.

The application of MPC presents, however, a number of challenges and requirements,
as expressed in the literature,

• an accurate reduced order model of the turbine is needed [23],
• accurate estimation of the states [26],
• low computational effort needed [27],
• accurate estimation of the states or knowledge of the disturbances.
Some of the challenges are clearly coupled. On one hand, a model too simple would

likely result in model mismatches, which will affect the controller capabilities, reducing
the energy production or not being able to handle instabilities. On the other hand, a
model with a large number of degrees of freedom cannot be used in real-time optimisation
with the current computation power.

The use of MPC for wind energy applications has been gaining attention over the last
few years [28]. In [24], a multiple MPC-based control strategy for the above rated region
is presented based on several models for the rotor and generator that are obtained from
linearising the low-order non-linear representation of the rotor, shaft and generator using
five states. The results showed an improvement regarding the smoothness of the power
signal and reduced variations in the pitch angle and shaft torsion, indicating potential
gains in the fatigue loads.

In [29], a performance comparison between linear and non-linear MPC (NMPC) is
presented, where the controllers are tested alongside with simulated LiDAR measurements
to explore the benefits of disturbance preview. NMPC is demonstrated to outperform
linear MPC at the expense of higher computation time. The linear MPC algorithm
implemented in the comparison considers a single linearised model, whereas the non-linear
model is linearised at each prediction step, that is, the optimisation is done using the
Local Linearisation on the Trajectory algorithm. This algorithm linearises a non-linear
model at each time step of the prediction horizon, enhancing accuracy with respect to
linear MPC, at the expense of higher computation effort. Nonetheless, both controllers
perform better than the baseline PI controller and show partial improvement due to the
provided LiDAR measurements.

While these findings hold significance within the realm of MPC’s application to wind
turbines, it is important to note that they stem from an onshore wind turbine model.
As previously discussed, the complexities inherent to floating offshore wind turbines
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(FOWTs) arise from the introduction of extra degrees of freedom and the inherent
instability in platform pitch. These factors necessitate their inclusion in the control
design process.

1.2.1 FOWT control by MPC
Early work done by Schlipf et al. [30] showed great potential for NMPC applied to
FOWTs. The fatigue loads are reduced, as well as the rotor over-speed and power
fluctuations, at the expense of significantly larger pitch actuation — a characteristic
consistently observed in the literature. Further work was performed in [31], augmenting
the NMPC with Individual Pitch Control (IPC) for blade load reduction. However, this
addition demonstrates only little to no role in terms of platform motion minimisation.

Enhancements in minimising platform motion are highlighted in [32]. The study
utilises a linear MPC formulation with a non-linear model that is linearised based on
the operating point prior to solving the optimisation problem. In this investigation,
reductions were observed not only in pitch platform motion compared to a baseline PI
controller but also in improved power quality and a decrease in the standard deviation of
fairlead tension. However, it is important to note that the tower’s short-term fatigue load
in the fore-aft direction exhibited an increase. Additionally, it’s worth mentioning that
the newly developed controller was assessed solely under a single combination of wind
and sea state: an average wind speed of 18 m/s, 15% turbulence intensity, significant
wave height of 6.9 m and peak wave period 7.8 s.

Using the same wind conditions but a reduced significant wave height as [32], [33]
showed deteriorating power error when compared to a de-tuned baseline PI controller,
while using constant torque approach in the MPC formulation. The generator power
overshoots reached 30% of the rated value. On the other hand, significant improvements
in tower-base fatigue loads are attained, and only a slight reduction of the flapwise
blade-root moment (BRM), despite its inclusion in the objective function, which may
indicate the need of IPC for a significant blade load reduction.

The blade load reduction using IPC is explored in [34], showing great improvements
thanks to the employment of non-linear MPC together with IPC. However, the rotor
speed tracking worsened as compared to a baseline PI controller, and the results presented
are limited by not including an state estimator. This example showcases the importance
of a holistic trade-off analysis.

In [35], the potential of linear MPC as an integral part of a control co-design process
is highlighted. Since the controller plays a major role in the dynamics of FOWTs,
consideration during the design process can lead to substantial gains. The linear MPC
is developed based on a set of linear systems linearised at different wind speeds. The
objectives are set through a cost function considering rotor speed tracking, electrical
power maximisation and structural loads minimisation.

The question on the level of disturbance knowledge required to improve the MPC
performance for FOWT is addressed in [36]. In this study, a comparison between the
use of LiDAR preview with high-frequency SCADA data is shown, concluding that
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high-frequency SCADA data offers better performance while being more accessible and
cost-effective.

The use of MPC for motion reduction has continuously been considered in the
literature. The performance has been compared in [37] with a baseline (Gain-Scheduled
PI) and an Linear Quadratic Regulator (LQR) controller, showing that especially surge
and pitch can be reduced at above rated wind speeds using advanced control techniques,
but a further reduction is attained with MPC as compared to LQR. However, this work
only considered a single wind speed, 18 m/s.

Significant improvements in rotor speed stabilisation are presented in [38], where
a full set of wind conditions covering the operation range were studied. Simulations
conducted above the rated wind speed displayed substantial oscillations when governed
by a PI baseline controller, which were significantly reduced with the use of MPC. The
incorporation of a disturbance previewer, based on a more complex 10-state model,
contributed to these outcomes. Additionally, some improvements were observed around
rated wind speeds in terms of rotor speed oscillations. These observations suggest that
certain limitations inherent to the system design might impose constraints that the
controller cannot entirely overcome.

In [25], an economic non-linear MPC is devised to enhance the power production of
a floating offshore wind turbine. Economic MPC offers the advantage of formulating
the optimization problem in economic objectives, potentially yielding more cost-effective
operation. The study introduces constraints not solely in the inputs, such as blade
pitch and generator torque, but also in the thrust to alleviate loads on the rotor and
tower. Constraints are further applied to power levels to prevent excessive strain on
electronic components, the generator temperature, and both surge and pitch velocities,
which also mitigates loads on mooring lines and dynamic cables. This formulation yields
a modest enhancement in power production below rated power (approximately 1%).
Furthermore, it establishes a more stable generator temperature and platform pitch.
Notably, the formulation demonstrates a substantial improvement (around 4%) under
conditions surpassing the rated capacity.

The explored literature shows great potential for improving the platform motion
response, output electrical power and structural loads by using MPC. However, in most
cases the disturbance previewers are used, which are not yet in a maturity level that
justifies their cost, and the tuning process is not presented. Additionally, comprehen-
sive load analysis for the presented MPC formulations are seldom available, and the
performance tends to be explored at a narrow range of wind speeds. This aspect limits
the insights regarding the necessary trade-offs when designing and tuning the objective
function used by the controller.

1.2.2 Low-order modelling of floating wind turbines
The development of low-order models is a necessary step for the application of MPC, as
will be seen in the following sections. However, this is not the only reason to develop
such models. As noted in [27,39], simple first-principles-based models can be used for

• achieving an understanding of the physical phenomena,
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• implementing novel modifications in the design and perform a quick analysis of
their impact,

• testing a controller version or design before validation and verification with higher
fidelity models and tools.

Alternatively, higher-order models, such as those that can be obtained from high-
fidelity wind turbine aeroelastic analysis tools, such as HAWCStab2 [40] or OpenFAST [41],
can be reduced for control design using different techniques, like Hankel singular value
decomposition [42], balanced realisation [43], or modal truncation [44].

In [44], modal analysis is applied to a fully flexible wind turbine, including unsteady
aerodynamics. The method used contains two steps, first modal basis projection followed
by modal truncation of the main states of the system. Balanced truncation is also used
and compared with modal truncation. This work highlights the applicability of the order
reduction methods used to design gain-scheduled controllers.

In [27], the requirements of a low-order model that can be used both for control
design and design optimisation are summarised. The model should capture the system’s
holistic dynamics without delving into specific mechanic parts (components), ensuring
computational efficiency. Furthermore, it should be represented with non-linear equations
of motion (EOM) that can be linearised and include only scalar disturbance inputs.

For onshore applications, the control design process has usually been performed using
a simple drive-train model equation. However, the development of more advanced control
techniques requires the use of more complex models. For instance, in [29], a 3-DOF
model is used to design MPC considering the drive-train rotational motion, the tower
fore-aft flexibility and the blade pitch actuator dynamics.

Throughout the last few decades, a series of low-order models for floating wind
turbines have been presented. A summary is given in Table 1.1. As can be seen, all the
models are limited to a number of DOFs below 10 and tend to use the assumption of
rigid rotor and tower. This assumption is being challenged by the development of longer
blades and taller towers, with increased flexibility and deformations.

Table 1.1: Summary of already developed floating offshore wind turbine models.

Author Published
year DOFs Main assumptions Novelties Comments

Henriksen et al. [45] 2010 8 Rigid rotor with
dynamic inflow

Aerodynamics with dynamic
inflow model Spar buoy platform

Betti et al. [46] 2012 4 Fully Rigid body Control-oriented model Spar buoy platform

Karimirad et al. [47] 2012 - - Great reduction in
computation time Validated for spar-buoy type

Sandner F. [23] 2012 9 Rigid rotor Tower bending in
two directions Spar buoy platform

Betti et al. [39] 2014 4 Fully Rigid body Control-oriented model Tension leg platform
Sandner F. [27] 2018 5 Rigid rotor, elastic tower Applied to optimisation -

Pustina et al. [25] 2022 6 Rigid rotor with
dynamic inflow

Inclusion of generator
thermal model

Validated using OpenFAST
for the OC3 SparBuoy

The FOWT system can be divided into the following elements,
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• Floating substructure, or platform, modelled as a rigid body, ranging from 2 to 6
DOFs. Surge and pitch are consistently used, heave is added to some models, and
more extended models use the 6 DOFs. To capture instabilities such as roll-yaw
lock, it is necessary to include such DOFs,

• Mooring lines, which are typically considered through a linearised stiffness matrix,
• Tower, included by most publications as part of the floating platform by means of

adding its weight and consider it as a rigid body; however, some models take into
account its flexibility [23,27,35]

• Nacelle, not considered in most cases, however in [23], it is considered through
tower top DOFs; additionally, there is drag caused by it,

• Generator, generally coupled using the drive train equation with the rotor aerody-
namics by means of the rotor speed DOF,

• Blades, which are considered rigid in the simple models studied, and thus no states
associated with them are considered other than the rotor speed, however, blade
load alleviation requires the development of a higher accuracy model considering
blade flexibility.

In [48], the platform model is developed using 6 degrees-of-freedom, coupled with a
Blade Element Momentum (BEM) representation of the rotor, and the model is analysed
in order to understand the fatigue load drivers in the different elements of the systems.
Although several assumptions are considered, leading to a simplified model not being
coupled with the controller, and the stochastic wind component being neglected, it
presents a first step in the development of simple accurate models for floating wind
turbines.

Following this first work on coupling the hydrodynamic, aerodynamic and structural
response of floating wind turbines, important developments are presented in [49, 50].
Further, in [51], a simulation tool for floating wind turbines is presented and validated,
which extends the capabilities of NREL aero-servo-elastic code, FAST, by including a
hydrodynamics module, HydroDyn. However, the model used is not simple enough for
control-oriented purposes, since a very large number of states are considered. Henrik-
sen [45] presents a compendium of papers covering the modelling and estimation of wind
and wave-induced loads in his PhD thesis. Amongst them, he developed a simplified
linear dynamic inflow model that can be applied in model derivations for control design
purposes.

Later on, models were developed to enable fast simulation of floating wind turbines,
in [47], a simplified aerodynamic model is applied and coupled with Simo-Riflex, with a
relatively accurate response of a Spar-type floating wind turbine system as compared to
HAWC2 [40].

Similarly, in [46], a model for control design for a spar-buoy platform (SP) is shown.
The model is based on a first-principles approach, considering three DOFs for the platform:
surge, heave and pitch, and the rotor speed for the aerodynamic forces on the blades.
With the rotor speed, the thrust and power can be calculated as a function of tip-speed
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ratio, λ, and the collective pitch angle, β, using the rotor performance curves, that is,
the thrust coefficient, cT (λ, β), and power coefficient, cP (λ, β), curves. Then, the forces
acting on the tower, nacelle, mooring lines and platform are modelled and combined
using Lagrange equations to reach a system of equations. The model is validated against
FAST simulations with satisfactory results. The same methodology is applied in [39] for
a Tension Leg Platform, with the main changes appearing in the tension mooring line
modelling, as compared to the catenary mooring lines of the spar buoy platform.

Slightly earlier, [23] developed a more sophisticated model with 9 degrees of freedom,
using the Newton-Euler formalism for a spar buoy platform. In this case, all the degrees
of freedom are considered for the platform motion, and two degrees of freedom are added
to the tower top in the fore-aft and side-side directions. Finally, a single degree of freedom
is used for the rotor, namely the rotor speed. The text covers all the modelling details
both for the aerodynamic and hydrodynamic forces and how these are coupled to the
structural model.

The same author developed other models to be applied for a semi-submersible platform,
with fewer degrees of freedom, in [35] and [27]. This work builds upon the linearisation
techniques shown in [52, 53]; however, the work from Lupton is done in the frequency
domain, which, as stated in [48], requires linearisation of the important phenomena to be
included in the model and less accuracy is achieved. Other examples of frequency-domain
models include [54].

A similar model to [23] is presented in [55], with 6 DOFs for the platform and 2
DOFs for the drive train, validated against FAST simulations. This work includes a
wave-disturbance matrix, showing great improvements regarding disturbance rejection.
This model is applied to a semi-submersible platform.

A simple 3-DOF model is presented in [56], with only the rotor speed, surge and
pitch of the platform being considered. This work is a great starting point to understand
the modelling process for floating offshore wind turbines, thanks to the simplicity of the
presentation, as well as the use of linearisation techniques to obtain the linear system
representation.

More recently, in [20], 2-DOF and 6-DOF models are developed to include the roll-yaw
lock instability and obtain an analytical equation to calculate such stability margin.

In [56], a 3-DOF model is developed for control applications. Another interesting
model is developed in [57], with 6 DOFs and the novel inclusion of a wave disturbance
matrix.

Many more first-principles-based models are discussed in the literature, generally
with a low number of states. In conclusion, regarding the modelling of floating wind
turbines, there is already a great amount of work done to obtain the response of the
system and be able to design controllers. However, these models can be further improved
by the inclusion of non-linear aerodynamic and hydrodynamic effects while keeping the
simplicity and the fast computation time needed for these applications.
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1.3 Objectives of the Master thesis
Numerous challenges lie ahead of the wind energy industry, as presented in [58]. This
thesis project aims to tackle two of them, within the field of floating offshore wind
energy. First, the need for accurate models capable of capturing the complex dynamics
impacting power production and loading of the system. Secondly, the development of
optimisation-based control systems capable of adapting to energy market fluctuations.

The abundance of existing models in the literature underscores the need to discern
the requisite level of fidelity for control design purposes, particularly for MPC synthesis,
rather than delving into further, more intricate developments from a control design
perspective. Specifically, enhancing the comprehension of how the complexity of the
reduced-order model should be adjusted in accordance with the controller’s objectives
could potentially lead to cost-effective designs.

Furthermore, model developments are frequently presented without the definitive
set of equations, and their accuracy often hinges on the specific floating offshore wind
turbine (FOWT) under study. Consequently, they require tuning to align the behaviour
with the desired level of accuracy. For that purpose, a tool is to be developed facilitating
design, implementation and validation of reduced order models.

Moreover, to the knowledge of the author, research outlining the MPC tuning
procedure adopted for FOWT applications does not exist, as well as the type of simulations
used to optimise the weights and penalties of the objective function. Within the tuning
process, numerous research questions emerge, including:

• Which atmospheric conditions should be considered in the tuning process? Does
the tuning depend on the wind inflow considered?

• Should the weights and penalties be scheduled with the met-ocean conditions and,
consequently, the operating conditions?

• How should an objective function be designed to tackle platform instabilities?
Lastly, the performance evaluation of the MPC rarely encompasses a broad range

of wind speeds and the complete spectrum of relevant Key Performance Indicators
(KPIs) involved in the design phase, necessary for conducting comprehensive trade-offs.
Therefore, the project aims at developing a tool capable of implementation, tuning and
load analysis of MPC controllers.

Therefore, the main objectives of the master thesis, as a result of the literature review
and the existing gaps of knowledge, are

1. Provide an overview of the existing modelling approaches for each of the elements
of the floating offshore wind turbine system,

2. Further develop a reduced order model based on first principles,
3. Validate and verify the model by running simulation experiments using a high-

fidelity aero-hydro-servo-elastic tool,
4. Develop an MPC algorithm for tackling the platform pitch instability of a floating

wind turbine,
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5. Provide a convenient tuning considering the trade-offs between different KPIs.

1.4 Thesis report structure
The thesis report commences by considering the background and context of floating
offshore wind turbines. Subsequently, a literature review of the control of FOWTs is
provided, with a distinct focus on MPC applications. The subsequent section enumerates
the thesis goals.

Chapter 2 offers a concise overview of the modelling of floating wind turbines and
introduces three reduced order models. The first model considers a single platform degree
of freedom, followed by a model that incorporates both platform pitch and surge degrees
of freedom. Lastly, the second model is expanded to include tower fore-aft flexibility.
These models are initially presented as a set of non-linear equations, necessitated by
the aerodynamic forces. Consequently, a linearisation approach is employed, and the
subsequent state-space formulation is presented.

Chapter 3 outlines the FOWT under analysis, featuring the WindCrete Spar-buoy
concept coupled with a 15MW reference wind turbine. Various approaches for obtaining
the model parameters are examined. Additionally, a sensitivity analysis on the linearised
aerodynamic forces is provided. Finally, the linear models derived in the preceding
chapter are validated against HAWC2 simulations using the computed model parameters.
The accuracy of the models is assessed through modal analysis, open-loop and closed-loop
(feedback PI control) simulations.

In chapter 4, the design of classic PI controllers for wind turbine applications is
reviewed in the context of FOWT. The parallel compensation approach is outlined, and
the tuning procedure is presented.

Subsequently, chapter 5, delves into the implementation of the linear model predictive
controller, encompassing observer design and validation, as well as the formulation of the
regulation problem. The mathematical formulation is followed by an in-depth exploration
of the tuning procedure, with detailed explanations of the considered trade-offs.

Chapter 6 presents the most pertinent outcomes of a load analysis comparison between
the linear MPC developed in the preceding chapter and the baseline PI controller. The
focus is directed towards operational parameters, platform motions, and selected load
channels, to investigate fluctuations, fatigue, and extreme loads.

Finally, chapter 7 engages in a comprehensive discussion of the thesis findings, delving
into both the achievements and potential limitations of the linear MPC approach.



CHAPTER 2
Modelling of Floating Offshore

Wind Turbines
A number of models are available to study the hydro-aero-servo-elastic response of floating
offshore wind turbines. Some of the first work was developed at the National Renewable
Energy Laboratory (NREL) in the United States and is presented in [49–51], currently
available as OpenFAST [41]. Other simulation tools can be used to analyse FOWT,
such as HAWC2 [40,59], developed at Technical University of Denmark (DTU). These
tools constitute mid-fidelity tools, as they present a large number of degrees of freedom
of the system. Higher fidelity simulations can be obtained using Computational Fluid
Dynamics coupled with Fluid-Structure Interaction, as done in [60], where HAWC2 was
coupled with Ellypsis3D [61–64].

For the present work, such a high level of complexity is deemed unnecessary for the
current control design purposes. In order to overcome these difficulties, reduced-order
models of wind turbine generators have been derived in the literature. In this chapter,
two reduced-order models for a floating wind turbine are shown, and an extension is
derived.

