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All that is straight (linear) lies, all truth is crooked (nonlinear)1

1 Inspired by “Alles Gerade lügt, ... alle Wahrheit ist krumm”. [Friedrich

Nietzsche, Also sprach Zarathustra]
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Chapter 1
Introduction

This thesis is concerned with the development of a numerical method for mod-

eling the nonlinear propagation of pressure wave fields through inhomogeneous

biomedical media. This method may be used to design and optimize ultrasound

transducers or to investigate novel ultrasound modalities or devices. Nonlinear

propagation, attenuation and spatial inhomogeneities in the relevant acoustical

parameters, i.e. coefficient of nonlinearity, attenuation and speed of sound, are

included in the model, leading to the formulation of an integral equation. The

method developed provides a solution to this equation by means of advanced

iterative schemes and is an extension of the already existing iterative nonlinear

contrast source (INCS) method [1, 2]. In this thesis, several iterative schemes

have been derived, implemented and compared. In addition, the obtained nu-

merical method has been used to assist in the design of a probe for echographic

imaging (within a joint project with Erasmus Medical Center and Oldest Ultra-

sound) and to evaluate the performances of novel imaging modalities [3, 4].

In this Chapter the application of ultrasound in medicine and the basics of

nonlinear acoustics are discussed in Section 1.1 and 1.2 respectively. Next, an

overview of the work presented in this thesis is given in Section 1.3.

1.1 Ultrasound in medicine

The application of ultrasound in the field of medicine was first suggested for

therapy, as early as 1932 [5], following the studies on the biological effect of ul-

1



2 1. INTRODUCTION

trasound. These studies began thanks to Langévin’s 1917 observation [6], whom

during sonar experiments noted destruction of school of fishes in the sea, and

thanks to the work done from Wood and Loomis [5]. Although the possibility

to use sound for imaging was know since the World War I due to sonar applica-

tions, diagnostic application of ultrasound appeared only from the end of the 30’s.

Firestone’s 1942 patent [5] is considered, even if originally thought for flaw detec-

tion in metal, the first modern pulse-echo ultrasound technique and the basis for

pulse-echo in imaging. Successively, in the late 40’s and early 50’s, Howry and

Wild [5] showed respectively the possibility to detect tissue interfaces and differ-

entiate tissue structures (cancer from benign) by means of ultrasound. Around 20

years later, a big step toward the pulse-echo imaging systems utilized nowadays

was made, thanks to Somer and Bom, whom introduced the phased-array and

linear-array transducers respectively in 1968 [7] and 1971 [8]. To mention another

interesting example, it was in the 80’s when Howry and his group demonstrated

that ultrasound could be used to produce a tomographic image of soft human

tissues. To do so they transformed parts of a World War II B-29 bomber gun

turret into a water tank in which the patient was immersed. Next, an ultrasound

transducer was revolved around the patient using the turret ring gear, and images

of a cross section of the neck were obtained [6]. The rapid growth of ultrasound

based examinations and treatments has boosted the research on medical ultra-

sound during the last 30 years. Nowadays ultrasound is standard practice for the

diagnosis as well as for the treatment of a wide range of diseases. To give an idea,

in the year 2000, it has been estimated that each week five million ultrasound

examinations were performed world-wide [6].

Echocardiography is one application from many where ultrasound is used for

diagnosis. With echocardiography, images of the heart are obtained from a trans-

thoracic echocardiogram (TTE) or trans-esophageal echocardiogram (TEE). Dur-

ing a TTE an ultrasound transducer is positioned at different locations on the

chest or abdominal wall. Next, the transducer transmits pressure waves at ul-

trasonic frequencies into the chest and records echoes reflecting off the different

parts of the insonified volume. After processing the acquired signals, high quality

images of the heart are obtained. An echocardiogram may be used to evaluate

the condition of the four chambers of the heart, the heart valves, the lining of

the heart (the pericardium), and the aorta. In addition, it can be useful for de-

tecting a heart attack, enlargement or hypertrophy of the heart, cardiac tumors,

and a variety of other findings. A disadvantage of TTE is that the accuracy
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and image quality may be reduced because of obesity, chronic obstructive pul-

monary disease, chest-wall deformities, otherwise technically difficult patients,

and in general by the presence of obstacles such as ribs and lungs. In circum-

stances in which satisfying images cannot be obtained via TTE, TEE may be

utilized. With TEE the probe is positioned inside the esophagus, just behind the

heart. Therefore, the transducer is closer to the heart as compared to TTE and

basically no obstacles are present in the field of view. Drawbacks of TEE are the

necessity of a fasting and sedated patient, increase in examination time and the

risk for possible injuries, e.g. esophageal perforation [9].

It’s the author’s believe that a better understanding of the physical phe-

nomena behind pressure wave propagation will improve the equipment by which

patients will be examined and treated in the future. This is the driving motive

behind the research presented in this thesis.

1.2 Nonlinear acoustics

The propagation of a pressure wave field is a nonlinear phenomenon. The nonlin-

earity may be represented by pressure dependent acoustic medium parameters,

i.e. volume density of mass and compressibility. However, for small amplitude

pressure wave fields that propagate over a short distance, this nonlinear phe-

nomenon is not significant, and a linear approximation provides sufficiently good

results. Nevertheless, for biomedical applications, when transient pressure fields

with amplitudes in the order of 100 kPa or higher are used, the cumulative

nonlinear distortion starts to play a significant role and manifests itself by the

appearance of harmonic components, i.e. emerging spectral content centered

around multiples of the central frequency of the emitted wave. Figure 1.1 shows

and compares the time signal and frequency spectra of a plane wave propagating

through a lossless homogeneous medium (water) in case of a peak pressure equal

to 1 kPa (solid line) or 2.5 MPa (dashed line). In the first case the normalized

time signal and frequency spectra remain identical during propagation, while this

is not the case when the source signal with the same shape but a much higher am-

plitude is transmitted and nonlinear propagation is considered. With nonlinear

propagation, the part of the wave at higher pressure levels tends to move faster

than the part at lower pressure levels, resulting in a distortion of the wave shape.

In the frequency domain, this distortion becomes apparent through the formation

of harmonic components. The fundamental component (F0), together with the
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Figure 1.1: Normalized time signal and frequency spectra for a plane wave (a,c) at

source position and (b,d) after propagating 50 mm through water, in case

of a peak pressure equal to 1 kPa (solid line) and 2.5 MPa (dashed line).

second (2H) up to sixth (6H) harmonic component, is visible in Fig. 1.1(d).

Nowadays, nonlinear acoustics play a key role in the development of new

medical diagnostic and therapeutic applications of ultrasound. For example,

nonlinear ultrasound is known to improve significantly the quality of echographic

images [10] and to influence the heat deposition during acoustic ablation ther-

apy [11]. These effects are due to the higher harmonic wave fields generated

during propagation. These harmonic fields contain higher frequencies than the

pressure wave field at the surface of the transducer, and yield, therefore, an

improved axial resolution and increased absorption because of the frequency de-

pendency of the absorption mechanism. Furthermore, among the peculiarities

of the beam formed by the higher harmonic wave fields, are a reduction of the

elevation and lateral size of the focal spot and the reduction of clutter, and

side and grating lobes [10], as compared to the fundamental wave field. An
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example of a well known ultrasound imaging modality is Tissue Harmonic Imag-

ing (THI) [12, 13, 14, 15]. This technique, which takes advantage of the benefits

mentioned by imaging only the reflected second harmonic component, is currently

the standard in commercial diagnostic ultrasound scanning systems. To exploit

further the benefits of higher harmonics, researchers currently investigate ultra-

sound imaging based on the reflection of the third to the fifth harmonic compo-

nent. In literature this is referred to as Super-Harmonic Imaging (SHI) [3, 16, 17].

The ability to simulate accurately and understand the corresponding nonlinear

phenomena is therefore necessary for the development, design and optimization

of new ultrasound modalities or devices.

1.3 This thesis

The research presented in this thesis concerns the development of a numerical

method for modeling nonlinear pressure wave field propagation through inho-

mogeneous biomedical media. Existing methods for the numerical simulation of

nonlinear acoustic wave fields may be divided into two categories: forward wave

methods and full wave methods [18, 19].

Forward wave methods start with a pressure distribution in the plane of the

transducer, and march the field forward in a preferred direction, which usu-

ally corresponds to the direction of the main beam [20, 21, 22, 23, 24, 25, 26].

Many methods that belong to this category, such as the Khokhlov-Zabolotskaya-

Kuznetsov (KZK) method [21, 26], subject the acoustic wave equation to a

parabolic approximation. Consequently, forward wave methods are inaccurate

for fields that propagate in directions which deviate from the preferred direction

of propagation, and cannot deal with back-scattered wave fields.

Full wave methods do not involve a preferred direction of propagation. Some

methods that belong to this category solve the relevant basic acoustic equations

using Finite Difference [27, 28, 29] or Finite Element [30] methods. Since these

methods need to sample at considerably more than two points per smallest wave-

length and per shortest period, the number of grid points needed to handle a

realistic computational domain soon becomes too large. The INCS [1, 2] method

is a full wave method which avoids this problem. By taking advantage of the

Filtered Convolution method [31] it only requires two points per wavelength or

period and therefore it can handle nonlinear ultrasound fields over computational
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domains measuring hundreds of wavelengths and periods. Originally, the INCS

method was only applied to homogeneous nonlinear media with frequency power

law attenuation [1, 32].

In this thesis the basic steps behind INCS, i.e. the contrast source approach

and the Filtered Convolution method [31], are preserved and the method is ex-

tended to deal with spatially varying attenuation, coefficient of nonlinearity and

speed of sound.

In Chapter 2, the theory is presented and discussed. Here, the integral equa-

tion which defines our contrast source problem is derived starting from the equa-

tion of motion and the deformation equation.

Chapter 3 contains results obtained with the application of a Neumann scheme.

In case of strong contrasts typically observed in biomedical applications, Neu-

mann may result in slow convergence or may even diverge. In order to overcome

this problem other schemes have been investigated.

Chapter 4 contains the formulation of an alternative approach, where the

nonlinear problem is linearized and solved using a biconjugate gradient stabilized

(Bi-CGSTAB) scheme. This scheme is faster and more robust when compared

to Neumann. As a drawback, the linearization of the contrast source leads to a

significant systematic error for the harmonics of the fourth order or higher. If

an accurate simulation of the higher harmonics is needed, a different approach is

necessary.

In Chapter 5 a Steepest Descent based method is formulated and results for

nonlinear pressure wave field propagating through lossy inhomogeneous media

are presented and discussed. This method allows for modeling of the full nonlin-

ear problem, including inhomogeneities in the speed of sound, attenuation and

coefficient of nonlinearity. As a drawback it results in a higher computational

load and a reduction of the convergence speed.

Chapter 6 contains an example of a possible application of the method devel-

oped. A feasibility study that aims to compare the performances of standard par-

allel beamforming with a new parallel beamforming technique, i.e. parallel trans-

mit beamforming using orthogonal frequency division multiplexing (OFDM), is
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discussed.

A discussion of the overall content of the thesis as well as suggestions for

further development together with final conclusions are contained in Chapter 7.
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Chapter 2
Theory

In this Chapter, the nonlinear wave equation for a lossless medium with a spa-

tially varying compressibility and coefficient of nonlinearity is derived. Next, the

equation is extended to deal with spatially varying attenuation. The resulting

equation is cast into an integral equation, which forms the starting point of our

solution method.

2.1 Nonlinear wave equation with spatially vary-

ing κ and β

The acoustic wave motion is a dynamical state of matter that is superimposed

on an existing static equilibrium state [34]. To describe the total state, we make

use of the equation of motion

∇p(x, t) + ρ (x, t)Dtv(x, t) = f(x, t), (2.1)

and the deformation equation

∇ · v(x, t) + κ (x, t)Dtp(x, t) = q(x, t). (2.2)

Here, the vector x contains the coordinates of a position in a three-dimensional

Cartesian domain D, and t is the time coordinate. The symbol ∇ indicates the

nabla operator, and Dt = ∂t + v · ∇ indicates the material time derivative. The

properties of an acoustic medium are described via the volume density of mass

ρ (x, t) and the compressibility κ (x, t). The underlinings are used to represent

9



10 2. THEORY

total quantities and to distinguish them from their static or excess values. Equa-

tions (2.1) and (2.2) describe the relation between the pressure wave field p(x, t),

the particle velocity wave field v(x, t), the volume source density of volume force

f(x, t), and the volume source density of injection rate q(x, t). Equation (2.1)

follows from combining the conservation laws of linear momentum (Newton’s sec-

ond law) and mass, and (2.2) is obtained by combining the conservation laws of

volume and mass [1]. Throughout this thesis, we employ the Eulerian description

of continuum mechanics.

To extract the dynamical state, we write

p(x, t) = p(x, t)− p0, (2.3)

v(x, t) = v(x, t)− v0, (2.4)

f(x, t) = f(x, t)− f0, (2.5)

q(x, t) = q(x, t)− q0. (2.6)

Here, the quantities on the left hand side denote the dynamic perturbations of

the static equilibrium state, which is represented by the quantities with subscript

’0’. The quantity p(x, t) is called the excess or acoustic pressure. Furthermore,

p0 is the static pressure, v0 = 0 m/s, f0 is the force of gravity, and q0 = 0 s−1.

Comparison with work that includes the state equation of the medium, reveals

that the counterparts of Eqs (2.1) and (2.2) for the perturbations are [35, 36]

∇p(x, t) + ρ (x, t)Dtv(x, t) = f(x, t), (2.7)

∇ · v(x, t) + κ (x, t)Dtp(x, t) = q(x, t). (2.8)

with

ρ(x, t) = ρ(x) [1 + κ(x)p(x, t)] , (2.9)

κ (x, t) = κ(x) {1 + κ(x) [1− 2β(x)] p(x, t)} . (2.10)

Here, κ(x) and ρ(x) represent the static compressibility and volume density of

mass respectively, and β(x) is called the coefficient of nonlinearity. The coeffi-

cient of nonlinearity β characterizes the nonlinear distortion that occurs during

propagation [37]. Each point on the waveform propagates in fact at a different

speed, which is determined by its value of excess pressure and by the medium

properties, and in particular by the coefficient of nonlinearity β. For an arbitrary

fluid, the coefficient of nonlinearity may be written as a summation of two terms,
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i.e., β = 1 + B/2A. Here, the term B/A is the ratio of the second and first

order coefficient in a Taylor series expansion of the isentropic equation of state,

and is due to the nonlinearity of the pressure-density relation. The first term

instead, does not depend on the nonlinearity of the pressure-density relation,

and is due to convection [37]. Combined with Eqs. (2.9) and (2.10), Eqs. (2.7)

and (2.8) are accurate up till second order in the perturbation quantities. These

equations can be utilized to model the nonlinear propagation of a pressure wave

field through media presenting spatially varying speed of sound and coefficient

of nonlinearity. Here, we opted to model inhomogeneities in the speed of sound

via inhomogeneities in the static compressibility. Therefore, the volume density

of mass is assumed to be invariant with respect to spatial coordinates and equal

to the volume density of mass of the background medium, i.e. ρ(x) = ρbg.

Equations (2.7) and (2.8) can be combined with Eqs. (2.9) and (2.10). After

discarding wave field terms of third order and higher, we obtain

∇p(x, t) + ρbg∂tv(x, t) =f(x, t)− 1

2
ρbg∇ [v(x, t) · v(x, t)]

− ρbgκ(x)p(x, t)∂tv(x, t), (2.11)

∇ · v(x, t) + κ(x)∂tp(x, t) =q(x, t)− κ(x)v(x, t) · ∇p(x, t)

− κ2(x) [1− 2β(x)] p(x, t)∂tp(x, t). (2.12)

Next, the combination of Eq. (2.11) with Eq. (2.12) provides the nonlinear wave

equation with inhomogeneities in the compressibility and in the coefficient of

nonlinearity,

∇2p(x, t)− 1

c2(x)
∂2
t p(x, t) = −ρbg∂tq(x, t) +∇ · f(x, t)

−∇ ·
{

1

2
ρbg∇ [v(x, t) · v(x, t)]

}
+ ρbg∂t

{
κ2(x) [1− 2β(x)] p(x, t)∂tp(x, t)

}
−∇ · [ρbgκ(x)p(x, t)∂tv(x, t)]

+ ρbg∂t [κ(x)v(x, t) · ∇p(x, t)] , (2.13)

where the small-signal speed of sound equals

c(x) =
1√

ρbgκ(x)
. (2.14)
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Outside any source domain we can use Eq. (2.7) to reformulate Eq. (2.13) into

∇2p(x, t)− 1

c2(x)
∂2
t p(x, t) = −ρbg∂tq(x, t) +∇ · f(x, t)

− ρbgκ2(x)β(x)∂2
t p

2(x, t)

+
1

2
[∇κ(x)] · ∇p2(x, t)

+

{
1

2
κ(x)∇2p2(x, t)− 1

2
ρbg∇2 [v(x, t) · v(x, t)]

−1

2
ρ2
bgκ(x)∂2

t [v(x, t) · v(x, t)] +
1

2
ρbgκ

2(x)∂2
t p

2(x, t)

}
, (2.15)

where we neglected the terms of third order in the wave field quantities.

