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Preface
This report presents my master thesis work in Aerospace Engineering at Delft University of Technol
ogy on a topic in manual control. It includes a scientific paper in Part I discussing the most important
outcomes of two experiments I conducted accompanied by appendices in Part II with the full results.
My preliminary report which was graded separately is included in Part III followed by its own appen
dices given in Part IV. The preliminary report discusses the performed literature survey and preliminary
numerical simulations before the experimental phase of this research.

This thesis was written during a phase of global pandemic and studying from home which made the
help that I received from several people with the work I present in this report all the more important. My
daily supervisor, Dr. ir. M. M. (René) van Paassen, provided excellent advice and guidance. With his
expertise and knowledge, René helped me to better understand and have a more critical view towards
the topic at hand. He inspired me to keep improving throughout this thesis. His extensive help with
configuring the experiments for this research was of enormous value in overcoming the challenges I
faced in this phase. My second supervisor, Prof. dr. ir. Max Mulder, has inspired me academically
since the first of his lectures that I attended. As a great teacher, Max motivates and entertains students
whilst perfectly explaining the toughest topics. During my thesis he gave outstanding advice and com
ments on my work which allowed me to make improvements and learn from them. He also provided
helpful advice advice on implementing the principles he teaches in my work. During the configuration
of my experiments, ir. Olaf Stroosma was incredibly forthcoming in helping me to get started with pro
gramming. This, and his instant willingness to help whenever I encountered problems, was invaluable
for my progress and deserves my deepest gratitude.

Previous studies conducted at the Faculty of Aerospace Engineering at Delft University of Technol
ogy by dr. ir. Wei Fu on haptic perception thresholds and of human operator models by dr. ir. Kasper
van der El were very enlightening and inspiring for my research and deserve explicit acknowledgement
for their thoroughness and academic value.

With this thesis I am nearing the end of my time as student at Delft University of Technology during
which I had countless valuable learning experiences thanks to the excellent staff and the offered support
at the Faculty of Aerospace Engineering. This makes me feel ready as an engineer to start challenging
myself in new ways to better understand and improve the world we live in.

M. Boogaard
Delft, May 2021
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Abstract—Human force proprioception has previously been
shown to be important in manual control tasks. Recent exper-
iments suggest that force proprioception is more accurate than
position proprioception. Still, knowledge about proprioceptive
qualities and their relevance in manual control is lacking or
inconsistent. This paper aims to experimentally establish the re-
spective difference in force and position perception performance
and attempts to demonstrate its influence on the neuromuscular
system in manual control tasks and on which manipulator
properties are optimal. The first experiment confirmed that the
force sensing Golgi Tendon Organ (GTO) is more accurate
than position sensing Muscle Spindles, by measuring smaller
human just noticeable differences of force than of position in
an experiment of discriminating side-stick manipulator stiffness
at various conditions. Offline simulations of a detailed model of
the neuromuscular system in a manual control task validated
higher GTO activity with non-zero stiffness manipulators than
zero stiffness. The second experiment measured human control
behavior in a double integrator controlled element pursuit task
with varying manipulator stiffness intended to affect GTO
activity. Zero stiffness manipulators showed worse tracking
performance and lower degree of linearity of human control
inputs which is related to less accurate control actions and higher
uncertainty of quasi-linear human operator models. The two
experiments combined demonstrate that humans’ neuromuscular
force sensors are more accurate than position sensors and that
higher manipulator stiffness inducing higher force sensor activity
results in more accurate control behavior.

Index Terms—Stiffness JND, Golgi Tendon Organ, Muscle
Spindles, proprioception, man-machine systems, pursuit control,
human control models, parameter estimation

I. INTRODUCTION

PROPRIOCEPTION in the human neuromuscular system is
governed by Golgi Tendon Organs (GTO) and Muscle

Spindles (MS). The Muscle Spindles, responsible for sens-
ing muscle length and stretch velocity have previously been
thought to be the dominant sensor in neuromuscular control
[1]. Research showed, however, that the Golgi Tendon Organ,
responsible for sensing muscle force, also plays an important
role [2]. Recent research into haptic perception thresholds of
changes in mechanical properties suggests that human’s force
perception is more accurate than position perception [3]. This
could have significant implications for manual control tasks. A
mapping of respective force and position perception qualities
would allow better understanding of how the human operator
(HO) perceives the movements and forces of a manual control
device, which can be useful in the design of haptic support
systems [4] but also passive manipulators.

If force perception is indeed more accurate, one could
imagine that a haptic support system may be more effective
if it is more based on force cues. Design and qualification
of simulators will also benefit from knowledge about the
qualities of proprioceptive sensors. Furthermore, predicting
pilot control inaccuracies is an important part of many studies
of manual control behavior [5]–[9], where knowledge about
inaccuracies of the human operator’s proprioceptive sensors
can be integrated.

In previous studies, experiments have been conducted to
measure just noticeable difference (JND) of force [10]–[12]
and the JND of position [13], [14] separately. However,
making an accurate comparison between the two based on
numerous different studies with varying experimental setups
is impractical. In one study, both the force JND and position
JND of index finger movements were measured [15]. This
scenario is considerably different from arm movements made
when performing a control task with a side-stick manipulator.
Present research aims to make an accurate comparison of
human force and position sensing accuracy of arm movements
through measuring both force and position JNDs with a nearly
identical experiment setup with a side-stick manipulator.

By varying the manipulator dynamics in a manual control
task, it would then be possible to reveal what roles force and
position sensing play in a manual control task. In previous
studies, changing tracking performance was measured between
various non-zero side-stick manipulator stiffness configura-
tions [16], [17]. Present research aims to show how tracking
performance is affected when GTO feedback in the HO
neuromuscular system is removed. This is done by comparing
tracking performance with a manipulator with zero stiffness
with non-zero stiffness manipulators. With the zero stiffness
manipulator, no spring force that induces GTO feedback in
the HO neuromuscular system is present.

This paper focuses on a passive side-stick manipulator
which is considered in two separate experiments. The first
experiment, discussed in Section II, aims to establish the
suggested better accuracy of GTO compared to MS in a
manipulator stiffness discrimination task. According to We-
ber’s law, the minimum threshold of changes in mechanical
properties such as stiffness is reported as a constant fraction
of the reference stimulus, known as the Weber fraction [18].
This is known to hold up to a minimum reference stiffness.
The first goal of the conducted experiment is to demonstrate
the qualities of human force perception compared to position



perception across various conditions. Secondly, it will be
investigated if the selected conditions cross the minimum
reference stimulus for Weber’s law to hold.

The second experiment, discussed in Section III, aims to
show how the qualities of GTO and MS affect human operator
performance in a manual control task. Higher manipulator
stiffness is expected to induce more activity of GTO compared
to MS. Three stiffness settings are tested to relate the activity
of the more accurate GTO to better control behavior. To vali-
date the expected higher GTO activity with higher manipulator
stiffness, a detailed model of the neuromuscular system will be
used [19], contrary to a simpler model of the neuromuscular
dynamics used commonly in pilot identification [5]–[9]. The
second part of this paper also gives an outline of how the
detailed neuromuscular model can be used to describe the
human operator in a manual control task.

Sections II and III follow the same global structure: The
respective experiment setups are described first; afterwards, the
attained results and their implications are discussed. Section IV
aims to show a correlation between the measured results of the
two experiments and Section V draws the final conclusions.

II. HAPTIC PERCEPTION PERFORMANCE

In previous research into human perception thresholds of
changing side-stick manipulator stiffness, two different visual
representations were used, one of which required subjects to
discriminate stiffness change by means of a position compar-
ison, and the other visual required subjects to discriminate
stiffness change by means of a force comparison. A relatively
smaller difference of stiffness was noticeable for humans when
comparing forces than when comparing positions. [3]

This finding suggests that the components of the neuromus-
cular system that measure force, GTO, are more accurate than
the position sensing Muscle Spindles. The first experiment is
designed to investigate whether this respective performance
difference between GTO and MS holds over a range of
conditions. Requiring the human operator to discriminate
stiffness based on comparing forces is done by ensuring
constant deflections of the control device. Position comparison
is induced by fixing the applied force.

A. Experiment

Using an earlier established procedure [3], subjects were
asked to compare the reference stiffness of a side-stick manip-
ulator, Kr, with the controlled stiffness, Kc = Kr+δK , δK >
0, during two periods of 5 s separated by 1.2 s with equal
probability of the reference, Kr, or controlled stimulus, Kc,
first. When the subject correctly selected the stiffer manipula-
tor twice in a row, δK was reduced. A ratio of 0.5488 between
the down stepsize and the up stepsize in this one-up/two-down
adaptive staircase procedure was used. This means that the
procedure converges to an 80.35 % correct measurement of the
upper stiffness JND, ∆KJND [20]. Eq. (1) gives this threshold
as a fraction of the reference stiffness known as the Weber
fraction, which, according to Weber’s law, is constant until a
minimum reference stimulus [18]. This experiment has been

conducted in previous work and the evaluated metrics for the
present experiment discussed in Section II-E are also based
on this previous research [3].

WK =
∆KJND

Kr
× 100 % (1)

Subjects looked at an LCD screen, see Figure 1, on which
information about the side stick manipulator movement was
displayed in one of two ways. Either the applied moment on
the manipulator, F , or the achieved position of the manipula-
tor, P , was displayed with a circle. Displaying F is referred
to as the force condition and displaying P as the position
condition. Subjects were instructed to deflect the manipulator
to the left and back such that the circle follows a target
signal indicated by a cross, which ramps up in 1.5 s, holds
constant for 2 s and ramps down in 1.5 s. The display showed
a 1.5 s preview of this ramp signal, see Figure 2. We define
{Fr, Pr} as the average applied force and position during the
2 s constant part of the ramp signal at the reference stiffness
and {Fc, Pc} at the controlled stiffness.

When the circle on the display showed P , it was ensured
that the subject applied the same manipulator position between
Kr and Kc

(
Pc = Pr and Fc = Fr × (WK + 1)

)
. Now, the

measured Weber fraction of stiffness is equal to the Weber
fraction of force, WF , because subjects had to discriminate
stiffness based on the difference in applied force.

Equally, when the circle on the display showed F , the
Weber fraction of position was measured (Fc = Fr and
WK = WP ) because stiffness discrimination was based on
position comparison.

Fig. 1. Experimental setup of the
LCD screen and side-stick
manipulator. [3]

current target

target preview

current input

Fig. 2. Example of the visual
display in the JND experiment at
0.5 s into the 5 s target signal.

B. Conditions

WK was measured at eight different conditions described in
Table I. F , or P was visually displayed and hereby controlled
between Kc and Kr. Kr was varied between two levels,
labelled L and H. Finally the magnitude of the required target
deflection to make the circle follow the displayed ramp was
varied between Pr = 0.25 rad (l) and Pr = 0.37 rad (h). In
the force conditions, this means that Fr = Fc is defined by the
target deflection times Kr. For example, for the first condition
in Table I, F-L-l, Fr = Fc = 2 N m rad−1·0.25 rad = 0.5 N m.

In summary, the three independent variables, Kr, Pr and the
visual type were varied between two levels, resulting in eight
conditions. Varying the visual type was intended to reveal a
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difference of human’s respective accuracy of sensing force and
position (WF and WP ). Kr and Pr were both varied between
two levels to show whether any difference between WF and
WP exists at various conditions. This is also done to possibly
find a lower bound where Weber’s law no longer holds.

The visually displayed ramp was identical between all eight
conditions. The inertia and damping of the manipulator were
constant at I = 0.01 kg m2 and B = 0.05 N m s rad−1.
Conditions F-H-l and P-H-l are equal to the conditions used
in the experiment conducted earlier [3].

TABLE I
CONDITIONS FOR THE JND EXPERIMENT. DARK GRAY INDICATES IF Pr

OR Fr WAS DISPLAYED VISUALLY. LIGHT GRAY HIGHLIGHTS THE
CONDITIONS USED IN THE PREVIOUS EXPERIMENT [3].

Label
Kr

[N m rad−1]
Pr

[rad]
Fr

[N m]

Controlled input
between

Kr and Kc

F-L-l 2 0.25 0.5 Fr = Fc
F-L-h 2 0.37 0.74 Fr = Fc
F-H-l 3.5 0.25 0.875 Fr = Fc
F-H-h 3.5 0.37 1.295 Fr = Fc
P-L-l 2 0.25 0.5 Pr = Pc
P-L-h 2 0.37 0.74 Pr = Pc
P-H-l 3.5 0.25 0.875 Pr = Pc
P-H-h 3.5 0.37 1.295 Pr = Pc

C. Apparatus

The experiment was conducted in the Human-Machine In-
teraction Laboratory at the faculty of Aerospace Engineering,
TU Delft. Subjects took place in a pilot seat in front of an LCD
screen and controlled the side-stick manipulator movement
left to right about the roll axis, with the subjects’ hand
positioned 9 cm above its pivot point. The manipulator was
electro-hydraulically controlled by a computer at 2500 Hz to
simulate the mechanical mass-spring-damper properties. The
LCD showed the controlled input and target as in Figure 2 and
a bar indicating the point in time in the set of two 5 s ramps.

D. Procedure

Each JND measurement run consisted of an adaptive stair-
case procedure where in the first trial, the stiffness difference
was 50 % ( δKKr

= 0.5). When the subject correctly identified
the higher stiffness manipulator twice in a row, δK in the next
trial was reduced and with each incorrect answer, δK was

TABLE II
LATIN SQUARE OF CONDITION ORDER IN THE JND EXPERIMENT.

Subject Conditions

1 F-L-l P-L-l P-H-h F-L-h F-H-h P-L-h P-H-l F-H-l
2 P-L-l F-L-h F-L-l P-L-h P-H-h F-H-l F-H-h P-H-l
3 F-L-h P-L-h P-L-l F-H-l F-L-l P-H-l P-H-h F-H-h
4 P-L-h F-H-l F-L-h P-H-l P-L-l F-H-h F-L-l P-H-h
5 F-H-l P-H-l P-L-h F-H-h F-L-h P-H-h P-L-l F-L-l
6 P-H-l F-H-h F-H-l P-H-h P-L-h F-L-l F-L-h P-L-l
7 F-H-h P-H-h P-H-l F-L-l F-H-l P-L-l P-L-h F-L-h
8 P-H-h F-L-l F-H-h P-L-l P-H-l F-L-h F-H-l P-L-h

increased, i.e., a one-up/two-down staircase. In the staircase
procedure, a reversal is defined as a trial where the staircase
curve changes direction. A one-up/one-down staircase was
used until the first reversal occurred for faster convergence.
The procedure was stopped after the seventh reversal or when
the total number of trials reached 40. The staircase procedure
typically converged in 30 trials totalling seven minutes for one
JND measurement run. This human subject experiment was
approved by the TU Delft Human Research Ethics Committee.

One training run was performed at the start of the session
to familiarize the subject with the task. The eight conditions
were tested by each of the eight participants in a session of
approximately one hour with breaks of at least one minute
between each condition and three minutes between the fourth
and fifth. In order to minimize ordering effects due to fatigue
or learning within one session, the order of the conditions
was balanced between the subjects according to the balanced
Latin square in Table II. This Latin square design balances the
effects of conditions immediately tested after another [21].
The eight participants, aged 22-25 years old, reported no
impairments to the right arm or eyes.

E. Metrics

The measured data during the staircase procedure after
the third reversal were used for analysis. These data include
{Fr, Pr}, {Fc, Pc}, Kc and subjects’ answers’ correctness,
Oans. These were then processed in the following ways.

1) WK: ∆KJND was measured as the average of Kc of
the last four reversals minus Kr. This minimum threshold of
perceivable difference is divided by the reference stimulus,
Kr, to obtain the Weber fraction of stiffness, see Eq. (1).

2) Strategy agreement rate: When subjects discriminate the
stiffness based on comparing the applied position between Kr

and Kc, this is referred to as the position strategy. With the
force strategy, discrimination is based on comparing applied
forces to the manipulator. These strategies can be described
by the position strategy model and force strategy model. The
position strategy model agreement, ĈP , and the force strategy
model agreement, ĈF , evaluated for one trial are defined by
Eqs. (2) and (3), respectively. Averaged over the trials after the
third reversal in one run, these become the strategy models’
agreement rates, CP and CF . From these agreement rates, one
can conclude whether participants discriminated the stiffness
difference based on a comparison of positions or of forces. [3]

if Pc < Pr

{
if Oans = correct, CP = 1

if Oans = incorrect, CP = 0

if Pc > Pr

{
if Oans = correct, CP = 0

if Oans = incorrect, CP = 1

(2)

if Fc > Fr

{
if Oans = correct, CF = 1

if Oans = incorrect, CF = 0

if Fc < Fr

{
if Oans = correct, CF = 0

if Oans = incorrect, CF = 1

(3)

3



The agreement rates of the position strategy model and force
strategy model are both evaluated for all force and position
conditions and grouped according to the expectation about
which strategy is expected to dominate in which condition, see
Section II-F. These expectations yield the dominant and non-
dominant strategy. In force conditions, the position strategy is
called dominant and in position conditions, the force strategy
is referred to as dominant. If an agreement rate is significantly
higher than 50 %, it can be said that the corresponding model
explains some of the decisions made by the participant.

3) Reproduction bias: The measured data can also be used
to evaluate how accurately subjects reproduced the controlled
manipulator input between Kr and Kc. For the force condi-
tions, we define the force bias as the bias of reproducing the
visually displayed force according to Eq. (4). Similarly, Eq. (5)
defines the bias of reproducing the required manipulator posi-
tion in the position conditions. Note that bF is defined positive
when larger forces are applied with the stiffer manipulator,
Kc, and bP is defined positive when smaller deflections are
made with the stiffer manipulator. When subjects follow the
visual target ramp equally closely between the higher stiffness,
Kc, and the lower stiffness, Kr, these biases are zero. The
biases are measured to show how well the controlled inputs
are reproduced between Kr and Kc.

bF =
Fc − Fr
Fr

× 100 % (4)

bP = −1× Pc − Pr
Pr

× 100 % (5)

F. Hypotheses

1a) Smaller WK with position visual compared to force
visual: The measured Weber fraction of stiffness is expected to
be lower across all conditions where stiffness discrimination is
based on the force difference (position conditions) than when
it is based on position difference (force conditions).

1b) No effect of Kr on the Weber fractions: The two levels
of Kr are not expected to have an effect on WK . Weber’s
law (Eq. (1)) states that the minimal noticeable threshold
is a constant fraction of the reference stiffness. Hence, no
difference in results is expected between lower or higher Kr.

1c) Small effect of Pr on the Weber fractions: The different
levels of target deflections are expected to have some effect on
WK . Weber’s law is known to hold for changing mechanical
properties [22]. However, this only holds up to a minimum
reference stimulus. Therefore, the conditions with a lower
target deflection (Pr = 0.25 rad) are expected to result in
slightly higher measured Weber fractions of stiffness.

1d) Position strategy in force conditions and vice versa:
The position strategy model is expected to agree most in
force conditions and the force strategy model is expected to
agree most in the position conditions. In the force conditions,
participants are visually guided to apply equal forces between
Kr and Kc. We can thus expect the position strategy to be used
most in these conditions. Similarly, when applied positions

are kept constant in the position conditions, participants are
expected to base their decisions on the force strategy.

G. Results

First, the statistical analysis procedure that was used for all
metrics will be discussed. Afterwards, the results are examined
per metric. This approach is chosen such that only significant
results are discussed in detail. Figures 3 to 7 show the results
with each datapoint representing one JND measurement run.

Shapiro-Wilk normality tests were conducted for each met-
ric separately at each condition and reported in Table III. Three
of the 24 conducted tests showed a significant departure from
normality. Thus, the parametric analysis of variance (ANOVA)
that was performed should be interpreted with care.

A three-way ANOVA was conducted for each metric sepa-
rately. The results in Table IV show that only the visual type
(force or position) has a significant effect on WK . The effect
of Kr is clearly insignificant showing that Weber’s law holds
here. The measured effect of the target deflection magnitude,
Pr, was larger but still insignificant. Sphericity is not an issue
here because the independent variables only have two levels.

TABLE III
SIGNIFICANCE p OF SHAPIRO-WILK NORMALITY TESTS OF JND METRICS.
GRAY VALUES INDICATE A SIGNIFICANT DEPARTURE FROM NORMALITY.

Condition WK

Dominant
model

agreement rates

Non-dominant
model

agreement rates

Reproduction
bias

(bP or bF )

F-L-l 0.171 0.821 0.788 0.916
F-L-h 0.250 0.915 0.178 0.519
F-H-l 0.684 0.308 0.504 0.005
F-H-h 0.735 0.194 0.203 0.110
P-L-l 0.113 0.614 0.924 0.054
P-L-h 0.353 0.375 0.074 0.277
P-H-l 0.038 0.067 0.706 0.519
P-H-h 0.049 0.447 0.374 0.627

TABLE IV
THREE-WAY ANOVAS OF JND METRICS. GRAY ROWS INDICATE A

SIGNIFICANT EFFECT OF THE INDEPENDENT VARIABLE ON THE
CONSIDERED METRIC.