2.1 On the necessary model fidelity
Most of the models typically used for control design purposes in wind energy present
few degrees of freedom, mainly the generator model with steady aerodynamics, which,
according to [25], is not able to capture accurately certain phenomena, such as the
unsteady aerodynamic loads.

According to [44], the transfer function from collective pitch to the generator speed
is affected by two low-frequency non-minimum phase zeros. To correctly predict the
non-minimum phase zeros, it is shown to be essential to include lateral tower (side-side)
and blade flap degrees of freedom. Therefore, these DOFs should be included in the model
when dealing with side-side motions. They might not be important, however, when
dealing with fore-aft motions and the platform pitch instability explored later on.

Regarding the platform, it is mentioned in [50] that all six DOFs should be included,
including the yaw motion, due to the coupling of this motion with the aerodynamic
loading when the rotor is not aligned with the wind direction and the induced gyroscopic
yaw moment (by spinning inertia combined with pitching motion of platform and/or
tower deflection).

Therefore, it is common to see the floating substructure being modelled as a rigid
body, with six DOFs [20,23,27], although some authors used only two or three DOFs with
satisfactory results [39]. The rigid body assumption is used in most hydro-aero-elastic
codes known by the author, as the materials used for the platform tend to be concrete or
steel (presenting a very large stiffness), and no slender elements like braces are included
in the model for simplicity.
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The work done in [34] showed performance improvements in rotor speed tracking
and blade-root and tower-base moments when considering a non-linear model during
the control design phase, however, the platform pitch and roll showed larger motions as
compared to a linearized model, meaning that a simple linear model may be sufficient to
tackle the platform pitch instability consider in this work. Therefore, satisfactory results
can be expected by assuming linear aerodynamic forces acting on a simplified rotor.

To summarise, this work consider four DOFs, namely platform pitch and surge, rotor
speed, and tower-top fore-aft deflection.

2.2 How to derive a model?
Different techniques can be used to derive a reduced-order model. The model in [20] is
derived from the equations of motion of a spring-damper system applied to a floating rigid-
body, with a series of assumptions and analytical expressions for the external aerodynamic
forces. Notably, these assumptions include the thrust force acting perpendicular to the
rotor plane and the platform’s angular displacements being sufficiently small to enable
the use of the small angle approximation, allowing to represent the aerodynamic forces
as an stiffness term in the platform’s equations of motion.

On the other hand, the model used in [25] for the platform dynamics is obtained
through system identification from mid-fidelity simulations in OpenFAST. System identi-
fication is also used in [38] with FAST simulations, showing limitations to the number
of states needed regarding the platform pitch natural frequency, not captured with six
states, and the model stability, showing instability for large number of states.

Similarly, [42] uses OpenFAST, in this case to generate a model with 53 states. Then,
balanced order reduction is applied to reduce the number of states to 13. Order reduction
approaches show great promise to be applied for FOWT.

The equations of motion in [39] are developed using Analytical Mechanics, that is,
Hamilton and Lagrange principles. The same approach is employed by [65] with added
complexity. On the other hand, Lemmer [23, 27, 35] derived reduced order models based
on classical mechanics formalisms.

Models can also be derived in the frequency domain, as shown in [52,54], leading to
much faster results for load calculations.

To derive a model using flexible multi-body dynamics, three steps are taken. First,
the kinematics of the system are analysed. This step comprises the definition of the
reference frames (both inertial and a body fixed frame for each body undergoing relative
translations and/or rotations with respect to the other body-fixed frames) and the
calculation of the relative displacements, velocities (and accelerations depending on the
formulation used to derive the equations of motion) of each reference frame with respect
to the inertial.

Secondly, the kinetics have to be analysed, that is, the forces acting on the system.
The forces should be formulated as a function of the system’s degrees of freedom and
their time derivatives.
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Finally, a formalism is chosen to derive the equations of motion. If the Newton-Euler
is applied (equivalent to Kane’s approach), the accelerations of each body are needed,
and the conservation of momentum is applied (equivalent to Newton’s second law). On
the other hand, the Lagrange-Hamilton approach consists of deriving expressions for the
kinetic and potential energy, as well as the generalised forces, and then applying energy
conservation to obtain the equations of motion.

Based on the aforementioned literature, it has been determined that a high level
of accuracy in the model is unnecessary for effective model-based controller design.
Consequently, three simplified models are examined in the subsequent sections. The
initial model, proposed by van der Veen [16], accounts for a sole DOF in platform
motion, surge, rendering it relatively straightforward to tune. The subsequent model,
originally formulated in [66], encompasses two DOFs for platform motion—surge and
pitch—promising a heightened level of accuracy. Lastly, this model is adapted to
streamline the control design process, incorporating an additional DOF: tower flexibility.

2.3 Simplified model
In [16], a reduced order model is presented, with four degrees of freedom, namely the
tower fore-aft bending displacement, xt,b, the platform pitch angle, θp, the rotor speed,
Ω, the tower-top/hub displacement in the fore-aft direction, xr, which involves a simple
geometrical relationship between the tower-top deformation and the platform pitch
angular displacement. The only forces considered for this model are the aerodynamic
forces. The full set of equations is then,

ẍt,b + 4πζtb,1ftb,1ẋt,b + 4π2f 2
tb,1xt,b = T (Ω, V∞ − ẋr, β)/M̃t,

θ̈p + 4πζθfθθ̇p + 4π2f 2
θ θp = HhT (Ω, V∞ − ẋr, β)/Ĩ0,

xr = a1xt,b + a2θp,

IdrΩ̇ + RgQg + αΩ = Qa(Ω, V∞ − ẋr, β) .

(2.1)

Note that the original equations presented in [16] are missing the force normalisation
with the corresponding modal inertial terms and the moment-arm of the thrust with
respect to the platform pitch motion. The modal tower mass and modal platform pitch
inertia are defined as M̃t and Ĩ0, respectively.

The tower fore-aft bending and platform pitch motions are represented by the first
modal contribution, with natural frequency ftb,1 and fθ, and damping ζtb,1 and ζθ,
respectively. a1 = 1 and a2 = Hh are the geometrical constants relating to the tower-top
displacement in the fore-aft direction, where the small angle approximation has been
used for the platform pitch.

The rotor inertia is defined as Idr, whereas Rg is the gearbox ratio to transform the
generator torque from the high-speed shaft (HSS) to the low-speed shaft (LSS). A friction
coefficient, α, can be used to better represent the shaft dynamics.
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This model’s non-linearity originates from the aerodynamic forces, namely the aero-
dynamic torque and thrust. The aerodynamic torque, Qa, is given by the aerodynamic
torque coefficient,

Qa = 1
2ρπR3 (V∞ − ẋr)2 cQ(Ω, V∞ − ẋr, β) , (2.2)

whereas the aerodynamic thrust force, T , is

T = 1
2ρπR2 (V∞ − ẋr)2 cT (Ω, V∞ − ẋr, β) , (2.3)

and the power extracted by the turbine, dependent on the generator efficiency, ηg, is

Pg = ηgRgQgΩ . (2.4)
The aerodynamic torque and thrust coefficients have been defined by three variables,

in agreement with [25], the rotor speed, Ω, the effective undisturbed wind speed at the hub,
V∞ − ẋr, and the collective blade pitch angle β, in contrast to the typical two-parameter
definition by mean of the tip-speed ratio.

The model derived by Zhang [66], presents differences with van der Veen’s model [16].
In this case, the states of the platform are surge and pitch, and the tower is assumed to
be fully rigid. The rotor speed state is maintained.

As depicted in Figure 2.1, the reference frame for the surge, xp, and pitch, θp, platform
motions is located at the flotation center. Another reference frame can be used in the
tower-top to evaluate the fore-aft motion of the tower-top, xr as a function of the platform
motion.

The platform motions are represented as a second-order system, yielding tower-top
motion in the fore-aft direction. The drive-train is modelled as a first-order system. The
model equations are as follows

(Ms + Ma)
[

ẍp

θ̈p

]
+ Ks

[
xp

θp

]
=
[

F̄Hydro + T (Ω, V∞ − ẋr, β) ,
τ̄Hydro + HhT (Ω, V∞ − ẋr, β)

]
,

xr = xp + Hhθp ,

IdrΩ̇ = Qa (V∞ − ẋr, Ω, β) − Qg ,

(2.5)

where the structural mass matrix of the platform DOFs, Ms, is calculated with respect
to the centre of flotation,

Ms =
[

mF OW T mF OW T zCM

mF OW T zcg,F OW T IO,F OW T

]
. (2.6)

The hydrodynamic forces introduce wave-profile-dependent forces and moments
F̄hydro and τ̄hydro, as well as an added mass, Ma. The following equations define the
hydrodynamic forces and moments{

Fhydro = Fadded mass + F̄Hydro = Fadded mass + Fdrag + Finertia
τhydro = τadded mass + τ̄Hydro = τadded mass + τdrag + τinertia

, (2.7)
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Figure 2.1: Reference frames and states for the simplified model

where the first two terms in both relations correspond to added mass and viscous damping,
whereas the last term corresponds to the wave loading and should be considered as an
external disturbance effect. It can be noticed that the equation terms are analogous the
the Morison equation as presented in [67],

F (t) = Finertia(t) + Fdrag = π

4 ρwCmD2
p,Ou̇(t) + 1

2ρwCDDp,Ou(t)∥u(t)∥ , (2.8)

where Cm and CD are the inertia and drag coefficients, respectively, ρw is the water
density, and Dp,O is the diameter of the platform at the flotation level. This equation is
generally valid for a slender body.

The added mass matrix is calculated in the model from the application of the Morison
equation, leading to

Ma =
[

−ρwCm
π
4 D2

p,Ozbot −1
2ρwCm

π
4 D2

p,Oz2
bot

−1
2ρwCm

π
4 D2

p,Oz2
bot −1

3ρwCm
π
4 D2

p,Oz3
bot

]
, (2.9)

where zbot is the vertical position of the keel, measured from the Still Water Level (SWL).
The inertia coefficient should be tuned depending on several parameters, although the
use of typical values is suggested in [67]. A more detailed derivation of the added mass
matrix can be found in [66].

It can be noted that in the equations of motion, no damping term is present. This is
because the radiation damping is assumed to be negligible in this case. Moreover, the
damping will originate from the hydrodynamic and aerodynamic loads on the structure.

Considering the drag term of the hydrodynamic forces as expressed in the Morison
equation, a linear hydrodynamic-damping matrix, Ch, can be computed,
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Ch =
[

ρwCDDp,0Uoutzbot
1
2ρwaterCDDp,0Uoutz

2
bot

1
2ρwCDDp,0Uoutz

2
bot

1
3ρwCDDp,0Uoutz

3
bot

] [
ẋp

θ̇p

]
, (2.10)

where Uout is a parameter defined in [54] and used in [66], to simplify the integration of
the wave profile. Similar to the previous matrix, in this case the drag coefficient should
be tuned according to the platform shape and flow parameters [67].

The restoring stiffness matrix in the platform motion dynamics in Equation 2.5 Ks

represents mooring and hydrostatic stiffness combined,

Ks = Km + Kh , (2.11)
where Km represents the mooring line stiffness, whereas Kh originates from the hydrostatic
forces. The mooring stiffness is obtained considering a linear spring system,

Km =
[

kmoor kmoorzmoor

kmoorzmoor kmoorz
2
moor

]
, (2.12)

where kmoor is the stiffness of the spring, and zmoor is the mooring line fair-lead vertical
position. The hydrostatic stiffness has a single component in the pitch DOF,

Kh =
[

0 0
0 mtotg (zcb − zcg) + ρwg π

64D4
p,O

]
, (2.13)

where mtot is the total mass of the FOWT, zcb is the vertical location of the center of
buoyancy, zcg is the center of gravity of the FOWT.

2.3.1 Linearisation of aerodynamic forces
The aerodynamic forces acting on a wind turbine are highly non-linear; however, for
control design purposes, having a linear representation of the system is preferred. Thus,
the aerodynamic forces need to be linearised. Using first-order linear expansion,

T (Vin,op+∆Vin, Ωop + ∆Ω, βop + ∆β) ≈

T (Vin,op, Ωop, βop) + ∂T

∂Vin

∣∣∣∣∣
op

∆Vin + ∂T

∂Ω

∣∣∣∣∣
op

∆Ω + ∂T

∂β

∣∣∣∣∣
op

∆β + O(∆2) ≈

T (Vin,op, Ωop, βop) + CT,Vin∆Vin + CT,Ω∆Ω + CT,β∆β + O(∆2) ,

(2.14)

Qa(Vin,op+∆Vin, Ωop + ∆Ω, βop + ∆β) ≈

Qa(Vin,op, Ωop, βop) + ∂Qa

∂Vin

∣∣∣∣∣
op

∆Vin + ∂Qa

∂Ω

∣∣∣∣∣
op

∆Ω + ∂Qa

∂β

∣∣∣∣∣
op

∆β + O(∆2) ≈

Qa(Vin,op, Ωop, βop) + CQ,Vin∆Vin + CQ,Ω∆Ω + CQ,β∆β + O(∆2) .

(2.15)
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The partial derivatives are manually computed using HAWC2 steady wind simulations
and a central first-order finite differences scheme, such that

CQ,Ω = ∂Qa

∂Ω

∣∣∣∣∣
op

≈ Qa(Vin,op, Ωop + ∆Ω, βop) − Qa(Vin,op, Ωop − ∆Ω, βop)
2∆Ω , (2.16)

and similarly for all the derivatives previously outlined in Equation 2.14 and Equation 2.15.
Clearly, the aerodynamic sensitivities depend on the operating condition and the spacing
∆(·) used for the calculation. The wind force and moment on the platform surge and
pitch degrees of freedom can now be expressed in a linear form as

[
T

HhT

]
≈
[

Top

HhTop

]
+
[

CT,Ω −CT,Vin

CT,ΩHh −CT,Vin
Hh

]
︸ ︷︷ ︸

Ca

[
∆Ω̇
∆ẋr

]

+
[

CT,β 0
CT,βHh 0

]
︸ ︷︷ ︸

Ba

[
∆β

∆Qg

]
+
[

CT,Vin
0 0

CT,Vin
Hh 0 0

]
︸ ︷︷ ︸

Ea

 ∆V∞
∆Fh,inertial

∆τh,inertial

 .

(2.17)

It is clear that the aerodynamic thrust acts as a damping term in the structure, Ca.
Additionally, the effect from the inputs, Ba, can be separated from the effect from the
disturbances, Ea, for convenience for the state-space formulation outlined in the following
paragraphs.

2.3.2 State space formulation
The linearised model can be expressed in its state-space form, as it will be used for both
the open-loop and closed-loop implementation for validation and control design. The
objective is to represent the system in the following form

∆ẋ = A∆x + B∆u + E∆d
∆y = C∆x + D∆u
∆z = Cz∆x + Dz∆u

, (2.18)

x comprising the system states, u the controller inputs, d the disturbances, y the measured
variables and z the outputs. Only the deviations with respect to the linearisation point
are considered; that is, just the deviation variables are included,

∆x = x − xop, ∆u = u − uop, ∆d = d − dop, ∆y = y − yop, ∆z = z − zop . (2.19)

The first step is to reduce all the Ordinary Differential Equations (ODEs) to first
order and to do that the state vector is defined as combining the original states with
their first derivatives,
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∆x =
[
∆xp, ∆θp, ∆ϕ, ∆xr, ∆ẋp, ∆θ̇p, ∆Ω, ∆ẋr

]T
. (2.20)

where phi corresponds to the rotor azimuth, which is not explicitly modelled in the
equations of motion (see Equation 2.5). Thus, the time derivative is represented as

∆ẋ =
[
∆ẋp, ∆θ̇p, ∆Ω, ∆ẋr, ∆ẍp, ∆θ̈p, ∆Ω̇, ∆ẍr

]T
. (2.21)

The controller inputs are the collective blade pitch and the generator torque,

∆u = [∆β, ∆Qg]T . (2.22)
The disturbances are the uncontrolled variables affecting the system’s response, that is,
the undisturbed wind speed, the hydrodynamic inertial force and moment,

∆d = [∆V∞, ∆Fh,inertial, ∆τh,inertial]T . (2.23)
The states matrix can be built then as

A8×8 =


04×2 04×2 I4×4

(Ms + Ma)−1 Ks 02×2 (Ms + Ma)−1 Cp

01×2 01×2 I−1
dr Cdr

Kr 01×2 Cr

 , (2.24)

where I is an identity matrix. The platform damping matrix is composed of the
hydrodynamic and aerodynamic damping as follows

Cp = [Ch, Ca] . (2.25)
The drive train damping originates from the aerodynamic torque sensitivities to the

rotor speed and inflow speed

Cdr = [0, 0, CQa,Ω, −CQa,Vin
] . (2.26)

The tower-top stiffness and damping

Kr = [A51 + A61Hh, A52 + A62Hh] , (2.27)
and

Cr = [A55 + A65Hh, A56 + A66Hh, A57 + A67Hh, A58 + A68Hh] , (2.28)
respectively, are directly related to the surge and pitch motions of the platform due to
the rigid body assumption.

The input matrix is defined as

B =


04×2

(Ms + Ma)−1 Ba

I−1
dr Bdr

Br

 , (2.29)
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where the drive train contribution is given by

Bdr = [CQa,β, −1] . (2.30)
The aerodynamic contribution to the platform motion is defined by the following relation

Ba =
[

CT,β 0
CT,βHh 0

]
, (2.31)

and the contribution of the surge and pitch velocity on the tower-top is as follows

Br = [B51 + B61Hh, B52 + B62Hh] . (2.32)
The disturbance matrix collects the contributions from the deviation in the wind

speed, hydrodynamic force and moment with respect to the operating/linearisation point,
as shown in the below equation

E =


04×3

(Ms + Ma)−1 Ea

I−1
dr Edr

Er

 , (2.33)

where the drive train contribution is given by

Edr = [CQa,Vin
, 0, 0] , (2.34)

the contribution of the aerodynamic loads to the platform motion is

Ea =
[

CT,Vin
0 0

CT,Vin
Hh 0 0

]
, (2.35)

whereas the tower-top contribution is again dependent on the surge and pitch motion,

Er = [E51 + E61Hh, E52 + E62Hh, E53 + E63Hh] . (2.36)
The output matrix is considered an identity matrix in this work, C = INm×8, unless

otherwise stated, where Nm is the number of measurements. The feedthrough matrix is
is considered a zero matrix D = 0Nm×2. The output matrix Cz depends on the controller
formulation and required outputs, similarly the output feedthrough matrix Dz.

2.4 Extended model
The above derived simplified model can be improved by adding the flexibility aspect of
the tower (fore-aft) motion. Thus a second-order approximation of the first tower mode
is added as an extension to the model in Equation 2.5. In that case, the equations of
motion of the system become
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(Ms + Ma)
[

ẍp

θ̈p

]
+ Ks

[
xp

θp

]
=
[

F̄Hydro + T (Ω, V∞ − ẋr, β)
τ̄Hydro + τwind (Ω, V∞ − ẋr, β)

]
,

ẍtt + 4πζt,1ft,1ẋtt + 4π2f 2
t,1xtt = T (Ω, V∞ − ẋr, β)/M̃t ,

IdrΩ̇ = Qa (Ω, V∞ − ẋr, β) − Qg ,

xr = xp + Hhθp + xt .

