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Executive Summary

Traditional aircraft wings rely on flaps and ailerons for flight control, which are usually optimized for
only one flight condition. To address this, morphing wings have been developed that can change shape
during flight to improve aerodynamic efficiency. Specifically, new research is exploring controlled
buckling—once seen as a structural failure mode—to create passive morphing systems. Thin-walled,
multi-layered composites can be used within these morphing structures to minimize weight. However,
during buckling, these structures are susceptible to matrix cracks and delaminations, these matrix cracks
allow delaminations to traverse multiple interfaces — a process referred to as delamination migration.
Although it is critical to experimentally obtain the failure loads of composite structures, the process of
manufacturing test samples and setting up high-fidelity experimental tests—including a complete set
of measurements—can be complex and expensive. Calling for advanced modeling techniques.

To effectively model these migrations, it is essential to understand the interaction between interlaminar
and intralaminar damage. This thesis represents a step towards developing a unified approach for
modeling both matrix cracks and delaminations in composite materials. Specifically, it introduces a
high-fidelity finite element methodology that explicitly models each layer in a multi-layered composite
structure as individual shells. This approach is crucial for simulating delaminations along arbitrary
interfaces, as it can be complemented with cohesive finite elements at all interfaces between laminae.

The developed model was then extensively analyzed. First, verification on the models is performed on
four benchmarks: free vibration, post-buckling behavior, beam twist, and beam roll-up. Four different
configurations were modeled, using one, two, four, and eight layers, while keeping the overall thickness
of the laminate constant across all cases. In the first model, the shell is excited by its first mode shape.
By comparing the results to the analytical solution, this model demonstrates that the rotational inertia
of each layer has been properly calculated. The second model tests how the four configurations respond
to the buckling load calculated for a single-layer shell. It confirmed that distributing the load across
all layers produces the same post-buckling response. The third model examines the behavior of a
thick shell under applied torque, evaluating its response to a large torsional deformation. The fourth
verification model is the classic Euler beam roll-up problem. In this case, a moment is applied at the
tip of the shell, causing it to roll into a circle. This model is widely used to test large deformations
and nonlinear behavior. The last two models revealed an issue with the current implementation of the
stability terms designed to prevent relative displacements between layers. While the term correctly
maintains separation between layers, it does not do so in the direction of the thickness, thus causing the
interpenetration of layers. The source of this issue has been identified, along with a potential solution.

Simple numerical experiments were conducted to evaluate the model’s ability to capture the coupling
behavior typical of composite materials. An out-of-plane load was applied to one edge to observe
whether a shell with a unidirectional layup twists under varying fiber angles. As expected, no twist
was observed for the 6 = 0° and 6 = 90° models, while the greatest twist occurred in the 6 = 30° model,
with a slight twist seen at 0 = 60°. However, when using an antisymmetric layup with symmetric
upper and lower halves, no twist was observed, confirming the anticipated behavior. This demonstrates
that altering the layup can negate the shear in each layer, effectively eliminating the twist. The final
numerical experiment involved an open hole tension test with a symmetric layup, where stress concen-
trations around the hole were compared against experimental results, indicating the direction of the
matrix cracks. A good agreement was observed between the two.

The results of this thesis demonstrate the feasibility of explicitly modeling each layer in a composite

laminate. This approach lays the groundwork for creating a unified framework that addresses both
intralaminar and interlaminar interactions.
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Chapter 1

Introduction

In recent years, the extensive use of advanced composites in various engineering disciplines has
generated significant attention, mostly due to their exceptional stiffness-to-weight ratio and tailorability.
From tennis rackets to large wind turbine blades, the utilization of composite materials spans a wide
array of applications [1-5]. The tailorability of composites allows for fine control of properties such as
specific stiffness, strength, and fracture toughness [3]. However, a good understanding of their failure
mechanisms and correct modeling approaches are needed in order to design safe structures.

1.1. Exploiting Buckling in Aerospace Applications

One promising application of buckling exploitation in aerospace is in morphing wings. These wings,
capable of changing their shape in-flight to optimize aerodynamic performance, require structures that
can dynamically adapt to external loads. The term “morph”, derived from the Greek word “morphos”,
meaning shape, highlights the ability of these wings to alter their form in response to varying flight
conditions [6]. A historical overview of morphing wing concepts can be found in [6].

During takeoff and landing, aircraft use flap control to adjust the wing’s aerodynamic properties,
increasing lift by extending the flaps to enlarge the wing surface and modify its camber. This enables
the aircraft to achieve the necessary lift at lower speeds, which is essential during takeoff and crucial for
maintaining control during landing. Similarly, morphing wings aim to optimize aerodynamic shape
for different flight conditions, adapting in real-time to improve performance during various phases
of flight, such as takeoff, cruise, and landing. By dynamically adjusting the wing’s shape, morphing
wings can enhance the flight envelope, control, and range. Moreover, they offer the potential to reduce
design, manufacturing, and maintenance costs by eliminating the need for multiple mission-specific
aircraft designs, replacing them with a single, adaptable system [6].

Fowler flap

Fowler flap aileron

Figure 1.1: Flaps and ailerons of a typical transport aircraft [7].
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An aircraft wing, traditionally equipped with flaps and ailerons is shown in Figure 1.1. One of the
more conventional morphing wing concepts is the Fowler flap, illustrated in Figure 1.2. This system,
in addition to enhancing the Fowler flap with an additional cambering function, also provides the
potential to completely remove the aileron. This concept is also called the “finger concept” since it is
based on an active rib structure, the individual elements of which, similar to the human finger, are
successively tilted towards each other via a kinematic coupling arrangement [7]. Since the ribs are
deflecting downwards, the upper and lower skin cannot be connected but should allow sliding over the
ribs to avoid buckling. At the trailing edge a linear slide bearing is thus needed. The fixed front section
is not changed to avoid a totally new design.

active deformable ribs

flexible trailing edge

flexible section

lower position ’

Figure 1.2: Position and design of active deformable ribs in the Fowler flap [6, 7].

Recent literature has proposed to incorporate buckling-driven mechanisms [8], such as localized
constraints that guide deformation, allowing for multi-stable configurations states where the wing
maintains stability under different aerodynamic conditions. Traditionally, buckling has been regarded
as a failure mode to be avoided as it is associated with large deformations and loss of load-carrying ca-
pacity [8]. However, the potential of controlled buckling lies in its ability to induce significant structural
deformations with minimal actuation input. By designing elements to operate within the post-buckling
regime, structural weight can potentially be reduced while maintaining the same load-bearing perfor-
mance. This is particularly relevant for composite materials, which offer high strength-to-weight ratios
and can be tailored to exploit buckling without compromising the overall integrity of the structure. In
the work of [8], the post-buckling behavior of the wing is tailored by the stiffness of the rear spar relative
to the rest of the structure. Buckling-driven mechanisms enable the structure to adjust its stiffness in
response to varying load conditions, see Figure 1.3.

»

77

-

Flexible
Tip

Figure 1.3: Model of wing box used to investigate the buckling-driven mechanisms of the rear spar [8].
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Controlled buckling mechanisms thus enable the development of passive morphing systems, which
respond automatically to certain aerodynamic loads without the need for complex active control systems
[8]. This opens up a wide design space for compliant mechanisms that utilize elastic instabilities to
achieve desired shapes and responses. However, these mechanism also influence the failure modes, e.g.,
skin-stiffener separation. In 2017, Davila and Bisagni [9] investigated the effect of damage on stiffened
post-buckled composite structures. During post-buckling, as the load increases, the initial buckling
causes out-of-plane displacements in the skin, which progressively increases. The delamination at the
skin-stiffener interface typically begins near a defect, in this case a teflon insert, and propagates both
along the flange and towards the loading direction. This propagation is driven by the out-of-plane
deflection, particularly at the inflection points where the skin moves away from the stiffener [9]. As the
delamination grows, the structural stiffness decreases, leading to a change in buckling mode and the
eventual collapse of the structure. The study shows that once delamination initiates, it can propagate
rapidly under continued cyclic loading, leading to a catastrophic failure. The change in buckling mode
is caused by the formation of a tunnel under the stiffener when it detaches from the skin, unsurprisingly
named “tunneling” [9]. Skin-stiffener separation is also known to lead to matrix cracking, occurring
right after skin-stiffener separation allowing the delamination to migrate into the skin [9, 10].

1.2. Modeling Damage in Composites

Based on the previously discussed skin-stiffener separation, and given the use of thin-walled multi-
layered composite components in aerospace applications, such as aircraft fuselages [2], it is crucial to
accurately model damage. The primary design objective is to minimize weight while effectively with-
standing external loads. However, simulating damage in these multi-layered composite components
presents several challenges due to their laminated and non-homogeneous nature [11].

For a multidirectional laminate, regardless of the complexity of the initial delamination process, the
progression consistently ends at the 0°/0° interface [12]. Off-axis laminae are particularly susceptible
to matrix cracking, which allows the delamination to traverse multiple interfaces until it reaches a 0°
lamina. At this point, further propagation is typically halted, as the 0° interface prevents additional
crack migration. Consequently, it can be observed that interlaminar toughness decreases as the lamina
angle increases. In one of the test cases, a pre-crack initiated delaminations at three additional interfaces,
one of which propagated opposite to the loading direction.

The process of manufacturing test samples and conducting physical tests, which typically involves
many samples and manual operations, is both costly and time-consuming. This has led to a growing de-
mand for more economically efficient methods of structural testing, increasingly relying on simulations
[13]. The development of accurate and computationally efficient formulations capable of predicting
the failure process of large-scale structures, is a complex and still ongoing task, even after decades of
research.

3
Fibre damage
,)_ 2 |
o L /
Intralaminar
matrix damage ‘ A
N ‘; 052
) 2
% 9o
(2]
[¢) 5 OO% foo Ply-‘to-ply
(¢] (oPge] o R
0000696 6%0%040 095 S 5232 interface
oo |

Delamination

Figure 1.4: Fiber, interlaminar and intralaminar damage [13].

Major modeling challenges stem from the inherent complex mechanics of damage, which occurs at
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scales that are orders of magnitude smaller than the structural components to be analyzed [11]. Damage
in laminated composites is typically classified into two categories, namely, intralaminar and interlaminar
damage, as shown in Figure 1.4. Intralaminar damage, confined to a single lamina, encompasses fiber
breaking, matrix cracking, and fiber-matrix debonding. On the other hand, interlaminar damage, also
known as delamination, occurs at the laminae interfaces, involving the physical separation of initially
connected laminae [11, 14].

When it comes to addressing intralaminar damage, the introduction of Continuum Damage Mechanics
(CDM) gave rise to significant progress. This approach aims to simulate, at the continuum level, the
equivalent effects of various intralaminar damage modes mentioned earlier. Noteworthy contributions
in this domain include the work of Ladeveze and Le Dantec [15], who utilized CDM to describe the
macroscopic and continuum-level effects of matrix cracking and matrix/fiber debonding.

The modeling and simulation of interlaminar damage is less complicated. One common approach
to simulate delamination involves the placement of cohesive interface elements between individual
layers of the composite [16, 17]. In this framework, the laminate is represented at the level of each
individual lamina. For instance, adjacent laminae with the same fiber orientation can be grouped into a
single, thicker lamina for modeling purposes [11]. The cohesive interfaces are introduced to establish
connections between laminae and enforce appropriate traction-separation relationships, known as the
Cohesive Zone Model (CZM). CZMs can be distinguished based on their implementation within the
model. Intrinsic cohesive models are inserted between elements before the simulation starts [18, 19].
Conversely, extrinsic cohesive models are inserted into the mesh after predicting the initiation of damage
[19, 20]. It is important to note that the extrinsic approach requires the development of a systematic
procedure, as nodes have to be created ad hoc and communicated to the rest of the calculation. Fur-
thermore, in parallel computations, implementing the extrinsic framework is not trivial, facing various
algorithmic challenges [16]. A drawback of both element types is that fracture can only occur where
these elements are put in place [19]. If damage has to be calculated at other locations, interface elements
have to be placed at these locations as well.

Several methodologies have been developed in recent years to model damage in fiber-reinforced com-
posite laminates. In 2008, Bruno et al. [21] proposed a framework integrating CDM and Fracture
Mechanics to capture the interaction between interlaminar and intralaminar damage mechanisms. In
2011, van der Meer et al. [22] introduced a computational approach for modeling progressive failure in
composite laminates, using the Phantom Node Method (PNM) for matrix cracking, interface elements
for delamination, and CDM for fiber failure. In 2012, Bouvet et al. [23] applied the CZM to simulate
matrix cracking and delamination during low-velocity impacts, where fiber failure was taken into
account using CDM. By 2015, De Carvalho et al. [24] combined the Floating Node Method (FNM) with
the Virtual Crack Closure Technique (VCCT) to model delamination migration in cross-ply laminates.
Also in 2015, Vigueras et al. [25] used eXtended Finite Element Method (XFEM) with a hybrid extrinsic
and intrinsic CZM to model interlaminar and intralaminar damage interactions. The PNM was used
to generate matrix cracks, with extrinsic cohesive elements inserted into the cracks, while intrinsic
cohesive elements were placed between the layers to simulate delamination. In 2018, Bazilevs et al.
[11] proposed a multi-layer modeling approach utilizing Kirchhoff-Love shell theory with the CZM
to simulate interlaminar damage, and CDM to model intralaminar damage. In 2019, Yun et al. [26]
developed a progressive damage model that integrates CDM and CZM, capturing interactions between
delamination and matrix cracks by accounting for the crack direction and the degradation of the consti-
tutive model. Finally, in 2020, Action and Leone [10] modeled delamination migration at a skin-stiffener
interface into the skin through a matrix crack using CDM and the CZM.