Metric Independent
variable F(1,7) p

WK

Visual Type 14.066 0.007
Kr 0.135 0.724
Pr 1.891 0.212

Dominant model agreement Rates
Visual Type 0.089 0.774

Kr 3.659 0.097
Pr 0.041 0.845

Non-dominant model agreement Rates
Visual Type 0.737 0.419

Kr 0.244 0.636
Pr 0.917 0.370

Reproduction Bias
Visual Type 15.760 0.005

Kr 0.467 0.516
Pr 4.764 0.065

1) Stiffness JND: Figure 3 shows an average Weber fraction
of stiffness in the position conditions of 38.4 % and in the force
conditions 16.6 %. The ANOVA shows no effect of Kr or Pr.
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Fig. 3. Weber fraction of stiffness per condition.
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Fig. 4. Dominant strategy model agreement rate per condition.
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Fig. 5. Non-dominant strategy model agreement rate per condition.

2) Model Agreement Rates: The model agreement rates are
compared to 50 % to say if the corresponding model explains
some of the decisions made by the participant. This is done
with one-sample t-tests reported in Table V. Figure 4 shows
that the dominant strategy models have an average agreement
rate of 75.3 % in the force conditions and 76.3 % in the
position conditions. No significant difference between any of
the conditions was found with the ANOVA. T-tests showed that
the distributions’ means were significantly higher than 50 %.

TABLE V
ONE-SAMPLE T-TESTS COMPARED TO 50 % OF THE STRATEGY MODEL
AGREEMENT RATES. GRAY HIGHLIGHTS THE SIGNIFICANT P-VALUES.

Condition Dominant model Non-dominant model
t(7) p t(7) p

F-L-l 2.852 0.025 2.084 0.076
F-L-h 5.694 0.001 0.297 0.775
F-H-l 8.297 < 0.001 1.597 0.154
F-H-h 7.168 < 0.001 0.350 0.736
P-L-l 9.527 < 0.001 0.463 0.657
P-L-h 4.753 0.002 2.982 0.020
P-H-l 8.593 < 0.001 2.727 0.029
P-H-h 6.138 < 0.001 1.67 0.139

In Figure 5, the non-dominant strategy agreement rates are
shown with an average of 58.9 % in the force conditions and
56.9 % in the position conditions. The eight separate one-
sample t-tests in Table V only showed that only for P-L-h
and P-H-l, these distributions have means significantly higher
than 50 %. No difference between the conditions was shown
by the ANOVA so all non-dominant strategy agreement rates
of all conditions can be grouped together and have an average
of 57.9 % which was significantly higher than 50 %, t(63) =
7.882, p < 0.001. Hence, the non-dominant models do also
sometimes explain the subjects’ decision strategy. Still, the
dominant model agreement rates were higher leading to the
conclusion that in the force conditions, subjects based their
answers most on different applied positions and in position
conditions, decisions were more based on different forces
which agrees with Hypothesis 1d.

3) Reproduction Bias: The ANOVA showed that the repro-
duction bias in the force conditions was significantly higher
than in the position conditions. No effects of Kr and Pr exist
so all force biases can be grouped and all position biases are
grouped. The data of all reproduction biases of force shown
in Figure 6 together are found to be significantly different
from zero, t(31) = 5.101, p < 0.001. Also a systematic bias of
reproduced position existed in the position conditions, t(31)
= 2.954, p = 0.006. The average reproduction biases are
b̃F = 1.32 % and b̃P = 0.49 %. These biases in the force
conditions show that, despite visually guiding participants to
apply equal forces, higher forces were applied with the stiffer
manipulator. In the position conditions smaller positions were
applied with the stiffer manipulator even though the visual
display allowed participants to apply the same displacement.

4) JND of force and position: In Section II-G2, it was
shown that subjects made most decisions in the force condi-
tions based on a comparison of positions, and in the position
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Fig. 7. Weber fraction of stiffness per moment in time within the experiment
session.

conditions based on a force comparison. The measured Weber
fractions of stiffness can thus be related to the just noticeable
difference of position and force, respectively.

A way to convert the Weber fraction of stiffness, WK , to the
Weber fraction of force, WF , in the position conditions, using
systematic non-zero position reproduction bias, bP , according
to Eq. (7), was used earlier [3]. Eq. (6) is a variation, used in
the force conditions to convert WK to the Weber fraction of
position, WP , using systematic non-zero force bias bF .

WP =
Pc − Pr
Pr

=
Fc/Kc − Fr/Kr

Fr/Kr
=
b̃F −WK

WK + 1
(6)

WF =
Fc − Fr
Fr

=
PcKc − PrKr

PrKr
= WK(1− b̃P )− b̃P (7)

The ANOVA only showed a significant effect of the visual
type on the reproduction bias. Hence, all stiffness Weber frac-
tions in force conditions should be corrected with expectation

of bF and in position conditions with bP , i.e., the averages over
all force conditions, b̃F , and position conditions b̃P , respec-
tively. With the measured averages of WK , Eqs. (6) and (7)
yield the average lower position JND, WP = −26.8 %, and the
average upper force JND, WF = 16.0 %. The lower position
JND was measured since the higher controlled stiffness, Kr,
results in smaller manipulator deflections.

5) Ordering Effects: All measured Weber fractions were
compared based on the moment in time in the experiment
session irrespective of the experiment condition in Figure 7.
A Greenhouse-Geisser corrected ANOVA showed no effect of
the moment in time within the session, F(7,49) = 1.213, p =
0.327. Hence, the data do not show any clear ordering effects
caused by learning or fatigue with this experiment.

H. Discussion

The measured values of WK are higher than those found
in the earlier experiment (15 % and 9 % for the force and
position condition, respectively) [3]. However, in other work,
WK = 22 % has also been reported. The used staircase
procedure is only correct up to 80.35 %. One cause of this
inherent uncertainty is the random guessed answers subjects
give when the difference between Kr and Kc is smaller than
their just noticeable difference. A different possible cause for
the observed high Weber fractions is that participants’ perfor-
mance may have been worse because of the duration of the
experiment session consisting of repeated mentally demanding
experiment runs. Furthermore, the results are widely spread,
possibly caused by differences between our subjects, but also
by the uncertainty of JND measurement with this procedure.

The presented results can be taken as compelling evidence
that human’s haptic perception of force is more precise than
that of position. This was shown to hold for the range of
conditions that was tested. The relative difference between
WP and WF is approximately a factor two. This confirms
Hypothesis 1a and is consistent with the difference that was
measured earlier [3]. We can thus conclude that, in the con-
ducted experiment, the Golgi Tendon Organ is more accurate
than the Muscle Spindles.

Irrespective of the visual type (F or P), the four different
conditions from changing the reference stiffness, Kr, and
target deflection magnitude, Pr, were not shown to have
a measurable effect on the conducted experiment. The two
levels of reference stiffness were not shown to have an effect
which confirms Hypothesis 1b. Some effect of Pr on the
measured Weber fraction of stiffness seems distinguishable
from Figure 3. However, the ANOVA showed that this was
insignificant, p = 0.212 > 0.05, so Hypothesis 1c is rejected.

In future research, a lower bound of Pr and Kr until
which Weber’s law holds could be found more effectively
by investigating the effect of Pr or Kr in isolation rather
than the mixed experiment conditions of present experiment.
A lower number of conditions with only one independent
variable produces significant results more easily. Furthermore,
a higher number of participants is preferable considering the
inherent uncertainty of the JND measurement procedure.
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III. MANUAL CONTROL

In the second experiment, the effects of the superior
performance of the Golgi Tendon Organ compared to the
Muscle Spindles are investigated in a dynamic control task.
A reasonably rudimentary control task is selected to allow
for a clear performance comparison of GTO and MS. This
classical control task with a side-stick control device has been
documented and frequently adapted and researched [23], [24].

A. Control Task

During this experiment, subjects were instructed to min-
imize their tracking error between the visually displayed
target signal and controlled element (CE) position, e(t) =
ft(t) − x(t). This is known as a pursuit tracking task since
no preview of the target signal was displayed. Using a passive
side-stick manipulator with different mass-spring-damper dy-
namics, subjects controlled the CE with double integrator (DI)
dynamics described by Eq. (8) with KCE = 1.5. DI dynamics
were selected to be able to see the effects of the manipulator
conditions in a difficult control task.

With these dynamics, even a low bandwidth signal is diffi-
cult to track so a “6-4” spectrum is used [23]. The target signal,
f(t) is a sum of Nf = 10 sinusoids. Hence, it only has power
at the forcing frequencies, ωt. The amplitude of the sinusoids
at the four highest frequencies are reduced by a factor ten
resulting in a power attenuation of a factor 100. Different
realizations are used to prevent subjects from memorizing the
movements of ft(t). Table VI and Eq. (9) describe the three
different used realizations, r1, r2 and r3, of ft(t). Each run
lasted 128 s of which the first 8 s run-in time are discarded.

The amplitudes, At, cause f(t) to have standard deviation,
σft = 1.254 cm. The phases, φ, ensure that f(t) appears to
be quasi-random while having reasonably high power without
exceeding the limits of the display. This is quantified by the
crest factor, CF = max(|ft(t)|)

σft
≈ 2.8 [25], [26].

The manipulator’s mass-spring-damper dynamics were set
to conditions C1, C2 and C3, as defined in Table VII. The
dynamics shown in Figure 8 result from increasing the control
device stiffness, KCD, from 0 at C1, to 3.5 N m rad−1 at
C3 and adjusting the damping coefficient, BCD, to maintain
similar damping ratios while the inertia, ICD, is held constant.
These conditions were selected to be able to see any difference
in control behavior resulting from higher dependency on
GTO than MS. The manipulator gain was held constant at
Kstick = 25.4 cm rad−1.

B. Human Operator Describing Function

For now, we make the simplifying assumption that HOs
only base their control actions on the error signal on the
visual display. This implies that the distance between the
target (cross) and the current position (circle) is the only
information the pilot uses from the visual display and we
effectively analyze the measured data equally to the analysis
of a compensatory task. This has previously been considered
a valid assumption [23]. However, recent work demonstrated
a method that models HO control actions based on different

HCE(jω) =
KCE

(jω)2
(8)

ft(t) =

Nf∑
i=1

At[i] sin(ωt[i]t+ φt[i]) (9)

TABLE VI
MULTISINE TARGET SIGNAL DEFINITION.

i k At
[cm]

ωt
[rad s−1]

φ1
[rad s−1]

φ2
[rad s−1]

φ3
[rad s−1]

1 3 0.731 0.157 1.620 2.400 3.348
2 5 0.731 0.262 5.502 3.519 0.472
3 8 0.731 0.419 4.688 1.835 4.658
4 11 0.731 0.576 1.675 0.136 4.543
5 19 0.731 0.995 2.283 1.747 4.837
6 29 0.731 1.518 4.866 3.927 5.157
7 47 0.073 2.461 5.342 1.497 5.598
8 77 0.073 4.032 4.198 1.16 0.348
9 143 0.073 7.488 1.738 4.878 0.178

10 263 0.073 13.771 1.349 5.291 0.536

TABLE VII
MANIPULATOR CONDITIONS’ MASS-SPRING-DAMPER DYNAMICS.

C1 C2 C3

KCD [N m rad−1] 0 2.0 3.5
BCD [N m s rad−1] 0.2 0.2 0.35
ICD [kg m2] 0.1 0.1 0.1

ωCD

(
=
√
KCD
ICD

)
[rad s−1] - 4.47 5.92

ζCD

(
= BCD

2
√
KCD·ICD

)
[−] - 0.224 0.296

100

102

|H
C

D
| [

ra
d/

N
m

]

10-1 100 101

 [rad/s]

-2

-1

0

H
C

D
 [r

ad
]

C1
C2
C3

Fig. 8. Manipulator dynamics frequency response of the three conditions.

information channels [6], [9]. In pursuit tracking, three chan-
nels are available, ft(t) and x(t) and the distance between the
two, e(t). If the model using only e(t) fails to describe the
measured control actions accurately, we may have to revisit
the assumption that subjects only look at the visual distance
between the target (cross) and target (circle). In this case, a
multi-channel model may be needed.
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Fig. 9. Schematic description of the detailed model of the HO neuromuscular system in a pursuit tracking task assuming the HO only uses the error signal.
n(t) indicates the location where remnant is added for Monte Carlo simulations discussed in Section III-C.

TABLE VIII
CONSTANT HO MODEL PARAMETERS BETWEEN CONDITIONS C1, C2 AND C3.

TL
[s]

ζnm
[−]

Bg
[N m s rad−1]

Kg
[N m rad−1]

Iarm
[kg m2]

Bi
[N m s rad−1]

Ki
[N m rad−1]

Kp
[N m rad−1]

Kv
[N m s rad−1]

Kf
[−]

τd
[s]

10 0.7 2 165 0.01 1 11 9 2 -1.5 0.025

TABLE IX
MATHEMATICAL DESCRIPTION OF THE COMPONENTS OF THE HO MODEL.

Description Mathematical model

Grip dynamics H1 = Bgjω +Kg
Arm dynamics H2 = 1

Iarm(jω
)2

Intrinsic muscle dynamics H3 = Bijω +Ki
MS response H4 = e−τdjω(Kvjω +Kp)
GTO response H5 = e−τdjωKf

Neuromuscular activation H6 =
ω2
nm

(jω)2+2ζnmωnmjω+ω2
nm

Manipulator HCD = 1
ICD(jω)2+BCDjω+KCD

The open-loop pilot response, HP (jω), describes HO con-
trol inputs, u(t), as a function of the visually displayed error
signal, e(t). In most HO identification research, HP (jω)
is modeled by Eq. (10) where the neuromuscular dynamics
are typically described by a second-order system, H6(jω)
[7], [23]. Here, the manipulator gain and dynamics are not
described explicitly. HOs are assumed to adapt such that
the pilot equalization, Heq(jω), describes the resulting pilot
dynamics, adapted to the manipulator properties.

HP (jω) = Heq(jω)H6(jω) (10)

Heq(jω) = Kee
−jωτe (TLjω + 1)2

TIjω + 1
(11)

In the present research, a more detailed quasi-linear model
of the HO’s dynamics in a pursuit control task is used.
This separately models the manipulator dynamics, including
feedback from the Golgi Tendon Organ and Muscle Spindles,
allowing their activity to be simulated. The model is intro-
duced in Figure 9 and its components described in Table IX.
GTO and MS are modelled by H5 and H4, respectively, and
include a transport delay of 0.025 s. The pilot time delay of
τe is included in the equalization model block. The delays

TABLE X
BASELINE VALUES OF HO MODEL PARAMETERS DEPENDENT ON

CONDITIONS C1, C2 AND C3.

Ke
[N m cm−1]

TI
[s]

τe
[s]

ωnm
[rad s−1]

0.08 1 0.25 5

are approximated by a second-order Padé time delay, given
by Eq. (13). The supraspinal input, usup[N m], is the input
from the brain, into the neuromuscular system. In the present
model, feedback signals from GTO and MS are subtracted
from this input [27]. HNMS−CD in Figure 9 represents
this model, its dynamics were derived analytically for the
parameter estimation procedure discussed in Section III-G2.

HP (jω) = Heq(jω)HNMS−CD(jω)Kstick (12)

e−τjω ≈ H2nd

Padé =
1− 1

2τ
2jω + 1

12τ
2(jω)2

1 + 1
2τjω + 1

12τ
2(jω)2

(13)

The present model given by Eq. (12) replaces H6(jω) with
HNMS−CD(jω) and Kstick compared to the traditional model
in Eq. (10). When examining these frequency responses in
Figure 10, we see that the magnitude of HNMS−CD(jω) starts
to decrease at a higher frequency compared to H6(jω). This is
equivalent to a higher natural frequency, i.e., higher neuromus-
cular stiffness, meaning that the GTO and MS feedback loops
add to the neuromuscular stiffness. A significant implication
of this is that, when using HNMS−CD(jω), estimated values
of ωnm will be lower compared to using H6(jω).

The gain and dynamics of the control device are included
in the used model in Eq. (12), which is not the case with the
simpler model from Eq. (10). This means that with the present
model, the equalization gain, Ke, also includes a conversion
from the visually displayed magnitude of e(t)[cm] to the

8



10-2

100

|H
6
| [

-]

|H
N

M
S

-C
D

| [
ra

d/
(N

m
)]

10-1 100 101

 [rad/s]

-200

-100

0

H
6
 [d

eg
]

H
N

M
S

-C
D

 [d
eg

]

H
6

H
NMS-CD

Fig. 10. Comparison between analytically derived dynamics of the simple
model of neuromuscular dynamics, H6(jω), and the detailed model used for
the present research, HNMS−CD(jω). The latter is scaled up by 13.5 dB
such that the low-frequency magnitude is 0 dB. ωnm = 5 rad s−1 and
parameters listed in Table VIII are used.

supraspinal input, usup[N m]. As a result, Ke[N m cm−1] used
here will not be consistent with values of dimensionless Ke[−]
from literature. Note that the used model of HP (jω) from
Eq. (12) remains dimensionless. HNMS−CD(jω) has units
[rad/(Nm)] while H6(jω) is dimensionless.

The used equalization model has been shown to be able
to describe the human operator with a DI controlled element
[28]. In the present research, only the pilot equalization gain,
Ke, and lag time constant, TI , delay time constant, τe, and
neuromuscular natural frequency, ωnm, are investigated. Their
baseline values are presented in Table X, while Table VIII
presents the constant pilot model parameters that are not
investigated. Note that the lead time constant, TL, is assumed
constant at 10 s between the three conditions. McRuer’s verbal
adjustment rules state that the open-loop response of the HO
and CE will have a negative slope of 20 dB/decade [23].
Hence, the HO frequency response has a positive slope of
20 dB/decade to compensate for the DI CE. Thus, a high TL
is needed with the equalization model given by Eq. (11).

C. Simulations

Figures 8 and 11 show how isolated changes of the ma-
nipulator dynamics, without adaptation of the parameters in
Table VIII, affect the analytically derived dynamics, HP (jω).
In these frequency response plots, the values for C2 and C3
are shifted to the right slightly. This will be done consistently
in all frequency response graphs in this paper. Figure 11 shows
an increase of the absolute value of HP (jω) of ∼ 6 dB at the
highest two frequencies with C1 compared to C3.

One would expect human operators to adapt their dynamics
to the changing manipulator dynamics. For the purpose of
numerical simulations of the tracking task, it is assumed that
the human operator adapts by only adjusting the parameters
listed in Table X. For now, we assume that the HO adjust

10-2

100

|H
P
| [

-]

10-1 100 101

 [rad/s]

-300

-200

-100

0

100

H
P
 [d

eg
]

C1
C2
C3

Fig. 11. Analytically derived isolated effects of the three manipulator
conditions on the HO model frequency response without pilot adaptation.

the parameters in conditions C1 and C3 such that HP (jω) is
as close as possible to its baseline dynamics with C2. The
procedure used to find these parameters will be described
in detail in Section III-G2. From the analytical results in
Table XI, we can conclude that the human operator would
compensate for increased manipulator stiffness with an in-
crease of neuromuscular stiffness. This is represented inside
H6(jω) by an increased ωnm.

TABLE XI
CONDITION DEPENDENT PILOT MODEL PARAMETERS FOR C1 AND C3,

ANALYTICALLY ADJUSTED TO C2.

Condition
Ke

[N m cm−1]
TI
[s]

τe
[s]

ωnm
[rad s−1]

C1 0.0924 1.2636 0.2403 4.6387
C2 0.08 1 0.25 5
C3 0.0745 0.9103 0.2531 5.4554

The simulated experiment is conducted by adding the tar-
get signal, ft(t), and remnant, accounting for pilot behavior
uncertainties. This HO remnant is represented by a Gaussian
zero-mean white noise signal filtered with a first-order lag filter
with break frequency 20 rad s−1, added to the reflexive muscle

moment, mrefl. The signal to noise ratio, SNR =
σ2
mrefl

σ2
n

, was
either high (10), realistic (3) or low (2) [8], [29].

The standard deviations of the output signals of the numer-
ical simulation presented in Figure 12 are calculated from the
outputs of 1,000 different remnant realizations, n(t), with the
selected SNRs, averaged for conditions C1, C2 and C3 [8], and
without adding remnant (SNR =∞). We see that all signals’
standard deviations increase with added noise intensity.

Without adding remnant, we see that with the non-zero
manipulator stiffness conditions (C2 and C3) compared to
zero stiffness (C1), tracking error, RMSe, and control activity,
RMSu, decrease slightly, while GTO activity, σGTO (the
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Fig. 12. Simulation results for C1 - C3 at various SNRs. The gray columns
show results of one simulation per datapoint without remnant. The white
columns show the averaged results of 1,000 remnant realizations. 95 %
confidence intervals are drawn for RMSe. Values of RMSu, σGTO and σMS

from individual remnant realizations are distributed so close to their respective
averages, that their confidence intervals cannot be visualized in this figure.

standard deviation of uGTO), and MS activity, σMS (the
standard deviation of uMS), increase.

The same effects of the conditions on RMSu and σGTO
are found with Monte Carlo simulations where a remnant
representation is added. However, the opposite effect on RMSe
is found. The effect on σMS also reverses but not as strongly.