(2.37)

The states of this model are

∆x =
[
∆xp, ∆θp, ∆xt, ∆ϕ, ∆xr, ∆ẋp, ∆θ̇p, ∆ẋt, ∆Ω, ∆ẋr

]T
. (2.38)

The system matrix is rewritten now as

A10×10 =


05×2 05×3 I5×5

(Ms + Ma)−1 Ks 02×3 (Ms + Ma)−1 Cp

01×2 01×3 M̃−1
t Ctb

01×2 01×3 I−1
dr Cdr

Kt 01×2 Cr

 . (2.39)

In this case, aerodynamic damping appears on the tower fore-aft bending DOF, Ctb,

Ctb = [0, 0, 0, CT,Ω, −CT,Vin
] , (2.40)

The input matrix is in this case

B =


05×2

(Ms + Ma)−1 Ba

M̃−1
t CT,β

I−1
dr Bdr

Br

 , (2.41)

where the rotor fore-aft motion input matrix contribution is given by

Br = [B61 + B71Hh + B81, B62 + B72Hh + B82] . (2.42)
The disturbance matrix is

E =


05×3

(Ms + Ma)−1 Ea

M̃t
−1

CT,Vin

I−1
dr Edr

Er

 . (2.43)

The aerodynamic disturbance effects on the platform motion, Ea, are as in Equa-
tion 2.35, whereas the rotor fore-aft motion disturbance matrix contribution is given,
similarly to Equation 2.42,
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Er = [E61 + E71Hh + E81, E62 + E72Hh + E82] . (2.44)
Note that several matrices have been defined initially in the simplified model, however

they should be adapted due to the additional state in the extended model. It is not
presented here for conciseness, since it is a trivial exercise.

2.5 Final remarks
The modelling task of wind turbines in general, and floating wind turbines in particular,
can be undertaken by several means. Using system identification or order reduction from
existing higher order models can provide a fast and high accuracy method. On the other
hand, developments based on first principles can lead to a better understanding of the
system, at the expense of a more cumbersome process. During the previous sections fairly
simple reduced order models have been presented and analysed, with a partial focus on
the linearization of the aerodynamic forces, and the inclusion of both hydrodynamic and
aerodynamic loads in the state-space formulation of the model. Finally, the matrices
needed to implement a linear state-space model are defined for two models, the simplified
model, and the extended model, where tower flexibility is added.



CHAPTER 3
Model validation

The model is applied to the IEA-15MW Reference Wind Turbine (IEA-15MW RWT) [68]
mounted on the WindCrete Spar-Buoy (SB) [69] floater. This choice allows for assessing
the response of what could be expected to be full-scale floating wind turbines over the
coming years. Currently, the largest floating wind farm is based on spar-buoy-type
floaters. Additionally, the largest wind turbines installed are quickly approaching the
15MW rating in European offshore wind farms.

Originally, the WindCrete SB was designed for a 5MW WTG. The monolithic
cylindrical structure has been up-scaled [70] to hold the IEA-15MW RWT. The response
has been investigated by Mahfouz et al. [71].

To study the validity of the model, the previously mentioned reference WTG and
floater are used. The following sections list the main parameters required for the
reduced order model, and the validation of the model is performed compared to HAWC2
simulations.

3.1 WindCrete floater definition
The reference floater used for the present work is the WindCrete floater, upscaled for
the 15MW turbine. In the definition report, the structure contains three elements: the
spar-buoy, the transition piece, and the tower. For the purpose of this exercise, the tower
will be considered a separate part from the floating platform. The main parameters
required for the model definition are shown in Table 3.1. A diagram with relevant
measurements of the geometry is shown in Figure 3.1.

Table 3.1: Key substructure parameters, both structural and hydrostatic [70].

Parameter Value
Mass including ballast (Not including tower) 3.655 · 107 kg
Vertical Center of Gravity (with respect to MSL) −113.08 m
Vertical Center of Buoyancy (with respect to MSL) −77.29 m
Pitch moment of inertia, Ip,yy, about CG 5.590 · 1010 kg · m2

Displaced water volume 4.054 · 104 m3

Pitch hydrostatic stiffness C55 at sea water level −3.146 · 1010 N · m/rad
Surge stiffness, Km,11 5.052 · 105 N/m
Fairleads depth with respect to MSL, zfrl −90 m

The added mass of the platform, Ma, is shown in the corewind report [70] and has
been calculated using potential flow theory, resulting in the following for infinite frequency,
noting that only the surge and pitch values are reproduced,

Ma,P F =
[

3.735 · 107 kg −2.964 · 109 kg · m
−2.964 · 109 kg · m 2.916 · 1011 kg · m2

]
, (3.1)
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Table 5-2: WindCrete hydrostatic properties 

WindCrete Hydrostatic Properties 

Displacement [m3] 4.054e+04  

Center of Buoyancy Height [m] -77.29  

C33 [N/m] 1.3746e+06 

C44 [N·m/rad] from [0;0;0] -3.1463e+10 

C55 [N·m/rad] from [0;0;0] -3.1463e+10 

A33 [kg] from CM 1.727e+06 

A55 [kg·m2] from CM 8.964e+10 

T3 [s] 35 

T5 [s] 41 

 

5.2 FAST model 

In order to model the WindCrete platform in FAST, the tower and the substructure have to be defined separately. 

The tower base height set in the WindCrete FAST model preserves the tower base height of the monopile model 

to support the IEA-15 MW reference wind turbine. However, the tower height is reduced to 129.495m as 

explained in section 5.2.1. Then, in the WindCrete FAST model the lower part of the tower is included in the 

substructure. The Figure 5-2 shows a sketch of the separation between the tower and substructure modeled in 

FAST. 

 

Figure 5-2: FAST Substructure and Tower (values in meters) 
Figure 3.1: Substructure plan. The values are in meters. Mean Sea Level (MSL) is
equivalent to SWL. Reprinted from [70]

where the subscript PF stands for potential flow. On the other hand, in [66], the added
mass was computed following the Morison equation, leading to

Ma,ME =
[

4.161 · 107 kg −3.213 · 109 kg · m
−3.213 · 109 kg · m 4.164 · 1011 kg · m2

]
. (3.2)

The structural mass matrix can be extracted from HAWC2, which is assumed to
generate a higher accuracy result due to the multi-body formulation being able to couple
all DOFs, leading to the following

Ms,HAW C2 =
[

0.413 · 108 kg −0.384 · 1010 kg · m
−0.384 · 1010 kg · m 0.565 · 1012 kg · m2

]
. (3.3)

If, instead, Equation 2.6 is used, the following values are obtained

Ms,Analytical =
[

0.408 · 108 kg −0.378 · 1010 kg · m
−0.378 · 1010 kg · m 0.559 · 1012 kg · m2

]
, (3.4)

which shows a close match, with less of 1.5% difference for each element with respect to
the HAWC2 super-element result. On the other hand, the combination of the structural
mass with the added mass from the corewind report shows a significant miss-match when
compared to the total mass obtained from HAWC2 Superelement, as shown in [66],
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Mtot,SE =
[

8.265 · 107 kg −8.060 · 109 kg · m
−8.060 · 109 kg · m 1.066 · 1012 kg · m2

]
. (3.5)

Finally, the total mass used in the model is the combination of the analytical structural
mass, Ms,Analytical, and Morison equation calculation, Ma,ME, that is, Equation 3.4
and Equation 3.2.

For the model, the mooring stiffness and vertical position of the fairleads are required
in order to compute the linearized stiffness matrix. Considering the surge stiffness
and fairleads position with respect to MSL, as given in Table 3.1, that is, Km,11 and
zfrl, Equation 2.12 can be used. The pitch hydrostatic stiffness is listed in Table 3.1.
Combining them, the total stiffness is

Kanalytical =
[

5.052 · 105 N/m −4.547 · 107 N
−4.547 · 107 N 1.019 · 1010 N · m

]
. (3.6)

The stiffness matrix has also been obtained in [66] using the HAWC2 Superelement
approach,

KSE =
[

4.915 · 105 N/m −4.890 · 107 N
−5.048 · 107 N 1.109 · 1010 N · m

]
. (3.7)

The values from Kanalytical and KSE are quite similar, proving the validity of the
modelling. However, the mooring line pitch stiffness value was slightly tuned to match
the natural frequencies of the floating wind turbine system,

Kmodel =
[

5.052 · 105 N/m −4.547 · 107 N
−4.547 · 107 N 1.055 · 1010 N · m

]
. (3.8)

The hydrodynamic damping matrix, Ch, was obtained in [66] by performing decay
tests in HAWC2 simulations, leading to

Ch =
[

−1.971 · 105 N · s/m 4.812 · 106 N · s
4.812 · 106 N · s −1.059 · 109 N · m · s

]
. (3.9)

The final substructure model values used are

Ma =
[

3.735 · 107 kg −2.964 · 109 kg · m
−2.964 · 109 kg · m 2.916 · 1011 kg · m2

]
, (3.10)

Ms =
[

0.413 · 108 kg −0.384 · 1010 kg · m
−0.384 · 1010 kg · m 0.565 · 1012 kg · m2

]
, (3.11)

Ks =
[

5.052 · 105 N/m −4.547 · 107 N
−4.547 · 107 N 1.055 · 1010 N · m

]
, (3.12)

Ch =
[

−1.971 · 105 N · s/m 4.812 · 106 N · s
4.812 · 106 N · s −1.059 · 109 N · m · s

]
. (3.13)
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Finally, the aerodynamic damping, Ca, aerodynamic effect of inputs, Ba, and distur-
bances, Ea, are computed based on the linearization of aerodynamic forces, as explained
in subsection 2.3.1. The values are shown in [66], which depend on the WTG charac-
teristics outlined in the next section, whereas the linearization of aerodynamic loads is
described in section 3.3.

3.2 IEA-15MW Reference Wind Turbine
The IEA-15MW RWT was selected for the thesis project. The key parameters are
detailed in Table 3.2. Some of them are necessary for the definition of the reduced order
model, whereas others are only presented to aid in the analysis. The HAWC2 models are
publicly available on GitHub [72].

Table 3.2: Key specifications of IEA-15MW Reference Wind Turbine [68]

Parameter Value
Wind turbine IEC class 1B
Power rating, PN 15 MW
Rated thrust, TN 2.4 MN
Hub height (from SWL), H∗

h 135.495 m
Drive train type Direct drive
Minimum rotor speed, Ωmin 5.0 rpm
Maximum rotor speed, ΩN 7.56 rpm
Maximum tip speed, Vtip,max 95 m/s
Design tip-speed ratio, λopt 9.0
Cut-in wind speed, vci 3 m/s
Cut-out wind speed, vco 25 m/s
Rotor diameter, Dr 240 m
Rated wind speed, VN 10.59 m/s
Blade mass, mb 65 t
Mass of Rotor-Nacelle Assembly (RNA), mRNA 1016 t
Drive-train inertia, Idr 3.1465 · 108 kg · m2

Tower mass, mt 860 t
Tower height, Lt 129.582 m
∗ The hub-height has been adapted to match the HAWC2 model

The IEA-15MW RWT has been originally designed for bottom-fixed offshore configu-
ration, as shown in Figure 3.2, leading to a hub-height of 150 m. The 15-meter transition
piece in the WindCrete SB, and shortening of the tower in the HAWC2 model leads to
the hub-height being located 135.495 m above MSL.
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Figure ES-1. The IEA Wind 15-MW reference wind turbine 

and generator rotors on two main bearings housed on a stationary turret that is cantilevered from the bedplate. The 

hub is a simple spherical shell, with cutouts for the blades and the flange. The main shaft has a hollow cylindrical 

cross section, with a constant wall thickness and a tilt angle of 6◦. The main shaft, along with the rotor, is supported 

by two main bearings. Both these main bearings have rotating outer raceways and fixed inner raceways. The outer 

raceways and bearing housing are accommodated by a turret held by the bedplate. The entire weight of the turbine 

rotor, generator rotor, and hub loads are transmitted by the main shaft to the turret via the bearings. The bedplate is 

a hollow, elliptically curved, cantilever beam with circular cross sections. The yaw system bearings are double-row, 

angular, contact ball bearings. 

The generator construction features an external rotor radial flux topology machine with a surface-mounted permanent 

magnet (shown in Figure ES-2b). The outer rotor layout facilitates a simple and rugged structure, easy manufac- 

turing, short end windings, and better heat transfer between windings and teeth than the inner rotor configuration. 

The stator design features fractional, slot-layout, double-layer concentrated coils, which maximize the fundamental 

winding factor. 

Load Analysis 

This work assumes a generic U.S. East Coast site with a wind speed described by a Weibull distribution with a mean 

velocity of approximately 8.65 m/s and a shape parameter of 2.12. At this mean wind speed, the corresponding 

significant wave height is approximately 1.4 m, with a peak spectral period of 7.9 seconds (s). The fixed-bottom 

v 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications

Figure 3.2: IEA-15MW RWT with Monopile configuration. Note that the hub height
depicted does not correspond to the model used and evaluated. Reprinted from [68].

3.3 Linearised aerodynamic loads
The model described in section 2.3 relies on the linearised aerodynamics of the IEA-
15MW rotor. Although the software HAWCStab2 [40] can compute the aerodynamic
gradients of a given rotor, it does not account for the motions of the FOWT, which
were found in [66] to significantly affect aerodynamic loads. Thus, steady closed-loop
HAWC2 simulations are conducted at various operating points to calculate gradients
for the aerodynamic thrust force, T , and torque, Qa, with respect to the undisturbed
wind speed, ∂ (·)a /∂V∞ ≡ C(·)a,V∞ , rotor speed, ∂ (·)a /∂Ω ≡ C(·)a,Ω, and demanded pitch
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angle, ∂ (·)a /∂βd ≡ C(·)a,βd
.

To determine the operating values of the demanded pitch at each analysed wind speed,
a de-tuned controller, outlined in chapter 4, is utilised. The rotor speed is also checked
against the rated rotor speed as a validation step. The simulations are run long enough
to dampen transients and oscillations, after which the mean value of the remaining time
signal is calculated.

The resulting operating points at various wind speeds are depicted in Figure 3.3. Of
particular interest are wind speeds above the rated value, as platform pitch instability
occurs during full load operation. The original data points were computed by [66], and
additional operating points were later calculated, highlighting the linearity between the
selected operation points. In the original case, the computed gradients were based on
∆V∞ = 0.5 m/s, with unknown steps for blade pitch and rotor speed. To assess gradient
sensitivity, three different offset values for each variable—∆Ω, ∆βd, and ∆V∞—were
considered and depicted with error bars in the figure.

Figure 3.3: Operating points and visual description of aerodynamic gradients’ calculation.
The original points depict the existing gradients computed in [66], additional points are
used to compute the corresponding operating conditions. The error bars represent the
deviations imposed in the operation points to compute the aerodynamic gradients.

Following the finite difference approach outlined in subsection 2.3.1, the aerodynamic
gradients were computed for all three cases. In Figure 3.4 and Figure 3.5 the resulting
aerodynamic torque and thrust gradients are shown respectively.

A mismatch can be observed in the aerodynamic torque derivative with respect to
the wind speed. This may be caused by a mismatch in the steady-state blade pitch
angle, or by a different transient time considered. The results for all aerodynamic torque
calculations seem to be highly insensitive to the step in wind speed, rotor speed and
blade pitch angle.
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On the other hand, the derivative of the thrust with respect to the blade pitch angle
is slightly affected by the step in blade pitch, and overall a marginal mismatch is found
with respect to the original calculations. Similarly to the derivative with respect to the
wind speed. Furthermore, the thrust gradient is clearly non-linear with respect to the
blade pitch, in contrast to the rotor speed and wind speed in the region considered.

Figure 3.4: Aerodynamic torque gradients’ calculation. The original points depict the
existing gradients computed in [66], additional points are used to compute the gradients
based on different offsets, indicated on the right of the figure.

To gain a deeper understanding of the sensitivity of the aerodynamic forces to the
wind speed, the relative value between the aerodynamic torque and thrust gradients is
computed at V∞ = 16 m/s and ∆V∞ = ±0.5 m/s. This computation is then illustrated
in Figure 3.6. It is evident that variations in the thrust gradients are more pronounced
compared to those in the aerodynamic torque.

These observations underscore the need for scheduling the model used during turbulent
wind simulations to obtain accurate load predictions, particularly under conditions of
higher turbulence. This is important since the gradients are likely to undergo non-
negligible variations. However, important limitations are introduced by only considering
a steady wind calculation, which neglect unsteady aerodynamic effects.
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Figure 3.5: Aerodynamic thrust gradients’ calculation. The original points depict the
existing gradients computed in [66], additional points are used to compute the gradients
based on different offsets, indicated on the right of the figure.

3.4 Modal analysis
The floating wind turbine’s natural frequencies are detailed in [70]. To validate the model
and ensure its capability to capture the dynamic behaviour of the floating wind turbine,
the natural frequencies are analysed using various methods, as presented in Table 3.3.
The calculation method inherently introduces a degree of error, yet the results exhibit
a reasonable level of agreement. Notably, both reduced-order models over-predict the
surge natural frequency when compared to HAWC2, considered the baseline as it is
employed for coupled simulations. On the other hand, the pitch natural frequencies show
a satisfactory match with HAWC2. It’s worth noting that certain degrees of freedom are
either excluded in the reduced-order models or are not analysed within HAWC2.

Additionally, to better understand the stability of the system, the pole-zero map is
plotted in Figure 3.7, based on the simplified model. The results show the poles and
zeros for the collective blade pitch to rotor speed. There are RHPZ for the pitch motion
for the lower wind speeds, close to rated wind speed, likely due to the large magnitude
of the rotor thrust derivative with wind speed. These zeroes move towards the left as
the wind speed increases, in a behaviour observed in the literature [56, 73].
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Figure 3.6: Relative normalised aerodynamic gradients around V∞ = 16 m/s.

Table 3.3: Validation of natural frequencies from reduced order linear models.

Natural frequencies in Hz Surge Pitch Heave Yaw Tower
Decay test OpenFAST [71] 0.01221 0.02441 0.03052 0.09155 0.5
Signal FFT HAWC2 0.010 0.026 0.033 - -
Simplified model 0.012 0.023 - - -
Extended model 0.013 0.025 - - 0.498

3.5 Linear model open-loop simulations
The linear simulations are performed by building the Linear Time-Invariant models (LTI)
described in subsection 2.3.2 and section 2.4, in continuous time,

∆ẋ(t) = Ac∆x(t) + Bc∆u(t) + Ec∆d(t)
∆y(t) = C∆x(t) + D∆u(t)
∆z(t) = Cz∆x(t) + Dz∆u(t)

, (3.14)

which is further discretized using matricial exponentiation, Ad Bd Ed

0 I 0
0 0 I

 = exp


 Ac Bc Ec

0 0 0
0 0 0

Ts

 , (3.15)

where Ts is the sampling time. The sampling time should be chosen such that the
sampling frequency, fs = 1/Ts, is higher than the highest model frequency, in order to
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Figure 3.7: Pole-zero map of rotor speed against collective blade pitch, for several wind
speeds above rated. The upper set of poles (×) and zeroes (o) correspond to the pitch
motion, whereas the lower set to the surge motion.

capture all the relevant modes without aliasing. The LTI discrete state-space system can
then be expressed as 

∆xk+1 = Ad∆xk + Bd∆uk + Ed∆dk

∆yk = C∆xk + D∆uk

∆zk = Cz∆xk + Dz∆uk

. (3.16)

Note that the output and feedthrough matrices do not need to be discretized. On the
other hand, if process noise is modelled, the noise covariance matrix must be discretized
too.

Then, the simulation is performed by keeping the generator torque and collective
blade pitch at the operating values, that is, ∆Qg,k = ∆βd,k = 0 ∀ k, where k represents
the current time step.

The collective blade pitch angle is fixed throughout the simulation, to the values
shown in Table 3.4. To determine which value to use, a set of closed-loop simulations are
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performed at constant steady wind speed, and then the mean value of the blade pitch is
taken, ignoring the transient part of the simulations.

Table 3.4: Steady-state values of collective blade pitch angle used for open-loop validation
of the reduced order models against HAWC2 simulations.

