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Preface

When I started the bachelor of Mechanical Engineering at 3mE, I remember one of the first
lectures where our lecturer showed us a mechanism that resulted from a topology optimization
run. This mechanism was a compliant cutter, with an output direction which was rotated 90
degrees with respect to the input direction, and where the entire function of the mechanism
resulted from calculated deformation of a random looking lump of material. I was both amazed
that a computer could design such a beautiful mechanism, and inspired that a normal person,
just like myself, could have made said computer do that. Even though topology optimization
was never a part of the Mechanical Engineering study program, this impression never left me.

Compliant mechanisms are a well-known topic in the MSc program, however. These mecha-
nisms intrigued me by their simplicity, while being so powerful in terms of predictability and
effectiveness. At the same time I was getting acquainted with these mechanisms, the subjects
of static and dynamic balancing came to light during one of the courses. Static balancing first
grabbed my attention, but this still unknown principle of dynamic balancing appeared to be the
holy grail. That, I wanted to get an expert on. However, topology optimization never left my
thoughts as being one of the most powerful ways of designing mechanisms.

Topology optimization and Dynamic balancing are two very niche subjects, and before I started
working on this project, I knew little about either of them. I’m therefore very grateful to Volkert
for his coaching in terms of conducting research and his guidance in the subject of Dynamic
Balancing. However, I never expected the field of Topology Optimization to be as difficult and
unforgiving as I experienced throughout the duration of this project. My eternal gratitude goes
to Dirk for his advice on the difficult TopOpt problems I encountered, the interesting discussions
and his great support on the subject.

Before you lies the product of a long journey through the fields of dynamic balancing, topol-
ogy optimization and mechanism design. I’m proud to present this thesis to you, and to have
contributed my part to bringing these two engineering disciplines together.
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Chapter 1

Introduction

Machines are all around us in the everyday world. We use them for transportation, to do our
work, wash our clothes, refrigerate or cook our food and to produce the products we use every
day. Many of these machines are in fact mechanisms. A mechanism is a mechanical device used
to transfer or transform motion, force or energy [1].

In the precision industry, mechanisms are required to perform jobs increasingly fast, precise and
repeatable. To do this, many methods are developed and techniques are used. Two examples of
such techniques are Dynamic Balancing and Compliant Mechanisms.

1.1 Dynamic Balancing

When a body is translated, a force is required to accelerate its mass. When the translation
stops, the same force is required to decelerate that mass. These forces are called inertial forces
or shaking forces. When the body is rotated, a similar phenomenon happens, but is then called
shaking moment.

Shaking forces and shaking moments in mechanisms can be a significant force of base vibrations.
These vibrations can be eliminated by designing the manipulator to be shaking-force balanced
and shaking-moment balanced [3]. If a mechanism is shaking-force balanced and shaking-moment
balanced, the mechanism is called dynamically balanced.

Figure 1.1: Single mass model of clothes rotating in a washing machine drum [2]
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Figure 1.2: Schematic representation of the Dual-V manipulator [3]

Figure 1.3: Prototype of the Dual-V manipulator [3]

An example of such base vibrations can be found in a common washing machine. When the
washing machine starts its spin-dry process, the drum rotates at a high velocity. If the machine
is filled with laundry, this causes the machine to shake heavily, causing loud noise. If the machine
is empty, this phenomenon does not take place because the drum is dynamically balanced. When
laundry is put into the machine, an imbalance is introduced, causing vibrations when the drum
starts rotating. Mechanically, this can be modelled as shown in Figure 1.1. As shown in Figure
1.1b, the mass of the laundry is not at the center of rotation of the drum. This means the total
center of mass of the system will move under rotation of the drum, causing shaking forces and
thereby vibrations.

Another example of a dynamically balanced mechanism is the Dual V manipulator by van der
Wijk [3]. This mechanism is designed to move a platform in x- and y-direction, and is shaking
forced balanced and shaking moment balanced. The platform can also be rotated, but is in
rotated case not as well-balanced anymore. In Figure 1.2, the design of the Dual-V manipulator
is shown. In Figure 1.3, the prototype is shown.

1.2 Compliant Mechanisms

If something bends to do what it is meant to do, then it is compliant. If the flexibility that allows
it to bend also helps it to accomplish something useful, then it is a compliant mechanism [4].

Compliant mechanisms have been around for a long time. An example of a compliant mechanism
with a multi-millennia history is the bow and arrow [4]. Ancient bows used the flexibility of their
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limbs to store energy to fire an arrow.

Also in present time, compliant mechanisms are all around us. The cap of a shampoo bottle is
an example of a monolithic bi-stable hinge. In other words: a cap with a hinge and a cover,
made of only one piece of material. A hairclip is another example so common people may not
even recognise it as a compliant mechanism [4].

Compliant mechanisms are rapidly gaining importance [5]. They offer several advantages over
rigid body mechanisms, such as fewer assembly process requirements, part-count reduction, in-
creased precision, increased reliability and no need for lubrication [1], [6]. These can be considered
into two main categories: cost reduction and increased performance.

This cost reduction explains why compliant mechanisms such as the shampoo bottle cap and the
hairclip are quite common in everyday life. The increased precision and reliability, however, are
reasons why compliant mechanisms are increasingly important in the engineering world.

1.3 Research Objective

Both compliant mechanism design and dynamic balancing are strong methodologies for achieving
a high precision in mechanism. However, a comprehensive method for designing systems that
are both dynamically balanced and compliant are not available yet. Most dynamic balancing
methods consider rigid body linkages rather than compliant mechanisms. Some methods consider
modal balancing, which is a technology for balancing harmonic vibrations in mechanisms[7], [8].
For large non-harmonically exited mechanisms, this method may however be insufficient.

Topology optimization is a strong design methodology which can be used to synthesize dynam-
ically balanced compliant mechanisms. This methodology can already be used for designing
unbalanced compliant mechanisms, but has in this thesis been extended with dynamic balance
conditions.

The goal of this MSc. thesis project is formulated as follows:

“Develop a comprehensive method to synthesize dynamically balanced compliant mechanisms.”

Because many methods already exist to design dynamically balanced mechanisms or compliant
mechanisms, the first step is to investigate the readily available methods and find a combination of
such methods that may yield a comprehensive design methodology. The second step is to further
investigate the most promising method and construct a design methodology for the synthesis of
dynamically balanced compliant mechanisms. These two steps start with the following research
question:

“Which currently existing methods seem most promising for designing dynamically balanced com-
pliant mechanisms?”

A literature review is presented to answer this question in Chapter 2. The proposed methodology
is a topology optimization algorithm, supplemented by the inherent balancing method by van der
Wijk [9]. This algorithm is designed, explained, tested and discussed in Chapter 3. In Chapter
4 the approach is reviewed, and recommendations for further research and development of the
algorithm are presented. The entire research project is summarized and wrapped up in Chapter
5.
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Chapter 2

State Of The Art

2.1 Introduction

Machines have to fulfill increasingly high requirements every day. Machines are performing their
tasks faster, more precise and more consistently than ever before, but the need for even higher
performance is as high as ever. Especially in the precision industry the boundaries are extended
rapidly, which requires new techniques and solutions.

In order to achieve a higher precision, the first goal is to reduce any noise and uncertainty. Two
methods to do that are the use of compliant mechanisms and dynamic balancing. A mechanism is
called compliant if its function is achieved due to the flexibility of the parts of the system, rather
than relative movement of rigid parts with respect to eachother. A system is called dynamically
balanced when the inertial forces and moments of the system do not cause resulting forces on
the base of the system. Both these methods are promising to achieve higher precision, but even
though compliant mechanisms are increasingly common the combination of these two has not
thoroughly been explored yet.

In this research paper, design methods and properties of both compliant mechanisms and dy-
namic balancing are investigated to look for similarities and possibilities to design dynamically
balanced compliant mechanisms. The following question is to be answered:
Which currently existing methods seem most promising for designing dynamically balanced com-
pliant mechanisms?

To answer this question, the following subquestions need to be answered first:

• Which compliant mechanisms are commonly used and which techniques of modelling or
designing them are available?

• Which balancing methods are available?

• What are shortcomings of the available methods for balancing compliant mechanisms, and
do they differ for various kinds of compliant mechanisms?

In section 2.2, 2.3 and 2.4 these subquestions will be answered respectively. In section 2.4,
the comparison of these methods will also be summarized in order to answer the corresponding

5



subquestion. In chapter 2.5, the main research question is answered and a conclusion is presented.
Also, recommendations for further research are given.

2.2 Compliant Mechanisms

Compliant mechanisms play an ever increasing role in the High-Tech industry. The combination
of simplicity, predictability and absence of lubrication and play offer great advantages compared
to general linkage systems[5], [10]. In this chapter, compliant mechanisms will be explained.
After that, some common compliant mechanisms are shown for which dynamic balancing may
be useful; for example compliant mechanisms that are used in the precision industry. Finally,
methods of modelling and designing compliant mechanisms are treated.

2.2.1 What is a compliant mechanism?

Compliant mechanisms are defined as mechanisms that accomplish their function due to the
deformation of one or more slender segments of their members [5]. This means they do not rely
exclusively on the relative motion between joints and rigid links, but rather on the deformation
of flexible components. In the precision industry, compliant mechanisms are often advantageous
to rigid body linkages, for several reasons.

First, the absence of relative motion of two touching parts implies the absence of sliding friction.
This means no lubrication is needed, no friction is present, and there will be less wear and noise
during operation of the mechanism.

Secondly, due to the monolithic nature of compliant mechanisms, fewer parts are required. This
simplifies assembly and reduces weight, thus reducing the production costs of a mechanism.

Finally, due to the absence of relative motion of connecting parts of the system, a compliant
mechanism does not require as many production tolerances as a rigid link system and is no
subject to mechanical play (and therefore uncertainty) in the joints. This means a compliant
mechanism will generally produce more predictable and accurate movement compared to a rigid
body mechanism, which is beneficial to machines in the precision industry.

Figure 2.1: Lumped compliance (a) and distributed compliance (b)[10]

Compliant mechanisms can generally be divided into two types of compliance: lumped compliance
and distributed compliance. Lumped compliance is a form of compliance where the bending is
concentrated in a single point or a very short flexure. This type of compliance is comparable to
a joint in a classic linkage system, and can sustain relatively high loads compared to distributed
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compliance. Distributed compliance, however, is a form of compliance where the bending of the
mechanism is distributed over a relatively long flexure. These flexures are prone to buckling
but when the axial load of the flexures is low or absent, they are very low-resisting connections
in a mechanism. The difference between lumped and distributed compliant guiders is shown in
Figure 2.1.

2.2.2 Commonly used compliant mechanisms

The aim of this section is to give an overview of commonly used compliant mechanisms for which
dynamic balancing may be useful. As the big advantage of dynamic balance is the elimination of
inertial forces to the base, and thereby the reduction of noise in machines, the most likely field
of application is the high precision industry. In the high precision industry, the most commonly
used mechanisms are:

• Flexible compliant translators

• Notch Hinge compliant translators

• Cross-pivot flexures

Other examples of compliant mechanisms that allow for high precision purposes, which are
therefore likely to be improved by dynamic balance, are:

• (Double) parallelogram flexure

• X-bob flexures

• Butterfly hinges

Most of these mechanisms make use of distributed compliance, so flexible beams are widely
applied in these mechanisms. Therefore, dynamic balance of flexible beams may also prove
useful, as has been investigated by Nijdam [8].

Compliant translators and parallelogram flexures

Compliant translators are flexure systems that allow a body to translate with certain degrees of
freedom. Translations and rotations in other directions are constrained, with resistances generally
several thousands times higher than the resistance in the freedom direction.

The compliant translator is shown in Figure 2.1, where 2.1(a) shows a notch joint compliant
translator and 2.1(b) shows a completely flexible compliant translator. The flexible compliant
translator of 2.1(b) makes use of distributed compliance and consists of two leaf flexures. These
will bend when the rigid body is translated but will not invoke high resisting forces due to their
low lateral stiffness. They are quite vulnerable to buckling though, as their axial stiffness is
not very high either. The notch joint compliant translator makes use of lumped compliance
and is highly comparable to a classical rigid body linkage mechanism. It is generally stiffer
than a completely flexible compliant translator, both in its freedom direction and its constraint
directions. It is also much more resistant to buckling due to its rigid middle part.

For small displacements, the movement in the constraint directions can be neglected. For larger
displacements, this is often not the case. The parallelogram flexure, however, can allow larger
displacements with even lower parasitic motions than a common compliant translator. An exam-
ple of a double parallelogram flexure is shown in Figure 2.2. This consists of two parallelogram
flexures that are symmetrically connected with the end-effector in between them.
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Figure 2.2: Double parallelogram flexure in spatial view (1) and planar view (2) [4]

Figure 2.3: Cross-pivot flexure in undeformed (a) and deformed (b) state [11]

A parallelogram flexure consists of one normal compliant translator from the fixed world (a) to
an intermediate stage (b), with another normal compliant translator from the intermediate stage
to the end effector (c), parallel to the first stage.

Cross-pivot flexures and butterfly pivot

When a body is supported by one leaf spring, it is not constrained in its in-plane rotation.
The center of rotation however, is not stationary. A cross-pivot flexure is a combination of two
angled leaf-springs that together allow a rotation around a near-fixed center of rotation. Also,
it constrains the body in its other directions, so the body has only one degree of freedom, which
is a rotation approximately around the point where the flexures cross eachother. This flexure is
quite often used as a compliant hinge and is shown in Figure 2.3.

The butterfly pivot is a structure composed of four elementary pivots linked in series, which have
their four centers of rotation collocated in the middle of the total structure [12]. This hinge is
a rotational joint, quite comparable in its applications to a cross-pivot flexure. The butterfly
pivot, however, has several advantages when compared to the cross-pivot flexure.

Due to its design, it allows larger stroke cycles than a cross-pivot flexure without fatigue failure.
According to Henein et al. [12] their butterfly flexure allows for a ±7.5 °stroke for 6 million
cycles without failure, where an average pivot flexure would do only a ±6 °stroke .

Other qualities of the butterfly pivot flexure are also discussed by Henein et al. but one par-
ticularly interesting one is the parasitic center shift of the butterfly pivot flexure. Due to the
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Figure 2.4: The Butterfly pivot flexure [12]

Figure 2.5: Roberts mechanism (a), compliant version of the Roberts mechanism (b) and the
Xbob flexure (c) [13]

distribution of the total stroke of the flexure and the center shift compensation between the
stages of the flexure, the parasitic center shift of the butterfly flexure is very low. This allows
the butterfly pivot flexure to support large (pure) rotations with a high accuracy [12].

Xbob flexure

The Xbob flexure, as designed by Hubbard et al. [13] is a compliant mechanism, consisting of
multiple compliant roberts mechanisms. The roberts mechanism, as shown in Figure 2.5 (a), is
a four-bar linkage with a point P that will translate perfectly along a horizontal line. Figure 2.5
(b) shows a compliant version of this system, where the moving body is connected to the ground
by two leaf flexures or notch hinges.

The Xbob mechanism is shown in Figure 2.5 (c) and consists of 8 compliant roberts mechanisms
that all guide the same end-effector. In this figure, this end effector is thereby a perfectly
horizontal translating body.
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Table 2.1: Summary of typical modelling methods for compliant mechanisms [14]

2.2.3 Modelling and synthesis techniques for compliant mechanisms

One of the main mechanics when considering compliant mechanism is the bending of flexible
beams. Therefore, many of the modelling and design methods are based on an application of
material mechanics. In the works of Ling et al. [14], a number of modelling methods and
their advantages and disadvantages are discussed. The summary of their research is shown in
Table 2.1. Other methods include the FACT method by Hopkins [15] and topology optimization
methods [16], so these will also be treated in this section.

Basic material mechanics methods

Some methods in the works of Ling et al.[14] are simply based on the relation between force and
displacement on a certain point of a system. This relation is determined due to known material
properties or due to an already known stiffness of the beam or system. While other methods also
make use of material mechanics, these methods are different because they only consider one or a
few material mechanics calculations, rather than large scale analyses or methods where material
mechanics are somewhere incorporated.

Elastic beam theory
Elastic beam theory makes use of mechanical derivations and material properties to determine
the relation between force and displacement of elastic beams. Engineers often make use of simple
outcomes of these mechanical derivations, for example the formulae in Table 2.2. This method
is a linear model of the deflection of euler-bernoulli beams. Assumptions are that the material
of the beams is homogeneous, Hookean, and the beam is long compared to its thickness and has
a uniform cross-section.

The matrix method
As explained by Wang et al. [18], the matrix method is the formation of the compliance matrix (a
3x3 matrix containing the compliance of a structure in 2D: two translational and one rotational
compliance). This compliance matrix can be used to determine the deflection of the material
with respect to the applied force. A compliance matrix is the inverse of a stiffness matrix.

Castigliano’s 2nd theorem
This method is also called ”The Theorem of Least Work” and is based on Castigliano’s second
theorem. The 2nd theorem of Castigliano states that:
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Table 2.2: Several linear elastic beam theory equations [17]

”The first partial derivative of the total internal energy in a structure with respect to the force
applied at any point is equal to the deflection at the point of application of that force in the
direction of its line of action” [19].

This theory is applicable to linearly elastic (Hookean) material structures with constant tem-
perature and unyielding supports. From Castigliano’s 2nd theorem follows the theorem of least
work, which states:

The redundant reaction components of a statically indeterminate structure are such that they
make the internal work (strain energy) a minimum.

This theory thereby states that reaction forces are present within the material due to the de-
formation of said material, and thereby strongly resembles the matrix method and linear elastic
beam theory.

Ryu’s method

Ryu’s method is the design process as executed by Ryu et al. [20] to optimally design a flexure
hinge based XYθ wafer stage. This method consists of three steps:

• Preliminary design (a design of a compliant mechanism is made)

• Modelling the design physics

• Optimizing the model in order to optimize the design

The optimization parameters of Ryu were all dimensions of his design (all thicknesses in 3D).
The optimization algorithm used by Ryu is the SQP algorithm.
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Figure 2.6: Flexible beam (a) and a PRBM approximation of that beam (b) [4]

Pseudo Rigid Body Model (PRBM)

A common tool to perform quick calculations on compliant mechanisms is the Pseudo Rigid
Body Model (PRBM)[13]. This method approximates a flexible beam using a rigid beam with
linear rotational springs at its joints. This yields simple linear approximations for the behaviour
of the flexible beam. An example of this is shown in Figure 2.6. To gain a closer approximation
to a distributed compliant flexure, more than one rigid body can be used with rotational springs
between all bodies, which would yield a chain of alternating rigid bodies and springs. For notched
flexures, an approximation with only one rigid body is most often used.

PRBM is often used for preliminary design choices in simple mechanisms, as the calculations are
quick and easy. They generally do not take into account nonlinearities and can only be used for
simple configurations, so often a FEM-analysis of the final mechanism is performed to ensure a
working design.

Finite Element Methods

One of the most used methods for analysis of Compliant Mechanisms designs is analysis with
Finite Element Methods (FEM). Finite element methods use numerical approximations of struc-
tures, by which the structure is divided in a finite number of small elements. To be able to
analyze these elements, a global stiffness matrix is constructed. Then a computer is used to
apply (mostly linear) mechanics to those small elements to form a full overview of stresses, dis-
placements and reactions in structures (not limited to beams). FEM is often used in industry
and allows to accurately analyze complex structures. Examples of commonly used FEM software
are ANSYS, COMSOL and many CAD programmes such as AUTOCAD and SolidWorks, but
numerical calculation programmes such as Matlab and Python can also be used.

The equations of finite element analysis can be expressed in matrix form as shown in equation
2.2.1, where {f} is the force vector, {u} is the displacement vector and [K] is the global stiffness
matrix. [

f
]
=

[
K
] [
u
]

(2.2.1)

Another numerical method that’s quite similar to FEM is the ”Chain Algorithm” [1]. This
method is applied to beams only, and divides the beam in one chain of elements. Then the
system of equations as shown in equation 2.2.2 is solved in order to find a solution for the systems
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Figure 2.7: FACT table by Hopkins and Culpepper [15]

properties. In this equation, δax and δtr are the axial and transverse displacement respectively,
and θ the tip rotation. P is the axial or transverse force and M the resulting moment at the
end of the element with respect to the begin of the element. [K] is again the global stiffness
matrix, but as its inverse is taken, it represents the compliance matrix. This system of equations
is solved for every element of the chain.δaxδtr

θ

 =
[
K
]
-1

Pax

Ptr

M

 (2.2.2)

FACT Method

FACT is an entirely different way of designing compliant mechanisms. The FACT method
consists of an overview of constraint spaces, and their corresponding freedom spaces. This allows
engineers to be more creative in the design of their optimal compliant mechanisms. The FACT
method is based on the screw theory and therefore has a mathematical basis, but for design
purposes, a chart with all possible outcomes of the method is available.

The FACT method is invented by Hopkins and Culpepper [15] and the FACT solution table
is shown in Figure 2.7. This table contains all possible situations for the design of a compliant
mechanism. When this table is used, the screw theory is not required to apply the FACT method.
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Figure 2.8: Three steps in topology optimization: (a) initial control meshes, (b) proposed
control meshes arrangement, (c) proposed arrangement after subdivision. [5]

Topology Optimization

Optimization algorithms are often used to optimize certain parameters of a design. Size and
shape optimization often change a few pre-determined variables to find the optimal dimensions
for a set design. Topology optimization takes this to a higher level and changes the structural
geometry, not only by changing dimensions but also by adding or removing holes, masses or parts.
As described by Gallego: ”Topology optimization methods search for the connectivities mainly as
an existence/nonexistence problem of the constitutive elements inside a universal structure where
all the possible and allowed connections are already defined [10]. A simple example is shown
in Figure 2.8, where an initial rectangular workspace is shown where the algorithm subtracts
material in certain squares of the mesh to obtain a mechanism or structure [5].

Topology optimization is the process of determining the optimal layout of material and con-
nectivity inside a design domain [21]. This methodology can be used to synthesize monolithic
designs, such as compliant mechanisms, based on a predefined set of boundary conditions and
one or more desired functions.

In the research of Gallego [10] the static balancing of compliant mechanisms has been investigated.
With a topology optimization approach, designs were synthesized with high performance, but
perfect static balance has not been achieved.

Generally, topology optimization is used to determine optimal material distribution in static ap-
plications, such as the optimal material distribution in the wing of an aircraft [22] or a lightweight
material distribution of a city bus [23]. Recently, mechanism design [6], [16] and design incorpo-
rating dynamic behaviour [24], [25] are becoming increasingly common.

2.3 Balancing Methods

A mechanism is a mechanical device used to transfer or transform motion, force or energy [1].
Traditionally, mechanisms consist of rigid bodies, connected with hinges, sliders or other types
of joints. One of the most common mechanisms in this regard is the four-bar mechanism, as
shown in Figure 2.9. A mechanism such as shown in Figure 2.9 can be simplified to a schematic
drawing of only linkages and Centers of Mass of the bodies. An example of this is given in Figure
2.10 from the works of van der Wijk.
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Figure 2.9: Four-bar linkage with arbitrary
link mass distributions [26]

Figure 2.10: A simplified representation of
a four-bar linkage with arbitrary link mass
distributions [9]

By changing the angle θ1, the rest of the mechanism will move in a prescribed manner due to
its geometric constraints at the links. The movement of the bodies of this mechanism, however,
will incur inertial forces and moments. This can cause significant undesired vibrations in the
system[9]. Especially in precision applications, these undesired vibrations can be a large source
of uncertainty in the system. Therefore, the system should be designed such that these vibrations
are sufficiently reduced or even eliminated.