When using both CDM for intralaminar failure and CZM for interlaminar delamination, the earlier
mentioned interaction between interlaminar and intralaminar damage is unable to be captured, e.g.,
matrix cracks causing delamination growth or the the migration of delaminations to other interfaces as
mentioned before. This method is unable to resolve the high stresses at the tip of a transverse crack in
numerical simulations since elements where the transverse crack is predicted, soften without accurately
capturing the stress field at the interface [11, 21, 26]. traditionally, CDM is unable to correctly predict the
direction of crack propagation in composite materials since it does not account for the fiber direction. A
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simple approach to circumvent this limitation is to align the mesh of each layer with the fiber direction
manually and couple the laminae with constraints since the mesh does not align anymore [10]. This
results in cracks being constrained by a band of elements whose length has to be small enough to
capture this crack accurately. In contrast, the XFEM, FNM, and PNM in combination with cohesive
elements are able to capture the interaction by introducing discontinuities within the elements as cracks
develop. However, the system of equations grows in size during the simulation as additional degrees
of freedom are activated to represent these discontinuities.

In 1973, Reed and Hill [27] laid the foundation for the Discontinuous Galerkin method by developing a
methodology for solving hyperbolic Partial Differential Equations (PDEs). Recently, the Discontinuous
Galerkin method has been proposed for elasticity problems [28]. The method involves partitioning
the domain into individual element domains, which drastically increases the number of nodes and the
accompanying degrees of freedom [2, 28, 29]. The shape functions incorporate possible discontinuities
along interior element edges to describe the displacement field [19]. Stabilization integrals are intro-
duced to enforce displacement compatibility across the internal element boundaries prior to fracture
[2, 28]. These stabilization integrals are needed since they represent the internal forces keeping the
structure together. The result of this approach is that each element domain has its own nodes and corre-
sponding degrees of freedom; completely independent from neighboring elements. This approach of
splitting the domain into smaller element domains is not efficient and increases the computational cost
of the simulation. However, the Discontinuous Galerkin method is highly scalable since each element
domain has its own shape functions and boundary conditions, thus compensating for the increased
cost by computing the contribution of different interfaces in parallel [2, 19, 28]. Another advantage of
this method is that since each element already has its own domain, no new nodes have to be created
when damage is detected. Instead, cracks are initiated or propagated by deactivating the displacement
compatibility integrals across the internal boundaries in the weak form and substituting them with
traction-separation integrals [29]. Since this approach utilizes the CZM and the Discontinuous Galerkin
method, it is also called the Discontinuous Galerkin/Cohesive Zone Model (DG/CZM) approach [19,
29].

1.2
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(a) Intrinsic cohesive law including an artifical elastic compliance. (b) Extrinsic cohesive law without artificial elastic compliance.

Figure 1.5: Intrinsic and extrinsic TSLs.

When considering the challenges posed by the initial part of the traction-separation law, distinguishing
between intrinsic and extrinsic approaches becomes crucial. As mentioned before, the intrinsic approach
involves inserting interface elements before the simulation begins, where the traction-separation law
often contains an unphysical artificial compliance, see Figure 1.5a, resulting in a linear elastic region
prior to the actual softening region [16, 19, 30]. Placing such traction-separation laws at every interface
would yield unsatisfactory results, despite the effective modeling of delaminations. This is because the
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artificial compliance can significantly impact the accuracy of the computations [16].

Conversely, the extrinsic approach activates the interface element only upon the detection of damage
[20], see Figure 1.5b. However, this approach encounters computational challenges as nodes need
to be dynamically created and numbered during the simulation, leading to algorithmic difficulties
[16]. In addressing these challenges, the Discontinuous Galerkin framework adopts a hybrid approach,
incorporating elements of both intrinsic and extrinsic methodologies. The assumption is that damage
can be initiated at any internal boundary, allowing for the creation of damage at all these internal
boundaries. The softening process is activated when the stress-based failure criteria are satisfied,
providing a practical compromise between the advantages of intrinsic and extrinsic approaches. An
overview of several stress-based delamination failure criteria can be found in [31]. These criteria range
from simple maximum stress models to more complex ones that account for the interactions between
various stress components.

Finally, the thesis objective can be defined as follows:

Research Objective

To investigate the feasibility of high-fidelity Finite Element Methods for explicitly modeling each
layer in multi-layered materials subjected to large deformations and buckling at the component
level.

1.3. Thesis Outline

This thesis is structured as follows. Chapter 2 presents a comprehensive review of the existing literature,
beginning with an overview of current plate theories such as Equivalent Single Layer (ESL), Layer-
wise, and Zig-Zag theories. It then explores various approaches for modeling damage in composites,
including interlaminar and intralaminar damage models, and concludes by identifying gaps in the
literature. These gaps form the basis for the research questions. Chapter 3 starts by a description of the
kinematic framework and the weak form of the governing equations. Chapter 4 presents the results of
the verification studies and the numerical experiments into the behavior of composites, with an analysis
of the model’s accuracy in capturing these phenomena. Finally, Chapter 5 provides the conclusions and
recommendations. It summarizes the key findings, revisits the research questions posed in Chapter 2,
and offers suggestions for future research in this field.



Chapter 2

Literature Review

This chapter is organized into two key sections. First, Section 2.1 provides an in-depth review of various
plate theories, discussing their relevance to the analysis of multi-layered materials and highlighting
their respective strengths and applications. Following this, Section 2.2 delves into the methods used
for damage modeling in composite materials, with a focus on techniques such as CZM and other
frameworks for predicting damage and failure behavior. The chapter concludes by identifying a gap in
the literature.

This literature review aims to develop a clear understanding of the methods for analyzing and simulat-
ing both the kinematic assumptions and damage mechanisms in multi-layered materials.

2.1. Existing Plate Theories
2.1.1. Equivalent Single Layer

ESL theories are derived from 3D elasticity theory by making assumptions about kinematics or stress
distribution throughout the laminate’s thickness. This approach simplifies the analysis of a complex,
3D structure into a 2D problem [32, 33]. In ESL theories, the displacement field is assumed to be a linear
combination of unknown functions u;; and the laminate thickness coordinate zJ:

N

wi(x,y,z,t) = Z Zuii(x,y,t) 2.1)
=0

Theories belonging to this class are based on a priori assumptions involving a continuous displacement
field through the entire thickness of the plate. However, they are less accurate in the analysis of
structures exhibiting local nonlinear behavior which can be the case during large deformations [4, 5, 33].
Because of these simplifications, ESL theories typically offer limited accuracy in the modeling of e.g.,
interlaminar damage where the complex 3D stress state at the interfaces between layers must be known
[34]. However, these theories are primarily suited for the global response of undamaged, very thin to
relatively thick laminates, where the inability to resolve local stress and displacement field distributions
within the laminate is less problematic [4, 5, 33]. To model damage accurately, 3D brick elements can be
used, but such elements are computationally more expensive.

Classical Laminated Plate Theory
The simplest ESL plate theory is the Classical Laminated Plate Theory (CLPT), which is an extension of
the classical Kirchhoff-Love plate theory [35]. The corresponding assumptions are [33]:

1. Straight lines remain straight after deformation: Straight lines that are perpendicular to the
undeformed plate mid-surface (e.g., transverse normals) remain straight after deformation.

2. No elongation of transverse normals: The theory assumes that there is no elongation or con-
traction in the transverse direction of the plate, meaning that the thickness of the plate remains
constant during deformation. This assumption states that the transverse displacement is indepen-
dent of the thickness coordinate and the transverse normal strain ¢,, is zero.

3. Normals to mid-surface remain normal: The normal vectors to the mid-surface of the undeformed
plate rotate such that they remain normal to the mid-surface after deformation. This assumption
ensures that the transverse shear strains, ¢,, and ¢, are zero.
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In CLPT the following assumptions and restrictions are made [33]:

Individual layers are perfectly bonded (assumption).
Each layer has a uniform thickness (restriction).
* Linear-elastic material with three planes of symmetry (restriction).

Small strains and displacements (restriction).
e Zero transverse shear stresses on top and bottom surface (restriction).

Because of the restriction of small strains and displacements no distinction is made between the material
coordinates X and the spatial coordinates x. This means that no distinguishment is made between the
Second Piola-Kirchhoff and the Cauchy stress tensor, or between the Green-Lagrange strain tensor and
the infinitesimal linear strain tensor. The displacement field u satisfying these assumptions is derived

from the infinitesimal strain ¢,,. Starting with g—;‘ = —%, integrating both sides with respect to z gives:

/ g—g dz = f —%—‘; dz. Integrating and doing the same for v and w gives [33]:

awo

u(x,y,z,t) =uo(x,y,t) - 2= (2.2a)
d
o(x,,2,) = vo(x, ¥, 1) - z&ﬂ; (2.2b)
w(x,y,z,t) = wo(x, y,1) (2.20)
Where ug, v9 and wy represent the displacement components of the mid-surface in the x, y and z
directions, respectively. The terms z% and z‘;—“;o in the expressions for 1 and v, respectively, account

for the change in the out-of-plane displacement w with respect to the x and y directions along the
thickness of the plate, see Figure 2.1. Moderate rotations are in the order of of 10-15 degrees. In other
words, deformation is entirely due to bending and in-plane stretching [33]. This formulation neglects
the shearing of transverse normals. As a result the director (unit normal vector) is always perpendicular
to the mid-surface.

Figure 2.1: Kinematic assumption for CPLT using the Kirchhoff hypothesis [36].

First-Order Shear Deformation Theory
The displacement fields for FSDT by Reissner [37] and Mindlin [38] are typically represented by setting
the order N equal to 1 for u and v, but 0 for w in Equation 2.1 [33]:

u(x,y,z,t) = ug(x,y,t) +zx(x,y,t) (2.3a)
v(x,y,z,t) =vo(x,y,t) +z¢y(x,y,t) (2.3b)
w(x,y,z,t)=wol(x,y,t) (2.3¢)
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Where ¢, and —¢, in the expressions for u and v, account for rotations of the transverse normal about
the y and x axes, respectively, see Figure 2.2. Thus relaxing the third constraint of the Kirchhoff hypoth-
esis. When the ratio of in-plane dimensions to out-of-plane dimensions exceeds 50, the displacement
field of Equation 2.3 approach the displacement field of Equation 2.2 [33]. Hence, for thin plates CLPT
is used whereas for thicker plates FSDT is more accurate.

(Px = 3_1: (2.4a)
J
¢y = £ (2.4b)
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Figure 2.2: Kinematic assumption for FSDT [39].

Note that the in-plane strains vary linearly through the laminate thickness, whereas the transverse
shear strains remain constant. In reality, the stress distribution is at least quadratic or parabolic through
the laminate thickness [33]. The top and bottom surfaces are stress-free, and the maximum shear stress
occurs in the middle of the plate. This issue can be addressed by using higher-order theories such as
Second-Order and Third-Order theories, however, this is beyond the scope of this work. Another less
expensive solution is to use a shear correction factor «, which is computed such that the strain energy
of the transverse shear stresses matches that predicted by 3D-elasticity theory. Usually a x of 5/6 is
used, however, for laminated plates and shells this correction factor depends on the individual layer
properties, the layering scheme, and the loading and boundary conditions [33].

The work of Simo and Fox [40, 41] uses FSDT, but extends it to be geometrically exact. According to
Simo and Fox, geometrically exact in the case of shells means:
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Geometrically Exact

“Regarding the term “geometrically exact”. In any numerical solution procedure, there are two
different levels of approximation to be considered: the first level concerns the geometry of the
shell and the balance equations governing the motion of the shell; the second level is related to
the numerical solution of the governing equations. In the present context, the term “geometrically
exact” refers to the first level. Accepting the kinematic assumption which defines the class of
admissible motions, the geometry of the shell, as well as the balance equations, are treated exactly.
In comparison to other numerical treatments of shell theory, one less level of approximation is
made” [41].

The above definition for geometrically exact means that the following restriction on the model is
removed:

® Small strains and displacements (restriction).

Achieving geometric exactness with respect to the second level is not feasible when using the Finite
Element Method (FEM). The primary kinematic assumption in this work involves the shearing of the
normal vector, also known as the director. Unlike in Kirchhoff theory [42], where the director remains
normal to the mid-surface, here the director is allowed to shear (rotate). Typically, assumptions about
the maximum rotation are made, and the kinematics of this shell will be discussed in detail in Chapter
3.