Wind speed 12 m/s 14 m/s 16 m/s 20 m/s 24 m/s
Collective blade pitch angle 3.7346 deg 7.4933 deg 10.2912 deg 14.9627 deg 19.1358 deg

The results of the open-loop validation for the states’ displacements and velocities
at V∞ = 16 m/s are shown in Figure 3.8 and Figure 3.9. The motions are captured
adequately, specially the rotor speed and the platform pitch motion. The amplitude of
the response after the step in wind speed is almost exactly the same, although higher
frequency oscillations are observed in the surge, pitch and tower-top velocity responses,
whereas not such vibrations appear in the simplified model, as they are caused by the
tower fore-aft flexibility.

The natural frequencies are slightly different for the simplified model and the higher-
fidelity HAWC2 case, which cause the signals to have a shift in frequency. This issue is
addressed in subsection 3.5.1. The main reason is the use of a constant linear mooring
line stiffness matrix, while the mooring line restoring forces are known to be non-linear.
It can also be caused by mismatch in the inertial matrix.

Further analysis can be performed considering the energy content of the velocity
signals. In Figure 3.10 the PSD of each velocity state is displayed, with the dashed, dotted
and dashed-dotted line corresponding to the surge, pitch and heave natural frequencies
respectively, as reported in [71]. The rotor speed shows two main contents, due to surge
and pitch motions. The simplified model captures almost exactly the frequency and
magnitude of the pitch component, however not so for the surge. This result is consistent
with the surge, pitch and tower-top PSDs, where there is always a magnitude mismatch
between the HAWC2 simulation and the simplified model. However, it is believed that
since the main focus of the controller is to limit the pitch motions and track the rotor
speed, the level of accuracy is good for the platform pitch and rotor speed, and sufficient
for surge and tower-top.

Similar validation is conducted at various wind speeds, yielding equivalent results;
however, these results are not presented here for the sake of conciseness.

3.5.1 Extended model open-loop validation
The extended model developed in section 2.4 is validated following analogously to the
simplified model. The inclusion of tower flexibility leads to three new model parameters,
the natural frequency and damping for the spring-damper system, and the mass of
the DOF. The natural frequency is selected as the first natural frequency in fore-aft
bending of the tower, ft,b = 0.5 Hz. The damping has been tuned manually to match the
open-loop response, leading to ζt,b = 0.1. The mass is selected as the 75% of the tower
mass and RNA.
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Figure 3.8: Simplified model open-loop validation for a steady wind speed of 16 m/s,
and a step of 0.5 m/s. The generator torque is kept constant at the rated value, and
the blade pitch angle is set at 10.3 deg. The wind speed and states’ displacements are
shown. The rotor azimuth is ignored for convenience.

Additionally, the error in the natural frequency of the system and motion damping is
addressed by further tuning the mooring line stiffness and the viscous damping of the
platform. It was found that an increase of 17% stiffness in all terms of K result in a great
match of surge and pitch natural frequencies at V∞ = 16 m/s. The viscous damping has
been reduced, such that the settling time of the response is better represented. The drag
coefficient from Morison’s equation is reduced to a 40% in surge, 70% in pitch, 50% in
pitch-to-surge, and 70% in surge-to-pitch.

In Figure 3.11 the extended and simplified model are compared to the HAWC2 simu-
lation. It is clear that tuning the stiffness and the damping coefficients can significantly
improve the accuracy of the model in the given conditions. It is also noticeable that the
effect of the tower flexibility is very limited, as it can be better observed in Figure 3.12,
leading to small oscillations, largest at the oscillation peak, as it could be expected from
the resulting higher aerodynamic loads as the effective wind speed at the rotor increases.

Similarly to the previous case, a PSD analysis is performed and displayed in Figure 3.13
to investigate the accuracy of the response in the frequency domain. The response of the
extended model is able to match better the magnitude of the platform pitch frequency
in all states, thanks to further tuning the damping. Improvements can also be seen in
the surge natural frequency. The tower natural frequency is not shown in the figure for
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Figure 3.9: Simplified model open-loop validation for a steady wind speed of 16 m/s,
and a step of 0.5 m/s. The generator torque is kept constant at the rated value, and the
blade pitch angle is set at 10.3 deg. The states’ velocities are shown.

readability, since the peak is barely noticeable for either HAWC2 and extended model.

3.6 Linear model closed-loop simulations
To further validate the behaviour of the model, a set of closed loop simulations are
performed by coupling a baseline de-tuned PI controller. The controller used is the
DTUWEC, partly described in 4.3.1.

The gains are de-tuned to reduce the controller’s bandwidth, computed base on
pole-placement (see chapter 4) at a frequency of 0.007 Hz (below the lowest platform
natural frequency) and 0.7 critical damping. The gain values for the reduced order
models are selected to match closely the HAWC2 response in rotor speed.

Figure 3.14 shows the results of a validation simulation for both the simplified and
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(a) Rotor Speed (b) Platform surge velocity

(c) Platform pitch velocity (d) Tower-top fore-aft velocity

Figure 3.10: PSD of open-loop simulations. Comparison of HAWC2 and simplified
model results for the states’ velocities, at 16.5 m/s, after a 0.5 m/s step. The natural
frequencies of the symmetric rigid body platform modes are plotted for convenience as
reported in [71].
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Figure 3.11: Extended model open-loop validation for a steady wind speed of 16 m/s,
and a step of 0.5 m/s. The generator torque is kept constant at the rated value, and the
blade pitch angle is set at 10.3 deg. The states’ velocities are shown.

extended models. The response in the platform DOFs for the HAWC2 simulation shows
a resonant behaviour, further inspection of the frequency response showed that the pitch
frequency was excited by the controller, thus further de-tuning was clearly needed. This
discrepancy in the response arises due to substantial oscillations existing prior to the
wind speed step. Conversely, the reduced order models exhibit divergent behaviour,
characterised by a significant increase in platform oscillations over time.

The demanded blade pitch for the simple models aligns closely with the mean value of
HAWC2. The blade pitch step is more abrupt in these models, attributed to the absence
of a low-pass filter in the implementation of the validation code. A better match could
be attained with further development, however it falls out of the scope of this work.
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Figure 3.12: Extended model open-loop validation for a steady wind speed of 16 m/s,
and a step of 0.5 m/s at t = 400 s. Tower-top velocity immediately before and after the
step in wind speed.

3.7 Final remarks
Two of the models presented in chapter 2 have been implemented for the WindCrete SB
concept with the IEA-15MW RWT. The parameters obtained from such concepts have
been used to build the linear state-space model. Validation with HAWC2 simulations show
that the reduced order models are able to capture the platform surge and pitch dynamics,
as well as the rotor speed. Consideration has been given to the viscous damping, mooring
line stiffness and aerodynamic derivatives, since they are highly non-linear, it is expected
that the choice of operating points and calculation method will have a significant impact
on the accuracy of the model.
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(a) Rotor Speed (b) Platform surge velocity

(c) Platform pitch velocity (d) Tower-top fore-aft velocity

Figure 3.13: PSD of open-loop simulations. Comparison of HAWC2 and extended model
results for the states’ velocities, at 16.5 m/s, after a 0.5 m/s step. The natural frequencies
of the symmetric rigid body platform modes are plotted for convenience as reported
in [71].
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Figure 3.14: Extended and simplified models closed-loop validation for a steady wind
speed of 16 m/s, and a step of 0.5 m/s. The generator torque is kept constant at the
rated value, and the blade pitch angle is set based on a simple PI controller.



CHAPTER 4
Control design

The use of control techniques in the wind energy field can be divided into two levels, as
shown in Figure 4.1. On one side, the wind farm level relates to the use of passive or
active flow control within the wind farm to reduce the wake losses, increase the Annual
Energy Production (AEP) and achieve load mitigation. Several approaches are being
investigated in this field, such as the use of dynamic induction control, wake steering
through active yawing of wind turbine rotors, or increasing the wake mixing through
Individual Pitch Control in the Helix approach [74,75]. On the other side, the individual
control of wind turbines comprises the operational and the dynamic control.

Wind Energy 
Control

Wind Farm 
control

Dynamic 
induction

Helix – Wake 
mixing

Wake steering

Individual 
Wind Turbine

Operational 
Control

Speed 
exclusion 

zones
Soft cut-out

Thrust peak 
shaving

Dynamic 
Control

Feedback PI Feedforward LQR 𝐻∞ MPC

Figure 4.1: Summary of control research fields in wind energy.

The operational control, as defined in [76], manages supervision tasks such as con-
necting to the grid when conditions for power generation are met. It primarily uses
averaged wind field and rotational speed measurements as inputs and makes decisions on
transitioning the turbine between states, such as idling, starting up, power production,
normal shutdown, and shutting down due to a malfunction.

Operational control plays a major role in the power production and loads of the wind
turbine. To mitigate the latter while keeping high levels of energy harvesting, certain
strategies have been proposed and studied, such as setting speed exclusion zones and
performing soft cut-out or thrust-peak shaving.

The dynamic control part is the focus of the present work. It deals with the dynamic
response of the turbine, subject to stochastic wind speed and gusts, waves and currents
(in the case of floating wind turbines). The traditional approach consists of using a
Proportional-Integral controller (PI) within a feedback loop to act on the rotor speed
error. Feed-forward control has been proposed, but it requires measurements of the
disturbances, such as the wind speed and wave heights, so that the controller reacts to
them. More advanced control techniques have been researched, such as the use of Linear
Quadratic Regulators (LQR) or H∞ synthesis control. Finally, this thesis focuses on
Model Predictive Control (MPC), which is covered in chapter 5.

The control design process can be segmented into a series of steps. Firstly, one should
decide the objectives of the controller. Then, the control strategy can be set and finally,
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the algorithm can be developed.
Control challenges arise from the recent developments in the wind energy industry. On

the one hand, the wind turbine sizes are rapidly increasing, which, as noted in [44], leads to
lower tower and blade frequencies, thus drawing them closer to the controller bandwidth.
On the other hand, the development of floating wind energy poses a challenge regarding
new degrees of freedom as compared to bottom fixed technology and instabilities, such
as the pitch instability explored in the introduction.

4.1 Control objectives
In literature, the operation range of a wind turbine is typically divided into several
regions. These regions can be seen in Figure 4.2 for the IEA-15MW RWT. Region 1
corresponds to a fixed minimum rotor speed and non-optimal tip-speed ratio. Region 2
conveys operation at a constant optimum tip-speed ratio. Finally, region 3 extends from
rated wind speed up to cut-out wind speed.

Figure 4.2: Steady-state operation curves of IEA15-MW RWT. The different control
regions are delimited by dashed lines.

Generally, the control objectives depend on the operating region. For instance, region
2 is based on power maximisation, whereas region 3 is based on keeping the power
or generator torque constant. An important objective common to all regions is load
reduction; however, its importance is generally higher in operations near the rated wind
speed as the thrust load reach their maximum value.
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Furthermore, objectives such as maintaining the generator temperature, the rotor
speed, or the tip deflection below a safety value should be considered throughout the
controller design and evaluation [25].

4.2 Control of onshore and bottom-fixed offshore
wind turbines

The aerodynamic power contained in the wind inflow depends on the rotor radius R, the
atmospheric air density ρ and the undisturbed wind speed V∞ given by the expression

Pin = 1
2ρπR2V 3

∞ . (4.1)

This power is partly extracted by the rotor, with an efficiency determined by the highly
non-linear power coefficient cP (λ, β), which is dependent on the tip-speed ratio λ, and
the blade pitch angle β. Thus, the generator power is given by

Pg = ηgcP (λ, β)Pin , (4.2)
where ηg represents the generator efficiency. The tip-speed ratio is defined as

λ = ΩR

V∞
. (4.3)

Its optimum is found by the combination of design tip-speed ratio λopt and fine blade
pitch angle βd,opt, i.e. cP,opt = cP (λopt, βopt). Both the fine pitch and design tip-speed
ratio are kept constant throughout the partial load operation to maximise the power,
except at low wind speeds. To achieve this, the generator torque is controlled by setting

QgΩ = 1
2ηgρπR2V 3

∞cP,opt = 1
2ηgρπcP,optR

5Ω3/λ3
opt , (4.4)

leading to the following simple control law, depending only on the characteristics of the
turbine and rotor speed measurements

Qg,opt = ηgρπR5cP,opt

2λ3
opt︸ ︷︷ ︸

Kopt

Ω2 , (4.5)

where Kopt is

Kopt = ηgρπR5cP,opt

2λ3
opt

. (4.6)

After the rated wind speed is reached, the blade pitch angle is used to control the
wind turbine, with the objectives of keeping the power at its rated value and minimising
the loads. A feedback loop is implemented where the rotor speed is measured and an
error is computed, on which the PI controller acts. The tuning of the PI-controller gains
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is performed based on the drive train dynamics, which can be represented as shown
in [16],

IdrΩ̇ + RgQg + αΩ = Qa(Ω, Vr, β) , (4.7)
where Idr is the drive-train inertia, Rg represents the generator ratio, α is a proportional
friction term, and Qa is the aerodynamic torque. Ignoring the friction and considering
no gearbox ratio (direct drive configuration), the equation can be rewritten as

IdrΩ̇ = Qa(Ω, Vr, β) − Qg , (4.8)
which was used in the simplified and extended models to represent the rotor (see
chapter 2).

The aerodynamic torque can be linearised using a Taylor’s first-order expansion, as it
was shown in Equation 2.15.

Additionally, the generator torque depends on the rotor speed, therefore

Qg = Qg,op + ∂Qg

∂Ω

∣∣∣∣∣
op

∆Ω . (4.9)

Substituting Equation 2.15 and Equation 4.9 to Equation 4.8, and considering that the
operating aerodynamic torque should match the operating generator torque, Qa,op = Qg,op,

Idr∆Ω̇ = ∂Qa

∂Ω

∣∣∣∣∣
op

∆Ω + ∂Qa

∂Vr

∣∣∣∣∣
op

∆Vr + ∂Qa

∂β

∣∣∣∣∣
op

∆β − ∂Qg

∂Ω

∣∣∣∣∣
op

∆Ω . (4.10)

The pitch PI controller operates by modifying the demanded blade pitch proportionally
to the error in rotor speed with the reference, eΩ = Ω − Ωref = ∆Ω, and proportional
of the integral error, eI,k =

∫ t
t0

∆Ωdt, where k indicates discrete time step. Thus, the
control action is given by

∆β = kP ∆Ω + kI

∫ t

t0
∆Ωdt . (4.11)

By substituting Equation 4.11 into Equation 4.10, and neglecting the aerodynamic
torque sensitivities to rotor speed and effective inflow speed, we can simplify the dynamic
equation to a second-order ODE. Using this equivalence and employing a common
technique called pole placement, we can compute the controller gains. This method
allows us to set the desired frequency and damping of the system. The resulting equations
for the gains are 

kP =
2ζωIdr− ∂Qg

∂Ω

∣∣∣
op

− ∂Qa
∂β |

op

,

kI = ω2Idr

− ∂Qa
∂β |

op

.
(4.12)

It is thus clear that the tuning of the gains depends on the aerodynamic sensitivities;
for this reason, the PI gains are scheduled based on an operating variable, for instance,
the blade pitch or the effective wind speed.
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The selection of the pole’s frequency, ω, and damping, ζ, is based on the natural
frequencies of the system and the desired response. The frequency ω should be lower
than the lowest natural frequency of the system, such that resonance can be avoided.
The value of ζ shapes the response and can be tuned to match the requirements.

4.3 Control of floating offshore wind turbines
The main challenge in the control of floating wind turbines is the existing instability when
applying traditional feedback control above rated wind speeds. As shown in Figure 1.3,
the effect of an increase in wind velocity is the pitching of the blades. The thrust will
decrease when the blades pitch towards the feather position as depicted in Figure 1.3b.
Thus, the wind turbine tower-top will displace forward and the relative wind speed will
increase with further pitching.

Clearly, from the pitch instability (see Figure 1.3), and as explained in [25], an
onshore controller cannot be directly used for a floating offshore wind turbine without
prior adjustment of the gains. Additionally, to increase the damping and limit platform
motions, constant generator torque is employed in the above-rated region [35], leading to
poor-quality, highly-varying generated power output.

This instability leads to contradictory control objectives, as stabilising the power
leads to a system motion instability [27]. In the literature, a series of solutions have
been proposed and outlined in section 1.1. The use of controller de-tuning and parallel
compensation (tower-top velocity feedback loop) is considered in this work to provide a
baseline controller to which the MPC is compared.

4.3.1 Baseline controller
The baseline controller used throughout the thesis for comparison is the DTU Wind
Energy Controller (DTUWEC) [77]. The DTUWEC is an advancement of the Basic DTU
Wind Energy Controller [78]. This fully open-source controller allows for the simulation of
all IEC load cases. Some of the relevant features for the current work convey the smooth
switching between partial and full load regions, which enhances the simulation efficiency
by reducing the time duration of transients or the tower-top/drive-train dampers.

The controller implements a maximum power-point tracking strategy in the partial
load region. That is, Equation 4.5. When the rated wind speed is achieved, the gain-
scheduled blade-pitch PI controller regulates the rotor speed.

The application to FOWT demands that the gains are tuned for a lower frequency
as compared to bottom-fixed/onshore applications. For that purpose, the HAWCStab2
pole-placement method is used to obtain the PI gains, resulting in stable operation by
selecting the target natural frequency below the lowest system natural frequency at the
expense of worsening the rotor speed tracking.
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4.4 Parallel compensation
The use of parallel compensation has been analysed in [18,66]. The baseline controller
presented in section 4.3.1 can be further expanded by the addition of a feedback loop to
compensate for the tower-top motion.

Two different approaches have been analysed in the literature. In [18], the tower-top
velocity is used to compute a compensation collective blade pitch angle. However, this
approach only yields improvements in small-scale FOWT, such as the one used for the
experimental campaign. On the other hand, [66] uses torque compensation to limit the
tower-top motion. The resulting control loop can be seen Figure 4.3.

Controller

FOWT System 
(Plant)

DTUWEC PI  
Full-load controller

Physical system

Figure 4.3: Parallel compensation control of FOWT using generator torque. Adapted
from [66]

Using torque compensation allows for higher controller frequencies while maintaining
stability. In [66], the simplifications made to obtain an expression for the PI gains,
Equation 4.12, are revisited. The added degrees of freedom yields significant aerodynamic
sensitivities ∂Qa/∂Ω and ∂Qa/∂Vr. The latter can be neglected since the disturbance
does not need to be considered in the pole-placement process. However, the sensitivity
to the rotor speed is important, therefore leading to the calculation of the modified gain,

k̃P =
2ζωIdr+ ∂Qa

∂Ω |
op

− ∂Qg
∂Ω

∣∣∣
op

− ∂Qa
∂β |

op

k̃I = ω2Idr

− ∂Qa
∂β |

op

. (4.13)

Similar to the bottom-fixed case, the gains need to be scheduled based on the aerodynamic
derivatives at different operating points.



CHAPTER 5
Implementation and tuning of

Model Predictive Controllers
The Model Predictive Controller (MPC) implementation can be seen in Figure 5.1. The
controller is coupled to a system, which can be divided into the plant and the sensors.
The plant reacts to the given controller inputs u, the disturbances d, and the process
noise w. These cause a change in the states x and the outputs z. Then, the sensors
obtained measured quantities yk, based on the system states and the sensors’ inherent
noise v.

The controller consists of the estimator and the regulator. The estimator utilises the
measured quantities, and the known past controller input uk−1 to compute an estimate
of the current state x̂k, associated to a certain probability Pk|k. The states’ estimate is
used by the regulator to solve an Optimal Control Problem (OCP), for which a controller
input trajectory is found to track the current reference value z̄k as closely as possible,
while complying with the given constraints.