A promising way of reducing or eliminating vibrations in mechanisms is the use of balancing
techniques. A mechanism is balanced statically and dynamically if the resultant force vector
and the resultant moment due to inertia forces are equal to 0 [27]. Balancing can be divided
in two categories: static balancing and dynamic balancing. A system is statically balanced if
the potential energy of the system is conserved upon movement of the system throughout a
finite range of motion. A system is dynamically balanced if the shaking moments as well as
the shaking forces are eliminated [28]. This means the forces and moments due to changes of
inertial moments in the system cancel out, which means no net dynamic forces or moments are
transmitted to the base of the system. When a system is shaking force balanced, this system is
also statically balanced by definition [29]. This means a dynamically balanced system is always
statically balanced.

2.3.1 Balancing conditions

In order to achieve dynamic balance, shaking forces and shaking moments should be eliminated.
This means no residual forces or moments will act on the base of the system due to inertial forces
of the system’s movement. To achieve shaking force balance, the linear momentum of the system
should always be zero, which means the common CoM of all elements of the mechanism should
be stationary. The condition for force balance can be mathematically written by equation 2.3.1:

p =
∑
i

miṙi = 0 (2.3.1)

In this equation p is the total linear momentum vector of the system, i the link number, mi the
mass of link i and ṙi the velocity vector of link i.

To obtain shaking moment balance in the system, the angular momentum of all bodies combined
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has to be constant as well. This is expressed by equation 2.3.2:

hO,z =
∑
i

Iiα̇i + e(ri ×miṙi) = 0 (2.3.2)

In this equation, Ii is the moment of inertia of member i, α̇i is the absolute angular velocity of
member i, e is the unit vector of rotation (in the z-direction for planar cases). The two terms
in this equation represent the angular momentum of every individual body and the angular
momentum that results from linear momentum at a distance from the base of the system for
every individual body, respectively.

2.3.2 Available balancing methods

Throughout the years, many different techniques have been invented to design shaking force
balanced mechanisms. Some of these techniques also provide shaking moment balance to these
mechanisms, but this is not always the case. In this section, a number of methods to obtain
(partial) dynamic balance is presented.

Counter-weighing

A simple method of obtaining shaking force balance is the addition of counterweights. When
counterweights are correctly applied, the shaking forces of a system cancel out perfectly. However,
counterweights may add a lot of mass to a system and cancelling out shaking moments may still
be difficult. A lightweight solution to completely shaking force and shaking moment balance
a system is is through counter-rotary counterweights (CRCW’s), as is shown by Herder and
Gosselin [30]. These work by both applying counterweights (for shaking force balance) and
making these counterweights rotate upon movement of the system (to achieve shaking moment
balance).

Fischer’s method of principal vectors

German physiologist, physicist and medical doctor Otto Fischer derived a method to derive
kinetic energy in the human musculoskeletal system. This method has been used for years in
the pre-computer era, and is also applicable to other mechanical systems. Especially Fischer’s
method of principal vectors has proven to be very useful in the analysis and synthesis of balanced
linkage systems[31].

Fischer’s method of principal vectors adds a series of binary structural elements in a parallelogram
fashion to the original mechanism. One point in the resulting augmented mechanism will always
coincide with the CoM of the system, which therefore gives insight in the dynamic balance of the
system, as shown in Figure 2.11. From this method, conditions for shaking force balance can be
derived.

Double Contour Transformation

V. A. Shchepetil’nikov proposed an alternate method called ”double contour transformation”
[32]. This method generates an attached proportional auxiliary mechanism which traces out the
CoM of a plane mechanism. With an auxiliary mechanism and a counterweight, the movement
of the CoM of the mechanism can be reduced to a stationary point, and the first harmonic
of the shaking moment can be eliminated. This does not completely dynamically balance the
mechanism, but it will already eliminate the shaking forces and reduce the shaking moments[29]
[32].
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Figure 2.11: Mechanism by Fischer to trace the CoM of three links at S0 by additional links [31]

Figure 2.12: Balanced double pendulum by using axial and mirror symmetric mechanism
duplicates [35]

Methods of duplicated mechanisms

An intuitive way of balancing a mechanism is by duplicating it. This technique achieves dynamic
balance by letting two identical mechanisms perform identical yet opposite movements, which
means the total reaction forces and moments on the base of the system will be zero and the
system will be globally dynamically balanced. A common method for this is the method of
”Counter-Rotary Countermasses” (CRCM)[33]–[36], which is shown in Figure 2.12.

In some cases in literature, systems can only be shaking force balanced but not shaking moment
balanced. In those cases, adding just one oppositely moving system often proves to be enough
to also shaking moment balance the system.

Linearly independent vectors

The method of linearly independent vectors determines the total CoM of the system by taking a
mass-weighed summation of all CoM locations of the bodies of the system. This is done according
to equation 2.3.3 [37].

Rs =
1

M

n∑
i=2

miRci (2.3.3)

In this equation Rci is the position vector of the CoM of body i, with mi the mass of body i. M
is the total mass of the system.
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The equation of describing the position of the total mechanism center of mass is written in such
a way that the coefficients of the time-dependent terms may be set equal to zero. In this way,
the total center of mass can be made stationary and the shaking force vanishes [26].

The method of linearly independent vectors is extended by Bagci to the method of force balancing
by idler loops [37]. This method allows complete shaking force balancing of irregular force
transmission mechanisms whose force balancing failed due to the existence of one or more links
that have connections to the fixed link and permit at least one linear freedom in each.

Screw Theory

Screw theory is a method of modelling motions or constraints of a system. It models the move-
ment in a way that’s comparable to the movement of a screw, with a rotation around an axis
and a translation along that axis.

De Jong et al. made an attempt to design a dynamically balanced mechanism using screw theory
[38]. They managed to create a instantaneously dynamically balanced 5-bar mechanism where
the balanced paths had a shaking moment reduction of 95% compared to the non-balanced paths.
The shaking forces where at least 96% lower then the internal bearing forces, indicating force
balance. This means screw theory can be used to achieve at least instantaneous dynamic balance.
Instantaneous balance means the system is only balanced along a certain trajectory. However,
this is not the same as global balance, where the system is balanced throughout its entire range
of motion. When speaking of dynamic balance, this generally implies global balance.

Linearly independent linear momentum

In the works of van der Wijk, linearly independent linear momentum is proposed as a straight-
forward and intuitive way to design dynamically balanced rigid body linkages [9]. This method
has the capability to achieve both shaking force and shaking moment balance. In this method,
the linear momentum of a closed chain linkage is expressed in a linearly independent form.

Modal balancing

A novel method of balancing mechanisms is modal balancing. This method approaches a mech-
anism as 100% elastic and balances it modal. In the research of Martinez, Meijaard and van der
Wijk [39], the shaking force and shaking moment balance conditions have been found for flexible
beams. This has been further investigated by the research of Nijdam [8]. Both researches proved
modal balancing to be a useful tool in balancing of compliant mechanisms.

For flexible beams to be modally balanced, conditions such as equal and opposite dynamic forces
are required. For this to be possible with flexible beams, the frequency of the movement of the
beams (i.e. eigenfrequency of the beams) has to be equal.

In the research of Lisanne Nijdam [8], a rigid body balanced watch oscillator has been redesigned
to a simpler mechanism with the same functionality. This redesign has been based on a modal
balancing approach. Both mechanisms are shown in Figure 2.13.

2.4 Comparison of available methods

To design an inherently balanced compliant mechanism, a combination of compliant mechanism
design methods and dynamic balancing methods is likely to be necessary. Combining these may
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Figure 2.13: Original design by Weeke et al (a) and redesign by Nijdam (b) [8]

however prove to be a challenge. In this chapter, some limitations of both methods will be
discussed, after which the challenges of combining them will be explored.

2.4.1 Compliant mechanisms

In industry, compliant mechanisms are often designed in a trial-and-error fashion. A design
is made, dimensions are estimated using linear elastic material mechanics and the design is
simulated using FEM. This process is then iterated until a good design is made.

Most methods for designing compliant mechanisms work this way, which leads to certain im-
portant limitations. These limitations are discussed below and explained per method in Table
2.3.

Firstly, most methods are used for analysis rather than synthesis of mechanisms. This can make
them hard to incorporate in a more elaborate design method. These analysis techniques are
only useful for determining or optimizing dimensions in a readily available design, rather than
creating a new design. The FACT method and topology optimization, on the other hand, allow
the engineer to invent new types of mechanisms.

Secondly, techniques such as FEM and topology optimization are computationally very expensive
techniques rather than simpler methods such as elastic beam theory and PRBM. These therefore
require computer programs to aid with the design, whereas simpler methods use calculations
that can easily be solved by hand. The FACT method is especially different, as this design
method focuses on constraining and allowing movement in specified degrees of freedom, rather
than solving equations.

Thirdly, most dynamic balancing techniques concern planar rigid body linkages. This may
cause problems when considering compliant mechanisms, as they by default use deformation and
compliance instead of only rigid bodies and hinges. This can cause a mismatch when attempting
to combine methods for designing dynamically balanced compliant mechanisms. The fact that
most methods concern planar mechanisms will not automatically cause a mismatch, but is still
a shortcoming of these methods because many mechanisms are 3-dimensional.

2.4.2 Dynamic balancing

When considering dynamic balancing, some properties are common among most of the design
techniques. Most techniques are only considering rigid body linkage systems in 2D, and often
additional masses or symmetric countersystems are used to balance the system. Furthermore, in
the end, perfect balance can only be theoretically achieved, but is in practice not feasible due to
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Method
Analysis or
synthesis

Computational
costs

Used for

Elastic beam theory Analysis Low Slender beams
Matrix method Analysis Low Solid structures
Castigliano’s 2nd theo-
rem

Analysis Low Slender beams

Ryu’s method Analysis Medium
Optimizing dimensions in any
mechanism

PRBM + Lagrange Analysis Low
Compliant beams & notch
hinges

FEM Analysis High Any structure

FACT Synthesis None
Leaf flexure and wire flexure
systems

Topology optimization Synthesis Very high Any structure

Table 2.3: Compliant mechanism design techniques

manufacturing errors.

Another property of most methods for achieving dynamic balance is that most methods are
focused on balancing existing mechanisms, rather than designing a system which is inherently
balanced from the start. This is not necessarily a shortcoming, but likely limits the performance
of the resulting mechanism in terms of weight and simplicity.

In Table 2.4 an overview is presented of the dynamic balancing methods that are treated in
chapter 2.3. First, the balancing level is treated. This indicates the maximum level of dynamic
balancing that’s achievable with the method. Shaking force balance is the most common balanc-
ing level, but to achieve perfect dynamic balance, shaking moment balance is also required.

Another category by which the balancing methods can be distinguished is the type of mechanisms
they can be applied to. In order to combine techniques, this could prove to be a very important
property.

2.5 Conclusion

The available methods for designing dynamically balanced mechanisms and compliant mecha-
nisms are quite far apart, but some of them do have similarities. The mentioned methods of this
paper do present opportunities to create dynamically balanced compliant mechanisms, but they
are not all straight-forward.

The research question of this paper was as follows:

Which currently existing methods seem most promising for dynamically balancing of compliant
mechanisms?

The answer to this question consists of several opportunities of combinations of techniques.
These are presented and briefly explained in this chapter.
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Method Balancing level Balanced mechanism

Principal vectors Shaking forces
Open and closed chain link-
ages

Double contour transfor-
mation

Shaking forces & Partially shak-
ing moments

1 DOF closed chain linkages

Duplicate mechanisms
Shaking forces & shaking mo-
ments

At least parallel mechanisms,
crank-slider mechanisms, 4-
bar mechanisms

Linearly independent vec-
tors

Shaking forces 1 DOF closed chain linkages

Screw Theory
Shaking forces & partially shak-
ing moments

At least up to 2 DOF closed
chain linkage

Inherent dynamic balanc-
ing

Shaking forces & shaking mo-
ments

Closed chain linkages

Modal balancing Shaking forces Flexible beams

Table 2.4: Dynamic balancing techniques

Topology optimization

Topology optimization is a computer aided design technique that allows an engineer to enter an
objective and constraints and leave the design process to the algorithm. One of the constraints
in this optimization could be dynamic balance of the system, but as this is quite a large and
probably nonlinear constraint, this may result in infeasible design spaces. A first approach
to incorporate dynamic balance would be the use of the basic principles of balance: constant
linear and angular momentum. In the case of topology optimization, this would mean the mass-
weighed displacement vectors of the elements of the system should add up to zero. The topology
optimization approach to design dynamically balanced compliant mechanisms is very different
from the existing methods and may therefore yield drastically different designs from the currently
designed mechanisms. This may not only prove useful through the resulting new mechanisms,
but also might bring new insight in dynamic balancing methods which were not found before.

Screw theory and the FACT method

In the paper of de Jong et al. [38] an example is presented of how screw theory can be used
to design a dynamically balanced mechanism. The FACT method, one of the strong synthesis
methods of compliant mechanisms, is also based on the screw theory. A combination of these
methods is therefore a feasible way forward to design dynamically balanced compliant mecha-
nisms. However, de Jong et al. showed that for their 5-bar linkage only instantaneous dynamic
balance could be achieved. A 4-bar linkage may be globally balanced though, as it has fewer
degrees of freedom than the designed 5-bar linkage and is therefore constraint to follow a specific
path, such as the balanced path of the 5-bar linkage.

PRBM and any rigid body linkage system balancing method

PRBM is a compliant mechanism modelling method that simplifies a flexible beam to a rigid body
with a torsional spring around its joint. As a rigid body linkage system consists of rigid bodies and
joints, the many available linkage system balancing methods seem promising to design balanced
compliant mechanisms. However, current balancing methods do not take internally vibrating
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bodies into account. This means static balancing or modal balancing may be required to avoid
unwanted vibration of the flexible members, so this method may not be sufficient.

Modal Balancing

As presented in the papers of Nijdam [8] and Martinez, Meijaard and van der Wijk [39], modal
balancing is discussed as a method to balance flexible beams. This is the only method that
has currently been used to balance compliant bodies and is still quite unexplored. Nijdam and
Martinez showed multiple functioning balanced mechanisms, thereby proving the force of this
method.
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Chapter 3

Topology Optimization Algorithm for
Synthesis of Dynamically Balanced
Compliant Mechanisms

Abstract

This paper presents a new methodology for syn-
thesizing dynamically balanced compliant mecha-
nisms. A topology optimization algorithm is pre-
sented, which contains constraint functions to en-
sure dynamic balance in the resulting geometries.
The dynamic balance is realized both in terms of
shaking force balance and shaking moment bal-
ance using a constant linear and angular momen-
tum approach. This approach does not take into
account eigenmode, but focuses on the relative
movement of bodies in the mechanism. The topol-
ogy optimization algorithm is written in MAT-
LAB and is based on the 99-line and the 88-line
code. The method of moving asymptotes is used
for updating the design throughout the iterations.

Two mechanisms are synthesized in MATLAB us-
ing the newly designed algorithm. One of these
mechanisms is balanced, the other unbalanced.
The resulting geometries are post-processed in Solid-
works. To ensure the roughness of the optimiza-
tion algorithm and the transition through Solid-
Works do not cause significant errors, the kine-
matic behaviour of the resulting geometry is ver-
ified through simulations in COMSOL. First, a
static analysis is performed where inertial terms
are not included, to compare the COMSOL results
with the MATLAB code. After this validation,
COMSOL is used to analyze the MATLAB ge-
ometries in a dynamic manner by analyzing eigen-
modes, reaction forces, linear momentum and an-
gular momentum. This analysis is done first in
a quasistatic manner and after that with the in-
clusion of inertial terms. This shows a quasistatic
approach is a good first step towards designing
dynamically balanced compliant mechanisms with
topology optimization, but eigenmodes may still
disturb the dynamic balance of the resulting mech-
anism. Therefore, a dynamic analysis including

eigenfrequencies and modal balancing needs to be
incorporated in the design process of dynamically
balanced compliant mechanisms.

Nomenclature

Abbreviation Meaning
COM Center of Mass
SFB Shaking Force Balance
SMB Shaking Moment Balance
SIMP Solid Isotropic Material

with Penalization
SISO Single Input Single Output
DOF Degree of Freedom
MMA Method of Moving Asymptotes

3.1 Introduction

For machines and mechanisms operating at high speeds
and high precision, shaking forces and shaking moments
are often undesired [35], as they cause vibrations, noise,
wear, and fatigue problems, and therefore limit the full
potential of many machines [26], [40]. These shaking
forces and shaking moments can be mitigated or even
completely removed by various techniques [9], [26], [29]–
[32], [37], [38]. When there are no shaking forces nor shak-
ing moments throughout the entire range of motion of a
mechanism, that mechanism is Dynamically Balanced.

Dynamic balance is achieved in a mechanism if the linear
and angular momenta are constant. If the Center of Mass
(CoM) of a mechanism is stationary in all translational
directions throughout the entire range of motion, the lin-
ear momentum is constant and the mechanism is Shaking
Force Balanced (SFB). If the rotations of all masses in the
mechanism around the CoM cancel out as well, the an-
gular momentum is constant and the system is Shaking
Moment Balanced (SMB) [9]. A system is dynamically
balanced if both SFB and SMB are satisfied.

The first dynamic balancing techniques were only consid-
ering shaking forces, for example the method of principal
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Figure 3.1: 2DOF pantograph ([9])

vectors by Fischer [31], double contour transformation
[32], and the Method of Linearly Independent Vectors
[26]. Later, shaking moments were also addressed, mostly
by adding auxiliary mechanisms such as counter-rotary
counterweights [30]. Often such auxiliary mechanisms are
identical, yet opposite, mechanisms with the same kine-
matic properties [33], [35], [36]. These systems make use
of symmetry to obtain shaking force and shaking moment
balance. Van der Wijk proposed his method of inherent
balancing [9] where mechanisms can be designed without
the need for symmetry.

Using the inherent balancing method, systems such as
the 2DOF pantograph in Figure 3.1, can be designed. In
this method, a rigid body linkage with two input angles
is designed, which is shaking force balanced. However,
the representation of the system in Figure 3.1 is a simpli-
fied one, showing only the dimensions of the rigid bodies,
linkages and their COM’s, not the actual geometries of
the bodies.

The available dynamic balancing methods generally con-
sider rigid body linkages with prescribed CoMs, or sym-
metric auxiliary systems. This reduces the design free-
dom, and will change COM’s by adding redundant mass
with the sole purpose of balancing [41], rather than opti-
mally redistributing mass.

In the meantime, compliant mechanisms are rapidly gain-
ing importance, yet their design remains challenging[5].
One way of designing compliant mechanisms is Topol-
ogy optimization [42]. Topology optimization has, how-
ever, not often been used for designing dynamically bal-
anced mechanisms yet. A first attempt on designing a
dynamically balanced four-bar mechanism using topology
optimization is proposed by Ayala-Hernandez[25]. This
approach shows a topology optimization algorithm with
dynamic balancing constraints should be able to synthe-
size mechanisms which are inherently force- and moment-
balanced, while distributing masses such that they con-
tribute to the system’s performance. This approach, how-
ever, only considered the balancing of an existing mech-
anism by optimizing two rigid bodies rather than inher-
ently balanced design of the whole mechanism.

In this paper, a topology optimization algorithm is pre-
sented with a problem formulation which includes dy-
namic balance. In Section 3.2, the used model and the ap-
proach to dynamic balancing is explained. Several mech-

anisms are designed using this algorithm, which are then
analyzed using COMSOL in Section 3.3, where they are
compared to their unbalanced counterparts. The results
are discussed and improvements and suggestions for fur-
ther research are proposed in Section 3.4. Finally the
conclusions are presented in Section 3.5.

3.2 Method

To synthesize dynamically balanced compliant mechanisms,
a topology optimization problem formulation requires at
least the following functions:

• An output function

• A volumetric constraint

• A shaking force balance (SFB) function

• A shaking moment balance (SMB) function

Depending on the desired outcome, either one of these
functions or a combination of multiple functions is used
as the objective function, with the others acting as con-
straints. Additionally, a finite element model is required
to establish a relation between the forces and displace-
ments of the elements in the design space. An optimiza-
tion algorithm is then utilized to determine the change of
the design variables at each iteration.

3.2.1 Used model and assumptions

Topology optimization algorithm

This topology optimization algorithm is based on the 99-
line Matlab code of Bendsøe and Sigmund [42]. This al-
gorithm is a well-documented This code employs a Solid
Isotropic Material with Penalization (SIMP) model and
progresses using the optimality criteria method. The op-
timality criteria method, however, is not easily extended
to problems with multiple constraints, and is therefore
changed to an MMA-algorithm (Method of Moving Asymp-
totes) by Svanberg [43], which is well-suited for topol-
ogy optimization purposes [16] and quite standard in the
treatment of advanced topology optimization problems.
This algorithm utilizes non-conforming mesh, a linear fi-
nite element model and a volumetric constraint. This
constraint assures that only a predetermined percentage
of the design space can be filled with material. As a re-
sult of the penalization in the SIMP approach, the design
space becomes a black-and-white mechanism, with the
volumetric constraint determining the percentage of solid
(black) elements.

The SIMP method adds a penalization factor on the de-
sign variables, which is favourable for a black-and-white
distribution of the elements in the resulting geometry.
This causes the original design variables to lose their
physical representation, which means the penalized de-
sign variables represent the resulting physical geometry.
Before the penalization, a filter is applied. The original
design variables will be denoted as α, the filtered design
variables as α̃ and the penalised filtered design variables
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(densities) will be denoted as ρ. Usually in literature, the
original design variables are denoted as x and the filtered
design variables as x̃, but to avoid confusion with posi-
tions and displacements in x-direction, α is used in this
article. In the code, however, x is used as the vector of
design variables.

Some parts of the 99-line code have been replaced by parts
of the 88-line code by Andreassen et al. [44] for compu-
tational efficiency purposes. The 99-line code uses a loop
over all elements to calculate the constraints, whereas the
88-line code uses only one matrix operation. This greatly
increases performance, especially for large element-sized
optimizations. In the 88-line code, a modified SIMPmethod
is used, where a minimum stiffness is defined to prevent
the stiffness matrix K from becoming singular. For this
optimization code, however, the classical SIMP method
is used, because the MMA-algorithm already has a lower
limit for the design variables, thereby ensuring a mini-
mum stiffness.

Another assumption in the algorithm is to work in a 2-
dimensional design space. The proposed approach should
work equally well in a 3-dimensional design space, but a
2D-approach is sufficient for a proof of concept and highly
preferable for computational efficiency.

Dynamic balancing model

Dynamic balance is only fully realized when both SFB
and SMB are achieved. The linear momentum of the
system’s COM and the angular momentum around it need
to remain constant throughout the entire range of motion,
following the inherent balancing methodology by van der
Wijk [9]. For most mechanisms, this means the linear and
angular momenta need to be 0, as the system will likely
be stationary on the start and/or finish of its movement.
The balance conditions of the inherent balancing method
are represented by equation 3.2.1 and 3.2.2.