Now we consider the term in between the curly brackets of Eq. (2.15). From

Eq. (2.7), it can be proved that for a homogeneous volume density of mass,

outside any source domain and up to first order in the wave field quantities, the

acoustic velocity v(x, t) is irrotational, i.e. ∇×v(x, t) = 0. The acoustic velocity

can therefore be expressed by means of a velocity potential φ(x, t), viz.

v(x, t) = ∇φ(x, t), (2.16)

and consequently the pressure field p(x, t) can be expressed as

p(x, t) = −ρbg∂tφ(x, t). (2.17)

Substitution of Eqs. (2.16) and (2.17) into the term in between curly brackets in

Eq. (2.15) allows the latter to be rewritten as

−1

2
ρbg
[
∇2 + ρbgκ(x)∂2

t

]{1

2

[
∇2φ2(x, t)− ρbgκ(x)∂2

t φ
2(x, t)

]
− φ(x, t)

[
∇2φ(x, t)− ρbgκ(x)∂2

t φ(x, t)
]}

−∇
[
ρ2
bgκ(x)

]
· ∇ [∂tφ(x, t)]

2

− 1

2
∇2
[
ρ2
bgκ(x)

]
[∂tφ(x, t)]

2
. (2.18)

Next, assuming the quantities in the second order terms in the wave equation

to obey to a plane wave relation, the kinetic energy density equals the potential

energy density (which assumes the Lagrangian density to be zero):

κ(x)p2(x, t) = ρbgv(x, t) · v(x, t). (2.19)
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It can be demonstrated, in combination with Eq (2.16) and (2.17), that

∇2φ2(x, t)− ρbgκ(x)∂2
t φ

2(x, t) = 0. (2.20)

Equation (2.20) can also be obtained from the arguments put forward by Aanon-

sen et al. [38] and Naze and Tjotta [39, 40], as the term on the left hand side of

equation (2.20) is negligible under the assumption that the cumulative nonlinear

effect dominates the local nonlinear effect. Combining Eqs. (2.16), (2.17) and

Eq. (2.8), we obtain a wave equation in φ(x, t), which is valid up to first order:

∇2φ(x, t)− ρbgκ(x)∂2
t φ(x, t) = 0. (2.21)

The combination of Eqs. (2.16), (2.17), (2.20) and Eq. (2.21), allows us to rewrite

the term in Eq. (2.18) as follows

−∇
[
ρ2
bgκ(x)

]
· ∇ [∂tφ(x, t)]

2 − 1

2
∇2
[
ρ2
bgκ(x)

]
[∂tφ(x, t)]

2

= −∇κ(x) · ∇p2(x, t)− 1

2
∇2 [κ(x)] p2(x, t). (2.22)

From Eq. (2.22), we can reformulate Eq. (2.15) in the form

∇2p(x, t)− 1

c2(x)
∂2
t p(x, t) = −ρbg∂tq(x, t) +∇ · f(x, t)

− ρbgκ2(x)β(x)∂2
t p

2(x, t)

− 1

2
[∇κ(x)] · ∇p2(x, t)

− 1

2

[
∇2κ(x)

]
p2(x, t). (2.23)

In conclusion, Eq. (2.23) can be rewritten as follows

∇2p(x, t)− 1

c2bg
∂2
t p(x, t) = −Spr(x, t)

− Snl [p(x, t)]− Snlκ [p(x, t)]− Sc [p(x, t)] , (2.24)

with

c2bg =
1

ρbgκbg
, (2.25)

Spr(x, t) = ρbg∂tq(x, t)−∇ · f(x, t), (2.26)

Snl [p(x, t)] = ρbgκ
2(x)β(x)∂2

t p
2(x, t), (2.27)

Snlκ [p(x, t)] =
1

2
∇ ·
{

[∇κ(x)] p2(x, t)
}
, (2.28)

Sc [p(x, t)] =

[
1

c2bg
− 1

c2(x)

]
∂2
t p(x, t). (2.29)
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Here, cbg and κbg are spatially independent quantities representing the small-

signal speed of sound and the static compressibility of the background medium.

Spr(x, t) represents the primary source, which is the source that generates the

pressure field, Snl [p(x, t)] is the nonlinear contrast source, which models the

nonlinear correction to the linear field and Sc [p(x, t)] and Snlκ [p(x, t)] represent

the speed of sound and second order compressibility contrast source respectively.

For homogeneous media, Snlκ [p(x, t)] and Sc [p(x, t)] are zero and Eq. (2.24)

becomes the lossless Westervelt equation [1, 39].

2.2 Inclusion of spatially varying attenuation

In most medical applications of ultrasound, the medium cannot be considered to

be lossless and spatially varying attenuation must be accounted for.

Here, to incorporate losses, a causal relaxation function is employed, as it pro-

vides a compact way of modeling the frequency power law attenuation typically

observed in biomedical tissue. In addition, it automatically yields the associ-

ated dispersion and it allows for a straightforward extension to spatially varying

losses. In this section we first derive the linear lossy wave equation, followed by

a modification of the lossless nonlinear wave equation in Eq. (2.23) to cope with

spatially varying losses.

Using the relaxation function approach, the lossless deformation equation, in

its low velocity approximation:

∇ · v(x, t) + κbg∂tp(x, t) = q(x, t), (2.30)

may be turned into its lossy counterpart [35, 41, 42]

∇ · v(x, t) + κbg∂t [m(x, t) ∗t p(x, t)] = q(x, t). (2.31)

Here, m(x, t) is the normalized compliance (or memory) relaxation function.

This function depends on x to model spatially dependent attenuation and may

be separated into

m(x, t) = δ(t) +A(x, t), (2.32)

where the Dirac delta function δ(t) represents the instantaneous medium behav-

ior, and the function A(x, t) represents the delayed reaction of the medium on

events that occurred in the past. This behavior is associated with the occurrence
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of losses. Because of its physical role, the relaxation function m(x, t) is real val-

ued and causal.

In the same way, the equation of motion (in its low velocity approximation),

∇p(x, t) + ρbg∂tv(x, t) = f(x, t), (2.33)

may be turned into its lossy version by convolving v(x, t) with a normalized in-

ertia relaxation function µ(x, t) [41, 42]. However, it is usually assumed that in

biological tissue attenuation is mainly due to relaxation in the compliance, while

the inertia shows negligible relaxation effects [1, 35].

Combination of Eqs. (2.31) and (2.33) yields the following wave equation for

linear acoustic media with spatially varying losses

∇2p(x, t)− 1

c2bg
∂2
t [m(x, t) ∗t p(x, t)] = −Spr(x, t). (2.34)

Substitution of Eq. (2.32) into Eq. (2.34) allows the latter to be rewritten as

∇2p(x, t)− 1

c2bg
∂2
t p(x, t) = −Spr(x, t) +

1

c2bg
∂2
t [A(x, t) ∗t p(x, t)]. (2.35)

Similar to the contrast sources in Eq. (2.24), an attenuation contrast source now

appears at the right-hand side of Eq. (2.35), which equals

Sat [p(x, t)] = − 1

c2bg
∂2
t [A(x, t) ∗t p(x, t)]. (2.36)

So far, we consider the background medium to be lossless. In order to reduce the

correction that the attenuative contrast source has to account for, (see Appendix

A) we can write the compliance memory function as a summation of two terms:

m(x, t) = mbg(t) + ∆m(x, t), (2.37)

where mbg(t) models the losses of the background medium and ∆m(x, t) =

m(x, t)−mbg(t) models the variations in the attenuation properties with respect

to the homogeneous background medium. Combining Eq. (2.37) with Eq. (2.34)

results in

∇2p(x, t)− 1

c2bg
∂2
t [mbg(t) ∗t p(x, t)] = −Spr(x, t)

+
1

c2bg
∂2
t [∆m(x, t) ∗t p(x, t)], (2.38)
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with on the left hand side the linear lossy wave equation and on the right hand

side the primary source Spr(x, t) and the pressure dependent attenuation contrast

source Sat [p(x, t)]:

Sat [p(x, t)] = − 1

c2bg
∂2
t [∆m(x, t) ∗t p(x, t)]. (2.39)

The described approach can be utilized to include spatially varying losses in

the lossless nonlinear wave equation in Eq. (2.23). Inclusion of the compliance

memory function in the left hand side of Eq. (2.23) provides the wave equation

for nonlinear media with spatially varying losses, coefficient of nonlinearity and

speed of sound:

∇2p(x, t)− 1

c2bg
∂2
t [mbg(t) ∗t p(x, t)] = −Spr(x, t)

− Snl [p(x, t)]− Snlκ [p(x, t)]− Sc [p(x, t)]− Sat [p(x, t)] , (2.40)

with

Sc [p(x, t)] =

[
1

c2bg
− 1

c2(x)

]
∂2
t [mbg(t) ∗t p(x, t)], (2.41)

Sat [p(x, t)] = − 1

c(x)2
∂2
t [∆m(x, t) ∗t p(x, t)]. (2.42)

Here, the effect of the delayed reaction of the medium on second order terms in

the wave quantities has been neglected [35]. In conclusion, Eqs. (2.40) – (2.42)

may be written as

∇2p(x, t)− 1

c2bg
∂2
t [mbg(t) ∗t p(x, t)] = −Spr(x, t)− Scs [p(x, t)] , (2.43)

where the total contrast source equals

Scs [p(x, t)] = Snl [p(x, t)] + Snlκ [p(x, t)] + Sc [p(x, t)] + Sat [p(x, t)] . (2.44)

Equations (2.43) and (2.44) form an extended version of the Westervelt equation

that allows to model nonlinear pressure wave field propagation through media

with spatially varying attenuation, coefficient of nonlinearity and speed of sound.

2.3 Compliance relaxation function

In this Section, the general properties of a compliance relaxation function are

derived. Moreover, a suitable relaxation function is proposed that yields a fre-

quency power law attenuation as observed in most biological tissue, and that

satisfies causality [1, 32, 33].
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2.3.1 General properties

For convenience it is first assumed that the attenuation is spatially independent,

i.e. the considered compliance memory function is m(x, t) = m(t). If in that case

Eqs. (2.31) and (2.33) are subjected to a temporal Laplace transformation and

the proper substitutions are performed, the following wave equation is obtained

∇2p̂(x, s)− s2

c2bg
m̂(s)p̂(x, s) = −Ŝpr(x, s), (2.45)

where the hat ˆ indicates that a quantity has been transformed by means of the

Laplace transformation with transform parameter s. At this stage, the Laplace

transformation is preferred over the Fourier transformation. This is because

Lerch’s theorem [43, 44, 45] for the Laplace transformation provides a stronger

and simpler way of keeping track of causality than the Paley-Wiener [46] theorem

does for the Fourier transformation. From Lerch’s theorem it may be deduced

that a sufficient condition for a transform domain function f̂(s) to correspond to

a unique, causal time domain function f(t) is that f̂(s) should remain bounded

for all real s ≥ s0 ≥ 0, where s0 may be chosen arbitrary large (but not infinite).

Like any of the transformed quantities, m̂(s) is the Laplace transform of a real

function m(t), so m̂(s) must be real for real values of s. Moreover, m̂(s) is

the Laplace transform of a unique, causal function m(t). As explained in the

previous paragraph, this is certainly satisfied if m̂(s) remains bounded on the

real axis for s ≥ s0 ≥ 0. Upon solving Eq. (2.45), the obtained wave field will

have a propagation coefficient

γ̂(s) =
s

cbg
m̂

1
2 (s), (2.46)

in which cbg is the wave speed in the lossless medium. In the lossless case there

is no dispersion and every part of the wave has the same speed cbg. This speed

also applies to the wave front. The speed of the wave front always follows from

the high-frequency behavior of γ̂ as cbg = lim
|s|→∞

s/γ̂(s) for Re(s) > 0. In case of

losses, Â(s) will be at most of order sn with n < 0, because A(t) is less singular

at t = 0 than a delta function. Consequently, lim
|s|→∞

m̂(s) = 1 and the wave front

will travel with the same speed cbg as in the lossless case. When replacing s by

jω, the propagation coefficient may be written as

γ̂(jω) = α̂(ω) + jβ̂(ω), (2.47)

in which α̂(ω) is the attenuation coefficient and β̂(ω) is the phase coefficient. In

view of the causality of m(t), the real and imaginary parts of m̂(jω) must now
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satisfy the Kramers-Kronig relations [47]. As a consequence of causality, α̂(ω)

cannot be chosen independently from β̂(ω), and attenuation and dispersion will

be interlinked phenomena.

The above theory is easily extended to the case of spatially varying losses

by taking a spatially dependent compliance relaxation function m(x, t). From

the above, it is possible to derive the general properties of any causal function

m̂(x, s) [1, 32, 33]:

1. m̂(x, s) is real for real values of s,

2. m̂(x, s) remains bounded for all s ≥ s0 ≥ 0,

3. lim
|s|→∞

m̂(x, s) = 1 for Re(s) > 0.

2.3.2 Compliance relaxation function for frequency power

law losses

A function m̂(s) that for s = jω provides the power law attenuation coefficient

α̂(ω) = α1 |ω|b as observed in many measurements [48, 49, 50], is

m̂(s) =

[
1 +

cbgα1s
b−1

cos(πb/2)

]2

, (2.48)

with positive real parameters α1 and b (b may not be an odd integer). Some

typical values are given in Table 2.1, and more extensive data may be found in

the literature [6, 49, 50, 51]. The given function yields the same attenuation

and phase coefficient as obtained by Szabo [52]. In the current context, two

changes will be made to Eq. (2.48). First of all, in order to satisfy the last two

requirements at the end of Subsection 2.3.1, a denominator is introduced that

prevents the function to become infinite for |s| → ∞ [1, 32, 33]. Secondly, the

relevant loss coefficients are made spatially dependent. The resulting function

m̂(x, s) is

m̂(x, s) =

{
1 +

cbgα1(x)sb(x)−1

cos[πb(x)/2] [1 + (s/s1)d]

}2

. (2.49)

The parameters α1(x) and b(x) represent the spatially dependent attenuative

properties of the specific medium. In addition, s1 is a positive parameter that

is larger than the largest angular frequency of interest, and d is a positive in-

teger parameter that satisfies d > maxx∈D{b(x)} − 1. The introduction of the

factor 1 + (s/s1)d in the denominator ensures that the compliance relaxation

function remains causal and that the wavefront remains traveling with the finite
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wave speed cbg instead of the infinite wave speed that is implied by Eq. (2.48).

Since s1 is larger than the largest frequency of interest, the influence of the

term will be practically negligible while theoretically avoiding the occurrence of

a noncausal compliance relaxation function and associated problems. After sub-

stitution of Eq. (2.49) into Eq. (2.46) and setting s = jω, it is easily shown that

for |ω| < s1, the function γ̂(x, jω) consists of spatially dependent attenuation

coefficient α̂(x, jω) and a phase coefficient β̂(x, jω) that can be approximated by

α̂(x, ω) ≈ α1(x) |ω|b(x)
, (2.50)

β̂(x, ω) ≈ ω

cbg
+ α1(x) tan[πb(x)/2]ω |ω|b(x)−1

. (2.51)

In the spatially homogeneous case, these coefficients correspond to those de-

scribed by Szabo [52], and the propagation of a one way plane wave with angular

frequency ω is just governed by these coefficients. Equation (2.51) may be re-

lated to the phase speed ĉ(x, ω) at angular frequency ω by using the relation

β̂(x, ω) = ω/ĉ(x, ω). This yields for |ω| < s1 the following dispersion equation

ĉ(x, ω) ≈ 1

c−1
bg + α1(x) tan[πb(x)/2] |ω|b(x)−1

. (2.52)

Spatially varying attenuation is thus accompanied by a spatially varying phase

speed. Both types of inhomogeneities will influence the propagation and give rise

to scattering of an acoustic wave. By modeling the attenuation via a compliance

relaxation function, all relevant physical effects are automatically included via

the applied attenuation contrast source. From Eqs. (2.32) and (2.49) it follows

that the function Â(x, s) in the attenuation contrast source in Eq. (2.36) is given

by

Â(x, s) =
2cbgα1(x)sb(x)−1

cos(πb(x)/2) [1 + (s/s1)d]

+

{
cbgα1(x)sb(x)−1

cos[πb(x)/2] [1 + (s/s1)d]

}2

. (2.53)

Note that, in case spatially dependent speed of sound has to be modeled, cbg has

to be replaced with c(x). Frequency domain results for Â(x, s) are obtained by

taking s = j2πf , with f being the temporal frequency. As an example, |Â(f)| is

plotted in Fig. 2.1 for liver, brain, blood, and water.
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Table 2.1: Acoustic medium parameters for water and several human tissues [6]. The

relation between a and α1 is α1 = 100× a(2π)−b.

Medium a b cbg β

[Np cm−1 MHz−b] [-] [m s−1] [-]

liver 5.2 · 10−2 1.05 1578 4.38

brain 6.7 · 10−2 1.3 1562 4.28

blood 1.6 · 10−2 1.21 1584 4.00

water 2.5 · 10−4 2.0 1482.3 3.42
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Figure 2.1: The modulus of Â(f) versus frequency, for liver, brain, blood and water.

2.4 Contrast source approach

In the previous Sections we derived and discussed the characteristics of Eq. (2.43).

Here, we formulate how Eq. (2.43) may be solved by means of a contrast source

approach.
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The wave equation for homogeneous lossless linear media, in presence of an

arbitrary primary source Spr(x, t), equals

∇2p(x, t)− 1

c2bg
∂2
t p(x, t) = −Spr(x, t). (2.54)

Solution in p(x, t) of Eq. (2.54) may be obtained via spatio-temporal convolution

of the primary source Spr(x, t) with the Green’s function G(x, t), i.e. the pressure

wave field p(x, t) equals

p(x, t) =

∫
T

∫
D
G(x− x′, t− t′)Spr(x

′, t′)dx′dt′, (2.55)

with T and D being the temporal and spatial domain of integration respectively.

The Green’s function represents the impulsive response of the system and is

obtained as a solution of the wave equation in presence of a delta source δ(x)δ(t):

∇2G(x, t)− 1

c2bg
∂2
tG(x, t) = −δ(x)δ(t). (2.56)

For homogeneous lossless linear media the Green’s function G(x, t) equals

G(x, t) =
δ(t− ||x||cbg

)

4π||x||
, (2.57)

with ||x|| the length of x. The Green’s function is also known for homogeneous

lossy linear media. In this case this function may most conveniently be derived

in the space-frequency domain [1, 32].

Following this approach, the contrast source in Eq. (2.43) may be considered

a distributed source [1, 2, 31]. Hence, for nonlinear inhomogeneous media, the

resulting pressure wave field p(x, t) is given by an integral equation, which equals

p(x, t) =

∫
T

∫
D
G(x− x′, t− t′) {Spr(x

′, t′) + Scs[p(x
′, t′)]} dx′dt′

= p(0)(x, t) +

∫
T

∫
D
G(x− x′, t− t′)Scs[p(x

′, t′)]dx′dt′, (2.58)

with p(0)(x, t) being the known linear homogeneous attenuated pressure wave

field obtained by the spatio-temporal convolution of the known primary source

Spr(x, t) with the known Green’s function of the homogeneous lossy linear back-

ground medium, G(x, t). This equation represents the starting point of our model

and may be solved by means of iterative schemes. In this thesis different schemes

will be applied to solve Eq. (2.58), i.e. Neumann, Bi-CGSTAB and Steepest

Descent.
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Chapter 3
Neumann scheme

In this Chapter, the contrast source problem formulated in Chapter 2 is solved by

employing the Neumann iterative solution method. First, the solution method is

introduced. Second, results obtained via application of this method are presented

and discussed.