Since composites can fail under small strains [25], Discontinuous Galerkin methods using regular plate
theory are still relevant. In 2021, Guarino et al. [32] proposed Discontinuous Galerkin formulations
for linear composite plates and shells using higher-order theories, including FSDT, Second-Order, and
Third-Order theories. In 2023, Guarino and Milazzo [2] extended this formulation to include nonlinear
kinematics. However, this model has not yet been applied to fracture modeling in composite laminates,
leaving opportunities for future research.

2.1.2. Layerwise Theory

Since ESL theories cannot accurately capture the 3D stress field, as mentioned earlier, more accurate
theories are needed to determine the 3D stress field, particularly in primary aircraft structures. To
achieve this, full 3D elasticity theory must be employed; however, this approach is quite expensive.
Consequently, the Layerwise theory developed by Reddy [33, 43, 44] has been introduced as an
alternative. In the Layerwise theory, each lamina has its own independent displacement field. The
Layerwise theory must satisfy the following stress continuity conditions at the interfaces between
laminae:

(k) (k+1) (k) (k+1)
Oxx Oxx Oxz Oxz
Oyy #9 Oyy and Oyz =4 Oyz (2.5)
O'xy O'xy Ozz Ozz

Since adjacent laminae generally have different orientations, a mismatch in stiffness occurs. Therefore,
the second condition implies:

(k) (k+1)
Exz Exz
Eyz #9 Eyz (2.6)
Ezz Ezz

In all ESL theories, it is assumed that the displacement field is a continuous function of the laminate
thickness, whether linear, quadratic, or of higher order. Consequently, the transverse strains at the
interfaces are continuous. However, this assumption leads to discontinuous transverse stresses at the
interfaces, which is contrary to the requirements outlined in Equation Equation 2.5 [33]. The Layerwise
theory addresses this issue by assuming that the displacement field exhibits only C’-continuity through-
out the laminate thickness, rather than C l—continuity as in ESL theories, as illustrated in Figure 2.3. This
approach ensures that while the displacement components remain continuous through the thickness,
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their derivatives do not, allowing for discontinuities in transverse strains.

The displacement fields satisfying Equation 2.5 is given by [33]:

N
u(x,y,z,t) =up(x,y,t)+ Z Uj(x,y,t)Dj(z) (2.7a)
=1
N
u(x,y,z,t) =vo(x,y,t)+ Z Vi(x, y,t)®j(z) (2.7b)
j=1
M
w(x,y,z,t) =wo(x,y,t)+ Z Wi(x,y,t)¥i(z) (2.7¢)
=1

Where U(x,y,0,t), V(x,y,0,t) and W(x, y,0, t) are 0 at the mid-surface of the plate/shell. Uj, Vi and
W; are the nodal values of the displacements U, V and W, N is the order of interpolation for the
in-plane displacement whereas M is the order of interpolation for the out-of-plane displacement. Thus
setting M to zero means that the laminate is inextensible in the transverse direction. ®;(z) and W;(z)
are continuous functions, e.g., one-dimensional Lagrange interpolation functions of the thickness
coordinate, that satisfy the condition:

D;(0)=0 (2.8a)
wi(0)=0 (2.8b)

The displacement fields for CLPT and FSDT can be obtained from Equation 2.7 by selecting appropriate
variables U;, V; and W;, and functions ®;(z) and W(z). E.g, for CLPT [33]:

J
N=1, M=0, ulz—%, Vi=-2% @ =2 2.9)

And for FSDT [33]:

N=1 M=0, Ui=¢x, Vi=¢y, P1=2z (2.10)

U I (D](Z)

Figure 2.3: Displacement field and linear approximation functions ®;(z) used in the Layerwise theory [33].
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2.1.3. Zig-Zag Theory

The main drawback of Layerwise theories lies in their significant computational expense, as the number
of layers in a laminate grows, so does the number of degrees of freedom [33, 43, 44]. This means that as
the complexity of the laminate structure increases, the computational resources required to analyze it
also rise.

Attempts to combine the advantages of Layerwise theory and ESL theories have led to Zig-Zag or
discrete-layer theories. The First-Order Zig-Zag Theory (FZZT) introduced by Sciuva [45] in the mid-
1980s is a novel class of laminate theory. In this theory, the in-plane displacements within a laminate are
assumed to vary linearly across layers and remain continuous throughout the thickness of the laminate.
However, what sets FZZT apart is its ability to achieve this continuity while maintaining only five
degrees of freedom per node, regardless of the number of layers in the laminate. This accomplishment
is made possible by ensuring that the transverse shear stress continuity conditions are analytically
satisfied at each interface within the laminate.

The assumed form of the Zig-Zag displacement fields is [33]:

u(k)(x/ ]// z, t) = UESL +f1(k)(z)¢)1(x/ y/ t) (2113)
o®(x,y,z,t) = vEst +f2(k)(2)¢z(x, y,t) (2.11b)
w®(x,y,2,t) = west 2.11¢)

Where f; and ¢; are determined such that the displacement and transverse stresses are continuous at

the interfaces. fz.(k)(z)(j),'(x, y, t) are the Zig-Zag displacement terms and describe the cross-sectional
distortions that are typical of multi-layered laminates.

In 2000, Cho and Averill [46] developed a refined Zig-Zag plate theory and a corresponding 3D
brick element with five degrees of freedom per node. In this theory the laminate can be split into m
sublaminates, each sublaminate consists of n perfectly bonded laminae. The displacement fields in the
mth sublaminate can be written as:

k=1
u(k)(x, ¥,z t) =uo(x, y,t) + zpx(x,y, ) + Z(z - zj)$1j(x, y,t) (2.12a)
=1
k=1
o®(x, y,z,t) =vo(x,y,t) +z¢y(x,y,t) + Z(z —zj)aj(x, y,t) (2.12b)
j=1
wh(x,y,2,8) = wp(x,y,0) (1= 7 ) + wil, v, 6) (5 (2.120)

This theory uses the FSDT superimposed by a continuity term, the shear stress continuity at the kth
interface, used to determine ¢1; and ¢»;, is expressed as:

O;kz) = O';k;l) and oikz) = aik;l) (2.13)
¢1j and ¢7; are determined by analytically ensuring continuous transverse stresses at the interfaces
between laminae, however, this limits these theories to elastic laminates without damage. It can be
showed that ¢1; and ¢»; depend on the ratios of shear properties between sublaminates and their
individual shear deformations. It is evident that the assumed displacement field in Zig-Zag theories
essentially consists of an ESL theory with an additional term to ensure interlaminar continuity. Another
key observation is that the second assumption of the Kirchhoff hypothesis is relaxed, transverse
deformations is allowed. w; and wy, are the transverse deflections of the top and bottom surfaces of the
mth sublaminate, respectively. Consequently, the displacement component w'*) varies linearly through
the sublaminate thickness whereas u*) and v(¥) vary piecewise linearly through the thickness.
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2.1.4. Global-Local Theory

In 1999, Williams [47] formulated the global-local theory, based on a dual-length-scale displacement
approach. This formulation includes layer displacement fields with global and local components,
allowing for flexible orders and functional forms. The novelty of this theory is the consideration of
different length scales, which is the main difference from existing theories. In the analysis of laminated
plates, this dual length-scale approach incorporating both global and local displacement fields offers
a computationally efficient alternative to Layerwise theories [4, 5, 47]. This theory adds additional
unknowns to the system, albeit not as many as the Layerwise methods, it is a compromise between
Layerwise and ESL methods. In other words, layers of interest can have a Layerwise displacement
field whereas the rest of the laminate—e.g., a group of laminae with the same orientation—has a
computationally less expensive ESL field.

The displacement field for the kth layer is assumed to be [4, 5, 47]:

uB,y,z,0) = 3 Uy, )¢, (2) + Y 0P x,y,He (@) (2.14a)
reP seP®)

0O, y,2,) = > Ui,y d@) + > VP y, 000 E) (2.14b)
rep sePpk)

wb(x,y,z,6) = D W (x,y,06,(2)+ Y Wy, Hd" (@) (2.14c)
rep sepk)

The indices r and s vary over the ranges r € [Jmin, Jmax] and s € [Tmin,fmax]. The parameters Jmin and
Jmax correspond to the minimum and maximum orders of the global displacement expansion, while Tmin
and Jmax indicate the limits of the local displacement expansion within a layer. The global coordinates
are defined as x, y, and z, with the reference plane established at the laminate’s mid-surface (z = 0).
The local coordinates for a layer, which can include multiple laminae, a single lamina, or a sublamina
region, are represented by x, y, and Z, satisfying the condition zx_1 < z < zx [47].

The following definitions are chosen [3]:

¢r =z and ¥ =z (2.15)

The terms included in the global expansion and the local expansion for the kth layer are defined by
the sets P and P%). For examplg, if P := {0,1,2,3}, the global expansion becomes a complete cubic
polynomial in z. Meanwhile, if P¥) := {1}, the local expansion is limited to a single linear term.
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2.2. Modeling Damage in Composites

As previously explained, damage in composites can be classified into two main categories: interlaminar
damage and intralaminar damage. To model these types of damage, various finite element modeling
techniques are employed, including the VCCT, CZM, and XFEM, as illustrated in Figure 2.4. Within
the scope of XFEM, alternative techniques such as the PNM and FNM are also encompassed. The
XFEM can model both types of damage: intralaminar damage by simulating cracks within laminae,
and interlaminar damage by simulating cracks between laminae. However, they are often used in
conjunction with methods like CZM and VCCT to model crack propagation [48].

{Fracture Modeling}

|
| !

Interlaminar Fracture Intralaminar Fracture

! l

VCCT CczM XFEM XFEM

Figure 2.4: Flowchart of fracture modeling methods (adapted from [48]).

2.2.1. Interlaminar Damage

In 2000, Sprenger et al. [34] developed a methodology to model delamination in composite structures
through the use of 3D-shell elements, shell elements, with a finite-thickness interface element. The
authors introduced a modified eight-node brick element, these elements are then used to model the
individual laminae. To model delamination, Sprenger et al. extended Hashin’s criterion, incorporating
a softening law characterized by a damage parameter that describes the slope of the softening curve.
Due to the use of solid elements, the complex stress states at element interfaces was able to be captured
more effectively, based on the DCB test results (see Figure 2.5). There seems to be a reasonably good
agreement between the developed eight-node element and the experimental results. However, the
results were found to be too stiff, especially in the initiation of damage. Standard 3D elements with 27
nodes have also been used to model the laminae, and a much better match can be seen. The authors
suggest this could be due to the displacement elements used to discretize the interface layer, these
elements do not effectively capture the detailed stress variations inside interface layer [34].

120 T T T

Aliyu experiment —— |+
8-noded element &8
27-noded element s

80

60

Force [N]

40

20 | : 1

Displacement w [mm]

Figure 2.5: Load versus displacement of DCB test: experimental and numerical results of the proposed eight-node shell element
and quadratic 27-node volume elements for modeling the laminae. The 27-node element shows much better agreement with
experimental results [34].
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Later, in 2008, Balzani and Wagner [14] developed an isoparametric hexahedral finite element model to
simulate delamination in unidirectional fiber-reinforced composites using a cohesive zone approach.
The model incorporates two constitutive laws to represent delamination behavior: one with linear
softening and another with exponential softening. The composite strips are modeled using quadrilateral
FSDT shell elements from Subsection 2.1.1 and damage is modeled by utilizing a solid-like interface
element, characterized by a very thin initial thickness, to simulate the fracture process accurately. Note
that the area under the curve in Figure 2.21b is now divided by the initial thickness instead of the
initial length. The exponential softening law is designed to initiate delamination only under tensile
normal stresses and includes a penalty term to prevent crack face interpenetration. Balzani and Wagner
validated their model through numerical examples, including the DCB test (see Figure 2.6), demon-
strating good agreement with the same experimental data as in Figure 2.5 and analytical solutions. The
exponential softening model is noted for its better convergence compared to the linear softening model,
using a realistic Mode I interface strength ¢ and number of elements 7. The linear softening model
failed to converge using the same strength and mesh as the exponential softening model. Finally, as
expected linear unloading to the origin is observed.
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(a) Load-displacement curves of DCB test using the bilinear model: (b) Load-displacement curves of DCB test using the exponential
experimental and numerical results. model: experimental and numerical results.

Figure 2.6: Load versus displacement of DCB test where o) is the Mode I interface strength and 7 is the number of elements in
the mesh [14]. The exponential softening curves show better convergence compared to the bilinear ones. This can be seen in the
solid black curve for linear softening, where convergence stops for similar properties as the exponential curve.