L = mṙ (3.2.1)

HS = Iθ̇ +m(r× ṙ) (3.2.2)

In these equations, L is the linear momentum, m is the
mass, r is the position vector with ṙ the corresponding
velocity vector. HS is the angular momentum around the
total Center of Mass (CoM), I the moment of inertia, and
θ̇ the angular velocity.

The dynamics of the system are approached from a quasi-
static perspective, omitting vibration analysis and solely
focusing on linear and angular momentum. The approach
to this linear and angular momentum is taken element-
wise, as the topology optimization algorithm is based on
elements rather than large rigid bodies.

The linear momentum of the system is represented by the
sum of the masses of all elements, multiplied by their re-
spective velocities. However, general topology optimiza-
tion methods consider statics and therefore do not con-
sider velocities but only displacements. To simplify this
during the iteration process, a linear relation between the

displacements of the system’s elements and the velocities
is assumed, using element displacements (rather than ve-
locities) for momentum analysis. After all, if all elements
undergo a linearly increasing displacement in the same
amount of time, their corresponding velocities will be pro-
portional to their final displacements. Just like the actual
linear and angular momentum, the linear and angular mo-
mentum approximations should be 0 for dynamic balance
of the system.

3.2.2 Balance Conditions

As discussed earlier, SFB and SMB require the linear
momentum and angular momentum of the COM to be
0, respectively. Assuming linearity, this condition is met
when the displacements of the COM are 0 and the mass-
weighed rotations of elements around the COM cancel out
to 0. These two conditions are satisfied through equation
3.2.3 for SFB and 3.2.4 for SMB.

BSF =

∑
(ρeluel)∑
ρel

= 0 (3.2.3)

BSM =

∑
(ρel(rel × uel))∑

ρel
= 0 (3.2.4)

In these equations, uel is the displacement vector of an
element, ρel is the density of that element, and rel is the
position vector of the element with respect to the COM of
the entire system. Both sums are taken over all elements.

The approach is limited to a 2-dimensional analysis, re-
quiring two linear momentum equations and one angular
momentum equation to determine the dynamic balance
of the system.

The resulting balance conditions are given in Equation
set 3.2.5:

ux =
ρAxu∑

ρ
= 0 (3.2.5a)

uy =
ρAyu∑

ρ
= 0 (3.2.5b)

Rz =
ρMu∑

ρ
= 0 (3.2.5c)

M = rxAy − ryAx (3.2.5d)

In these equations, u is the global displacement vector.
The matrices Ax and Ay are multiplied with the global
displacement vector to obtain element-averaged x- and y-
displacements, rather than nodal x- and y-displacements.
The balance equations are represented in their global form,
computing the linear momenta in one linear algebraic
equation.

The shaking moment balance constraint uses a matrix M
in the computation. This matrix takes into account both
the node-to-element conversion and the computation of
the angular momentum. In Equation 3.2.5d the compu-
tation of M is shown, consisting of both linear momenta
and their arms rx and ry with respect to the COM of the
system in x- and y-direction, respectively. In this equa-
tion, rx and ry are diagonal matrices with the distance
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between the COM and the corresponding element on the
main diagonal. The representation in the code is a point-
wise multiplication.

The balance equations, as displayed in equations 3.2.3,
3.2.4 and 3.2.5, differ from the general balance equations
3.2.1 and 3.2.2 as they do not consider the total system
mass. In the case of perfect balance, this results in the
same outcome because for the total linear momentum to
be 0, either the mass or the displacement of the COM
needs to be 0. As the mass cannot be 0, the displacement
of the COM has to be. Nevertheless, mass is used to de-
termine the individual contributions of the displacements
of all elements and thereby the displacement of the COM.

Another difference between the method of inherent bal-
ancing and the topology optimization algorithm is the
term Iθ̇. During the iteration process, elements are con-
sidered pointmasses. Pointmasses do not have rotational
degrees of freedom, so their angular momentum around
their own COM is 0. If this assumption would not be
made, the contribution of the angular momenta of the el-
ements around their own COM would still be negligible
with respect to their rotation around the system COM.
Therefore, this term is ignored.

3.2.3 Optimization problem

The optimization problem, as proposed by Sigmund [42],
aims to maximize the end-effector displacement of the sys-
tem, being subject to a volume constraint. The stopping
criteria and settings of the MMA-algorithm are applied
as prescribed by Svanberg [43].

In the balanced case, SFB and SMB constraints must
also be included, resulting in the optimization problem
presented in Equation 3.2.6.

min
ρ

− uee(ρ)

s.t. V =

∑
nel

ρel

nel
≤ Vmax

gSFB = u2x + u2y ≤ ϵ2SFB

gSMB = R2
z ≤ ϵ2SMB

(3.2.6)

Where uee is the displacement of the end-effector in the
desired direction, Vmax is the maximum design space den-
sity (percentage of elements that are allowed to be solid
material), and Rz is an expression for the angular mo-
mentum of masses around the COM. Even though this is
not the actual rotation or rotational velocity, this value
does give an indication of the shaking moment balance of
the system.

The values for ϵ are used as a relaxation of the SFB and
SMB constraints. These constraints should be equality
constraints set to 0, but instead are represented by in-
equality constraints with a small margin. This slightly
enlarges the feasible domain during the iteration process
(when compared to an epsilon value of 0) and increases
the chance to find better local optima, at the cost of per-
formance in terms of balance.

The value for ϵSFB physically represents the maximum
allowed displacement of the COM of the system in mm,
regardless of direction. The value ϵSMB represents the
maximum allowed value of Rz, regardless of direction. In
the optimization process, this value is very critical, as
a high value will not yield an optimal solution in terms
of balance, whereas a very low value may prevent the
algorithm from converging. However, through the use of
continuation, the constraints can be tightened throughout
the optimization process to achieve better performance in
terms of balance. This will be discussed later.

Balance functions and sensitivities

For the shaking force balance function, the desired out-
come is a low absolute displacement of the center of mass,
independent of the direction of that displacement. There-
fore, the x- and y-displacements are squared.

For the optimization algorithm, the sensitivities of the
objective function and constraints are required. For com-
putational efficiency, it is preferable to determine these
analytically. The calculations of these equations and their
representation in the code can be found in appendices A
and E, respectively.

For easier and faster computation of these gradients, ad-
joint functions are used for both constraints. The algo-
rithm makes use of a linear finite element model, which is
written in matrix representation as f = Ku. Here f is the
global force vector, K is the global stiffness matrix and
u is the global displacement vector. Because of this, the
function λ(f − Ku) = 0 and can therefore be added to
any other function. Note that the derivative df

dρi
= 0, as

the vector f contains the input forces which are indepen-
dent of the design variables. This will be important when
the sensitivities of the objective and constraint functions
are calculated. The balance conditions of Equations 3.2.5
with the adjoint function incorporated are given in Equa-
tions 3.2.7. The adjoint variable vectors λ are different
for all subequations shown there.

ux =
ρAxu∑

ρ
+ λx(f−Ku) (3.2.7a)

uy =
ρAyu∑

ρ
+ λy(f−Ku) (3.2.7b)

Rz =
ρMu∑

ρ
+ λz(f−Ku) (3.2.7c)

The sensitivities derived from these equations are given
in Equations 3.2.8. Due to the adjoint formulation one
term with adjoint variables is present. In the sensitivity
Equation 3.2.8a, the derivatives of ux and uy are used.
For clarification, only the derivative of ux is shown in
Equation 3.2.8b, with the derivative for uy being almost
the same as the derivative of ux, except it uses the matrix
Ay instead of Ax. This term is dependent of λx, which is
defined in Equation 3.2.8c. The derivatives in these equa-
tions are taken with respect to ρi, being the density of one
of the elements in the design space. In the optimization
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code, this calculation is performed for all element densi-
ties.

dgSFB

dρi
= 2

(
ux
dux
dρi

+ uy
duy
dρi

)
(3.2.8a)

dux
dρi

=
[Axu]i∑

ρ
− ρAxu

(
∑

ρ)2
− λ

∂K

∂ρi
u (3.2.8b)

λx =
ρAxK

−1∑
ρ

(3.2.8c)

The sensitivities for the shaking moment balance con-
straint are shown in Equation set 3.2.9. Equation 3.2.9a
shows the sensitivity equation of the actual SMB con-
straint, as presented in Equation 3.2.6. This equation
is dependent of the derivative of Rz, which is shown in
Equation 3.2.9b. This equation is then dependent on λz,
which is shown in Equation 3.2.9c. Further elaboration
on the derivation of these equations is found in Appendix
A.

dgSMB

dρi
= 2Rz

dRz

dρi
(3.2.9a)

dRz

dρi
=

[Mu]i − 2Rz∑
ρ

− λ
∂K

∂ρi
u (3.2.9b)

λz =
ρMK−1∑

ρ
(3.2.9c)

Filtering

For preventing mesh-like structures, a density-based fil-
ter is applied, as proposed by Andreassen [44]. The de-
sign variables are filtered as shown in Equation 3.2.10.
The matrix H is defined once in the iteration loop. The
calculation of this standard density filter is provided in
the code in Appendix E and by Andreassen[44]. This
approach is more robust compared to the original sensi-
tivity filter of the 99-line code. The filter radius should
be higher than 1 (generally starting at 1.2 or 1.5). Also,
the filter radius be used to enforce minimum thicknesses
of solid bodies and minimum thicknesses of cavities, and
should be taken larger when a larger design space is used.

α̃e =
1∑

i∈Ne
Hei

∑
i∈Ne

Heiαi (3.2.10)

The density filter transforms the original set of design
variables (α) to a new set of filtered design variables α̃.
These filtered design variables will be used for the calcu-
lation of the sensitivity functions of the objective function
and the balance constraint functions. When this calcula-
tion is performed, the resulting sensitivity functions are
reverse-filtered to obtain the sensitivity functions with re-
spect to the original design variables, as shown in Equa-
tion 3.2.11, by application of the chain rule. These func-
tions are then used in the MMA optimization to obtain
new design variables for the next iteration.

Figure 3.2: Original displacement inverter (a) boundary
conditions and (b) resulting geometry [16]

∂ψ

∂xj
=

∑
e∈Nj

∂ψ

∂x̃e

∂x̃e
∂xj

=
∑
e∈Nj

1∑
i∈Ne

Hei
Hje

∂ψ

∂x̃e

(3.2.11)

3.2.4 Design problem, starting conditions
and stopping criteria

The design problem which we study is a slightly modi-
fied version of the displacement-inverter design problem
commonly studied in compliant mechanism topology op-
timization[6], [16]. This is single input, single output
(SISO) mechanism with an output displacement oppo-
site to the input displacement. This system is supported
at the left upper and lower corner of the design domain,
and results in the geometry as presented in Figure 3.2
(b). The boundary conditions are defined as shown in
Figure 3.2 (a), with an input force at the node in the
middle of the left boundary of the design domain and a
desired output displacement at the middle node of the
right boundary of the design domain. At these nodes, a
fictional spring is attached to represent a force that would
be required at the input and output to actually make the
mechanism perform any work rather than just displace-
ment.

For testing the dynamically balanced topology optimiza-
tion code, the original displacement inverter is, due to its
symmetry, inherently force-balanced in the vertical direc-
tion, and moment-balanced. This means this particular
mechanism is not suitable for testing the SMB constraint,
and only partly suitable for testing the SFB constraint.

To verify shaking force balance in both x- and y-direction,
as well as shaking moment balance, an asymmetric sys-
tem is more suitable. Therefore, an off-centered force
inverter is designed, where the output displacement is de-
fined slightly above the middle of the design domain at
the right boundary. The kinematic boundary conditions
are determined as translational constraints in the same
corners of the design domain as the original design prob-
lem.

To allow the algorithm more design freedom, the design
domain has been extended. Outside of the original design
domain, which still contains the previously described con-
straints and input and output displacements, a free design
domain is added. For this case, the design domain out-

27



Figure 3.3: Boundary conditions of the design domain:
two fixed boundary conditions, a horizontal input force
(solid vector) and the desired output motion (dashed vec-
tor)

side of the original design domain has a thickness of 20%
of the total design domain, at all sides. This value of 20%
is chosen because this allows enough space to find a solu-
tion, without interfering with the boundaries of the total
domain. This results in a design space as shown in Fig-
ure 3.3. This means the previously described constraints
and input and output nodes are no longer defined at the
boundaries of the design domain, but at 20% or 80%. The
output displacement node is defined at 40% from the top
of the total design domain, and 20% from the right bound-
ary of the total design domain. The other variables used
for this optimization are presented in Table 3.1.

The algorithm will generally continue until convergence.
This means the maximum change of the design variables is
below a prescribed value i.e. the geometry is not changing
significantly anymore. This is the case when the objective
function will no longer improve and the constraint func-
tions are met. In the options, a minimum or maximum
number of iterations can also be set, or a time limit can
be applied. This generally yields designs that have not
converged yet.

Additional options

Helpdesigner
Because the objective of the system to minimize the end-
effector displacement (and in that way, maximize the end-
effector displacement to the left) and the starting condi-
tions yield a positive end-effector displacement, the al-
gorithm will start converging to an end-effector displace-
ment of 0. This is a local minimum where no material
is present around the end-effector. To solve this, the
“helpdesigner” option is included in the algorithm. If
this is turned on, the algorithm will plot material along a
line through the input and output nodes to enforce a con-
nection to the rest of the material in the design domain.
This helps the algorithm to escape the local minimum at

Figure 3.4: Local minimum at the start of the iteration
cycle (left) and the helpdesigner option plotting two lines
to escape that local minimum (right)

Parameter Value
Young’s modulus 10 MPa
Poisson’s ratio 0.3
Springs stiffness 0.1 N/mm
Volume fraction 0.2
Penalty factor 3
Filter radius 3
# elements 400x400
Input force 5 N
boundary thickness 0.2
SF slack 0.2
SM slack 20

Table 3.1: Input parameters of the optimization

a displacement of 0. The situation of local minimum is
shown in the left image of Figure 3.4. The next iteration
with the “helpdesigner” active is shown in the right im-
age of Figure 3.4.

Continuation
Another option in the optimization is continuation. This
allows the user to start the optimization problem with
relatively relaxed constraints, while tightening those con-
straints later. In the case of dynamic balance, this allows
the algorithm a lot of design freedom in early iterations,
while still achieving an increasingly well-balanced mech-
anism in later iterations.

Starting point
By default, the algorithm will have a ”grey start” as start-
ing point for the optimization. This means the design
variables are all equal to the prescribed volume fraction.
If necessary, another density field could be used as start-
ing point. In the case of designing dynamically balanced
mechanisms, an unbalanced mechanism can be a very
good starting point for designing a balanced mechanism.
If this is the case, the starting point will be a combination
of the input density field and a grey start, with the design
variables of white input elements having a low value and
the black elements having a higher value, still all between
0 and 1.
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3.3 Results

In this section the geometries of the optimization runs
described in Section 3.2 are shown. These geometries
are post-processed in SolidWorks to obtain mechanisms
with smooth boundaries to eliminate obsolete material
and stress concentrations due to the rough boundaries of
the non-conforming mesh in the optimization algorithm.
The post-processed geometries are then simulated using
a conforming mesh in COMSOL to analyze the perfor-
mance of the mechanisms, both in terms of their out-
put displacement and their dynamic balance properties.
This simulation also serves as a verification of the kine-
matic behaviour of the mechanism in the optimization
algorithm.

3.3.1 Geometries

The resulting geometries for the unbalanced and balanced
case are shown in Figures 3.5 and 3.6, respectively. In
both figures, the geometry is shown in the left image. In
the right image, the original geometry is shown in black
with the deformed geometry plotted on top of it in red. A
blue circle indicates the position of the COM of the mech-
anism in undeformed state, with the vector originating in
the middle of the circle indicating the displacement of the
COM in its deformed state. At the end effector, another
vector is shown, indicating the displacement of the end-
effector.

The only objective of the algorithm is to maximize the
horizontal displacement pointing in the negative x-direction
(left), regardless of vertical displacements. This results in
a large parasitic vertical displacement of the end-effector
and the COM in the unbalanced case, whereas the di-
rection of the displacement of the end-effector is more
horizontal in the balanced case.

Figure 3.5: Unbalanced geometry in MATLAB, unde-
formed (left) and deformed (right)

The performance of the mechanism is evaluated in both
the MATLAB model and the COMSOL simulation. The
resulting values for the displacements of the COM, the
input and the end-effector are shown in Table 3.2. Note
that the positive y-direction in the MATLAB model is
vertically downward, whereas the positive y-direction in
the COMSOL simulations is vertically upward. The val-
ues for displacements are given in mm. Also, the position
of the COM and a quantification for the angular momen-
tum (Rz) are given, with the unit of Rz being mm2.

Figure 3.6: Balanced geometry in MATLAB, undeformed
(left) and deformed (right)

Table 3.2: Calculated results in mm from MATLAB (Rz

in mm2)

Property Unbalanced Balanced Difference
Uxin 27.682 27.602 -0.3%
Uyin 0.062584 0.49203 +686.2%
Uxout -21.258 -21.146 -0.5%
Uyout -16.126 7.3924 -54.2%
UCOMx

-1.3976 -0.16116 -88.5%
UCOMy

-5.9021 -0.11843 -98.0%
xCOM 198.65 194.35 -
yCOM 168.62 178.72 -
Rz -556.76 -19.999 -96.6%
B&Wα 99.3% 99.4% +0.07%
B&Wρ 93.7% 93.7% -0.06%

The shown differences are in percentages of the absolute
value of the balanced case compared to the absolute value
of the unbalanced case. According to the MATLAB cal-
culations, the shaking forces are reduced by 96.7% (the
absolute value of the combined x- and y-components of
the COM displacements from the table) and the shaking
moments are reduced by 96.6%. The relative difference
of the COM position is not shown as this is not relevant
to the performance of the system.

Apart from displacements, Rz and the COM position, the
so-called black-and-white fraction (B&W) of the design is
reported. The two values indicate the B&W fractions of
the design variables (α) and densities (ρ). This is shown
as the percentage of design variables or densities being
below 1% material or above 99% material, with respect
to the total number of elements. Intermediate design vari-
ables or “gray” material is considered non-physical in this
methodology. A low value of B&W indicates a large per-
centage of this non-physical material, and is therefore un-
desired. A little gray material is expected in the density
(ρ) case, as the filtering will introduce more intermediate
design variables at boundaries between solid and void el-
ements.

The balanced mechanism has a slightly lower output dis-
placement than the unbalanced mechanism. Also the in-
put displacement is slightly lower when the same force is
applied. This is explained by the balanced system storing
more strain energy compared to the unbalanced case. The
output displacement with respect to the input displace-

29



Figure 3.7: Design problem of an xy-manipulator

Figure 3.8: Unbalanced xy-manipulator

ment is slightly higher in the balanced case, however.

A second mechanism is also designed. The boundary
conditions are shown in Figure 3.7. The design prob-
lem concerns a manipulator with an input force in x-
direction at the bottom left corner, an output motion in
the y-direction in the top right corner and fixed kinematic
boundary conditions in the other two corners. Again, a
20% design space around this internal design space is ap-
plied, and fictional springs are applied at the input and
output DOF to simulate actual work being done by the
mechanism. This design problem yields an unbalanced
geometry, as shown in Figure 3.8 and a balanced geom-
etry in Figure3.9. The unbalanced geometry is a simple
lever, rotating around one of the fixed boundary condi-
tions. The balanced geometry is slightly more complex.
The mechanism shows an added mass, which is used to
counteract the angular momentum of the mechanism.

In the case of the balanced geometry, the algorithm has

Figure 3.9: Balanced xy-manipulator

Figure 3.10: Unbalanced(a) and Balanced(b) systems
with constraints and input/output nodes in COMSOL

not converged to a solution yet, but was stopped due to
a computation time limit. The resulting geometry has a
B&W value of only 12.2%, which clearly shows the con-
vergence has not yet been reached. The geometry is shak-
ing forced and shaking moment balanced, but due to the
low B&W value, this cannot be guaranteed.

Due to the lack of convergence, this geometry will not
be analyzed further. However, dynamic behaviour of the
added mass will likely have a large impact on the balance
of the mechanism when dynamic behaviour is taken into
account. Other geometries like this one can be found in
Appendix D.

3.3.2 Verification and dynamic analysis

The resulting geometry from the MATLAB optimization
is post-processed in SolidWorks. This is done by hand,
because automatic tools in SolidWorks were not able to
precisely follow the optimized geometry. The resulting
mechanisms are converted to 2-dimensional .dxf files which
will be used as input geometries in the COMSOL analy-
sis. The 400x400 elements design space is converted to a
400x400mm geometry.

The post-processed geometries are imported into the COM-
SOL simulation environment after which kinematic bound-
ary conditions are added, analogous to the original design
problem. The input and output nodes are also positioned
accordingly. After importing, the geometry is slightly
repositioned to ensure the geometry and the boundary
conditions are correctly aligned. This is required to cope
with possible errors in the conversion process, such as
the scaling errors. This is done by inspecting the outer
boundaries of the geometries in the MATLAB environ-
ment and the COMSOL environment. The simulation
is performed in 2D, and similar to the optimization al-
gorithm, plane stress is assumed and the out of plane
thickness is set to 1mm.

To quantify the performance of the design methodology,
the resulting geometry is simulated in several ways: A
static study, a frequency-domain study and a time-dependent
(transient) study. The first simulation is a static study to
verify the MATLAB analysis and the COMSOL analysis
are comparable. The applied force is identical to the ap-

30



Table 3.3: Results from COMSOL simulation in mm (Rz

in mm2)

Property Unbalanced Balanced Difference
Uxin 27.877 27.643 -0.8%
Uyin -0.069968 -0.34330 +390.7%
Uxout -21.436 -21.447 +0.0%
Uyout 16.142 -7.6955 -52.3%
UCOMx -1.3886 -0.12250 -91.2%
UCOMy 5.9485 0.10067 -98.3%
xcom 198.41 194.11 -
ycom 233.15 221.43 -
Rz 566.95 -2.8309 -99.5%

plied force in the MATLAB model, so the results in the
COMSOL model should be approximately equal to the
MATLAB results. This study can however only be used
to determine the kinematic behaviour of the system and
to verify the COM displacements; not to determine the
actual shaking forces and moments.

The second simulation is a frequency-domain study. This
is used to determine the natural frequencies and eigen-
modes of the system. The main goals of this analysis are
to gain insight in the behaviour of the mechanism, and
to ensure the transient study will not be influenced by
unexpected dynamical behaviour of the system.

The third simulation is a transient analysis, where the dy-
namic behaviour of the system will be taken into account.
This simulation can be performed quasi-statically, or with
inertial terms taken into account. Both simulations are
performed, because both serve a different purpose. A
quasi-static analysis can be used to verify the COM dis-
placement approach as a guideline for SFB and SMB, as
described in Section 3.2. A simulation with inertial terms
will give more insight in the actual dynamic behaviour of
the systems which would be designed with this method.

Static Study

The resulting values in the static study for the displace-
ments of the input node, end effector and COM are shown
in Table 3.3. The deformed mechanisms according to the
static COMSOL simulation are shown in Figure 3.11. The
color legend shows the displacement magnitude. These
deformed systems show deformations for approximately
the same system with the same boundary conditions and
input forces as the systems in Figures 3.5 and 3.6.