3.1 Solution method

In Chapter 2, an integral equation is derived, see Eq. (2.58), which equals

p(x, t) =

∫
T

∫
D
G(x− x′, t− t′) {Spr(x

′, t′) + Scs[p(x
′, t′)]} dx′dt′

= p(0)(x, t) +

∫
T

∫
D
G(x− x′, t− t′)Scs[p(x

′, t′)]dx′dt′. (3.1)

This integral equation describes a contrast source problem with known acoustic

medium parameters and primary source, and unknown acoustic pressure wave

field. This problem is referred to as a forward wave problem in the literature. In

this Section, it is shown that for weak contrasts this problem may be solved by

employing the Neumann iterative solution method.

3.1.1 Neumann scheme

Equation (3.1) may be rewritten as

p(x, t) = G(x, t) ∗x,t {Spr(x, t) + Scs [p(x, t)]} . (3.2)

23
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Here, ∗x,t denotes a convolution over space and time. As the contrast source

Scs [p(x, t)] is a function of the unknown pressure field p(x, t), Eq. (3.2) forms an

integral equation. For weak contrasts Eq. (3.2) may be solved via the Neumann

iterative solution

p(0)(x, t) = G(x, t) ∗x,t Spr(x, t), (3.3)

p(n)(x, t) = G(x, t) ∗x,t
{
Spr(x, t) + Scs

[
p(n−1)(x, t)

]}
= p(0)(x, t) +G(x, t) ∗x,t Scs

[
p(n−1)(x, t)

]
, (n > 0). (3.4)

This scheme defines the Neumann expansion [34] of the acoustic pressure field.

After discretization with respect to space and time, the following discrete Neu-

mann scheme is obtained

p(0) = GSpr, (3.5)

p(n) = G
[
Spr + Scs

[
p(n−1)

]]
= p(0) + G

[
Scs

[
p(n−1)

]]
, (n > 0), (3.6)

in which the vector p(n) contains the nth order approximation of the acoustic

pressure field at discrete grid points that spans the spatio-temporal computational

domain. G is the discrete Green’s function that is convolved with the discrete

source terms Spr and Scs

[
p(n)

]
.

3.1.2 Convergence

Any iterative scheme applied to solve a given problem, requires a criterion that

will be used to decide when to stop the iterative process. With respect to the

Neumann solution method, convergence is known to depend on the magnitude

and the spatial extent of the contrast source. For a theoretical analysis of the

convergence of the scheme, the reader is referred to the literature [53]. To ver-

ify the numerical convergence of the Neumann scheme towards the solution of

the formulated contrast source problem, a normalized error Err
(n)
1 is introduced,

which equals

Err
(n)
1 =

∥∥p(0) + G
[
Scs

[
p(n−1)

]]
− p(n−1)

∥∥∥∥p(0)
∥∥ , (3.7)

=

∥∥p(n) − p(n−1)
∥∥∥∥p(0)

∥∥ , (3.8)
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Figure 3.1: Cross-section of the spatial domain D for configuration 1 along the xz–

plane. Black indicates the linear lossless background medium, white indi-

cates the nonlinear object.

with ‖·‖ the Euclidian length. When Err
(n)
1 is decreasing towards zero for increas-

ing n, the obtained solution is converging towards the solution of the formulated

contrast source problem [54]. The stop criterion can, therefore, be defined as fol-

lows: the iterative process is stopped at the iteration n that gives a normalized

error value below a given threshold.

3.2 Results

In this section, two configurations are used to demonstrate the numerical per-

formance of the method presented. First, results as obtained for a plane wave

propagating through lossless media with inhomogeneities in the coefficient of

nonlinearity are presented and discussed. This is referred to as configuration 1.

Second, results as obtained for the pressure wave field generated by a linear array

have been computed for different lossy and lossless media exhibiting inhomogene-

ity in the attenuation. This is referred to as configuration 2. See Appendix B for
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Figure 3.2: Normalized error Err
(n)
1 for configuration 1.

a schematic diagram summarizing the utilized configurations. All results have

been obtained up to the third harmonic component. The kth harmonic pressure

wave field has been obtained by filtering the total pressure wave field with an

8th order Butterwoth filter having a center frequency equal to kf0 and cut-off

frequencies equal to (±0.4 + k)f0, with f0 the fundamental center frequency. For

the fundamental pressure wave field k = 1. Convergence has been investigated

for the two configurations described.

3.2.1 Configuration 1

Here, a plane wave is considered. This plane wave is modulated by a Gaussian

pulse resulting in a pressure field, which in the plane z = 0 mm equals:

p(t) = P0e
−(2t/tw)2 sin(2πf0t), (3.9)

where the time width tw = 3/f0 and the center frequency f0 = 1 MHz. The

envelope of this signal contains about six cycles of the harmonic signal [2]. The

peak pressure considered is P0 = 1 MPa. Configuration 1 contains a contrast in

the coefficient of nonlinearity, modeled as lossless nonlinear liver, embedded in
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Figure 3.3: Two-dimensional spectral profiles of the pressure wave field in configura-

tion 1 with lossless linear liver and nonlinear inhomogeneities; (a) fun-

damental, (b) second and (c) third harmonic component. The plane of

observation is y = 0 mm. The pressure values are expressed in dB relative

to 1 Pa.
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Table 3.1: Acoustic medium parameters for water and several human tissues [6]. The

relation between a and α1 is α1 = 100× a(2π)−b.

Medium a b cbg β

[Np cm−1 MHz−b] [-] [m s−1] [-]

liver 5.2 · 10−2 1.05 1578 4.38

‘linearized’ liver 5.2 · 10−2 1.05 1578 0

brain 6.7 · 10−2 1.3 1562 4.28

‘linearized’ brain 6.7 · 10−2 1.3 1562 0

blood 1.6 · 10−2 1.21 1584 4.00

‘linearized’ blood 1.6 · 10−2 1.21 1584 0

water 2.5 · 10−4 2.0 1482.3 3.42

‘linearized’ water 2.5 · 10−4 2.0 1482.3 0

lossless (a = 0) ‘linearized’ (β = 0) liver (See Table 3.1). This configuration is

used to demonstrate the capability of the method presented to model spatially

varying coefficient of nonlinearity. The dimensions of the spatial computational

domain D are (x× y × z) = (25 mm× 20 mm× 50 mm). A cross-section of the

spatial domain D along the xz–plane is shown in Fig. 3.1. Black indicates the

linear lossless background medium, white indicates the nonlinear object.

Convergence

The convergence of the Neumann scheme is tested using the normalized error

Err
(n)
1 . Results are presented in Fig. 3.2. The graph shows that convergence has

been obtained after 11 iterations. At this point, the normalized error level has

reached a value of Err
(11)
1 ≈ 10−16 and remains flat afterwards.

In silico experiments

Figure 3.3 shows two-dimensional spectral profiles of the pressure wave field as ob-

tained for configuration 1 with lossless linear liver and nonlinear inhomogeneities;

(a) fundamental, (b) second and (c) third harmonic component. The plane of

observation is y = 0 mm. The pressure values are expressed in dB relative to

1 Pa. The contours of the nonlinear object are represented by the dotted lines.

As can be seen, the amplitude of the incident plane wave decays as soon as it

enters the nonlinear contrast. On the other hand, harmonics emerge only in this
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Figure 3.4: The geometry of the phased array source. The number of elements

is Nel = 10. The dimensions of each element are Wel = 0.25 mm by

Hel = 10 mm, and the pitch is Del = 1 mm.

part of the simulated domain and they keep propagating afterwards. Note that

the colorbar for the fundamental spectral profile is kept in between 119.5 and 120

dB relative to 1 Pa to show its decay in space. The colorbars for the harmonic

components go from the maximum relative value to -20 dB below this value. The

cumulative nature of nonlinear propagation can be observed in these figures; the

growth of the harmonic components begins sooner for the lower harmonics and

keeps increasing along the path where the pressure field propagates nonlinearly.

3.2.2 Configuration 2

In this configuration a realistic source is considered, i.e. a linear phased array.

The origin of the coordinate system is located at the center of the transducer.

A graphical representation of the source is given in Fig. 3.4. The array consists

of Nel = 10 elements. The dimensions of the elements are Wel = 0.25 mm by
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Figure 3.5: Cross-section of the spatial domain D for scenario 2b along the xz–plane.

Black indicates the lossless background medium (lossless nonlinear liver),

white indicates the lossy objects (lossy nonlinear liver).

Hel = 10 mm, and the pitch is Del = 1 mm. The elements are excited with a

pulse consisting of an harmonic signal with a frequency f0 = 1 MHz that is

amplitude modulated by a Gaussian pulse with a width tw = 3/f0. This en-

velope contains about six cycles of the harmonic signal [2]. The peak pressure

at the surface of each transducer element is P0 = 0.5 MPa. No focusing is applied.

Configuration 2 is used for two different scenarios and we will refer to them as

scenario 2a and 2b. Scenario 2a only considers homogeneous lossy (either linear

or nonlinear) media (liver, brain, blood, water) and is used to investigate which

effect attenuation has on the convergence of the scheme. Hence, even though

we are considering homogeneous media, attenuation has been modeled using the

contrast source approach. No beam steering is applied, and the dimensions of the

spatial computational domain D are (x× y × z) = (25 mm× 20 mm× 50 mm).

Scenario 2b contains lossy objects (lossy nonlinear liver) embedded in a corre-

sponding lossless background medium (lossless nonlinear liver), see Fig. 3.5. This
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Figure 3.6: Normalized error Err
(n)
1 for scenario 2a containing ”linearized” (β = 0)

liver, brain, blood, and water.

configuration is used to demonstrate the capability of the method presented to

model spatially varying attenuation. The transducer beam is steered over an

angle θ = 45◦, and the spatial computational domain D measures (x× y × z) =

(50 mm×20 mm×25 mm). The steering angle θ is defined in the plane y = 0 mm,

is measured with respect to the normal of the transducer surface and is positive

for positive x.

Convergence

The convergence of the Neumann scheme is tested for different types of media

using the normalized error Err
(n)
1 , see Table 3.1 for acoustic medium parameters.

First, scenario 2a is investigated. In order to focus on the effect of attenuation,

the media are considered to be lossy and linear (β = 0). Results are presented

in Fig. 3.6. The graphs show that media with less attenuation require signifi-

cantly fewer iterations to reach an error Err
(n)
1 ≈ 10−16, than media with strong

attenuation; i.e. five iterations for weakly attenuative water, and 14 iterations for
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Figure 3.7: Normalized error Err
(n)
1 ; (a) for scenario 2a (homogeneous lossy nonlin-

ear liver), (b) for scenario 2b (lossy nonlinear liver objects in a lossless

nonlinear liver background).
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Figure 3.8: The nonlinear pressure wave in scenario 2a with lossless (solid line) and

lossy (dashed line) nonlinear liver; (a) time domain pulses, (b) normal-

ized frequency domain spectra. The point of observation is (x, y, z) =

(0 mm, 0 mm, 50 mm). The graphs show the fundamental (F0), second

harmonic (2H), and third harmonic (3H) component.
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Figure 3.9: The nonlinear pressure field in scenario 2a with lossless (solid line) and

lossy (dashed line) nonlinear liver; (a) axial profile evaluated along the

z-axis, (b) lateral profile evaluated along the line (y, z) = (0 mm, 50 mm).

The graphs show the fundamental (F0), second harmonic (2H), and third

harmonic (3H) component.
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Figure 3.10: Two-dimensional spectral profiles of the pressure wave field in scenario 2b

with lossless nonlinear liver and lossy inhomogeneities; (a) fundamental,

(b) second harmonic, (c) third harmonic. The plane of observation is

y = 0 mm. The pressure values are expressed in dB relative to 1 Pa.
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Figure 3.11: Snapshots of the propagating pressure pulse in scenario 2b with lossless

nonlinear liver (background) and lossy inhomogeneities (dashed objects);

(a) early time, (b) late time. The plane of observation is y = 0 mm. The

labels refer to the phenomena described in the text, and in Table 3.2.

The pressure values are expressed in dB relative to 1 Pa.
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Figure 3.12: Pressure versus time at the origin of the coordinate system in scenario

2b with lossless nonlinear liver and lossy inhomogeneities. The point of

observation is (x, y, z) = (0 mm, 0 mm, 0 mm). The labels refer to the

phenomena described in the text, and in Table 3.2.

highly lossy brain tissue. In addition, it is shown that the normalized error flat-

tens after it reaches this value. Next, the convergence of the Neumann scheme

for nonlinear lossy media is investigated by considering scenario 2a containing

lossy nonlinear liver, and scenario 2b containing lossy nonlinear liver objects in

a lossless nonlinear liver background. Note that a lossless Green’s function has

been used in both scenarios. The results are presented in Fig. 3.7. For scenario

2a, the flattening of Err
(n)
1 is reached within 26 iterations, whereas scenario 2b

requires only 19 iterations. The difference may well be caused by the fact that,

unlike scenario 2a, scenario 2b has an attenuation contrast source that is zero

outside the objects, resulting in a smaller volume of the total contrast source.

In silico experiments

Fig. 3.8 shows time signal and normalized frequency spectrum as obtained in sce-

nario 2a with both lossless (a = 0), and lossy nonlinear liver. Figure 3.8(a) shows
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the time domain pressure pulses in the point (x, y, z) = (0 mm, 0 mm, 50 mm).

The normalized frequency spectra of these pulses are shown in Fig. 3.8(b), where

the fundamental (F0), the second harmonic (2H), and the third harmonic (3H)

component of the pressure wave field are clearly visible. Normalization is per-

formed with respect to the maximum absolute value of the lossless spectrum.

Both figures clearly show a reduction of the amplitude of the pressure wave when

attenuation is taken into account. The frequency dependent nature of the atten-

uation is visible in Fig. 3.8(b), in which an increase in attenuation is observed for

increasing frequency. This is in agreement with the behavior of Â(f) for liver, as

shown in Fig. 2.1.

Figure 3.9 shows the axial and lateral spectral profiles of the pressure field

that is generated in scenario 2a with lossless and lossy nonlinear liver. The axial

profiles in Fig. 3.9(a) are evaluated along the z-axis, and the lateral profiles in

Fig. 3.9(b) are evaluated along the line (y, z) = (0 mm, 50 mm). In both pan-

els, the increase of attenuation for the higher harmonics is clearly visible. The

cumulative nature of the nonlinear effect may be observed in Fig. 3.9(a), which

shows the growth of the amplitudes of the harmonics with depth. In Fig. 3.9(b),

two effects are recognizable that are connected to nonlinear propagation and that

are utilized in medical applications to improve the quality of ultrasound images.

First, if the ratio between the amplitude of the main and side lobes is considered,

a reduction of this ratio is observed for increasing harmonics. Second, for increas-

ing harmonics, the width of the main beam decreases. In particular, the −3 dB

beamwidth is 6.9 mm for the fundamental, 4.3 mm for the second harmonic, and

3.4 mm for the third harmonic.

Figure 3.10 shows the two-dimensional spectral profiles of the nonlinear pres-

sure field in the plane y = 0 mm for scenario 2b with lossy (objects) and lossless

nonlinear liver (background). The results clearly show that, for increasing har-

monics, the size of the focal area is reduced, the amplitude of the grating lobes

is strongly diminished, and that possible undesired reflections from objects close

to the transducer disappear. Note that grating lobes and related effects can only

be modeled accurately when it is possible to compute pressure wave fields over

a wide angle. The INCS method allows to do this accurately since no a priori

assumption on the directivity of the wave field is used [1, 2].

Two snapshots of the pressure wave propagating in scenario 2b are shown
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Table 3.2: Acoustical phenomena present in Figs. 3.11 and 3.12.

Character Acoustical phenomenon

A Main beam

A’ Grating lobe

B Reflection from the front of the slab

C-D Reflection from the back of the slab

E Reflection from the front of the cylinder

F Reflection from the back of the cylinder

P Direct field of the transducer

in Fig. 3.11. The fields are presented for the plane y = 0 mm. In Fig. 3.12,

pressure versus time at the origin of the coordinate system is shown. In both

Figs. 3.11 and 3.12, the characters A to P are used to mark specific phenomena

(see Table 3.2). The generated pressure wave field P (Fig. 3.12 only) originates

from the transducer and travels through the lossless background. Part of the

pressure wave field contributes to the formation of the main beam A and another

part to the formation of the grating lobe A’ (Fig. 3.11 only). Furthermore, when

the pressure wave field encounters an interface between the background and the

inhomogeneities, part of the field propagates through and part is backscattered.

Specifically, B marks the backscattered pressure wave field caused by the front of

the lossy slab, C and D mark the backscattered field caused by the back of the

lossy slab and E and F mark the backscattered field caused by the front and the

back of the cylinder respectively.

3.3 Conclusions

In this Chapter, a method for modeling nonlinear wave field propagation through

biomedical media with spatially varying attenuation and coefficient of nonlinear-

ity has been presented. This method utilizes a Neumann iterative scheme, which

is used to solve an integral equation where contrast sources are used to model

inhomogeneities in the coefficient of nonlinearity and attenuation. As it is an ex-

tension of the INCS method, it is able to solve accurately the full wave equation

for the weakly to moderately nonlinear, wide-angle, pulsed, acoustic wave field,

in a large three-dimensional domain.
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First, the convergence of the method has been investigated. Numerical results

show convergence towards the solution of the formulated contrast source prob-

lem and how the contrast determines the convergence rate of the scheme. The

stronger the contrast, e.g. when modeling stronger attenuating media, the more

iterations are required to reach convergence.