In 2014 and 2015, Versino et al. [4, 5] proposed both linear (small deformation) and nonlinear (finite
deformation) shell models utilizing the DG/CZM method in the thickness direction for composites.
The Discontinuous Galerkin fluxes effectively maintain interlaminar continuity in perfectly bonded
laminates, allowing for a seamless transition to a delaminated state. The Discontinuous Galerkin
method ensures numerical consistency in representing interfacial debonding by utilizing the interior
penalty method from [28]. This study uses the Global-Local framework (see Subsection 2.1.4) allowing
for the superposition of global and local displacement fields which could be used to model the coupling
between effects related to different length scales, e.g., coupling between interlaminar and intralaminar
damage. The performance of this formulation was validated through several numerical examples,
including: perfectly bonded and delaminated surfaces and the DCB test. The results for the DCB test,
see Figure 2.7, demonstrate the current framework’s capability to accurately capture delamination
initiation and propagation using the DG/CZM method. However, while the director is utilized in this
work, only the displacement degrees of freedom are considered. The rotation of the director is neither
determined nor updated as the shell deforms. Additionally, this approach only accounts for opening
displacements (Mode I), neglecting the influence of shear forces on delamination growth.
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Figure 2.7: Load versus displacement of DCB test for several element lengths I: experimental and numerical results using the
proposed four-node interface element [5]. Convergence towards analytical solution is observed as the mesh is refined.

2.2.2. Interlaminar and Intralaminar Damage

In 2008, Bruno et al. [21] developed a methodology to investigate the interaction between interlam-
inar and intralaminar damage mechanisms in fiber-reinforced composite laminates. Note that with
interaction is meant taking into account intralaminar damage at the integration points of the laminae
to calculate the ERR. The theoretical model is based on a thermodynamic framework, integrating
both CDM and Fracture Mechanics. This dual approach allows for the simulation of homogenized
distributed microcracks (intralaminar damage) and interfacial delamination processes (interlaminar
damage) respectively. The laminate description employs the FSDT plate theory alongside an interface
methodology. This combination ensures accurate ERR mode mix calculations while maintaining low
computational costs. The numerical modeling is implemented through a finite element approach where
linear elastic interface elements with high stiffness properties are used to simulate the mechanical
behavior between laminate layers. Numerical results are provided for various loading conditions,
including pure mode I, mode II, and mixed-mode. These results highlight how intralaminar damage
mechanisms intensify ERR, thus accelerating growth of the delamination front. For example, in a
mixed-mode loading condition involving a DCB specimen, the ERR components normalized over their
critical values showed that intralaminar damage mechanisms lead to a higher ERR prediction compared
to Linear Elastic Fracture Mechanics (LEFM), consequently crack growth is predicted to occur sooner.
Additionally, sensitivity analyses in terms of the ERR and comparisons with the LEFM framework were
performed, see Figure 2.8. These analyses demonstrate that while LEFM provides realistic results for
laminates with small fiber orientation angles, hence minimal intralaminar damage, it underestimates
the ERR for structures subjected to transverse or shear loads, where intralaminar damage mechanisms
are significant. The maximum percentage error observed in these predictions ranged from 20-25%.
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Figure 2.8: Normalized value of the ERR for Mode I versus the layup angle 0 for the laminate [62/6;] under two Load Factors
(LF), comparing both LEFM and the proposed formulation. As the angle increases, intralaminar damage increases, thus increasing
the ERR. Effectively this lowers the load at which damage occurs [21].

In 2011, van der Meer et al. [22] developed a computational framework to model the progressive failure
of composite laminates, integrating several different techniques to accurately simulate interlaminar
and intralaminar damage mechanisms. For matrix cracking, the PNM, a variation of the XFEM, was
employed. This method allows for a mesh-independent representation of matrix cracks as straight
discontinuities within the displacement field, effectively capturing the progression of cracks within the
laminae and providing a detailed simulation of intralaminar damage. Interlaminar damage, specifically
delamination, was modeled using interface elements designed to simulate the separation between
laminae. The delamination model incorporates a cohesive zone approach with a damage law that uses
linear softening to relate traction to displacement jumps. A fine mesh is needed to capture the cohesive
zone for delamination properly. If this requirement is not met, an oscillatory response is found and
convergence problems arise before final failure [17, 49], see Figure 2.9. The reason for this, as stated in
[17], is that the fracture energy released increases for larger elements.

Phantom Node Method

The PNM is used to model discontinuities in finite element analysis by introducing additional
"phantom" nodes. Each original node is paired with a phantom node, thus doubling the number
of nodes in the element. When a crack intersects an element, these additional nodes are activated
to form sub-elements on each side of the discontinuity. Stiffness and force calculations are
performed only for the active parts of these sub-elements [22, 50]. The PNM is shown to be
equivalent to the XFEM with Heaviside enrichment for strong discontinuities (cracks) [50].
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Figure 2.9: DCB load-displacement curves in relation to the number of interface elements within the numerical cohesive zone. It
is observed that the response becomes oscillatory when less than two elements have been used in the process/cohesive layer [17].
A convergence study is needed to match the response.

This work makes two simplifications in order to limit the computational cost. First, analyses are
performed in a plane stress state instead of explicitly modeling the thickness. Furthermore, out-of-plane
and bending deformations are not part of the model. As a result the interface elements can only capture
shear delamination since out-of-plane displacements are neglected. The second simplification is that the
mesh is only refined in part of the region where damage is allowed, outside of this region no damage
can happen and individual layers are rigidly tied together. The elastic stiffness of the interface elements
is calibrated to represent the through-the-thickness shear deformation of the laminae, utilizing the
in-plane shear stiffness and ply thickness. This choice simplifies the model since the stiffness is not
orthotropic and does not depend on the fiber direction. Fiber failure was addressed using a continuum
damage model with isotropic softening. This model tracks the maximum strain in the fiber direction
and initiates damage when the strain exceeds a critical threshold. An exponential softening relation
is then used to simulate fiber failure. The effectiveness of the computational framework was verified
through open-hole tension and Compact Tension tests, the results of the Compact Tension test are given
in Figure 2.10.
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Figure 2.10: Compact Tension test load-displacement curves: simulations for [45/90/-45/0]c laminates with varying crack
spacing (defined as the normal separation between pre-existing cracks), and experiments for [45/90/-45/0]4s laminates. The
results match before damage initiation but not after, when the experimental tests show a higher load. The authors suggest this
could be due to fiber bridging, which is not taken into account in the damage model [22].

The results for the simulations are obtained by varying the crack spacing, defined as the normal separa-
tion between pre-existing cracks. New cracks can only be added when this separation is larger than the



2.2. Modeling Damage in Composites 19

specified crack spacing. These result show that initially the numerical and experimental results match
really well, however, not after damage has been created. The authors suggest this could be due to the
fiber damage evolution law, which does not take into account fiber bridging, resulting in the fracture
toughness being much lower compared to the experimental results.

In 2012, Bouvet et al. [23] used the CZM to simulate both interlaminar and intralaminar damage, and
the permanent indentation (plastic dent) in composite laminates subjected to low velocity impacts. The
methodology integrates three primary damage types observed during impact: matrix cracking, fiber
failure, and delamination, each addressed in this model. Intralaminar damage, or matrix cracking is
simulated using interface elements based on Hashin’s failure criterion. These elements represent the
cracks that propagate through the thickness of the ply. The model employs a mesh of longitudinal
strips with one volume element in the ply thickness, connected by zero-thickness interface elements
normal to the transverse direction. This setup captures the discontinuity created by matrix cracks,
which is essential for accurately simulating the impact damage morphology. However, the model
simplifies certain aspects by assuming instantaneous propagation of matrix cracks through the ply
thickness and neglecting small or angled matrix cracks, focusing instead on the largest possible cracks
that run through the entire thickness. Fiber failure is simulated using a CDM approach in the volume
elements, the model applies a failure criterion to determine the initiation and progression of fiber failure
within the composite material. This method ensures that the reduction in strength due to fiber breakage
is represented in the simulations. Interlaminar damage is simulated using zero-thickness interface
elements based on fracture mechanics. This approach captures the separation between laminae, which
are meshed separately. Damage initiation and propagation occurs at the interfaces between the meshed
strips representing individual laminae. Experimental observations have shown that matrix cracking
debris can block crack closure, contributing to permanent deformation. This model includes this
phenomenon by introducing a "plastic-like" behavior in the interface elements, which models the effect
of the debris by limiting the closure of the interface and is supposed to capture the plastic indentation
observed in experiments. The model’s validity is assessed through numerical tests in the commercial
software ABAQUS/Explicit [51], and the numerical impact force versus displacement and time are
compared with experimental data, see Figure 2.11. The validation also focuses on the simulated shape
of the deformation, e.g., the delaminated first interface on the opposite side of the impact as can be seen
in Figure 2.12.
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Figure 2.11: Experimental and numerical curves of impact force versus time and displacement, a reasonably good match is
observed [23].
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Figure 2.12: Maximum deformed mesh during 25 Joule impact showing matrix cracks and delaminations at two cuts: 0 and 90
degrees [23].

Floating Node Method

In the FNM, "floating nodes" are introduced into the element; these nodes are termed "floating"
because they do not require predefined position vectors like regular nodes. Once a strong discon-
tinuity is detected, the element is split into sub-elements based on the intersection coordinates
of the crack with the element boundaries. Unlike the PNM, this approach directly uses these
intersection coordinates to define nodal positions for each sub-element, thereby simplifying the
mapping and integration process to be as straightforward as remeshing [50].

In 2015, De Carvalho et al. [24] proposed a combination of the FNM, proposed by Chen et al. [50] in 2014,
with the VCCT to model Delamination Migration in cross-ply tape laminates. This approach is designed
to model delamination migration, which involves the propagation of a delamination from one interface
to another through matrix cracks. By integrating delamination, matrix cracking, and their interactions
within a single element utilizing the FNM, this method attempts to represent the kinematics involved
in these processes. In this method, 2D elements with 4 real nodes and 16 floating nodes are used, the
floating nodes are assigned to edges or the internal volume of the elements. The floating nodes do exist
from the start of the simulation but are inactive until damage is created, at this time they are assigned
to the strong discontinuity/crack. This is a key aspect of this methodology, its ability to determine the
onset and path of migration, independent of the mesh. This is achieved by explicitly representing both
delamination and matrix cracks within the elements. The ERRs at each crack position are calculated
using VCCT using the force required to keep the crack closed, assuming the crack propagates in a
self-similar fashion along its forward projection. This is an important assumption since it allows for
the determination of the force and the relative displacements, thus being crucial for the application of
VCCT. The delamination growth is assumed to grow when the Critical Energy Release Rate (CERR)
of the interface is equal to a failure criterion taking into account Mode I and Mode II release rates.
Similarly, matrix cracks are assumed to follow a mode I propagation path in the transverse isotropy
plane, perpendicular to the fibers, using their own failure criterion.

Virtual Crack Closure Technique

The most prominent LEFM approach is the VCCT. The VCCT uses an energy-based criteria to
predict delamination propagation along paths aligned with element edges. A limitation of this
technique is that the prediction of damage initiation is not possible and needs predefined cracks
to work [14].

The interaction of damage in this framework is demonstrated through the delamination migration test,
which serves as a validation for the proposed approach. The results from the delamination migration
test simulations show a reasonably good agreement with experimental observations, see Figure 2.13.
The study found that maximum load is primarily influenced by load-offset L (distance between applied
load and initial delamination tip), initial delamination length, and interface toughness, as these factors
directly affect the delamination fracture criterion. On the other hand, migration location is affected
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mainly by load-offset and matrix fracture toughness. The dependency on load-offset was anticipated
since it alters the location where the shear traction sign changes, thereby controlling the migration
location. Additionally, a sensitivity analysis revealed that increasing the baseline fracture toughness of
the matrix changes the migration onset location by increasing the distance between the migration onset
and the initial delamination tip. However, decreasing the baseline matrix fracture toughness does not
affect the migration location.
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Figure 2.13: Load-displacement curves for several load offsets L (distance between applied load and initial delamination tip),
where gy is the initial delamination length, and the moment of delamination migration is indicated after unstable delamination
growth (sharp drop in load) [24].

In 2015, Vigueras et al. [25] used XFEM with the CZM to model damage in composites. XFEM was
chosen for its ability to initiate cracks independently of the mesh, avoiding the need for remeshing,
or predefined fracture paths. For interlaminar failure, an intrinsic CZM was used. This model was
calibrated using experimental data, specifically DCB tests. This allowed the model to capture the
progressive damage and energy dissipation during delamination. In contrast, intralaminar failure was
modeled using an extrinsic CZM embedded within the XFEM framework. As explained previously, this
extrinsic approach activates cohesive elements only upon crack initiation. The crack propagation was
driven by a modified Rankine tensile stress criterion, which dictated the orientation of the cracks based
on local stress conditions. This combined XFEM/CZM method allowed for the modeling of matrix
cracks, as well as their interaction with delamination. The XFEM enrichments, which add additional
degrees of freedom to capture the crack geometry, were applied locally, limiting their effects to elements
near the crack. This localized enrichment approach minimized the impact on computational resources
and allowed the rest of the domain to use standard FEM formulations. The composite structure was
partitioned into subdomains, each assigned to a processor. Because the XFEM enrichments are defined
locally, the model avoided unnecessary global communication between processors. The implemen-
tation demonstrated good parallel scalability based on a speed-up analysis, with the model showing
near-linear scalability in both explicit and implicit XFEM simulations up to 2048 processors.
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eXtended Finite Element Method

The XFEM is used to model discontinuities in finite element analysis by enriching standard
shape functions with additional terms that account for cracks or other discontinuities. Unlike
traditional methods, XFEM does not require the mesh to conform to the crack geometry. Instead,
special enrichment functions, such as the Heaviside function for strong discontinuities, are
introduced. Elements are divided into standard elements, blending elements, and reproducing
(cracked) elements. This allows XFEM to model cracks accurately without re-meshing as the
crack propagates [52].