Physical system

FOWT System 
(Plant)

SensorsEstimator

Controller

Regulator 
(Optimal Control

Problem)

Figure 5.1: Diagram of a Model Predictive Controller coupled with a FOWT system.

5.1 Estimator design
The role of the estimator, sometimes referred to as the observer, is to provide an estimate
of the current states x̂k to the regulator. The estimate is based on the measurements
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conducted by the sensors yk and the known controller inputs from the previous time
steps uk−1. The most common approach is the implementation of a Kalman filter [79].

The derivation considers the model in state space form
∆xk+1 = Ad∆xk + Bd∆uk + Ed∆dk + Gdwk Process model ,

∆yk = Cd∆xk + vk Sensor function ,

∆zk = Cz,d∆xk Output function ,

with the initial 
x0 ∼ N (0, P0) Unknown initial state ,

wk ∼ Niid(0, Q̄) Process noise ,

vk ∼ Niid(0, R) Measurement (sensor) noise ,

where P0 is the covariance on the initial position of the states Q̄ is the process noise
covariance, and R is the sensor noise covariance. The process noise are defined as
normally, identically and independently distributed Niid.

5.1.1 Kalman filter
There are several types of Kalman filters that can be applied to estimate the states.
The equations for the Kalman filter are derived based on the assumption of normally
distributed states, measurements and noise. From that approach, the estimates of the
states and the covariance can be computed.

The states and measurements are thus given by,[
x
y

]
∼ N

([
x̄
ȳ

]
,

[
Rxx Rxy

Ryx Ryy

])
. (5.1)

Then, the estimate of x conditioned to the measurement y is denoted

x̂ = x|(y = y) , (5.2)
and the variance would be

Rx̂ = Rxx − RxyR−1
yy Ryx . (5.3)

The covariance of an state estimate can be computed based on the model and the
noise covariances, and it is given by

Pk+1|k = APk|k−1A
′ + GQG′

−
(
APk|k−1C

′ + GS
) (

CPk|k−1C
′ + R

)−1 (
APk|k−1C

′ + GS
)′

.
(5.4)

Assuming that Pk+1|k → P for k → ∞, then

P = APA′ + GQG′ − (APC ′ + GS) (CPC ′ + R)−1 (APC ′ + GS)′
, (5.5)
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which is the Discrete Algebraic Riccati Equation (DARE). This equation can be solved
offline (out of the time loop), and thus the innovation gains can be computed offline too,
leading to the following formulation for the stationary Kalman filter,

Re = CPC ′ + R , Re = lim
k→∞

Re,k ,

Kfx = PC ′R−1
e , Kfx = lim

k→∞
Kfx,k ,

Kfw = SR−1
e , Kfw = lim

k→∞
Kfw,k ,

Pf = P − KfxReK
′
fx , Pf = lim

k→∞
Pk|k ,

Qf = Q − KfwReK
′
fw , Qf = lim

k→∞
Qk|k .

(5.6)

However, the MATLAB built-in algorithms were not able to solve the equation. The
most likely reason is that the system closed-loop eigenvalues are not within the unit
circle of the complex plane, and therefore an stabilising solution does not exist. For that
reason, the Dynamic Kalman Filter is used instead. Therefore, the Kalman filter gains
need to be recomputed every time step.

The Dynamic Kalman Filter (DKF) follows the same principle as the stationary
Kalman filter, with the difference that the covariance is updated at every time step
Pk+1|k, and thus the Kalman filter gains as well. This increases the online computation
time; however, it ensures a solution for the covariance, regardless of the linear state space
model matrices.

In this case, the algorithm is implemented in the following two steps. First, the
measurement update is computed,

Re,k = CPk|k−1C
T + R ,

Kfx,k = Pk|k−1C
T R−1

e,k ,

Kfw,k = SR−1
e,k ,

ŷk|k−1 = Cx̂k|k−1 ,

ek = yk − ŷk|k−1 ,

x̂k|k = x̂k|k−1 + Kfx,kek ,

ŵk|k = Kfw,kek .

(5.7)

It can be noticed that the Kalman filter gains Kfx,k and Kfw,k, are recomputed for
every time step. Additionally, if there is no knowledge of the covariance of process and
measurement noise S, it is impossible to estimate the process noise ŵk|k. After the
estimate is computed, the controller will perform the control action uk. The knowledge
of this control action is used to compute the one-step prediction (time update),

x̂k+1|k = Adx̂k|k + Bduk + Gdŵk|k

Pk+1|k = AdPk|kAT
d + GQk|kGT − AdKfx,kST GT − GSKT

fx,kAT
d .

(5.8)

The covariance P is updated at every time step and used to recompute the gains, as
shown earlier.



5.1 Estimator design 53

It is important to notice that the disturbances have not been included in the previous
algorithm. An advanced formulation of the Kalman filter, the augmented Kalman filter,
should be used to estimate the disturbances. Knowledge of the disturbances is crucial
for the MPC implementation in any process, and especially in stochastic systems, such
as a FOWT, due to the wind speed and wave load variations over time.

The formulation of the Augmented Dynamic Kalman Filter (ADKF) is based on
extending the linear state-space formulation by including the disturbances as states, that
is,

xa = [x, d]T , (5.9)
leading to augmented system matrices,

Aa =
[
Ad Ed

0 I

]
, Ba =

[
Bd

0

]
, Ca =

[
Cd

0

]
,

Ga =
[
Gd 0
0 I

]
, Sa =

[
S
0

]
, Qa =

[
Qd 0
0 I

]
.

Using the previous augmented matrices, the measurement update provides an estimate
of the augmented states for the current time step,

Re,k = CaPk|k−1C
′
a + R ,

Kfx,k = Pk|k−1C
′
kR−1

e,k ,

Kfw,k = SR−1
e,k ,

ŷk|k−1 = Cx̂k|k−1 ,

ek = yk − ŷk|k−1 ,

x̂k|k = x̂k|k−1 + Kfx,kek ,

ŵk|k = Kfw,kek .

(5.10)

The time update is performed using the augmented matrices and the augmented
states’ estimate,

x̂a,k+1|k = Aax̂k|k + Bauk + Gaŵk|k ,

Pk+1|k = AaPk|kAT
a + GaQa,k|kGT

a − AaKfx,kST
a GT

a − GaSaKT
fx,kAT

a .
(5.11)

5.1.2 Observer validation
The DKF and ADKF are tested against a closed-loop turbulent wind simulation performed
with HAWC2 in order to understand whether it can be applied to the current case. In
this case, the measurements assumed are the rotor speed Ω, the platform pitch velocity θ̇p,
and platform pitch displacement θp. This assumption aligns with [42], where an Inertial
Measurement Unit is considered to be able to track the platform motions, whereas the
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rotor speed is commonly measured for variable-speed WTGs. To each measurement
sample, white noise vk is added.

The results can be seen in Figure 5.2 and Figure 5.3, for the displacements and
velocities, respectively. No wind speed prediction is performed for the wind speed with
the DKF; however, it is predicted when using ADKF. The result matches fairly well
the trends, but it is unable to capture the high-frequency fluctuations. The model
used considers the rotor forces under steady conditions without any dynamic effects.
Additionally, the rotor is assumed as the point force acting on the hub, therefore causing
a filtering effect on the turbulent wind field. Future improvements could be achieved by
increasing the number of degrees of freedom of the rotor, such as including a model for
the blades or considering a dynamic inflow model.

The surge displacement prediction using DKF contains a pitch frequency caused by
the error in capturing the platform pitch displacement, leading to a poor estimation of
the platform motions. Augmenting the Kalman filter clearly improves the performance,
especially regarding the platform pitch, and marginally for the surge, which contains only
an error matching the surge natural frequency. This error is propagated to the tower-top
displacement since it is modelled as a linear relation between surge and pitch.

The velocity predictions using ADKF are significantly better than DKF, with marginal
error on the surge velocity and sensor noise for the rotor speed and platform pitch velocity.
On the other hand, the DKF is not able to capture correctly the velocities of any state.

5.2 Regulation problem
The regulator task is to compute an optimal controller input based on the state’s
knowledge, the reference set-point, the previous inputs and the disturbance, if it has
been estimated. Since not all states are generally measurable, the Kalman filter is needed
to provide an estimate, as it has been shown in section 5.1. Additionally, knowledge of
the disturbances is necessary to achieve offset-free control; therefore, the need to extend
the Kalman filter to estimate the incoming wind speed since accurate measurements are
rarely available.

The objective of the regulator is to solve an optimal control problem over a finite time
horizon, usually known as the prediction or receding horizon. Additionally, a control
horizon shorter than the prediction horizon can be defined, such that the optimal control
actions uk+i are computed for a shorter period of time, and the remaining period they
are assumed constant, as it can be seen in Figure 5.4. This could be beneficial to reduce
computational effort or if the model is not able to provide accurate predictions over
long time periods. However, the control horizon is defined as the same length as the
prediction horizon for the current work for simplicity.

5.2.1 Unconstrained MPC
The first step in designing an MPC regulator is to define the optimization problem.
For simplicity, this can be considered to minimise an objective function defined by the
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Figure 5.2: DKF and ADKF validation for a turbulent wind simulation in HAWC2, with
V̄∞ = 16 m/s and TI = 4%. Comparison of simulation wind speed and displacements with
both DKF and ADKF prediction. The left-hand side corresponds to the displacements’
estimation, whereas the right-hand side is the absolute error computed between the
prediction and the HAWC2 simulation.

least-squares of the outputs with respect to the reference set points. In mathematical
terms, it is formulated as

min
u

ϕ = 1
2

N∑
k=1

∥zk − z̄k∥2
Qz

, (5.12)

where ϕ is the objective function, formulated as a least-squares problem. The set-point
at each time step z̄k is compared with the output variable zk over the receding horizon
of length N . A weight is given for each computed error at each time step zk − z̄k, by
a matrix Qz. The objective function is evaluated over the length of the horizon N to
compute the optimum trajectory of the controller inputs u. Note that no terminal cost
is added for simplicity.

Considering the LTI discretized state-space representation shown in Equation 3.16,
the output variable for the following time steps k + i can be written as
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Figure 5.3: DKF and ADKF validation for a turbulent wind simulation in HAWC2, with
V̄∞ = 16 m/s and TI = 4%. Comparison of states’ velocities with both DKF and ADKF
prediction. The left-hand side corresponds to the displacements’ estimation, whereas the
right-hand side is the absolute error computed between the prediction and the HAWC2
simulation.

∆zk+1 = Cz∆xk+1 =Cz (Ad∆xk + Bd∆uk + Ed∆dk) ,

∆zk+2 = Cz∆xk+2 =Cz (Ad∆xk+1 + Bd∆uk+1 + Ed∆dk+1) ,

...
∆zk+i = Cz∆xk+i =Cz (Ad∆xk+i−1 + Bd∆uk+i−1 + Ed∆dk+i−1) ,

...
∆zk+N = Cz∆xk+N =Cz (Ad∆xk+N−1 + Bd∆uk+N−1 + Ed∆dk+N−1) .

(5.13)

Introducing recursively the value of ∆xk+i−1 will result in an expression for the output
variable across the receding horizon dependent on the initial states, and both the chosen
controller inputs and the disturbances at each time step, with the form

∆zk+i = CzAi
d∆xk +

i−1∑
j=0

CzAi−1−j
d Bd︸ ︷︷ ︸
Hi

∆uk+j +
i−1∑
j=0

CzAi−1−j
d Ed︸ ︷︷ ︸
Hd,i

∆dk+j , (5.14)
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IV. ESTIMATOR DESIGN

To realize a model based controller all system states have

to be available. For a realistic measurement scenario only the

rotor speed Ω and the tower top acceleration ẍT are assumed

to be measurable. An EKF is used to reconstruct the missing

states of the nonlinear model considering noise.

It can be separated into the prediction update part and the

measurement update part. For the prediction update part the

discrete nonlinear system is used

x̃k = f (x̂k−1,uk)

ỹk = h(x̃k), (6)

where x̃k and ỹk are priori values, x̂k−1 is the posteriori esti-

mation from the previous time step and uk the actual input.

The measurement update part uses a linearized representation

around the actual priori state x̃k. The error equation is

ẽxk
≈ A ·(xk−1 − x̂k−1)+ εk

ẽyk
≈ H · ẽxk

+ηk, (7)

with A and H the Jacobian of the vector fields f and h,

respectively. εk is the covariance matrix WkQW T
k and ηk

VkRV T
k , where Wk is the Jacobian of f with respect to the

state noise w and Vk is the Jacobian of h with respect to the

measurement noise v at time step k. Q and R are variances

of the assumed noises. The prediction update part is then

x̂−k = f (x̂k−1,uk)

P−
k = AkPk−1AT

k +WkQk−1W T
k , (8)

where − means that this value is calculated in the prediction

step and will be updated in the measurement update part.

Together with the Kalman Gain

Kk = P−
k HT

k

(
HkP−

k HT
k +VkRV T

k

)−1
(9)

the measurement update part is

x̂k = x̂−k +Kk(yk −h(x̂−k ))

Pk = (I −KkHk)P
−
k . (10)

Figure 3 depicts a comparison between the estimated and the

simulated values.
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Fig. 3. Comparison between estimated (black) tower fore-aft position and
velocity and the simulated values (gray) from a FAST simulation.
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Fig. 4. Principle of the MPC: The projected control inputs ui over a control
horizon are optimized, considering the system states xi and the disturbance
d over a prediction horizon.

V. CONTROLLER DESIGN

In this section a Linear (LMPC) and a Nonlinear Model

Predictive Controller (NMPC) using the wind speed preview

information are derived. Both are solving in principle the

same optimal control problem, but using different models and

algorithms. The baseline controller (FB) is based on feedback

only and is implemented as described in [16], combining a

variable speed generator torque controller and a collective

pitch controller.

A. The Optimal Control Problem

The considered optimal wind turbine control problem

for the full load region can be described as follows (see

Figure 4). The objective is to find the optimal control inputs

ui minimizing the cost functional J, which is defined as the

sum of all deviations from the system outputs yi from the

reference values r over the prediction horizon P weighted

with Q and the sum of all changes in the control inputs ui

over the control horizon M weighted with R:

min
uk...uk+M−1

J

with: J =
k+P

∑
i=k+1

‖Q[yi − r]‖2 +
k+M−1

∑
i=k

‖R[ui −ui−1]‖
2,

s.t.: ∆xi+1 = Ai∆xi +Bui∆ui +Bdi∆di

∆yi =Ci∆xi +Dui∆ui +Ddi∆di

ui = uk+M−1 ∀ i = k+M . . .k+P

umin ≤ ui ≤ umax ∀ i = k . . .k+M−1

|(ui −ui−1)/∆t| ≤ u̇max ∀ i = k . . .k+M−1

ymin ≤ yi ≤ ymax ∀ i = k+1 . . .k+P. (11)

The control inputs are held constant for the remaining time.

The system matrices Ai,Bui,Bdi,Ci,Dui,Ddi and deviations

∆xi,∆yi,∆ui,∆di are different for the two approaches and will

be explained in the next subsections. The reference r and the

constraints for the system outputs, control inputs, and for the
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Figure 5.4: MPC optimization over a finite horizon. Reprinted from [29].

where the matrices Hi are known as the impulse response coefficients, or Markov param-
eters, whereas Hd,i are their disturbance counterpart. Equation 5.14 can be generalised
for all time steps in the receding horizon as



z1
z2
z3
...

zN


︸ ︷︷ ︸

Z

=



CzA
CzA2

CzA3

...
CzAN


︸ ︷︷ ︸

Φ

xk +



H1 0 0 . . . 0
H2 H1 0 . . . 0
H3 H2 H1 0
... ... ... ...

HN HN−1 HN−2 . . . H1


︸ ︷︷ ︸

Γ



u0
u1
u2
...

uN−1


︸ ︷︷ ︸

U

+



Hd,1 0 0 . . . 0
Hd,2 Hd,1 0 . . . 0
Hd,3 Hd,2 Hd,1 0

... ... ... ...
Hd,N Hd,N−1 Hd,N−2 . . . Hd,1


︸ ︷︷ ︸

Γd



d0
d1
d2
...

dN−1


︸ ︷︷ ︸

D

,

(5.15)

which in a more compact form,

Z = Φxk + ΓU + ΓdD , (5.16)
where Z contains the outputs at each time step Φ is a matrix coming from the first
element at the right-hand side of Equation 5.14, xk is the initial state for the current
evaluation of the receding horizon. Then Γ is a lower-diagonal matrix containing the
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Markov parameters; similarly, Γd contains the disturbance Markov parameters. U and D
contain the controller inputs and disturbances for all steps within the receding horizon.

The objective function can now be expressed as

ϕ = 1
2

N∑
k=1

∥zk − z̄k∥2
Qz

= ∥ΓU + (Φxk + ΓdD − Z̄)︸ ︷︷ ︸
−b

∥2
Qz

. (5.17)

The optimization of such objective function can be performed using the gradient, as
long as H and Hd are positive definite, that is

∇ϕ = 0, and ∇2ϕ ≥ 0 . (5.18)
The objective function can be expressed as a Quadratic Program (QP)

ϕ = 1
2UT HU + gT U + ρ , (5.19)

where the Hessian and the g and ρ terms are defined as

H = ΓT QzΓ ,
g = −ΓT Qzb ,
ρ = 1

2bT Qzb .
(5.20)

Considering no constraints, the solution to the optimization problem is directly given
by

∇ϕ = HU + g = 0 , (5.21)
and solving for U ,

U = −H−1g . (5.22)
The vector U contains the optimal trajectory, computed based on the model, the

current estimate of the states, the previous controller input, and the estimate or knowledge
of the disturbances, if any. From this vector, only the first element is used u, and it
is recomputed at each time step, as shown in Figure 5.1. Note that the inverse of the
Hessian should only be used with QP algorithms; for an analytical solution, the Cholesky
decomposition should be used, such as to avoid wrong solutions due to an ill-posed
problem [22].

5.2.2 Input penalties
A penalty can be added on the rate of change of blade pitch demand ∆βd, and on the
generator torque ∆βd, by defining the following objective function term,

ϕ∆u = 1
2

N∑
k=1

∥∆uk∥2
S∆u

, (5.23)



5.3 MPC tuning 59

where S∆u is the penalty weight. The rate of change of the input is defined as
∆uk = uk − uk−1, thus, the objective function ϕ∆u can be rewritten as

ϕ∆u =1
2


u0
u1
...

uN


T



2S∆u −S∆u

−S∆u 2S∆u −S∆u

−S∆u
. . . . . .
. . . 2S∆u −S∆u

−S∆u S∆u


︸ ︷︷ ︸

HS


u0
u1
...

uN

+

−


S∆u

0
...
0

u−1


T 

u0
u1
...

uN

+ 1
2u−1S∆uu−1 .

(5.24)

In this work, the generator torque is generally assumed constant and, thus, S∆u = S∆βd
,

that is, a single parameter is used to tune the penalty term of the objective function.
Augmenting the controlled variables to include the generator torque leads to a new tuning
parameter, that is, the penalty to the rate of change of Qg, thus

S∆u =
[

S∆βd
0

0 S∆Qg

]
. (5.25)

The tuning of the penalty S∆Qg is slightly more challenging due to the great difference
in orders of magnitude between the demanded blade pitch o(∆βd) ∼ 100 deg, and the
generator torque o(∆Qg) ∼ 107 N · m. To account for that fact, the ratio between
penalties should be S∆Qg/S∆βd

∼ 10−8 , such that the resulting controller is able to
combine both actions with a significant impact. The tuning of this penalty is explored
later on.