Second, numerical results have been generated to demonstrate the capability

of the method to model nonlinear pressure wave fields propagating through media

presenting spatially varying coefficient of nonlinearity and frequency dependent

attenuation, as the case in most biomedical tissue. Moreover, in silico experi-

ments show the capability of the method to deal with scattering.

In conclusion, the Neumann scheme represents an intuitive and easily imple-

mentable iterative scheme that allows to deal with moderate losses and nonlin-

earity. Nevertheless, for stronger contrast, convergence may no longer be assured.

Therefore, to extend the method to deal with strong losses or realistic inhomo-

geneities in the speed of sound, alternative schemes have to be investigated. In

the next Chapters two alternative approaches are proposed and discussed.



Chapter 4
Bi-CGSTAB scheme

When strong contrast sources are considered, e.g. in case of strongly attenuat-

ing inhomogeneous media, the Neumann iterative solution method presented in

Chapter 3 can be slowly convergent or may even diverge. Consequently, to deal

with a broader variety of configurations, a different iterative scheme is required.

The ideal iterative scheme should, when compared to Neumann, provide a faster

convergence, be capable to cope with stronger contrast and have a reduced com-

plexity and computational cost per iteration. Bi-CGSTAB [55] meets the first two

requirements. Unfortunately, it is only applicable to linear problems. Therefore,

the nonlinear integral equation derived in Chapter 2:

p(x, t) = p(0)(x, t) +

∫
T

∫
D
G(x− x′, t− t′)Scs[p(x

′, t′)]dx′dt′, (4.1)

has to be linearized [56, 57].

In this Chapter, a linearized version of Eq. (4.1) is derived, discussed and

solved by means of a Bi-CGSTAB iterative solution method. First, the rationale

behind the linearization is described. Second the solution method is introduced.

Third, results obtained via application of this approach are presented, discussed

and compared with results obtained via Neumann scheme.

4.1 Linearization

As described in Chapter 2, the nonlinear propagation of acoustic wave fields

through lossy inhomogeneous media may be described using a nonlinear wave

41



42 4. BI-CGSTAB SCHEME

equation:

∇2p(x, t)− 1

c2bg
∂2
t [mbg(t) ∗t p(x, t)] = −Spr(x, t)

− Snl [p(x, t)]− Snlκ [p(x, t)]− Sc [p(x, t)]− Sat [p(x, t)] , (4.2)

with

Spr(x, t) = ρbg∂tq(x, t)−∇ · f(x, t), (4.3)

Snl [p(x, t)] = ρbgκ
2(x)β(x)∂2

t p
2(x, t), (4.4)

Snlκ [p(x, t)] =
1

2
∇ ·
{

[∇κ(x)] p2(x, t)
}
, (4.5)

Sc [p(x, t)] =

[
1

c2bg
− 1

c2(x)

]
∂2
t [mbg(t) ∗t p(x, t)], (4.6)

Sat [p(x, t)] = − 1

c2(x)
∂2
t [∆m(x, t) ∗t p(x, t)]. (4.7)

The sources defined in Eqs. (4.3) to (4.7) can be divided into three categories.

The first category contains sources that are independent on the unknown p(x, t),

i.e. Spr(x, t), the second category contains contrast sources that linearly depend

on the unknown quantity p(x, t), i.e. Sc(x, t) and Sat(x, t), and the third cate-

gory contains contrast sources that depend nonlinearly on p(x, t), i.e. Snl [p(x, t)]

and Snlκ [p(x, t)]. To linearize Eq. (4.2), the nonlinear contrast sources have to

be reformulated such that they fall in the first or second category.

The linearization presented in this section is based on the assumption that the

total acoustic wave field p(x, t) may be considered the combination of a primary

contribution p(0)(x, t) and a secondary contribution p̃(x, t), which represents the

perturbation to the linear incident field p(0)(x, t). In view of the smallness of

p̃(x, t) with respect to p(0)(x, t), it is assumed that p2(x, t) may be approximated

by [56, 57]

p2(x, t) =
[
p(0)(x, t) + p̃(x, t)

]2
≈
[
p(0)(x, t)

]2
+ 2p(0)(x, t)p̃(x, t)

= −
[
p(0)(x, t)

]2
+ 2p(0)(x, t)p(x, t). (4.8)

Substitution of Eq. (4.8) into Eqs. (4.4) and (4.5) allows to reformulate the two
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contrast sources as

Snew
nl [p(x, t)] = ρbgκ

2(x)β(x)∂2
t

{
−
[
p(0)(x, t)

]2
+ 2p(0)(x, t)p(x, t)

}
, (4.9)

Snew
nlκ [p(x, t)] =

1

2
∇ ·

{
[∇κ(x)]

{
−
[
p(0)(x, t)

]2
+ 2p(0)(x, t)p(x, t)

}}
. (4.10)

The linearized form of the nonlinear wave equation presented in Eq. (4.2) is

therefore formulated as

∇2p(x, t)− 1

c2bg
∂2
t [mbg(t) ∗t p(x, t)] = −Spr(x, t)− Snew

cs [p(x, t)] , (4.11)

with

Snew
cs [p(x, t)] = Snew

nl [p(x, t)] + Snew
nlκ [p(x, t)] + Sc [p(x, t)] + Sat [p(x, t)] . (4.12)

Eqs. (4.11) in combination with (4.12) is referred to as the linearized wave equa-

tion.

4.2 Solution method

Equations (4.11) and (4.12) describe a linearized wave equation with known

acoustic medium parameters and primary source, and unknown acoustic pres-

sure wave field. In this Section, a solution method based on the Bi-CGSTAB

iterative solution scheme is presented.

4.2.1 Bi-CGSTAB scheme

The linearized nonlinear wave equation, Eq. (4.11), may be recast into an integral

equation which reads

p(x, t) = G(x, t) ∗x,t {Spr(x, t) + Snew
cs [p(x, t)]} . (4.13)

Here, G(x, t) is the known Green’s function of the homogeneous lossy linear

background medium and ∗x,t represents a convolution over space and time. After

discretization, Eq. (4.13) can be written as

p = G [Spr + Snew
cs [p]] . (4.14)

Here, G is the operator that convolves the discrete Green’s function of the homo-

geneous lossy linear background medium with the discrete sources. As Eq. (4.14)
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Algorithm 1 The Bi-CGSTAB solution method

p(n) = 0(n < 0)

p(0) = G [Spr]

r̂(0) = r(0) = G
[
Snew

cs

[
p(0)

]]
ρ

(0)
sc = α

(0)
sc = ω

(0)
sc = 1

v
(0)
sc = x

(0)
sc = 0

for n > 0 do

ρ
(n)
sc =< r̂(0), r(n−1) >

β
(n)
sc =

α(n−1)
sc ρsc

(n)

ω
(n−1)
sc ρsc(n−1)

x
(n)
sc = r(n−1) + β

(n)
sc

(
x

(n−1)
sc − ω(n−1)

sc v
(n−1)
sc

)
v

(n)
sc = G

[
Snew

cs

[
x

(n)
sc

]]
− x

(n)
sc

α
(n)
sc =

ρ(n)
sc

<r̂(0),v
(n)
sc >

s
(n)
sc = r(n−1) − α(n)

sc v
(n)
sc

t
(n)
sc = G

[
Snew

cs

[
s
(n)
sc

]]
− s

(n)
sc

ω
(n)
sc =

<t(n)
sc ,s

(n)
sc >

<t
(n)
sc ,t

(n)
sc >

p(n) = p(n−1) + α
(n)
sc x

(n)
sc + ω

(n)
sc s

(n)
sc

r(n) = s
(n)
sc − ω(n)

sc t
(n)
sc

end for

is linear in the unknown pressure field p, it may be solved via the Bi-CGSTAB

iterative solution presented in Algorithm 1. Here, the inner product is defined as

follows,

< x, y >=

M∑
m=1

xmy∗m, (4.15)

where x and y represent two arbitrary vectors of length M and y∗m is the complex

conjugate of ym. Given an arbitrary vector x, the inner product < x, x > equals

the square of the Euclidian norm ‖x‖2. During each iteration step, the vector

p(n) is updated through a search correction that depends on the residual r(n−1),

which is the function that is minimized during each iteration.
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4.2.2 Convergence

The numerical convergence of the Bi-CGSTAB scheme introduced in this Section

can be verified by means of the residual r(n). When r(n) is decreasing towards

zero for increasing n, the obtained solution is converging towards the solution of

the linearized problem. To compare r(n) with the normalized error Err
(n)
1 defined

for Neumann we make use of the normalized error Err
(n)
2 :

Err
(0)
2 = 1, (4.16)

Err
(n+1)
2 =

∥∥r(n)
∥∥∥∥p(0)
∥∥ , (n ≥ 0). (4.17)

When Err
(n)
2 is decreasing towards zero for increasing n, the obtained solution is

converging towards the solution of the linearized problem.

4.3 Results

In Chapter 3, two different configurations are utilized to analyze the performance

of the Neumann iterative solution method. In this Section, two new configura-

tions are used to demonstrate the numerical performance of the linearized method

that has been presented. First, results obtained for a plane wave propagating

through nonlinear lossless homogeneous water, are presented and discussed. This

is referred to as configuration 3. Second, results have been obtained for the pres-

sure wave field generated by a linear array. In this case, different types of media

have been considered. This is referred to as configuration 4. See Appendix B

for a schematic diagram which summarizes the utilized configurations. The kth

harmonic pressure wave field has been obtained by filtering the total pressure

wave field with an 8th order Butterwoth filter having a center frequency equal

to kf0 and cut-off frequencies equal to (±0.4 + k)f0, with f0 the fundamental

frequency. For the fundamental pressure wave field k = 1. Convergence has also

been investigated for configurations 3 and 4.

4.3.1 Configuration 3

Here, a plane wave is considered. This plane wave is modulated by a Gaussian

pulse resulting in a pressure field that, in the plain z = 0 mm is given by:

p(t) = P0e
−(2t/tw)2 sin(2πf0t), (4.18)
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Figure 4.1: Normalized error Err
(n)
k for configuration 3 for Neumann (gray-solid line)

applied to the full nonlinear problem and Bi-CGSTAB (black-dashed line)

applied to the linearized problem.

with a time width tw = 3/f0 and a center frequency f0 = 1 MHz. The envelope

of this signal contains about six cycles of the harmonic signal [2]. The peak

pressure considered is P0 = 2 MPa. The dimensions of the spatial computational

domain D are (x × y × z) = (10 mm × 10 mm × 50 mm) and simulations have

been performed up to the fifth harmonic component.

Convergence

Convergence of the presented Bi-CGSTAB scheme is tested for configuration 3

using the normalized error Err
(n)
2 . Furthermore, Err

(n)
2 is compared with the

normalized error Err
(n)
1 , as obtained when the Neumann scheme described in

Chapter 3 is applied to configuration 3.

Results are presented in Fig. 4.1. The graphs show that if the Neumann

iterative solution method is applied, the normalized error Err
(n)
1 ≈ 10−16 after

21 iterations, and remains flat afterwards. Therefore, if the threshold is set
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Figure 4.2: Axial profiles for the fundamental (F0), second (2H), third (3H), fourth

(4H) and fifth (5H) harmonic as obtained in configuration 3 for Neumann

(gray-solid line) applied to the full nonlinear problem and Bi-CGSTAB

(black-dashed line) applied to the linearized problem. The pressure values

are expressed in dB relative to 1 Pa.

to 10−16, the Neumann iterative solution method may be stopped at iteration

22. On the other hand, in case Bi-CGSTAB is applied to solve the linearized

integral equation, the normalized error Err
(n)
2 ≈ 10−16 after 13 iterations, and

hence the iterative scheme can be stopped at iteration 14. Therefore, it can

be concluded that application of a Bi-CGSTAB scheme leads to a significantly

faster convergence when compared to the Neumann iterative solution method

described in Chapter 3. In fact, a reduction of the required number of iterations

equal to 38% can be observed for the described configuration. Nevertheless,

although Err
(n)
2 provides the information needed to define a stop criterion, it

says nothing about the correctness of the obtained solution. In fact, while Err
(n)
1

provides information on the error with respect to the solution of the full nonlinear

problem, Err
(n)
2 provides information on the error with respect to the solution of

the linearized problem, and no information on the distance from the solution of

the linearized and the full nonlinear problem is given.
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In silico experiments

Figure 4.2 shows the axial profiles along the z−axis for the fundamental (F0),

second (2H), third (3H), fourth (4H) and fifth (5H) harmonic as obtained in

configuration 3 for Neumann (gray-solid line) applied to the full nonlinear prob-

lem and Bi-CGSTAB (black-dashed line) applied to the linearized problem. The

pressure values are expressed in dB relative to 1 Pa. As can be seen, the solution

of the linearized problem does not fully coincide with the solution of the full

nonlinear problem.

To quantify the influence of the linearization and to verify whether it does,

or does not depend on the iterative scheme used, the relative error

Err
(n)
rel(k) = 100×

∣∣p̂(n)(x, kf0)− p̂B(x, kf0)
∣∣

|p̂B(x, kf0)|
(4.19)

has been computed for configuration 3, when Neumann is applied either to the full

nonlinear problem or to the linearized problem, and when Bi-CGSTAB is applied

to the linearized problem. Here, p̂(n)(x, kf0) and p̂B(x, kf0) represent the pres-

sure values in a point x for the frequency kf0, with k an integer number and f0

the fundamental frequency of the propagating wave field, as obtained for a given

method after n iterations and a benchmark solution respectively. Here, the result

obtained with the Neumann iterative solution method applied to the full nonlinear

problem, as obtained at iteration 22, is used as benchmark solution. Figure 4.3

shows the relative error Err
(n)
rel(k) calculated at (x, y, z) = (0 mm, 0 mm, 50 mm),

as obtained with (a) Neumann applied to the full nonlinear problem and (b)

Neumann and (c) Bi-CGSTAB applied to the linearized problem. The top panel,

Fig. 4.3(a), shows the behavior of the original INCS method, i.e. using the Neu-

mann iterative solution without linearization of the contrast source. The relative

error for this scheme converges to a stable value in seven iterations. Results in

the center panel, Fig. 4.3(b), apply to the case were the Neumann iterative solu-

tion method is applied to the linearized problem. Also in this case, the relative

error converges to a stable value in seven iterations. However, this result does not

coincide with the benchmark solution. The bottom panel, Fig. 4.3(c), shows re-

sults obtained with Bi-CGSTAB applied to the linearized problem. This method

converges more quickly, i.e. a stable relative error is obtained in three iterations.

However, the obtained result again does not coincide with the benchmark.

Upon comparing the different methods, four observations may be made. First,

the application of the Neumann iterative solution method to the linearized prob-
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Figure 4.3: Relative error Err
(n)

rel(k) calculated at (x, y, z) = (0 mm, 0 mm, 50 mm), as

obtained with (a) Neumann applied to the full nonlinear problem, and

(b) Neumann and (c) Bi-CGSTAB applied to the linearized problem. The

solution of the full nonlinear problem obtained with Neumann at iteration

22 is used as benchmark solution.
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lem seems to have only an adverse effect. In fact, when compared to the applica-

tion of the Neumann iterative solution method to the full nonlinear problem, a

higher relative error is obtained and the same amount of iterations is required in

order to reach a stable relative error value. By contrast, when Bi-CGSTAB is ap-

plied to the linearized problem, a faster method, as compared to the application

of the Neumann iterative solution methods, is obtained. Second, both schemes,

when applied to the linearized problem, converge to almost the same error. Thus,

linearization causes a systematic error that appears to be independent of the ap-

plied solution method. Third, linearization seems to have a noticeable effect only

on the fourth and higher harmonics. Since the amplitudes of these harmonics

are small with respect to the amplitude of the fundamental component, the er-

ror in these harmonics will only have a small effect on the total nonlinear wave

field. Fourth, when comparing Figs. 4.1 and 4.3, it is interesting to notice that

given the iterations at which each method reaches a stable relative error, the

normalized errors Err
(n)
1 and Err

(n)
2 have reached basically the same value. In

fact, Err
(n=7)
1 = 2.8 10−4 and Err

(n=3)
2 = 2.9 10−4. This seems to suggest that

we can assume a threshold of 10−4 to be sufficient for our stop criterion.

4.3.2 Configuration 4

In this configuration a more realistic source is considered, i.e. a linear phased

array. The origin of the coordinate system is located at the center of the trans-

ducer. The array consists of Nel = 40 elements. The dimensions of the elements

are Wel = 0.45 mm by Hel = 10 mm, and the pitch is Del = 0.5 mm. The ele-

ments are excited with the same pulse as used for configuration 3, except that

this time the peak pressure at the surface of each transducer element is reduced

to P0 = 1 MPa. In addition, focusing is applied.

Configuration 4 contains lossless nonlinear water as a background medium,

may contain lossy nonlinear objects, and is used for two distinct scenarios that

we will refer to as scenario 4a and 4b. In scenario 4a the beam is focused at (x,

y, z)=(0 mm, 0 mm, 35 mm) and the dimensions of the spatial computational

domain D are (x×y×z) = (30 mm×20 mm×50 mm). In scenario 4b, the beam

is focused at (x, y, z)=(35 mm, 0 mm, 35 mm), and the spatial computational

domain D measures (x× y× z) = (24 mm× 12 mm× 40 mm). For this scenario

only, a skew domain, having the same angles with respect to the y and z axes as

the beam axis, is used [1]. Furthermore, this scenario applies only to homogeneous

media.
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Figure 4.4: Cross-section of the spatial domain D for scenario 4a containing highly-

lossy nonlinear objects embedded in lossless nonlinear water along the

plane y = 0 mm. Black indicates the lossless nonlinear background

medium, white indicates the lossy nonlinear objects.