In 2018, Bazilevs et al. [11] introduced a multi-layer approach for the simulation of interlaminar and
intralaminar damage in composite laminates, integrating Kirchhoff-Love shell theory with cohesive
zone modeling techniques. The core of their approach is the Kirchhoff-Love thin shell model, which is
used to model each lamina independently, connected by interface elements that allow for transverse
shear deformation of the entire laminate. The reason for selecting Kirchhoff-Love shells is to avoid
the transverse shear locking of FSDT, however, the rotational degrees of freedom are neglected which
means it cannot be used with large deformations. To simulate intralaminar damage, the authors
employ CDM, thus modeling the equivalent effects of various damage modes, such as matrix cracking,
fiber breaking, and fiber-matrix debonding, at the continuum level. These damage mechanisms are
implemented to degrade the original elastic properties of the material based on a linear failure criteria,
providing a realistic simulation of damage initiation and progression within the laminates. Furthermore,
the authors utilize a zero-thickness cohesive-interface element to model delamination and transverse
shear in the entire laminate, even though shear is neglected in laminae. The proposed interface
element is actually a penalty contact formulation enriched with a Mixed-Mode cohesive law combining
opening (Mode I) and shear (Mode II) modes. While allowing for modeling of the delamination
process, a separate interpenetration constraint is needed after the elements have failed. Validation of
the proposed framework is performed using standard tests such as the DCB test, the results can be
seen in Figure 2.14. The load-displacement curves are shown for three simulations and LEFM with a
reasonably good agreement. The three simulations are performed using different interface strengths 9,
each progressively stronger, which delays the point of damage initiation. Additionally, the model has
been compared to FSDT. The transverse shear of the laminate is modeled by adjusting the cohesive
penalty stiffness, essentially allowing the layers to shear along each other. When the stiffness is infinite,
no transverse shear is modeled because the Kirchhoff assumption is enforced throughout the thickness.
However, the authors suggest that with a non-zero stiffness, shear is effectively modeled. Using the
appropriate penalty stiffness, a good agreement with FSDT was achieved. However, this does not
actually model shear so its general accuracy remains doubtful.
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Figure 2.14: Load-displacement curves for the DCB test, obtained for several interface strengths 2 and LEFM, are presented.
A reasonably good agreement can be observed; as expected, higher interface strengths delay the initiation of damage without
significantly affecting delamination propagation [11].
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In 2019, Yun et al. [26] developed a progressive damage model to reflect the interaction between de-
lamination and intralaminar cracks in Fiber-Reinforced Polymer (FRP) laminates. This methodology
integrates a CDM model with a CZM to simulate and predict the fracture behavior and ultimate load
of composites under quasi-static loading conditions. This study models intralaminar cracks using a
CDM approach, and for delamination, a CZM with a mixed bilinear law is employed. The authors
state that when using both CDM for intralaminar failure and CZM for interlaminar delamination, the
interaction between interlaminar and intralaminar damage is usually not captured, e.g., matrix cracks
causing delaminations or the the migration of delaminations as mentioned before. Usually the CZM
combined with CDM is not able to resolve the high stresses at the tip of a transverse crack in numerical
simulations since elements where the transverse crack is predicted, soften without accurately capturing
the stress field at the interface [26]. Additionally, attempts to visualize the crack path in off-axis tensile
test simulations show that this approach does not explicitly represent the kinematics of the cracks since
only the constitutive response is degraded [53]. Finally, a disadvantage of using a CZM together with
CDM is that failure is modeled less accurately because the stress concentration caused by matrix cracks
cannot be captured when reaching an interface between cohesive interfaces and solid elements [24].
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Figure 2.15: Simulated and experimental load-displacement curves for the delamination migration problem [26]. A similar drop
in load as in [24] is observed at the point of migration.

This approach is the first to effectively capture interactions of interlaminar and intralaminar damage
modes in composites using the CZM and CDM frameworks. However, to do this with the standard
CDM would not be possible based on the earlier mentioned limitations. The CDM must thus be able
to consider the direction of the matrix crack next to the degradation of the constitutive model. For
interlaminar damage, a Mixed-Mode TSL, combining Mode I and Mode 1II, is used. Interaction is
included by considering the degradation of the interlaminar CERR following intralaminar damage
such as fiber and matrix damage. It is assumed that the surface in which matrix cracking occurs is
parallel to the fiber direction, the angle of the surface’s normal vector with the direction perpendicular
to this surface is « is referred to as the crack direction parameter. This parameter depends on the
stress components perpendicular to the fibers. The damage parameter and the new direction parameter
are updated iteratively as damage is created, ensuring that the propagation of intralaminar cracks
is captured. The degradation of the interlaminar fracture energy following intralaminar failure is
also considered, allowing the model to reflect the interaction between different damage mechanisms
effectively. To model this, a meso-level FEM is developed using the commercial software ANSYS [54] to
predict the progressive failure of intralaminar and interlaminar damage, as well as their interaction
in laminated composites. The composite layers are meshed with structural solid elements, while the
interfaces between layers are modeled with cohesive zone elements from the ANSYS element library. If
an element is damaged, the corresponding damage variable and crack direction are calculated, leading
to stiffness degradation as defined by the damage evolution model. Numerical simulations showed
good agreement with experimental data, particularly in terms of the load-displacement curve and the
point of delamination migration, corresponding to the sharp load drop, see Figure 2.15. The model
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consists of only 0° and 90°-degree plies with a pre-crack defined at the interface between 0° and 90°-
degree laminae. Initially, the delamination grows along the pre-crack direction. Subsequently, the crack
propagates into the adjacent 90°-degree lamina as a matrix crack. Delamination growth is stopped until
the point of migration, after which the load drops and it continues along the adjacent interface.
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2.2.3. Cohesive Zone Model

Zero-Thickness Cohesive Elements

In 1960, Dugdale [55] introduced the idea that uniform tractions, equal to the yield stress, are trans-
mitted through a narrow yield zone ahead of a crack tip in materials that exhibit plastic behavior.
Independently, in 1962, Barenblatt [56] introduced cohesive forces to capture the influence of inter-
atomic interactions in polycrystals. This perspective views fracture as a gradual process, wherein
separation occurs across an extended crack tip or cohesive zone, countered by cohesive forces, as
seen in Figure 2.16. This conceptualization of fracture allows for the integration of essential fracture
parameters, such as maximum cohesive traction and fracture energy—the area under the cohesive law
of the material—into the analysis [20, 57]. An appealing aspect of this approach is its flexibility, as it
does not assume a specific constitutive response in the bulk material, nor does it rely on predefined
assumptions regarding the extent of crack growth or the shape and location of successive crack fronts
[20].
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Figure 2.16: Gradual development of fracture surface and numerical cohesive zone length [17].

The parameter G, representing the ERR, serves as a widely utilized parameter to describe delamination
behavior in composite structures. It quantifies the energy released per unit area associated with the
newly opened crack surface. In the context of predicting delaminations, a popular approach relies on
fracture mechanics: the ERR G is compared with the critical value G, and delamination is identified
when all interlaminar stresses reach zero [34]. To accurately capture energy dissipation during damage
evolution and prevent mesh-size dependency in the numerical solution, the slopes of the softening laws
are determined as functions of both the fracture toughness G, and the characteristic length L [58]:

G. = L/Sf o(e)de (2.16)
0

CZMs offer a method to characterize materials displaying strain-softening behavior. At their core lies
the assumption that alongside the actual crack, there forms a fictitious crack, often termed the process
zone, extending from the real crack [16, 59]. Within this zone, the material, despite undergoing damage,
retains the ability to transmit stresses. Unlike LEFM, which presupposes an instantaneous drop in
stress to zero upon crack initiation, CZMs recognize a gradual decline in stress as the crack opens [16].
This decline continues until a critical displacement is reached, at which point the interaction ceases. In
other words, the CZM is a representation of the separation process occurring right before the tip of
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the crack, until reaching a critical opening displacement, at which point new free surfaces are created
[19]. CZMs relate the inelastic TSL, which describes the degradation response, to a specific reference
surface [16]. This reference surface is typically the interface between two adjacent elements, as shown
in Figure 2.18. Finite elements that utilize this approach are often called zero-thickness or surface-like
cohesive elements, as they relate interfacial tractions to the relative interfacial displacement. Numerous
CZMs utilizing this surface-like element structure have been suggested, often accompanied by diverse
descriptions of the TSL [60]. Some of these TSLs can be seen in Figure 2.19. Schellekens and Borst [61]
were one of the first the first to model delaminations using interface elements, they discretized the
laminae by introducing plane strain elements with cubic interpolation functions and placed interface
elements between the laminae.

A general intrinsic cohesive element comprises the following three features, see Figure 2.17 [17]:
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Figure 2.17: Features of Cohesive Zone Elements with example axis values.

1. An initial elastic region (Kcon) until reaching a maximum stress (omax), representative of the
interfacial strength.

2. A softening region until reaching zero stress, indicating element failure.
3. The total area bounded by the curve equals the fracture toughness (G.) of the material.
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Figure 2.18: Zero-thickness or surface-like cohesive zone element between two bulk elements [62].
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In 2019, Lu et al. [63] studied the effect of the three above-mentioned features on the CZM: the penalty
stiffness (Kcon), cohesive strength (0max), and fracture toughness (G.). The penalty stiffness is a numeri-
cal parameter that governs the initial elastic behavior of the cohesive elements. An appropriate Kcon
ensures that the interface behaves correctly under elastic deformation. If it is too low, the structure’s
compliance increases artificially, leading to inaccurate predictions. Conversely, if it is too high, it can
cause numerical difficulties, such as non-convergence and an increased computational cost, due to the
stiffer interface requiring more iterations to solve. Therefore, choosing an optimal Ko is critical for
balancing accuracy and computational efficiency [63]. The cohesive strength defines the maximum
stress that the interface can withstand before damage initiates. It is a crucial parameter because it
directly influences the onset of delamination. Finally, accurate determination of omax ensures that the
model correctly predicts the initiation of cracks. If omax is set too high or too low, the model might either
delay the initiation of delamination or predict it prematurely, leading to discrepancies with experimental
observations. Accurate values of G, ensure that the energy dissipation during crack propagation is
correctly represented, which is crucial for predicting the delamination path and the load-displacement
response of the composite. The sensitivity of the model to Kcoh and omax is examined to ensure the
chosen values provide a balance between numerical accuracy and computational efficiency. For most
problems, a penalty stiffness ranging from 10° to 10° N/mm?® provides the best balance between accu-
racy and efficiency [63].

Since its inception, cohesive zones have been applied to model various fracture phenomena. E.g.,
in 1990, Tvergaard [64] modeled fiber pull-out in metal-matrix composites using a polynomial TSL
(Figure 2.19a), and in 1999, De-Andrés et al. [20] used an exponential TSL (Figure 2.19d) to model fatigue
crack growth in aluminum shafts. In 2011, Paggi and Wriggers [59] described the degradation of prop-
erties within the interface area using a CDM framework. They illustrated that the stress-displacement
response of the system can be seen as a new CZM, shaped directly by the progression of damage. The
TSL serves as a phenomenological representation of the underlying fracture mechanism, however, the
shape and input parameters of CZMs are usually chosen computational reasons rather than being
physically accurate [59]. Another approach is to calibrate the TSL to match experimental data. In 2023,
Abdel-Monsef et al. [65] created a new Multi-Linear Cohesive Law (MLCL) based on the superposition
of multiple bilinear TSLs (Figure 2.19) to represent experimental data, the resulting TSL can be seen in
Figure 2.20.
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Figure 2.19: Several traction-separation laws: (a) cubic polynomial, (b) trapezoidal, (c) smoothed trapezoidal, (d) exponential, (e)
linear softening, and (f) bilinear softening (adapted from [60]).

In the context of CDM, as the mesh is refined, the fracture energy and dissipation tend to decrease,
ultimately approaching zero. This phenomenon results in a localization problem, however, CZMs
do not face this challenge because they include a well-defined fracture energy and represent fracture
as a sharp discontinuity [19]. As a result, CZMs effectively solves the issue of diminishing energy
dissipation with mesh refinement. However, the interface element approach has its drawbacks, notably
the constraint imposed on the fracture path, confined to element interfaces [14, 30, 34]. According to the
principle of minimum potential energy, the required energy for propagation increases since the crack
has to deviate from the “optimal” direction [19].
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Figure 2.20: A mixed-mode multi-linear traction-separation law created to match experimental data using several bilinear
cohesive laws [65].
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Finite-Thickness Cohesive Elements

As mentioned earlier, zero-thickness interface elements relate interfacial tractions to the relative dis-
placements across the interface. Since these are surface elements, it is not possible to directly calculate
strains, one length scale is thus undefined in the elastic material law [34]. The concept of finite thickness
cohesive elements allows for the description of the interface by assuming that failure occurs within
a very narrow and confined area [16, 17, 66]. In such elements, the strains and resulting stresses are
calculated directly at the integrations points from the displacement field inside the interface element,
using the stresses across the interface is thus not needed. Since delamination is caused by the inter-
laminar stresses only, the in-plane stresses are set to zero a priori in the element formulation. The
two in-plane normal stresses and the in-plane shear stress are managed by the deformation of the
laminate itself, with each layer bearing the load. The interface between layers does not contribute to
this in-plane deformation. If the interface elements were to influence the mechanical response under
in-plane loading, it would introduce an incorrect additional stiffness into the structure. As a result,
the only stresses that the interface should handle are the through-thickness normal stress and the two
out-of-plane shear stresses, together forming the interlaminar stress vector [14].