These simulated results show a clear trend that GTO ac-
tivity increases with manipulator stiffness. The effect of the
manipulator stiffness on RMSe depends on the addition of the
remnant signal and effects on RMSu and σMS are small.

The remnant SNR has a strong effect on the activity of GTO
and MS. This is likely a result of adding the noise before the
branches of the GTO and MS feedback loops, see Figure 9.

D. Apparatus

The same HMI experimental facility as described in Sec-
tion II-C was used for this tracking task. In this experiment,
the LCD only showed the controlled element position and the
target position, but no preview of the target.

E. Procedure

The nine subjects that also performed the first experiment,
performed all experiment runs in one session of less than one
hour. Each subject performed one training run with condition
C2. Each condition was then tested in five runs of the tracking
task with five different realizations of the target signal. The
five runs per condition were separated with breaks of 40 s. The
three conditions were separated with breaks of 90 s. The order
of the three conditions was mixed according to Table XII.

F. Metrics

The first two runs per condition are training runs and the last
three are measurement runs referred to as r1, r2 and r3 with
the forcing functions defined in Table VI. From the measured

TABLE XII
CONDITION ORDERING IN THE CONTROL TASK EXPERIMENT.

Subject
Training
condition
(one run)

First
condition
(five runs)

Second
condition
(five runs)

Third
condition
(five runs)

1 C2 C1 C2 C3
2 C2 C2 C3 C1
3 C2 C3 C1 C2
4 C2 C3 C2 C1
5 C2 C2 C1 C3
6 C2 C2 C3 C1
7 C2 C3 C1 C2
8 C2 C1 C3 C2
9 C2 C1 C3 C2

HO input, u(t), and the controlled element position, x(t), the
following metrics were then calculated.

1) RMSe: The root mean square of the error signal, i.e., the
distance between ft(t) and u(t), defines tracking performance.

2) RMSu: The root mean square of the pilot input signal,
u(t), defines the control activity.

3) Coherence: The coherence, calculated with Eq. (14),
measures the degree of linearity between a system’s outputs
and inputs. Its value is zero for a completely nonlinear system
and one for a perfectly linear system. A high coherence
between the input forcing function, ft(t), and the HO control
actions, u(t), justifies the use of quasi-linear pilot models
such as the one considered in this paper. S̃ indicates the
average power-spectral density over the frequencies between
two frequencies of ft(t). ω̃ft is the average of this band of
frequencies. ft(t) consists of ten sines with frequencies ωft
allowing the coherence to be evaluated at the nine frequency
bands, ω̃ft in-between frequencies ωft . [6], [30]

Γu,ft(ω̃t) =

√
|S̃u,ft(ω̃ft)|2

S̃ft,ft(ω̃t)S̃u,u(ω̃t)
(14)

Verification of this method was performed by replacing u(t)
with a simulated signal obtained by passing ft(t) through an
arbitrary linear filter. Γu,ft(ω̃t) then becomes equal to one at
the nine frequency bands.

G. Human Operator Describing Function Estimation

The measured time traces are also used to estimate the
human operator describing function in the frequency-domain.

1) Phase Correction: Because of the use of different re-
alizations of the forcing functions, u(t) cannot directly be
averaged across the three realizations. For this to be possible,
the components of u(t) at the ten forcing frequencies with
r1 and r2 were phase-shifted to r3. This phase-shift can be
performed on U(jω), the Fourier Transform of u(t). Eq. (15)
was applied at the ten positive and ten negative frequencies
where ft(t) has power. The phase-shifted inputs, us(t), are
then found with the inverse Fourier Transform of Us(jω).
These three time traces are then averaged to obtain the mean
human operator input, ũ(t). This is a variation of a method
used in previous research on pilot identification [31].
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r1 : Us(jωt[i]) = U(jωt[i])e
j(φ3[i]−φ1[i])

r2 : Us(jωt[i]) = U(jωt[i])e
j(φ3[i]−φ2[i])

r3 : Us(jωt[i]) = U(jωt[i])

(15)

The same operation is also used to obtain the average
controlled element position, x̃(t), and error signal, ẽ(t). With
the Fourier Transforms of ft(t), ũ(t) and ẽ(t), the estimated
HO describing function, can be found with the instrumental
variable method given by Eq. (16) [24].

ĤP (jω) =
Su,ft(ωt)

Se,ft(ωt)
(16)

2) Parameter Estimation Procedure: In order to describe
these dynamics with the model from Eq. (12), the distance
in the complex plane between ĤP (jω) and its modelled
value with parameters Θ, HP (jω|Θ), should be minimized
at the ten forcing frequencies. The estimate of ĤP (jω) is
not equally precise at each of the ten forcing frequencies. In
order to incorporate this knowledge, a maximum likelihood
estimator (MLE) is used which is summarised in Eq. (17)
[32]. This effectively minimizes the normalized distance in
the complex plane. This normalized distance, Di, is defined
by the covariance matrix, Σ. Van Lunteren showed that the
error in HP (jω) has an almost circular distribution in the
complex plane [33]. Hence, Σ is chosen as a diagonal matrix
with equal variances.

A working estimate of σ2
HP

[i] at each of the ten forcing
frequencies is found by averaging the variance of the measured
ĤP (jω) at the six neighbouring (three lower and three higher)
discrete frequencies. The maximum likelihood estimator re-
ward function, QMLE , is calculated using the normalized
complex distances. Eq. (17) defines the full procedure that
is used for each participant at each condition to find the
parameter vector, Θ̂, that best describes the measured response,
ĤP (jω). The parameters that make up Θ were selected
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Fig. 13. Measured and fitted HO response of Participant 2 at C3.

because these were found to be able to describe ĤP (jω) well.
As stated earlier, TL = 10 s and is not included in Θ.

Θ = [Ke TI τe ωnm]

xi = [Re(HP (jωt[i]|Θ)) Im(HP (jωt[i]|Θ))]T

µi = [Re(ĤP (jωt[i])) Im(ĤP (jωt[i]))]
T

Σi =

[
σ2
HP

[i] 0

0 σ2
HP

[i]

]
Di =

1

2
(xi − µi)TΣ−1

i (xi − µi)

QMLE =
1

Nf

Nf∑
n=1

e−Di

Θ̂ = argmax
Θ

QMLE

(17)

The found parameters, Θ̂, were then inserted in the model
given in Figure 9 together with the constant parameters from
Table VIII. This model was then numerically simulated to
obtain time traces of the simulated control inputs, usim(t) and
internal feedback signals, uGTO(t) and uMS(t). The signals’
standard deviations, σGTO[N m] and σMS [N m], then define
the activity of the Golgi Tendon Organ and Muscle Spindles.

3) Quality of fit: When QMLE exactly equals one, the mod-
elled frequency response, HP (jω), is identical to the measured
response, ĤP (jω), at each forcing frequency. Figure 13 shows
one example of the modelled frequency response based on the
measurements of one participant at one condition. A high MLE
reward of 0.99 was achieved for these measured dynamics,
reflected by small distances between the data and the model.

How well HP (jω) describes the time traces of the pilot
inputs, ũ(t), is then quantified with the Variance Accounted
For, calculated with Eq. (18). This relates the measured and
simulated discrete-time signals with N samples. VAFs were
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Fig. 14. Time traces of measured and simulated controlled element position
and control inputs of Participant 2 at C3 (VAF = 94 %).
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calculated for the entire measurement time of each run. VAFs
were also calculated at each point in the measurement time
over the next ten seconds to obtain the time-windowed VAF,
referred to as VAF10. In Figure 14, the measured time traces
and simulated time traces with the estimated parameters of one
participant at one condition are compared. Plotted usim(t) and
ũ(t) are fairly close together, reflected by VAF = 94 %.

VAF =

(
1−

∑N
k=1 |usim(k)− ũ(k)|2∑N

k=1 ũ
2(k)

)
× 100 % (18)

H. Hypotheses

2a) Higher RMSe with C1: With manipulator dynamics with
zero stiffness, the human operator’s tracking performance is
expected to be worse. Here, no spring force in the manipulator
is present that informs the HO about the position of the
manipulator. A part of the numerical simulations supports this
by showing worst tracking performance at this condition.

2b) Reduced coherence with C1: By the same reasoning, it
is expected that HOs’ control actions are less linear with the
target signal when the manipulator stiffness is zero.

2c) Increased σGTO with increased manipulator stiffness:
The performed Monte Carlo simulations showed an increased
GTO feedback signal power between the three conditions. This
is expected to be true also for the experiment data.

I. Results

Upon examination of the tracking performance, RMSe,
and the coherence, Γu,ft(ω̃t), it was decided to omit the
measurements of two of the nine subjects from the results.
The higher tracking errors and lower coherence of the control
inputs indicated that these participants were not sufficiently
able to control the DI dynamics. The results of the seven
remaining subjects are presented.

Statistical analyses similar to those in Section II-G are
performed to identify which observed effects are significant
before examining the data more closely. For the statistical
analysis of the coherence, the average of the nine coherence
values of the frequency bands is used. Figure 15, each data-
point represents the average tracking error or control activity
over the three measurement runs of one participant at one
condition. Equally, each point in Figures 18 and 19 represents
the processed results from the average of the measurement
runs of one subject at one condition.

First, the normality of the data is assessed with a Shapiro-
Wilk test reported in Table XIII. For normally distributed
metrics, a one-way ANOVA between C1, C2 and C3 is
conducted. If the ANOVA’s result is significant, Bonferroni
corrected pairwise comparisons of C1 and C2, C1 and C3 and
between C2 and C3 are performed to distinguish if the effect
between the three conditions is gradual or if the difference
exists with one of the three conditions.

For non-normal data, the ANOVA is replaced with Fried-
mann’s test and Wilcoxon signed-rank tests are used to find
between which specific condtions the difference exists.

TABLE XIII
SIGNIFICANCE p OF SHAPIRO-WILK NORMALITY TESTS OF TRACKING

TASK METRICS. GRAY INDICATES THE METRICS THAT ARE CONCLUDED
TO BE NON-NORMALLY DISTRIBUTED.

Metric C1 C2 C3

RMSe 0.932 0.444 0.833
RMSu 0.175 0.460 0.127
Γu,ft 0.659 0.799 0.762
QMLE 0.014 0.002 0.005

VAF 0.575 0.047 0.116
Ke 0.865 0.371 0.174
TI 0.842 0.623 0.712
ωnm 0.843 0.877 0.985
τe 0.085 0.001 0.361

σGTO 0.025 0.014 0.353
σMS 0.245 0.004 0.111

TABLE XIV
ONE-WAY ANOVAS AND BONFERRONI CORRECTED PAIRWISE

COMPARISONS OF TRACKING TASK METRICS. GREENHOUSE-GEISSER
CORRECTED ANOVAS ARE INDICATED WITH (GG). SIGNIFICANT

RESULTS HIGHLIGHTED IN GRAY.

Metric ANOVA Significance p of pairwise comparisons
F(2,12) p C1 and C2 C1 and C3 C2 and C3

RMSe 8.282 0.005 0.040 0.025 1.000
RMSu 2.099 0.165
Γu,ft 13.833 0.001 0.019 0.011 0.775
VAF 1.506 0.261

Ke (GG) 2.262 0.177
TI 0.671 0.529
ωnm 21.075 <0.001 0.010 0.001 0.239

TABLE XV
FRIEDMANN TESTS OF TRACKING TASK METRICS. SIGNIFICANT RESULTS

HIGHLIGHTED IN GRAY.

Metric χ2(2) p

QMLE 0.286 0.867
τe 6.0 0.05

σGTO 14.0 0.001
σMS 6.0 0.05
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Fig. 15. Tracking error and control activity per condition. Each datapoint
indicates the average over the three measurement runs of one participant.
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1) Tracking Performance and Control Activity and Linear-
ity: Figure 15 shows lower tracking error at conditions C2 and
C3 than C1, confirming Hypothesis 2a. With zero manipula-
tor stiffness, subjects’ tracking performance was significantly
worse but no significant effect was detected between the two
non-zero stiffness conditions. No dependency of the control
activity in terms of RMSu on the three conditions is visible in
Figure 15 and was confirmed by the ANOVA in Table XIV.

A clear effect on the degree of linearity of the HO’s control
actions in Figure 16 exists. The coherence of the pilot input
signal with the target signal has values around 0.7 over the first
six frequency bands. This is consistent with values found by
Van Der El et al. for a pursuit tracking task with DI dynamics
[6]. At the three highest frequency bands, where the amplitude
of ft(t) is reduced, the coherence is considerably lower.
This indicates that participants’ control actions were less
linear at these higher frequencies. This reduction of coherence
coinciding with the bandwidth of the forcing function was not
as clearly present in results that Van Der El et al. reported.
The most likely cause for this difference is that our subjects
were less skilled in performing a DI control task due to their
natural ability or the limited amount of training they had.

The reduction of coherence at high frequencies can be at-
tributed to the reduced amplitude of ft(t) a these frequencies.
These small amplitudes become difficult for the HO to visually
detect on the display, also because the order of magnitude is
close to the resolution of the visual display.

The average coherence of all nine bands was significantly
higher with C2 and C3, compared to C1. Hence, the non-zero
stiffness of the manipulator caused the participants’ control
actions to be more linear with the target signal, agreeing with
Hypothesis 2b. Figure 16 seems to show a difference between
C2 and C3 as well, but this is insignificant, p = 0.775.

The absence of accurate GTO feedback with the zero
stiffness manipulator is a possible explanation for the higher
tracking error and lower coherence with C1. Without GTO
feedback, HO control inputs are less accurate, i.e., contain
more noise. This is reflected by larger tracking errors and
lower coherence indicating a ‘noisier’ HO input spectrum.

2) Human Operator DF Estimation: The measured dynam-
ics, ĤP (jω), in Figure 17 at the three conditions coincide
fairly well for the first eight forcing frequencies. At the highest
two frequencies, a higher magnitude with C3 compared to
C1 of approximately 5 dB was found. This is opposite to
the isolated effect of the manipulator dynamics shown in
Figure 11. Hence, HOs adjust their dynamics such that the
manipulator dynamics are compensated for and the high-
frequency response even increases.

The longer error-bars at the highest two frequencies indicate
that, between participants, larger variations of the measured
dynamics exist here. This is consistent with the lower co-
herence at these frequencies (Figure 16). Control behavior at
high frequencies was overall less linear with the target signal,
leading to larger variations of the measured linear Ĥp(jω).

The estimated parameters in Figure 18 show how the
HO adapts to changing manipulator dynamics. The values
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Fig. 16. Coherence between u(t) and ft(t) at nine frequency bands between
the ten forcing frequencies per condition with 95 % confidence error-bars.

10-2

100

|H
P
| [

-]

10-1 100 101

 [rad/s]

-300
-200
-100

0
100

H
P
 [d

eg
]

C1
C2
C3

Fig. 17. Measured HO dynamics of all participants per condition with 95 %
confidence error-bars.

of QMLE and VAF show that the used method describes
the estimated dynamics, ĤP (jω), equally well between the
conditions. The model parameters are consistent with the
expectations stated in Section III-B and when compared to
previously reported values [6], [34].

The most significant trend in the parameters is that, on
average, ωnm is significantly larger with C2 and C3 than C1,
agreeing with the trend in Table XI. The difference between
C2 and C3 is insignificant. As expected, the magnitude of ωnm
is smaller than values found earlier when modelling HP (jω)
without GTO and MS feedback loops [7]. The feedback loops
add some neuromuscular stiffness to the stiffness represented
by ωnm. Hence, when GTO and MS feedback are included,
modelled values of ωnm are lower since it is no longer the
only contributing factor to the neuromuscular stiffness.

No significant effect on TI was shown between the con-
ditions. τe seems to be slightly lower with C1 compared to
C2 and C3 but this effect was on the limit of significance.
A Wilcoxon signed-rank test of τe between C1 and C2 was
significant, Z = -2.366, p = 0.018.
σGTO increases significantly between the three conditions
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Fig. 19. Theoretical GTO and MS activity per condition from numerically
simulating the control task with estimated parameters Figure 18. Values of
σGTO are close to the simulations at SNR =∞, see Figure 12. σMS values
are slightly lower than simulations at all SNRs.

in Figure 19, agreeing with Hypothesis 2c. Hence, the Golgi
Tendon Organ becomes more active with higher manipulator
stiffness in the control task. Muscle Spindle activity, σMS , also
seems to be slightly lower with C1 than with C2. A Wilcoxon
signed-rank test confirmed this, Z = -1.690, p = 0.091.

The trends of σGTO and σMS between C1-C3 agree with
the simulations, see Figure 12. Though, σGTO and σMS are
slightly lower across all conditions compared to simulations.

The results with respect to σGTO and σMS have to be
interpreted with care since they result from a parameter esti-
mation followed by a numerical simulation. These procedures
were documented and carried out carefully but are still not as
conclusive as direct measurements would be.

J. Discussion

Numerical simulations without added remnant (SNR =∞)
showed lower tracking error, RMSe, with increased manipu-
lator stiffness, but with added remnant, RMSe increased with
manipulator stiffness, see Figure 12. The trend between the
three conditions in Figure 15 agrees with the simulated result
without adding remnant. However, the measured tracking error
was overall closer to the simulation scenario with SNR = 2.

Because of the DI controlled element, tracking error was
rather high and varied considerably between participants. We
have to conclude that with this difficult to control CE, subjects’
skill level of performing a control task is an important factor.

In the experiment, a significant increase of the tracking error
with C1 was found, indicating that zero spring stiffness is an
unfavourable manipulator configuration. The lower HO input
coherence at C1 (Figure 16) supports this by demonstrating
that control actions were less linear with the target signal.

The magnitude of the measured coherence suggests that in
the present control task, a part of the pilot inputs cannot be
described with quasi-linear models and that the manipulator
configuration has an effect on the magnitude of this non-linear
part. This knowledge can be used in the formulation of an
adequate remnant model if we assume that high coherence
is equivalent to a high signal to noise ratio. Present research
demonstrated a dependency of the coherence on the manip-
ulator dynamics and previous research illustrated how the
coherence changes with the CE dynamics [6]. Future research
could be performed to provide a more detailed map of the
coherence of the HO inputs across different task variables,
i.e., the controlled element, manipulator and display type. This
could then be used to come up with a better definition of a
remnant model where the signal to noise ratio and possibly
the spectrum of the noise signal depend on the task variables.

The method of simulating the control task and its results
with respect to the remnant SNR in Section III-C could be
used as a framework for evaluating such a remnant model. The
formulation of a model of pilot remnant remains an important
problem in pilot identification.

The achieved VAFs with the estimated parameters are
reasonably high, which is consistent with other work where the
time-domain measurements were averaged before analysis in
the frequency-domain [7]. The reported VAFs show that for the
conducted experiment, it was justified to assume that subjects
only looked at the error signal and that a multi-channel model
was not needed. Higher VAFs might be attainable with a multi-
channel method but the single-channel model has satisfactory
performance for this research’s purposes.

With the estimated parameters, it was validated that the
theoretical GTO activity increases with the manipulator stiff-
ness where a considerably smaller increase of MS activity was
present and no change of the control activity was observed.
Also, an increase of ωnm with manipulator stiffness was found.
These effects are to be expected considering that the used HO
model includes the varying manipulator dynamics and should
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therefore only be considered as validation that increased
manipulator stiffness increases the theoretical GTO activity.
Previous research does show that more precise knowledge of
muscle activity is attainable using electromyography [35], but
this is still no direct measurement of GTO and MS activity.

The conditions with higher theoretical GTO activity com-
pared to MS showed better tracking performance and linearity.
This improvement could be attributed to the demonstrated
better accuracy of GTO compared to MS in Section II.
However, with the manipulator conditions, we merely showed
a correlation between the activity of GTO and the tracking
performance. This does not imply a causal relationship. The
changing performance between the conditions could, for ex-
ample, have been caused by the higher stiffness manipulators
automatically moving back to the center. This could be a cause
for better performance which is not directly related to GTO
or MS. Still, it is plausible that the found accuracy of GTO
plays an important role. Increasing the importance of GTO in a
manual control task without having this confound of different
manipulator dynamics is more complicated. One could think of
a way to make position sensing in the control task worthless by
adding a form of disturbance to the position of the manipulator.

Not all metrics were shown to be significantly dependent on
the used conditions. Significant effects were only found when
C1 was compared to C2 or C3. Only σGTO was significantly
different between C2 and C3 too. If a future experiment would
be conducted to find the manipulator dynamics that result in
the best tracking performance, a higher number of participants
or more measurements per participant and more training would
be beneficial to the statistical power of the results. On the other
hand, the used number of participants in present research was
sufficient to clearly distinguish the effects between zero and
non-zero manipulator stiffness.

IV. CORRELATION BETWEEN JND EXPERIMENT AND
TRACKING TASK METRICS

Each subject’s JND-ratio, XJND, denotes how much higher
stiffness JND at all force conditions, WF

K , (where stiffness
discrimination is based on position difference) was, compared
to position conditions, WF

K (where stiffness discrimination is
based on force difference). For instance, XJND = 100 %
when the subject’s stiffness JND in force conditions was
exactly twice the stiffness JND in position conditions meaning
that force sensing was twice as accurate as position sensing.