Convergence

The convergence of the linearized Bi-CGSTAB scheme is tested using the normal-

ized error Err
(n)
2 . This error has been computed for scenario 4a containing highly

lossy nonlinear objects embedded in lossless nonlinear water. Simulations have

been performed up to the third harmonic. The lossy nonlinear objects consist of

two spherical inclusions of radius r = 2 mm showing a coefficient of nonlinearity,

a speed of sound and a density of mass equal to water and a frequency power law

attenuation with a = 1.56 Np cm−1 MHz−b and b = 1.05. These losses are 30

times those encountered in liver, and may therefore be considered extremely high

in a biomedical context. A cross-section of the spatial domain D along the plane

y = 0 mm is shown in Fig. 4.4. Black indicates the lossless nonlinear background

medium, white indicates the lossy nonlinear objects. The same configuration has

been also utilized to calculate the normalized error Err
(n)
1 , in order to compare

the performance of the Neumann iterative solution method applied to the full
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Figure 4.5: Normalized error Err
(n)
k as obtained with Neumann (gray-solid line) ap-

plied to the full nonlinear problem and Bi-CGSTAB (black-dashed line)

applied to the linearized problem for scenario 4a containing highly-lossy

nonlinear objects embedded in lossless nonlinear water.

nonlinear problem with the Bi-CGSTAB iterative solution method applied to

the linearized problem. Results for the two normalized errors are presented in

Fig. 4.5. As can be seen, while the Neumann iterative solution method starts to

manifest a divergent behavior, the Bi-CGSTAB iterative solution method allows

to reach a normalized error value lower than 10−4 in five iterations. This obser-

vation demonstrates the usefulness of linearizing the nonlinear wave equation.

In silico experiments

Figure 4.6 shows two-dimensional spectral profiles of the pressure wave field for

the (a) fundamental, (b) second and (c) third harmonic component in the plane

y = 0 mm, as obtained for scenario 4a with highly lossy spheres (dashed objects).

The results are obtained with the Bi-CGSTAB iterative solution method applied

to the linearized problem. As can be seen, the beam patterns are deformed by

the lossy inclusions. Note that the deformation becomes more prominent for the
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Figure 4.6: Two-dimensional spectral profiles of the pressure wave field in scenario

4a with lossless nonlinear water (background) and lossy inhomogeneities

(dashed objects); (a) fundamental, (b) second harmonic, (c) third har-

monic. The plane of observation is y = 0 mm. The pressure values are

expressed in dB relative to 1 Pa.
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Figure 4.7: Snapshots of the propagating pressure pulse in scenario 4a with lossless

nonlinear water (background) and lossy inhomogeneities (dashed objects);

(a) early time to (b-c) late time. The plane of observation is y = 0 mm.

The pressure values are expressed in dB relative to 1 Pa.
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higher harmonics. This effect may be explained by the frequency dependency

of the lossy contrast, by the increasing size of the contrast with respect to de-

creasing wavelength, and by the nonlinearity of the phenomena which generates

the higher harmonics, which causes a slight disturbance in the fundamental to

become enhanced in the higher harmonics.

Figure 4.7 shows several snapshots of the total nonlinear wave field in the

plane y = 0 mm. The snapshot at the top shows the wave field just after its

transmission by the transducer. The other two snapshots show the reflection

from the left inclusion.

Figures 4.8 to 4.12 show the two-dimensional spectral profiles and the relative

errors in the plane y = 0 mm, up to the fifth harmonic component, as obtained

in scenario 4a when no lossy nonlinear objects are present. For these plots, the

relative error is defined as

Errrel(x) = 100×
∣∣maxt [pk(x, t)]−maxt

[
pB
k (x, t)

]∣∣∣∣maxt
[
pB
k (x, t)

]∣∣ . (4.20)

These results are obtained by the Neumann iterative solution method applied

to the linearized problem. The figures clearly show the typical features of the

higher harmonic beam patterns that are generated during nonlinear propagation,

such as the decrease of the focal width and the shift of the onset of the beams.

Here, pk(x, t) is the kth harmonic pressure wave field obtained with the described

linearized method as obtained at iteration seven (Err
(n=7)
1 = 2.1 10−4). The er-

ror is determined with respect to pB
k (x, t), which is the k-th harmonic pressure

wave field as obtained with the Neumann iterative solution method applied to

the full nonlinear problem at iteration seven (Err
(n=7)
1 = 2.3 10−4). Similar to

the observation made for configuration 3, it is observed that the errors increase

for increasingly higher harmonics and that accurate results are obtained up till

the third harmonic.

Figure 4.13 shows the beam profiles, up to the fifth harmonic, along the beam

axis and along the line (y, z) = (0 mm, 35 mm), as obtained in scenario 4b. The

results, obtained with the Neumann iterative solution method applied to the full

nonlinear problem (solid-gray line) and to the linearized problem (dashed-black

line), are in full correspondence with the results previously shown. In fact, both

methods yield identical results for the fundamental up to the third harmonic

component, while results obtained with the Neumann iterative solution method
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Figure 4.8: Two-dimensional (a) spectral profiles and (b) relative error for the funda-

mental pressure wave field in scenario 4a without lossy nonlinear objects.

The plane of observation is y = 0 mm. The pressure values are expressed

in dB relative to 1 Pa.
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Figure 4.9: Two-dimensional (a) spectral profiles and (b) relative error for the sec-

ond harmonic pressure wave field in scenario 4a without lossy nonlinear

objects. The plane of observation is y = 0 mm. The pressure values are

expressed in dB relative to 1 Pa.
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Figure 4.10: Two-dimensional (a) spectral profiles and (b) relative error for the third

harmonic pressure wave field in scenario 4a without lossy nonlinear ob-

jects. The plane of observation is y = 0 mm. The pressure values are

expressed in dB relative to 1 Pa.
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Figure 4.11: Two-dimensional (a) spectral profiles and (b) relative error for the fourth

harmonic pressure wave field in scenario 4a without lossy nonlinear ob-

jects. The plane of observation is y = 0 mm. The pressure values are

expressed in dB relative to 1 Pa.
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Figure 4.12: Two-dimensional (a) spectral profiles and (b) relative error for the fifth

harmonic pressure wave field in scenario 4a without lossy nonlinear ob-

jects. The plane of observation is y = 0 mm. The pressure values are

expressed in dB relative to 1 Pa.
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applied to the linearization problem shown an underestimation of the fourth and

fifth harmonic component when compared to results obtained with the Neumann

iterative solution method applied to the full nonlinear problem. Moreover, they

show that linearization works equally well for a steered and an unsteered beam.

4.4 Conclusions

In this Chapter, a method that makes use of a Bi-CGSTAB scheme to model

nonlinear wave fields propagation through inhomogeneous biomedical media has

been presented. This solution method has become applicable after linearization

of the nonlinear wave equation. Only inhomogeneities in the attenuation have

been considered in this Chapter.

First, the convergence of the solution method has been investigated. Numer-

ical results show convergence towards the solution of the linearized problem. In

addition, it is shown how the contrast, and the scheme applied, determine the

convergence rate of the method. Moreover, application of a Bi-CGTAB scheme

results in a faster convergence when compared to the application of a Neumann

scheme. Furthermore, it has been shown that Bi-CGSTAB allows to handle

stronger contrasts than Neumann.

Second, the capability of the method to model nonlinear pressure wave fields

propagating through media presenting spatially inhomogeneous frequency depen-

dent attenuation has been demonstrated. In silico experiments show the capa-

bility of the method to deal with scattering and that the linearization does not

influence the full wave character of the method.

In conclusion, Bi-CGSTAB represents a suitable scheme that allows to deal

with a broader variety of contrasts than Neumann. Nevertheless, it comes with

the cost of an approximation that influences the obtained results. The lineariza-

tion introduces a systematic error that can be considered independent of the

applied scheme and that is relevant for the harmonics of the fourth order or

higher. Furthermore, it should be noted that the Bi-CGSTAB scheme, when

compared to the Neumann scheme, requires a higher computational cost, i.e.

two spatio-temporal convolutions are required per iteration, and results in an in-

creased complexity, i.e. more vectors need to be computed and stored. Moreover,

it is known that Bi-CGSTAB may not converge in case of increasingly stronger
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Figure 4.13: The nonlinear pressure field in scenario 4b as obtained with the Neu-

mann iterative solution method applied to the full nonlinear problem

(solid-gray line) and to the linearized problem (dashed-black line); (a)

axial profile evaluated along the transducer axis, (b) lateral profile eval-

uated along the line (y, z) = (0 mm, 35 mm). The graphs show the

fundamental (F0), second (2H), third (3H), fourth (4H) and fifth har-

monic (5H) component.



4.4. CONCLUSIONS 63

contrast. Therefore, to extend the method to deal with a broader variety of con-

trasts, e.g. realistic inhomogeneities in the speed of sound, and be capable at the

same time to model high harmonics (higher than the third order), an alternative

scheme has to be investigated. In the next Chapter a Steepest Descent based

approach is proposed and discussed.
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Chapter 5
Steepest Descent scheme

The nonlinear propagation of acoustic wave fields through inhomogeneous media

can be modeled using an integral equation formulation. In Chapter 3, it has

been shown that this integral equation may be solved with a Neumann solution

method in case weak contrasts are present, i.e. when only variations in the coef-

ficient of nonlinearity, or small variations in the attenuation, are considered. In

case of stronger contrasts, Neumann can be slowly convergent or even diverge. A

way to overcome this limitation is to linearize the nonlinear wave equation that

models the propagation of the nonlinear pressure wave field, and make use of

a Bi-CGSTAB scheme to solve the resulting linearized problem. However, this

approach seems only to be suitable for simulations up to the third harmonic, as

the linearization brings along a systematic error which becomes relevant for the

harmonics of the fourth order or higher.

In this Chapter, an alternative approach based on a Steepest Descent scheme

is presented. Results will show how this scheme allows for modeling the full

nonlinear problem in presence of stronger contrasts as compared to both the

Neumann and Bi-CGSTAB iterative solution methods described in Chapter 3

and 4 respectively. As a drawback, it results in an increased complexity and

computational cost per iteration. First the solution method is introduced. Sec-

ond, results obtained via application of this method are presented, discussed and

compared with results obtained via Neumann and Bi-CGSTAB scheme.

65
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Algorithm 2 The Steepest Descent solution method

for n ≥ 0 do

r(n) = p(0) − p(n) +G ∗x,t Scs

[
p(n)

]
d(n) = −∆mT

c2 ∗t
{
∂2
t

[
GT ∗x,t r(n)

]}
− mT

bg

c2 ∗t
{
c2bg−c

2

c2bg
∂2
t

[
GT ∗x,t r(n)

]}
+2ρbgκ

2βp(n)∂2
t

[
GT ∗x,t r(n)

]
− r(n)

α
(n)
sd = s1 + s2 − φ3

4

p(n+1) = p(n) + α
(n)
sd d

(n)

end for

with

p(n) = 0 for (n < 0)

p(0) = G ∗x,t Spr

s1 =
3
√
z − 2
√
u3 + z2

s2 =
3
√
z + 2
√
u3 + z2

u = φ2

6 −
φ3

2

16

z = φ2φ3

16 −
φ1

8 −
φ3

3
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φ1 = 2<<r(n),θ1>
||θ2||2

φ2 = 2<<r(n),θ2>+||θ1||2
||θ2||2

φ3 = 2<<θ1,θ2>
||θ2||2

θ1 = −d(n) +G ∗x,t
{
Sat

[
d(n)

]
+ Sc

[
d(n)

]
+ 2ρbgκ

2β∂2
t

[
p(n)d(n)

]}
θ2 = G ∗x,t Snl

[
d(n)

]

5.1 Solution method

In this section, a Steepest Descent based solution method, applied to solve the

full nonlinear problem described by the integral equation introduced in Chapter

2, given by

p(x, t) = p(0)(x, t) +

∫
T

∫
D
G(x− x′, t− t′)Scs[p(x

′, t′)]dx′dt′, (5.1)

is presented and discussed.
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5.1.1 Steepest Descent scheme

The Steepest Descent scheme described in Algorithm 2 is applied to solve Eq. (5.1).

The method is based on the ideas presented in [58], where an iterative inversion

method with total variation as multiplicative regularization is used for imaging

purposes. This regularization factor leads to a fourth order cost functional in the

same way as our nonlinear contrast source does. Taking advantage of these sim-

ilarities, the same scheme is used where the update directions d(n) are obtained

by taking Fréchet derivatives

< d(n), d(n) > = lim
ε→0

F
[
p(n) + εd(n)

]
− F

[
p(n)

]
ε

, (5.2)

with ε real valued, and update amplitudes are obtained by finding the minimum

of the fourth order cost polynomial (for given update direction) analytically,

∂
α

(n)
sd

F
[
p(n) + α

(n)
sd d

(n)
]

= 0, (5.3)

with cost functional

F
[
p(n)

]
=< p(0) − p(n) +G ∗x,t Scs

[
p(n)

]
, p(0) − p(n) +G ∗x,t Scs

[
p(n)

]
>

=< r(n), r(n) > .

(5.4)

In Algorithm 2, || · || and < ·, · > represent the Euclidean norm and the inner

product respectively. Here, the inner product is defined as follows,

< x, y >=

M∑
m=1

xmy∗m, (5.5)

where x and y represent two arbitrary vectors of length M and y∗m is the complex

conjugate of ym. Given an arbitrary vector x, the inner product < x, x > equals

the square of the Euclidian norm ‖x‖2. In Algorithm 2, r(n) represents the resid-

ual, and d(n) and α
(n)
sd are the update direction and amplitudes respectively. For

each iteration, d(n) and α
(n)
sd are utilized to compute the updated solution p(n+1).

∆mT and mT
bg equal ∆m(x,−t) and mbg(−t) respectively, GT equals G(−x,−t)

and p(0) represents the linear incident field, which corresponds to the pressure

wave field generated by the primary source Spr(x, t).

In case the nonlinear contrast sources, i.e. Snl [p(x, t)] and Snlκ [p(x, t)], equal

zero, the scheme presented in Algorithm 2 has to be modified as the order of the
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cost polynomial reduces to two. In particular, α
(n)
sd has to be modified as follows,

α
(n)
sd = −φ1, (5.6)

with

φ1 =
< < r(n), θ1 >

||θ1||2
, (5.7)

θ1 = −d(n) +G ∗x,t
{
Sat

[
d(n)

]
+ Sc

[
d(n)

]}
. (5.8)

Note that for the numerical implementation of the scheme all quantities have

been discretized and integrals have been replaced by summations.

5.1.2 Convergence

The numerical convergence of the presented Steepest Descent scheme is verified

by means of the residual r(n).

To compare r(n) with the normalized errors Err
(n)
1 and Err

(n)
2 , defined for the

Neumann and Bi-CGSTAB solution method respectively, we make use of a third

normalized error Err
(n)
3 , which equals

Err
(0)
3 = 1, (5.9)

Err
(n+1)
3 =

∥∥r(n)
∥∥∥∥p(0)
∥∥ , (n ≥ 0). (5.10)

Here, r(n) and p(0) represent the discretized version of r(n) and p(0) respectively.

When Err
(n)
3 is decreasing towards zero for increasing n, the obtained solution is

converging towards the solution of the contrast source problem.

5.2 Results

In this section, two configurations are used to demonstrate the numerical perfor-

mance of the method presented. First, we make use of the already introduced

configuration 3. This configuration is used to compare results obtained with

the three different schemes discussed in this thesis, when modeling a plane wave

propagating through nonlinear lossless homogeneous water. Second, results as

obtained for a plane wave propagating through different types of inhomogeneous
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media are obtained. These results will show the capability of the Steepest De-

scent based method to model inhomogeneities in the speed of sound alone as

well as inhomogeneities in all the acoustical medium parameters discussed, i.e.

coefficient of nonlinearity, attenuation and speed of sound. This is referred to as

configuration 5. See Appendix B for a schematic diagram which summarizes the

utilized configurations. The kth harmonic pressure wave field has been obtained

by filtering the total pressure wave field with an 8th order Butterwoth filter hav-

ing a center frequency equal to kf0 and cut-off frequencies equal to (±0.4 + k)f0,

with f0 the fundamental frequency. For the fundamental pressure wave field

k = 1. Convergence of the Steepest Descent method has been investigated for

configurations 3 and 5.

5.2.1 Configuration 3

Here, a plane wave is considered. This plane wave is modulated by a Gaussian

pulse resulting in a pressure field which, in the plane z= 0 mm, equals

p(t) = P0e
−(2t/tw)2 sin(2πf0t), (5.11)

with a time width tw = 3/f0 and a center frequency f0 = 1 MHz. The envelope

of this signal contains about six cycles of the harmonic signal [2]. The peak

pressure considered is P0 = 2 MPa. The dimensions of the spatial computational

domain D are (x × y × z) = (10 mm × 10 mm × 50 mm) and simulations have

been performed up to the fifth harmonic component.

Convergence

The convergence of the presented Steepest Descent based method is tested for

configuration 3 using the normalized error Err
(n)
3 . Furthermore, the normalized

error Err
(n)
3 has been compared with the normalized errors Err

(n)
1 and Err

(n)
2 , as

obtained via application of the previously described Neumann solution method,

when applied to the full nonlinear problem, and Bi-CGSTAB solution method

applied to the linearized problem.

Fig. 5.1 presents all three normalized errors. The graph shows that the nor-

malized error for the Steepest Descent based method Err
(n)
3 ≈ 10−16 after 21

iterations and remains flat afterwards. Therefore, in case Steepest Descent is

applied to solve the full nonlinear problem and the threshold is set to 10−16, the

iterative process can be stopped at iteration 22. The same observation is valid for
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Figure 5.1: Normalized error Err
(n)
k as obtained in configuration 3 with Neumann

(gray-solid line) applied to the full nonlinear problem, Bi-CGSTAB (black-

dashed line) applied to the linearized problem and Steepest Descent

(black-dotted line) applied to the full nonlinear problem.

Err
(n)
1 , hence in case the Neumann solution method described in Chapter 3 is ap-

plied to configuration 3. On the other hand, as already observed in Chapter 4, in

case Bi-CGSTAB is applied to solve the linearized problem, Err
(n)
2 ≈ 10−16 after

13 iterations, i.e. the iterative scheme can be stopped at iteration 14. Therefore,

it can be concluded that application of a Bi-CGSTAB scheme results in a signif-

icantly faster convergence, i.e. a reduction of the required number of iterations

equal to 38 % for the described configuration, with respect to both the other

described schemes. Nevertheless, it comes with the price of an approximation

introduced by the linearization of the integral equation. This is not the case for

Steepest Descent, as it can be applied to the full nonlinear problem.
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Figure 5.2: Axial profiles for the fundamental (F0), second (2H), third (3H), fourth

(4H) and fifth (5H) harmonic as obtained in configuration 3 with Neumann

(gray-solid line) and Steepest Descent (black-dashed line) applied to the

full nonlinear problem. The pressure values are expressed in dB relative

to 1 Pa.