5.3 MPC tuning
The MPC tuning process for onshore and bottom-fixed wind turbines is discussed
in [80,81]. The first approach involves determining sensitivity tables between changes
in weights and their impact on the KPIs explicitly specified in the objective function.
While this approach is valuable, it’s constrained by system non-linearities, as the selected
points for sensitivity calculation can significantly influence the outcomes. This becomes
clearer upon reviewing the findings of this study.

In contrast, [81] introduces a tuning method that constructs Pareto fronts by varying
a set of weights based on a tuning parameter that defines their proportions. The chosen
KPIs are then standardised using a baseline controller. The Pareto fronts allow for the
trade-offs to be presented in an accessible manner, facilitating the comparison of affected
parameters. This strategy permits the selection of desired weight values by considering
explicit trade-offs and visualising non-linearities that emerge across the range of analysed
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weights. However, this method demands greater computational effort due to the need for
numerous weight combinations to create meaningful Pareto fronts.

Regarding floating offshore wind turbines (FOWT), the rationale behind tuning
choices is often undisclosed. In [34], weight adjustments are made to align controller
performance with rotor speed tracking and motion minimisation. For other works cited
in this thesis, there is no mention of the trade-offs taken into account.

To the author’s knowledge, no specific methodology for tuning MPC tailored to
FOWT wind turbines has been proposed. Consequently, this study adopts the approach
outlined by [81] as a foundation, expanding it to include several pertinent parameters
affecting FOWT performance. The utilisation of Pareto fronts is combined with the
examination of time-series and power-spectral density (PSD) plots to foster a deeper
comprehension of the interplay between KPIs.

5.3.1 Receding horizon length
The receding horizon length N must be tuned such that the predictions used to optimize
the controller action capture the relevant phenomena. In this case, since the pitch
platform motion is to be minimised, and its natural frequency is significantly low, the
receding horizon should be as long as the platform pitch motion. However, increasing N
will inevitably lead to higher computation time, and therefore, a trade-off must be found
between performance and computation effort. It is noted that the control horizon and
prediction horizon have the same length, such as to simplify the implementation.

Figure 5.5 shows the effect on steady simulations of N values between 50 and 500,
corresponding to between 5 s and 50 s duration. It is evident that a low receding horizon
length N = 50, 100 leads to undesired oscillations at the platform pitch natural frequency.
These frequencies disappear partly for N = 250, and practically completely for N = 500.
One of the possible reasons is that the horizon length does not cover a significant portion
of the platform pitch motion. Furthermore, the use of terminal cost in the objective
function could potentially improve the controller performance by adding a larger weight
at the last time step in order to ensure the optimal solution eliminates the error, however,
this aspect falls out of the scope of the current work. It is, therefore, chosen to proceed
with the value of N = 500 for the following tuning steps.

5.3.2 Objective function weights
The weights in the objective function should be tuned according to the controller’s
priorities. One of the advantages of MPC is its intuitive tuning procedure compared to a
PI controller, as the weights directly correspond to controller objectives.

Three distinct simulation approaches have been employed to fine-tune the weights
and penalties. These approaches include simulations involving steady wind conditions, a
step change in wind speed, and turbulent wind scenarios, each leading to different tuning
solutions. In the steady wind simulations, oscillations stem from the wind speed ramp-up,
utilising the DTUWEC PI detuned controller. This is followed by an abrupt transition to
Unconstrained MPC (UMPC) operation at t = 250 s. In the step wind simulations, the
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Figure 5.5: Overview of the receding horizon length effect on the demanded blade pitch,
the output variables (rotor speed and platform pitch velocity), and platform surge and
tower-top velocities. Simulation performed with steady wind at 16 m/s.

transition occurs notably before the wind speed shift, ensuring that the effects primarily
arise from this specific change. The initial tuning steps assume perfect knowledge of the
state and current disturbances; in other words, the Kalman filter remains inactive, and
only the regulatory effects come into play.

The results of adjusting the weights under steady wind conditions for a simple
objective function, where the outputs to control are the platform pitch velocity θ̇p, and
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the rotor speed Ω, including a penalty to the rate of change of blade pitch ∆u, are
shown in Figure 5.6. The figure shows clearly that increasing the weight of the platform
pitch motion minimisation results in a higher overshoot of the rotor speed during the
transition from PI control to MPC since the blade pitch angle is adjusted with the
objective of limiting the pitch motion rather than tracking the rated wind speed. The
states’ displacements and velocities show a similar effect in the frequency of the response
to what was seen by adjusting the receding horizon length. Decreasing the weight yields
significantly less damping in the platform pitch motion. This effect is also translated to
the rotor speed since the platform pitch motion affects the tower-top velocity, which is
directly coupled with the rotor speed.

The tuning of the blade pitch rate penalty is shown with a step wind simulation
in Figure 5.7. The effect of increasing the penalty to the pitch rate is a reduction in the
blade pitch demanded at the step in wind speed, resulting in larger rotor over-speed.
Another consequence of modifying the weights is a marginal shift in the frequencies,
which may be driven by the ratio between weights and penalties.

Additionally, larger amplitude oscillations and settling time are observed for the
platform pitch motion, indicating that reducing or even eliminating the penalty for this
case would contribute to better control at the expense of higher pitch activity and, thus,
actuator wear. It is, however, noted that, under turbulent wind conditions, a reduced
penalty will inherently result in undesired oscillations.

The limitations of fine-tuning the MPC controller’s weights via step wind simulations
become evident through turbulent simulations, as depicted in Figure 5.8. A Mann
turbulent box is employed in this context, characterised by 4% Turbulence Intensity (TI)
and three-dimensional turbulent components. To mitigate erratic responses to brief gusts
and only act on the platform’s low-frequency motions, the wind speed is presumed to be
known at hub height and smoothed using a first-order low-pass filter before inputting
it into the regulator. A baseline PI controller with parallel compensation (baseline PI
- TC) is subjected to the same wind inflow conditions for a meaningful performance
comparison.

Substantial penalties are applied to the blade pitch rate to avert unstable controller
behaviour. The blade pitch angle closely tracks wind speed trends, as depicted in Fig-
ure 5.8a. Additionally, the states, assumed to be perfectly known, introduce considerable
noise into the blade pitch signal, thereby diminishing controller performance. While a
slight enhancement in platform response is attained by incrementally raising the penalty,
thereby constraining blade pitch action, oscillations in rotor speed amplify, leading to a
decline in power quality.

To conduct a more comprehensive analysis of the response, a normalised standard
deviation metric is introduced, as showcased in Figure 5.8b. In this instance, the standard
deviation of the most relevant variables is computed and subsequently normalised with
respect to the baseline controller. While this method does indeed result in enhanced
platform motion performance, it is important to note that in practical scenarios, the
states and wind speed are seldom known directly; they are typically estimated. Therefore,
to align with real-world conditions, an augmented Kalman filter is incorporated. This
extension aims to yield a more realistic and effective set of weights and penalties for the
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Figure 5.6: Tuning of platform pitch weight Wθ̇p
, under steady wind simulation of 16 m/s.

The demanded blade pitch, the output variables (rotor speed and platform pitch velocity),
and platform surge and tower-top velocities. The weight for rotor speed tracking is
WΩ = 1, and the pitch rate penalty is S∆u = 1, for all cases.

MPC controller tuning.

5.3.3 Controller tuning with coupled simulations
The preceding tuning results have shed light on the tuning process and the distinct
impacts of controller elements. They’ve highlighted the substantial influence of the
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Figure 5.7: Tuning of blade pitch rate penalty S∆u, under a 1 m/s step in wind, from
16 m/s. The demanded blade pitch, the output variables (rotor speed and platform pitch
velocity), and platform surge and tower-top velocities. The weight for platform pitch
motion minimisation is Wθ̇p

= 500, and for rotor speed tracking is WΩ = 1, for all cases.

regulated signals and whether they involve state and disturbance estimation or filtered
disturbance knowledge. Furthermore, it becomes evident that certain weights may not
be appropriately tuned using step-wind simulations. As such, tuning should mirror real-
world conditions as closely as possible, encompassing state and disturbance estimation
amid turbulent wind inflow. To achieve this, the ADKF is incorporated, as detailed in
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(a) Key indicators

(b) Normalized standard deviation of key signals

Figure 5.8: Tuning of blade pitch rate penalty S∆u, under turbulent wind simulation,
with average wind speed 16 m/s and 4% TI. The weight for platform pitch motion
minimisation is Wθ̇p

= 500, and for rotor speed tracking is WΩ = 10, for all cases.
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subsection 5.1.1. This step enhances the tuning’s realism and effectiveness for the MPC
controller.

Three simultaneous cases are considered to tune Wθ̇p
WΩ, and S∆u. Based on these

results, the effect of including the generator torque as controller action is explored.

5.3.3.1 Tuning platform pitch velocity weight Wθ̇p

The weight of rotor speed tracking and blade pitch rate penalty are set to 20 and 1000,
respectively, to explore the tuning of the platform pitch velocity weight. Values between
50 and 2000 are used, and the resulting effects on the rotor speed and tower-top velocity
oscillations are plotted in Figure 5.9 against the blade pitch rate. The bottom left point
represents the largest weight Wθ̇p

= 2000, whereas the top-right corresponds to Wθ̇p
= 50.

It can be extrapolated that the weight could be even further increased for larger marginal
gains; however, the controller response is robust to variations in this weight under the
given low-turbulence conditions, and no further work is done in this aspect.

(a) Rotor speed variation against blade pitch
rate

(b) Tower-top speed variation against blade
pitch rate

Figure 5.9: Pareto front for tuning Wθ̇p
with turbulent simulations at V̄∞ = 16 m/s

and TI 4%. The normalized standard deviation of rotor speed and tower-top velocity is
plotted against the blade pitch rate. The points towards the bottom left represent higher
values of Wθ̇p

. The simulations correspond to WΩ = 20 and S∆βd
= 1000.

5.3.3.2 Tuning rotor speed tracking weight WΩ

The effect of changing the rotor speed weight WΩ on the rotor speed, tower-top velocity
and demanded pitch rate can be seen in Figure 5.10. The rotor speed variations
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(Figure 5.10a) are increasingly minimised for values from WΩ = 1 to WΩ = 20, at the
expense of higher blade pitch activity. The simulated values WΩ = 10 and WΩ = 20
result in the lowest rotor speed deviations, with minor differences in motions and loads.
Higher values lead to a rapid decrease in performance.

Further analysis has been conducted in relation to other KPIs, as depicted in Fig-
ure 5.11. When increasing the values of WΩ to 30, a notable rise in the flapwise BRM
is observed, accompanied by a minor increase in the standard deviation of the shaft
moment. In contrast, the motions at the platform and tower-top either remain relatively
unaffected or even experience reductions in their amplitude.

For WΩ = 40, there is a significant escalation in the rotor speed standard deviation.
However, this increase does not surpass that observed at WΩ = 2. This situation raises a
plausible explanation for the amplified load – the substantial rise in the blade pitch rate
velocity. This heightened velocity directly influences the unsteady aerodynamic load, a
phenomenon simulated in HAWC2 through dynamic inflow and dynamic stall engineering
models. Notably, the HAWC2 simulations employ the MHH Dynamic Stall model as
outlined in [82] and linearized in [83]. This engineering model evaluates aerodynamic
loads not solely based on the instantaneous angle of attack but also takes into account
its rate of change. This rate of change is profoundly impacted by the penalty within the
controller.

Comparing the results obtained with the lightest and heaviest weights, although
rotor speed deviations are diminished for WΩ equal to 40 (which directly influences the
angle of attack), the rate of change of the blade pitch becomes three times higher. This
circumstance elucidates the upsurge in flapwise BRM standard deviation, consequently
augmenting the potential for greater fatigue loads.

In essence, this analysis underscores the potential efficacy of manipulating variables
that govern unsteady aerodynamic loading, both in achieving performance enhancements
and, at the very least, in averting deterioration.

5.3.3.3 Tuning blade pitch rate penalty S∆u

Several values for the blade pitch rate penalty are tested, and the results shown in
Figure 5.12 and Figure 5.13. Lower values of S∆βd

can yield unstable behaviour and
enhanced motions. The Pareto fronts show however the important trade-off between
rotor speed tracking and platform motion minimisation. Whereas decreasing the penalty
yields limited motions at the tower-top, the rotor speed oscillations increase quickly
from S∆βd

= 1000 to 500, highlighting the sensitivity in that case. The penalty weight
S∆βd

= 1500 seems to provide the best trade-off between rotor speed tracking and
tower-top motion.

Increasing the penalty quickly causes the blade pitch rate to decrease, and a marginal
improvement in the flapwise BRM is observed, possibly caused by the reduction of
unsteady aerodynamic loads linked to smaller changes in blade pitch rate, as explored
for the rotor speed weight tuning in the previous section.

To perform a more comprehensive analysis of the substantial impact caused by
S∆βd

= 500 on the system’s response, the time series of both rotor speed and demanded
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(a) Rotor speed variation against blade pitch
rate

(b) Tower-top speed variation against blade
pitch rate

Figure 5.10: Pareto front for tuning WΩ with turbulent simulations at V̄∞ = 16 m/s
and TI 4%. The normalised standard deviation of rotor speed and tower-top velocity is
plotted against the blade pitch rate. The red square corresponds to WΩ = 20, the point
at the top right to WΩ = 50, whereas the lowest point to WΩ = 1. The simulations are
done with Wθ̇p

= 500 and S∆βd
= 1000.

blade pitch are presented in Figure 5.14. Within the context of this particular penalty
setting, an intriguing trend emerges after t = 450 s, marked by a heightened pitch
actuation and the emergence of oscillations with considerable amplitude in the rotor
speed signal. This phenomenon could potentially be attributed to the sudden wind
speed drop occurring just before this time point, compounded by a notable reduction
in the blade pitch angle, which could be triggering the platform pitch instability. It is
worth noting that for wind speed V∞ = 14 m/s the pole-zero map showed RHPZ (see
Figure 3.7), that is, stability issues become more evident near rated wind speeds.

A similar effect is also noticeable in the baseline controller; however, in this instance,
the pitch actuation lags behind the stable configurations established by the MPC.
Consequently, a significant reduction in rotor speed is succeeded by substantial oscillations.
To examine the frequency response of the unstable MPC setup, the Power Spectral Density
(PSD) of the signals is explored, as depicted in Figure 5.15 for rotor speed and Figure 5.16
for flapwise BRM.

The analysis reveals that the dominant frequency aligns with approximately ∼ 0.08 Hz,
a value significantly distant from the symmetric natural frequencies of the platform as
well as the 1P frequency. In the flapwise BRM response, a minor peak is evident for
all other penalty settings, hinting at the possibility of the controller introducing this
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Figure 5.11: Tuning of rotor speed tracking WΩ, under turbulent wind simulation, with
average wind speed 16 m/s and 4% TI. The normalised standard deviation of relevant
signals is shown for several weighting values. The weight for platform pitch motion
minimisation is Wθ̇p

= 500, and the penalty to blade pitch rate is S∆βd
= 1000, for all

cases.

frequency. However, due to its relatively small magnitude, a conclusive determination
is challenging. This frequency peak is absent in the platform response. Nevertheless, it
becomes prominent for both the flapwise BRM and rotor speed responses at S∆βd

= 500,
only to nearly vanish at S∆βd

= 1000. This observation suggests that, for V̄∞ = 16 m/s,
a stable controller can only be achieved with S∆βd

> 500. It is worth noting that
a future exploration could involve determining the minimum allowable penalty that
guarantees a stable controller. However, as previously noted, the most favourable
trade-offs conveniently avoid such stability limitations, making this analysis unnecessary.

The blade pitch rate standard deviation is consistently higher than the baseline, even
for the larger cases; however, it decreases significantly between S∆βd

= 500 and 1000.
The PSD shown in Figure 5.17 shows the comparison between the four MPC tuning cases
and the baseline for a large frequency range, comprising the natural frequencies of the
platform and 1P. The baseline controller reacts only to frequencies below 0.05 Hz, as the
bandwidth has been reduced to avoid instability issues. On the other hand, the greedier
MPC strongly reacts at a frequency of approximately 0.08 Hz, which is most likely the
frequency introduced by the controller feedback loop. The increasing penalty damps out
such frequency and shifts it towards lower frequencies. However, the power contained in
the demanded pitch reaction is clearly larger for any MPC tuning than for the baseline
case, especially around the pitch frequency. Further increasing the penalty beyond the
optimum point, roughly found at S∆βd

= 1500, leads to worsening power quality and
platform motions since the controller is not able to react fast enough to the changing
disturbances.

It is clear that low penalties can have a major negative impact in some channels
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(a) Rotor speed variation against blade pitch
rate

(b) Tower-top speed variation against blade
pitch rate

Figure 5.12: Pareto front for tuning S∆βd
with turbulent simulations at V̄∞ = 16 m/s

and TI 4%. The normalised standard deviation of rotor speed and tower-top velocity is
plotted against the blade pitch rate. The red square corresponds to S∆βd

= 1500, the
point at the top right to S∆βd

= 500, whereas the lowest point to S∆βd
= 5000. The

simulations are done with Wθ̇p
= 500 and WΩ = 20.

despite improving the response of, for instance, the platform motions. This result clearly
contradicts the resulting tuning showed in Figure 5.7, for a step-wind simulation with
perfect state and disturbance knowledge, where values of the penalty as low as 0.5
provided a stable response. It can be understood that the tuning procedure should be
performed using turbulent simulations and considering the impact on the full dynamics
of the system.

5.3.3.4 Tuning generator torque rate penalty S∆Qg

The addition of generator torque to the controlled variables has the potential to improve
the response. It does, however add an additional tuning parameter, the penalty S∆Qg .
To test the effects of this penalty on the rotor speed tracking and the platform pitch
motions, a set of controller gains based on the previous analysis is selected, as shown in
Table 5.1. Figure 5.18 shows the main simulation results for several S∆Qg penalties. As
could be expected, decreasing the penalty increases the generator torque activity, which
clearly follows the same trend as the blade pitch. This is due to having as objectives the
minimisation of rotor speed deviation from rated value and platform pitch velocity. Both
generator torque and blade pitch have the same effect; if the generator torque magnitude
increases, the rotor will decelerate, analogously to an increase in blade pitch. However,
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Figure 5.13: Tuning of blade pitch rate penalty S∆βd
, under turbulent wind simulation,

with average wind speed 16 m/s and 4% TI. The normalised standard deviation of
relevant signals is shown for several weighting values. The weight for platform pitch
motion minimisation is Wθ̇p

= 500, and the weight for rotor speed tracking is WΩ = 20,
for all cases.

since there is not dynamic inflow effect included in the reduced order model, nor actuator
delays, the controller is not able to capture the time-lag/delay of these actions.

Table 5.1: Set of UMPC controller parameters to test the effect of generator torque rate
penalty

Receding horizon N Ptfm. pitch vel. Wθ̇p
Rotor speed WΩ Blade pitch rate S∆βd

500 500 20 2000

The main impact of adding the generator torque is an increase in the shaft standard
deviation, which can be seen in Figure 5.19, whereas marginal gains are obtained in
the other signals, indicating that torque control without constant power objective has
limited achievements as compared to pitch control. To showcase that, a sensitivity to
the blade pitch rate penalty is shown in Figure 5.20, with a constant value of generator
torque rate penalty of S∆Qg = 1e − 08. It is clear that increasing the penalty to pitch
actuation leads to higher torque actuation and, thus, larger shaft moment oscillations
and standard deviation. It is also apparent that controlling the motions through larger
generator torque rates is less effective since the platform pitch oscillations and rotor
speed deviation increase. On the other hand, the flapwise BRM loads slightly decrease
with lower blade pitch actuation.
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Figure 5.14: Tuning of blade pitch rate penalty S∆βd
, under turbulent wind simulation,

with average wind speed 16 m/s and 4% TI. The wind speed, rotor speed and demanded
blade pitch are shown for several weighting values. The weight for platform pitch motion
minimisation is Wθ̇p

= 500, and the weight for rotor speed tracking is WΩ = 20. The red
dashed line represents the rated rotor speed value.