XJND =
WF
K −WP

K

WP
K

× 100 % (19)

Relative changes in tracking task metrics with the zero
stiffness manipulator (C1) compared to the average of the two
non-zero stiffness manipulators (C2 and C3) are calculated for
each participant. For example, YRMSe

= 10 % means a subject
had 10 % higher tracking error at C1 than C2 and C3.

YRMSe =
RMSC1

e − ˜RMS
C2,C3
e

˜RMS
C2,C3
e

× 100 % (20)

Changes in control activity, YRMSu
, and HO input coherence,

YΓ, are calculated in the same way.
We expect to see large absolute values of YRMSe

and YΓ for
subjects with high JND-ratio. This would mean that subjects
with higher difference in position and force perception accu-
racy have more benefit from a non-zero stiffness manipulator.
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Fig. 20. Correlation between JND-ratios in the first experiment and changes
in control behavior between zero and non-zero stiffness manipulator in the
second experiment. Each datapoint represents one participant’s results from
the stiffness JND experiment and the control task.

Figure 20 examines the existence of a correlation between
XJND, measured in the first experiment, and changes in
metrics measured in the second experiment, YRMSe

, YRMSu

and YΓ. Of the seven participants whose tracking task results
were discussed in Section III, one did not perform the JND
experiment and an outlier with XJND ≈ 700 % was removed.
Hence, only five subjects remain for this correlation analysis.

Note that YRMSe and all except one datapoint of YRMSu

are positive, showing that each subject had relatively higher
tracking error with C1 compared to C2 and C3 and all except
one subject had higher control activity with C1 than with
C2 and C3. YΓ is consistently negative since each participant
performed control actions with a higher degree of linearity
with C2 and C3 compared to the coherence measured at C1.

Spearman’s rank correlation significance p > 0.05 between
XJND, and YRMSe , YRMSu or YΓ was found so no significant
relation between these data exists. Only Figure 20(a) shows a
weak trend that subjects with higher JND ratio have greater
tracking performance improvement from a zero to non-zero
stiffness manipulator. This is promising but insignificant. A
future experiment with more participants that received more
training with the DI CE, may confirm the trend that subjects
with a larger accuracy difference of position and force percep-
tion have more benefit of a non-zero stiffness manipulator.

V. CONCLUSION

The first experiment confirmed that just noticeable differ-
ences of force are two times smaller than just noticeable differ-
ences of position in an experiment of discriminating side-stick
manipulator stiffness. This is related to better Golgi Tendon
Organ accuracy compared to Muscle Spindles. Weber’s law
appears to be applicable at four used conditions defined by
the reference stiffness and target deflection. A human operator
model including neuromuscular dynamics in a manual control
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task, showed increasing theoretical GTO activity with increas-
ing manipulator stiffness. A pursuit tracking task with zero
and non-zero manipulator stiffness conditions, showed that
zero stiffness leads to worse tracking performance and reduced
linearity of the human operator’s control inputs. Therefore, a
correlation between the activity of GTO and better tracking
performance exists. A method to relate specific subjects pro-
prioceptive qualities measured in the first experiment to their
control behavior in the second was proposed, but showed no
significant results yet.
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A
Individual Subjects’ Tracking Task

Results
The results of each participant’s measurement runs are documented here. Per subject, C1 and C3 are
presented graphically and all three condition’s results are summarized in a table.
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22 A. Individual Subjects’ Tracking Task Results

A.1. Subject 1
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(a) CE position, x, and HO input, u timetraces of subject 1 at C1.
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(b) Frequency response of subject 1 at C1.

Figure A.1: Measured and fitted results of subject 1 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 1 at C3.
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(b) Frequency response of subject 1 at C3.

Figure A.2: Measured and fitted results of subject 1 at C3.

Table A.1: Summary of measured results and estimated parameters of subject 1 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 1.508 1.668 0.434 0.027 0.436 0.297 2.18 0.994 91.86
C2 1.239 1.791 0.595 0.033 0.318 0.455 2.48 0.994 90.28
C3 1.178 1.495 0.629 0.032 0.373 0.443 2.97 0.995 90.16
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A.2. Subject 2
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(a) CE position, x, and HO input, u timetraces of subject 2 at C1.
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(b) Frequency response of subject 2 at C1.

Figure A.3: Measured and fitted results of subject 2 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 2 at C3.

10-2

100

|H
P
| [

-]

10-1 100 101

Frequency [rad/s]

-400

-200

0

200

H
P
 [d

eg
]

data
model

(b) Frequency response of subject 2 at C3.

Figure A.4: Measured and fitted results of subject 2 at C3.

Table A.2: Summary of measured results and estimated parameters of subject 2 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 1.221 1.993 0.612 0.083 1.541 0.256 3.09 0.997 98.78
C2 1.232 1.460 0.651 0.088 2.155 0.267 3.92 0.995 98.47
C3 1.032 1.629 0.706 0.083 1.308 0.292 4.08 0.993 93.93
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A.3. Subject 3
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(a) CE position, x, and HO input, u timetraces of subject 3 at C1.
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(b) Frequency response of subject 3 at C1.

Figure A.5: Measured and fitted results of subject 3 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 3 at C3.
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(b) Frequency response of subject 3 at C3.

Figure A.6: Measured and fitted results of subject 3 at C3.

Table A.3: Summary of measured results and estimated parameters of subject 3 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 0.894 3.024 0.648 0.105 1.231 0.234 6.39 0.935 91.24
C2 0.676 2.723 0.732 0.046 0.364 0.296 6.81 0.902 85.93
C3 0.746 3.191 0.769 0.113 0.974 0.272 8.08 0.887 76.85
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A.4. Subject 4
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(a) CE position, x, and HO input, u timetraces of subject 4 at C1.
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(b) Frequency response of subject 4 at C1.

Figure A.7: Measured and fitted results of subject 4 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 4 at C3.
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(b) Frequency response of subject 4 at C3.

Figure A.8: Measured and fitted results of subject 4 at C3.

Table A.4: Summary of measured results and estimated parameters of subject 4 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 1.192 1.600 0.572 0.052 0.963 0.231 3.56 0.994 93.62
C2 0.939 1.805 0.666 0.058 0.927 0.261 5.17 0.993 96.43
C3 1.136 1.418 0.657 0.047 0.713 0.264 4.93 0.996 96.81
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A.5. Subject 5
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(a) CE position, x, and HO input, u timetraces of subject 5 at C1.
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(b) Frequency response of subject 5 at C1.

Figure A.9: Measured and fitted results of subject 5 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 5 at C3.
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(b) Frequency response of subject 5 at C3.

Figure A.10: Measured and fitted results of subject 5 at C3.

Table A.5: Summary of measured results and estimated parameters of subject 5 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 1.294 2.759 0.545 0.092 1.421 0.235 4.04 0.992 80.95
C2 1.091 2.151 0.623 0.079 1.296 0.254 4.65 0.996 97.82
C3 0.861 2.707 0.715 0.184 2.184 0.229 6.30 0.965 89.46
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A.6. Subject 6
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(a) CE position, x, and HO input, u timetraces of subject 6 at C1.
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(b) Frequency response of subject 6 at C1.

Figure A.11: Measured and fitted results of subject 6 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 6 at C3.
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(b) Frequency response of subject 6 at C3.

Figure A.12: Measured and fitted results of subject 6 at C3.

Table A.6: Summary of measured results and estimated parameters of subject 6 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 0.766 3.587 0.700 0.077 0.677 0.225 5.12 0.950 70.73
C2 0.729 3.522 0.712 0.095 0.787 0.254 6.39 0.919 73.67
C3 0.623 3.636 0.783 0.293 2.543 0.087 6.23 0.766 60.37
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A.7. Subject 7
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(a) CE position, x, and HO input, u timetraces of subject 7 at C1.

10-2

100

|H
P
| [

-]

10-1 100 101

Frequency [rad/s]

-400

-200

0

200

H
P
 [d

eg
]

data
model

(b) Frequency response of subject 7 at C1.

Figure A.13: Measured and fitted results of subject 7 at C1.
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(a) CE position, x, and HO input, u timetraces of subject 7 at C3.
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(b) Frequency response of subject 7 at C3.

Figure A.14: Measured and fitted results of subject 7 at C3.

Table A.7: Summary of measured results and estimated parameters of subject 7 at all conditions.

RMS𝑒
[cm]

RMS𝑢
[cm]

Γ𝑢,𝑓𝑡
[−]

𝐾𝑒
[Nmcm−1]

𝑇𝐼
[s]

𝜏𝑒
[s]

𝜔𝑛𝑚
[rads−1]

𝑄𝑀𝐿𝐸
[−]

VAF
[%]

C1 0.991 1.694 0.655 0.069 1.13 0.256 3.78 0.985 86.44
C2 0.920 1.242 0.752 0.085 1.752 0.284 4.51 0.990 98.26
C3 0.905 1.264 0.724 0.071 1.366 0.252 5.34 0.996 98.97



B
Derivation of HO Neuromuscular Model

Dynamics

Figure B.1: Schematic description of the detailed model of the HO neuromuscular system including intermediate signal names
for analytical derivation.

The dynamics of the model of HO neuromuscular dynamics, 𝐻𝑁𝑀𝑆−𝐶𝐷(𝑗𝜔), were derived with the
following steps.

◻(𝑗𝜔) = 𝑚𝑔𝑟𝑖𝑝
𝑥𝑔𝑟𝑖𝑝

= 𝐻1(𝑗𝜔)
1 +𝐻1(𝑗𝜔)𝐻𝐶𝐷(𝑗𝜔)

△(𝑗𝜔) = 𝑚𝑔𝑟𝑖𝑝
𝑚𝑚𝑢𝑠

= 𝐻2(𝑗𝜔) ◻ (𝑗𝜔)
1 +𝐻2(𝑗𝜔) ◻ (𝑗𝜔)

☆(𝑗𝜔) = 𝑚𝑚𝑢𝑠
𝑚𝑟𝑒𝑓𝑙

= 1
1 + (1 −△(𝑗𝜔))𝐻2(𝑗𝜔)𝐻3(𝑗𝜔)

𝐻𝑁𝑀𝑆−𝐶𝐷(𝑗𝜔) =
𝑥𝑚
𝑢𝑠𝑢𝑝

= 𝐻6(𝑗𝜔)☆(𝑗𝜔)
1 +𝐻6(𝑗𝜔)☆(𝑗𝜔)(𝐻4(𝑗𝜔)𝐻2(𝑗𝜔)(1 −△(𝑗𝜔)) +𝐻5(𝑗𝜔))

△ (𝑗𝜔)𝐻𝐶𝐷(𝑗𝜔)

(B.1)
Any simple mistake in the analytical derivation of the dynamics a block diagram model of this com

plexity would make the outcome incorrect. Therefore, the outcome, 𝐻𝑁𝑀𝑆−𝐶𝐷(𝑗𝜔), was verified using
a MATLAB Simulink tool, linearize.m, that numerically approximates the frequency response of a
block diagram model.
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C
Tracking Task Metrics Correlation

Analysis

A global correlation between theoretical GTO activity, 𝜎𝐺𝑇𝑂, and tracking performance, RMS𝑒, was
found with the three manipulator conditions. This appendix investigates this correlation in greater detail
within each condition and also examines correlation between other metrics from the tracking task.

C.1. Coherence and Tracking Error
In the control task, the HO’s task is to minimize RMS𝑒. When examining the HO inputs, 𝑢(𝑡), a high
value of coherence, Γ𝑢,𝑓𝑡 , between 𝑢(𝑡) and the target signal, 𝑓𝑡(𝑡), is desired since it can justify the
use of quasilinear models of HO behavior. Figure C.1a shows that with our participants, a strong
correlation exists between the average coherence and the achieved tracking error. Participants that
performed control inputs with a high degree of linearity were hereby able to achieve lower tracking
errors. This means that high coherence not only justifies quasilinear models, but is also related to
better tracking performance.

Equally, Figure C.1b demonstrates that higher control activity is also related to better tracking per
formance. However, this relationship is not as strong shown by the shallower gradient of the trendline.
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(a) Correlation between average HO input coherence and tracking error.
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(b) Correlation between average HO control activity and tracking error.

Figure C.1: Correlation between average HO input linearity or control activity and tracking error. Each datapoint represents the
average obtained metrics of the three 120 s measurement runs of one participant.
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32 C. Tracking Task Metrics Correlation Analysis

C.2. GTO Activity and Tracking Error
It was found that manipulator conditions that lead to higher theoretical GTO activity also showed better
performance in terms of RMS𝑒. Figure C.2 confirms this when visually examining the location of the
data clusters of each of the three conditions. This can partially be attributed to the used model setup
that includes the varying manipulator conditions.

Furthermore, the figure reveals that within each condition, participants that had higher activity of
the GTO, found after parameter estimation, also accomplished smaller tracking errors. This effect
within each condition is not a direct result of the model setup. This indicates that higher GTO activity
irrespective of the condition is related to better performance.
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Figure C.2: Correlation between theoretical GTO activity and tracking error. Each datapoint represents the average obtained
metrics of the three 120s measurement runs of one participant. Each manipulator condition is analysed separately in this figure.



D
Experiment Briefing & Consent Form

Before conducting the experiments, participants were briefed and asked for their written consent for
participation according to the requirements from the Human Research Ethics Committee using these
two documents.
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Proprioception in Manual Control 
The two experiments you are about to participate in together aim to show what roles force and 
position measurement of the human arm play in a manual control task. 

The first experiment intends to measure your accuracy in sensing different forces and different 
positions. In the second experiment, we will attempt to see if different side stick controller dynamics 
allow you to better make use of these capabilities in a tracking task. 

Because of the simple nature of the experiments, you may feel mentally tired. There will be breaks 
to try to minimise this. If you feel tired at any point, or want to take extra breaks for no particular 
reason, we will do so when you wish to. 

I hope you will enjoy the experiments! If you wish you can review your results in comparison to the 
statistics from other participants as soon as they have been processed, to see how you performed.  

When publishing results, it will be ensured that these will not be identifiable to you. Your personal 
data will not be distributed. Stored data from this study will not be identifiable to any of the 
participants. 

If you wish to retract from this study at any point, you are free to do so without giving a reason. 

If you have any questions, comments or complaints about the experiments or the study, you can 
contact any of: 

 Myself: m.boogaard@student.tudelft.nl, +31625380268 
 My MSc thesis supervisors: 

o Dr.ir. M.M. (Rene) van Paassen M.M.vanPaassen@tudelft.nl  
o Prof. dr. ir. M. (Max) Mulder m.mulder@tudelft.nl  

  



Consent Form for Proprioception in Manual Control 
  

Please tick the appropriate boxes Yes No  

Taking part in the study    

I have read and understood the study information dated [DD/MM/YYYY], or it has been read 
to me. I have been able to ask questions about the study and my questions have been 
answered to my satisfaction. 

  

I consent voluntarily to be a participant in this study and understand that I can refuse to 
answer questions and I can withdraw from the study at any time, without having to give a 
reason.  

  
 



I understand that taking part in the study involves two manual control experiments and short 
interviews documented with written notes. 
 
Risks associated with participating in the study 

 
 

 
 



I understand that taking part in the study involves the following minimal risks: mental fatigue/ 
boredom. 

 


 
 

 

 
Use of the information in the study 

   

I understand that information I provide will be used for a published final thesis report.  
 

 
 



I understand that personal information collected about me that can identify me, such as my 
age, gender and name, will not be shared beyond the study team and will be anonymised to 
prevent identification of the participant. 

 
 

 
 



 
I agree that my comments during the experiments and short interviews can be quoted or 
paraphrased anonymously in research outputs. 

 
 
 
 

 
 

 

Future use and reuse of the information by others    
I give permission for the control inputs, answers to questions and age and gender information 
that I provide to be anonymised and archived in 4TU.ResearchData so it can be used for future 
research and learning. 

 
 
 
 
 
 

 
 
 
 
 



Signatures    
 
________________________  __________________         _____________  
Name of participant: [printed]  Signature                 Date 
 

   

   
I have accurately read out the information sheet to the potential participant and, to the best 
of my ability, ensured that the participant understands to what they are freely consenting. 
 
________________________  __________________         _____________  
Researcher name: Menno Boogaard Signature                 Date 
 

   

Study contact details for further information:  Menno Boogaard, +31625380268, 
m.boogaard@student.tudelft.nl 

   

 





III
Preliminary Research Report

As graded separately (08032021) for AE4020 Literature Study
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Abstract
Modelling pilot behavior in manual control tasks with a side stick has been researched in the past. Re
cent work showed how the Golgi tendon organ and muscle spindles can be included in a biodynamic
feedthrough model of pilot dynamics. Evidence can be found that suggests that there is a significant
difference between the relative accuracy of the Golgi tendon organ and the muscle spindle. Force
measurement in the Golgi tendon organ is suggested to be more accurate than position and velocity
measurement in the muscle spindle. The pilot model was examined to find that stiffer and heavier stick
dynamics cause the pilot to rely more on the Golgi tendon organ. This suggests that tracking perfor
mance would be improved with a stiffer and heavier stick. Simulations did not confirm this but previous
experiments in literature did show a performance improvement with heavier sticks. Present simulations
of the pilot model and previous research did show coherent results that tracking performance is better
with lower frequency forcing functions. Consistent results between literature and simulations were also
found about which parameters in the pilot model depend on stick settings and forcing function band
width. With this knowledge, an initial experiment plan was drafted for two experiments. The first intends
to show the suggested performance difference of force and position measurement and the applicable
conditions for these results. The second aims to show the effects this performance difference has in a
control task and validate expectations that were made based on literature and simulation for this control
task.
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1
Introduction

Within the field of manual control, having an accurate model of the pilots behavior and capabilities
has many purposes. It can serve to predict how pilots will respond to automated support systems.
Having accurate knowledge about the pilots sensing also helps with designing these support systems
to appropriate specifications. This improvement of human machine interaction allow better safety and
lower pilot workload when performing manual control tasks.

Furthermore, knowing the thresholds of human perception also has its uses in developing adequate
simulator requirements. There is no point in requiring simulators to have higher fidelity than what is
noticeable to the user. Having better requirements for simulators will allow them to be designed more
efficiently to the users needs.

Manual control tasks have been studied extensively in the past. In particular a well documented
model of the behavior of the human pilot in a compensatory tracking task is available [24]. This model
uses an approach where the pilot is modeled by a simple pilot equalization and time delay. When
formulating a more accurate model of the pilot in a control task, the pilot, control device and controlled
element aremodelled separately. Now, it is possible to zoom in on the pilot and distinguish the dynamics
of the components that make up the pilot in a tracking task with a side stick. An important part of
this neuromuscular interaction between the human operator and the control device is related to the
proprioceptive sensing of the arm position and force. These are measured by the muscle spindles
(MS) and Golgi tendon organs (GTO) respectively. These sensors are used in internal feedback loops
that make up a crucial part of a more detailed pilot model. Recent work has shown evidence that Golgi
tendon organs have considerably better accuracy than muscle spindles [13]. If this can be definitively
proven, it would have significant implications for manual control tasks. This would allow haptic control
support systems to be designed more effectively. Furthermore, better predictions on pilot inaccuracies
can be made and the circumstances at which they occur can be better known. This knowledge could
help predict which control device dynamics are best suited for particular control scenarios. Control
tasks which require tracking at high frequency may benefit from different side stick settings than low
frequency tracking. In order to make use of any knowledge about the performance of MS and GTO,
this knowledge and its boundaries do need to be established. That means quantifying this performance
and comparing it between MS and GTO. Also a description for which conditions any possible claims
hold will be needed.

The scope of this thesis will be limited to a compensatory tracking task with a passive side stick with
mass spring damper like dynamics. These dynamics will be varied to see how the activity of GTO and
MS respond. However, results obtained from different passive side stick dynamics could well become
useful when designing an active side stick that supports the human in performing a control task. Also
the bandwidth of the target and disturbance forcing functions will be varied. The stick dynamics together
with the forcing function bandwidth will be referred to as the control task parameters.

The main research question that will be explored is: What roles do force and position measure
ment of the human arm play in neuromuscular control applied to a manual control task?

This can be broken up into three narrower directions:
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42 1. Introduction

• How do human position measurement and force measurement compare across different condi
tions?

• How does the pilot use muscle spindles and Golgi tendon organs in a manual control task?

• In what way can a control task be optimized to exploit any possible performance difference be
tween muscle spindles and Golgi tendon organs?

Answers to these questions may in the future be useful for improving human machine interaction in
real vehicles or a simulator environment.

This preliminary report outlines how these answers can be found in this thesis. This will be done
by examining results from previous research and using simulations which will also form a basis for
designing the proposed experiments and predict their outcome.

The discussed literature deals with human capabilities of sensing force and position (Chapter 2), the
components of the neuromuscular system that are responsible for sensing force and position (Chap
ter 3) and how this can be used in a model of pilot dynamics in a manual control task (Chapter 4).

Relevant computer simulations are proposed and their results are discussed. These computational
experiments are intended to form a basis for predictions on the effects that the pilot qualities found
in literature have in a manual control task. Chapter 5 discusses how the simulated representation of
uncertainties of pilot behavior affects these simulations after which Chapter 6 defines a usable region
of the used pilot model by examining its stability. In Chapter 7, several computational experiments are
performed with changing parameters of a manual control task. These intend to reveal how force and
position sensing contribute in a control task and to examine what changes in control task parameters
can be used to show the effects of these proprioceptive qualities.