In silico experiments

Figure 5.2 shows the axial profiles along the z axis for the fundamental (F0),

second (2H), third (3H), fourth (4H) and fifth (5H) harmonic as obtained in

configuration 3 for Neumann (gray-solid line) and Steepest Descent (black-dashed

line) applied to the full nonlinear problem. The pressure values are expressed in

dB relative to 1 Pa. As can be seen, results obtained via Steepest Descent provide

a solution that does coincide with the solution as obtained with Neumann when

applied to the full nonlinear problem.

5.2.2 Configuration 5

Here, the same plane wave utilized in configuration 3 is considered. Configuration

5 contains lossless linear water as a background medium and is applied to two

distinct scenarios that we will refer to as scenario 5a and 5b. In scenario 5a, a
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sphere with a radius equal to 4.5 mm centered at (x, y, z) = (0 mm, 0 mm, 0 mm)

is considered. This scenario is used to model inhomogeneities in the speed of

sound only. For this configuration, linear lossless breast tissue is used (c =

1510 m/s) as contrast [6]. In scenario 5b, a sphere with a radius equal to 4.5 mm

centered at (x, y, z) = (0 mm, 0 mm, 10 mm) is considered. This scenario is used

to model inhomogeneities in the coefficient of nonlinearity, in the attenuation and

in the speed of sound. Also for this configuration, breast tissue has been used

as contrast (β = 5.815, a = 0.066 Np cm−1 MHz−b, b = 1.5, c = 1510 m/s) [6].

In configuration 5, the spatial computational domain D measures (x× y × z) =

(20 mm× 20 mm× 20 mm) and simulations have been performed up to the fifth

harmonic component. In the results presented for this configuration, the second

order compressibility contrast Snlκ [p(x, t)] has been neglected as it did not show

any significant effect on the numerical results.

Convergence

Convergence of the presented Steepest Descent based method is tested for con-

figuration 5 using the normalized error Err
(n)
3 . Results are presented in Fig. 5.3.

Figure 5.3(a) shows the normalized error Err
(n)
3 obtained with the Steepest De-

scent solution method in scenario 5a (black-dashed line) and 5b (black-solid line).

The obtained results confirm that a stronger contrast requires more iterations to

reach a given normalized error value. In this specific case, when considering the

contrast in speed of sound only (black-dashed line) the convergence is faster than

in the situation in which we model inhomogeneities in the coefficient of nonlinear-

ity, in the attenuation and in the speed of sound (black-solid line). Figure 5.3(b)

compares the normalized errors Err
(n)
1 , Err

(n)
2 and Err

(n)
3 , as obtained in sce-

nario 5b with Neumann applied to the full nonlinear problem (solid-gray line),

Bi-CGSTAB applied to the linearized problem (dotted-black line) and Steepest

Descent applied to the full nonlinear problem (solid-black line). This plot shows

the capability of the Steepest Descent method to handle stronger contrasts than

Neumann and Bi-CGSTAB.

In silico experiments

Figure 5.4 shows snapshots of the propagating pressure wave field in scenario 5a.

Results as obtained with the Steepest Descent based solution method presented

(left column) are compared with results obtained with the analytical solution

(right column) [59]. The plane of observation is y = 0 mm. The pressure values

are expressed in dB relative to 1 Pa. Scattering phenomena are clearly observable
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Figure 5.3: (a) Normalized error Err
(n)
3 as obtained with the Steepest Descent solution

method in scenario 5a (black-dashed line) and 5b (black-solid line), and

(b) normalized errors Err
(n)
1 , Err

(n)
2 and Err

(n)
3 as obtained in scenario

5b with Neumann applied to the full nonlinear problem (solid-gray line),

Bi-CGSTAB applied to the linearized problem (dotted-black line) and

Steepest Descent applied to the full nonlinear problem (solid-black line).
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Figure 5.4: Snapshots of the propagating pressure wave field in scenario 5a with loss-

less linear water as background medium and a spherical object modeling

inhomogeneities in the speed of sound only; results as obtained with the

Steepest Descent based solution method presented (left column) are com-

pared with results obtained with the analytical solution (right column).

The plane of observation is y = 0 mm. The pressure values are expressed

in dB relative to 1 Pa.
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Figure 5.5: Axial profiles for the fundamental (F0), second (2H), third (3H), fourth

(4H) and fifth (5H) harmonic as obtained in scenario 5b with the Steepest

Descent solution method. The axis of observation is the z-axis. The

pressure values are expressed in dB relative to 1 Pa.

and results obtained from the analytical solution are in agreement with those ob-

tained with the Steepest Descent solution method presented in this Chapter.

Figure 5.5 shows axial profiles for the fundamental (F0), second (2H), third

(3H), fourth (4H) and fifth (5H) harmonic as obtained in scenario 5b with the

application of the Steepest Descent solution method presented in this Chapter.

The axis of observation is the z-axis. The pressure values are expressed in dB

relative to 1 Pa.

Figures 5.6 - 5.8 show the two dimensional spectral profiles, for each harmonic

component, together with a cross-section of the spatial domain D along the plane

y = 0 mm in scenario 5b. Black indicates the lossless linear background medium,

white indicates the lossy nonlinear object. Note that the colorbar for the funda-

mental spectral profile goes from the maximum relative value to -6 dB, in order
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Figure 5.6: (a) Cross-section of the spatial domain D for scenario 5b along the plane

y = 0 mm. Black indicates the lossless linear background medium, white

indicates the lossy nonlinear object. (b) Two-dimensional spectral pro-

file of the fundamental component of the pressure wave field in scenario

5b with lossless linear water (background) and lossy nonlinear inhomo-

geneities (dashed object). The plane of observation is y = 0 mm. The

pressure values are expressed in dB relative to 1 Pa.
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Figure 5.7: Two-dimensional spectral profiles of the (a) second and (b) third harmonic

component of the pressure wave field in scenario 5b with lossless linear

water (background) and lossy nonlinear inhomogeneities (dashed object).

The plane of observation is y = 0 mm. The pressure values are expressed

in dB relative to 1 Pa.
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Figure 5.8: Two-dimensional spectral profiles of the (a) fourth and (b) fifth harmonic

component of the pressure wave field in scenario 5b with lossless linear

water (background) and lossy nonlinear inhomogeneities (dashed object).

The plane of observation is y = 0 mm. The pressure values are expressed

in dB relative to 1 Pa.
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Figure 5.9: Snapshots of the second harmonic component of the propagating pressure

wave field in scenario 5b with lossless linear water as background medium

and lossy nonlinear object. The plane of observation is y = 0 mm. The

pressure values are expressed in dB relative to 1 Pa.

to be able to emphasize its decay in space. The colorbars for the harmonic com-

ponents go from the maximum relative values to -20 dB. As can be seen, the

amplitude of the incident plane wave decays as soon as it enters the nonlinear



80 5. STEEPEST DESCENT SCHEME

object. Moreover, harmonics emerge only inside this part of the simulated do-

main and they keep propagating afterwards. Furthermore, the cumulative nature

of nonlinear propagation can be observed in these figures; the growth of the har-

monic components begins sooner for the lower harmonics and keeps increasing

along the path where the pressure field propagates nonlinearly.

Figure 5.9 shows snapshots of the second harmonic component of the propa-

gating pressure wave field in scenario 5b. The plane of observation is y = 0 mm.

The pressure values are expressed in dB relative to 1 Pa and the colorbar goes

from 76 to 126 dB relative to 1 Pa. Cumulative growth of the second harmonic

component inside the sphere and scattering phenomena can be observed.

5.3 Conclusions

In this Chapter, a method which makes use of a Steepest Descent scheme to model

nonlinear wave fields propagation through inhomogeneous biomedical media has

been presented. Inhomogeneities in the coefficient of nonlinearity, attenuation

and speed of sound have been considered in this Chapter.

First, the convergence of the method has been investigated. Numerical results

show convergence towards the solution of the full nonlinear problem. Further-

more, it has been shown how the contrast and the applied scheme determine the

convergence rate. Moreover, application of the Steepest Descent solution method

results in a method which allows to model stronger contrast than the Neumann

and Bi-CGSTAB solution methods presented in Chapter 3 and 4 respectively.

Second, numerical results demonstrate the capability of the method to model

nonlinear pressure wave fields propagating through media presenting spatially

varying coefficient of nonlinearity, frequency dependent attenuation and speed

of sound. In silico experiments show the capability of the method to deal with

scattering.

In conclusion, Steepest Descent represents a suitable scheme that allows to

deal with a broader variety of contrasts than Neumann and Bi-CGSTAB. Nev-

ertheless, when compared to Neumann, it comes with the cost of an increased

complexity and computational load, i.e. more vectors need to be computed and

stored and four spatio-temporal convolutions are required per iteration. When
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compared to Bi-CGSTAB it comes with the cost of an increased computational

load and decreased convergence rate.
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Chapter 6
Application of the method

developed

The INCS method has been applied to test the feasibility of a new ultrasound

beamforming technique, i.e. parallel transmit beamforming using Orthogonal

Frequency Division Multiplexing (OFDM) applied to harmonic imaging. In this

Chapter, the theory of the technique proposed, its advantages as well as its

drawbacks and restrictions are addressed. Next, numerical results are presented

and compared with standard parallel beamforming. Measurements have also

been performed. The obtained results confirm the applicability of the technique

proposed for a transducer with a realistic bandwidth.

6.1 Parallel transmit beamforming using OFDM

for harmonic imaging

6.1.1 Introduction

Real-time 3D ultrasound images are nowadays used in diagnostic medical appli-

cations. To achieve the desirable frame rate, a high volumetric data acquisition

rate is necessary. This is limited by the number of lines necessary to generate

an image of sufficient resolution, and by the speed of sound, as it determines

the time of flight for the pulse-echo signals. To overcome this limitation, parallel

processing approaches [60, 61, 62, 63, 64, 65, 66] have been developed. One of

the most well known is the Explososcan [67, 68, 69]. With this method, a wide

83
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beam in transmission is used to insonify a large volume, and multiple lines are

simultaneously acquired by means of narrower receiver beams. This method is

referred to as standard parallel beam forming. In principle, this technique is also

applicable to harmonic imaging, e.g. second harmonic imaging [12, 13, 14, 15].

However, the demand for high-amplitude pressure wave fields necessary to gener-

ate the harmonic components clashes with the idea of using a wide-angled beam

in transmission, as this results in a large spatial decay of the acoustic pressure.

To enhance the amplitude of the harmonics it is preferable to do the reverse;

transmit several narrow parallel beams and use a wide-angled beam for reception.

In this Chapter it is investigated whether this concept can be utilized for

second harmonic imaging [70]. To generate parallel beams that are distinguish-

able in transmission, orthogonal frequency division multiplexing (OFDM) [71, 72]

is utilized. With this technique, multiple channels are generated by allocating

to each channel a different portion of the available bandwidth. These orthogo-

nal bandwidths are utilized to transmit pulses which are modulated at different

center frequencies. In this manner, the capability to generate simultaneously mul-

tiple distinguishable channels, is obtained. Each channel can be independently

utilized to generate a beam, that can be steered over a desired angle by appli-

cation of appropriate time delays between elements. In Section 6.2 the theory is

discussed. Numerical and experimental results are contained in Section 6.3, in

which standard parallel beamforming is compared with the method proposed in

this Chapter. All transmit, receive and combined transmit-receive beam profiles

have been simulated up to the second harmonic component using the Iterative

Nonlinear Contrast Source (INCS) method [2, 32, 54, 73, 74, 33]. Moreover, mea-

surements in water are used to confirm the feasibility of the technique proposed.

Conclusions are drawn in Section 6.4.

6.2 Theory

In this Section the theory of the technique proposed, its drawbacks and restric-

tions are discussed. The symbols F0 and 2H are used to describe fundamental and

second harmonic components respectively and the symbol f is used to describe

a specific frequency.
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Figure 6.1: Illustration of the basic principles behind parallel transmit beamforming

using OFDM: (a) transmitted and (b) received frequency spectra for the

standard second harmonic imaging modality, and (c) transmitted and (d)

received frequency spectra for the OFDM technique.

6.2.1 Operating principles

Figure 6.1 explains the principles of the OFDM technique proposed. For second

harmonic imaging, a given phased array is excited with a pulse with center fre-

quency fF0, resulting in a pressure wave field propagating in a certain direction.

This results in the generation of a fundamental pressure wave field, which is

schematically represented in the frequency domain in Fig. 1(a). As this pulse

propagates nonlinearly, a second harmonic component, i.e. 2H, is formed (see

Fig. 1(b)). This component is extracted from the scattered wave field to form

an image. The very same phased array may also be simultaneously excited with

multiple pulses, each having a different center frequency, e.g. three pulses with

center frequencies fF0
1 , fF0

2 and fF0
3 (see Fig. 1(c)), resulting in pressure wave

fields propagating in different directions. If the properties of the pulses are cho-
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Figure 6.2: Schematic representation of the frequency spectra in case of monochro-

matic waves.

sen properly, distinguishable second harmonic components are generated during

propagation, see Fig. 1(d). The echoes of the second harmonics generated during

propagation are recorded in reception and their characteristic frequency content

indicates the direction of observation.

6.2.2 Maximum exploitable bandwidth condition

Overlap between the fundamental and the second harmonic components has to

be avoided, to guarantee the capability to discriminate between the channels. In

case of monochromatic transmission at a frequency f , the rise of the correspond-

ing second harmonic component at a frequency 2f is observed (see Fig. 6.2).

Therefore, to avoid the overlap, the following restriction applies

fmax < 2fmin, (6.1)
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with fmax and fmin being the maximum and minimum frequency respectively

utilized in transmission. This condition limits the exploitable bandwidth. Given

the bandwidth utilized in transmission Btrans = fmax − fmin and the center

frequency fF0 = 1
2 (fmax + fmin), it follows that

fmax = fF0 +
1

2
Btrans, (6.2)

fmin = fF0 − 1

2
Btrans, (6.3)

and Eq. (6.1) implies the maximum exploitable bandwidth condition

Btrans <
2

3
fF0. (6.4)

This condition is essential, but not sufficient, to obtain distinguishable channels.

Although monochromatic waves are very useful for an intuitive explanation,

they cannot be used for pulse-echo imaging purposes, as they lead to infinitely

long time signals. Therefore, the constraint on the exploitable bandwidth has to

be formulated for a given pulse shape. Here, Gaussian pulses are analyzed. Under

the assumption that the bandwidth of the nth harmonic depends in first approxi-

mation on the contribution of the lower harmonics, the following expression holds

true for Gaussian modulated pulses

B[n] =
√
nBpulse, (6.5)

where B[n] and Bpulse represent the bandwidth of the nth harmonic and the

fundamental component respectively. In view of this formulation, Eq. (6.1) can

be rewritten as follows

fF0
M +

1

2
Bpulse < 2fF0

1 −
√

2

2
Bpulse, (6.6)

with fF0
1 and fF0

M being respectively the minimum and maximum center frequency

utilized in transmission. Given the transmission bandwidth utilized Btrans, which

in this case is given by

Btrans = fF0
M − fF0

1 + Bpulse, (6.7)

the maximum exploitable bandwidth condition of Eq. (6.4) becomes

Btrans < fF0
1 +

1−
√

2

2
Bpulse. (6.8)

This condition guarantees that the fundamental does not mix with the second

harmonic components when Gaussian modulated pulses are utilized.
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6.2.3 Mixing frequencies

When multiple pulses are transmitted simultaneously, the nonlinear distortion in

overlapping areas gives rise to unwanted mixing frequencies. These frequencies

occur within the frequency band of the second harmonic of different channels,

leading to a degradation of the channel discrimination capabilities. A possible

strategy to overcome this limitation is to increase the frequency separation be-

tween channels. In this way the mixing frequencies occur in frequency bands that

can be filtered out in reception, as they do not belong to any of the frequency

bands of the second harmonic components of the transmitted signals. However

a drawback of this approach is a reduction of the number of available channels,

within a given transducer bandwidth. A second strategy to suppress the forma-

tion of the unwanted mixing frequencies without reducing the available number of

channels, is to notice that these frequencies will not be present in case each pulse

is transmitted separately and to decouple the generated beam profiles by intro-

ducing a time delay between the pulses. This idea seems to somewhat weaken

the parallel character of the described method. However, it should be noted that

the applied time delays are much shorter than the typical round-trip travel times.

From now on, straightforward implementation of the OFDM technique will

be referred to as approach A, application of OFDM with increased frequency

separation between channels will be referred to as approach B and the application

of time delays between the pulses will be referred to as approach C. All three

approaches are investigated and compared with standard parallel beamforming

in the Section 6.3.

6.3 Results

In this Section, the applicability of the OFDM technique described is tested.

First, a numerical study is conducted. The aim of this study is to compare the

performances of the methods proposed with standard parallel beamforming for

the same array configuration. The second harmonic beam profile generated in

transmission, the beam profile in reception (obtained as the linear beam profile

generated in transmission when the array is excited at the second harmonic fre-

quency) and the combined beam profile (calculated as a product of the transmit

and receive beams previously described) are simulated. Scattered waves, due to

their relatively low amplitude, are assumed to propagate linearly. Next, experi-

mental results are used to confirm the feasibility of the technique proposed for a
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θ
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Figure 6.3: The geometry of the linear phased array. The number of elements is Nel =

32. The dimensions of each element are Wel = 0.27 mm by Hel = 10 mm,

and the pitch is Del = 0.31 mm.

transducer with a realistic bandwidth.

6.3.1 Numerical study

A 32 element linear phased array, submerged in lossy nonlinear blood (β = 4,

c0 = 1584 m/s, ρ0 = 1060 kg/m3, α = 0.016|f/f0|1.21Np/cm, with f0 = 1 MHz [6])

is used. The origin of the coordinate system is located at the center of the trans-

ducer. The steering angle θ is defined in the plane y = 0 mm, is measured

with respect to the normal of the transducer surface and is positive for positive

x. A graphical representation is given in Fig. 6.3. Each element has dimensions

Wel = 0.27 mm by Hel = 10 mm, and the pitch is Del = 0.31 mm. For simplicity,

each element is considered to be exploitable both as transmitter and receiver.