The failure strain ¢ must correspond to the fracture energy released during total decohesion, G. This
value can be determined by calculating the area under the stress-strain curve depicted in Figure 2.21b
and multiplying it by the element thickness /. This relationship establishes a link between the stress-
strain behavior and the ERR, as described by Griffith and Irwin [67, 68]. The fracture toughness is
written as follows [57]:

G = h‘/gf o(e)de (2.17)
0

In the reference configuration, the thickness of the cohesive element is assumed to be equal to the crack
band thickness, thereby defining the element thickness as the characteristic length. However, regular
surface-based cohesive zone models typically integrate a length scale associated with the cohesive
element’s surface area, as illustrated in Equation 2.16. This difference can be explained be noting that
the Young’s modulus and shear modulus are related to the area by definition [57].

It has been shown that the global response of the structure remains nearly unchanged for thickness
ratios of hr/hy < 1072 [14, 34], see Figure 2.21a. The reason for this is that the bending and torsional
moments, resulting from nodal eccentric forces, tend to zero.
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(a) Eight-node finite thickness interface element between two solid (b) Finite thickness traction-separation law where the fracture
elements representing laminae [34]. toughness is now divided by the initial height [14].

Figure 2.21: Finite thickness interface element and traction-separation law.
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2.3. Conclusions from the Literature Study

The literature review has highlighted the limitations and strengths of various plate theories, particularly
in the context of modeling laminated composites. ESL methods, such as CLPT and FSDT, provide
a simplified approach that is effective for analyzing the global response of thin to moderately thick
laminates. However, these methods lack the accuracy needed to capture local nonlinear behaviors and
complex 3D stress states at interfaces, which are crucial in scenarios involving interlaminar damage.

Advanced approaches, such as Layerwise and Zigzag theories, were introduced to address some of
the issues arising in ESL theories. However, Layerwise theories are computationally expensive for
most realistic laminates due to the large number of unknowns. Zigzag theories, on the other hand,
are mainly suited for undamaged laminates, making them less applicable for this work. Global-Local
theories combine ESL and Layerwise methods by using Layerwise theories for only some laminae.
Despite this improvement, they still face challenges when dealing with highly localized damage or
large deformations, where modeling strategies such as 3D brick elements or full Layerwise fields might
be necessary despite their higher computational cost.

The CZM has been successfully utilized to model interlaminar damage [14, 23, 26, 34], but its reliance on
mesh boundaries can cause issues in modeling intralaminar damage. Additionally, coarse meshes lead
to problems such as an oscillatory load displacement response [17]. Attempts to model delaminations
and matrix cracks using the CZM have also been made [23], which was achieved by placing cohesive
elements between solid elements inside and between individual laminae. However, this approach
requires prior knowledge of the crack path to place cohesive elements accordingly. One possible
solution is to place cohesive elements everywhere. If intrinsic cohesive elements are used, the solution
may be impacted by artificial compliance due to the penalty stiffness. On the other hand, using extrinsic
elements requires creating a large number of nodes during the simulation, which complicates parallel
implementation and reduces its efficiency.

A summary of the literature utilizing the Discontinuous Galerkin method to model damage in compos-
ites is presented in Table Table 2.1. The Discontinuous Galerkin method has not been widely used to
model damage in composites, with one exception. Specifically, Versino et al. [4, 5] applied the method
to model delaminations in composites. However, their implementation does not account for rotational
degrees of freedom or the associated shear deformation. In contrast, the geometrically exact shells
presented by Simo and Fox [40, 41] do not rely on such assumptions and are capable of modeling
any deformation, provided that the kinematic assumptions hold true. Using such elements to model
damage occurring during buckling and large deformation would be more accurate.

Table 2.1: Plate Theories and Implementation of Discontinuous Galerkin, Interlaminar, and Intralaminar Damage.

Plate Theory Interlaminar Damage Intralaminar Damage

Kirchhoff-Love - -
Reissner-Mindlin - -
Layerwise - -
Zig-Zag - -
Global-Local [4, 5] -

Unlike approaches such as XFEM and PNM, VCCT and cohesive elements are confined to mesh bound-
aries, leading to challenges when dealing with coarse meshes. In particular, CZM often experiences
oscillatory load-displacement responses under such conditions. However, when combined with the
Discontinuous Galerkin method, cohesive elements present a more straightforward approach. Since
all nodes on the boundaries are predefined, there’s no need for additional steps to create or define
them, eliminating the need for recomputing elemental contributions during the simulation. While
this approach may be much slower in serial computation compared to the aforementioned methods,
it is feasible in parallel computation, as the entire size of the global system of equations is known
beforehand. By employing an extrinsic cohesive law, this method avoids making assumptions about
the material response prior to fracture. Consequently, the DG/CZM method can effectively model both
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interlaminar and intralaminar damage by placing cohesive elements throughout the model.

Methods like XFEM and PNM offer alternative approaches for modeling delaminations. XFEM enriches
the shape functions as cracks propagate through elements, while PNM activates additional phantom
nodes as cracks form, allowing for a mesh-independent solution. Thus requiring the recalculation and
assembly of elemental contributions to the global system of equations as new elements are formed. The
FNM is conceptually similar to remeshing, simplifying the process by directly using the intersection
coordinates of the crack with the elemental boundaries to assign floating nodes as the crack propagates.

This leads to the following research question, which serves as the first step towards modeling delamina-
tions at arbitrary interfaces:

Main Research Question

How can high-fidelity Finite Element Methods be employed to investigate the feasibility of
explicitly modeling each layer in multi-layered materials subjected to large deformations and
buckling at the component level?

This will be done by answering the following sub-questions:

Sub-Question 1

How can the Discontinuous Galerkin method be employed to model any number of layers
through-the-thickness?

Sub-Question 2

| r

How do the multi-layer predictions from the proposed method compare to equivalent single-
layer configurations across several benchmarks?

Sub-Question 3

What adjustments are needed for the proposed method for it to be able to model interlaminar
damage effectively along any interface using the Discontinuous Galerkin approach?




Chapter 3

Methodology

This chapter starts with a detailed kinematic description is provided in Section 3.1, which lays the
groundwork for understanding the deformation of the shell elements. Next, the weak form of the
governing equations is discussed in Section 3.2. The discretization process is addressed in Section 3.3,
where the Discontinuous Galerkin method used for solving the equations is introduced. Following this,
Section 3.4 presents the contribution of the new interface elements to the weak form The constitutive
laws applicable to both isotropic and composite materials are presented in Section 3.5. Implementation
details of the numerical methods are discussed in Section 3.6, covering the key aspects of the compu-
tational framework. Section 3.7 explains how incremental variations are solved. Subsequently, the
kinematic update procedures are examined in Section 3.8, which are crucial for tracking the deforma-
tion accurately throughout the analysis. Finally, the through-the-thickness stretching of the shell is
explained in Section 3.9, which, although not implemented in this study, will allow the incorporation of
out-of-plane stresses into the model to be used for fracture initiation.

In the following, Greek indices («, , ) vary from 1 to 2 unless mentioned otherwise, and Latin indices
(i,j, k) vary from 1 to 3. All equations and definitions are taken from [19] and [41] unless stated
otherwise.

3.1. Kinematic Description

The key assumption in shell elements is that the thickness is much smaller compared with the in-plane
dimensions as well as both radii of curvature [33]. Because of this, only the mid-surface of the shell
element has to be modeled where the thickness only affects the stresses. As a result, any point in the

body is defined relative to the mid-surface, denoted by S. The mid-surface has a parameterization
@ : A c R? > R such that:

S={xeR%:x=¢ (&), &Ec A} (3.1)

Where A is the mid-surface in parametric coordinates. The following set is defined to state the kinematic
assumptions:

€ :={(p,): ACR* > R*x 5} (3.2)
This set defines the inextensible one-director Cosserat surface where:

e The map ¢ : A — R is used to define the mid-surface position.
e The map t: A — S?is used to define a normal vector at any point in the mid-surface.

Cosserat Surface

A Cosserat surface is a body % consisting of a mid-surface in R3, with particles x and a single
director t attached to every point of the mid-surface [41].

Any configuration of the shell is described as:

Bi={x e R x=® (&, &, &) where (&1,&,&) € 6} (33)

32
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An exact description for the reference configuration also exists:

BY = {X e R®| X = ®° (&1, &2, &3) where (&1,&2, &) € 6 (34)
Material points within the body are located using a vector field t : A — S?, referred to as the director
field, where S? represents the unit sphere defined as:
={teR®: |t =1} (3.5)
This means that the director can take any value on the unit sphere. The kinematic assumptions allows
for points x in B to be described by the mapping;:
x =D (&1, &2, 83) = @ (&1, E2) + &3t (81, &2) (3.6)

Where ¢ (&1, &2) represents the parameterization of the mid-surface and t (&, £») denotes the director
field, see Figure 3.1. The reference configuration is defined as the undeformed shell, where points X in
B° are described by:

X =@ (&1, &, &) = @° (&1, &) + &Y (81, &) (3.7)

In this equation and subsequent ones, reference configuration quantities are labeled with superscript 0.
The deformation is represented by the map x : B° — B defined as:

x=®o (@) (3.8)
The tangent map V® relative to the inertial basis {E;}i-1,3 is given by:
oD ;
V® = — @EFE =¢,®F' 3.9
aéz ® gl ® ( )
The tangent map is V@ associated with @ : Ax [h~, h*] — R® is given by:
D@ = (dpp + &30, ) ®E* +t® E® (3.10)
Where d, = s% denotes the partial derivative with respect to the parametric coordinates, such that

Ao =da@. The deformation gradient associated with the displacement is then:

F=T, :=V®o (VO (3.11)

Finally, the variation of F is:

= [(9adp + E3040t) ® E® + 6t ® E°] (VDO) ™! (3.12)
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Figure 3.1: Reference and current configurations of the mid-surface [19, 69, 70].

The tangent space to the mid-surface at the point X, denoted by T;S, is spanned by the convected basis
{aa}a=1,2 given by:

Ay = 0P

déa
This tangent space T3S can be thought of as the basis vectors in the plane tangent to the shell at the
point X, this tangent basis is trivial for flat plates since in this case it is always IR?. The tangent space
t € S? (tangent plane to t on the unit sphere S?) can be thought of as the set containing vectors tangent
to curves ¢ - t,. It is obtained by noting that t.|.—o = t and taking the derivative of Equation 3.5 with
respect to ¢:

(3.13)

T;S? = {6t e R®: 6t-t =0} (3.14)

This means that 6t is a vector in IR® defined to be orthogonal to the vector t. The director in the reference
configuration is obtained as:

0y 40
L Tk (3.15)
[l x a3
The components of the metric tensor of the mid-surface are:
Aap = 0o - g (3.16)

The metric tensor essentially represents the projections of the basis vectors onto each other. In the
case of a plate, the metric tensor reduces to the identity tensor. The so-called dual basis vectors can be
determined from the covariant basis vectors a, as:

a% = a“ﬁaﬁ (3.17)
Here, a?F is the inverse of the metric tensor aqp, and they are related by the Kronecker delta 6%:

a*fag, = o (3.18)

The shearing of normal vectors is calculated using the first order tensor y, as follows:
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Ya =0t (3.19)
This tensor would be zero in the Kirchhoff-Love formulation. The curvature tensor x4 is determined
by:

Kap =g * 3ﬁt (3.20)

The curvature tensor determines the bending of the mid-surface and equals the classical curvature
tensor when the out-of-plane shear strains are zero, the director t is normal to the surface in this
case. In the reference configuration, these tensors are written as ag 57 )/2, and K?Y g The strains are then

determined relative to the reference configuration as:

1
€ap = 2 (aa/; - agﬁ) (3.21a)
Ca =Va— 7/2 (3.21b)
Pap = Kap ~ Kog (3.21¢)

The Jacobian of the metric tensor is given as:

j = lla1 X az|| = y[det (anp) = Var11a22 — A12021 (3.22)

The differential area element in S is then obtained using the surface Jacobian as follows:

dS =jdA, dA:=d&dé, (3.23)
Based on the mapping in Equation 3.7, 3D covariant base vectors for the &-reference frame are given by:
oD’
- 3.24
8i &, ( )
Substituting Equation 3.7 into Equation 3.24, the covariant base vectors g; are given as:
ot

Sa =ag+ ESE (3.25a)
g3 =1t (3.25b)

The metric tensor of the entire body is calculated using the covariant base vectors g; as follows:
&ij = &i " §j (3.26)

Quantities calculated in the reference frame spanned by the covariant basis g, are mapped to the
reference surface through the shifter tensor yﬁ, which is expressed as:

Za = Haap (3.27)
Finally, the volume of an element can be written as:

dV = \/det (g,]) dé1dérdés = [.ldeég (3.28)

Where p is the determinant of the shifter tensor. Since different interfaces can have different areas due
to the curvature, u has to be evaluated at the thickness coordinate of the interface as follows:

u = det (y'i) , u® = y|é(3k> (3.29)

Consequently, an area element on the kth interface can be expressed as:

ds® = uW4s (3.30)

An example of a mapping for a flat plate can be seen in Appendix B.
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3.2. Weak Form of the Equations of Motion

The derivation of the general weak form can be seen in Appendix A, however, it needs to be slightly
adjusted for shell elements. Starting with the essential Dirichlet boundary conditions the shell is
subjected to:

PEart) = P(Ea,t) on dp AX[0,T] (3.31a)
t(Eq t) =t(&a,t) on JpAX[0,T] (3.31b)

The space of admissible velocities is all that comply with these prescribed values:

X={VeA->RXTS*: @ls,a =@ and t|4 =t} (3.32)

The space of admissible variations (those that satisfy the geometric constraints) can be defined as:

V = {6V = (6¢,6t) € A > R’> X T[,S” : 6ply, 4 = 0and 6t[5, 4 = 0} (3.33)

This space, as expected, includes all possible variations that comply with the Dirichlet boundary
conditions on the boundary.