Finally, Chapter 8 proposes two humanintheloop experiments. The first experiment will intend
to reveal any proprioceptive accuracy difference between force and position measurement and the
range where these conclusions would hold. The second experiment aims to uncover the effects of the
conclusions of the first experiment in a manual control tracking task. It will thus be the physical form
of the computational experiments conducted that have been conducted for this preliminary report. The
results from these physical experiments will then allow the predictions that are made in this preliminary
report to be validated. This may require repeating simulations with data from the physical experiments.
Ultimately, conclusions that are useful in relevant fields such as haptic feedback systems need to be
drawn.



2
Force vs. Position Measurement

In work by Fu, evidence was found that suggests that human force measurement is more accurate
than position measurement [13]. The participants were tasked to discriminate if a given stick stiffness
was different from the reference stiffness (𝐾𝑟) with three different conditions. In the force condition the
participant only applies a different stick force and equal stick deflection is ensured with a visual display
of a reference target displacement (𝛿𝑟) and the actual displacement. During the position condition a
visual display is used to show a reference target torque (𝑇𝑟) and the actual applied stick torque such that
the stiffness discrimination is based on the participants perception of the applied stick displacement.
For these two conditions, participants looked at a display such as the one in Figure 2.1. Finally, the
free condition allowed the participants to discriminate between different stick stiffnesses without a target
force or target position.

The minimum threshold of stiffness difference that was noticeable for the participants was deter
mined using a staircase procedure, where the difference between the reference stiffness and the con
trolled stiffness was decreased incrementally until participants were no longer able to correctly identify
which stiffness was higher. This resulted in the lowest noticeable difference known as just noticeable
difference (JND) expressed as a percentage of the reference stiffness.

Participants performed significantly better in the force condition where discriminating the stick stiff
ness was based only on applied stick force. The JND of force was measured to be 8.01%± 2.72%.
In the position condition, the position JND of 14.64% ± 6.16% was significantly higher. In the free
condition, a stiffness JND of 10.28%± 3.12% was found. These results were obtained at one set of
reference conditions shown in Table 2.1. Here the targets 𝛿𝑟 and 𝑇𝑟 do match according to 𝑇𝑟 = 𝛿𝑟𝐾𝑟.

The results of this experiment are easily interpreted to suggest a better accuracy of controlling force
exerted by the human arm than controlling the actual position of the arm. This leads to the expectation
that the same accuracy difference holds for the perception of force and position. The conditions at

Figure 2.1: Visual display of target stick position in JND experiment [13]
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44 2. Force vs. Position Measurement

Table 2.1: Reference values for JND experiment

Symbol Value
𝐾𝑟 3.5Nmrad−1
𝛿𝑟 0.37 rad
𝑇𝑟 1.295Nm

which this experiment were performed are, however, limited. In order to draw definitive and useful
conclusions, the range of these conditions needs to be expanded. Other experiments show similar
results when compliance JND is measured [31]. Here, force cues were shown to play an important
role in discriminating the compliance when physically squeezing an object between two fingers. This is
equivalent to the importance of force perception when discriminating between changing stick stiffness.

Other literature reports a similar observed value for the force JND [2]. Position JND has not been
researched asmuch in the past. Experiments can be used to measure the absolute precision of position
sensing [32]. The drawback is that this absolute precision can not be represented as a percentage
in the way that was discussed earlier. This means that this absolute precision cannot be compared
with the force JND. When investigating the human capability to reproduce a hand position actively or
passively, a similar result can be observed. When the human actively reproduces a hand position by
moving a handle to a target position by hand, this observed accuracy is better than with passive position
reproduction where the handle was moved by an external force [22].

It would be useful to perform a comprehensive study on how force JND and position JND relate
for a range of conditions pertaining the side stick, that would be relevant in manual control tasks. In
order to compare the two JNDs, they should be measured with the same side stick under the same
conditions. A discussion of this will follow in Chapter 8.



3
Muscle Sensory Afferent Activation

In Chapter 2 evidence was given that suggests that Golgi tendon organs have better accuracy than
muscle spindles. This evidence is based on experiments that look at the human pilot as one system.
This showed that the human pilot is better able to distinguish different forces than different positions
of a side stick controller. The different parts of the neuromuscular system that play a role in this dis
crimination task were not measured separately. This chapter outlines these parts of the neuromuscular
system and their roles.

In the past, experiments on isolated parts of the neuromuscular system have been performed and
documented in literature. This chapter will focus on literature about the response of Golgi tendon
organs and muscle spindles. In particular, their accuracy and response to different frequencies will be
of interest.

The afferent fibers that play a role in proprioceptive sensing can be categorized by the following
three types [12]:

• Type II afferent fibers/ Secondary muscle spindle endings. Sensitive to muscle length modelled
with 𝐾𝑝 (MS)

• Type Ia afferent fibers/ Primary muscle spindle endings. Sensitive to muscle stretch velocity
modelled with 𝐾𝑣 (MS)

• Type Ib afferent fibers sensitive to muscle tension modelled with 𝐾𝑓 (GTO)

The function of Golgi tendon organs was traditionally thought to be preventing excessive strain on
muscle fibres [18].

Figure 3.1 shows a relatively constant magnitude of the frequency response of Golgi tendon organs
and muscle spindles.

Other research showed that the response of Golgi tendon organs is found to vary linearly with the
applied tension [14]. Thismeans that themodel of theGolgi tendon organ of a static gain equal to𝐾𝑓 can
be considered accurate. Research also showed that Golgi tendon organs have reasonably consistent
responses to repeated successive stimulations [4]. Experiments that lead to these observations were
performed on cats but are assumed to be relevant for humans as well.

Muscle spindles are known to respond to both position (by 𝐾𝑝) and stretch velocity (by 𝐾𝑣). Muscle
spindle firing rates were found to show irregularities under specific conditions during shortening or
stretching [5]. Other work showed that the primary muscle spindle endings which are sensitive to
velocity are also more responsive to high frequency vibrations ∼ 200Hz. Secondary muscle spindle
endings which are responsive to position are only responsive to vibrations up to ∼ 100Hz. [6] Though,
both these frequencies are well above the relevant frequency range for manual control tasks such as the
one considered for this thesis. When very small length changes are considered, a difference between
the primary and secondary muscle spindle endings was shown. Primary muscle spindle response is
much greater than secondary muscle spindle response in these situations. This was found in a study
that measured the impulses frommuscle spindles when themuscle length was changed [23]. Figure 3.2
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46 3. Muscle Sensory Afferent Activation

(a) Response of a muscle spindle unit (Combined type II and Ia afferents)
[20]

(b) Golgi tendon organ response in pulses per second to controlled applied muscle force [18]

Figure 3.1: Frequency response of proprioceptive sensors

shows that Ia afferents are more sensitive to small vibrations than II afferents over a range of stimulation
frequencies.

A different study analyzed the vibration sensitivity of the muscle spindles and Golgi tendon organ.
This showed that Golgi tendon organs as well as muscle spindles play a role in sensing small muscle
length changes. [12]

Further work also provides evidence that only muscle spindles are not the only sensors that con
tribute in joint position control. Simulated experiments suggest that a combination of GTO and MS
enables accurate perception of muscle and tendon length. Figure 3.3 shows how GTO feedback con
siderably improves the disturbance response compared to only MS feedback. [21]

Other experimental research further illustrated the differences in responses of the different afferent
types to ramp stretching of the muscle [9]. Later, the responses of the different afferents was described
for different manipulations. Clear differences were shown between ramp stretch, vibrations and isomet
ric contraction . [10] One can conclude that Golgi tendon organs are better able to encode isometric
muscle contraction than muscle spindles. This observed lower sensitivity to small position changes
seems to correspond with recent results found in experiments with a side stick.

In conclusion, research on the different sensory afferents in muscles shows that the conventional
concept that muscle spindles encode the length of muscles is not entirely comprehensive. Golgi tendon
organs certainly also play a role in the sensing and control of the human arm.

Increased muscle tension without change in length
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Figure 3.2: Comparison of the sensitivity of primary (Ia) and secondary (II) muscle spindle endings to sinusoidal vibrations at
varying frequency [23]

Figure 3.3: Simulated response to position perturbation in 2DOF position control task [21]





4
Pilot Model

A model of the dynamics of the human pilot in a compensatory tracking task needs to be established as
a basis for exploring the effects of human proprioceptive qualities discussed in Chapters 2 and 3. These
dynamics are not known precisely due to the complexity of the neuromuscular system and the presence
of nonlinearities. In the past, a robust model for these dynamics has been established [24]. This simple
model of course has limited accuracy. A more accurate model of pilot dynamics was suggested [34].
Also, a model to represent the human pilots arm as a system with a mass spring and damper was
explored [33]. More recently, a biodynamic feedthrough model of the pilot was proposed to achieve a
more accurate representation of the pilot dynamics [35]. This most recent model is considered to be
most useful in this thesis. This is because it separately addresses the Golgi tendon organs and muscle
spindles with their own dynamics in individual feedback loops. The model will be discussed in more
detail below and will form the basis for performed simulations for this thesis.

Figure 4.1 gives a visual representation of the biodynamic feedthrough model of the pilot dynamics
inside a compensatory tracking task. In this task, the target signal (𝑓𝑡) and disturbance signal (𝑓𝑑) are
sums of ten sinusoids. The goal of the tracking task is to make the output roll angle (𝜙) follow 𝑓𝑡, i.e.,
minimize the error signal (e). This error signal is visually displayed to the pilot. When the model is
used to describe the pilot in a compensatory control task, the cognitive (supraspinal) input (𝑢𝑠𝑢𝑝) is
added to the inputs of the neuromuscular activation dynamics (𝐻6). The output is the position of control
device (in this case the side stick). 𝑢𝑠𝑢𝑝 is defined by the error signal which is first processed by the
pilots cognitive processes which will be modeled by a PID controller. The stick dynamics are set to the
dynamics of a mass spring damper system.

The hand grip dynamics are modeled by the grip stiffness (𝐾𝑔) and damping (𝐵𝑔). The intrinsic
muscle dynamics are modeled by the intrinsic muscle stiffness (𝐾𝑖) and damping (𝐵𝑖). The response
of the pilots arm is defined by its inertia (𝐼𝑎𝑟𝑚). The response of the muscle spindle is described by a
proportional response to the arm position (𝐾𝑝) and the arm velocity (𝐾𝑣). The response of the Golgi
tendon organ is proportional to the exerted muscle force (𝐾𝑓). The response of the muscle fibres (𝑚𝑟𝑒𝑓𝑙)
to the input from the nervous system (𝑢𝑡𝑜𝑡) is described by the neuromuscular dynamics.

Finally, the controlled element which will be considered in this thesis is defined by 𝐻𝐶𝐸 in Table 4.1
[13]. Time delays of 0.025s are present in the model at the muscle spindle and Golgi tendon organ

Figure 4.1: Block diagram of the neuromuscular model with components described in Table 4.1
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50 4. Pilot Model

Table 4.1: Mathematical model of the components of the pilot model

Description Mathematical model
Cognitive response 𝑃𝐼𝐷 = 𝑃𝑒 + 𝐼𝑒

𝑠 +𝐷𝑒𝑠
Stick dynamics 𝐻𝑠𝑡 = 1

𝐼2𝑠𝑡𝑠+𝐵𝑠𝑡𝑠+𝐾𝑠𝑡
Grip dynamics 𝐻1 = 𝐵𝑔𝑠 +𝐾𝑔
Arm dynamics 𝐻2 = 1

𝐼2𝑎𝑟𝑚𝑠
Intrinsic muscle dynamics 𝐻3 = 𝐵𝑖𝑠 +𝐾𝑖
MS response 𝐻4 = 𝐾𝑣𝑠 +𝐾𝑝
GTO response 𝐻5 = 𝐾𝑓
Neuromuscular activation 𝐻6 = 1

1
𝜔𝑎𝑐𝑡

2𝑠+2 𝜁𝑎𝑐𝑡
𝜔𝑎𝑐𝑡 𝑠+1

Controlled element 𝐻𝐶𝐸 = 1
0.083𝑠+1 ⋅

𝐾𝑝𝑙𝑎𝑛𝑡
0.4𝑠2𝑠 ⋅

2.259𝑠2+0.821𝑠+1
1.647𝑠2+0.336𝑠+1

blocks and a time delay of 0.3s is present in the cognitive response of the pilot. A mathematical
description of the dynamics of these pilot model blocks is given by Table 4.1. Tables 4.2 and 4.3 report
the numerical values for the discussed parameters of this model. In Table 4.2, only the values of the
parameters below the double line will be investigated further in the following chapters. These values
were considered task dependent in previous research. Hence the scope of this thesis will be limited
to these parameters. This task dependency implies the values differ between the position task (PT),
relax task (RT) and force task (FT). As with any model of a real process, this pilot model will not cover
the dynamics fully due to nonlinearities. This is represented by the pilot remnant (N). This noise signal
is discussed in Section 4.2.

Table 4.2: Pilot model parameters for PT, FT and RT. Values above the double line will not be discussed or investigated in detail
in this thesis.

Symbol Unit PT FT RT
𝜔𝑎𝑐𝑡 rads−1 13.823
𝜁𝑎𝑐𝑡  0.7071
𝐵𝑔 Nms rad−1 2
𝐾𝑔 Nmrad−1 165
𝐼𝑎𝑟𝑚 kgm2 0.01
𝐵𝑖 Nms rad−1 1
𝐾𝑖 Nmrad−1 11 9 10
𝐾𝑝 Nmrad−1 9 −6 10× 10−10
𝐾𝑣 Nms rad−1 2 3 10× 10−10
𝐾𝑓  −1.5 1.5 10× 10−10

Table 4.3: Baseline side stick parameters

Symbol Value
𝐾𝑠𝑡 2Nmrad−1
𝐼𝑠𝑡 0.01kgm2

𝐵𝑠𝑡 0.2Nms rad−1
resulting in:
𝜔0𝑠𝑡(=

√
𝐾𝑠𝑡
𝐼𝑠𝑡 ) 14.14 rads−1

𝜁𝑠𝑡(= 𝐵
2√𝐾𝑠𝑡⋅𝐼𝑠𝑡 ) 0.7071

A more detailed description of this model can be found in the documentation by Venrooij et al. [35].
The parameters of the PID block that define the pilot’s cognitive response are initially set to 𝑃𝑒 = 5,

𝐼𝑒 = 0 and 𝐷𝑒 = 5. At this point, it is worth noting that these parameters are likely to depend on the
control task settings defined by the side stick dynamics and the forcing functions (𝑓𝑡 and 𝑓𝑑). When the
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Figure 4.2: Spectral analysis of pilot model signals defined in Figure 4.1 with settings for PT from Table 4.2

stiffness of the stick is increased, the pilot will likely increase parameters 𝑃𝑒, 𝐼𝑒 or 𝐷𝑒 to generate the
higher required force to move the stiffer stick. This concept will be explored in more detail in Chapter 7.

4.1. Pilot Model Signals
The compensatory control task is simulated with forcing functions 𝑓𝑡 and 𝑓𝑑 according to BW2 defined
in Section 7.3, resulting in time traces of 90s sampled at 200Hz for all model signals. The first 8.08
seconds of these signals are removed such that only the steady state behavior and not the transient
behavior is examined, resulting in a measurement time of 81.92s. Drawing relevant conclusions from
looking at these time traces from this computational experiment is too difficult. Examining their spectra
will give useful information about the frequencies at which these signals have power. The auto power
spectral densities were generated defined by the squared absolute value of the discrete Fourier trans
form (DFT) of the signal, divided by the squared number of samples. [15] The spectra of the forcing
functions (𝑆𝑓𝑡𝑓𝑡 and 𝑆𝑓𝑑𝑓𝑑 ) in Figure 4.2a clearly only show energy at the ten forcing frequencies. No
spectral leakage is visible in these spectra because the ten forcing frequencies were defined at integer
multiples of the DFT’s frequency resolution (= 1

81.92 ). For a linear model such as this one, output signals
should only contain energy at the same frequencies of the inputs. Hence, one would also expect to
see only energy at the ten forcing frequencies in the model signals’ spectra. However, a small amount
of energy is present at other frequencies as well in the spectra of the pilot error signal (𝑆𝑒𝑝𝑒𝑝) and the
position and force feedback signals (𝑆𝑢𝑀𝑆𝑢𝑀𝑆 and 𝑆𝑢𝐺𝑇𝑂𝑢𝐺𝑇𝑂 ). This is likely caused by the transient re
sponse of the model which is still present in the model signals (𝑒𝑝, 𝑢𝑀𝑆 and 𝑢𝐺𝑇𝑂) despite that the first
8.08s of the data were not used. This is shown by the dashed lines in Figure 4.2b with an increased the
runin time of 18.08s. Here, less energy is present at frequencies different from the forcing frequencies
compared to the data with only 8.08s runin time.

A different possible cause of this artifact comes from inaccuracies of the numerical solver used for
this simulation in MATLAB Simulink. This was concluded because the same behavior was observed
spectra of the simulated output signals of very simple systems.
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4.2. Pilot Inaccuracies
In previous work, the inaccuracies of the pilot were modelled by adding a source of noise between
the output of the pilot (𝑚𝑔𝑟𝑖𝑝) and the manipulator dynamics according to N0 in Figure 4.1 [1, 26,
33]. Modelling the remnant in this way would be applicable if uncertainties were present in the pilot
up until this last point, i.e., the hand grip dynamics (𝐻1). However, in order to better model these
uncertainties, they can be isolated to the parts of the neuromuscular model that cover proprioceptive
sensing (GTO and MS) and muscle activation. By this reasoning, a more accurate way of introducing
pilot remnant would be by adding noise to signals proprioceptive feedback signals 𝑢𝐺𝑇𝑂 or 𝑢𝑀𝑆, or
after the neuromuscular activation dynamics at𝑚𝑟𝑒𝑓𝑙 (according to N1 in Figure 4.1). This can be done
systematically by first measuring the variance 𝜎2𝑢𝐺𝑇𝑂 , 𝜎2𝑢𝑀𝑆 or 𝜎2𝑚𝑟𝑒𝑓𝑙 of these three signals in a simulation
of a relevant control task when no noise to model pilot remnant is added to the tracking task. Now, a
noise signal can be added to these signals with an appropriate fraction 𝜎2𝑛𝑜𝑖𝑠𝑒

𝜎2𝑢𝑠𝑖𝑔𝑛𝑎𝑙
. This fraction is equal

to the inverse of the signal to noise ratio (SNR) which relates signal and noise energies which are
defined as their variance (𝜎2).

For all simulations in this thesis that do not take into account variations of the added noise or oth
erwise state any specifications of the pilot remnant noise, the pilot model remnant will be modelled by
the following noise signal. A noise signal filtered by a first order lowpass filter with 𝜔𝑐 = 15 rads−1 will
be added to 𝑚𝑟𝑒𝑓𝑙 with a noise intensity such that the signal to noise ratio (

𝜎2𝑚𝑟𝑒𝑓𝑙
𝜎2𝑛𝑜𝑖𝑠𝑒

) will be equal to ten.
This means that pilot inaccuracies are summarized to be an uncertainty added to the generated muscle
force after the neuromuscular activation dynamics. Chapter 5 discusses the effects of this noise signal
in more detail.

4.3. Stick Variation
Changing the side stick characteristics in a tracking task, such as the one considered for the current
pilot model will influence pilot behavior. It would be desirable to show how changing the settings of
the side stick affects how the pilot uses GTO and MS in a manual control task. This is why this thesis
explores changes of the stick configuration.

Research has shown that a so called force stick, where 𝐾𝑠𝑡 = ∞, resulted in better tracking perfor
mance than two other stick configurations that did allow movement of the stick [17]. With a force stick,
the force that the pilot exerts on the stick is measured and used as pilot input. Contrarily, with a normal
moving side stick, the position of the stick is measured as the pilot input. This research also showed
that the pilot adapts to changes between a passive stick and a side stick with haptic feedback.

The observed better tracking performance when the exerted force (rather than achieved stick posi
tion) is used as pilot input is consistent with the believed better accuracy of sensing force than position
that was introduced in Chapter 2.

Other work based on subjective qualities of the stick showed seemingly different results [36]. Sub
jective qualities indicated by pilots were generally unsatisfactory with a force stick without movement
(𝐾𝑠𝑡 = ∞). Allowing stick movement by a decrease in 𝐾𝑠𝑡 improves the pilots subjective rating of the
stick. This work also showed that the forceresponse gain setting of the side stick is more critical with
fixed stick than with a movable side stick.

A comparison of two stick configurations representing the feeling of cruise condition with a stiffer
stick and a softer stick for approach showed a clear effect when all other task parameters remained
constant [7]. It was shown that a stiffer side stick lowers the pilot admittance and improves the tracking
performance.

These previous experiments did show that changes in stick parameters cause significant changes
in pilot model parameters as well as in the tracking performance.