5.4 Tuning at higher TI and 14 m/s
During the load analysis displayed in section 6.2, the tuning was found to be unstable
at V̄∞ = 14 m/s with TI = 10%. For that reason, a set of simulations with different
penalties is launched to understand whether better tuning is able to achieve better
performance or whether model limitations explain the poorer results at that wind speed.

A simultaneous swept over blade pitch rate penalties and platform pitch weight
motion is considered first. The fine-tuning of the blade pitch rate penalty is depicted
in Figure 5.21. The optimal penalty range lies within 2000 and 3000, with the former
leading to slightly higher pitch actuation but reduced tower top motions and rotor speed
fluctuations, combined with improved power quality, but a marginal worsening of flapwise
BRM, as shown in Figure 5.22. For the next fine-tuning steps S∆βd

= 2000 is considered.
Figure 5.23 illustrates how a lower penalty choice, such as 1500, leads to enhanced
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Figure 5.15: Power Spectral Density (PSD) of rotor speed signal for several values of
S∆βd

, under turbulent wind simulation, with average wind speed 16 m/s and 4% TI. The
weight for platform pitch motion minimisation is Wθ̇p

= 500, and the weight for rotor
speed tracking is WΩ = 20.

rotor speed fluctuations. Inspecting the time series qualitatively it is seen that the high
frequency oscillations in rotor speed are translated to the platform motions and the
demanded blade pitch angle.

The platform pitch weight fine-tuning is shown in Figure 5.24. Analogously to Fig-
ure 5.9, further increasing the weight (for the range explored) yields performance im-
provements in terms of both platform motions, rotor speed fluctuations and electrical
power output. The maximum value Wθ̇p

= 10000 is taken to explore the rotor speed
weight fine-tuning.

The same procedure is followed to obtain the Pareto fronts in Figure 5.25 for several
rotor speed weights. The values are compared with Figure 5.10, enabling a comparison
of the tuning procedure for different wind conditions. It is clear that the trade-off is
significantly more limited for the higher turbulence intensity case, where a small offset
in the weight with respect to the optimal value can notably worsen the performance.
Consequently, the optimal weight selection seems to be intrinsically linked to the wind
atmospheric conditions. Furthermore, the stability of the FOWT is harder to achieve
near rated wind speeds, which was expected from the classic PI control approach.
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Figure 5.16: Power Spectral Density (PSD) of flapwise BRM signal for several values of
S∆βd

, under turbulent wind simulation, with average wind speed 16 m/s and 4% TI. The
weight for platform pitch motion minimisation is Wθ̇p

= 500, and the weight for rotor
speed tracking is WΩ = 20.

5.5 Final remarks
This chapter explored the derivation and implementation of the fully coupled MPC. The
stationary Kalman filter was discarded due to the non-existence of a stabilising solution
to the DARE. Instead, the DKF is used to overcome such limitations. It is proven
that an augmented Kalman filter provides not only adequate estimation of the wind
disturbance but also improvements in the prediction of measurable and unmeasurable
states. Then, the derivation of an unconstrained MPC is shown, with emphasis on the
tuning procedure. It is evident that using steady or step-wind simulations does not
provide effective weights and penalties and can potentially induce undesired oscillations,
especially in the rotor speed. Furthermore, the observer needs to be used during the
tuning procedure to fine-tune the controller weights. The platform pitch velocity weight
Wθ̇p

, plays a less relevant role, whereas the fine-tuning of the rotor speed weight and the
blade pitch rate penalty can be used to significantly improve the response when using
turbulent wind simulations in the tuning procedure.
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Figure 5.17: Power Spectral Density (PSD) of demanded blade pitch rate signal for
several values of S∆βd

, under turbulent wind simulation, with average wind speed 16 m/s
and 4% TI. The weight for platform pitch motion minimisation is Wθ̇p

= 500, and the
weight for rotor speed tracking is WΩ = 20.
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Figure 5.18: Tuning of generator torque rate penalty S∆Qg , under turbulent wind
simulation, with average wind speed 16 m/s and 4% TI. The rotor speed, demanded
blade pitch and generator torque are shown for several weighting values. The weight for
platform pitch motion minimisation is Wθ̇p

= 500, for rotor speed tracking is WΩ = 20,
and the blade pitch rate penalty is S∆βd

= 2000, for all cases. The red dashed line
represents the rated rotor speed value.



5.5 Final remarks 77

Figure 5.19: Tuning of generator torque rate penalty S∆Qg , under turbulent wind
simulation, with average wind speed 16 m/s and 4% TI. The standard deviation of
the most relevant signals is normalised with the baseline PI controller with torque
compensation. The weight for platform pitch motion minimisation is Wθ̇p

= 500, for
rotor speed tracking is WΩ = 20, and the blade pitch rate penalty is S∆βd

= 2000, for all
cases.
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Figure 5.20: Tuning of blade pitch rate penalty S∆βd
, under turbulent wind simulation,

with average wind speed 16 m/s and 4% TI. The standard deviation of the most relevant
signals is normalised with the baseline PI controller with torque compensation. The
weight for platform pitch motion minimisation is Wθ̇p

= 500, for rotor speed tracking is
WΩ = 20, and the generator torque rate penalty is S∆Qg = 1e − 8, for all cases.

(a) Rotor speed variation against blade pitch
rate

(b) Tower-top speed variation against blade
pitch rate

Figure 5.21: Pareto front for tuning S∆βd
with turbulent simulations at V̄∞ = 14 m/s

and TI 10%. The normalised standard deviation of rotor speed and tower-top velocity is
plotted against the blade pitch rate. The red square corresponds to S∆βd

= 3000, the
point at the top right to S∆βd

= 500, whereas the lowest point to S∆βd
= 5000. The

simulations are done with Wθ̇p
= 500 and WΩ = 20.
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Figure 5.22: Tuning of blade pitch rate penalty S∆βd
, under turbulent wind simulation,

with average wind speed 14 m/s and 10% TI. The normalised standard deviation of
relevant signals are shown for several weighting values. The weight for platform pitch
motion minimisation is Wθ̇p

= 500, and the weight for rotor speed tracking is WΩ = 20,
for all cases.
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Figure 5.23: Tuning of blade pitch rate penalty S∆βd
, under turbulent wind simulation,

with average wind speed 14 m/s and 10% TI. The wind speed, rotor speed and demanded
blade pitch are shown for several weighting values. The weight for platform pitch motion
minimisation is Wθ̇p

= 500, and the weight for rotor speed tracking is WΩ = 20. The red
dashed line represents the rated rotor speed value.
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(a) Rotor speed variation against blade pitch
rate

(b) Tower-top speed variation against blade
pitch rate

(c) Electrical power output variation against
blade pitch rate

Figure 5.24: Pareto front for tuning Wθ̇p
with turbulent simulations at V̄∞ = 14 m/s

and TI 10%. The normalised standard deviation of rotor speed, tower-top velocity and
electrical power output is plotted against the blade pitch rate. The red square corresponds
to Wθ̇p

= 10000, the point at the top right to Wθ̇p
= 100. The simulations are done with

WΩ = 20 and S∆βd
= 2000.
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(a) Tower-top speed variation against blade pitch rate

(b) Rotor speed variation against blade pitch rate

Figure 5.25: Pareto front for tuning WΩ with turbulent simulations at V̄∞ = 14 m/s
and TI 10%, compared with V̄∞ = 16 m/s and TI 4%. Normalised standard deviation of
rotor speed and tower-top velocity is plotted against the blade pitch rate.



CHAPTER 6
Results

6.1 Simulation set-up
For the implementation of the controller logic, MATLAB is employed due to its versatility
and smooth compatibility with HAWC2. The linear MPC is developed from scratch in
MATLAB, bypassing the utilisation of pre-existing toolboxes. This methodology enables
the refinement of algorithms and a more profound understanding of the underlying
concepts.

Considering the dynamics of the HAWC2 simulation, an initial ramp-up phase is
introduced to mitigate initial irregularities. As the linear MPC relies on a linearised
model that holds within a specific operational range, the simulations commence with the
conventional DTUWEC controller to ensure stability. Subsequently, the wind speed is
gradually adjusted over a period of 200 seconds. Following this, a 15-second interval is
allocated for the fundamental PI controller before transitioning to the linear MPC.

To derive meaningful insights, a focused time frame of 600 seconds is selected,
commencing at 290 seconds and extending to 890 seconds. This interval effectively avoids
any impact stemming from the initial ramp-up and the controller switch, ensuring a
robust data analysis.

6.1.1 Tuning parameters
The UMPC is tuned based on the procedure outlined in section 5.3. Based on the results
obtained, the tuning in Table 6.1 is proposed to be used in the load analysis. Since
the first iteration of turbulent simulations showed an instability issue at V̄∞ = 14 m/s,
the blade pitch rate penalty is increased to S∆βd

= 3000 based on the tuning procedure
outlined in section 5.3, although it was later found to not be the most optimal tuning, as
shown in section 5.4.

Table 6.1: Tuning parameters for Unconstrained MPC, used for load analysis.

Receding horizon, N Ptfm. pitch vel. Wθ̇p
Rotor speed WΩ Blade pitch rate S∆βd

500 500 20 1500

The baseline PI controller with torque compensation is tuned according to [66]. A
summary of the key controller parameters is provided in Table 6.2. It is important to
bear in mind that the comparison of certain KPIs will not be evident. The generator
torque is kept constant in the linear MPC, whereas the baseline uses the generator torque
to address the tower-top velocity, thus leading to rather large variations in parameters
such as the electric power output or the shaft torsion moment.

On the other hand, the torque compensation controller proved capable of minimising
platform motions and improving rotor speed tracking, thus it is used such that the new
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controller is benchmark against a controller with better performance in platform motion
minimisation.

Table 6.2: Baseline controller tuning parameters, based on [66].

Blade pitch controller
Pole placement frequency 0.05 Hz
Pole placement damping 0.7
kP at 0 degrees 0.9188 rad/(rad/s)
kI at 0 degrees 0.2683 rad/rad
Linear gain scheduling gain 11.611 deg
Quadratic gain scheduling gain 709.685 deg2

Torque compensation feedback loop
kP x, compensation gain −4.508 · 106 N · m/(m/s)
Linear gain scheduling gain 0.020 1/deg
Quadratic gain scheduling gain 0.001 1/deg2

6.2 Load analysis with TI 10%
The Design Load Cases (DLC) 1.1 and 1.2 from IEC 61400-1 are employed to compare
the performance of the UMPC. However, the TI is set at 10%, below the standard-defined
14% for class B (see Table 3.2). There are two main reasons behind this choice,

• the model predictive controller is not scheduled; therefore, the results for higher TI
will be biased by the use of a model suited for a narrow range of wind speeds,

• the baseline controller response tends to result in extreme overshoot, particularly
noticeable in the power output.

Hence, it is believed that a more reliable comparison can be obtained at TI = 10%.
Additionally, TI in offshore locations usually proves lower than at onshore sites [84,85],
and typically TI inversely correlates with the average wind speed magnitude. However,
this does not hold at very high wind speeds in offshore sites, since the wind-induced
waves increase the terrain roughness, leading to higher turbulence. It is therefore clear
that further assessment at higher TI levels will be needed.

The effects of wind shear and tower shadow are not accounted for in the simulations,
similarly to [45], in order to simplify the analysis. Furthermore, no waves are considered,
as the estimator was not validated beforehand for wave estimation, and the computational
effort associated with the extended, lengthy simulations (45-minute simulations defined
in IEC 61400-3 standard for offshore wind turbines) needed for meaningful statistics was
not justified. This approach was also adopted in [34]. A sensitivity study on the impact
of the aforementioned assumptions is provided in section 6.3.

The most pertinent KPIs are utilised to compare the UMPC with the baseline
controller featuring torque compensation. The same turbulent wind fields are applied in
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both cases to facilitate a representative comparison unaffected by the limited number
of seeds. The primary statistical parameters are calculated for each simulation seed,
including mean, maximum, and minimum values, along with the standard deviation.
Fatigue loads are determined using short-term Damage Equivalent Loads (DELs) through
rainflow counting, applying the S-N curve with suitable Wöhler exponents, i.e. m = 4 for
steel (shaft and tower) and m = 10 for composite materials (blades). Finally, extreme
values and loads are computed based on the mean value of the absolute maximum for
each channel. To accommodate the use of the mean in the extreme loads, a safety factor
of 1.35 is incorporated into the resultant extreme load, followed by the IEC 61400-1 DLC
1.1 safety factor of 1.25.

6.2.1 Operation in turbulence
The rotor speed, blade pitch and blade pitch rate are shown in Figure 6.1. The perfor-
mance is significantly better in terms of rotor speed tracking for all wind speeds, except
at V̄∞ = 14 m/s, where large overshoots and oscillations are observed. The main cause
might be the used of a model linearized at a single wind speed, which is not able to
match accurately the aerodynamic loading under gusts due to the large changes in torque
and thrust derivatives, as shown in Figure 3.4 and Figure 3.5, respectively. Additionally,
the thrust curve peaks at the rated wind speed, Vrated = 10.59 m/s, leading to larger
platform motions for mean wind speeds close to the rated value.

The effect of rotor speed variations can be directly seen in the electrical power output
of the UMPC-case, whereas the resulting power is less evident for the torque compensa-
tion controller, since the generator torque is used to affect the platform dynamics. From
the comparison in Figure 6.2 it is clear that the power quality is greatly improved by
using MPC as compared to the baseline. The mean value of UMPC follows perfectly
the rated power, as expected for full-load operation, but that is not the case for the
baseline controller, where its mean value is lower consistently for all wind speeds consid-
ered, therefore an improved AEP is expected by using MPC. Additionally, it over and
undershoots for all wind-speeds, reaching up to 18 MW at V̄∞ = 24 m/s. The worst
performance of the UMPC regarding this KPI is attained at V̄∞ = 14 m/s, as expected
from the rotor speed analysis. The standard deviation is however significantly lower than
for the baseline, thus much better power quality is obtained.

One of the main objectives of the controller is to limit the platform motions, especially
the pitch motion that is responsible for instability issues. In Figure 6.3, the velocities
(left) and displacements (right) of symmetric motions are displayed. All motions are
reduced by the model-predictive controller. The performance improvement is especially
noticeable in the tower-top velocity, which peaks at about V̄∞ = 22 m/s. For the MPC
case, the lowest maximum values and standard deviation occur at V̄∞ = 16 m/s, the
wind speed for which the controller has been tuned. This may indicate that further
improvements can be achieved for other wind speeds if the weights are tuned for those
cases.

The use of constant generator torque should evidently lead to reduced motions in the
non-symmetric motions, namely sway, roll, and yaw. The sway is negligible under the
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Figure 6.1: Statistical analysis of rotor speed, demanded blade pitch and demanded blade
pitch rate for above rated wind speeds, under turbulent wind simulations TI = 10%.
The dashed line corresponds to the rated rotor speed, and the dot-dashed line to the
actuator limits.

simulation conditions, whereas roll and yaw velocities and displacements are shown in
Figure 6.4. The roll velocity and displacement are much lower using MPC than using
the baseline controller, since the generator torque does not dynamically excite such
motions. On the other hand, under unidirectional wind without waves, the yaw motion
is only excited by the v′ and w′ turbulent components of the wind-field, as well as the
heave-roll-yaw hydrodynamic coupling. In the current work, the yaw motion has not
change with respect to the baseline controller, Probably a weak hydrodynamic coupling
and a high yaw stiffness, which leads to a higher natural frequency (0.092Hz [70]) explain
these results.

It can be expected that either the controller developments considering the generator
torque actuation, or wind-wave misalignment would lead to enhanced non-symmetric
motions, and therefore it is important to consider their extent, and potentially tackling
them through their inclusion in the model and the objective function, however, this
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Figure 6.2: Statistical analysis of electrical power output for above rated wind speeds,
under turbulent wind simulations TI = 10%. The dashed line corresponds to the rated
electrical power.

aspect falls out of the scope of the current thesis.

6.2.2 Load analysis
The statistical analysis of the load channels considered, edgewise and flapwise BRM,
tower-base fore-aft and side-side moments, and shaft torsion are shown in Figure 6.5.

The BRMs are not significantly affected by the use of MPC. This is mainly due to
considering the rotor as a point actuation in the reduced-order model. Therefore, the
controller does not consider the motion of the blades, nor the loads acting individually
on each of them. The small changes are mainly due to the effect of rotor and collective
blade pitch on such loads. The in-plane (edgewise) BRM is mainly driven by the gravity
force, and thus, the loads remain almost exactly the same for both controllers. As it was
outlined in the literature review, tackling load alleviation of BRM likely requires a more
advanced reduced order model, and the use of Non-linear MPC combined with IPC.
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Figure 6.3: Statistical analysis of symmetrical motions (surge, pitch and tower-top FA),
under turbulent wind simulations TI = 10%.

The tower-base moments (TbM) are shown to change with the use of MPC. The mean
values coincide, but the standard deviation is much lower for the MPC-case. One of the
possible causes is the great reduction in the platform motions. This motion reduction
limits the moment-arm causing gravity moments due to pitch and roll displacements.

The aerodynamic torque and thrust force remain fairly similar, as it can be observed
in Figure 6.6. The slight increase in the maximum and standard deviation values of
thrust, and marginal improvements in the aerodynamic torque, would not explain the
performance improvement.

The shaft moment shows the largest change as compared to the baseline, caused by
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Figure 6.4: Statistical analysis of non-symmetrical motions (roll and yaw), under turbulent
wind simulations TI = 10%.

keeping constant generator torque throughout the operation, in contrast to continuous
changes in the baseline controller. Furthermore, limited oscillations in the rotor speed
can be linked to a reduction in the shaft torsion, due to the reduced relative changes
in aerodynamic torque with respect to the generator torque, driving the shaft torsional
loading.

The load analysis can be extended by considering both fatigue and extreme loads.
The fatigue loads are considered through short-term DELs and shown in Figure 6.7. The
flapwise and edgewise fatigue are similar for the baseline controller and MPC case, which
could be expected based on previous results.

On the other hand, tower-base fore-aft and side-side moments’ short-term DELs are
consistently improved with respect to the reference controller. As mentioned earlier, the
platform motion minimisation is likely the main driver of such improvement. Furthermore,
reduction in generator torque oscillations are highly beneficial in terms of tower base
side-side fatigue. Reduced short-term DELs will likely result in a significant life-time
fatigue load reduction, that coupled with the power capture improvement, would yield a
LCoE reduction. Quantifying it would require further analysis, available design data,
and consideration of the whole operation range.

Following the fatigue load analysis, the extreme values are computed at each wind
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Figure 6.5: Statistical analysis of load channels for above rated wind speeds, under
turbulent wind simulations TI = 10%.

speed for the most relevant channels. Then, they are normalised with the baseline
PI controller with torque compensation. Some of the operational variables and the
aerodynamic loads are shown in Figure 6.8.

The rotor speed extreme value is taken as the largest positive value. Marginal
improvements with respect to the baseline are attained for wind speeds beyond 16 m/s,
however a larger maximum value appears at V̄∞ = 14 m/s, which is not translated into
larger electrical power output, due to the constant generator torque approach.

The demanded pitch rate presents peaks at V̄∞ = 14 m/s and V̄∞ = 24 m/s. This
could be further addressed by improving the re-tuning in the former, and re-tuning for the
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Figure 6.6: Statistical analysis of aerodynamic load channels for above rated wind speeds,
under turbulent wind simulations TI = 10%.

latter wind speed. The wind speeds between 16 m/s and 20 m/s show a reduced extreme
value, which justifies the decision of not including hard constraints for the analysis, since
the demanded pitch rate is always well below the limits.