First, standard parallel beamforming in reception is considered. The elements
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Figure 6.4: Combined transmit-receive beam profiles for three distinct channels, as

obtained with standard parallel beamforming. The beams are steered

over −8o, 0o and 8o. Values are in dB relative to 1 Pa.

15 to 19, represented in bold in Fig. 6.3, form the transmitter array. These

elements are all excited with the same Gaussian modulated pulse, resulting in a

source pressure

p(t) = P0e
−(2t/tw)2sin(2πfF0t), (6.9)

with a fundamental frequency fF0 = 1 MHz, a time width tw = 4.5/fF0 and a

peak pressure P0 = 1.5 MPa. In reception the entire array is used for the beam-

forming of the second harmonic component. Next, the same array is used to eval-

uate the performances of OFDM and in particular of approaches A, B and C. In

transmission all 32 elements are excited. Three channels are formed by three dis-

tinct signals with fundamental frequencies equal to fF0
1 = 0.8 MHz, fF0

2 = 1 MHz

and fF0
3 = 1.2 MHz. With OFDM, each signal is amplitude modulated by a

Gaussian pulse with a width tw = 8/fF0 and a peak pressure P0 = 1.5 MPa. In

reception the elements 15 to 19 are used to measure the distinct second harmonic

components (with assumed center frequencies f2H
1 = 1.6 MHz, f2H

2 = 2 MHz and

f2H
3 = 2.4 MHz). For approach B, only two channels are used, i.e. channel 1
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Figure 6.5: Combined transmit-receive beam profiles for three simultaneous channels,

as obtained with OFDM approach A. The beams are steered over −8o, 0o

and 8o. Values are in dB relative to 1 Pa.

(fF0
1 = 0.8 MHz) and channel 3 (fF0

3 = 1.2 MHz).

Beam profiles

Results for three distinct channels, respectively steered over −8o (channel 1),

0o (channel 2) and 8o (channel 3), are shown in Fig. 6.4 for standard parallel

beamforming, and in Fig. 6.5 for OFDM approach A, when three pulses are

simultaneously excited. As visible from Fig. 6.5, an average gain in amplitude in

the order of 9 dB is obtained for the main beam when the technique proposed

is applied. However, the channel discrimination capabilities of the technique

proposed seem to be poor, leading to the presence of spatial overlap between

beam profiles, which for channels 2 and 3 is even stronger than for standard

parallel beamforming. The cause of this spatial overlap is the presence of the

unwanted mixing frequencies. Results for OFDM approach B for two distinct

channels, respectively steered over −8o and 8o, are shown in Fig. 6.6. In this

case a smoother beam profile and suppression of spatial overlap is observed.
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Figure 6.6: Combined transmit-receive beam profiles for two distinct channels, as ob-

tained with OFDM approach B. The beams are steered over −8o and 8o.

Values are in dB relative to 1 Pa.

Results for OFDM approach C are shown in Fig. 6.7. Time delays equal to 0,

15/fF0 and 30/fF0 are introduced for channel 1, 2 and 3 respectively. As visible,

application of time delays leads to a strong reduction of spatial overlap between

the beam profiles, while maintaining the capability of transmitting three distinct

channels. Both approaches B and C show side-lobes suppression and an average

gain in amplitude of 12 dB when compared to standard parallel beamforming in

reception.

Signal analysis

Figures 6.8 and 6.9 show the time signals and frequency spectra of the pres-

sure wave field generated at the transducer surface, in the point (x, y, z) =

(0 mm, 0 mm, 0 mm). From top to bottom, results are shown for standard parallel

beamforming (PBF), OFDM parallel transmit beamforming (PTBF) with three

simultaneous pulses (approach A), with two simultaneous pulses (approach B),

and with three pulses having additional time delays (approach C). As expected,
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Figure 6.7: Combined transmit-receive beam profiles for three distinct channels when

time delays between channels are applied, as obtained with OFDM ap-

proach C. The beams are steered over −8o, 0o and 8o. Values are in dB

relative to 1 Pa.

the duration of the pulse used for standard parallel beamforming is shorter than

for OFDM. With OFDM, distinguishably narrower fundamental components,

centered at fF0
1 = 0.8 MHz, fF0

2 = 1 MHz and fF0
3 = 1.2 MHz, are obtained.

Figures 6.10 and 6.11 show the time signals and the frequency spectra of

the pressure wave field generated at z = 40 mm. From top to bottom, results

are shown for standard parallel beamforming (PBF), OFDM parallel transmit

beamforming (PTBF) with three simultaneous pulses (approach A), with two

simultaneous pulses (approach B), and with three pulses and additional time de-

lays (approach C). In case multiple pulses are simultaneously transmitted, the

time axis of the OFDM signals are modified such that up to three signals can be

displayed in one plot. Vertical lines have also been added to mark the beginning

of the time axis relative to each pulse. From the frequency spectra, two aspects

can be observed. First, when OFDM techniques are employed, the second har-
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Figure 6.8: Signal analysis at the transducer surface. Time signals are compared for

the four approaches described, i.e. from top to bottom, results are shown

for standard parallel beamforming (PBF), OFDM parallel transmit beam-

forming (PTBF) with three simultaneous pulses (approach A), with two

simultaneous pulses (approach B), and with three pulses and additional

time delays (approach C).
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Figure 6.9: Signal analysis at the transducer surface. Normalized frequency spectra

are compared for the four approaches described, i.e. from top to bot-

tom, results are shown for standard parallel beamforming (PBF), OFDM

parallel transmit beamforming (PTBF) with three simultaneous pulses

(approach A), with two simultaneous pulses (approach B), and with three

pulses and additional time delays (approach C).
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Figure 6.10: Signal analysis at z = 40 mm. Time signals are compared for the four

approaches described, i.e. from top to bottom, results are shown for

standard parallel beamforming (PBF), OFDM parallel transmit beam-

forming (PTBF) with three simultaneous pulses (approach A), with

two simultaneous pulses (approach B), and with three pulses and ad-

ditional time delays (approach C). In case OFDM is applied, differ-

ent points in space are used to analyze the signals, i.e. (x, y, z) =

(0 mm,−5.5 mm, 40 mm) for channel 1, (x, y, z) = (0 mm, 0 mm, 40 mm)

for channel 2 and (x, y, z) = (0 mm, 5.5 mm, 40 mm) for channel 3 (See

legend).
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Figure 6.11: Signal analysis at z = 40 mm. Normalized frequency spectra are com-

pared for the four approaches described, i.e. from top to bottom, results

are shown for standard parallel beamforming (PBF), OFDM parallel

transmit beamforming (PTBF) with three simultaneous pulses (approach

A), with two simultaneous pulses (approach B), and with three pulses

and additional time delays (approach C). In case OFDM is applied, dif-

ferent points in space are used to analyze the signals, i.e. (x, y, z) =

(0 mm,−5.5 mm, 40 mm) for channel 1, (x, y, z) = (0 mm, 0 mm, 40 mm)

for channel 2 and (x, y, z) = (0 mm, 5.5 mm, 40 mm) for channel 3 (See

legend).
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monic components generated have higher amplitude than for standard parallel

beamforming. Second, the phenomenon of the mixing frequencies is clearly visi-

ble. When three pulses are simultaneously transmitted (approach A), significant

second harmonic mixing content centered at 1.8 and 2.2 MHz is visible. These

frequencies will cause difficulties in channel discrimination and make it necessary

to apply narrow-bandwidth filters to select the appropriate frequencies. Here, we

applied rectangular filters with a 0.2 MHz bandwidth centered around the center

frequency (f2H
1 , f2H

2 , f2H
3 ) of the second harmonic related to each channel. On

the other hand, when two pulses are utilized (approach B), mixing frequencies

are formed, but do not interfere with the second harmonic content related to the

transmitted pulses (2H1, 2H3). Therefore, channel discrimination capabilities are

improved and broader filters can be applied. Here we applied rectangular filters

with a 0.4 MHz bandwidth centered around the center frequency of the corre-

sponding second harmonic component. When additional delays are implemented,

no relevant mixing frequencies are present and hence the same broader filters may

be applied. Note that the application of filters with a narrower bandwidth af-

fects the duration of the filtered second harmonic pulse (see Fig. 6.12). Here,

filtered second harmonic pulses as obtained at z = 40 mm, are compared for the

four approaches described. As may be observed, when approach A is considered,

longer second harmonic time pulses are obtained compared to approaches B and

C, leading to further degradation of the axial resolution. Second harmonic pulses

as obtained with two simultaneously transmitted pulses and with the application

of additional delays show basically the same features, among which a shorter

duration when compared to approach A.

In view of the number of channels, the duration of the filtered pulses, the avoid-

ance of the mixing frequencies and the reduction of side-lobes, approach C seems

to be preferable over the others.

6.3.2 Measurements

An experiment has been conducted to test the applicability of the OFDM tech-

nique proposed, in case approach C is considered. An in house built cylindrical

transducer, with center frequency fF0 = 1 MHz and radius r = 11 mm, was

immersed in water and excited with a driving signal identical to the one used for

the numerical study of approach C (see top image in Fig. 6.13). The driving sig-

nal was generated using an arbitrary waveform generator (Agilent Technologies,

33250A) followed by an amplifier (ENI, 2100L RF power amplifier). As receiver,

a calibrated needle hydrophone with a 0.2 mm diameter probe with associated
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Figure 6.12: Signal analysis at z = 40 mm. Second harmonic pulses are compared

for the four approaches described, i.e. from top to bottom, results are

shown for standard parallel beamforming (PBF), OFDM parallel trans-

mit beamforming (PTBF) with three simultaneous pulses (approach A),

with two simultaneous pulses (approach B), and with three pulses and

additional time delays (approach C). In case OFDM is applied, dif-

ferent points in space are used to analyze the signals, i.e. (x, y, z) =

(0 mm,−5.5 mm, 40 mm) for channel 1, (x, y, z) = (0 mm, 0 mm, 40 mm)

for channel 2 and (x, y, z) = (0 mm, 5.5 mm, 40 mm) for channel 3 (See

legend).
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Figure 6.13: Measurements, as obtained for OFDM parallel transmit beamforming

with additional time delays (approach C). From top to bottom, the

graphs relative to the driving signal, the time signal measured and corre-

sponding normalized frequency spectrum, and the three filtered second

harmonic pulses, are respectively shown.
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submersible pre-amplifier and DC coupler (Precision Acoustics) was positioned

at 80 mm distance from the transmitter. Measurements were collected using

an oscilloscope (Agilent Technologies, DSO7054A). The time signal measured

and corresponding normalized frequency spectrum, obtained at the natural focus

(x, y, z) = (0 mm, 0 mm, 80 mm), are plotted in the second and third image from

the top in Fig. 6.13. The three filtered second harmonic pulses are plotted at the

bottom in Fig. 6.13.

6.4 Conclusions

Application of parallel transmit beamforming for harmonic imaging using orthog-

onal frequency division multiplexing (OFDM) has been investigated and com-

pared with standard parallel beamforming. For standard parallel beamforming,

a wide beam in transmission is generated using a five element linear array and

multiple lines are simultaneously acquired in reception by means of narrower

beams generated by a 32 elements linear array. For the OFDM technique prosed

in this Chapter, the same array is used, but the transmitter and receiver have

been interchanged. Hence, multiple narrow beams are generated in transmission

using a 32 elements linear array and a wide beam, generated using a five ele-

ments linear array, is used for reception. With the method proposed, multiple

distinguishable narrow beams with different center frequencies are transmitted in

parallel while a wide angle beam is used for reception. Using different frequencies

to generate multiple beams in transmission results in direction-dependent atten-

uation. However, the frequencies utilized will in general not differ largely from

each other, such that they can be transmitted within the transducer bandwidth.

Nevertheless, compensation for this effect might be necessary for imaging. Nu-

merical studies, which include frequency dependent attenuation, show the ability

of this method to reduce the presence of unwanted side-lobes and meanwhile in-

crease the amplitude of the main beam by 12 dB as compared to standard parallel

beamforming. These improvements are expected to influence positively the signal

to noise ratio and the achievable penetration depth of a given imaging system.

A drawback of the method proposed is a reduction of the axial resolution due to

utilization of pulses with a narrower bandwidth.

Measurements have been performed to assess the feasibility of the method

proposed for a practical transducer. The possibility to excite an ultrasound trans-

ducer with multiple Gaussian modulated pulses, each having a different center
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frequency, and the capability to discriminate between the second harmonic com-

ponents of each channel, are confirmed.

In this study, the advantages of using OFDM for parallel transmit beam

forming are shown by simply interchanging the transmitter with the receiver.

Nevertheless, these advantages might be further improved by employing the en-

tire linear array in reception.

Finally, the presented feasibility study has been conducted on a linear array,

hence for a 2D imaging system. Nevertheless, there do not appear to be any

limitations for a further extension of the method presented to 3D imaging.



Chapter 7
Conclusions and Discussion

7.1 Conclusions

From the research presented in this thesis, the following conclusions can be drawn:

• The numerical method described in this thesis is an extension of the al-

ready existing Iterative Nonlinear Contrast Source (INCS) method. The

INCS method was originally developed for modeling pressure wave field

propagation through homogeneous nonlinear media with frequency depen-

dent power law attenuation. Here, the method has been extended to deal

with spatially varying attenuation, coefficient of nonlinearity and speed of

sound. The extensions presented in this thesis employ the full-wave char-

acter of the INCS method, which allows to model scattering. The resulting

method maintains the characteristics of the INCS method. Hence, it only

requires two points per smallest wavelength or period and does not favor a

particular direction of propagation, which makes it suitable to model steered

pressure wave fields generated from medical phased array transducers.

• The nonlinear propagation through inhomogeneous media may be described

using an integral equation formulation. Originally, the INCS method pro-

vided a solution of the integral equation via application of a Neumann

scheme. This intuitive and easily implementable iterative scheme allows to

deal with moderate losses and nonlinearity. However, for stronger contrast,

the convergence of the Neumann scheme is no more ensured. Therefore,

to extend the method to deal with strong losses and/or realistic inhomo-
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geneities in the speed of sound, alternative iterative schemes are necessary.

The ideal iterative scheme should provide a faster convergence, be capable

to cope with stronger contrast and have a reduced complexity and computa-

tional cost per iteration as compared to Neumann. In this thesis two alter-

natives to Neumann have been investigated, i.e. Bi-CGSTAB and Steepest

Descent.

Bi-CGSTAB is capable to cope with stronger contrast than Neumann, has

a faster convergence but an increased complexity and computational load

per iteration. The main computational cost is in fact represented by the

convolution operation, which for Neumann is occurring once per iteration,

while for Bi-CGSTAB two convolution operations are necessary per itera-

tion. In addition, it requires a linearization of the integral equation. This

approximation introduces a significant error which is relevant for the har-

monics of the fourth order or higher.

Steepest Descent is capable to cope with stronger contrasts than Neumann

and Bi-CGSTAB and no approximation of the integral equation is neces-

sary. When compared to Bi-CGSTAB, it results in a slower convergence

and in an increased computational load, i.e. four convolution operations

are necessary per iteration.

To conclude, Steepest Descent is, among the schemes investigated, the

scheme that allows to deal with the broadest variety of contrasts, e.g. strong

losses and realistic inhomogeneities in the speed of sound. Neumann repre-

sents the optimal scheme when simpler configurations have to be modeled,

e.g. pressure wave fields through homogeneous nonlinear media, as it is the

least demanding scheme from a computational point of view. Bi-CGSTAB

represents the optimal scheme when simulations up to the third harmonic

have to be computed as it allows to model a significantly broad variety of

contrasts with a significantly reduced amount of iterations when compared

to Neumann and Steepest Descent. Table 7.1 summarizes the analysis.

Here, a plus sign identifies the scheme that performs best with respect to

a given aspect.

• The numerical method described in this thesis has been developed to assist

in the design and development of novel ultrasound modalities and imag-
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Table 7.1: Performances comparison for the three schemes described.

Performances Neumann Bi-CGSTAB Steepest Descent

Computational cost + 0 –

Convergence rate 0 + 0

Harmonics up to 3H + + +

Harmonics above 3H + 0 +

Inhomogeneous β + + +

Inhomogeneous attenuation 0 + +

Inhomogeneous S.O.S. – 0 +

ing techniques. As an example of its potentials, it has been utilized to

test the feasibility of a new ultrasound imaging method, i.e. parallel trans-

mit beamforming using orthogonal frequency division multiplexing applied

to harmonic imaging. With this method multiple distinguishable narrow

beams with different center frequency are transmitted in parallel and a wide

angle beam is used for reception. Numerical studies show the capability of

this method to reduce the presence of unwanted side-lobes and meanwhile

increase the amplitude of the main beam as compared to standard parallel

beamforming. This will improve the signal-to-noise ratio and the penetra-

tion depth of a given imaging system. A drawback of the method proposed

is a reduction of the axial resolution due to utilization of pulses with a

narrower bandwidth. Measurements confirm the feasibility of the method

proposed for a practical transducer. It is shown that it is possible to mea-

sure distinct second harmonic components belonging to different channels

when an ultrasound transducer is excited with multiple gaussian modulated

pulses, each having a different center frequency.

7.2 Discussion

The work presented in this thesis can be used as a basis to investigate the following

extensions and applications of the numerical method described:

• In Chapter 2 we derived the integral equation which represents the the-

oretical fundament of our method. Spatial inhomogeneities in the small

signal sound velocity have been modeled via inhomogeneities in the static
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compressibility, considering the static volume density of mass to be ho-

mogeneous. Inhomogeneities in the static volume density of mass may be

included in the model via an additional contrast term. This additional term

is obtained by introducing a spatially varying volume density of mass in the

equation of motion [31].