The results of the static study in Table 3.3 should be sim-
ilar to the results of the topology optimization algorithm
in Table 3.2. In Appendix C and table C.1, a clearer com-
parison is made between the results of the static analy-
sis on the geometry according to the topology optimiza-
tion model and the COMSOL simulation. This shows the
translation from the non-conforming mesh and analysis
in the optimization model to the analysis in COMSOL is
performed correctly.

Figure 3.11: Deformed unbalanced (a) and balanced (b)
force invertor mechanisms in COMSOL

Figure 3.12: Eigenmodes of the 3 dominant natural fre-
quencies of the balanced displacement inverter.

Frequency Domain Study

For the frequency domain study, the same input force of
5N is applied, and the mechanism is actuated harmoni-
cally at frequencies logarithmically ranging from 0.01Hz
to 100Hz. Also, an eigenfrequency study is performed,
which determines the natural frequencies and correspond-
ing eigenmodes of the system. This shows a series of nat-
ural frequencies of the mechanisms, which are provided
in Table 3.4.

The frequency domain study also shows an overview of
the reaction forces in x- and y-direction for different fre-
quencies. This gives a clear insight in the balance of the
system at the natural frequencies. The most dominant
eigenmodes in terms of balance are the second eigenmode
at 16.176 Hz, and the sixth at 64.723 Hz. The contribu-
tion of the first eigenmode is, however, clearly visible in
Figure 3.15 as well. The corresponding eigenmode is the
vertical displacement of the entire mechanism, as it is not
constrained in the vertical direction apart from the fixed
boundary conditions. This eigenmode can cause signifi-
cant noise in the mechanism as the optimization method-
ology does not take such behaviour into account.

Eigenmode analysis then showed that the second eigen-
mode is the horizontal desired deformation of the mecha-
nism, which should cause less noise compared to the first
eigenmode as it the mechanism is balanced for this mo-
tion. However, high peak is visible in the reaction forces
plot in Figure 3.13. This is explained by the springs that
are attached to the input and output node, which will
exert high reaction forces when the nodes are heavily dis-
placed. When resonance appears due to the excitation of
the system and the eigenmode coinciding, this will be the
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Figure 3.13: Frequency domain study reaction forces and
moments (balanced mechanism)

Unbalanced Balanced
10.768 11.872
16.188 16.176
23.798 25.698
24.692 35.783
54.334 49.029
63.005 64.723

Table 3.4: First eigenfrequencies of the force invertor[Hz]

case.

The third to fifth eigenmodes are relatively small, and the
sixth eigenmode slightly above 60 Hz shows a peak on the
frequency domain analysis. This eigenmode has an even
higher amplitude, which is explained in the exact same
way as the second eigenmode. However, now the springs
are extended in the same direction, causing the spring
forces not to partially cancel eachother out but adding
up. This causes much higher reaction forces, especially
in x-direction. However, the system will be very stiff in
this direction, which explains why the transient study will
not show this behaviour. The eigenmodes of the balanced
mechanism can be seen in Figure 3.12. More information
on this and the form of the eigenmodes is available in
Appendix C.

Time-dependent studies

Knowing the eigenfrequencies of the system, the system
can be actuated at a frequency which is not a natural fre-
quency to gain insight in common system behaviour. For
example, a frequency of 2 Hz is chosen. In the quasistatic
simulation, the system is analyzed without incorporat-
ing inertial forces. COM accelerations reach up to 0.023
m/s2 for the balanced mechanism and 0.46 m/s2 for the
unbalanced mechanism. For the input force of 5N at a
frequency of 2Hz, the resulting COM accelerations are
shown in Figure 3.14. The accelerations are proportional
to the previously determined displacements, and signifi-
cantly lower in the balanced mechanism compared to the
unbalanced mechanism.

The study with inertial terms shows more chaotic be-
haviour compared to the quasistatic study. Higher fre-

Figure 3.14: Quasistatic accelerations from a COMSOL
simulation

Figure 3.15: Accelerations from COMSOL simulation
with inertial terms

quency terms are present, and both in the balanced and
the unbalanced case dominant in magnitude over the ac-
celerations in the quasistatic study. Relative to these vi-
brations, the quasistatic accelerations of the system COM
are very small in the balanced case, whereas they share
the same order of magnitude in the unbalanced case.

To gain more insight in the behaviour of the system, a
step input is applied on the input node. An input force
of 5N is applied in a timestep of 0.1s, after which the
system can still vibrate. A quasistatic analysis is not
performed here, as this does not show any new informa-
tion. An analysis with a step input force with inertial
terms results in the linear and angular momentum plots
of the unbalanced and balanced mechanisms in Figures
3.16 and 3.17, respectively.

The linear momentum in the step response shows a few
interesting things. As the system is not damped, the vi-
brations do not visibly decay. Furthermore, multiple nat-
ural frequencies are present in the response in x-direction,
but in the linear momentum in y-direction and the angu-
lar momentum the first natural frequency appears dom-
inant. This can be explained by the lack of balancing
or constraint in this direction, and is visible in the fig-
ure through the relatively high linear momentum in y-
direction compared to the x-direction.
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Figure 3.16: Linear and angular momentum of the unbal-
anced displacement inverter after a step input

Figure 3.17: Linear and angular momentum of the bal-
anced displacement inverter after a step input

3.4 Discussion

The topology optimization algorithm in MATLAB has
been able to solve the provided design problem and syn-
thesize a compliant mechanism with lower shaking forces
and shaking moments. A quasistatic simulation of the
mechanism with a harmonic input of 2 Hz proved the re-
lation between shaking forces and COM displacements. A
simulation with inertial terms proved dynamic behaviour
of the system still largely contributes to the shaking forces
and shaking moments in the system, however. In this sec-
tion, these mechanisms and simulations are discussed and
improvements on the approach are proposed.

Comparison optimization algorithm with simula-
tion

As shown in the static analysis, the system is simulated
in both MATLAB and COMSOL. The conversion from
MATLAB to COMSOL is performed in SolidWorks. When
comparing the results of Table 3.2 and Table 3.3, slight
differences become apparent. Most values differ approx-
imately 1% or less when comparing the COMSOL and
MATLAB simulations. Three main reasons could be found
for this.

A reason for small differences could be a difference in the
finite element analysis through the approach or numeri-
cal errors. In matlab, a 400x400 element non-conforming
mesh is used, whereas the COMSOL analysis uses a con-
forming (triangular element) mesh with significantly courser
elements in the large rigid bodies and significantly finer el-
ements around smaller members such as the flexure joints.
The MATLAB FEM analysis uses approximately 40000
elements for the analysis of the mechanism (approximately
all resulting black and grey elements in a grid when the
input values in Table 3.1 are used). The COMSOL anal-
ysis uses between 10000 and 15000 elements of varying

sizes. This will very likely result in slightly different val-
ues from MATLAB. More information on the COMSOL
FEM analyses is presented in Appendix C.

Another reason could the resulting geometry from op-
timization algorithm may not have a perfect black-and-
white distribution of the densities. Especially when the
optimization algorithm has not converged within the given
timespan or number of iterations, large gray areas may
be present. Masses that appear black may be gray (and
therefore contributing less to the COM position and dis-
placement), or lightgray masses may be present where no
material is present in the transformed mechanism (there-
fore secretly contributing to the COM position and dis-
placement). This may also slightly affect the stiffness of
the system, and thereby the kinematic behaviour. To
verify this, the black and white fractions are compared
in Table 3.2, which shows the unbalanced and balanced
mechanism both have a mostly black and white distribu-
tion. This therefore does not explain such large differ-
ences nor a change in kinematic behaviour.

Finally, the transformation of a filtered design domain to
an actual mechanism without blurry boundaries may re-
sult in slight differences between the mechanism in MAT-
LAB and the transformed mechanism in COMSOL. This
operation is performed by hand because automatic tech-
niques in SolidWorks did not result in good approxima-
tions of the designed mechanism. This is, however, still
prone to errors. In Appendix C, Table C.1 shows the
values from the analysis of an automatically converted
geometry and a by hand converted geometry. Allthough
both are not exactly the same as the results from the opti-
mization algorithm, this table clearly shows the impact of
the transformation of the mechanism. For more reliable
results, a more accurate and repeatable approach should
be applied.

Eigenmodes and dynamic behaviour

The static and quasistatic time-dependent COMSOL sim-
ulations show a clear relation between the quasistatic
COM accelerations and the static COM displacements.
However, when inertial terms are included, the COM ac-
celerations grow significantly. Large vibrations with a
higher frequency become apparent, with amplitudes ex-
ceeding the quasistatic COMAccelerations. The high am-
plitude noise has a frequency around 11 Hz, which shows
the first eigenmode is excited. This eigenmode consists
of a displacement of the entire mechanism in vertical di-
rection, which also explains why the undesired vibrations
are very large in the y-direction compared to the vibra-
tion in the x-direction.

The vibrations in the x-direction can be caused by the sec-
ond eigenmode, which is the same as the desired deforma-
tion of the mechanism. This explains why the magnitude
of this vibration is relatively low, and means a higher out-
put displacement can be achieved when the mechanism is
actuated at the corresponding natural frequency.

This clearly shows that for properly balanced compliant
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mechanisms using this approach, eigenmode management
is required in the design phase. Another option could be
damping the system, but obviously this is not preferred.
This eigenmode management can be performed in two
ways. Low frequency eigenmodes can be avoided in the
design process, thereby only allowing higher frequency
eigenmodes which may never be excited. Another option
would be to take the vibration and amplitude of eigen-
modes into account, and balance those along with the
quasistatic balancing. An example of modal balancing
is found in the paper of Nijdam on balancing of flexible
beams [8]. Here, some conditions for dynamically balanc-
ing vibrating flexures are shown. However, incorporating
this in a topology optimization algorithm may prove dif-
ficult as topology optimization generally considers static
analysis. Solutions for this could be found in the paper by
Venini and Pingaro on static and dynamic topology op-
timization [24], where an approach for incorporating dy-
namics in the design of Multi-Input-Multi-Output mech-
anisms is discussed. Approaches on constraining eigen-
frequencies can be found in the works of Pedersen [45], or
Bendsøe and Sigmund [16].

Geometric nonlinearities

In the topology optimization algorithm, geometric non-
linearities are thus far not taken into account. For some
cases, like the geometry of the offset force inverter, this
yields small errors. In other cases, it may lead to infea-
sible solutions with a very small range of motion. For
compliant mechanism design, it is therefore advised to
incorporate geometric nonlinearities in the topology op-
timization algorithm, as proposed by Bendsøe and Sig-
mund [16]. Two problems need to be solved for large
ranges of motion. The first is the kinematic behaviour of
the mechanism which may yield desired results for small
displacements but not for larger ranges of motion (for ex-
ample the snap-through of a joint). A second issue could
be the collision of two bodies in the mechanism, constrict-
ing further movement.

Other recommendations

Apart from the recommendation to include eigenfrequen-
cies in the topology optimization problem, other recom-
mendations for improvement of this code or future work
also arise from this project. When design problems with
a smaller feasible domain are attempted, the algorithm
does not always converge. The use of other optimiza-
tion algorithms, such as GCMMA [46], may increase the
chance or speed of convergence of the optimization prob-
lem.

Also, this methodology is applicable for 3D problems as
well, rather than just 2D problems. However, this can
become computationally intensive, and may therefore re-
quire speed improvements to the rest of the code. This
would however be an interesting step in further research
into dynamically balanced compliant mechanisms.

3.5 Conclusion

The goal of this research was to design a topology opti-
mization algorithm in MATLAB which is capable of syn-
thesizing dynamically balanced compliant mechanisms. A
methodology is proposed, based on the inherent balancing
method by van der Wijk [9]. This method achieves dy-
namic balance by ensuring the linear momentum of the
COM is stationary, as well as the angular momentum
about the COM, throughout the entire range of motion.

An algorithm is designed with dynamic balancing capabil-
ities, based on the 99-line code by Bendsøe and Sigmund
[16], the 88-line code by Andreassen [44], and the MMA
code by Svanberg [43]. This algorithm uses a linear finite
element model to synthesize compliant mechanisms, for
any given set of boundary conditions.

This algorithm is used to design two displacement-inverters
with an output displacement at an offset with respect to
the input displacement. One of these displacement in-
verters is dynamically balanced, the other is not. The
kinematic behaviour of the geometries is validated using
a conforming mesh instead of a non-conforming mesh in
COMSOL, after which the performance of these mecha-
nisms is analyzed in terms of the desired objective of the
mechanism and the dynamic balance properties.

The resulting mechanisms satisfy the requirements to which
the optimization algorithm should have synthesized them.
However, the used approach did not take into account the
dynamic responses of the mechanisms, which show unex-
pected vibrations when the systems are dynamically an-
alyzed. Recommendations are presented to incorporate
this behaviour in the design process to reduce these ef-
fects.
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Chapter 4

Discussion

This MSc. thesis showed an overview of available design methods for the synthesis of dynamically
balanced or compliant mechanisms. Several possible approaches are named, of which topology
optimization was the most promising. This chapter will discuss the strengths and weaknesses of
the topology optimization algorithm which is presented in Chapter 3. Finally, recommendations
will be done for further research and development of the algorithm, on top of the recommenda-
tions in the chapter itself.

4.1 Strengths of the proposed topology optimization algo-
rithm

The proposed topology optimization algorithm has proven to be able to synthesize mechanisms
with better dynamic balance properties than without the dynamic balance constraints. The
strengths of the topology optimization algorithm can be summarized as versatility and the ability
to find simple solutions to otherwise difficult problems. This can more specifically be described
by the following strengths:

• No predefined geometry required: General dynamic balancing methods consider di-
mensions of predetermined geometries and positions of COM’s of the rigid bodies in those
mechanisms. The proposed topology optimization algorithm does not require a predeter-
mined geometry as a starting point, but is often able to generate a mechanism from a blank
starting point.

• Not limited to rigid body linkages: Dynamic balancing methods mostly consider rigid
body linkages. The proposed methodology is able to design rigid body linkages with lumped
compliant connections (rather than hinges), but may also use distributed compliance and
is therefore more versatile.

• Simple solutions for SMB: Most dynamic balancing methods require symmetry or large
auxiliary mechanisms to realize SMB. The topology optimization algorithm is able to find
solutions that are simpler and may require only little changes to the unbalanced solution
to a design problem.

• Mass redistribution instead of addition: In several of the existing dynamic balanc-
ing methods, mechanisms are balanced by adding mass, rather than redistributing mass.
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Because a topology optimization algorithm is redistributing mass instead of just adding it,
leaving a lighter resulting geometry.

• 2D or 3D: The proposed methodology is designed in a 2D environment for computational
purposes. It would however require only little changes to perform a 3D optimization, as
the way the functions are determined could easily be extended to 3 dimensions.

4.2 Weaknesses of the proposed topology optimization al-
gorithm

The topology optimization algorithm is not a perfect solution to every problem, however. Some
weaknesses consider convergence issues, high computation times or simply infeasible problems.
Also, it should be taken into account that topology optimization results often need post-processing,
which may introduce new disturbances.

• Does not always yield solutions: Some sets of boundary conditions yield no feasible
results, either because there are none or because the algorithm cannot converge to a feasible
local minimum. This could be caused by the constraints being too tight, but also by the
highly nonlinear nature of the optimization problem and the extraordinary large amount
of possible outcomes.

• Does not incorporate natural frequencies and eigenmodes: As far as dynamic bal-
ance is achievable with the inherent balancing method, the algorithm performs very well.
However, when elastic mechanisms with free DOFS are concerned, such as the compliant
displacement inverter, eigenmodes play an important role and could cause significant shak-
ing forces and moments.

• Computational intensity: Topology optimization is a computationally intensive process.
The geometries in this thesis took hours to converge to a solution, while the problem was
relatively small (2D, only 400x400 elements). As computation time grows exponentially
with more elements, a proper 3D optimization may be computationally very expensive.

4.3 Recommendations and further research

As discussed, some weaknesses of the topology optimization algorithm are based on long com-
putation times and the lack of modal analysis in the design phase. These issues, among other,
pose a great starting direction for further research.

• Increase versatility: Many mechanisms in the real world are 3-dimensional, so the topol-
ogy optimization algorithm should be extended to yield 3D solutions. The methodology is
suitable for extension to 3D, but serious effort has to be put into computational efficiency.
Also, a multi-input-multi-output optimization problem would be an interesting extension
of the current methodology. Finally, some optimization attempts did not yield solutions.
Looking into other optimization algorithms such as GCMMA[46] may help with conver-
gence issues to solve more difficult problems as well.

• Incorporate modal balancing: Modal balancing is an essential part of dynamically
balanced compliant mechanism design. The basic principles are explored by Nijdam [8],
but these principles may still be hard to incorporate in a topology optimization algorithm.
A good starting point for this would be the dynamic topology optimization review by
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Venini and Pingaro [24], as they describe ways take dynamic effects into account during
the topology optimization process.

• Controlling all DOF’s: One of the major causes of noise in the designed displacement
inverter is the first eigenmode, which consists of a translation of the mechanism along the
unconstrained and undesired vertical DOF. This should be prevented by for example adding
more constraint functions, adding more boundary conditions to prevent such DOF’s, or by
defining a Multi-Input-Multi-Output optimization problem.

• Nonlinearity: Nonlinearities should be taken into account. Bodies interaction (especially
common for large ranges of motion) or geometric limits to the range of motion of bodies
should be considered in the design phase.
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Chapter 5

Conclusion

In this paper, a comprehensive design method for dynamically balanced compliant mechanisms
is developed.

An evaluation of existing methods for designing compliant mechanisms, as well as an evaluation
of methods for designing dynamically balanced mechanisms is performed. This yielded 4 possible
combinations of methods that could be used to develop one comprehensive design method. Out
of these possible combinations, a topology optimization algorithm with the inherent balance
method is selected as the most promising.

A topology optimization methodology is defined, and an algorithm is designed. This algorithm
is based on the 99-line code by Bendsøe and Sigmund [16], the 88-line method by Andreassen
[44] and the MMA algorithm by Svanberg [43]. The dynamic balancing approach is a constant
linear and angular momentum approach, based on the inherent balancing method by van der
Wijk [9].

The algorithm is tested and proven with the displacement inverter, which is a classic topology
optimization problem. The original displacement inverter is however already shaking force bal-
anced in y-direction and shaking moment balanced, so as such not suitable to prove the strength
of the methodology. Therefore, this displacement inverter is slightly adjusted to introduce an
imbalance.

Two geometries are synthesized which perform the desired function of which one is dynamically
balanced both in terms of shaking forces and shaking moments. These are analyzed using finite
element analysis, which showed the approach was effective. However, noise is still present due to
natural frequencies and corresponding eigenmodes in the system, as this was not incorporated in
the design process. Possible solutions for this are proposed and recommendations are done for
further research and improvement of the algorithm.

The goal of this thesis, to develop a comprehensive method to synthesize dynamically balanced
compliant mechanisms, has been fulfilled. A topology optimization algorithm is designed, tested
and verified and shows potential for the synthesis of dynamically balanced compliant mecha-
nisms. The algorithm can still be improved, but the potential has been proven and the desired
mechanisms can successfully be designed.
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Appendix A

Sensitivity calculations

In this appendix, the calculations of the sensitivities for the shaking force balance and shaking
moment balance conditions are discussed. It is important to note that the shaking force balance
equation consists of two nearly identical parts, where the only difference is the use of Ax or Ay

(the matrix for the conversion of the nodal to element displacement in x- or y-direction respec-
tively). Also note that, due to the way the algorithm of Sigmund [42] is organized, the positive
y-direction is downwards, so the angular momentum (for shaking moment balance) is defined
positive in clockwise direction. This, however, has no significant impact on the equations as the
shaking moment balance requires the angular momentum to be as low as possible, regardless of
its direction.

The calculations are performed in 3 ways. First, the sensitivity of a constraint is calculated with
respect to ρi. Then the sensitivity constraint is calculated with respect to α̃i. This calculation
is verified by the much simpler calculation that follows from applying the chain rule in differen-
tiation, as shown in equation A.0.1.

df

dα̃i
=

df

dρi

dρi
dα̃i

(A.0.1)

In the optimization algorithm, all constraints are normalized. This is not shown in the calcula-
tions in this appendix for the purpose of clarity.