The maximum aerodynamic loads show an analogous trend to the demanded pitch
rate, which again agrees with the unsteady aerodynamic loading hypothesis presented
in the tuning procedure. Further analysis of the aerodynamic channels, such as axial
and tangential induction, angle of attack, lift and drag coefficients at different span-wise
locations could shed light in the importance of dynamic stall and dynamic inflow in the
extreme loads during operation at different wind speeds for the analysed controllers.
However, due to time limitations, this aspect falls out of the scope of the thesis.

The extreme values of the platform and tower-top velocities are shown in Figure 6.9.
All the channels except the yaw velocity show great improvements with respect to the
baseline. The platform surge velocity is particularly reduced for all wind speeds, despite
not being directly tackled by the controller. Considering the reduction in platform
pitch motion, such improvement could originate from the strong coupling of pitch and
surge. Additionally, the baseline controller was found to trigger, shortly, platform pitch
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Figure 6.7: Short-term DELs of load channels for above rated wind speeds, under
turbulent wind simulations TI = 10%.

instability near rated wind speeds, which significantly affects the extreme values.
Consistent reduction in platform pitch maximum velocity is observed, especially at

V̄∞ = 16 m/s. These improvements directly drive reduction in the tower-top motion.
The roll and yaw motions follow the trends found in the statistical analysis, with major
reduction for roll and not significant changes in yaw. These improvements should not
be taken for granted, and further analysed with active wave disturbances. Although it
is not analysed in this project, the mooring line loads are expected to be significantly
reduced by the motion reduction. This aspect could be further studied, since the optimal
mooring line design is of high importance to drive the floating wind energy costs down.

Finally, the extreme values of the load channels per wind speed are shown in Fig-
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Figure 6.8: Normalised extreme values of rotor speed, demanded blade pitch rate,
electrical power and aerodynamic load channels for above rated wind speeds, under
turbulent wind simulations TI = 10%.

Figure 6.9: Normalised extreme values of platform and tower-top velocity channels for
above rated wind speeds, under turbulent wind simulations TI = 10%.

ure 6.10. The BRMs are fairly similar to the baseline for all wind speeds, which is
consistent with the findings in the literature. It seems evident that further MPC de-
velopments would be needed to tackle the blade loads, however, this may negatively
influence the power quality and the platform motions if the trade-offs are not treated
carefully during the tuning procedure. On the other hand, the reduction in tower-base
fore-aft moment is significant for all wind speeds considered, whereas an increase in the
side-side case is observed at V̄∞ = 14 m/s, which could be driven by a higher rotor speed
overshoot and maximum aerodynamic torque. Since the roll motion is greatly reduced,
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especially at that wind speed, it is not considered to drive the relative increase. The
shaft moment is consistent with the relative difference between the maximum generator
torque set for the baseline controller, and the constant rated generator torque set for the
MPC case.

Figure 6.10: Normalised extreme values of relevant load channels for above rated wind
speeds, under turbulent wind simulations TI = 10%.

Design considerations require the absolute extreme loads, independently of wind
speed. A comparison is displayed in Figure 6.11. The values are consistent with the
previous analysis. The controller is able to significantly limit the tower-base and shaft
moments, while maintaining similar extreme loads on the blades. Taking into account
the great improvements in platform motions and power quality it is evident that MPC
can tackle several objectives simultaneously, and improve the control of floating wind
turbines for above rated wind speeds.

6.3 On the effect of met-ocean conditions and
additional aerodynamic effects

The previous load calculations conveyed a series of assumptions such as neglecting wind
shear, tower shadow effects, drag on the nacelle and tower, and, even more importantly,
waves. The former effects are not included in the reduced order model, and the wave loads
are not estimated, since the extended Kalman filter would require further development
and validation.

To explore the effect of this assumptions on the controller performance, two sets of six
random simulations are run in HAWC2 and compared. Firstly, the tower shadow effect
is included through a potential flow formulation included in HAWC2, the drag force on
the nacelle and tower is also evaluated in the model and wind shear is added in the wind
field generation using the IEC standard power law with 0.2 exponent for fatigue loads.
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Figure 6.11: Normalised extreme absolute values of relevant load channels for above
rated wind speed, under turbulent wind simulations TI = 10%

Then, the second set of simulations considers irregular waves as well. They are generated
using a JONSWAP spectrum [67], with significant wave height Hs = 2 m, peak-wave
period Tp = 6 s and peakedness factor γ = 3.3. The wind speed and turbulence is chosen
again as V̄∞ = 16 m/s, and TI = 10%, based on the best observed performance.

The simulations are shown in Figure 6.12. The MPC results are normalised with the
corresponding simulations for a baseline controller. The normalised standard deviation
results (top figure) show that rotor speed tracking performance deteriorates significantly,
most likely due to wind shear, although drag and tower shadow effects may play a minor
role. Further deterioration is seen when waves are added to the simulations. Though the
platform motions are relatively worsened, the performance is still significantly better than
the baseline controller. Minor effects are seen on the demanded pitch and out-of-plane
loads.

The extreme values (bottom figure) illustrate interesting trends. The maximum rotor
speed overshoot is slightly larger compared to the counter-part baseline simulations
when including the aforementioned effects. Similarly, the demanded pitch rate increases,
particularly when waves are added. On the other hand, platform surge and pitch velocities
are largely affected by wind shear, but not by waves. Although this may seem counter
intuitive, the waves are fairly mild, and likely the enhanced shear compromises the
capabilities of the extended Kalman filter to estimate the wind speed, leading to under-
predictions (not shown here for conciseness). In fact, that would directly explain the
lower maximum blade pitch angle, thus resulting in significantly higher relative maximum
out-of-plane loads.

The presented analysis leads to proposing the further development of the extended
Kalman filter to properly estimate the wind speed under realistic conditions. Therefore,
it is necessary to improve the aerodynamic modelling of the rotor. Wave estimation must
be considered as well, since it is expected to play a major role under more severe wave
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conditions.

Figure 6.12: Comparison of relevant channels for V̄∞ = 16 m/s with TI = 10% when
including additional met-ocean conditions: (top) normalised standard deviation, and
(bottom) normalised extreme values. Added wind shear with power law, exponent 0.2;
added waves follow JONSWAP spectrum, Hs = 2 m, Tp = 6 s and γ = 3.3.



CHAPTER 7
Conclusions

7.1 Discussion
The thesis project has addressed some of the main challenges floating offshore wind
energy is facing. A review of low-order modelling approaches was provided, with the
focus set on the control-oriented models. The use of first-principles was exemplified by
two existing models, and, based on said models, the derivation of a slightly more complex
model has been presented.

The two models used for validation considered two DOFs for the platform, namely
surge and pitch, aiming at capturing the symmetric motions of the floating platform.
Additionally, both contained the rotor speed DOF regarding the rotor. The existing
simplified model assumed a rigid tower, whereas the extended model added flexibility to
it. The mathematical representation of such models was linearised to fit control design
purposes, resulting in a convenient state-space formulation, presented in section 2.3
and section 2.4.

To validate the models, the higher fidelity hydro-servo-aero-elastic code HAWC2
was used. A model of the WindCrete SB, combined with the IEA-15MW RWT has
been simulated in both open-loop and closed-loop configurations. Firstly, the key
parameters were presented, and various methods to compute structural and hydrodynamic
characteristics of the FOWT were compared. Then, closed-loop simulations were employed
to compute the aerodynamic gradients needed for the linear models, using a finite
difference approach. The robustness of this method has been evaluated by performing a
sensitivity analysis on the involved parameters, shown in Figure 3.6. The main observation
is the expected effects of the highly non-linear aerodynamics in the computation of the
derivatives under different operating conditions, especially in terms of aerodynamic thrust
force. Such derivatives showed variations of more than 5% for a 0.5 m/s change in wind
speed.

The reduced order models were simulated under identical wind conditions to the
HAWC2 model, resulting in a good match in terms of frequency of the response and
overshoot amplitude, particularly for the platform pitch motion and the rotor speed, and
a less degree of accuracy for the platform surge and the tower-top motion, as shown
in Figure 3.11. However, it was found that further tuning the model parameters, specifi-
cally the mooring line stiffness and viscous damping terms, can yield a better agreement.
It was presumed that the model is suited for platform pitch motion minimisation and
rotor speed tracking, the driving controller objectives for the model-based controller
formulated.

The use of MPC to improve the FOWT performance has been considered in the
literature, however conflicting trade-offs are observed in the results. For instance,
minimising the platform motions generally leads to higher level of demanded blade pitch,
which in turn can result in actuator wear. However, a tuning procedure to address said
conflicts for FOWT has not been presented to the knowledge of the author. In order to
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shed light in the development of such method, a simple linear MPC is developed, based
on the linear models.

The model predictive controller consists of an observer, in the form of an augmented
dynamic Kalman filter, and a regulator, the objective function to be solved to compute
the optimal control actions. The augmented dynamic Kalman filter has been evaluated
with HAWC2 simulations, validating the estimation of both unmeasured states and wind
inflow. The wind speed trends were correctly captured. The estimation of wave loads
has not been addressed. Afterwards, the objective function terms used in the thesis were
presented, followed by the derivation of the least-squares problem in matrix form. Based
on said derivation, several tuning parameters are identified, namely the receding horizon
length, the platform pitch and rotor speed weights, and the blade pitch rate penalty.

Computing an optimal set of tuning parameters is not a self-evident task. In [80, 81]
two different approaches were proposed, based on the KPIs sensitivity to the weights
and computing Pareto fronts by means of several coupled simulations, respectively. The
approaches were applied to onshore wind turbines. In this work, time series of platform
motions and rotor speed have been employed to identify unstable performance, and thus
limiting weights. Pareto fronts were computed to define the optimal range of weights by
comparing the standard deviation of tower-top motion, rotor speed and demanded blade
pitch rate. Finally, the load fluctuations are also analysed to inform the tuning choice.

These procedure showed several relevant findings. The use of steady or step-wind
simulations seems to result in fairly low values of blade pitch rate penalty and rotor
speed tracking weight, while resulting in a satisfactory response. However, turbulent
wind simulations with low TI (4%) showed that larger penalties are needed to tackle
platform motions in said scenario. Furthermore, the estimator plays a major role in the
results. In fact, the optimal tuning points towards high penalty values, S∆βd

≈ 1500,
since lower values, S∆βd

≈ 500, triggered instability in the rotor speed response. In
contrast, simulations without a Kalman filter under steady, step and turbulent wind
showed good performance for S∆βd

well below 500. Additionally, a coupling between
large demanded blade pitch rate fluctuations and increasing flapwise BRM has been
identified, which once again sets again a lower bound to the allowable actuation penalty.
This effect is most likely associated to dynamic stall, though further analysis is required
to validate this conclusion.

Furthermore, it has been found that the TI plays a relevant role in the optimal
fine-tuning of MPC weights and penalties, especially near the rated wind speed. An
average wind speed of 14 m/s was considered, and an equivalent tuning procedure was
applied at a higher TI of 10%. A comparison of the Pareto fronts showed significant
changes. The shape shows, qualitatively, a clear reduction in the stability of the system.
A relatively small offset in the weight will result in a large performance deterioration, in
contrast to the lower turbulence case. This issue has been identified through the load
analysis, and resulted in a wind-speed specific tuning at 14 m/s, clearly indicating that
weight-scheduling is necessary to further optimise the performance of linear MPC.

Based on these findings, the tuning of the controller for the subsequent load analysis
is performed under turbulent wind simulations with TI 4% between 16 and 24 m/s, and
TI 10% at 14 m/s. A parallel compensation PI controller, based on torque compensation
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is used as a baseline to assess the newly developed controller performance. The load
analysis is based on DLCs 1.1 and 1.2 of IEC 61400-1 for extreme and fatigue loads. Due
to the lack of augmented dynamic Kalman filter validation for wave load estimation, the
sea-state conditions are not included. Furthermore, the TI is set at 10% below the one
corresponding to the wind turbine class, mainly driven by a poor performance of the
baseline controller in several KPIs for high turbulence conditions.

The load analysis results, in section 6.2, showcase the great improvements that can
be achieved by linear MPC in terms of power, load alleviation and platform motion
minimisation. The tuning of the controller focuses specially on the latter, which couples
most of the floating wind turbine performance indicators. The platform pitch instability
is one of the main challenges on the operation, and tackling this issue with the use of a
de-tuned PI controller, or the addition of a feedback loop to the tower-top velocity seems
limited to the extent explored.

The use of linear MPC with a simplified model yields clear benefits above rated-wind
speeds. The rotor speed oscillations and the overshoot are consistently lower, for wind-
speed simulations from 16 to 24 m/s. Coupled with the use of constant generator torque,
in contrast to the baseline controller, a significant decrease in electrical power oscillations
and overshoots is reached. Furthermore, the mean power output is kept at the rated
power level, 15 MW, throughout the explored wind speeds, in contrast to a lower mean
power production of the baseline, directly improving the AEP of the WTG when using
MPC.

The platform motions are minimised, specially in the pitch DOF, which is the main
objective of the controller, explicitly stated in the objective function. The performance
improvement is evident at mean wind speeds between 14 and 20 m/s, however the
oscillations increase at very high wind speeds. The possible reason behind this is the use
of the same MPC tuning throughout the studied operating range. The surge performance
is also improved, which could be expected by the existing coupling between platform
pitch and surge, leading to an overall reduction in the tower-top fore-aft velocity, which
enables the controller to better track the rotor speed oscillations due to the smaller
changes in rotor effective wind speed.

Additionally, the antisymmetric motions of the platform, roll and yaw, were compared
for the two controllers. The yaw motion showed no improvements, since the simulations
did not consider wind misalignment, therefore the observed motions originate from
the generator torque and antisymmetric loading, such as blade gravity, and coupling
effects between roll and side-side motions of the platform and tower respectively. The
roll velocity and displacements are significantly reduced by the controller. The use of
constant generator torque is the main driver of this improvement, in contrast with the
use of generator torque actuation above rated wind speeds by the baseline controller.

The blade-root, tower-base and shaft moments are analysed to understand whether
lower fatigue and extreme loads can be attained by using linear MPC without clearly
defining the load-alleviation goal in the objective function. The BRMs show the same
trends and practically the same values, as compared to the baseline. The edgewise
remains fairly constant, as expected since the main driver is the gravity load. On the
other hand, the flapwise BRM is affected by the axial loading, mainly the aerodynamic
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thrust force acting on the rotor, and a marginal deterioration of its extreme value has
been quantified.

Finally, several effects that were not included in the load case analysis have been
included to provide a set of priorities in the further development of the controller. The
effect of wind shear has been found to drive significant changes in rotor speed and platform
motion performance, as well as a significant effect on the extreme values of platform
velocities, flapwise BRM and tower-base moment in fore-aft direction. The simulated
waves show a clear impact in platform motion fluctuations and the extreme value of
demanded blade pitch rate. Therefore, it is expected that further developing the model
will allow performance increase under real-world conditions, by means of adequately
estimating wind and wave disturbances, and accurately formulating predictions used in
the computation of the optimal control problem.

7.2 Further development and validation road-map
This project dealt with the derivation and implementation of reduced order models
and a MPC. The first aspect of it proved more complicated than expected, especially
attempting the development of a new model using flexible multi-body dynamics and
analytical mechanics. The model was partly developed and documented as part of the
thesis project, but not completed. Further work could either attempt to finish such
model, or derive a model coupling all platform degrees of freedom, in order to tackle the
roll-yaw lock instability, or platform motion minimisation.

The development of MPC has been divided into two parts: the estimator and the
regulator. The estimator can potentially be extended to estimate wave loads, which in
turn should greatly benefit the regulator activity under wave excitation. Additionally, it
was found that further work is needed to properly estimate the wind speed when wind
shear is present.

The regulator has been developed to address the MIMO problem, however, the lack
of hard constraints limited the utilisation of generator torque together with blade pitch.
It is possible to further develop the MPC to include such constraints. Furthermore,
this would allow to implement the derivation performed for constant power approach,
although not shown here for conciseness.

Additionally, coupled MATLAB-HAWC2 simulations were required to analyse the
controller performance. To that purpose two separate tool-boxes have been developed,
shown in Figure 7.1 and Figure 7.2. These tools have proven very valuable in addressing
the thesis’ goals. However, further development can elevate the applicability and ease
the development of further improved model-based controllers. To that purpose, a series
of proposed developments are listed in each diagram.
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Deployment
To provide a simple test-bench
code for modelling and
controller design

Code automation 
Current capabilities
• Automatically select the

aerodynamic gradients based
on user-defined linear wind
speed

Proposed improvements
• Automatically test a set of

gains / weights of controllers
for different met-ocean
conditions

• Automatically generate and
run HTC files for HAWC2
simulations to facilitate
model validation (maybe
linking to Python toolbox)

Reduced Order Modelling
Current capabilities
• Simulate two linear and two

non-linear models
• Validate the models using

modal analysis, step wind
simulations and simple PI
control

Proposed improvements
• Finalise symbolic MATLAB

development of multi-body
model

• Enhance validation with
turbulent wind fields

• Include error quantification in
model validation step

Estimator design
Input
• Simulation data
• Linear state-space model
• User-defined sensor noise
• User-defined measurements
Output
• Validate Dynamic Kalman

Filter
• Validate Extended Kalman

Filter for wind speed
estimation

Proposed improvements
• Augmenting Kalman filter to

estimate wave loads
• Validate new models to

increase wind speed
estimation accuracy

• Consider adding different
Kalman filter types

Linear MPC design
Input
• Linear state-space model,
• Output and feedtrhough

matrices
• User defined weights and

penalties for the objective
Output
• Linear MPC is implemented

and compared to provided
baseline simulations

Proposed improvements
• Adding constraints
• Formulate more advanced MPC,

such as scheduled MPC or non-
linear MPC

FOWT-
ReducedOrderModel

Figure 7.1: Proposed development road-map for self-developed GitHub repository FOWT-
ReducedOrderModel



7.2 Further development and validation road-map 102

Deployment
To provide improvements to
the already existing MATLAB-
HAWC2 interface for control
design purposes

Load analysis
Current capabilities
• Statistical analysis of tuning

sets through Pareto fronts,
• (Partly) Load analysis based

on DLC 1.1 and 1.2
Proposed improvements
• From short-term to lifetime

fatigue loads based on wind
turbine class,

• AEP computation based on
wind turbine class,

• Further consideration of
offshore wind IEC standard

Coupling with FOWT-
ReducedOrderModel

Current capabilities
• Direct utilisation of Kalman

filter design functions
• Direct utilisation of MPC design

functions for a single
linearisation point

Proposed improvements
• Generate several Kalman filter

designs for a set of operation
points

• Generate several MPC designs
for a set of operation points

• Implement/link scheduled MPC
routines

• Implement switching routines
for partial load

Coupling with HAWC2
Current capabilities
• Simulate in series of

simulations for a set of
tuning parameters

• Simulate a series of seeds for
a given HTC file

Proposed improvements
• Simulate several MPC

controllers in parallel to
reduce waiting time

• (Automatically) generate
DLL from given controller
and tune / simulate using
HAWC2

Result files post-
processing

Inputs
• HAWC2 binaries
• HDF5 files
Outputs
• Key signal statistics
• Short term DELs
• Extereme vales/loads
Proposed improvements
• Improve automation
• Define variable “dictionaries” in

a more elegant / practical way

FOWT-
MPCinterfaceHAWC2

Figure 7.2: Proposed development road-map for self-developed GitHub repository FOWT-
MPCinterfaceHAWC2
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