Principle of Virtual Power

The Principle of Virtual Power states [19]:

¢ The internal power of the body remains unchanged regardless of its orientation.
¢ The energy balance is Pext = Pint + 0K for all admissible variations 0V € V.

The equations of motion are derived from the Principle of Virtual Power, as explained by Gurtin [71, 72].
By selecting a set of variations (8¢, 6t) € 6V, the weak form of the equations of motion is established.
Introducing:

¢ The stress resultant n® that expends power through d,6¢.
¢ The stress couple resultant m® that expends power through d, 6t.
® The through-thickness stress resultant 1 that expends power through ot.

Figure 3.2: Convected (mid-surface) basis where d is the modified director which will be covered in Section 3.9, stress resultant
n%, stress couples resultant m“, and through-the-thickness stress resultant 1[73].
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Following the terminology of Simo and Fox [40], n® is the stress resultant, m® is the stress couple
resultant, and 1 is the through-thickness stress resultant. Using these resultants, as shown in Figure 3.2,
the virtual internal power is given by:

Pint(6V) = / P:6FdQ = / / (p(chO)-lEa-(aa&p+g3aaat)+P(vq>°)—1E3-6t) j0dE1dErdEs
Q hdS

(3.34)
Where Equation 3.28 has been used and P and F are the First Piola-Kirchhoff stress tensor and the
deformation gradient, respectively [40]. This expression simplifies by using Equation 3.23 and the
definitions for the stress resultants:

Pint(6V) 1= / (N® - 9,0¢p +]® - 9,05t +1-5t) dS (3.35)
S

With the following definitions for the stress resultants n*, m® and 1:

n® = 1 / PP dg, (3.36a)
] Jn

mt = % / &P 0des (3.36b)
h

1= 1 / Pg%Bi%ds; (3.36¢)
] Jn

Since 6t € T;S?, it can be shown that due to the assumption of inextensible directors, the component of
1 in the direction of t is indeterminate, it does no work and can thus be neglected [19]. The reduced
internal power is then given:

1- —~ -
Pint(6V) = / (Enaﬁéaaﬁ + ma'géKaﬁ + qaéya dsS (3.37)
S

Where ‘o denotes only the generalized forces that expand power, and the following decomposed stress
resultants have been used:

n® = ﬁaﬁ35(p + Tﬁaﬁaﬁt + ﬁat (3383)
m® = 1,30, @ +indeterminate components (3.38b)
1 = 4,0, @ + indeterminate components (3.38¢)

However, the assumption of inextensible directors does not allow for the modeling of delaminations
in composite laminates where the stress normal to the mid-surface is important, more about this in
Section 3.9. As usual the external power consists of body and boundary terms:

Pext (V) = / (f-6p +1-6t) d8+/ n-o@ds+ m - 5tds (3.39)
S INS ImS

Where ds stands for an arc length in S. The vectors n and m represent the prescribed force and torque
on the boundaries dyS and dy S, respectively. The regions where essential and natural boundary
conditions are applied satisfy the following conditions:

° a(pAU&NA:a.A e JJAUIA=0A
L] a(p.AﬂaNAZQ) o &t.Aﬁ&MAZ(D

The kinetic energy is taken to be composed of the quadratic forms:

1_ . 1-..
k) = / (§p||<p||2+51||t||2 ds (3.40)
S
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A definition for p and I will be given in Section 3.6. The variation in kinetic energy can then be written
as:

SK(8V) = / (pip - 5 +Ti-6t) dS (3.41)
S

3.3. Discontinuous Galerkin Discretization

One of the main advantages of the Discontinuous Galerkin method, as mentioned before, is that each
element has its own domain. This allows for the initiation of cracks without the need to create new
nodes, assign them, or adjust the shape functions. Damage can be effectively modeled by deactivat-
ing the stability integrals across internal boundaries in the weak form, which are then replaced with
traction-separation integrals to enable damage propagation. Additionally, jumps in displacement occur
naturally at each interface, which can directly be utilized in the traction-separation integrals.

To ensure that a shape function is suitable for finite element analysis, the integral of the function over
the domain must be finite. This guarantees that integrals involving these shape function remain well-
defined. Additionally, for the function’s derivatives to be usable in the weak or variational formulation,
their integrals must also be finite [74]. The FEM involves integrals of both the shape functions and their
derivatives to approximate the solution. If these integrals are not finite, the contributions to the weak
form will not be either.

Let 7, be the set of isoparametric triangular elements that interpolate the mid-surface of the shell,
denoted as S. Here, S ~ S" = | geT, E- The notation J;E signifies the collection of all internal edges

and surfaces, [U e, OF ] \ dS.

(a) Three beam elements with connected nodes.

(b) Continuous Galerkin stiffness matrix representation of the structure above.

Figure 3.3: Continuous Galerkin.

Figure 3.3b illustrates how the structure shown in Figure 3.3a is assembled into a global stiffness
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matrix, where each block represents a 3 X 3 submatrix. It is evident that nodes are shared between
elements, as connected elements contribute to the same entries in the matrix. These entries reflect
the physical connections in the actual structure. For n elements, the stiffness matrix has dimensions
3(n+1)x3(n +1).

(a) Three beam elements with disconnected nodes.

(b) Discontinuous Galerkin stiffness matrix representation of the structure above.

Figure 3.4: Discontinuous Galerkin.

As before, Figure 3.4b illustrates how the structure shown in Figure 3.4a is assembled into a global
stiffness matrix, with each block still representing a 3 x 3 submatrix. It is immediately apparent that
the size of the global stiffness matrix has increased, with many zero entries. In comparison with the
stiffness matrix in Figure 3.3b, it is clear that elements no longer share nodes, as there are no entries
with contributions from more than one element. The stiffness matrix now has dimensions 6# X 61.

Asnoted in [11, 19], an issue with shear-flexible shells is the phenomenon known as locking. Locking
occurs when the discretized shell structure becomes excessively stiff as its thickness decreases, espe-
cially when dealing with shear-flexible elements. This happens because the elements cannot accurately
capture the bending deformation when the transverse shear strains should vanish, as expected in
Kirchhoff-Love shells [33].

In an ideal thin shell model, the energy associated with transverse shear should approach zero. How-
ever, in many finite element formulations, this does not occur due to how the displacement and rotation
fields are handled. Each node in the mesh typically has five unknowns—three displacements and two
rotations—that use the same shape functions. For thin shells, the director should remain perpendicular
to the mid-surface, expressed as & = Vu. This means that the space of the displacement field, denoted
U}, and the rotation space, denoted ®;,, must be compatible. The problem arises when the gradient
of the displacement field, VU, is not contained within the rotation space @y, a situation expressed
mathematically as VU, € @y,. This lack of compatibility prevents the finite element approximation from
accurately representing the displacement field, resulting in displacements that are too small [33]. The
transverse shear strain, defined as the difference between the displacement gradient and the rotation
(see Equation 3.42), cannot reduce to zero as the shell’s thickness decreases. This overestimation of
shear stiffness leads to locking, where the shell artificially resists deformation.
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y=Vu-0 (3.42)

The Discontinuous Galerkin method utilizes more flexible function spaces that allow the displacement
and rotation fields to be represented by independent function spaces. To prevent shear locking, 0
must equal Vu, so the order of the shape functions P in the rotation space ®; must be exactly one
order lower than those in the displacement space U}, due to the fact that the rotations are derived
from the gradients of the displacements. This necessitates the use of different nodes and thus different
elements for the rotation field compared to the displacement field. With this, the compatibility equation,
expressed mathematically as VU, C @y, is satisfied.

3.3.1. Mid-Surface Position Interpolation
Each element E € 7}, corresponds to a transformation of a master element £ C IR? through the position

mapping E = @(E) € X}, see Figure 3.5. The Discontinuous Galerkin function space for positions,
denoted as X}, is formed by discrete elemental function spaces X E defined as:

X, = ]_[ xE (3.43)
EeTy,

Where the element-wise spaces X 5 are defined as X g = Px(E), with k > 2 representing the degree of
polynomial. It is worth pointing out that with this definition, the position vector will likely exhibit
discontinuities on the internal boundaries J;E. As usual, functions in X, must satisfy the essential
boundary conditions on d¢.A. This shows the flexibility of the Discontinuous Galerkin method, since

each element can have its own function space X ’; .

pn=—E;

Figure 3.5: The master element denoted by the area F and the mapped area E using the mapping ¢ 5 [19, 69, 70].

A conventional Lagrange polynomial basis is utilized, with N4 representing the basis functions of X g .
The mid-surface position is interpolated as:

Ny Ny
@ (E1,82) = Y Na(E1, )% = Y Na(&1,&2)%a (3.44)
A=1 A=1
N, Iy
@ (E1,82) = Y Na(E1, )% = Y Na(&1, &% (3.45)
A=1 A=1
Here, n, = (et )(k+2) +1)2(k+2) denotes the total number of position nodes for each element, and X4 represents

the nodal positions of the mid-surface. Since the mid-surface interpolation must be one order higher
than the rotations, the lowest order that satisfies this condition is k = 2. The symbol Ny is introduced to
denote the total number of position nodes in 7. Since Discontinuous Galerkin basis functions only exist
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on a single element, the summation can be written on a per element basis. Variations of the mid-surface
position are given by:

N, Ny
o0 (&1, &) = Z Na(é1,&2)0%a = Z Na(é1,&2)0%a (3.46)
A=l A=l

Where the shape functions N4 are given by:

Ny =(1-¢&1 - &) (1-2& —2&) (3.47a)
Ny =¢&1(25-1) (3.47b)
N3 =& (25 1) (3.47¢)
Ny =45 (1-& - &) (3.47d)
N5 = 48182 (3.47e)
Ne=4&(1-&1-&) (3.47f)

Figure 3.6 shows what these functions look like.

Figure 3.6: Shape functions N4 quadratic triangular element.

3.3.2. Director Interpolation
The director space is represented by T, Similar to the mid-surface position, the Discontinuous Galerkin
space is formed from discrete elemental spaces T‘E :

T) = ]—[ TE, TF = Py (F) (3.48)
E€Ty

As for the mid-surface interpolation, Lagrange polynomials are used for representing the discrete
director field t,. The interpolation is written using the basis functions L, of T’;: :

NT nr
t(E1,62) = ) La(&r, &)ta = ) Lal&r, &)t (349)
A=1 A=1

Where t4 € $? are nodal director values, and ny = @ denotes the total number of nodes of each
element used to interpolate the director. Here, N refers to the complete set of director nodes in the
mesh. A kinematic update procedure is used to strictly enforce the unit length constraint on the nodal
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directors (||t || = 1), more about this in Section 3.8. The director in the reference configuration is given
by:

t= AE; (3.50)

The rotation tensor with the rotation axis orthogonal to E3 has an explicit representation in the unde-
formed configuration using Rodrigues’ formula, as shown in Appendix C.2:

—— 1
A=(t-E3)I+(E —(E E 51
(t-Ba)I + (B3 X t) + 3= (B x ) ® (B3 X t) (3.51)

———

52

Figure 3.7: Illustration of the unit sphere and its tangent space, the director t is obtained by rotating E3 using the exact rotation A
[19, 69, 70].