A.1 Shaking Force Balance Constraint with respect to ρ

The shaking force balance constraint is defined in 3.2.6. This consists of two terms, being the
sum of the squares of 3.2.5a and 3.2.5b. The resulting sensitivity equation is presented in 3.2.8a.
To obtain the full expression of this equation 3.2.8a, the derivatives of equations 3.2.7a and 3.2.7a
are required. As discussed before, they are nearly the same, so in this paragraph, the derivative of
equation 3.2.7a is presented, along with the full derivative of the shaking force balance constraint
in equation 3.2.6. The shaking force balance equation is defined as follows:

gSFB = u2x + u2y ≤ ϵSFB

From this equation, equation 3.2.8a is the derivative with respect to ρi which is denoted as:

dgSFB

dρi
= 2

(
ux
dux
dρi

+ uy
duy
dρi

)
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Equation 3.2.5a, representing the displacement of the COM in x-direction, is as follows:

ux =
(ρAxu)∑

ρ
+ λx(f−Ku) = 0

Taking the derivative with respect to density ρi yields:

dux
dρi

=
(
∑

ρ)([Axu]i + ρAx
du
dρi

)− ρAxu

(
∑

ρ)2
− λxK

du

dρi
− λx

dK

dρi
u (A.1.1)

This equation is simplified in order to eliminate the term du
dρ i

. This yields:

dux
dρi

=
[Axu]i∑

ρ
− ρAxu

(
∑

ρ)2
− λx

dK

dρi
u+

(
ρAx∑

ρ
− λxK

)
du

dρi
(A.1.2)

The last term, consisting of an expression between brackets and the derivative du
dρi

, should be
eliminated. This is the case if: (

ρAx∑
ρ

− λxK

)
= 0 (A.1.3)

This yields an expression for λx:

λx =
ρAxK

−1∑
ρ

(A.1.4)

Finally, this yields the shaking force balance constraint:

dux
dρi

=
[Axu]i∑

ρ
− ρAxu

(
∑

ρ)2
− λx

dK

dρi
u (A.1.5)

A.2 Shaking Force Balance Constraint with respect to α̃

The same calculations can be performed to obtain the sensitivities with respect to α̃ rather than
ρi. Equation 3.2.5a, representing the displacement of the COM in x-direction, is as follows:

ux =
(α̃pAxu)∑

α̃p
+ λx(f−Ku) = 0

Taking the derivative with respect to density α̃i yields:

dux
dρi

=
(
∑

α̃p)([pα̃(p−1)Axu]i + α̃pAx
du
dα̃i

)− α̃pAxupα̃
(p−1)
i

(
∑

α̃p)2
− λxK

du

dα̃i
− λx

dK

dα̃ i
u (A.2.1)

This equation is simplified in order to eliminate the term du
dα̃ i

. This yields:

dux
dα̃i

= pα̃
(p−1)
i

(
[Axu]i∑

α̃p
− α̃pAxu

(
∑

α̃)2

)
− λx

dK

dα̃i
u+

(
x̃pAx∑

α̃p
− λxK

)
du

dα̃i
(A.2.2)
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The last term, consisting of an expression between brackets and the derivative du
dα̃i

, should be
eliminated. This is the case if: (

α̃pAx∑
α̃p

− λxK

)
= 0 (A.2.3)

This yields an expression for λx:

λx =
α̃pAxK

−1∑
α̃p

(A.2.4)

Finally, this yields the shaking force balance constraint:

dux
dα̃i

= pα̃
(p−1)
i

(
[Axu]i∑

α̃p
− α̃pAxu

(
∑

α̃p)2

)
− λx

dK

dα̃i
u (A.2.5)
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A.3 Shaking Moment Balance Constraint with respect to
ρ

The shaking moment balance constraint is defined in Equation 3.2.6, and looks as follows:

gSMB = R2
z ≤ ϵ2SMB

The sensitivity of this equation is given in Equation 3.2.9a and looks as follows:

dgSMB

dρi
= 2Rz

dRz

dρi

To obtain the full expression of this equation, expressions for Rz and dRz

dρi
are required. The

representation of Rz in linear algebraic form is shown in Equation 3.2.7c, and for clarification
shown below:

Rz =
ρMu∑

ρ
+ λz(f−Ku)

In this equation, the matrix M is used which is given by Equation 3.2.5d, and for clarification
shown below:

M = rxAy − ryAx

rx and ry are the position vectors of the element with respect to the COM in x- and y-direction,
respectively. They are found by equation A.3.1, where x is the vector of x-positions of all ele-
ments.

rx = x− xCOM (A.3.1)

The position of the COM is determined by equation A.3.2.

xCOM =

∑
i xiρi∑
ρi

(A.3.2)

In order to obtain the derivative of Rz with respect to ρi, the derivatives of the building blocks
in these equations need to be known. This starts with the derivative of Equation A.3.2, which
is given in Equation A.3.3.

dxCOM

dρi
=

(
∑

i ρi)xi −
∑
xiρi

(
∑

i ρi)
2

=
xi − xCOM∑

i ρi
=

rx∑
ρ

(A.3.3)

Knowing this, the derivative of rx can be found, as shown in Equation A.3.4.

drx
dρi

= −dxCOM

dρi
= − rx∑

ρ
(A.3.4)

Knowing this, the derivative of M can be found, as shown in Equation A.3.5.

dM

dρi
=
drx
dρi

Ay −
dry
dρi

Ax = − M∑
ρ

(A.3.5)

Taking the derivative of Rz with respect to ρi yields the following equation A.3.6.

dRz

dρi
=

(
∑

ρ)([Mu]i − ρMu∑
ρ + ρM du

dρi
)− ρMu

(
∑

ρ)2
− λzK

du

dρi
− λz

dK

dρi
u (A.3.6)
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Rewriting equation A.3.6 yields:

dRz

dρi
=

([Mu]i − 2Rz∑
ρ

− λz
dK

dρi
u+

(
ρM∑

ρ
− λzK

)
du

dρi
(A.3.7)

A.4 Shaking Moment Balance Constraint with respect to
α̃

The shaking moment balance constraint is defined in Equation 3.2.6, and looks as follows:

gSMB = R2
z ≤ ϵ2SMB

The sensitivity of this equation is given in Equation 3.2.9a and looks as follows:

dgSMB

dα̃i
= 2Rz

dRz

dα̃i

To obtain the full expression of this equation, expressions for Rz and dRz

dα̃i
are required. The

representation of Rz in linear algebraic form is shown in Equation 3.2.7c, and for clarification
shown below:

Rz =
α̃pMu∑

α̃p
+ λz(f−Ku)

In this equation, the matrix M is used which is given by Equation 3.2.5d, and for clarification
shown below:

M = rxAy − ryAx

rx and ry are the position vectors of the element with respect to the COM in x- and y-direction,
respectively. They are found by equation A.4.1, where x is the vector of x-positions of all ele-
ments.

rx = x− xCOM (A.4.1)

The position of the COM is determined by equation A.4.2.

xCOM =

∑
i xiα̃

p
i∑

α̃p
i

(A.4.2)

In order to obtain the derivative of Rz with respect to αi, the derivatives of the building blocks
in these equations need to be known. This starts with the derivative of Equation A.3.2, which
is given in Equation A.4.3.

dxCOM

dα̃i
= pα̃

(p−1)
i

(
∑

i α̃
p
i )xi −

∑
xiα̃i

(
∑

i α̃
p
i )

2
= pα̃

(p−1)
i

xi − xCOM∑
i α̃

p
i

= pα̃
(p−1)
i

rx∑
α̃p

(A.4.3)

Knowing this, the derivative of rx can be found, as shown in Equation A.4.4.

drx
dα̃i

= −dxCOM

dα̃i
= −pα̃(p−1)

i

rx∑
α̃p

(A.4.4)
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Knowing this, the derivative of M can be found, as shown in Equation A.3.5.

dM

dα̃i
=
drx
dα̃i

Ay −
dry
dα̃i

Ax = −pα̃(p−1)
i

M∑
α̃p

(A.4.5)

Taking the derivative of Rz with respect to αi yields the following equation A.4.6.

dRz

dα̃i
=

(
∑

α̃p)([pα̃
(p−1)
i Mu]i −

α̃ppα̃
(p−1)
i Mu∑
α̃p + α̃pM du

dα̃i
)− pα̃

(p−1)
i α̃pMu

(
∑

α̃p)2
−λzK

du

dα̃i
−λz

dK

dα̃i
u

(A.4.6)

Rewriting equation A.4.6 yields:

dRz

dα̃i
= pα̃

(p−1)
i

([Mu]i − 2Rz∑
α̃p

− λz
dK

dα̃i
u+

(
α̃pM∑

α
− λzK

)
du

dα̃i
(A.4.7)
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Appendix B

Verification of sensitivity
functions

In this section, the sensitivity functions are verified using a finite difference analysis. This
finite difference analysis numerically approaches the analytically determined derivatives of the
objective and constraint functions. A forward difference scheme is used with a step size h which
is added to the design variables. This step size is logarithmically increased from 10−16 to 10−1

The resulting error is given in elements for the end-effector displacement, and squared elements
for the shaking force balance (as this is a square of the x- and y-displacements) and the shaking
moment balance (as this is calculated by multiplying the displacements of elements with their
distance from the COM, both in elements).

In figures B.1a to B.1c, the response functions are plotted of these analyses. In this analysis, the
force inverter by Sigmund is used, in a 10x10 elements design space. The ”mean error” and the
”max error” are displayed, being the average error and the largest error of these 100 elements.
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(a) End-effector displacement sensitivity func-
tion (b) SFB sensitivity function

(c) SMB sensitivity function

Figure B.1: Finite difference verification of objective and constraint sensitivity functions
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Appendix C

Comsol analysis

In this appendix, more information on the Comsol simulations will be shown. First, the con-
version from MATLAB to SolidWorks geometries is presented, then the model in COMSOL is
further explained, and finally the eigenmodes of the off-centered displacement inverter are shown.

C.1 Transformation from MATLAB to SolidWorks

The transformation from a matlab geometry to a SolidWorks drawing has first been done au-
tomatically with the ’Sketch Picture’ option in the SolidWorks sketch toolbox. This did not
yield the desired results, so some postprocessing (especially around flexure parts) was still re-
quired. The resulting unbalanced geometry was quite well-converted by SolidWorks, so only
small changes were made. The result is shown in Figure C.1.

Figure C.1: Semi-automatically sketched unbalanced geometry in SolidWorks

The balanced geometry has been converted in the same way, as shown in Figure C.2. This
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Figure C.2: Semi-automatically sketched balanced geometry in SolidWorks

however did not follow the geometry in MATLAB as well as desired. Therefore, the sketch is
made by hand, as shown in Figure C.3. The differences between the resulting displacements in

Figure C.3: Hand-sketched balanced geometry in SolidWorks

the MATLAB and COMSOL simulations is shown in Table C.1. This table shows quite clear
differences arise, and some values are closer to the values from the MATLAB simulation compared
to Figure C.2 while some are closer compared to Figure C.3. This shows a better method for
this transformation would improve the reliability of the results.

A probable source of uncertainty in the transformation may be the thickness of the hinges in the
geometry. In Figure C.4 clear differences are visible between the unfiltered and filtered design
variables, and the densities. The SolidWorks drawings and the MATLAB simulations are based
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Table C.1: Results from balanced mechanism in COMSOL simulation in mm (Rz in mm2)
(MATLAB values converted to COMSOL coordinate system)

Property Automatic By hand Matlab
Uxin 27.991 27.643 27.602
Uyin -0.79447 -0.34330 -0.49203
Uxout -21.219 -21.447 -21.146
Uyout -8.0948 -7.6955 -7.3924
UCOMx -0.16178 -0.12250 -0.16116
UCOMy -0.29510 0.10067 0.11843
xcom 194.95 194.11 194.35
ycom 220.46 221.43 221.28
Rz 7.6061 -2.8309 19.999

on the densities. In the transition to a COMSOL geometry, scaling issues may occur. Therefore,

Figure C.4: Expanded view of the top notch joint in the balanced geometry in Matlab for the
geometries of the unfiltered design variables, the filtered design variables and the densities.

the figure in SolidWorks has elements plotted in the corners. These are used to calibrate the
image, by scaling to the original (400mm) design space size and the correct placement of the
boundary conditions. This is incorporated in the COMSOL Model. The fact that the “col-
ormap(gray)” command in MATLAB displaces all elements by 0.5 element in x- and y-direction
is also solved with this method. In MATLAB plots, this 0.5 element displacement is taken into
account for the COM and end-effector displacement plots.

C.2 COMSOL model

The geometry in COMSOL is implemented as described before. The material is set to the same
values as the values in the MATLAB model. The solid mechanics toolbox is applied. The
boundary conditions, input node and end-effector node are constructed according to the same
coordinates as the MATLAB model. On the input node and end-effector node, springs are defined
with the same stiffness as the springs in the MATLAB model, with a spring constant only in
the x-direction. The rest of the model is described in Section 3.3. The studies performed in
COMSOL are:

• Stationary study
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• Time Dependent study

• Eigenfrequency study

• Frequency Domain study

The resulting values are derived as follows:

• Input and output displacements are taken from the nodal displacements.

• COM values (displacement, velocity and acceleration) are derived from the surface average
of the entire domain.

• Linear momentum is derived using domain probes which take the integral of the expres-
sion solid.u tX*solid.rho*solid.d and the expression solid.u tY*solid.rho*solid.d for linear
momentum in x- and y-direction, respectively

• Angular momentum is derived using a domain probe with the expression ((X-mass1.CMx)*solid.u tY-
(Y-mass1.CMy)*solid.u tX)*solid.rho*solid.d

• Reaction forces and moments are derived from the sum of the kinematic boundary condition
points, the input node and the output node.

C.3 Frequency domain analysis

In Figures C.5 and C.6, the eigenmodes of the balanced and unbalanced geometries of the dis-
placement inverter are presented, respectively.

C.3.1 Balanced displacement inverter

C.3.2 Unbalanced displacement inverter
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Figure C.5: Eigenmodes of balanced displacement inverter
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Figure C.6: Eigenmodes of unbalanced displacement inverter
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Appendix D

Other mechanisms

In this Appendix, some other results from optimization attempts are shown. They are not further
discussed.

D.1 Diagonal Corners Mechanism

The mechanisms in this section are results of the following set of boundary conditions, as depicted
in Figure D.1:

• Two fixed boundary conditions at the top left and bottom righ corner

• An input force at the node in the bottom left corner

• An output motion at the node in the top righ corner

• A design domain around the previously described boundary conditions of a thickness of
20% of the entire domain.

Figure D.1: Boundary conditions of the Diagonal Corners Mechanism, either an x- or y-directed
force as input and an x- or y-directed displacement as output.
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The parameters are presented in Table D.1. The filter radius and input and output directions
are varied. Each design set is specified by the filter radius, input direction and output direction
in the header.

Property Value
nelx 400 els
nely 400 els

Volfrac 0.2
Penal 3

Young’s modulus 10 MPa
Poisson’s ratio 0.3
Springs stiffness 0.1 N/mm

Input force 1 N
boundary thickness 0.2

SF slack 0.01
SM slack 2

Table D.1: Input variables for following designs
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D.1.1 x-input,x-output,R=3

Figure D.2: Unbalanced

Figure D.3: Balanced
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D.1.2 x-input,x-output,R=5

Figure D.4: Unbalanced

Figure D.5: Balanced
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D.1.3 x-input,y-output,R=3

Figure D.6: Unbalanced

Figure D.7: Balanced
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D.1.4 x-input,y-output,R=5

Figure D.8: Unbalanced

Figure D.9: Balanced

64



D.1.5 y-input,y-output,R=3

Figure D.10: Unbalanced

Figure D.11: Balanced
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D.1.6 y-input,y-output,R=5

Figure D.12: Unbalanced

Figure D.13: Balanced
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Appendix E

Matlab Code

The matlab code, based on the 99-line code by Sigmund [42] and the 88-line code by Andreassen
[44] and the mma-code by Svanberg [43], consists of multiple functions. The building blocks are
shown in section E.6. In section E.1, the code of the entire algorithm is explained. In section
E.2, a manual is presented on how to use the code, which inputs are required and what options
are available.

E.1 Code overview

The main algorithm is shown in the function topmma.m. The layout of this algorithm is shown
in Figure E.1. Auxiliary functions are used, which allows for changing the balance conditions
easily.

topmma balanced is the

E.2 Inputs and options

The total matlab code has two sets of inputs. At the start of the optimization algorithm top-
mma balanced.m or topmma unbalanced.m, some inputs for the actual function and several
internal optimization options are required. These options are elaborated in this section.

E.3 Inputs

The following input are put in the input line of the topmma function. nelx - Number of elements
of the design domain in x-direction. This number should be possible to divide by 10 for most
boundary conditions.
nely - Number of elements of the design domain in y-direction. This number should be possible
to divide by 10 for most boundary conditions.
volfrac - Volumetric material fraction of the design variables.
penal0 - Penalty value to be applied in the SIMP method. If continuation is applied, this is the
starting value.
rmin - Filter radius of the density filter.
sl0 - Relaxation parameter value for the SFB constraint. If continuation is applied, this is the
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Figure E.1: Overview of the optimization algorithm

starting value.
slm0 - Relaxation parameter value for the SMB constraint. If continuation is applied, this is
the starting value.
situation - Input set of boundary conditions. Has to be started with @.
startingconditions - Starting design variables. Should be a .mat file within apostrophes, for
example: ’balanced.mat’. If a grey start is used, the input should be [ ].

E.4 Options

The following options are chosen within the topmma function. plotdata - Set 0 or 1 (off or on)
to plot the deformed system and iteration data after the final iteration.
blocks - Set 0 or 1 (off or on) to apply solid or void blocks into the design domain with specified
positions and sizes. These blocks will form a non-design domain. This value is only used to
either apply or not apply such non-design domains.
record - Set 0 or 1 (off or on) to record and store videos of the optimization run (both design
variables and densities)
maxiter - Maximum number of iterations until stopping, no matter whether the optimization
has converged. If set to 0, no maximum is applied.
continuation - Set 0 or 1 (off or on) to apply continuation. From a predefined iteration number
during a predefined number of iterations change some predefined parameters.
helpdesigner - Set 0 or 1 (off or on) to use the “Helpdesigner” function, which plots lines
through the input and output node if a local minimum is preventing convergence.
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miniter - Minimum number of iterations.
maxchange - Maximum change value. If the highest change in design variables in an iteration
is below this value, the optimization run is assumed to have converged and will finish.
F in - Scalar input force value in Newtons
bs - Boundary size as a fraction of the total design domain. This boundary size is a design
domain around the original design domain. 0.5 means the entire domain is outside domain, so
will not be possible. A value of 0 means no outside design domain is applied. The value for bs
should not be below 0 and always below 0.5.

The following function will only be applied if blocks is turned on
blocksize - n*5 matrix containing the x- and y- coordinates of the blocks upper left and lower
right corner (xtop,ytop,xbot,ybot) of each block in each row, and the corresponding density in
the 5th column.

The following functions will only be applied if continuation is turned on
slend - Final SFB slack parameter after continuation.
slmend - Final SMB slack parameter after continuation.
contloop - Iteration where continuation starts.
contduration - Amount of iterations over which the slowly increasing continuation will dis-
tribute.

E.5 More info

Before starting, always start the matlab stopwatch. If the file Runoptimization.m is used, this
is already done.

Nelx and Nely have to be a multiple of 10 for most situations.

It should be noted that for compliant mechanism design, the volumetric constraint should be
chosen lower than for static low compliance design. When the volume fraction is high, rigid
bodies will just become thicker, which increases the change of them interfering with eachother.
As collision between bodies is not taken into account in this algorithm, the volume fraction should
be picked accordingly. This algorithm generally produces good results for a volume fraction of
0.2-0.3.

The penalty value is generally taken as 3. If a higher penalty value is used, the algorithm will
converge to a black-and-white solution sooner, but maybe not reach the optimal solution. More
info is available in the works of Bendsøe and Sigmund [16].

The filter radius Rmin is generally chosen higher than 1. For small problems (for example 50x50
elements) a value of 1.2 or 1.5 will be sufficient. For larger problems, the filter radius should also
be increased. This will also increase minimum thicknesses of members and holes.

The sl0 and slm0 values determine the maximum values for the displacement of the COM or
the angular momentum approximation, repectively. It is dependent on the design space size how
high a value is to be strict or relaxed.

Input situations can be found in Appendix E.6.
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E.6 Matlab Code

The following codes are presented in this appendix: topmma balanced - Main optimization
code, also containing all options and inputs.
SFbal - Shaking force balance constraint and sensitivity calculator
SMbal - Shaking moment balance constraint and sensitivity calculator
dEEdx - Objective function sensitivity calculator
topmma unbalanced - Main optimization code, also containing all options and inputs, without
balance constraints.
FE - Finite element analysis code.
lk - Element stiffness matrix.
mma - Method of moving asymptotes optimization algorithm by Svanberg[43].
Runoptimization - Example of a script that will run the optimization

E.7 topmma balanced

1 %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND , JANUARY

2000 %%%

2 %%%% CODE MODIFIED FOR INCREASED SPEED , September 2002, BY OLE

SIGMUND %%%

3 % This code has been modified by Nol R m e r for his MSc. Thesis

at the TU

4 % Delft. The goal of the modifications is to allow the algorithm

to design

5 % Dynamically balanced compliant mechanisms and gain insight in

the

6 % optimization process. This code generates balanced mechanisms.

7
8 function topmma_balanced(nelx ,nely ,volfrac ,penal0 ,rmin ,sl0 ,slm0 ,

situation ,startingconditions)

9 %% Setting up the optimization loop

10 % OPTIONS

11 % If an option is set to 1, it is on. If it is set to 0, it is off

. The

12 % situation parameter is a nested function. The chosen situation

has to be

13 % inserted with an @ sign in front , so every function in the

algorithm will

14 % have the correct input values.

15 plotdata = 1; % Plots deformed system after the final iteration

16 blocks = 0; % Add blocks of size "blocksize = [x,y]" to the input

and output points. Along a design space boundary , this should

be an even number.

17 record = 1; % Record iteration steps to obtain a video of the

optimization run.

18 maxiter = 0; % Maximum number of iterations. If set to 0, the code

will run until convergence.
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19 maxtime = 19.5; % Maximum time in hours. If set to 0, the code

will run until convergence.

20 continuation = 1; % Continuation. If set to 1, continuation is on.

21 helpdesigner = 1;

22 miniter = 50;

23 maxchange = 0.01;

24 F_in = 5; % Input force in Newtons

25 bs = 0.2; % Boundaryspace

26
27 %%%%%%% Added blocks or designless domains %%%%%%%

28 blocksize = round ([0.45* nelx ,0.45* nely ,0.55* nelx ,0.55* nely ,0;

0.45* nelx 0.4* nely 0.55* nelx 0.45* nely 1]); % n*5 matrix

containing the x- and y- coordinates of the blocks upper left

and lower right corner (xtop ,ytop ,xbot ,ybot) of each block in

each row , and the corresponding density.

29
30 %%%%%%% Continuation %%%%%%%

31 penal = penal0;

32 sl = sl0; % Slack parameter: how many elements the COM is allowed

to move at the start

33 slm = slm0; % Moment balance slack parameter at the start

34 slend = 0.02; % Slack parameter: how many elements the COM is

allowed to move at the end

35 slmend = 2; % Moment balance slack parameter at the end

36 penalend = penal0;

37 contloop = 250; % Iteration when the continuation starts

38 contduration = 500; % Amount of iterations over which the slowly

increasing continuation will distribute

39
40 %% INITIALIZATION

41 % Starting conditions implementation

42 if isempty(startingconditions) == 1

43 xmat = ones(nely ,nelx)*volfrac; % Grey start

44 else

45 temp = struct2cell(load(startingconditions));

46 x0 = temp {1};

47 clear temp

48 x0 = reshape(x0 ,nely ,nelx);

49 if size(x0)~=[nely ,nelx]

50 error('startingconditions do not correspond to design

space size')
51 end

52 xmat = volfrac *(1-x0)+(1- volfrac)*x0;

53 end

54
55 % Initialize values

56 [din ,dout ,fixeddofs ,F,namesitu] = situation(nelx ,nely ,F_in ,bs);

57 name = string (['V23_balanced(' sprintf('%4i',nelx) ',' sprintf('%4
i',nely) ',' sprintf('%6.2f',volfrac) ',' sprintf('%2.1f',penal
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) ',' sprintf('%2.1f',rmin) ',' namesitu ')']);
58 [KE] = lk;

59 loop = 0;

60 change = 1;

61 [Ax ,Ay ,x_disp ,y_disp ,x_undisp ,y_undisp ,nel ,edofMat] = Initialize(

nelx ,nely);

62 [H,Hs] = Initialize_filter(nelx ,nely ,rmin);

63 x = reshape(xmat ,nel ,1);

64 opt = mma(nel);

65 U = zeros (2*( nely +1)*(nelx +1) ,2);

66
67 % Include blocks and nondesign domains

68 [block_el_nrs_zero ,block_el_nrs_one] = blocksmat2vec(blocksize ,

nelx ,nely);

69 if blocks == 1

70 x(block_el_nrs_zero) = 1E-6;

71 x(block_el_nrs_one) = 1;

72 end

73 xflt = x;

74 figure (1);

75
76 %% START ITERATION

77 while change > maxchange || loop < miniter +1

78 loop = loop + 1;

79 xfltmat = reshape(xflt ,nely ,nelx);

80 % Calculate COM

81 [COMX ,COMY] = COM(xfltmat);

82 % FE -ANALYSIS

83 [U,c,~]=FE(nelx ,nely ,xfltmat ,penal ,F,KE,din ,dout ,fixeddofs);

84 lambdac = U(:,2);

85 U = U(:,1);

86 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

87 [dc] = dEEdx(nelx ,nely ,U,lambdac ,penal ,xfltmat ,KE);

88 [gx ,dgxdx ,Ux ,Uy] = SFbal(xflt ,nelx ,nely ,U,KE,penal ,sl,Ax,Ay,din ,

dout ,fixeddofs);

89 [gmom ,dgdxmom ,mom] = SMbal(xflt ,nelx ,nely ,U,KE,penal ,slm ,Ax,Ay,

COMX ,COMY ,din ,dout ,fixeddofs);

90
91 g(1) = c;

92 dgdx (1:nel ,1) = reshape(dc ,nel ,1);

93 g(2) = sum(xflt)/( volfrac*nel) - 1;

94 dgdx (1:nel ,2) = 1/ volfrac/nel;

95 g(3) = gx - 1;

96 dgdx (1:nel ,3) = dgxdx;

97 g(4) = gmom - 1;

98 dgdx (1:nel ,4) = dgdxmom;

99
100 % REVERSE FILTERING OF SENSITIVITIES

101 for i = 1: length(g)
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102 [dgdx (1:nel ,i)] = H*(dgdx (1:nel ,i)./Hs);

103 end

104
105 if blocks == 1

106 for i = 1: length(g)

107 dgdx(union(block_el_nrs_zero ,block_el_nrs_one),i) = 0;

108 end

109 end

110 xold=x;

111 % DESIGN UPDATE BY THE METHOD OF MOVING ASYMPTOTES

112 [opt ,x] = opt.update(xold ,g,dgdx);

113 if loop >= 10

114 if helpdesigner == 1 && c >= -1E-1

115 elin = floor(din /2)-floor(din /(2* nely));

116 elout = floor(dout /2)-floor(dout /(2* nely));

117 x([elin -nely /10: elin+nely/10,elout -nely /10: elout+nely /10])

= max(x);

118 end

119 end

120 xflt (:) = (H*x(:))./Hs;

121 if blocks == 1

122 x(block_el_nrs_zero) = 1E-6;

123 x(block_el_nrs_one) = 1;

124 end

125 xmat = reshape(x,nely ,nelx);

126 xmatflt = reshape(xflt ,nely ,nelx);

127 % PRINT RESULTS

128 bwfrac = (sum(x >0.99)+sum(x <0.01))/nel;

129 change = max(max(abs(x-xold)));

130 disp([' It.: ' sprintf('%4i',loop) ' Endeff .: ' sprintf('%10.4f'
,full(c)) ...