5
Effects of Pilot Model Remnant

A representation of the pilot control inaccuracies which cannot be modelled analytically was defined
in Section 4.2 as a noise signal added to 𝑚𝑟𝑒𝑓𝑙. This chapter will briefly discuss how variation of the
intensity of this noise signal and the location in the model where it is added affects the model. This is
done with the goal of establishing a definition of the noise signal representing the model inaccuracies
that should be used consistently for all computational experiments for this thesis.

Adding a noise signal to either 𝑢𝑠𝑢𝑝, 𝑢𝐺𝑇𝑂 or 𝑢𝑀𝑆 would all have the same effect. Figure 5.1 shows
that these three signals directly sum up as 𝑢𝑡𝑜𝑡, the input to the neuromuscular activation dynamics
(𝐻6). Hence, adding noise of the same magnitude and spectrum to either of these signals is effectively
the same. However, the signal magnitudes of 𝑢𝑠𝑢𝑝, 𝑢𝐺𝑇𝑂 or 𝑢𝑀𝑆 themselves, reported in Table 5.1, are
different. 𝑢𝑡𝑜𝑡 is clearly dominated by 𝑢𝑠𝑢𝑝, followed by the feedback signals 𝑢𝐺𝑇𝑂 and 𝑢𝑀𝑆 where 𝑢𝐺𝑇𝑂
contributes the least. Hence, when adding a noise signal with equal signal to noise ratio as proposed
in Section 4.2 to 𝑢𝐺𝑇𝑂 or 𝑢𝑀𝑆, the impact on the performance will be significantly larger when noise is
added to 𝑢𝑀𝑆. The consequence is that the pilot model in this configuration is more sensitive to relative
inaccuracies in the muscle spindles compared to the Golgi tendon organs. It will be of interest to see
how relative changes in 𝜎2𝑢𝐺𝑇𝑂 and 𝜎2𝑢𝑀𝑆 caused by changing the stick dynamics or other experiment
conditions impact the tracking performance. This will be investigated in more detail in Chapter 7.

5.1. Effects on Tracking Performance
In a compensatory tracking task, the pilot’s goal is to minimize the error (𝑒𝑝) that is displayed visually
and defined as the difference between the target position (𝜙𝑡) and the controlled element location (𝜙).
Hence the tracking performance of the pilot model can be characterised by the standard deviation of
the error signal (𝜎𝑒𝑝). When no noise is added to the system, and the tracking task is performed at the
initially defined conditions, the performance amounts to a baseline of 𝜎𝑒𝑝 ≈ 0.1385 rad. The sensitivity
of this performance to changes in model parameters and noise characteristics will be an indication if
these changes in model parameters will improve the performance in an actual experiment run.

Figure 5.1: Zoomed in section of the neuromuscular model blockdiagram from Figure 4.1
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Table 5.1: Simulated signal magnitudes with BW2 forcing functions (see Section 7.3) and model parameters according to the
position task without added noise signal

Signal 𝜎2𝑠𝑖𝑔𝑛𝑎𝑙(N2m2)
𝑢𝑠𝑢𝑝 2.641
𝑢𝐺𝑇𝑂 0.056
𝑢𝑀𝑆 0.862
𝑚𝑟𝑒𝑓𝑙 1.078

In theory, the relation between the variance of the tracking error (𝜎2𝑒𝑝) and the intensity of the added
noise (𝜎2𝑛𝑜𝑖𝑠𝑒) with one particular noise bandwidth should be proportional [29]. Figure 5.2 shows how
this is also the case in this computational experiment. Here, the tracking performance attained in the
computational experiment with increasing signal energy of the noise signal added to𝑚𝑟𝑒𝑓𝑙 representing

model remnant is evaluated with 50 different noise realizations. To see this relationship (
𝜎2𝑒𝑝
𝜎2𝑛𝑜𝑖𝑠𝑒

), the
variance of 𝑒𝑝 is used rather than the 𝜎𝑒𝑝 which is more often used as the definition of the tracking
performance.

On average, the slope of
𝜎2𝑒𝑝
𝜎𝑛𝑜𝑖𝑠𝑒 in Figure 5.2 is approximately equal to 0.003. According to theory,

this is slope should be equal to the system dynamics squared. The added noise signal has energy
up to 15 rads−1 so the system dynamics should be evaluated up to this frequency. Figure 5.3 shows
that, for these frequencies, the magnitude of the system response is approximately equal to −25dB.
Evaluating the square of these dynamics results in (10−2520 )2 ≈ 0.003. This confirms that in the results
from repeated computational experiments, the way that the energy of the pilot output scales with the
noise input agrees with the trend expected from theory.

Importantly, Figure 5.2 shows that different realizations of the same noise signal have considerably
different effects on the outcome of simulating the tracking experiment. The figure does show that
the average results of 50 noise realizations is coherent with the theoretical outcome. Hence, for all
simulated results in this thesis that do include this remnant noise signal, a simple form of Monte Carlo
simulation will be required for results to be meaningful [30]. Simulations will be performed by adding
50 different realizations of the filtered noise signal to 𝑚𝑟𝑒𝑓𝑙 with corner frequency 𝜔𝑐 = 15 rads−1 at
SNR=10 (as introduced in Section 4.2) and reporting the average of the results that come from the 50
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Figure 5.2: Tracking performance with varying pilot remnant intensity at 50 different noise realizations
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Figure 5.3: Frequency response from noise input location (𝑚𝑟𝑒𝑓𝑙) to pilot output (𝑢𝑝) with model parameters according to PT

simulations.





6
Stability

After deriving the analytic system dynamics of the pilot model and its various feedback channels, these
dynamics can be investigated in the frequencydomain to assess the stability of the model. This is
needed to establish the usable region where this model of the pilot dynamics can be used in simulations.
The stability of the open loop pilot model (from signal 𝑢𝑠𝑢𝑝 to 𝑚𝑚𝑢𝑠 (𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠)) can be considered
separately from the stability of the model acting in a tracking task. This complete tracking task (from
the target signal (𝑓𝑡) to the output signal (𝜙) (𝐻𝑓𝑡 ,𝜙)) includes a feedback channel which represents the
visual error the pilot responds to. By looking at the open loop pilot model and the entire tracking task
separately, different degrees of stability can be distinguished. The stability of these models is examined
for varying values of the proprioceptive gains (𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) introduced in Chapter 4.

6.1. Definitions of Stability
The continuoustime representation of the open loop pilot model has many poles and zeros due to its
several internal feedback loops. Some of these poles can move to the right halfplane when parameters
of these feedback loops are changed. Figures E.1 to E.11 which will be explained in Section 6.2 show
this in detail. When this happens the open loop pilot model becomes unstable. In physical terms this
would mean that the pilot output (𝑢𝑝) would become unbounded when the pilot gets a visual moving
input target signal but no visual feedback of the error. GTO and MS feedback channels can lead to
this instability, hence this stability can be assessed based on the system up until the point where these
feedback channels are added. This will thus be the system from 𝑢𝑠𝑢𝑝 to the force exerted by the muscle
(𝑚𝑚𝑢𝑠) (𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠).

On the other hand, the stability of the tracking task is not always the same as that of the open
loop pilot. In this closed loop tracking task, the pilot would only have a visual display of the error
signal (𝑒𝑝). In order to assess this stability dynamics of the entire tracking task (𝐻𝑓𝑡 ,𝜙) with the pilot
model and controlled element in a unit feedback loop were derived. Similarly the presence of unstable
poles in these dynamics was checked. Table 6.1 shows a brief overview of these different degrees
of stability. For example, CuOs indicates a setting of the pilot model where the entire tracking task
becomes unstable whilst the open loop pilot (from signal 𝑢𝑠𝑢𝑝 to 𝑚𝑚𝑢𝑠) is stable.

Instability of the open loop pilot (CsOu & CuOu) is caused by the GTO and MS feedback channels
and occur at relatively high frequencies (𝜔 > 5 rads−1. This is clear from Figures E.1 to E.11 where
the cause of instabilities of the pilot model is investigated in detail. Here the location of the poles and

Table 6.1: Pilot model stability classifications with numerical labels used later in Figure 6.2a

Open loop
(𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠)

Closed loop
(𝐻𝑓𝑡 ,𝜙) Stable Unstable

Stable CsOs (2) CuOs (1.5)
Unstable CsOu (1) CuOu (0)
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zeros of the system from 𝑢𝑠𝑢𝑝 to 𝑚𝑚𝑢𝑠 are shown. Instability of the closed loop tracking task (CuOs &
CuOu) is caused by insufficient stability margins of the open loop pilot. This implies that the open loop
system becomes unstable in a unit feedback loop. This is illustrated by Figure 6.1 with the poles and
zeros of the feedback system representing the entire tracking task. This shows that the closed loop
system becomes unstable at considerably lower frequencies (𝜔 < 5 rads−1 than the instabilities of the
open loop pilot. This is according to expectations since the neuromuscular system dynamics are faster
than the cognitive process of performing the tracking task.

The parameters that define the GTO and MS feedback blocks were varied to find which combina
tions result in a stable open loop or closed pilot model. In general, the stability of the open loop pilot
and the tracking task were consistent. Yet, in the boundaries of the stable regions, sometimes only
the open loop or only the tracking task was stable. The force gain (𝐾𝑓), position gain (𝐾𝑝) and velocity
gain (𝐾𝑣) were initially set to the values appropriate for the position task, relax task and force task as
in Table 4.2. In Section 6.2, the details of this search for the stable regions will be discussed.

From Figure 6.2, one can deduce that the selected setting of the GTO sensor gain 𝐾𝑓 = −1.5 for RT
allows significantly smaller variations of the MS sensor gains 𝐾𝑝 and 𝐾𝑣 than 𝐾𝑓 = 1.5 for FT would. A
three dimensional representation of the settings for 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 that result in a stable pilot model is
given in figure 6.3. This also shows that 𝐾𝑓 = 1.5 limits the allowed variations of 𝐾𝑝 and 𝐾𝑣.

These stability regions were found to change with different stick configurations defined by the pa
rameters in the model of 𝐻𝑠𝑡 in Table 4.1. This is logically caused by changes in the dynamics of the

Figure 6.1: Poles and zeros of entire tracking task (𝐻𝑓𝑡 ,𝜙) when becoming unstable. 𝐾𝑣 and 𝐾𝑓 are varied linearly from PT
settings (𝐾𝑣 = 2Nms rad−1 and 𝐾𝑓 = −1.5, see Table 4.2) to 𝐾𝑣 = 0 and 𝐾𝑓 = −5.
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model of the pilot in combination with the stick Figure 7.2. When the stick dynamics change, the poles
and zeros of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 and 𝐻𝑓𝑡 ,𝜙 may be moved to the right half plane.

6.2. Poles at Stability Boundaries
In order to see what causes the instabilities of the open loop pilot model, a root locus plot can be helpful
to see how the poles move into the right half plane. This was done at each of the boundaries of the
stable regions visible in Figure 6.2a. The root locus plots of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 are reported for these boundary
crossings in each of the three views separately. If the poles behave apparently equally at the different
boundaries within one stability heatmap, the root locus is only shown for one of these boundaries. The
root locus plots are generated by drawing the locations of the poles and zeros in the complex plane
with varying settings of the proprioceptive gains (𝐾𝑝, 𝐾𝑣 and 𝐾𝑓). For each plot, they are initially set
according to values for PT from Table 4.2, and then linearly moved to endvalues outside of the stable
region according to locations A until K in Figure 6.2a. These endvalues are selected such that the
stability boundaries are crossed close to perpendicular to show the clearest effect in the root locus plots.
If the instability boundaries in Figure 6.2a were crossed at a shallower angle, the resulting root locus
plots in Figures E.1 to E.11 would show less clear movements of the poles of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 . Figure 6.4
shows one example of the definition of a line along which the proprioceptive gains are varied. This
particular line according to point A in Figure 6.2a leads to the root locus in Figure E.1. The other root

(a) ’Sliced’ at proprioceptive gains according to FT (see Table 4.2) (from left to right: 𝐾𝑝 = 9Nm rad−1, 𝐾𝑣 = 2Nms rad−1 and 𝐾𝑝 = −1.5) with
letters for subsequent root locus analysis and position task indicated by PT

(b) Full side projections

Figure 6.2: Stability regions by varying proprioceptive gains 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓.
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Figure 6.3: Isometric view of stable regions for 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓

Figure 6.4: Example of root locus line definition used in Figures E.1 to E.11

locus plots in (Figures E.2 to E.11) are generated by variations of two of the three proprioceptive gains
to endvalues indicated in the respective legends of the plots. These gain settings are also representend
by letters in Figure 6.2a.
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Instabilities of the open loop pilot model are caused by insufficient stability margins on either the
GTO feedback signal or the MS feedback signal. When either gain margin drops below one, the system
becomes unstable when these proprioceptive feedback loops are closed. This is simply the definition
of the gain margin. Plots on the right side of Figures E.1 to E.11 show the evolution of these gain
margins. The consequences of these gain margins becoming insufficient is shown in the plots on the
left. These root locus plots show how the poles move into the right half plane when log(gain margin) <
0 ⇔ gain margin < 1. The plots consistently show that instability caused by too high 𝐾𝑓 is caused
by insufficient GTO gain margin and too large 𝐾𝑝 or 𝐾𝑣 is associated with a MS gain margin below
1. Furthermore, the root locus plots allow conclusions to be draw pertaining to the frequency of the
unstable poles that occur. It is clear that two sets of periodic poles of ∼ 20 rads−1 and ∼ 50 rads−1 and
one aperiodic pole at the imaginary axis are the three possible causes of instability of the open loop
pilot. Their causes can be summarized by the following points.

Instability boundaries:

1. When 𝐾𝑓 grows larger than a particular boundary dependent on 𝐾𝑝 and 𝐾𝑣 a high frequency pole
of ∼ 50 rads−1 becomes unstable as shown in Figures E.4 and E.7.

2. When 𝐾𝑝 becomes lower than a particular boundary dependent on 𝐾𝑓 and 𝐾𝑣 an aperiodic pole
on the imaginary axis becomes unstable clear in Figures E.5 and E.9

3. At all other stability boundaries, a pole of originally ∼ 20 rads−1 becomes unstable shown in
Figures E.1 to E.3, E.6, E.8, E.10 and E.11. The proprioceptive gain settings at which this occurs
are interdependent.

These three boundaries are also distinguishable in 3D in Figures 6.2b and 6.3. The right figure
in Figure 6.2b faces stability boundary 1, the left figure faces stability boundary 2. The middle figure
shows a part of the 3D curve describing stability boundary 3. The listed stability boundaries do not
imply that poles that cause instability at one particular boundary, have the same frequency on this entire
boundary. Each of the three boundaries is associated with one particular pole or pair of periodic poles.
The frequency of these poles at the boundary is dependent on the exact location on the boundary. In
other words, the frequency of the unstable poles changes when the proprioceptive gains are moved
along the stability boundary.

In physical terms these boundaries mean that a too high force feedback gain causes high frequency
instability of the open loop pilot. A too low position feedback causes aperiodic instability. All other com
binations of proprioceptive feedback gains that lead to instabilities, cause instabilities at still reasonably
high (> 10 rads−1) frequencies.

In Figures E.1 to E.11, the gain margin of the open loop pilot (made up by the pilot model, control
device and controlled element, i.e., from the visually displayed error signal to the controlled element
position (𝐻𝑒,𝜙)) is included as well. This is to illustrate the changes pertaining to the closed loop tracking
task. This gain margin can be interpreted in a similar way as the internal proprioceptive loops. When the
open loop gain margin is lower than one, the open loop pilot will be unstable when placed in the closed
loop tracking task. The trend of this gain margin is not that similar between all stability boundaries, so
a general conclusion about the gain margin of the open loop pilot cannot be drawn. At FT, the open
loop gain margin is approximately equal to 1.5. This reduces to one at some stability boundaries. At
other boundaries however, the open loop gain margin does increase. In general, it can be stated that
the gain margin magnitude of the open loop pilot does not change as rapidly as the gain margin of the
feedback loops for the muscle spindle and Golgi tendon organ.





7
Control Task Parameter Effects

The pilot model that was discussed up to this point can be used to simulate how a pilot would behave
in a compensatory tracking task. This will also be the framework of one of the two experiments to be
performed which will be discussed in Chapter 8. Here, also the possible parameters to be varied will
be discussed. Before selecting which parameters to vary and between what values, it is worthwhile to
see if any effects of these variations can be predicted. In this chapter, this will be done by means of
theoretical knowledge and simulation of the experiment using the established pilot model. Variations of
the task parameters can be distinguished into variation of the stick dynamics (discussed in Section 7.2)
and variation of the target and disturbance signals (covered in Section 7.3). The variations of these task
parameters are intended ultimately to generate different conditions between which changing behavior
of the Golgi tendon organ and muscle can be observed, in computational as well as humanintheloop
experiments.

The parameters that define the neuromuscular model that were identified as task dependent in
previous work are 𝐾𝑖, 𝐾𝑓, 𝐾𝑝 and 𝐾𝑣 [3]. In this chapter, the effects of changing these parameters will
be investigated. Initially, these parameters will be varied between the appropriate values for the three
different tasks, PT, FT and RT from Table 4.2.

Section 7.4 discusses how the pilot would adapt to changing the stick settings or forcing functions
in a control task. Specifically, it covers what expectations of this pilot adaptation can be made, based
on performing simulations of the used pilot model. This discussion will include the effects of different
realizations of the noise signal to model pilot remnant, will be discussed.

7.1. Pilot Model Parameters’ Effects on Stability
Varying 𝐾𝑖, 𝐾𝑓, 𝐾𝑝 and 𝐾𝑣 changes the dynamics of the pilot model which can cause instabilities as
mentioned in Chapter 6. Modelling the pilot remnant differently with different noise signals does not
affect the system dynamics. Hence, the pilot remnant will not be discussed in detail in this section.

With the parameters for PT, the closed loop and open loop pilot are both stable (CsOs). Changing to
FT or RT causes no instability of the open loop pilot model but does make the pilot unable to perform the
closed loop tracking task (CuOs). Figure 7.1 shows the changing frequency response between these
three settings. This shows that for RT the neuromuscular model strongly resembles a mass spring
damper system. This is reasonable since 𝐾𝑓, 𝐾𝑝 and 𝐾𝑣 are approximately zero for RT. The dynamics
for FT and PT are significantly different from a mass spring damper system with all nonzero 𝐾𝑓, 𝐾𝑝 and
𝐾𝑣. A straightforward observation from Figure 7.1 is that the magnitude of the steadystate response
is lowest for PT, caused by its settings for 𝐾𝑝, 𝐾𝑣, 𝐾𝑓 and 𝐾𝑖. This means that these parameter settings
make the pilot model less sensitive to low frequency forcing function components than the settings for
the force task (FT). With FT, the stick position (𝑢𝑝) will be more sensitive to low frequency disturbance
inputs.

Stability classification from Table 6.1
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Figure 7.1: Open loop pilot dynamics between parameter settings of 𝐾𝑝, 𝐾𝑣, 𝐾𝑓 and 𝐾𝑖 for tasks PT, FT and RT from Table 4.2

7.2. Stick Parameters
The dynamics of sidestick are characterised by a mass spring damper system with baseline parameters
in Table 4.3 and dynamics described by the transfer function for 𝐻𝑠𝑡 in Table 4.1.

Due to the complexity of the system dynamics described in Chapter 4, analysis of the effects of
changing stick parameters will in some scenarios be done based on quantitative effects rather than
qualitative analysis.

Previous research discussed in Section 4.3 has shown the effects that variations in stick parameters
can have on tracking tasks. Here, it was reported that the pilot model parameters certainly depend on
the stick settings. This leads to the intention to show any dependency the current model has on the
stick settings.

7.2.1. Variation of Stick Stiffness
Since forcemeasurement is suggested to be approximately 50%more accurate than position measure
ment, one could expect that a stiffer stick would allow the pilot to perform the control task based more
on force perception than position perception. And in a simulations with increased 𝐾𝑠𝑡, 𝜎𝑢𝐺𝑇𝑂 increases
as well, while 𝜎𝑢𝑀𝑆 remains approximately equal. This is shown in Figure 7.4. Figure 7.2 gives a rep
resentation of how the dynamics of the stick change when only the stiffness of the stick is increased
between a suggested range of values higher or lower than the initial setting of 𝐾𝑠𝑡 = 2Nmrad−1. Here
the input and output are 𝑚𝑔𝑟𝑖𝑝 and 𝑢𝑝 respectively.

The figure shows how an increase in 𝐾𝑠𝑡 causes a proportional decrease of the magnitude of the
frequency response in the lower frequency range (𝜔 < 5 rads−1). However, at 𝜔 > 10 rads−1, the
increased natural frequency due to the increased stiffness increases the response at these higher
frequencies. Therefore, it might be worthwhile to consider increasing 𝐼𝑠𝑡 as well to maintain equal
natural frequency. This would mean that the relative damping (𝜁𝑠𝑡, see Table 4.3) would decrease
resulting in a peak in the magnitude at the natural frequency.