• As shown in Chapter 4, the linearization of the integral equation introduces

a systematic error which appears to be relevant for the harmonics of the

fourth order or higher. A possible solution to overcome this limitation is

to generalize the assumption behind the linearization. The total acoustic

wave field p may in fact be considered as a combination of a primary field

pstart and a perturbation p̃. In Chapter 4, the linear incident field p(0)

is taken as primary field pstart. However, the primary field pstart can be

chosen arbitrary. The more the primary field pstart is similar to the actual

field p, the less is the influence of the perturbation p̃, and the smaller is

the error introduced by the linearization. For example, the primary field

pstart can be set equal to the output of the linearized method at a given

iteration [56, 57].

• In this thesis we only investigated the performances of three numerical

schemes, i.e. Neumann, Bi-CGSTAB and Steepest Descent. Other schemes,

or combinations of the one already investigated, may result in better per-

formances, e.g. with respect to convergence rate.

• In Chapter 6 we showed a possible application of the method developed. At

that stage the idea was to compare standard parallel beam forming and the

proposed OFDM technique when applied to the same array configuration,

by only interchanging the transmitter and receiver array. It is important

to stress that application of the OFDM technique described does allow for

parallel transmission and reception together, i.e. using the entire array for

transmission and reception. In this way the benefits shown by the OFDM

technique would increase further, at the cost of additional processing to

perform parallel beam forming in reception.

• The potentials of the method developed have not been fully investigated

in this thesis as the focus of the research presented was more towards the

extension of the original INCS method to model nonlinear propagation

through inhomogeneous biomedical media. As an example, with the cur-

rent extensions, it is now possible to test and compare different imaging

algorithms.



Appendix A
Appendix: Lossy Green’s function

combined with contrast source

approach

In this thesis, a compliance memory function is used to model attenuation. For

homogeneous lossy media, the losses may either be described as a contrast with

respect to a lossless background medium resulting in a real valued propagation

coefficient, a lossless Green’s function and an attenuation contrast source, or as

a property of the background medium resulting in a complex valued propagation

coefficient and a lossy Green’s function. In lossy media with spatially varying at-

tenuation, the same two approaches exist. Either, a lossless background medium

is taken and all the spatially varying losses are described via an attenuation

contrast source, or an attenuative background medium is taken and only those

(spatially varying) losses which deviate from the losses assigned to the back-

ground medium yield an attenuation contrast source. As in this thesis the INCS

method is used to model nonlinearity via a contrast source, it may sound logical

to model all the losses via an attenuative contrast source. In this Appendix, it

is investigated which of the two approaches works best for modeling nonlinear

propagation in lossy media. Here, only the Neumann iterative solution method

presented in Chapter 2 is used to solve the corresponding integral equation, and

only spatially varying attenuation and coefficient of nonlinearity are considered.
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A. APPENDIX: LOSSY GREEN’S FUNCTION COMBINED WITH

CONTRAST SOURCE APPROACH

A.1 Results

In this Section, two scenarios are used to demonstrate the numerical performance

of the method presented. First, results as obtained for a one-dimensional plane

wave propagating up to 100 mm through a linear lossy medium with inhomo-

geneities in the attenuation are presented and discussed. Lossy linear muscle

is considered as background medium and a lossy linear blood slap is positioned

from 20 mm to 40 mm depth. See Table A.1 for acoustical medium parameters.

This is referred to as scenario A. Next, results as obtained for the same scenario,

including nonlinear propagation, are presented and discussed. This is referred to

as scenario B. In both scenarios the pressure wave field is generated by a Gaus-

sian modulated pulse, resulting in a pressure field which, in the point x=0 mm,

equals

P (t) = P0e
−(2t/tw)2sin(2πf0t), (A.1)

with center frequency f0 = 1 MHz, window width tw = 3/f0 and peak pressure

P0 = 1 MPa.

A.1.1 Convergence

To investigate the convergence of both approaches, the same normalized error

utilized in Chapter 2, which equals

Err
(n)
1 =

∥∥p(n) − p(n−1)
∥∥∥∥p(0)

∥∥ , (A.2)

is used. The vector p(n) is the obtained pressure field after n iterations, and

p(n) = 0 for n < 0. The normalized error Err
(n)
1 is shown in Fig. A.1 in case a

lossless Green’s function (black) or a lossy Green’s function (gray) is respectively

used, both for scenario A (solid) and B (dashed). As visible, the normalized error

functional decreases faster in case a lossy Green’s function is used, especially

when nonlinear propagation is taken into account. For the scenarios analyzed,

application of a lossy Green’s function results in a reduction of the number of

iterations required equal to 10 for scenario A and 111 for scenario B. This is

due to the fact that modeling inhomogeneous attenuation solely via a contrast

source strongly affects the convergence, especially when nonlinear propagation

is considered, as the higher harmonics generated by the cumulative nonlinear

distortion experience a higher attenuation; resulting in an increasingly stronger

contrast.
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Figure A.1: Normalized error functional Err
(n)
1 for scenario A (solid) and B (dashed)

obtained using a lossless (black) or a lossy (gray) Green’s function.

A.1.2 In silico experiments

Fig. A.2 shows normalized frequency spectra for scenario A, at 100 mm depth,

obtained using a lossy (solid line) and lossless (dashed line) Greens’s function.

Normalization is performed with respect to the lossless case. Results show excel-

lent agreement between the two methods.

Fig. A.3 shows space-time domain results for scenario A obtained with both

methods. As visible, when the lossless Green’s function is used, an additional

reflection is shown at 100 mm depth. This additional reflection is caused by the

presence of an additional interface at the edge of the simulated domain.

Fig. A.4 shows normalized frequency spectra, up to the 5th harmonic compo-

nent, for scenario B as obtained using a lossy (solid line) and lossless (dashed line)

Greens’s function. Results show excellent agreement between the two methods,
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Figure A.2: Normalized frequency spectra of the propagating pulse, obtained at x =

100 mm. Normalization is performed with respect to the lossless case.

also in case nonlinear propagation is taken into account.

A.2 Conclusions

The results obtained using either a lossless or lossy Green’s function are in excel-

lent agreement with each other; whether nonlinear propagation is or is not taken

into account. However, when a lossy Green’s function is used, significantly less

iterations are required to solve the integral equation, especially when nonlinear

propagation is taken into account. This is caused by the fact that the losses

related to the background medium are included directly in the Green’s function.

Hence, the iterative process has to correct only for a relatively small effect when

compared to the application of an attenuation contrast source only. Further, uti-

lization of a lossy Green’s function automatically prevents for scattering artifacts

caused by truncation of the numerical domain.
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Figure A.3: Space-time domain results obtained with the (a) lossy and (b) lossless

Green’s function. Amplitude values are in dB relative to 1 Pa.
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CONTRAST SOURCE APPROACH

Table A.1: Acoustic medium parameters. The relation between a and α1 is

α1 = a(2π)−b.

Medium a b cbg β

[Np cm−1 MHz−b] [-] [m s−1] [-]

blood 1.6 · 10−2 1.21 1584 4.00

muscle 4.03 · 10−2 1.0 1580 4.72
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Figure A.4: Normalized frequency spectra of the nonlinear propagating pulse, ob-

tained at x = 100 mm. Normalization is performed with respect to the

lossless case.
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Appendix: List of configurations

Figure B.1 shows a diagram which provides an overview of all the configurations

utilized. For each configuration, a schematic drawing, the utilized source and

contrast types, and the applied solution method, are given.

113



114 B. APPENDIX: LIST OF CONFIGURATIONS

- Plane wave 
- Inhomogeneous β - Neumann 

- Linear array 
- Homogeneous - Neumann 

- Linear array 
- Inhomogeneous attenuation - Neumann 

- Plane wave 
- Homogeneous 

- Neumann 
- BiCGSTAB 
- Steepest  
Descent 

- Linear array 
- Homogeneous plus  
inhomogeneous attenuation 

- Neumann 
- BiCGSTAB 

- Linear array [skew domain] 
- Homogeneous  - Neumann 

- Plane wave 
- Inhomogeneous s.o.s. plus 
inhomogeneous β, attenuation and 

s.o.s.     

- Neumann 
- BiCGSTAB 
- Steepest  
Descent 

Config.                     Drawing                        Source and contrast          Solution method 

1 

2a 

2b 

3 

4a 

4b 

5a  
5b 

Figure B.1: Overview of the configurations utilized.
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Summary

The design and optimization of medical ultrasound modalities require a method

for modeling the propagation of pressure wave fields through biomedical tissue.

This method needs to be capable of modeling various phenomena in order to

provide a good approximation of the pressure wave fields simulated. Among

these phenomena are nonlinear propagation, attenuation, and scattering caused

by arbitrary inhomogeneities in the acoustic properties of the medium. Existing

methods for the numerical simulation of nonlinear acoustic wave field may be

grouped into two major categories; forward wave methods and full wave meth-

ods. Forward wave methods start with the pressure distribution at the transducer

plane, and propagate the field forward in a preferred direction which usually cor-

responds to the propagation of the main part of the field. Furthermore, many

methods that belong to this category, such as the KZK method, make use of a

parabolic approximation. Due to these facts, forward wave methods are inaccu-

rate for fields that (partly) propagate in directions that largely deviate from the

preferred direction of propagation, and in particular cannot deal with backscat-

tered wave fields. On the other hand, full wave methods do not involve a pre-

ferred direction of propagation. Finite Difference and Finite Element methods

are examples of full wave methods. However, as a drawback, these methods need

to sample at considerably more than 2 points per smallest wavelength and per

shortest period. As a consequence, the number of grid points needed to handle

a realistic computational domain soon becomes too large. The Iterative Non-

linear Contrast Source (INCS) method is a full wave method which avoids this

problem. Taking advantage of the filtered convolution method, it only requires
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two points per wavelength or period. Originally, the method was used to model

nonlinear propagation in homogeneous nonlinear media with frequency power

law attenuation. In this thesis the basic steps of INCS are conserved and the

method has been extended to deal with spatially varying attenuation, coefficient

of nonlinearity and speed of sound. The method developed uses a generalized

form of the Westervelt equation which includes a spatially dependent coefficient

of nonlinearity, speed of sound and relaxation function.

The generalized Westervelt equation may be recast into an integral equation

and solved using different iterative schemes. In this thesis three possible iterative

schemes have been investigated: Neumann, Bi-CGSTAB and Steepest Descent.

Neumann represents an intuitive and easily implementable iterative scheme that

allows with the treatment of moderate losses and nonlinearity. However, for

stronger contrasts, convergence is no longer ensured. Therefore, to extend the

method to deal with strong losses and/or realistic inhomogeneities in the speed

of sound, alternative iterative schemes are necessary. The first iterative scheme

tested is Bi-CGSTAB. This scheme is capable of coping with stronger contrast

than Neumann and has a faster convergence, but an increased complexity and

computational load per iteration. Furthermore, it comes with the cost of an ap-

proximation that influences the results obtained. In fact, the scheme requires

a linearization of the integral equation. This approximation introduces a sys-

tematic error that is relevant for the harmonics of the fourth order or higher.

In addition, for very strong contrasts, the scheme may diverge. To overcome

these limitations, Steepest Descent is tested as a second alternative to Neumann.

This scheme is capable of coping with stronger contrasts than Neumann and Bi-

CGSTAB and no linearization of the integral equation is necessary, but, when

compared to Bi-CGSTAB, it results in a slower convergence and in an increased

computational load. Despite its drawbacks, Steepest Descent represents, between

the schemes investigated, the scheme that allows the treatment of the broadest

variety of contrasts, e.g. strong losses and realistic inhomogeneities in the speed

of sound.

As an example of a possible application of the method developed, a feasibility

study of a new beam forming technique, i.e. parallel transmit beam forming us-

ing orthogonal frequency division multiplexing applied to harmonic imaging, has

been performed. With this technique, multiple distinguishable narrow beams

with different center frequencies are transmitted in parallel and a wide angle
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beam is used for reception. Numerical studies show the capability of this tech-

nique to reduce the presence of unwanted side-lobes and meanwhile increase the

amplitude of the main beam as compared to standard parallel beam forming.

These improvements are expected to positively influence the signal to noise ratio

and the achievable penetration depth of a given imaging system. A drawback of

the technique proposed is a reduction of the axial resolution due to utilization of

pulses with a narrower bandwidth. Measurements in water have been performed

and confirmed the feasibility of the technique proposed for a practical trans-

ducer. The possibility to excite an ultrasound transducer with multiple Gaussian

modulated pulses, each having a different center frequency, and the capability

to discriminate between the second harmonic components of each channel, are

confirmed.
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Samenvatting

Om transducenten voor medisch ultrageluid te ontwerpen en te optimaliseren, is

een methode nodig waarmee de voortplanting van drukgolven door biomedisch

weefsel gesimuleerd kan worden. Deze methode dient verscheidene verschijnselen

te kunnen simuleren om een goede benadering van de gemodelleerde drukgol-

ven te verkrijgen. Voorbeelden van deze verschijnselen zijn onder andere niet-

lineaire propagatie, demping, en verstrooiing veroorzaakt door arbitraire inho-

mogeniteiten in de akoestische eigenschappen van het medium. Bestaande meth-

oden voor de numerieke simulatie van niet-lineaire acoustische golfvelden kunnen

in twee groepen worden opgesplitst: voorwaartse golf methoden en integraal veld

methoden. Voorwaartse golf methoden beginnen met de drukverdeling op het

transducentoppervlak, en propageren het veld voorwaarts in een gewenste richt-

ing welke typisch overeen komt met de voortplantingsrichting van de sterkste

component van het veld. Bovendien gebruiken veel van deze methoden, zoals

bijvoorbeeld de KZK methode, een parabolische benadering. Als gevolg van

deze eigenschappen zijn voorwaartse golf methoden niet nauwkeurig voor velden

welke (deels) propageren in een richting die sterk afwijkt van de gesimuleerde

propagatierichting, en bovendien niet in staat om terugwaartse verstrooiing te

simuleren. Daarentegen hebben integraal veld methoden geen voorkeursrichting.

De Finite Difference en Finite Element methoden zijn voorbeelden van dergelijke

integraal veld methoden. Echter, deze methoden hebben als nadeel dat meer

dan twee punten per kleinste golflengte en kortste periode nodig zijn. Hierdoor

wordt het aantal rasterpunten dat benodigd is om een realistisch rekenkundig

domein te simuleren snel te groot om te behappen. De Iteratieve Niet-lineaire
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Contrast Bron (Iterative Nonlinear Contrast Source, INCS) methode is een in-

tegraal veld methode welke specifiek ontworpen is om deze beperking weg te

nemen. Door gebruik te maken van gefilterde convolutie, zijn slechts twee pun-

ten per golflengte nodig. Oorspronkelijk werd deze methode gebruikt om niet-

lineaire propagatie in homogene niet-lineaire media te simuleren, inclusief een

machtswet-model voor de frequentieafhankelijke demping. In dit proefschrift bli-

jft de gedachtengang van de originele INCS methode behouden en is de methode

uitgebreid om spatiële variatie in zowel demping als niet-lineariteitscoefficient en

geluidssnelheid te kunnen behandelen. De ontwikkelde methode maakt gebruik

van een gegeneraliseerde vorm van de Westervelt vergelijking welke een spatieel

varierende niet-lineariteitscoefficient, geluidssnelheid en relaxatiefunctie bevat.

De gegeneraliseerde Westervelt vergelijking kan herschreven worden tot een

integraalvergelijking, en opgelost worden met behulp van verscheidene iteratieve

methoden. In dit proefschrift zijn drie mogelijke iteratieve schemas onderzocht:

Neumann, Bi-CGSTAB en Steepest Descent. Neumann is een intüıtief en een-

voudig te implementeren schema waarmee gematigde demping en niet-lineariteit

behandeld kunnen worden. Echter, de convergentie is voor sterke contrasten niet

langer gegarandeerd. Derhalve zijn, om sterkere contrasten en/of realistische

inhomogeniteiten in de geluidssnelheid te kunnen simuleren, alternatieve meth-

oden noodzakelijk. Het eerste alternatieve schema is Bi-CGSTAB. Dit schema

kan sterkere contrasten aan dan Neumann en convergeert sneller, maar heeft een

grotere complexiteit en vereist meer rekentijd per iteratie. Bovendien is een be-

nadering noodzakelijk welke het eindantwoord bëınvloedt. Het schema vereist

namelijk een linearisatie van de integraalvergelijking. Deze benadering intro-

duceert een systematische fout welke significant wordt voor harmonischen van

vierde orde of hoger. Verder kan het schema voor zeer sterke contrasten diverg-

eren. Om deze beperkingen te verhelpen, is Steepest Descent als tweede alter-

natief voor Neumann getest. Dit schema kan sterkere contrasten aan dan zowel

Neumann als Ni-CGSTAB en de integraalvergelijking hoeft niet gelineariseerd te

worden, maar in vergelijking met Bi-CGSTAB heeft het een langzamere conver-

gentie en een hogere complexiteit en rekentijd. Ondanks deze nadelen is Steepest

Descent het schema dat de grootste diversiteit aan contrasten, bijvoorbeeld sterke

demping en realistische inhomogeniteiten in geluidssnelheid, aan kan.

Om een mogelijke toepassing van de ontwikkelde methode te demonstreren,

is een haalbaarheidsstudie uitgevoerd naar een nieuwe beam forming techniek

toegepast op niet-lineaire propagatie. De techniek maakt gebruik van meerdere

orthogonale frequenties, waardoor meerdere smalle bundels in parallel uitgezon-
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den worden welke met een brede bundel gelijktijdig worden ontvangen. Nu-

merieke simulaties tonen aan dat deze techniek in staat is om ongewenste zi-

jlobben te onderdrukken, terwijl de amplitude van de hoofdlobben in vergelijk-

ing met standaard parallele beam forming toeneemt. Deze voordelen zullen de

signaal-ruis verhouding en penetratiediepte van een gegeven afbeeldingssysteem

waarschijnlijk in positieve zin beinvloeden. Een nadeel van deze techniek is een

verminderde axiale resolutie aangezien pulsen met een beperktere bandbreedte

gebruikt worden. Metingen in water bevestigen de haalbaarheid van de techniek

voor een realistische transducent. Zowel de mogelijkheid om een ultrageluidtrans-

ducent gelijktijdig aan te sturen met meerdere Gaussische pulsen van verschil-

lende frequenties, als de mogelijkheid om de gegenereerde tweede harmonische

componenten van elk signaal te kunnen onderscheiden, zijn aangetoond.
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