131 ' Vol.: ' sprintf('%6.3f',sum(sum(xmat))/(nelx*nely)) ...

132 ' ch.: ' sprintf('%6.3f',change ) ...

133 ' U: ' sprintf('%6.3f',sqrt(Ux^2+Uy^2)) ...

134 ' Mom: ' sprintf('%6.3f',mom)...
135 ' BWfrac:' sprintf('%6.3f',bwfrac)...
136 ' Uin:' sprintf('%6.3f',full(U(din)))...
137 ])

138 % PLOT DENSITIES AND STORE PROGRESS

139 % COM 's are offset 0.5 elements because the grayscale command

is offset

140 % 0.5 elements as well.

141 % Design values

142 figure (1)

143 colormap(gray); imagesc(-xmat); axis equal; axis tight; axis

on;pause(1e-6);

144 hold on

145 title('Design values ');
146 plot(COMX +0.5, COMY +0.5,'ob')
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147 quiver(COMX +0.5, COMY +0.5,Ux ,Uy ,'b');
148 hold off

149 if record == 1

150 movie1(opt.iter) = getframe(gcf);

151 end

152 % Densities

153 figure (2)

154 colormap(gray); imagesc(-xmatflt .^3); axis equal; axis tight;

axis on;pause (1e-6);

155 hold on

156 title('Densities ');
157 plot(COMX +0.5, COMY +0.5,'ob')
158 quiver(COMX +0.5, COMY +0.5,Ux ,Uy ,'b');
159 hold off

160 if record == 1

161 movie2(opt.iter) = getframe(gcf);

162 end

163 % Other plots

164 Uxplot(opt.iter) = Ux;

165 Uyplot(opt.iter) = Uy;

166 Objplot(opt.iter) = c;

167 bwfracplot(opt.iter) = bwfrac;

168 Changeplot(opt.iter) = change;

169 xstore(:,loop) = xflt;

170
171 % Nonconvergent iteration limits (time or maxiter)

172 if opt.iter == maxiter

173 change = 0;

174 disp('Maximum number of iterations reached ');
175 end

176 if maxtime ~= 0 && toc >= maxtime *3600

177 change = 0;

178 disp('Time limit reached ')
179 end

180
181 % Continuation

182 if continuation == 1

183 if loop > contloop && loop < contloop+contduration

184 sl = sl -1/ contduration *(sl0 -slend);

185 slm = slm -1/ contduration *(slm0 -slmend);

186 penal = penal -1/ contduration *(penal0 -penalend);

187 end

188 end

189 end

190
191 %% After Final Iteration

192 x_disp ((1:4) ,:) = x_undisp ((1:4) ,:) + U(edofMat (:,[1 3 5 7]))';
193 y_disp ((1:4) ,:) = y_undisp ((1:4) ,:) + U(edofMat (:,[2 4 6 8]))';
194 save('balanced.mat','x')

74



195 save(strjoin(string ([name ,'xstore.mat'])),'xstore ','-mat')
196 if plotdata == 1 % Allows turning on and off in options

197 figure (3);

198 subplot (2,2,1), plot ([1:1: opt.iter],Uxplot ,'r-'), xlabel('
Iterations '),ylabel('Displacement [elements]'),title('
COM -displacements ');

199 hold on

200 plot ([1:1: opt.iter],Uyplot ,'b-'), xlabel('Iterations '),
ylabel('Displacement [elements]');

201 legend('x-displacement ','y-displacement ');
202 subplot (2,2,2), plot ([1:1: opt.iter],bwfracplot *100,'r-'),

xlabel('Iterations '),ylabel('bwfrac [%]'),title('Black&
white fraction ');

203 subplot (2,2,3), plot ([1:1: opt.iter],Objplot ,'r-'), xlabel(

'Iterations '),ylabel('Displacement [elements]'),title('
End -effector Displacement ');

204 subplot (2,2,4), plot ([1:1: opt.iter],Changeplot ,'r-'),
xlabel('Iterations '),ylabel('Density change '),title('
Max change ');

205 saveas(gcf ,strjoin(string ([name ,'iterationdata.fig'])));
206 figure (4);

207 subplot (1,2,1), colormap(gray); imagesc(-xmat); axis equal

; axis tight; axis on;pause (1e-6);

208 subplot (1,2,2), colormap(gray); imagesc(-xmat); axis equal

; axis tight; axis on;pause (1e-6);

209 figure (4)

210 xplot = sparse(round(x));

211 [elplot ,~,~] = find(xplot);

212 patch(x_disp(:,elplot),y_disp(:,elplot),'r','FaceAlpha ',1,
'EdgeColor ','none');pause (1e-6);

213 hold on

214 plot(COMX +0.5, COMY +0.5,'ob')
215 quiver(COMX +0.5, COMY +0.5,Ux ,Uy ,'b');
216 dyout = 2*round(dout /2);

217 dxout = dyout - 1;

218 xout = floor(ceil(dout /2)/(nely +1))+0.5; % +0.5 to

compensate for colormap(gray) command placing nodes at

+-0.5 elements

219 yout = ceil(dout /2) -(xout -0.5)*(nely +1) -1+0.5;

220 quiver(xout +0.5, yout +0.5,U(dxout),U(dyout),'b');
221 saveas(gcf ,strjoin(string ([name ,'Deformedplot.png'])));
222 end

223 %% Make videos

224 % Video design values

225 writerObj = VideoWriter(strjoin(string ([name ,'Design
values '])));

226 writerObj.FrameRate = 10; % set the fps

227 % open the video writer

228 open(writerObj);
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229 % write the frames to the video

230 for i=1: length(movie1)

231 % convert the image to a frame

232 frame = movie1(i) ;

233 writeVideo(writerObj , frame);

234 end

235 % close the writer object

236 close(writerObj);

237
238 % Video densities

239 writerObj = VideoWriter(strjoin(string ([name ,'Densities '])
));

240 writerObj.FrameRate = 10; % set the fps

241 % open the video writer

242 open(writerObj);

243 % write the frames to the video

244 for i=1: length(movie2)

245 % convert the image to a frame

246 frame = movie2(i) ;

247 writeVideo(writerObj , frame);

248 end

249 % close the writer object

250 close(writerObj);

251
252
253 %% Auxiliary functions

254
255 %%%%%%% COM calculation %%%%%%%

256 function [COMX ,COMY] = COM(xPhys)

257 [nely ,nelx] = size(xPhys);

258 xdist = ones(nely ,1) *[1: nelx];

259 ydist = [1: nely]'*ones(1,nelx);
260 COMX = sum(sum(xPhys .* xdist))/sum(sum(xPhys));

261 COMY = sum(sum(xPhys .* ydist))/sum(sum(xPhys));

262
263
264 %%%%%%% Initialize function %%%%%%%

265 function [Ax,Ay,x_disp ,y_disp ,x_undisp ,y_undisp ,nel ,edofMat] =

Initialize(nelx ,nely)

266 % Function Initialize

267 nel = nelx*nely;

268 ndof = 2*( nelx +1)*(nely +1);

269 nodenrs = reshape (1:( nelx +1)*(nely +1),nely+1,nelx +1);

270 edofVec = reshape (2* nodenrs (1:end -1,1:end -1)+1,nel ,1);

% Used to make edofMat

271 edofMat = repmat(edofVec ,1,8)+repmat ([0 1 2*nely +[2 3 0 1] -2 -1],

nel ,1);

272 % Ax and Ay matrices
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273 Ax = 0.25* sparse(kron ([1:1: nel],ones (1,4)),reshape(edofMat (:,[1 3

5 7]) ',4*nel ,1),ones (1,4*nel),nel ,ndof);
274 Ay = 0.25* sparse(kron ([1:1: nel],ones (1,4)),reshape(edofMat (:,[2 4

6 8]) ',4*nel ,1),ones (1,4*nel),nel ,ndof);
275 x_undisp = kron ((0.5+ ones (4,1) *[1: nelx]-[ones(1,nelx);zeros(2,nelx

);ones(1,nelx)]),ones(1,nely));

276 y_undisp = kron(ones(1,nelx) ,(0.5+ ones (4,1) *[1: nely]-[zeros(2,nely

);ones(2,nely)]));

277 x_disp = x_undisp;

278 y_disp = y_undisp;

279
280 %%%%%%% Initialize Filter %%%%%%%

281 function [H,Hs] = Initialize_filter(nelx ,nely ,rmin)

282 iH = ones(nelx*nely *(2*( ceil(rmin) -1)+1)^2,1);

283 jH = ones(size(iH));

284 sH = zeros(size(iH));

285 k = 0;

286 for i1 = 1:nelx

287 for j1 = 1:nely

288 e1 = (i1 -1)*nely+j1;

289 for i2 = max(i1 -(ceil(rmin) -1) ,1):min(i1+(ceil(rmin) -1),

nelx)

290 for j2 = max(j1 -(ceil(rmin) -1) ,1):min(j1+(ceil(rmin)

-1),nely)

291 e2 = (i2 -1)*nely+j2;

292 k = k+1;

293 iH(k) = e1;

294 jH(k) = e2;

295 sH(k) = max(0,rmin -sqrt((i1 -i2)^2+(j1 -j2)^2));

296 end

297 end

298 end

299 end

300 H = sparse(iH ,jH,sH);

301 Hs = sum(H,2);

302
303 function [block_el_nrs_zero ,block_el_nrs_one] = blocksmat2vec(

blocksize ,nelx ,nely)

304 % This function is used to predefine rectangular non -design

domains in

305 % the total design domain , with a predefined density of 0 or 1.

306 %

307 % block_el_nrs_zero element numbers in the vector x with a

predefined

308 % value of 0 and sensitivity of 0.

309 % block_el_nrs_one element numbers in the vector x with a

predefined

310 % value of 1 and sensitivity of 0.

311
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312 % Blocksize n*5 matrix containing the upper left and

lower

313 % right x and y coordinates of n rectangular

bodies

314 % of which the element densities should be 0

or 1.

315 % The order of the columns is as follows:

316 % [xtop ,ytop ,xbot ,ybot ,density]

317 % with the density being 0 or 1.

318 % nelx # elements in the design domain in x-

direction

319 % nely # elements in the design domain in y-

direction

320
321 [n,~] = size(blocksize);

322 block_el_nrs_zero = [];

323 block_el_nrs_one = [];

324 for i = 1:n

325 blocksize(i,:);

326 numbers = reshape (1: nelx*nely ,nely ,nelx);

327 blocknrs_i = numbers ([ blocksize(i,2):blocksize(i,4)],[

blocksize(i,1):blocksize(i,3)]);

328 if blocksize(i,5) == 1

329 block_el_nrs_one = union(blocknrs_i ,block_el_nrs_one);

330 elseif blocksize(i,5) == 0

331 block_el_nrs_zero = union(blocknrs_i ,block_el_nrs_zero);

332 else

333 disp('error: blocks in "blocksize" not defined as 0 or 1')
334 end

335 end

336
337 %

338 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

339 % Original code was written by Ole Sigmund , Department of Solid

%

340 % Mechanics , Technical University of Denmark , DK -2800 Lyngby ,

Denmark. %

341 % Please sent your comments to the author: sigmund@fam.dtu.dk

%

342 %

%

343 % The code is intended for educational purposes and theoretical

details %

344 % are discussed in the paper

%

78



345 % "A 99 line topology optimization code written in Matlab"

%

346 % by Ole Sigmund (2001) , Structural and Multidisciplinary

Optimization , %

347 % Vol 21, pp. 120- -127.

%

348 %

%

349 % The code as well as a postscript version of the paper can be

%

350 % downloaded from the web -site: http ://www.topopt.dtu.dk

%

351 %

%

352 % Disclaimer:

%

353 % The author reserves all rights but does not guaranty that the

code is %

354 % free from errors. Furthermore , he shall not be liable in any

event %

355 % caused by the use of the program.

%

356 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E.8 SFbal

1 % This function is used to obtain balance conditions and

sensitivities

2 % using the normal input variables. The used balance equation is a

3 % quadratic shaking force balance equation , on penalized design

variables.

4
5 % Function: Ux^2 + Uy^2 + adjoint <= sl^2

6
7 function [g,dgdx ,Ux,Uy] = SFbal(x,nelx ,nely ,U,KE,penal ,sl,Ax,Ay,

din ,dout ,fixeddofs)

8 % Initialize

9 xPhys = reshape(x,nely ,nelx);

10 nel = nelx*nely;

11 nodenrs = reshape (1:(1+ nelx)*(1+ nely) ,1+nely ,1+ nelx);

12 edofVec = reshape (2* nodenrs (1:end -1,1:end -1)+1,nel ,1);

13 edofMat = repmat(edofVec ,1,8)+repmat ([-2 -1 2*nely +[0 1 2 3] 0 1],

nel ,1);

14 % Adjoint functions calculations
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15 Flambdax = Ax '*(x.^penal)/sum(x.^penal);
16 [lambdax ,~,~]=FE(nelx ,nely ,xPhys ,penal ,Flambdax ,KE,din ,dout ,

fixeddofs);

17 lambdax = lambdax (:,1) ';
18 Flambday = Ay '*(x.^penal)/sum(x.^penal);
19 [lambday ,~,~]=FE(nelx ,nely ,xPhys ,penal ,Flambday ,KE,din ,dout ,

fixeddofs);

20 lambday = lambday (:,1) ';
21 % COM displacement and sensitivity of COM displacement

22 Ux = (x.^ penal)'*Ax*U(:,1)/sum(x.^penal);
23 Uy = (x.^ penal)'*Ay*U(:,1)/sum(x.^penal);
24 duxdx = penal*x.^(penal -1).*(Ax*U(:,1))/sum(x.^penal) - penal*x.^(

penal -1)*Ux/sum(x.^ penal) - (penal*x'.^( penal -1).*sum(lambdax(
edofMat) '.*(KE*U(edofMat)'))) ';

25 duydx = penal*x.^(penal -1).*(Ay*U(:,1))/sum(x.^penal) - penal*x.^(

penal -1)*Uy/sum(x.^ penal) - (penal*x'.^( penal -1).*sum(lambday(
edofMat) '.*(KE*U(edofMat)'))) ';

26 % Definition of balance conditions and sensitivities

27 g = (Ux^2 + Uy^2)/sl^2;

28 dgdx = 2*(Ux*duxdx + Uy*duydx)/sl^2;

29 end

E.9 SMbal

1 % This function is used to obtain balance conditions and

sensitivities

2 % using the normal input variables. The used balance equation is a

3 % quadratic shaking force balance equation.

4
5 % Function: (rho*Ux*ry - rho*Uy*rx)/sum(rho) + adjoint <= slm^2

6
7 function [g,dgdx ,mom] = SMbal(x,nelx ,nely ,U,KE,penal ,slm ,Ax,Ay,

COMX ,COMY ,din ,dout ,fixeddofs)

8 % Initialize

9 xmat = reshape(x,nely ,nelx);

10 nel = nelx*nely;

11 nodenrs = reshape (1:(1+ nelx)*(1+ nely) ,1+nely ,1+ nelx);

12 edofVec = reshape (2* nodenrs (1:end -1,1:end -1)+1,nelx*nely ,1);

13 edofMat = repmat(edofVec ,1,8)+repmat ([-2 -1 2*nely +[0 1 2 3] 0 1],

nelx*nely ,1);

14 xdist = reshape(ones(nely ,1) *[1: nelx],nel ,1);

15 ydist = reshape ([1: nely]'*ones(1,nelx),nel ,1);
16 rx = xdist -COMX;

17 ry = ydist -COMY;

18 iMat = kron ([1: nel]',ones (4,1));
19 jxMat = reshape(edofMat (:,[2 4 6 8]) ',nel*4,1);
20 jyMat = reshape(edofMat (:,[1 3 5 7]) ',nel*4,1);
21 rxMat = kron(rx,ones (4,1));
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22 ryMat = kron(ry ,ones (4,1));

23 rxsparse = sparse(iMat ,jxMat ,rxMat);

24 rysparse = sparse(iMat ,jyMat ,ryMat);

25 rysparse(nel ,(1+ nelx)*(1+ nely)*2) = 0;

26
27 % Calculations

28 M = rxsparse .*Ay - rysparse .*Ax;

29 Flambda = ((x.^ penal)'*M/sum(x.^penal)) ';
30 [lambda ,~ ,~]=FE(nelx ,nely ,xmat ,penal ,Flambda ,KE,din ,dout ,fixeddofs

);

31 lambda = lambda ';
32
33 mom = ((x.^ penal)'*M*U)/sum(x.^penal);
34 dmomdx = (penal/sum(x.^ penal)*x.^(penal -1)) .* (M*U(:,1) - 2*mom)

...

35 -(penal*x'.^( penal -1).*sum(U(edofMat) '.*(KE*lambda(
edofMat)'))) ';

36
37 % Definition of balance conditions and sensitivities

38 g = mom^2/slm^2;

39 dgdx = 2*mom*dmomdx/slm ^2;

40 end

E.10 dEEdx

1 % This function calculates the end effector sensitivity

2 function [dc] = dEEdx(nelx ,nely ,U,lambdac ,penal ,xmat ,KE)

3 % Initialize

4 x = reshape(xmat ,nelx*nely ,1);

5 nodenrs = reshape (1:(1+ nelx)*(1+ nely) ,1+nely ,1+ nelx);

6 edofVec = reshape (2* nodenrs (1:end -1,1:end -1)+1,nelx*nely ,1);

7 edofMat = repmat(edofVec ,1,8)+repmat ([-2 -1 2*nely +[0 1 2 3] 0 1],

nelx*nely ,1);

8 % Sensitivity calculation

9 Ue1 = U(edofMat);

10 Ue2 = lambdac(edofMat);

11 dc = (penal*x'.^( penal -1).*sum(Ue1 '.*(KE*Ue2 ')))';

E.11 topmma unbalanced

1 %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND , JANUARY

2000 %%%

2 %%%% CODE MODIFIED FOR INCREASED SPEED , September 2002, BY OLE

SIGMUND %%%

3 % This code has been modified by Nol R m e r for his MSc. Thesis

at the TU
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4 % Delft. The goal of the modifications is to allow the algorithm

to design

5 % Dynamically balanced compliant mechanisms and gain insight in

the

6 % optimization process. This code designs unbalanced mechanisms

and is

7 % used for reference.

8
9 function topmma_unbalanced(nelx ,nely ,volfrac ,penal0 ,rmin ,sl0 ,slm0 ,

situation ,startingconditions)

10 %% Setting up the optimization loop

11 % OPTIONS

12 % If an option is set to 1, it is on. If it is set to 0, it is off

. The

13 % situation parameter is a nested function. The chosen situation

has to be

14 % inserted with an @ sign in front , so every function in the

algorithm will

15 % have the correct input values.

16 plotdata = 1; % Plots deformed system after the final iteration

17 blocks = 0; % Add blocks of size "blocksize = [x,y]" to the input

and output points. Along a design space boundary , this should

be an even number.

18 record = 1; % Record iteration steps to obtain a video of the

optimization run.

19 maxiter = 0; % Maximum number of iterations. If set to 0, the code

will run until convergence.

20 maxtime = 19.5; % Maximum time in hours. If set to 0, the code

will run until convergence.

21 continuation = 0; % Continuation. If set to 1, continuation is on.

22 helpdesigner = 1;

23 miniter = 50;

24 maxchange = 0.01;

25 F_in = 5; % Input force in Newtons

26 bs = 0.2; % Boundaryspace

27
28 %%%%%%% Added blocks or designless domains %%%%%%%

29 blocksize = round ([0.45* nelx ,0.45* nely ,0.55* nelx ,0.55* nely ,0;

0.45* nelx 0.4* nely 0.55* nelx 0.45* nely 1]); % n*5 matrix

containing the x- and y- coordinates of the blocks upper left

and lower right corner (xtop ,ytop ,xbot ,ybot) of each block in

each row , and the corresponding density.