Between 𝐾𝑠𝑡 = 0.5Nmrad−1 and 8Nmrad−1 the lower frequency response magnitude changes proportionally 1
4 ≈ −12dB
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7.2.2. Compensating Stiffness with Damping and Inertia
In order to prevent unwanted effects from changing dynamics due to changing natural frequency and
damping ratio shown in Figure 7.2, a proportional increase of all stick parameters (𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡)
together could possibly show a more clear effect of changing the stick dynamics. This would thus be
a better comparison to allow the pilot to perform the control task more abased on force perception and
less using position perception. In Figure 7.3, the effect of multiplying all stick parameters by the same
factor is shown to be equal to multiplying the stick dynamics by a static gain equal to the reciprocal of
that factor. When this is done, the consequent values of𝜔0𝑠𝑡 and 𝜁𝑠𝑡 will remain set to their original value
in Table 4.3. This means that the magnitude of the frequency response of the stick will be changed by
the same factor for all frequencies. This joint variation of the stick parameters ensures that the phase
of the frequency response of the stick remains unchanged. Figure 7.4a shows the wanted effects from
increasing the stick stiffness. But Figure 7.4b shows the same effect can be observed when 𝐾𝑠𝑡, 𝐵𝑠𝑡
and 𝐼𝑠𝑡 are varied together. This variation of stick dynamics can thus be used similarly with the benefit
of preventing any unexpected effect of changing stick dynamics.

From this point forward in this thesis, when an increase in stick stiffness is discussed, this implies
the joint variation of 𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡. This will be done with a lower bound of 𝐾𝑠𝑡 = 0.53Nmrad−1. This
is because when 𝐾𝑠𝑡 < 0.53Nmrad−1 and 𝐵𝑠𝑡 and 𝐼𝑠𝑡 are proportionally changed with this, the tracking
task becomes unstable. An upper bound for the stick stiffness is set to 8Nmrad−1. Selecting a wider
range of stick settings will likely make it impossible to draw worthwhile conclusions. Furthermore, when
𝐾𝑠𝑡 > 8Nmrad−1, one should start to consider resulting implications on the pilots physical fatigue since
this stiffness will be require the pilot to exert forces which can become exhausting even over one 90s
experiment run.

7.2.3. Effects on Stability
In general, it can be stated that an increased stick stiffness will lead to a more stable pilot model.
This is logical from a physical standpoint but is also quantifiable by assessing the stability regions
shown previously in Figure 6.2 at different stick settings. This is done for 𝐾𝑠𝑡 = 1Nmrad−1 and 𝐾𝑠𝑡 =
4Nmrad−1. The results in Figures 7.6 and 7.7 consistently show that a stiffer stick will lead to larger
allowed variations of the proprioceptive feedback gains 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 whilst maintaining a stable pilot
model, both open loop as well as in the closed loop tracking task. Figure 7.5 shows how changing

Figure 7.2: Stick dynamics (𝐻𝑠𝑡) with variation of 𝐾𝑠𝑡
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Figure 7.3: Stick dynamics (𝐻𝑠𝑡) with joint variation of 𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡

stick dynamics affect the frequency response of the feedback signals of the Golgi tendon organ and
muscle spindles. These plots confirm the changing stability margins between stick settings that lead to
instabilities discussed in Chapter 6.

7.2.4. Effects on Performance
When the stick is changed from very light to very heavy dynamics as done for the results in Figure 7.4b,
the following conclusions can be drawn regarding the performance. An increased stick stiffness causes
a deterioration of the tracking performance and results in a higher magnitude of the GTO feedback
signal and no significant change of the MS feedback signal. At first glance this does not seem to imply
that better force measurement is used efficiently by the pilot when the stick stiffness is increased. With a
stiffer stick, the GTO feedback signal is stronger so the input to the neuromuscular activation is defined
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Figure 7.4: Performance and feedback signal intensities at varying stick settings keeping other model parameters constant
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more by force measurement which is supposed to be more accurate. Yet, the pilot performs worse in
the tracking task with an increase in 𝜎𝑒𝑝 . These conclusions hold for changes of the side stick dynamics
without any changes in other parts of the model of the pilot. As specified in Chapter 5, the results in
Figure 7.4 were obtained by averaging the results from simulations with 50 different noise realizations.

In Section 7.4, changes that happen in the pilot model caused by changes in the stick dynamics will
be discussed. This may be a better representation of how a real pilot would react to changes is stick
dynamics.

7.3. Target and Disturbance Signals
A dependency of the tracking performance on three different sets of target (𝑓𝑡) and disturbance (𝑓𝑑)
signals was clearly shown in previous work [13]. The evident result was that the tracking performance is
best with the set of forcing functions a the lower frequencies (BW1) and worst at the highest frequency
forcing functions (BW3). These bandwidth conditions are defined with by the corner frequencies in
Table 7.1 defined in previous work [13]. These three bandwidths were selected with equal width on a
logarithmic scale. Figure 7.8 gives a graphical representation of the magnitude of the forcing functions
at different frequencies. For generating the disturbance signal, these magnitudes were scaled by the
inverse of the magnitude of the controlled element dynamics to ensure equal task difficulty. The forcing
functions were then generated as a sum of ten sinusoids at frequencies between ∼ 0.4 rads−1 and
∼ 17 rads−1. The exact description of these forcing functions can be found in the relevant publication
[13]. In this thesis, condition BW2 is selected if not mentioned otherwise.

These forcing functions will also be used in this thesis. The result that the tracking error (𝜎𝑒𝑝)
increases with the higher frequency forcing functions is easily checked with the simulated pilot model
as reported in Table 7.2. The forcing functions with higher frequencies have higher amplitudes at all
frequencies and result in higher signal intensities as well, as reported by the values for 𝜎𝑓𝑡 and 𝜎𝑓𝑑 . This
is confirmed by looking at the amplitudes of 𝑓𝑡 and 𝑓𝑑 reported by Fu. Here, at any of the ten forcing
frequencies, the amplitude of 𝑓𝑡 and 𝑓𝑑 was highest for BW3 and lowest for BW1.

Still, the relative increase of 𝜎𝑒𝑝 between bandwidth conditions is larger than that of 𝜎𝑓𝑡 or 𝜎𝑓𝑑 . In
order to be more thorough, the forcing functions for BW1 and BW3 were scaled such that 𝜎𝑓𝑡 and
𝜎𝑓𝑑 were equal to the values for BW2. The simulated results in Table 7.2 still showed that the higher
frequency forcing functions resulted in worse tracking performance.

Earlier work did include the estimation of the frequency response function of the pilot for different
bandwidth forcing functions, and significant changes were reported [13]. In this thesis, this change in
frequency response will be attempted to be expressed by changes in model parameters.

7.4. Pilot Adaptation
Up to this point, only the direct result of variations of one parameter in the model of the tracking task has
been considered. That is to say that all other model parameters remain unchanged. It is highly likely
that this is not the best representation of what would happen in a real experiment. In all probability, the
pilot will adapt to incorporated changes in some way to better perform the tracking task. In previous
work, significant pilot adaptation was observed when the side stick parameters were changed [8]. Other
research showed that pilot model parameters are also dependent on other control task parameters [16].
Knowledge of how the pilot adapts to parameters in a tracking task is of great relevance for aiding the
pilot as well. Pilots have been shown to adapt to different types of haptic support systems in a control
task [27]. This suggests that accurate knowledge of pilot adaptation will allow these support systems
to be designed more effectively.

Table 2.3 and Table 2.4 of [13]

Table 7.1: Forcing function bandwidth definition

Bandwidth Lower corner frequency (rads−1) Higher corner frequency (rads−1)
BW1 0.6 4.8
BW2 1 8
BW3 1.65 13.2



68 7. Control Task Parameter Effects

(a) GTO, varying 𝐾𝑠𝑡 (b) GTO, jointly varying 𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡

(c) MS, varying 𝐾𝑠𝑡 (d) MS, jointly varying 𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡

Figure 7.5: Frequency response from 𝑢𝑠𝑢𝑝 to GTO and MS feedback at varying stick settings
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(a) 𝐾𝑠𝑡 = 1Nm rad−1.

(b) 𝐾𝑠𝑡 = 4Nm rad−1

Figure 7.6: Stability regions for 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 ’Sliced’ at proprioceptive gains according to FT (see Table 4.2) (from left to right:
𝐾𝑝 = 9Nmrad−1, 𝐾𝑣 = 2Nms rad−1 and 𝐾𝑝 = −1.5) with different values for 𝐾𝑠𝑡

This section will explore pilot adaptation in the simulated environment aiming to make predictions
with respect to a real tracking experiment. Predicting how the detailed pilot model that is considered for
this thesis will adapt to experiment settings is expected to be challenging to do based on only simulation
of a model. Dependency of parameters in this model on experiment settings are not known. This means
the changes of these parameters have to be approximated in some way. These approximation should
be considered only that, until they are validated in an experiment.

7.4.1. Cognitive Response
The cognitive inputs the pilot gives to his muscles represented by𝐻6 in Table 4.1. This supraspinal input
(𝑢𝑠𝑢𝑝) is determined by the cognitive response of the pilot modelled in this thesis by a PID controller.
One can expect these cognitive dynamics to change when the stick dynamics are changed. The pilot
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(a) 𝐾𝑠𝑡 = 1Nm rad−1 (b) 𝐾𝑠𝑡 = 4Nm rad−1

Figure 7.7: Isometric view of stable regions for 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 with different values for 𝐾𝑠𝑡

Table 7.2: Tracking performance and forcing function intensity at three BW conditions

Bandwidth 𝜎𝑒(rad) 𝜎𝑒(rad) with forcing
functions scaled to BW2 𝜎𝑓𝑡(rad) 𝜎𝑓𝑑(rad)

BW1 0.0815 0.0821 0.1506 0.1260
BW2 0.1400 ” 0.1936 0.1339
BW3 0.2733 0.2720 0.2255 0.1771

performing the tracking task would feel that the stick needs more force to be moved when the stick is
stiffer. By this analogy, one would thus expect to observe an increased 𝑃𝑒 for an optimally tuned PID
controller. This optimally tuned PID is approximated by finding 𝑃𝑒, 𝐼𝑒 and 𝐷𝑒 that minimize 𝜎𝑒𝑝 using a
search algorithm. Figure 7.11 shows how this cognitive response changes when the stick dynamics are
changed. The PID settings that result in the minimal 𝜎𝑒𝑝 are found and presented. From this figure, it
is clear that for this particular tracking task and controlled element the pilot does not have to cognitively
act as an integrator since 𝐼𝑒 = 0 for any stick setting. The dynamics of the controlled element defined
in Table 4.1 and illustrated by Figure 7.10 show a negative slope equal to 1, which according to theory
in manual control [24], is the preferred slope in the crossover region. Consequently, the tracking task
with this controlled element does not require the pilot to act as an integrator making the tracking task
cognitively easy. The most difficult controlled elements pilots can handle have been studied in the
past [19]. When comparing the controlled element for this thesis to those, it becomes clear that the
considered controlled element indeed can be regarded easily controllable.

Figure 7.11 does not confirm the expectation that 𝑃𝑒 immediately increases with 𝐾𝑠𝑡. To see why
this is, the dynamics of the pilot model from 𝑢𝑠𝑢𝑝 to 𝑢𝑝, shown in Figure 7.9 gives an explanation.
First of all, a significant variation in the stick parameters only makes a marginal change in the open
loop dynamics of the entire pilot, control device and controlled element together. The way to achieve
the best closed loop performance is for the magnitude of the dynamics to equal one at the target
frequencies. An increase of 𝑃𝑒 would cause a proportional increase of the magnitude of the open
loop dynamics (∣𝐻𝑂𝐿 ∣) over all frequencies. However, an increase in ∣𝐻𝑂𝐿 ∣ at higher frequencies may
compensate better for a heavier stick than at low frequencies. This can only be done by increasing
𝐷𝑒. Hence, the prediction that the pilot adapts to an increase of 𝐾𝑠𝑡 by increasing 𝑃𝑒 is too simple and
inaccurate. Still the better conclusion from this plot and the observed changes in optimal PID settings is
that it is probably worthwhile to use available tools to find the PID settings that best represent the actual
pilot’s cognitive processes. This is because the considered system has a high degree of complexity.

It was also attempted to tune the cognitive response PID controller using classical Zeigler–Nichols
tuning [25]. This gave inferior results compared to the search algorithm discussed earlier and will thus
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Figure 7.8: Definition of forcing function magnitudes

not be explored going forward. This worse performance is not surprising since heuristic methods are
adopted regularly for PIDtuning. Optimal PID parameters are often found using complex methods [28].

The method that lead to the results in Figure 7.11 was performed at increasing stick settings to find
out if any maximum limit for 𝐾𝑠𝑡 exists. An upper limit for 𝐾𝑠𝑡 was found, which, if exceeded, made the
pilot model unable to perform the control task with 𝜎𝑒 >> 1. A limit was found at 𝐾𝑠𝑡 > 45Nmrad−1 when
all stick parameters were varied together. This value was 65Nmrad−1 when only𝐾𝑠𝑡 was increased and
22Nmrad−1 when the PID settings were left to their original from Table 4.2. The implication is that the
way pilot adaptation is modeled in this section allows an unstable configuration to be resolved. When

Figure 7.9: Open loop pilot dynamics from e to 𝜙 with very light and very heavy side stick dynamics
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Figure 7.10: Controlled element dynamics defined in Chapter 4

the cognitive response parameters in combination with the task settings initially lead to an unstable
control task with 𝜎𝑒 >> 1, the algorithm is able to ’escape’ this infeasible combination of parameters.

7.4.2. Proprioceptive Feedback
The proprioceptive feedback gains 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 are assumed to be task specific in the sense that they
differ between the position task, force task and relax task [3]. This leads to the concept that they may
as well be dependent on other task parameters such as 𝐾𝑠𝑡 or forcing function bandwidth. Changing
these task parameters does not change the fact that we are dealing with a position task, but could have
an effect on the exact values of parameters in the model of the pilot. This leads to a set of hypotheses
defined in Table 7.4

7.4.3. Parameter Dependency
In order to test the stated hypotheses, a search algorithm is used to find the set of parameters 𝑃𝑒, 𝐼𝑒, 𝐷𝑒,
𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 that minimize 𝜎𝑒𝑝 . It would be interesting to see the tracking performance’s sensitivity to
changes in any of these parameters. Hypothetically, this could be achieved with heatmaps or contour
plots similar to those made for stability conditions discussed in Chapter 6. However for several reasons
this is not efficient for examining tracking performance. The first reason is that there are now six pa
rameters instead of three to consider making a graphical presentation with heatmaps impractical. Also,
the scalar 𝜎𝑒𝑝 cannot be visualized in a three dimensional plot as was possible for degrees of stability
in Figure 6.3. This could possibly be solved by categorizing tracking performance with a small number
of ranges for the value of 𝜎𝑒𝑝 . The most important drawback however is that evaluating the tracking
performance requires simulation of the tracking task. This much more computationally expensive than
only determining the stability which was needed for the results in Chapter 6.

For those reasons, a search algorithm is the more efficient and preferred method to assess the
relation between the pilot model parameters (𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) and the tracking performance.
The algorithm has tolerances of 0.001 rad for 𝜎𝑒𝑝 and 0.5 for the pilot model parameters. This ensures
that the search algorithm stops when in the last step, both the improvement of 𝜎𝑒𝑝 was smaller than
0.001 rad and changes in any of the pilot model parameters (𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) were smaller
than 0.5. These boundaries are set because any narrower search is likely to overfit seperately to
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(a) Varying 𝐾𝑠𝑡
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(b) Jointly varying 𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡

Figure 7.11: Optimized cognitive dynamics (𝑃𝑒, 𝐼𝑒 and 𝐷𝑒) with changing stick dynamics
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(a) Cognitive response PID parameters
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(b) Proprioceptive feedback parameters

Figure 7.12: Tuned pilot model parameters (𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) with changing stick dynamics at BW2 forcing functions

each of the 50 different noise realizations (on 𝑚𝑟𝑒𝑓𝑙) and the exact forcing functions used. With a free
search algorithm, the possibility of variable attaining unreasonable values should be avoided. Hence
the results can lead to unreasonable outcomes. When this occurs they should be treated with care.

This algorithm is executed at the three bandwidth conditions defined earlier and at varying stick
parameters as defined earlier in this section. The outcome of this algorithm is vector of seven values
(the tracking performance followed by the six model parameters). When changes between different
bandwidth conditions or stick parameters lead to significant changes of any pilot model parameter (𝜎𝑒𝑝 ,
𝜎𝑢𝐺𝑇𝑂 , 𝜎𝑢𝑀𝑆 , 𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 or 𝐾𝑓), the null hypothesis of this parameter can be rejected in favor
of one of the three alternative hypotheses. Only when the null hypothesis of a particular pilot model
parameter is rejected, will any search for a quantitative definition of its dependency be meaningful. For
now, only simulated data are used, meaning that performing statistical analysis to see the statistical
significance of any observed differences is not yet needed. When the experiments are performed,
statistical analysis of the results will be needed to interpret the results properly.

Figure 7.12 shows the results of the algorithm when the stick dynamics are varied. It is clear that,
similar to what was suggested before when pilot model parameters were not tuned, 𝜎𝑒𝑝 increases with
stick stiffness. This recurring conclusion is contrary to the conclusion reported in previous work [7].

Using the described search algorithm above does assume that the pilot would be able to adapt
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(a) Cognitive response PID parameters
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(b) Proprioceptive feedback parameters

Figure 7.13: Tuned pilot model parameters (𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) with different forcing functions

Table 7.3: Tuned pilot model parameters at 𝐾𝑠𝑡 = 0, 𝐵𝑠𝑡 = 0.053Nmrad−1 and 𝐼𝑠𝑡 = 0.00265Nmrad−1

Symbol Value
𝜎𝑒𝑝 0.118 rad
𝑃𝑒 5
𝐼𝑒 0
𝐷𝑒 7
𝐾𝑝 9Nmrad−1
𝐾𝑣 0.9Nms rad−1
𝐾𝑓 1.8

optimally to the imposed task settings. In reality, this is limited by the boundaries on the pilot model
parameters. It could well be that the actual pilot is not able to select the perfect combination of the six
model parameters as well as the search algorithm can. It should thus be noted that in a real experiment,
the same outcome is not guaranteed.

Figure 7.12 shows how tracking performance behaves when the stick parameters 𝐾𝑠𝑡, 𝐼𝑠𝑡 and 𝐵𝑠𝑡
are jointly varied. Here, the tracking performance becomes worse with increased stick stiffness. In
this plot the condition of 𝐾𝑠𝑡 = 0 is not included because the corresponding 𝐼𝑠𝑡 = 0 would be infeasible.
Still the condition of 𝐾𝑠𝑡 = 0 is of interest because this would require the pilot to perform the control
task whilst only knowing the center position of the stick with position sensing. The pilot would not have
any force due to 𝐾𝑠𝑡 to help determining what position of the stick corresponds to no deflection. The
search algorithm is executed separately with 𝐾𝑠𝑡 = 0, and 𝐼𝑠𝑡 and 𝐵𝑠𝑡 according to the joint variation
at 𝐾𝑠𝑡 = 0.53Nmrad−1. This leads to the results in Table 7.3. This shows that tracking performance
with zero stick stiffness is worse than performance with 𝐾𝑠𝑡 = 0.53Nmrad−1 to 3.02Nmrad−1. This is
according to expectations since with 𝐾𝑠𝑡 = 0 the pilot has to rely much more on the muscle spindles
than on the Golgi tendon organs and MS have been shown to have worse accuracy in Chapter 3. When
𝐾𝑠𝑡 = 5.51Nmrad−1 to 8Nmrad−1, tracking performance does become worse than for 𝐾𝑠𝑡 = 0.

The performed simulations lead to the results in Figures 7.12 and 7.13 and the selection of the
hypotheses indicated in blue in Table 7.4. In Figure 7.13, the algorithm found values for 𝐷𝑒, 𝐾𝑝, 𝐾𝑣
and 𝐾𝑓 that became unreasonably large in magnitude for BW3. It was indicated earlier that such a free
search algorithm always has this risk. Therefore the simulated results for BW3 should not be seen as
meaningful. Results of tuning the model parameters at BW1 and BW3 may be found in Figures F.1
and F.2.

Table 7.4 implies that 𝐼𝑒, 𝐾𝑣 and 𝐾𝑓 are assumed to be independent on the varied conditions from
this point forward. This conclusion is coherent with previous work [8]. Here 𝐾𝑝 was shown to be more
dependent on varying stick settings than 𝐾𝑣 and 𝐾𝑓. The values of the three parameters identified
as independent on the conditions will remain set to their original values defined by previous research.
Consequently, using Table 7.4, the pilot model parameters of interest can be reduced to the parameters



7.4. Pilot Adaptation 75

Table 7.4: Pilot model signal/parameter dependency hypotheses

Parameter
Dependent on: Neither

𝐾𝑠𝑡 nor BW Only 𝐾𝑠𝑡 Only BW Both
𝐾𝑠𝑡 and BW

𝜎𝑒(rad) H𝑒
0 H𝑒

𝐾 H𝑒
𝐵𝑊 H𝑒

𝐾𝐵𝑊
𝜎𝑢𝐺𝑇𝑂(rad) H𝐺𝑇𝑂

0 H𝐾 H𝐺𝑇𝑂
𝐵𝑊 H𝐺𝑇𝑂

𝐾𝐵𝑊
𝜎𝑢𝑀𝑆(rad) H𝑀𝑆

0 H𝑀𝑆
𝐾 H𝑀𝑆

𝐵𝑊 H𝑀𝑆
𝐾𝐵𝑊

𝑃𝑒(−) H𝑃
0 H𝑃

𝐾 H𝑃
𝐵𝑊 H𝑃

𝐾𝐵𝑊
𝐼𝑒(−) H𝐼

0 H𝐼
𝐾 H𝐼

𝐵𝑊 H𝐼
𝐾𝐵𝑊

𝐷𝑒(−) H𝐷
0 H𝐷

𝐾 H𝐷
𝐵𝑊 H𝐷

𝐾𝐵𝑊
𝐾𝑝(Nmrad−1) H𝑝

0 H𝑝
𝐾 H𝑝

𝐵𝑊 H𝑝
𝐾𝐵𝑊

𝐾𝑣(Nms rad−1) H𝑣
0 H𝑣

𝐾 H𝑣
𝐵𝑊 H𝑣

𝐾𝐵𝑊
𝐾𝑓(−) H𝑓

0 H𝑓
𝐾 H𝑓

𝐵𝑊 H𝑓
𝐾𝐵𝑊

Trends of:

Depending on control task
parameter change: Increasing 𝐾𝑠𝑡 Increasing BW

𝐾𝑝(Nmrad−1) Increases Increases
𝑃𝑒 Decreases Decreases
𝐷𝑒 Decreases Increases

Table 7.5: Expected trends of pilot model parameters of interest with changing task parameters based on fitted parameters
(Figures F.1, F.2, 7.12, 7.13 and H.1)

that were identified to have some degree of dependency on either the bandwidth condition, the stick
stiffness or both. Those are 𝑃𝑒, 𝐷𝑒 and 𝐾𝑝. The ultimate goal of the performed simulations and the
to be performed experiment is to prove that when either the bandwidth condition or stick stiffness is
changed, these parameters of interest change in a predictable way.

The previously described search algorithm can now be implemented again to only optimize the
selected parameters of interest (𝑃𝑒, 𝐷𝑒 and 𝐾𝑝). The results in Figure G.1 illustrate that when tuning
𝑃𝑒, 𝐷𝑒 and 𝐾𝑝 with a limited number of different noise realizations added to 𝑚𝑟𝑒𝑓𝑙, varying behavior of
𝑃𝑒, 𝐷𝑒 can be observed, but 𝐾𝑝 remains constant. This suggests that the suggested dependency of 𝑃𝑒
and 𝐷𝑒 on the control task settings is not as certain as the dependency of 𝐾𝑝. More importantly, and
similar to what was already found based on Figure 5.2, Figure G.1 shows that only using five different
noise realizations is insufficient, also for the purpose of optimizing the pilot model parameters.

Hence, final fitting of the parameters of interest 𝑃𝑒, 𝐷𝑒 and 𝐾𝑝 with varied stick settings and band
width conditions is performed with 50 different noise realizations, equal to how all other results from
simulations in this report were generated. The results are illustrated in Figure H.1. These results can
be used to formulate the expectations about the trends of these parameters of interest with changing
task parameters that are summarized in Table 7.5. Results from previous fitting of all six pilot model
parameters (Figures F.1, F.2, 7.12 and 7.13) were also considered when formulating these expecta
tions. These trends are not exceedingly clear from the simulated results. Hence, observing different
behavior in future humanintheloop experiments is also conceivable.

In future stages of this thesis, it will be investigated if pilot adaptation to BW condition and stick
settings is accurately covered by the variation of 𝑃𝑒, 𝐷𝑒 and 𝐾𝑝. In theory, these parameters should
be able to describe how a pilot changes his control actions when the control task parameters are
changed. Still, experimental results could show a trend which would possibly require pilot adaptation
to be modelled differently.

The goal of the to be performed experiments discussed in Chapter 8 is to see which control task
parameters allow the pilot to exploit the observed better accuracy of force measurement compared to
position measurement of the human arm. Afterwards, a comparison can be made between observed
trends from the simulations and from humanintheloop experiments.
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Experiment Design

The expectations based on literature and simulated experiments discussed until this point need to be
validated. The proposed experiments will attempt this by measuring the accuracy difference between
human force and position measurement (Section 8.1). Subsequently, using similar conditions, a suit
able manual control task will be performed as discussed in Section 8.2. This should allow the effects
in a manual control task of the measured difference in human proprioceptive accuracy to be revealed.

8.1. Experiment 1: JND Measurement
In Chapter 2, previous research that found that human force measurement is more accurate than posi
tion measurement was discussed. In order to further explore this outcome, the experiment is planned
to be reproduced for a range of different conditions in addition to those that were already performed as
reported in Table 2.1. This will be done by selecting 𝐾𝑠𝑡 = 2Nmrad−1, 3.5Nmrad−1 and 5Nmrad−1,
whilst keeping the reference displacement the same at 𝛿𝑟 = 0.37 rad and appropriately changing the
reference torque according to 𝑇𝑟 = 𝛿𝑟𝐾𝑟. In this way, it can be determined if Weber’s law [11] holds
for this experiment with the visual display of target torque or position. Weber’s law says that in human
perception, the JND is a constant fraction of the reference stimulus. According to this, when the ex
periment is repeated at the suggested values for 𝐾𝑟, a constant Weber fraction of approximately 8% is
expected for the force JND and 15% is expected for the position JND. In order to see if Weber’s law
also holds for different magnitudes of the side stick deflection (𝛿𝑟) will be varied as well. The reference
displacement will be set to two values. The original value of 0.37 rad is kept and a second condition will
have a 50% lower reference deflection of 0.25 rad. The experiment to determine the force JND and
position JND will follow the staircase procedure reported earlier [13]. In summary, with this procedure,
the subject is asked to report if the stick with the reference stiffness (𝐾𝑟) or the stick with the controlled
stiffness (𝐾𝑟 = 𝐾𝑐 + 𝛿𝐾, 𝛿𝐾 > 0) felt stiffer. If the correct answer is given, the difference between 𝐾𝑟
and 𝐾𝑐 (𝛿𝐾) is reduced. If the incorrect stick is selected 𝛿𝐾 is increased. This converges to the just
noticeable difference (JND) as a percentage defined by Eq. (8.1). Here,𝑊𝐾 is the Weber fraction which
is constant according to Weber’s law. As stated earlier, this fraction is expected to be dependent on
the way the participant discriminates the stiffness.

𝑊𝐾 =
𝛿𝐾𝐽𝑁𝐷
𝐾𝑟

(8.1)

This leads to the proposed experiment matrix reported in Table 8.1 with a total of six different con
ditions.

Table 8.1: Experiment matrix for JND experiment

𝛿𝑟(rad)
𝐾𝑟(Nmrad−1) 2 3.5 5

0.25 𝛿𝑙𝐾𝑙 𝛿𝑙𝐾𝑚 𝛿𝑙𝐾ℎ
0.37 𝛿ℎ𝐾𝑙 𝛿ℎ𝐾𝑚 𝛿ℎ𝐾ℎ
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After the experiments are performed at these conditions, six sets of Weber fractions for force JND
and position JND will be deduced from the data. These Weber fractions can than be used to concluded
if any difference between position sensing accuracy compared to force sensing accuracy exists and for
which conditions.

8.1.1. Hypothesis
𝑊𝐾 is expected to be lower when stiffness discrimination is based on force than when it is based on
position. This means that in general, the measured force JND is expected to be lower than the position
JND. This expectation is based on previous research documented in Chapter 2. This research also
reported constant Weber fractions at different reference stiffnesses. This is also to be expected for
the JND experiment performed for this thesis. It is more likely that changes in the reference deflection
will have an effect on the measured Weber fractions. When a the participant is instructed to move the
stick to a smaller deflection, one can expect this to cause worse performance in discriminating the stick
stiffness setting.

8.2. Experiment 2: Control Task
With the expectations from Section 8.1, one canmake several predictions on the effect this may have on
a manual control task. This experiment intends to show how varying conditions affect the activity of the
Golgi tendon organ and muscle spindles. For now this control task is assumed to be a compensatory
tracking task with a side stick, because this tracking experiment has been shown to be possible to
approximate with simple dynamics. For for preview tracking, these simple models do not hold [24].

With the independent variables outlined below, the experiment matrix is as defined by Table 8.2. It
may be worthwhile to consider scaling the forcing functions to obtain equal 𝜎𝑓𝑡 and 𝜎𝑓𝑑 between BW1,
BW2 and BW3. This was explored earlier with simulations reported in Table 7.2.

Independent variables:

• 𝐾𝑠𝑡
• 𝐼𝑠𝑡, 𝐵𝑠𝑡 (with 𝐾𝑠𝑡)

• 𝑓𝑡 and 𝑓𝑑 spectrum

• Deteriorate known 𝛿0
1 with low frequency component in 𝑓𝑑
2 by slowly moving the physical position of 𝛿0 (to which the stick moves back under no applied

force) with an unknown forcing function.

The stick stiffness settings of the first experiment in Table 8.1 are repeated here. 𝐵𝑠𝑡 and 𝐼𝑠𝑡 are
jointly varied with𝐾𝑠𝑡 as was done before in simulation introduced in Section 7.2.2. For𝐾𝑠𝑡 = 0 (BW1𝐾0,
BW2𝐾0 and BW3𝐾0), equal settings as those for simulated results in Table 7.3 are used, i.e., 𝐵𝑠𝑡 =
0.053Nmrad−1 and 𝐼𝑠𝑡 = 0.00265Nmrad−1. The variation of 𝐾𝑠𝑡 is selected to allow direct comparison
at equal stick conditions. It can than be shown of a possibly different measured JND for force or position
at a given 𝐾𝑟, leads to measurable effects in a control task.

A possible expansion to the forcing function bandwidths can be added. This thesis is primarily
concerned with showing the effect of inferior human haptic perception of position compared to force.
A possible new set of forcing functions can be generated to see the consequence of this performance

Table 8.2: Experiment matrix for control task experiment

Forcing
function bandwidth

𝐾𝑠𝑡(Nmrad−1)
0 2 3.5 5

BW1 BW1𝐾0 BW1𝐾𝑙 BW1𝐾𝑚 BW1𝐾ℎ
BW2 BW2𝐾0 BW2𝐾𝑙 BW2𝐾𝑚 BW2𝐾ℎ
BW3 BW3𝐾0 BW3𝐾𝑙 BW3𝐾𝑚 BW3𝐾ℎ
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difference in a tracking task. Ideally, this set of forcing functions would have the effect of deteriorating
the participants knowledge of the center position of the side stick (𝛿0). Figure 7.8 shows that the three
sets of forcing functions have approximately equal intensity at the lowest forcing frequency∼ 0.4 rads−1.
It may be worthwhile to explore the possibility of achieving this deteriorated pilot knowledge of 𝛿0 by
adding a low frequency component to the disturbance signal. This does not actually change 𝛿0 but
would require the pilot to exert a constant force to compensate for this low frequency component. This
new set of forcing functions called BW2x would than be a variation on BW2 where a new component
is added to the disturbance signal with a lower frequency than the orginal lowest of 0.4 rads−1. This
is possible with the passive side stick that is dealt with for this thesis. However, if an active stick were
used, one could actually move 𝛿0 causing the stick to move to a position different from the center when
the pilot exerts no force on it.

Dependent variables:

• 𝜎𝑒𝑝
• fitted 𝑃𝑒, 𝐷𝑒 and 𝐾𝑝
• simulated 𝜎𝑢𝐺𝑇𝑂 and 𝜎𝑢𝑀𝑆 with fitted parameters above

It would be desirable to use experiment data to draw conclusions with respect to the proprioceptive
feedback signals 𝑢𝐺𝑇𝑂 and 𝑢𝑀𝑆 as well as the tracking performance. However, it is impractical to mea
sure the internal feedback signals directly. Nevertheless, they can be simulated after the experiment
is performed and pilot model parameters are fitted. One can then make observations on the effects on
these feedback signals and with which control task parameters (independent variables) GTO is more
or less important than MS. This can be done by demonstrating that the magnitude of the Golgi tendon
organ feedback signal (𝑢𝐺𝑇𝑂) becomes relatively bigger in magnitude compared to that of the mus
cle spindle (𝑢𝑀𝑆). If the results would clearly show that tracking performance improves when GTO is
dominant, this could be an indication of the effect in a control task of GTO’s better accuracy.

The tracking performance can obviously bemeasured directly in the experiment and it will be curious
to see if the unexpected result from simulations will also occur in the experiments. Simulations showed a
worse performancewith a stiffer stick, contradicting what was found in literature about past experiments.

8.2.1. Parameter Estimation
After the experiment is performed, the parameters that define the discussed model from Chapter 4 will
be fitted to match the timedomain experiment data. In this thesis, this will be restricted to 𝐾𝑝, 𝑃𝑒 and
𝐷𝑒. This means these three variables need to be fitted to make the simulated data match the measured
data as best possible. In Chapter 7, some expected changes of 𝐾𝑝, 𝑃𝑒 and 𝐷𝑒 due to changes in stick
settings and forcing functions were formulated in Table 7.5. With experiment data, it will be possible to
discover if these changes also appear in reality.

FRF Estimation The two steps of attempting to match the recorded timedomain data with the sim
ulated pilot model by adjusting its parameters can also be done in reverse order. The timedomain
data can be used to estimate the pilot model dynamics at the forcing frequencies. The parameters of
interest (𝑃𝑒, 𝐷𝑒 and 𝐾𝑝) can then be adjusted to best fit this frequencydomain model.

With the new estimated values for parameters 𝑃𝑒, 𝐷𝑒 and 𝐾𝑝, it will be possible to simulate the
tracking task again and in particular extract signals 𝑢𝑀𝑆 and 𝑢𝐺𝑇𝑂. These can then be used to draw
conclusions about the activity of the muscle spindles and Golgi tendon organs respectively.

8.2.2. Hypothesis
In Chapter 7, simulations were used to show that a stiffer stick (increased 𝐾𝑠𝑡) or entirely heavier stick
(jointly increased 𝐾𝑠𝑡, 𝐵𝑠𝑡 and 𝐼𝑠𝑡) causes an increase in the signal magnitude of the Golgi tendon
organ feedback. This implies that the pilots controlling actions are more based on the accuracy of
the GTO (force JND) than that of the muscle spindles (position JND). However, in the simulation, this
did not result in any improvement in the tracking performance. On the contrary, a small performance
deterioration (𝜎𝑒 ∶↑∼ 20%) was observed when increasing 𝐾𝑠𝑡 between 2Nmrad−1 and 8Nmrad−1
(Figure 7.12). The effects of the same stick stiffness increases did show an improved robustness of the
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pilot model in Section 7.2.3 in terms of stability. A stiffer or entirely heavier stick substantially increased
the variations in the task dependent pilot model variables 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓 that still result in a stable closed
loop and stable open loop pilot.

Nevertheless, a performance improvement is expected for higher stick stiffness settings. This hy
pothesis relies on the trend that was shown in literature describing other experiments with varied side
stick dynamics.

The performed simulations show consistent results with actual performed experiments from liter
ature with respect to changing forcing function bandwidths. Both, simulations and real experiments
showed that forcing functions with higher magnitude of high frequency components cause a higher
𝜎𝑒𝑝 , i.e., worse performance. Therefore BW1 is expected to have the best performance and BW3 is
predicted to cause the worst performance.

Expectations with respect to signals 𝑢𝑀𝑆 and 𝑢𝐺𝑇𝑂 are directly related to the expected changes of
𝐾𝑝. Based on the results from simulations shown in Figures F.1, F.2 and 7.12, 𝐾𝑝 is expected to increase
both when increasing the stick stiffness and when increasing the forcing function bandwidth condition.
Hence, for these conditions, a relative increase in activity of the Golgi tendon organs compared to the
muscle spindles is expected. This means that the fraction 𝑢𝐺𝑇𝑂

𝑢𝑀𝑆
is predicted to increase both for higher

BW condition and for heavier stick settings.



9
Conclusion

This preliminary report aimed to explore the differences between a human pilots ability to perceive
position and force when using a passive side stick control device. Also an experimental method that
can be used to explore the effects this can have in a suitable manual control task was proposed.
Literature showed a basis to expect that, at least for limited conditions, humans perceive position with
worse accuracy than they perceive force. This difference of uncertainty was reported to be almost a
factor two. Other literature showed a more detailed description of the activation of MS and GTO. This
lead to the conclusion that they would most efficiently be modelled with a response to muscle length,
stretch velocity and force.

A model of the pilot dynamics was used in a computational experiment to explore if any effects
on a tracking task can be expected based on this knowledge. One of the conclusions this lead to is
that an increased side stick stiffness will cause a pilot to perform a tracking task more based on force
perception. This was clear when a stiffer stick caused an increase in magnitude of feedback signal of
force perception.

Based on this same pilot model, expectations were made about the dependency of pilot model
parameters on task constraints. Simulations suggest that some parts of the pilot model are dependent
on the stick settings and forcing functions. More specifically, some components of the proprioceptive
feedback loops of the pilot model, as well as part of the cognitive processes of the pilot during the
tracking task, are likely affected when the mentioned tracking task parameters are changed.

Finally, a draft experiment plan was formulated which can be used to work out the definitive ex
periment plan. The first part of this experiment plan is aimed to find any clear difference between
performance of human force and position measurement. It also intends to show any clear boundaries
for which any possible claims hold. The second part proposes a way to show what effects the results
from the first experiment may have on a tracking task. This is specifically concerned with the activity of
the Golgi tendon organ and muscle spindles in manual control behavior. The tracking task and its vari
ous conditions are defined such that it will be possible to draw conclusions that pertain to the accuracy
human of force and position measurement.
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Figure E.1: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too small 𝐾𝑓. From PT to A
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Figure E.2: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too large 𝐾𝑓. From PT to B
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Figure E.3: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too large 𝐾𝑓 and large 𝐾𝑣. From PT to C
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Figure E.5: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too small 𝐾𝑝. From PT to E
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Figure E.6: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too large 𝐾𝑝. From PT to F
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Figure E.7: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too large 𝐾𝑓. From PT to G
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Figure E.9: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too small 𝐾𝑝. From PT to I
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Figure E.10: Root locus of 𝐻𝑢𝑠𝑢𝑝 ,𝑚𝑚𝑢𝑠 at stability boundary due to too large 𝐾𝑝. From PT to J
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Figure F.1: Tuned Pilot Model Parameters (𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) with Changing Stick Dynamics at BW1 Forcing Functions
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Figure F.2: Tuned pilot model parameters (𝑃𝑒, 𝐼𝑒, 𝐷𝑒, 𝐾𝑝, 𝐾𝑣 and 𝐾𝑓) with changing stick dynamics at BW3 forcing functions
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(a) Tuned parameters at BW1 (b) Tuned parameters at BW2

(c) Tuned parameters at BW3

Figure G.1: Tuned selection of pilot model parameters (𝐾𝑝, 𝑃𝑒 and 𝐷𝑒) with only five different noise realizations shown per
bandwidth condition
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(b) Tuned parameters of interest (𝐾𝑝, 𝑃𝑒 and 𝐷𝑒) with changing stick dynamics at
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(c) Tuned parameters of interest (𝐾𝑝, 𝑃𝑒 and 𝐷𝑒) with changing stick dynamics at
BW3 forcing functions

Figure H.1: Tuned parameters of interest (𝐾𝑝, 𝑃𝑒 and 𝐷𝑒) shown per bandwidth condition


	List of Figures
	List of Tables
	List of Abbrevieations
	List of Symbols
	I Scientific Paper
	II Research Appendices
	Individual Subjects' Tracking Task Results
	Subject 1
	Subject 2
	Subject 3
	Subject 4
	Subject 5
	Subject 6
	Subject 7

	Derivation of HO Neuromuscular Model Dynamics
	Tracking Task Metrics Correlation Analysis
	Coherence and Tracking Error
	GTO Activity and Tracking Error

	Experiment Briefing & Consent Form

	III Preliminary Research Report
	Introduction
	Force- vs. Position Measurement
	Muscle Sensory Afferent Activation
	Pilot Model
	Pilot Model Signals
	Pilot Inaccuracies
	Stick Variation

	Effects of Pilot Model Remnant
	Effects on Tracking Performance

	Stability
	Definitions of Stability
	Poles at Stability Boundaries

	Control Task Parameter Effects
	Pilot Model Parameters' Effects on Stability
	Stick Parameters
	Variation of Stick Stiffness
	Compensating Stiffness with Damping and Inertia
	Effects on Stability
	Effects on Performance

	Target and Disturbance Signals
	Pilot Adaptation
	Cognitive Response
	Proprioceptive Feedback
	Parameter Dependency


	Experiment Design
	Experiment 1: JND Measurement
	Hypothesis

	Experiment 2: Control Task
	Parameter Estimation
	Hypothesis


	Conclusion

	IV Preliminary Research Appendices
	Root locus of varying Kp, Kv and Kf
	Tuned Pilot Model Parameters at BW1 and BW3
	Tuning selected model parameters with limited noise realizations
	Final tuning of selected model parameters with 50 noise realizations