30
31 %%%%%%% Continuation %%%%%%%

32 penal = penal0;

33 sl = sl0; % Slack parameter: how many elements the COM is allowed

to move at the start

34 slm = slm0; % Moment balance slack parameter at the start
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35 slend = 0.01; % Slack parameter: how many elements the COM is

allowed to move at the end

36 slmend = 0.5; % Moment balance slack parameter at the end

37 penalend = penal0;

38 contloop = 250; % Iteration when the continuation starts

39 contduration = 500; % Amount of iterations over which the slowly

increasing continuation will distribute

40
41 %% INITIALIZATION

42 % Starting conditions implementation

43 if isempty(startingconditions) == 1

44 xmat = ones(nely ,nelx)*volfrac; % Grey start

45 else

46 temp = struct2cell(load(startingconditions));

47 x0 = temp {1};

48 clear temp

49 x0 = reshape(x0 ,nely ,nelx);

50 if size(x0)~=[nely ,nelx]

51 error('startingconditions do not correspond to design

space size')
52 end

53 xmat = volfrac *(1-x0)+(1- volfrac)*x0;

54 end

55
56 % Initialize values

57 [din ,dout ,fixeddofs ,F,namesitu] = situation(nelx ,nely ,F_in ,bs);

58 name = string (['V23_unbalanced(' sprintf('%4i',nelx) ',' sprintf('
%4i',nely) ',' sprintf('%6.2f',volfrac) ',' sprintf('%2.1f',
penal) ',' sprintf('%2.1f',rmin) ',' namesitu ')']);

59 [KE] = lk;

60 loop = 0;

61 change = 1;

62 [Ax ,Ay ,x_disp ,y_disp ,x_undisp ,y_undisp ,nel ,edofMat] = Initialize(

nelx ,nely);

63 [H,Hs] = Initialize_filter(nelx ,nely ,rmin);

64 x = reshape(xmat ,nel ,1);

65 opt = mma(nel);

66 U = zeros (2*( nely +1)*(nelx +1) ,2);

67
68 % Include blocks and nondesign domains

69 [block_el_nrs_zero ,block_el_nrs_one] = blocksmat2vec(blocksize ,

nelx ,nely);

70 if blocks == 1

71 x(block_el_nrs_zero) = 1E-6;

72 x(block_el_nrs_one) = 1;

73 end

74 xflt = x;

75 figure (1);

76
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77 %% START ITERATION

78 while change > maxchange || loop < miniter +1

79 loop = loop + 1;

80 xfltmat = reshape(xflt ,nely ,nelx);

81 % Calculate COM

82 [COMX ,COMY] = COM(xfltmat);

83 % FE -ANALYSIS

84 [U,c,~]=FE(nelx ,nely ,xfltmat ,penal ,F,KE,din ,dout ,fixeddofs);

85 lambdac = U(:,2);

86 U = U(:,1);

87 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

88 [dc] = dEEdx(nelx ,nely ,U,lambdac ,penal ,xfltmat ,KE);

89 [~,~,Ux ,Uy] = SFbal(xflt ,nelx ,nely ,U,KE ,penal ,sl ,Ax ,Ay ,din ,dout ,

fixeddofs);

90 [~,~,mom] = SMbal(xflt ,nelx ,nely ,U,KE ,penal ,slm ,Ax ,Ay ,COMX ,COMY ,

din ,dout ,fixeddofs);

91
92 g(1) = c;

93 dgdx (1:nel ,1) = reshape(dc ,nel ,1);

94 g(2) = sum(xflt)/( volfrac*nel) - 1;

95 dgdx (1:nel ,2) = 1/ volfrac/nel;

96
97 % REVERSE FILTERING OF SENSITIVITIES

98 for i = 1: length(g)

99 [dgdx (1:nel ,i)] = H*(dgdx (1:nel ,i)./Hs);

100 end

101
102 if blocks == 1

103 for i = 1: length(g)

104 dgdx(union(block_el_nrs_zero ,block_el_nrs_one),i) = 0;

105 end

106 end

107 xold=x;

108 % DESIGN UPDATE BY THE METHOD OF MOVING ASYMPTOTES

109 [opt ,x] = opt.update(xold ,g,dgdx);

110 if loop >= 10

111 if helpdesigner == 1 && c >= -1E-1

112 elin = floor(din /2)-floor(din /(2* nely));

113 elout = floor(dout /2)-floor(dout /(2* nely));

114 x([elin -nely /10: elin+nely/10,elout -nely /10: elout+nely /10])

= max(x);

115 end

116 end

117 xflt (:) = (H*x(:))./Hs;

118 if blocks == 1

119 x(block_el_nrs_zero) = 1E-6;

120 x(block_el_nrs_one) = 1;

121 end

122 xmat = reshape(x,nely ,nelx);
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123 xmatflt = reshape(xflt ,nely ,nelx);

124 % PRINT RESULTS

125 bwfrac = (sum(x >0.99)+sum(x <0.01))/nel;

126 change = max(max(abs(x-xold)));

127 disp([' It.: ' sprintf('%4i',loop) ' Endeff .: ' sprintf('%10.4f'
,full(c)) ...

128 ' Vol.: ' sprintf('%6.3f',sum(sum(xmat))/(nelx*nely)) ...

129 ' ch.: ' sprintf('%6.3f',change ) ...

130 ' U: ' sprintf('%6.3f',sqrt(Ux^2+Uy^2)) ...

131 ' Mom: ' sprintf('%6.3f',mom)...
132 ' BWfrac:' sprintf('%6.3f',bwfrac)...
133 ' Uin:' sprintf('%6.3f',full(U(din)))...
134 ])

135 % PLOT DENSITIES AND STORE PROGRESS

136 % COM 's are offset 0.5 elements because the grayscale command

is offset

137 % 0.5 elements as well.

138 % Design values

139 figure (1)

140 colormap(gray); imagesc(-xmat); axis equal; axis tight; axis

on;pause(1e-6);

141 hold on

142 title('Design values ');
143 plot(COMX +0.5, COMY +0.5,'ob')
144 quiver(COMX +0.5, COMY +0.5,Ux ,Uy ,'b');
145 hold off

146 if record == 1

147 movie1(opt.iter) = getframe(gcf);

148 end

149 % Densities

150 figure (2)

151 colormap(gray); imagesc(-xmatflt .^3); axis equal; axis tight;

axis on;pause (1e-6);

152 hold on

153 title('Densities ');
154 plot(COMX +0.5, COMY +0.5,'ob')
155 quiver(COMX +0.5, COMY +0.5,Ux ,Uy ,'b');
156 hold off

157 if record == 1

158 movie2(opt.iter) = getframe(gcf);

159 end

160 % Other plots

161 Uxplot(opt.iter) = Ux;

162 Uyplot(opt.iter) = Uy;

163 Objplot(opt.iter) = c;

164 bwfracplot(opt.iter) = bwfrac;

165 Changeplot(opt.iter) = change;

166 xstore(:,loop) = xflt;

167
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168 % Nonconvergent iteration limits (time or maxiter)

169 if opt.iter == maxiter

170 change = 0;

171 disp('Maximum number of iterations reached ');
172 end

173 if maxtime ~= 0 && toc >= maxtime *3600

174 change = 0;

175 disp('Time limit reached ')
176 end

177
178 % Continuation

179 if continuation == 1

180 if loop > contloop && loop < contloop+contduration

181 sl = sl -1/ contduration *(sl0 -slend);

182 slm = slm -1/ contduration *(slm0 -slmend);

183 penal = penal -1/ contduration *(penal0 -penalend);

184 end

185 end

186 end

187
188 %% After Final Iteration

189 x_disp ((1:4) ,:) = x_undisp ((1:4) ,:) + U(edofMat (:,[1 3 5 7]))';
190 y_disp ((1:4) ,:) = y_undisp ((1:4) ,:) + U(edofMat (:,[2 4 6 8]))';
191 save('unbalanced.mat','x')
192 save(strjoin(string ([name ,'xstore.mat'])),'xstore ','-mat')
193 if plotdata == 1 % Allows turning on and off in options

194 figure (3);

195 subplot (2,2,1), plot ([1:1: opt.iter],Uxplot ,'r-'), xlabel('
Iterations '),ylabel('Displacement [elements]'),title('
COM -displacements ');

196 hold on

197 plot ([1:1: opt.iter],Uyplot ,'b-'), xlabel('Iterations '),
ylabel('Displacement [elements]');

198 legend('x-displacement ','y-displacement ');
199 subplot (2,2,2), plot ([1:1: opt.iter],bwfracplot *100,'r-'),

xlabel('Iterations '),ylabel('bwfrac [%]'),title('Black&
white fraction ');

200 subplot (2,2,3), plot ([1:1: opt.iter],Objplot ,'r-'), xlabel(

'Iterations '),ylabel('Displacement [elements]'),title('
End -effector Displacement ');

201 subplot (2,2,4), plot ([1:1: opt.iter],Changeplot ,'r-'),
xlabel('Iterations '),ylabel('Density change '),title('
Max change ');

202 saveas(gcf ,strjoin(string ([name ,'iterationdata.fig'])));
203 figure (4);

204 subplot (1,2,1), colormap(gray); imagesc(-xmat); axis equal

; axis tight; axis on;pause (1e-6);

205 subplot (1,2,2), colormap(gray); imagesc(-xmat); axis equal

; axis tight; axis on;pause (1e-6);
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206 figure (4)

207 xplot = sparse(round(x));

208 [elplot ,~,~] = find(xplot);

209 patch(x_disp(:,elplot),y_disp(:,elplot),'r','FaceAlpha ',1,
'EdgeColor ','none');pause (1e-6);

210 hold on

211 plot(COMX +0.5, COMY +0.5,'ob')
212 quiver(COMX +0.5, COMY +0.5,Ux ,Uy ,'b');
213 dyout = 2*round(dout /2);

214 dxout = dyout - 1;

215 xout = floor(ceil(dout /2)/(nely +1))+0.5; % +0.5 to

compensate for colormap(gray) command placing nodes at

+-0.5 elements

216 yout = ceil(dout /2) -(xout -0.5)*(nely +1) -1+0.5;

217 quiver(xout ,yout ,U(dxout),U(dyout),'b');
218 saveas(gcf ,strjoin(string ([name ,'Deformedplot.png'])));
219 end

220 %% Make videos

221 % Video design values

222 writerObj = VideoWriter(strjoin(string ([name ,'Design
values '])));

223 writerObj.FrameRate = 10; % set the fps

224 % open the video writer

225 open(writerObj);

226 % write the frames to the video

227 for i=1: length(movie1)

228 % convert the image to a frame

229 frame = movie1(i) ;

230 writeVideo(writerObj , frame);

231 end

232 % close the writer object

233 close(writerObj);

234
235 % Video densities

236 writerObj = VideoWriter(strjoin(string ([name ,'Densities '])
));

237 writerObj.FrameRate = 10; % set the fps

238 % open the video writer

239 open(writerObj);

240 % write the frames to the video

241 for i=1: length(movie2)

242 % convert the image to a frame

243 frame = movie2(i) ;

244 writeVideo(writerObj , frame);

245 end

246 % close the writer object

247 close(writerObj);

248
249
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250 %% Auxiliary functions

251
252 %%%%%%% COM calculation %%%%%%%

253 function [COMX ,COMY] = COM(xPhys)

254 [nely ,nelx] = size(xPhys);

255 xdist = ones(nely ,1) *[1: nelx];

256 ydist = [1: nely]'*ones(1,nelx);
257 COMX = sum(sum(xPhys .* xdist))/sum(sum(xPhys));

258 COMY = sum(sum(xPhys .* ydist))/sum(sum(xPhys));

259
260
261 %%%%%%% Initialize function %%%%%%%

262 function [Ax,Ay,x_disp ,y_disp ,x_undisp ,y_undisp ,nel ,edofMat] =

Initialize(nelx ,nely)

263 % Function Initialize

264 nel = nelx*nely;

265 ndof = 2*( nelx +1)*(nely +1);

266 nodenrs = reshape (1:( nelx +1)*(nely +1),nely+1,nelx +1);

267 edofVec = reshape (2* nodenrs (1:end -1,1:end -1)+1,nel ,1);

% Used to make edofMat

268 edofMat = repmat(edofVec ,1,8)+repmat ([0 1 2*nely +[2 3 0 1] -2 -1],

nel ,1);

269 % Ax and Ay matrices

270 Ax = 0.25* sparse(kron ([1:1: nel],ones (1,4)),reshape(edofMat (:,[1 3

5 7]) ',4*nel ,1),ones (1,4*nel),nel ,ndof);
271 Ay = 0.25* sparse(kron ([1:1: nel],ones (1,4)),reshape(edofMat (:,[2 4

6 8]) ',4*nel ,1),ones (1,4*nel),nel ,ndof);
272 x_undisp = kron ((0.5+ ones (4,1) *[1: nelx]-[ones(1,nelx);zeros(2,nelx

);ones(1,nelx)]),ones(1,nely));

273 y_undisp = kron(ones(1,nelx) ,(0.5+ ones (4,1) *[1: nely]-[zeros(2,nely

);ones(2,nely)]));

274 x_disp = x_undisp;

275 y_disp = y_undisp;

276
277 %%%%%%% Initialize Filter %%%%%%%

278 function [H,Hs] = Initialize_filter(nelx ,nely ,rmin)

279 iH = ones(nelx*nely *(2*( ceil(rmin) -1)+1)^2,1);

280 jH = ones(size(iH));

281 sH = zeros(size(iH));

282 k = 0;

283 for i1 = 1:nelx

284 for j1 = 1:nely

285 e1 = (i1 -1)*nely+j1;

286 for i2 = max(i1 -(ceil(rmin) -1) ,1):min(i1+(ceil(rmin) -1),

nelx)

287 for j2 = max(j1 -(ceil(rmin) -1) ,1):min(j1+(ceil(rmin)

-1),nely)

288 e2 = (i2 -1)*nely+j2;

289 k = k+1;
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290 iH(k) = e1;

291 jH(k) = e2;

292 sH(k) = max(0,rmin -sqrt((i1 -i2)^2+(j1 -j2)^2));

293 end

294 end

295 end

296 end

297 H = sparse(iH ,jH,sH);

298 Hs = sum(H,2);

299
300 function [block_el_nrs_zero ,block_el_nrs_one] = blocksmat2vec(

blocksize ,nelx ,nely)

301 % This function is used to predefine rectangular non -design

domains in

302 % the total design domain , with a predefined density of 0 or 1.

303 %

304 % block_el_nrs_zero element numbers in the vector x with a

predefined

305 % value of 0 and sensitivity of 0.

306 % block_el_nrs_one element numbers in the vector x with a

predefined

307 % value of 1 and sensitivity of 0.

308
309 % Blocksize n*5 matrix containing the upper left and

lower

310 % right x and y coordinates of n rectangular

bodies

311 % of which the element densities should be 0

or 1.

312 % The order of the columns is as follows:

313 % [xtop ,ytop ,xbot ,ybot ,density]

314 % with the density being 0 or 1.

315 % nelx # elements in the design domain in x-

direction

316 % nely # elements in the design domain in y-

direction

317
318 [n,~] = size(blocksize);

319 block_el_nrs_zero = [];

320 block_el_nrs_one = [];

321 for i = 1:n

322 blocksize(i,:);

323 numbers = reshape (1: nelx*nely ,nely ,nelx);

324 blocknrs_i = numbers ([ blocksize(i,2):blocksize(i,4)],[

blocksize(i,1):blocksize(i,3)]);

325 if blocksize(i,5) == 1

326 block_el_nrs_one = union(blocknrs_i ,block_el_nrs_one);

327 elseif blocksize(i,5) == 0

328 block_el_nrs_zero = union(blocknrs_i ,block_el_nrs_zero);

89



329 else

330 disp('error: blocks in "blocksize" not defined as 0 or 1')
331 end

332 end

333
334 %

335 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

336 % Original code was written by Ole Sigmund , Department of Solid

%

337 % Mechanics , Technical University of Denmark , DK -2800 Lyngby ,

Denmark. %

338 % Please sent your comments to the author: sigmund@fam.dtu.dk

%

339 %

%

340 % The code is intended for educational purposes and theoretical

details %

341 % are discussed in the paper

%

342 % "A 99 line topology optimization code written in Matlab"

%

343 % by Ole Sigmund (2001) , Structural and Multidisciplinary

Optimization , %

344 % Vol 21, pp. 120- -127.

%

345 %

%

346 % The code as well as a postscript version of the paper can be

%

347 % downloaded from the web -site: http ://www.topopt.dtu.dk

%

348 %

%

349 % Disclaimer:

%

350 % The author reserves all rights but does not guaranty that the

code is %

351 % free from errors. Furthermore , he shall not be liable in any

event %

352 % caused by the use of the program.

%

353 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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E.12 FE

1 %%%%%%%%%% FE-ANALYSIS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 function [U,Uout ,K]=FE(nelx ,nely ,x,penal ,F,KE,din ,dout ,fixeddofs)

3 nodenrs = reshape (1:(1+ nelx)*(1+ nely) ,1+nely ,1+ nelx);

4 edofVec = reshape (2* nodenrs (1:end -1,1:end -1)+1,nelx*nely ,1);

5 edofMat = repmat(edofVec ,1,8)+repmat ([-2 -1 2*nely +[0 1 2 3] 0 1],

nelx*nely ,1);

6 iK = reshape(kron(edofMat ,ones (8,1)) ',64*nelx*nely ,1);
7 jK = reshape(kron(edofMat ,ones (1,8)) ',64*nelx*nely ,1);
8
9 % DEFINE LOADS AND SUPPORTS

10 sK = reshape(KE(:)*(x(:) '.^penal) ,64*nelx*nely ,1);
11 K = sparse(iK ,jK,sK); K = (K+K')/2;
12 K(din ,din) = K(din ,din) + 0.1;

13 K(dout ,dout) = K(dout ,dout) + 0.1;

14 alldofs = [1:2*( nely +1)*(nelx +1)];

15 freedofs = setdiff(alldofs ,fixeddofs);

16
17 % SOLVING

18 U(freedofs ,:) = K(freedofs ,freedofs) \ F(freedofs ,:);

19 U(fixeddofs ,:)= 0;

20 Uout = U(dout ,1);

lk

1 %%%%%%%%%% ELEMENT STIFFNESS MATRIX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 function [KE]=lk

3 E = 10;

4 nu = 0.3;

5 k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

6 -1/4+nu/12 -1/8-nu/8 nu/6 1/8 -3*nu/8];

7 KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

8 k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

9 k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

10 k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

11 k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

12 k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

13 k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

14 k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

mma

1 %

2 % Written in May 1999 by
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3 % Krister Svanberg <krille@math.kth.se>

4 % Department of Mathematics

5 % SE -10044 Stockholm , Sweden.

6 %

7 % Modified (" spdiags" instead of "diag") April 2002

8 %

9 %

10 % This function mmasub performs one MMA -iteration , aimed at

11 % solving the nonlinear programming problem:

12 %

13 % Minimize f_0(x) + a_0*z + sum( c_i*y_i + 0.5* d_i*(y_i)^2 )

14 % subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m

15 % xmin_j <= x_j <= xmax_j , j = 1,...,n

16 % z >= 0, y_i >= 0, i = 1,...,m

17 %*** INPUT:

18 %

19 % m = The number of general constraints.

20 % n = The number of variables x_j.

21 % iter = Current iteration number ( =1 the first time mmasub is

called).

22 % xval = Column vector with the current values of the variables

x_j.

23 % xmin = Column vector with the lower bounds for the variables

x_j.

24 % xmax = Column vector with the upper bounds for the variables

x_j.

25 % xold1 = xval , one iteration ago (provided that iter >1).

26 % xold2 = xval , two iterations ago (provided that iter >2).

27 % f0val = The value of the objective function f_0 at xval.

28 % df0dx = Column vector with the derivatives of the objective

function

29 % f_0 with respect to the variables x_j , calculated at

xval.

30 % df0dx2 = Column vector with the non -mixed second derivatives of

the

31 % objective function f_0 with respect to the variables

x_j ,

32 % calculated at xval. df0dx2(j) = the second derivative

33 % of f_0 with respect to x_j (twice).

34 % Important note: If second derivatives are not available

,

35 % simply let df0dx2 = 0*df0dx.

36 % fval = Column vector with the values of the constraint

functions f_i ,

37 % calculated at xval.

38 % dfdx = (m x n)-matrix with the derivatives of the constraint

functions

39 % f_i with respect to the variables x_j , calculated at

xval.
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40 % dfdx(i,j) = the derivative of f_i with respect to x_j.

41 % dfdx2 = (m x n)-matrix with the non -mixed second derivatives of

the

42 % constraint functions f_i with respect to the variables

x_j ,

43 % calculated at xval. dfdx2(i,j) = the second derivative

44 % of f_i with respect to x_j (twice).

45 % Important note: If second derivatives are not available

,

46 % simply let dfdx2 = 0*dfdx.

47 % low = Column vector with the lower asymptotes from the

previous

48 % iteration (provided that iter >1).

49 % upp = Column vector with the upper asymptotes from the

previous

50 % iteration (provided that iter >1).

51 % a0 = The constants a_0 in the term a_0*z.

52 % a = Column vector with the constants a_i in the terms a_i*z

.

53 % c = Column vector with the constants c_i in the terms c_i*

y_i.

54 % d = Column vector with the constants d_i in the terms 0.5*

d_i*(y_i)^2.

55 %

56 %*** OUTPUT:

57 %

58 % xmma = Column vector with the optimal values of the variables

x_j

59 % in the current MMA subproblem.

60 % ymma = Column vector with the optimal values of the variables

y_i

61 % in the current MMA subproblem.

62 % zmma = Scalar with the optimal value of the variable z

63 % in the current MMA subproblem.

64 % lam = Lagrange multipliers for the m general MMA constraints.

65 % xsi = Lagrange multipliers for the n constraints alfa_j - x_j

<= 0.

66 % eta = Lagrange multipliers for the n constraints x_j - beta_j

<= 0.

67 % mu = Lagrange multipliers for the m constraints -y_i <= 0.

68 % zet = Lagrange multiplier for the single constraint -z <= 0.

69 % s = Slack variables for the m general MMA constraints.

70 % low = Column vector with the lower asymptotes , calculated and

used

71 % in the current MMA subproblem.

72 % upp = Column vector with the upper asymptotes , calculated and

used

73 % in the current MMA subproblem.

74 %
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75
76 classdef mma

77 properties

78 n;

79 m;

80 iter = 0;

81 x_min = 1e-3; % was 1e-3

82 x_max = 1;

83 xold1;

84 xold2;

85 a0 = 1.0;

86 a;

87 c;

88 d;

89 move = 0.2; %was 0.2

90 low;

91 upp;

92 dx;

93 change = 1;

94 xmin;

95 xmax;

96 end

97
98 methods

99 function obj = mma(n)

100 obj.n = n;

101 obj.xmin = obj.x_min * ones(obj.n, 1);

102 obj.xmax = obj.x_max * ones(obj.n, 1);

103 obj.dx = obj.xmax - obj.xmin;

104 end

105 function [obj , xmma] = update(obj ,xval ,g,dg)

106 obj.iter = obj.iter + 1;

107 df0dx = dg(:,1);

108 dfdx = dg(:,2:end)';
109 fval = g(2: end)';
110
111 if obj.iter == 1

112 obj.m = size(dfdx ,1);

113 obj.a = zeros(obj.m, 1);

114 obj.c = 1e3 * ones(obj.m, 1);

115 obj.d = ones(obj.m, 1);

116 end

117
118 epsimin = sqrt(obj.m+obj.n)*10^( -9);

119 feps = 0.00001;

120 asyinit = 0.5;

121 asyincr = 1.2; %was 1.2

122 asydecr = 0.7; %was 0.7

123 albefa = 0.1;
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124 een = ones(obj.n,1);

125 zeron = zeros(obj.n,1);

126
127 % Calculation of the asymptotes low and upp :

128 if obj.iter < 2.5

129 obj.low = xval - asyinit*obj.dx;

130 obj.upp = xval + asyinit*obj.dx;

131 else

132 zzz = (xval -obj.xold1).*(obj.xold1 -obj.xold2);

133 factor = een;

134 factor(zzz > 0) = asyincr;

135 factor(zzz < 0) = asydecr;

136 lowmin = xval - 10.0 * obj.dx;

137 lowmax = xval - 0.01 * obj.dx;

138 uppmin = xval + 0.01 * obj.dx;

139 uppmax = xval + 10.0 * obj.dx;

140 obj.low = xval - factor .*(obj.xold1 - obj.low);

141 obj.upp = xval + factor .*(obj.upp - obj.xold1);

142 obj.low = max(obj.low , lowmin);

143 obj.low = min(obj.low , lowmax);

144 obj.upp = min(obj.upp , uppmax);

145 obj.upp = max(obj.upp , uppmin);

146 end

147
148 % Calculation of the bounds alfa and beta :

149 chmax = obj.move *obj.dx;

150 zzz = obj.low + albefa *(xval -obj.low);

151 alfa = max(zzz ,obj.xmin);

152 alfa = max(alfa ,xval - chmax);

153 zzz = obj.upp - albefa *(obj.upp -xval);

154 beta = min(zzz ,obj.xmax);

155 beta = min(beta ,xval + chmax);

156
157 % Calculations of p0, q0, P, Q and b.

158 ux1 = obj.upp -xval;

159 ux2 = ux1.*ux1;

160 xl1 = xval -obj.low;

161 xl2 = xl1.*xl1;

162 ul1 = obj.upp - obj.low;

163 ulinv1 = een./ul1;

164 uxinv1 = een./ux1;

165 xlinv1 = een./xl1;

166 p0 = zeron;

167 p0(df0dx > 0) = df0dx(df0dx > 0);

168 p0 = p0 + 0.001* abs(df0dx) + feps*ulinv1;

169 p0 = p0.*ux2;

170 q0 = zeron;

171 q0(df0dx < 0) = -df0dx(df0dx < 0);

172 q0 = q0 + 0.001* abs(df0dx) + feps*ulinv1;
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173 q0 = q0.*xl2;

174 P = zeros(obj.m,obj.n);

175 P(dfdx > 0) = dfdx(find(dfdx > 0));

176 P = P * spdiags(ux2 ,0,obj.n,obj.n);

177 Q = zeros(obj.m,obj.n);

178 Q(dfdx < 0) = -dfdx(dfdx < 0);

179 Q = Q * spdiags(xl2 ,0,obj.n,obj.n);

180 b = P*uxinv1 + Q*xlinv1 - fval ;

181
182 %%% Solving the subproblem by a primal -dual Newton

method

183 [xmma ,~,~,~,~,~,~,~,~] = ...

184 subsolv(obj.m,obj.n,epsimin ,obj.low ,obj.upp ,alfa ,beta ,

p0,q0,P,Q,obj.a0,obj.a,b,obj.c,obj.d);

185
186 %%%%%%%%%%%%%%%%%

187 obj.change = mean(abs(xmma (:) - xval (:)));

188 obj.xold2 = obj.xold1;

189 obj.xold1 = xval;

190
191 end

192
193 end

194 end

195
196 % This is the file subsolv.m

197 %

198 function [xmma ,ymma ,zmma ,lamma ,xsimma ,etamma ,mumma ,zetmma ,smma] =

...

199 subsolv(m,n,epsimin ,low ,upp ,alfa ,beta ,p0 ,q0 ,P,Q,a0 ,a,b,c,d)

200 %

201 % Written in May 1999 by

202 % Krister Svanberg <krille@math.kth.se>

203 % Department of Mathematics

204 % SE -10044 Stockholm , Sweden.

205 %

206 % This function subsolv solves the MMA subproblem:

207 %

208 % minimize SUM[ p0j/(uppj -xj) + q0j/(xj-lowj) ] + a0*z +

209 % + SUM[ ci*yi + 0.5*di*(yi)^2 ],

210 %

211 % subject to SUM[ pij/(uppj -xj) + qij/(xj-lowj) ] - ai*z - yi <=

bi,

212 % alfaj <= xj <= betaj , yi >= 0, z >= 0.

213 %

214 % Input: m, n, low , upp , alfa , beta , p0, q0, P, Q, a0, a, b, c, d

.

215 % Output: xmma ,ymma ,zmma , slack variables and Lagrange multiplers.

216 %
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217 een = ones(n,1);

218 eem = ones(m,1);

219 epsi = 1;

220 epsvecn = epsi*een;

221 epsvecm = epsi*eem;

222 x = 0.5*( alfa+beta);

223 y = eem;

224 z = 1;

225 lam = eem;

226 xsi = een./(x-alfa);

227 xsi = max(xsi ,een);

228 eta = een./(beta -x);

229 eta = max(eta ,een);

230 mu = max(eem ,0.5*c);

231 zet = 1;

232 s = eem;

233 itera = 0;

234
235 while epsi > epsimin

236 epsvecn = epsi*een;

237 epsvecm = epsi*eem;

238 ux1 = upp -x;

239 xl1 = x-low;

240 ux2 = ux1.*ux1;

241 xl2 = xl1.*xl1;

242 uxinv1 = een./ux1;

243 xlinv1 = een./xl1;

244
245 plam = p0 + P'*lam ;

246 qlam = q0 + Q'*lam ;

247 gvec = P*uxinv1 + Q*xlinv1;

248 dpsidx = plam./ux2 - qlam./xl2 ;

249
250 rex = dpsidx - xsi + eta;

251 rey = c + d.*y - mu - lam;

252 rez = a0 - zet - a'*lam;
253 relam = gvec - a*z - y + s - b;

254 rexsi = xsi.*(x-alfa) - epsvecn;

255 reeta = eta.*(beta -x) - epsvecn;

256 remu = mu.*y - epsvecm;

257 rezet = zet*z - epsi;

258 res = lam.*s - epsvecm;

259
260 residu1 = [rex ' rey ' rez]';
261 residu2 = [relam ' rexsi ' reeta ' remu ' rezet res ']';
262 residu = [residu1 ' residu2 ']';
263 residunorm = sqrt(residu '* residu);
264 residumax = max(abs(residu));

265
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266 ittt = 0;

267 while residumax > 0.9* epsi && ittt < 100

268 ittt=ittt + 1;

269 itera=itera + 1;

270
271 ux1 = upp -x;

272 xl1 = x-low;

273 ux2 = ux1.*ux1;

274 xl2 = xl1.*xl1;

275 ux3 = ux1.*ux2;

276 xl3 = xl1.*xl2;

277 uxinv1 = een./ux1;

278 xlinv1 = een./xl1;

279 uxinv2 = een./ux2;

280 xlinv2 = een./xl2;

281 plam = p0 + P'*lam ;

282 qlam = q0 + Q'*lam ;

283 gvec = P*uxinv1 + Q*xlinv1;

284 GG = P*spdiags(uxinv2 ,0,n,n) - Q*spdiags(xlinv2 ,0,n,n);

285 dpsidx = plam./ux2 - qlam./xl2 ;

286 delx = dpsidx - epsvecn ./(x-alfa) + epsvecn ./(beta -x);

287 dely = c + d.*y - lam - epsvecm ./y;

288 delz = a0 - a'*lam - epsi/z;

289 dellam = gvec - a*z - y - b + epsvecm ./lam;

290 diagx = plam./ux3 + qlam./xl3;

291 diagx = 2*diagx + xsi./(x-alfa) + eta./(beta -x);

292 diagxinv = een./diagx;

293 diagy = d + mu./y;

294 diagyinv = eem./diagy;

295 diaglam = s./lam;

296 diaglamyi = diaglam+diagyinv;

297
298 if m < n

299 blam = dellam + dely./ diagy - GG*(delx./ diagx);

300 bb = [blam ' delz]';
301 Alam = spdiags(diaglamyi ,0,m,m) + GG*spdiags(diagxinv ,0,n,n)

*GG ';
302 AA = [Alam a

303 a' -zet/z ];

304 solut = AA\bb;

305 dlam = solut (1:m);

306 dz = solut(m+1);

307 dx = -delx./ diagx - (GG '*dlam)./ diagx;
308 else

309 diaglamyiinv = eem./ diaglamyi;

310 dellamyi = dellam + dely./diagy;

311 Axx = spdiags(diagx ,0,n,n) + GG '* spdiags(diaglamyiinv ,0,m,m)
*GG;

312 azz = zet/z + a'*(a./ diaglamyi);
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313 axz = -GG '*(a./ diaglamyi);
314 bx = delx + GG '*( dellamyi ./ diaglamyi);
315 bz = delz - a'*( dellamyi ./ diaglamyi);
316 AA = [Axx axz

317 axz ' azz ];

318 bb = [-bx ' -bz]';
319 solut = AA\bb;

320 dx = solut (1:n);

321 dz = solut(n+1);

322 dlam = (GG*dx)./ diaglamyi - dz*(a./ diaglamyi) + dellamyi ./

diaglamyi;

323 end

324
325 dy = -dely./ diagy + dlam./ diagy;

326 dxsi = -xsi + epsvecn ./(x-alfa) - (xsi.*dx)./(x-alfa);

327 deta = -eta + epsvecn ./(beta -x) + (eta.*dx)./(beta -x);

328 dmu = -mu + epsvecm ./y - (mu.*dy)./y;

329 dzet = -zet + epsi/z - zet*dz/z;

330 ds = -s + epsvecm ./lam - (s.*dlam)./lam;

331 xx = [ y' z lam ' xsi ' eta ' mu ' zet s']';
332 dxx = [dy ' dz dlam ' dxsi ' deta ' dmu ' dzet ds ']';
333
334 stepxx = -1.01* dxx./xx;

335 stmxx = max(stepxx);

336 stepalfa = -1.01*dx./(x-alfa);

337 stmalfa = max(stepalfa);

338 stepbeta = 1.01* dx./(beta -x);

339 stmbeta = max(stepbeta);

340 stmalbe = max(stmalfa ,stmbeta);

341 stmalbexx = max(stmalbe ,stmxx);

342 stminv = max(stmalbexx ,1);

343 steg = 1/ stminv;

344
345 xold = x;

346 yold = y;

347 zold = z;

348 lamold = lam;

349 xsiold = xsi;

350 etaold = eta;

351 muold = mu;

352 zetold = zet;

353 sold = s;

354
355 itto = 0;

356 resinew = 2* residunorm;

357 while resinew > residunorm && itto < 50

358 itto = itto +1;

359
360 x = xold + steg*dx;
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361 y = yold + steg*dy;

362 z = zold + steg*dz;

363 lam = lamold + steg*dlam;

364 xsi = xsiold + steg*dxsi;

365 eta = etaold + steg*deta;

366 mu = muold + steg*dmu;

367 zet = zetold + steg*dzet;

368 s = sold + steg*ds;

369 ux1 = upp -x;

370 xl1 = x-low;

371 ux2 = ux1.*ux1;

372 xl2 = xl1.*xl1;

373 uxinv1 = een./ux1;

374 xlinv1 = een./xl1;

375 plam = p0 + P'*lam ;

376 qlam = q0 + Q'*lam ;

377 gvec = P*uxinv1 + Q*xlinv1;

378 dpsidx = plam./ux2 - qlam./xl2 ;

379
380 rex = dpsidx - xsi + eta;

381 rey = c + d.*y - mu - lam;

382 rez = a0 - zet - a'*lam;
383 relam = gvec - a*z - y + s - b;

384 rexsi = xsi.*(x-alfa) - epsvecn;

385 reeta = eta.*(beta -x) - epsvecn;

386 remu = mu.*y - epsvecm;

387 rezet = zet*z - epsi;

388 res = lam.*s - epsvecm;

389
390 residu1 = [rex ' rey ' rez]';
391 residu2 = [relam ' rexsi ' reeta ' remu ' rezet res ']';
392 residu = [residu1 ' residu2 ']';
393 resinew = sqrt(residu '* residu);
394 steg = steg /2;

395 end

396 residunorm=resinew;

397 residumax = max(abs(residu));

398 steg = 2*steg;

399 end

400 epsi = 0.1* epsi;

401 end

402
403 xmma = x;

404 ymma = y;

405 zmma = z;

406 lamma = lam;

407 xsimma = xsi;

408 etamma = eta;

409 mumma = mu;
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410 zetmma = zet;

411 smma = s;

412
413 end

Runoptimization

1 %% This file is used to run the optimization of a balanced

compliant mechanism

2 tic

3 clear all

4 close all

5
6 % Parameters

7 nelx = 400;

8 nely = 400;

9 volfrac = 0.3;

10 penal = 3;

11 rmin = 8;

12 sl = 0.5;

13 slm = 20;

14 situation = @FIbs;

15
16 % Optimization runs

17 topmma_unbalanced(nelx ,nely ,volfrac ,penal ,rmin ,sl,slm ,situation

,[])

18 % close all

19 topmma_balanced(nelx ,nely ,volfrac ,penal ,rmin ,sl,slm ,situation ,'
unbalanced.m')

E.13 Situations

Some situations are presented here. They are divided into two categories: FIbs (Force Inverter
with Boundary Space) and FTlbrt (Force Transmitter Left Bottom to Right Top). The x or y
behind FIbs means the output is in the x- or y-direction. If a value is also added, this denotes
the height in the domain where the output node is located. The x or y behind FTlbrt means
first the input direction, then the output direction.

E.14 FIbs04x

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbs04x(nelx ,nely ,F_in ,

bs)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around. The output

is shifted
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4 % upward to 0.4 of the total design domain in y-direction.

5
6
7 % din Input DOF number

8 % dout Output DOF number

9 % fixeddofs Constrained DOF numbers

10 % F Force vector on all DOFs

11 % namesitu Situation name , used for naming datasets

12
13 % nelx Number of elements in x-direction

14 % nely Number of elements in y-direction

15 % F_in Magnitude of the input force

16 % bs Boundary domain size as part of design domain. 0

is no

17 % boundary , 0.5 is no interior design domain and

therefore

18 % infeasible. bs always should be between 0 and 0.5.

19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbs04x ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely *0.8+1;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.15 FIbs04y

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbs04y(nelx ,nely ,F_in ,

bs)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around. The output

is shifted

4 % upward to 0.4 of the total design domain in y-direction.

5
6
7 % din Input DOF number
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8 % dout Output DOF number

9 % fixeddofs Constrained DOF numbers

10 % F Force vector on all DOFs

11 % namesitu Situation name , used for naming datasets

12
13 % nelx Number of elements in x-direction

14 % nely Number of elements in y-direction

15 % F_in Magnitude of the input force

16 % bs Boundary domain size as part of design domain. 0

is no

17 % boundary , 0.5 is no interior design domain and

therefore

18 % infeasible. bs always should be between 0 and 0.5.

19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbs04y ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely *0.8+2;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.16 FIbs025x

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbs025x(nelx ,nely ,F_in

,bs)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around. The output

is shifted

4 % upward to 0.25 of the total design domain in y-direction.

5
6
7 % din Input DOF number

8 % dout Output DOF number

9 % fixeddofs Constrained DOF numbers

10 % F Force vector on all DOFs

11 % namesitu Situation name , used for naming datasets
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12
13 % nelx Number of elements in x-direction

14 % nely Number of elements in y-direction

15 % F_in Magnitude of the input force

16 % bs Boundary domain size as part of design domain. 0

is no

17 % boundary , 0.5 is no interior design domain and

therefore

18 % infeasible. bs always should be between 0 and 0.5.

19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbs025x ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely *0.5+1;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.17 FIbs025y

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbs025y(nelx ,nely ,F_in

,bs)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around. The output

is shifted

4 % upward to 0.25 of the total design domain in y-direction.

5
6
7 % din Input DOF number

8 % dout Output DOF number

9 % fixeddofs Constrained DOF numbers

10 % F Force vector on all DOFs

11 % namesitu Situation name , used for naming datasets

12
13 % nelx Number of elements in x-direction

14 % nely Number of elements in y-direction

15 % F_in Magnitude of the input force
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16 % bs Boundary domain size as part of design domain. 0

is no

17 % boundary , 0.5 is no interior design domain and

therefore

18 % infeasible. bs always should be between 0 and 0.5.

19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbs025y ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely *0.5+2;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.18 FIbs075x

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbs075x(nelx ,nely ,F_in

,bs)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around. The output

is shifted

4 % upward to 0.75 of the total design domain in y-direction.

5
6
7 % din Input DOF number

8 % dout Output DOF number

9 % fixeddofs Constrained DOF numbers

10 % F Force vector on all DOFs

11 % namesitu Situation name , used for naming datasets

12
13 % nelx Number of elements in x-direction

14 % nely Number of elements in y-direction

15 % F_in Magnitude of the input force

16 % bs Boundary domain size as part of design domain. 0

is no

17 % boundary , 0.5 is no interior design domain and

therefore
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18 % infeasible. bs always should be between 0 and 0.5.

19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbs075x ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely *1.5+1;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.19 FIbs075y

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbs075y(nelx ,nely ,F_in

,bs)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around. The output

is shifted

4 % upward to 0.75 of the total design domain in y-direction.

5
6
7 % din Input DOF number

8 % dout Output DOF number

9 % fixeddofs Constrained DOF numbers

10 % F Force vector on all DOFs

11 % namesitu Situation name , used for naming datasets

12
13 % nelx Number of elements in x-direction

14 % nely Number of elements in y-direction

15 % F_in Magnitude of the input force

16 % bs Boundary domain size as part of design domain. 0

is no

17 % boundary , 0.5 is no interior design domain and

therefore

18 % infeasible. bs always should be between 0 and 0.5.

19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely
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21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbs075y ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely *1.5+2;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.20 FIbsx

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbsx(nelx ,nely ,F_in ,bs

)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around.

4
5
6 % din Input DOF number

7 % dout Output DOF number

8 % fixeddofs Constrained DOF numbers

9 % F Force vector on all DOFs

10 % namesitu Situation name , used for naming datasets

11
12 % nelx Number of elements in x-direction

13 % nely Number of elements in y-direction

14 % F_in Magnitude of the input force

15 % bs Boundary domain size as part of design domain. 0

is no

16 % boundary , 0.5 is no interior design domain and

therefore

17 % infeasible. bs always should be between 0 and 0.5.

18
19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have
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to be a factor of 10.');
24 end

25 namesitu = 'FIbsx ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely +1;

28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.21 FIbsy

1 function [din ,dout ,fixeddofs ,F,namesitu] = FIbsy(nelx ,nely ,F_in ,bs

)

2 % In this situation , the force invertor is placed in the middle

of a

3 % design domain with free design domain all around.

4
5
6 % din Input DOF number

7 % dout Output DOF number

8 % fixeddofs Constrained DOF numbers

9 % F Force vector on all DOFs

10 % namesitu Situation name , used for naming datasets

11
12 % nelx Number of elements in x-direction

13 % nely Number of elements in y-direction

14 % F_in Magnitude of the input force

15 % bs Boundary domain size as part of design domain. 0

is no

16 % boundary , 0.5 is no interior design domain and

therefore

17 % infeasible. bs always should be between 0 and 0.5.

18
19
20 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

21 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
22 elseif round (0.1* nely) ~= 0.1* nely

23 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
24 end

25 namesitu = 'FIbsy ';
26 din =2*(bs)*nelx*(nely +1)+nely +1;

27 dout= 2*(1-bs)*nelx*(nely +1)+nely +2;
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28 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1 ,2] ,2*(bs*nelx +1)

*(nely +1) -2*bs*nely -[0 ,1]);

29 F = sparse (2*( nely +1)*(nelx +1) ,2);

30 F(din ,1) = F_in;

31 F(dout ,2) = -F_in;

32 end

E.22 FTlbrt xx

1 function [din ,dout ,fixeddofs ,F,namesitu] = FTlbrt_xx(nelx ,nely ,

F_in ,bs)

2 % Force Transmitter left bottom x-direction to right top neg x-

direction

3 % din and dout are the input and output DOFs , respectively.

4 % fixeddofs contains all contrained DOFs.

5 % F is the vector of applied forces on certain DOFs.

6 % namesitu is the name of the situation , to be used in the

naming of the

7 % resulting data.

8
9 % In this situation , force is transmitted from the bottom left

corner of

10 % the internal design domain to the top right corner of the

internal

11 % design domain. The other two corners of the internal design

domain are

12 % fixed joints , and a free design domain is allowed around this.

13
14 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

15 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
16 elseif round (0.1* nely) ~= 0.1* nely

17 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
18 end

19 namesitu = 'FTlbrt_xx ';
20 din = 2*bs*nelx*(nely +1)+2*(1 -bs)*nely +1;

21 dout= 2*(1-bs)*nelx*(nely +1) +2*bs*nely +1;

22 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1,2],2*(1 -bs)*nelx

*(nely +1) +2*(1-bs)*nely +[1 ,2]);

23 F = sparse (2*( nely +1)*(nelx +1) ,2);

24 F(din ,1) = F_in;

25 F(dout ,2) = -F_in;

26 end
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E.23 FTlbrt xy

1 function [din ,dout ,fixeddofs ,F,namesitu] = FTlbrt_xy(nelx ,nely ,

F_in ,bs)

2 % Force Transmitter left bottom x-direction to right top y-

direction

3 % din and dout are the input and output DOFs , respectively.

4 % fixeddofs contains all contrained DOFs.

5 % F is the vector of applied forces on certain DOFs.

6 % namesitu is the name of the situation , to be used in the

naming of the

7 % resulting data.

8
9 % In this situation , force is transmitted from the bottom left

corner of

10 % the internal design domain to the top right corner of the

internal

11 % design domain. The other two corners of the internal design

domain are

12 % fixed joints , and a free design domain is allowed around this.

13
14 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

15 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
16 elseif round (0.1* nely) ~= 0.1* nely

17 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
18 end

19 namesitu = 'FTlbrt_xy ';
20 din = 2*bs*nelx*(nely +1)+2*(1 -bs)*nely +1;

21 dout= 2*(1-bs)*nelx*(nely +1) +2*bs*nely +2;

22 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1,2],2*(1 -bs)*nelx

*(nely +1) +2*(1-bs)*nely +[1 ,2]);

23 F = sparse (2*( nely +1)*(nelx +1) ,2);

24 F(din ,1) = F_in;

25 F(dout ,2) = -F_in;

26 end

E.24 FTlbrt yy

1 function [din ,dout ,fixeddofs ,F,namesitu] = FTlbrt_yy(nelx ,nely ,

F_in ,bs)

2 % Force Transmitter left bottom y-direction to right top y-

direction

3 % din and dout are the input and output DOFs , respectively.

4 % fixeddofs contains all contrained DOFs.

5 % F is the vector of applied forces on certain DOFs.
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6 % namesitu is the name of the situation , to be used in the

naming of the

7 % resulting data.

8
9 % In this situation , force is transmitted from the bottom left

corner of

10 % the internal design domain to the top right corner of the

internal

11 % design domain. The other two corners of the internal design

domain are

12 % fixed joints , and a free design domain is allowed around this.

13
14 if round(bs*nelx) ~= bs*nelx || round(bs*nely) ~= bs*nely

15 error('Error 1. Boundary design domain wrongly defined. Check

input situation.');
16 elseif round (0.1* nely) ~= 0.1* nely

17 error('Error 2. Design domain too small for boundary

conditions to be implemented correctly. Nelx and Nely have

to be a factor of 10.');
18 end

19 namesitu = 'FTlbrt_yy ';
20 din = 2*bs*nelx*(nely +1)+2*(1 -bs)*nely +2;

21 dout= 2*(1-bs)*nelx*(nely +1) +2*bs*nely +2;

22 fixeddofs = union (2*bs*nelx*(nely +1)+2*bs*nely +[1,2],2*(1 -bs)*nelx

*(nely +1) +2*(1-bs)*nely +[1 ,2]);

23 F = sparse (2*( nely +1)*(nelx +1) ,2);

24 F(din ,1) = F_in;

25 F(dout ,2) = -F_in;

26 end
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