As mentioned in Appendix C.3, the subset of rotations with rotation axis 60 perpendicular to the
director t in the deformed or spatial configuration, have director variations 6t equal to 50 x t. This
follows from the unit length constraint on the director which results in variations being perpendicular
to both the rotation axis and the director. The rotation axis 60 = A0®, where 00 is the rotation axis in
the material or rotated description. Using this relation between the rotation axes, the director variation
can be rewritten using the material director variation 6T in the tangent plane Tg,S?. Any 6T € Tg,S?,
which when multiplied by the rotation matrix A gives the spatial director variation 6t, is defined as:

ot = AO® x AE3 = AST (3.52)
Where A are the first 2 columns of A:
A=AE ®E (3.53)

Since the material director variation is perpendicular to E3, see Figure 3.7, the drill degree of freedom
along E3 can be excluded allowing one to write:

OT = 6T E; + 6T?E; (3.54)
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Using the material director variation thus removes one nodal unknown from the system making it
computationally favorable and the only reason it is used, note that even though it is called the material
director variation it is unrelated to the undeformed or reference configuration. The actual spatial nodal
director values are then given by:

Sta = ApdTa (3.55)

where A4 is computed for all director nodes using equation 3.51. Using these nodal values, the director,
its acceleration and variation are interpolated using shape functions Lx:

NT nr

tn(&1,&2) = Z La(&1,E)ta = Z La(&1,&)AaTA (3.56a)
A=1 A=l
Nt o1 ~

tn(é1, &) = Z La(é1, &)t = Z La(&1,82)AATx (3.56b)
A=l A=l
Nt nr _

SHEL &) = D Lalé, E)0t = ) La(ér, £2)Aa0Ta (3.56¢)
A=1 A=1

Where the shape functions are given by:

Li=(1-&-¢&) (3.57a)
Ly=%& (3.57b)
L3=& (3.570)

As before, the shape functions can be seen in Figure 3.8.

Figure 3.8: Shape functions L4 linear triangular element.
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3.4. Stabilization and Consistency Terms

The Principle of Virtual Power is the first variation of the potential energy functional where standard
Discontinuous Galerkin stabilization terms are included. The functional is defined as:

1 1
Jn(V) = /O P(Da @y, ty, daty) S — Wex(6V) + EWX, stab(@},, 0@),) + EWT, stab(tn, Oty) (3.58)
S
Wi, stab and Wr siap are the stabilization terms added to the functional to ensure that elements do not
move relative to their neighbor at the interface. The explicit expressions for all elemental stiffness
matrices can be found in [19] and will not be repeated in this work, the only stiffness matrix that will be

discussed here is the new out-of-plane interface stiffness matrix. These stabilization terms are used to
define new connections between different layers, defined as the scalar products:

Wy, stab(@ ), 0@),) = /3 i_x [[(Ph]] ) [[5(1’11]] s, @, 00, € Xy (3.59a)

WI, stab (tn, 0t) = / [:l—T [tn] - [otn] dS, tn, Oty € Ty, (3.59b)
s Ne

Jump and Average Operator

The jump operator captures the discontinuities in quantities, such as displacement, that naturally
arise at the kth interface. The average operator calculates the mean value of these quantities at
the kth interface, explicitly:

[[o]](k) = (o(k) - o(k_l)) (3.60a)

(o} ® = % (.<’<> + .<’<—1>) (3.60b)

.

Where:

* }, represents the characteristic mesh length, such as the length of an edge.

* By = cx% and fr = CT% are the penalty parameters, where & is the shell thickness, E is the
Young’s modulus, and ¢, and cr are sufficiently large positive constants.

The jump in mid-surface position and its variation can be written as:

Ny Ny
[e,] = Z Na (iﬁf) - if_l)) = Z Na [xa] (3.61a)
A=1 A=1
1x Ny
[6@] = > Na (622‘) - 52&(“”) = > Na[oxa] (3.61b)
A=1 A=1

Similarly, the jump in the director and its variation can be written as:

nr nr
[6] =) LaAa (Tf) - Tﬁf‘”) = > LaA4[Ta] (3.62a)
A=1 A=1
N0 A (s seD) _ N0,
[0ts] = > Laka (6T} = 0T4 ™) = " LaAn [6T4] (3.62b)
A=1 A=1

The elemental stabilization forces are obtained by inserting Equation 3.61 and Equation 3.62 into
Equation 3.59:
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(£}, stabla = i/s i_x @] Nads (3.63a)

e

[£7, srabla = lL/ (AA)T h—T [tn] LadS (3.63b)
Se e

The elemental stiffness matrix for the new out-of-plane interface elements are then:

(K% stablaB = i/ &NANB as (3.64a)
e e
(KT staplaB = % %LALB ds (3.64b)
Se e
- <« > <«

(a) Three beam elements with disconnected nodes and interface forces.

(b) Discontinuous Galerkin stiffness matrix representation of the structure above.

Figure 3.9: Discontinuous Galerkin including interface forces.

The stiffness matrix shown in Figure 3.3b lacks connections between elements needed to actually solve
the system of equations. However, the elemental stiffness contribution for the out-of-plane interface
elements adds these contributions. This is shown in Figure 3.9b, which is based on the structure in
Figure 3.9a, where, as before, each block represents a 3 x 3 submatrix. The interface forces connect the
elements and provide a simple approach to create cracks by simply removing these terms.

Note that these are new additions to the weak form, which work in tandem with the existing interface
terms for in-plane connectivity. the main difference between these two interface terms is the integration
domain, note that in this case its the entire surface S and not just line integrals over s. Equilibrium
configurations are given by the stationary points of the discrete energy functional J,(V), e.g., first
variations of the energy potential are equal to zero. The equilibrium equations follow from:

(DJn(V),06V) =0 (3.65)
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The first variation of the energy functional given in Equation 3.58, usually called the residual, is then
given by:

(DJn(V), 6V) = Wint(V, V) = Wext(0V) + Wy, stab(@y,, 0@ ),) + Wi, stab(tn, 0t) =0, YoV €V (3.66)

This equation is the virtual work equation for the geometrically exact shell that needs to be satisfied by
all possible admissable variations 6.

In the Discontinuous Galerkin method, additional terms naturally arise from integration by parts due to
the use of discontinuous shape functions (see Appendix A). To handle these discontinuities effectively,
fluxes at the interfaces between elements are introduced. These flux terms ensure that the weak form is
consistent with the strong form of the PDE, so that when returning from the weak form to the strong
form, the same solution is obtained. The inclusion of fluxes at the element boundaries ensures that the
solution accurately represents the PDE across discontinuous interfaces, capturing the internal forces
transmitted between adjacent elements. The consistency terms resulting from the derivation can be
written as:

i/ [6@,] '{P}-tdei/ [6ty] - {P} - tudS (3.67)
S s

It is worth noting that these terms do not actually contribute to the weak form but are instead used
to evaluate the material failure, the stabilization integrals are sufficient to keep the elements from
physically separating.
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3.5. Constitutive Law
The stress resultants acting on the shell element are given by:

311 (1 + 1%)

_ §22 (1 + 1(%31)
ni G é)
E22 512 (1 + T
212 512 (1 + 1%—2)
21 A 3
m (| _ /2 £ (1 ’ R_i) d&s (3.68)
M2 ~b &35 (1 + 15—31)
mi2 _ c
Moy &3S12 (1 + R—sl)
1 S (1 + ﬁ)
2 53_ 12 %

xS13 (1 + Ii_a)

KSzg (1 + I%)

In general, for shells 71,5 # 734, and similarly 44 # 1g,. However, for shallow shells the terms 1‘% and

1% can be neglected [33]:

n Sn

2 S»

112 .| Si2

M1 2 &3S

my | /_121 &38» 4cs (3.69)
iz &3S12

n kS13

72 KkS23

3.5.1. Isotropic Material

The free energy y(da ), ti, duty) can be thought of as consisting of membrane, shear, and bending
strain energies:

‘/}(aa(Ph/th/ daty) = Ym (eaﬁ) + #’S(Ca) + be(Paﬁ) (3.70)

As usual these individual strain energies are quadratic in the corresponding strains:

h

Ym = Eeaﬂcaﬁyéew (3.71a)
1K

Yy = Eﬁpaﬁcaﬁyépyé (3.71b)
h

Ps = EKGCaaoaﬁCﬁ (3.71¢)

Where h is the thickness, u is the shear modulus, « is the shear reduction coefficient, and Cqgy s is the
plane stress elastic tensor given by:

— E
Caﬁyé — g(QO(X)'aOﬁé + aOabaOﬁ;/) + - _1;2 aOaﬁaOyb (372)

Where 4% is the inverse of the metric tensor in the reference configuration. The stress resultants are
related to the free energy based on the following definitions:
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_ o
naﬁ = 2% (3733)
_ Ay

b e (3.73b)
_ Ay

Ta= 5 (3.73¢)

However, since the geometry is already accounted for when calculating the strains through the kinematic
assumptions, the standard constitutive law can be applied directly:

Sap = CapysEys (3.74)

In plane stress (Sz3 = 0), the stiffness matrix is written as:

1 v 0o o o]
£ v 1 0 0 0
=_—— v 3.75
(1-12) 00 % 1(_) 0 (375
00 0 =+ 0
00 0 o Lz
The expressions for the stress resultants then become:
ﬁaﬁ = hCa;g),éey(g (3.76a)
— h®
Map = Ecaﬁyépyé (3.76b)
Go = hxply (3.76¢)
Where p = ﬁ is the shear modulus. Combining all stress resultants into a vector, this can be
expressed as:
ﬁll [ A11 VA11 0 0 0 0 0 0 1 €11
ﬁzz VA11 A11 0 0 0 0 0 0 €22
12 0 0 Ay o0 0 0 0 0 |]|2en
f?”lHl _ 0 0 0 D11 VD11 0 0 0 P11 (3 77)
TAﬁZQ B 0 0 0 VD11 D11 0 0 0 P22 ’
i1 0 0 0 0 0 Dy 0 0 |22
7 0 0 0 0 0 0 hxu 0 G1
72 | 0 0 0 0 0 0 0 hxul | G
Where:
Al = Eh Dy = . (3.78)
=12 PN T a0 '
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3.5.2. Composite Material

The constitutive lamina compliance matrix for orthotropic material is given as:

E B -BE 0 0 o0
“EoE SE 000
s-|® & 5 0 0 0 (3.79)
0 0 0 & 0 0
0o 0 0 0 & 0
0 0 0 0 0 &

Here, E1, E;, and Ej3 represent the Young’s moduli in the principal material directions, v12, V23, and v13
are the corresponding Poisson’s ratios, and Giz, G23, and Gy are the shear moduli for the respective
planes. The compliance matrix can be split in two parts, the first of which corresponds to in-plane
strains:

1 _m
E E>
—|_v 1
S=-2 g 0 (3.80)
1
0 0 =
Now taking the inverse of this matrix results in:
Ey v Eq 0
(1—1/1%1/21) (1—VEle21)
— Vi) 2
Q= (I-vipva1)  (1-vi2vay) 0 (3.81)
0 0 G12

These are the equations for a transversely isotropic lamina in the the material coordinates, however, in
the global laminate coordinates the stiffness matrix components are given by [33]:

Qi1 = Qu1 cos*(6) + 2(Quz +2Qs6) cos*(6) sin*(6) + Q2 sin*(6) (3.82a)
Q12 = (Qu1 + Q22 — 4Qg6) cos?(6) sin®(0) + Quz(sin*(0) + cos*(6)) (3.82b)
Q22 = Qui sin*(6) + 2(Qi2 +2Qes) sin*(6) cos*(8) + Q22 cos*(6) (3.82¢)
Q16 = (Q11 — Q12 — 2Qes) sin(0) cos(0) + (Q12 — Q + 2Q¢) sin’(0) cos(6) (3.82d)
Q26 = (Q11 — Q12 —2Q¢6) sin’*(0) cos(0) + (Q12 — Q22 +2Qes) sin(6) cos’(6) (3.82¢)
Qe = (Q11 + Q22 — 2Q12 — 2Qs6) sin*(6) cos*(0) + Qees(sin*(6) + cos*(6)) (3.82f)

Finally, the stiffness matrix components corresponding to the out of plane shear strains are given in
laminate coordinates by [33]:

Qus = Qus cos*(0) + Qss sin®(0) (3.83a)
Qa5 = (Qs5 — Qus) cos(0) sin(0) (3.83b)
Qs5 = Qua sin?(0) + Qss cos*(0) (3.83¢)
Combining this into the well-known and loved ABD matrix using Equation 3.69 [33]:

Ell [A11 A1z A Bii Bz Big O 0] (en

122 A Ax» Ax B Bx By 0 0 €2

N1 A Az Aes Bis Bas Bes 0 0 | |22

i Biin Bi2 Big D D12 Dig O 0 P11 (3.84)

M Bio Bx By D1z Dxp Dy 0 0 022 '

mip Big By Bes Dis Dy Des 0 0| |2p12

7 0 0 0 0 0 0 Ass Ags 1

ﬁz | 0 0 0 0 0 0 A Aull| G
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In this work, only symmetric laminates are modeled, with each lamina represented as a single or-
thotropic layer. This approach simplifies the expression described above:

Qijh?
12
The B matrix thus disappears from the formulation, the offset of the layers is taken into account in the
D matrix. The corresponding strain energy terms are:

Aij=Qih, Bij=0, Dj= Ay = Quh, Asws=Qush, Ass=Qssh (3.85)

1 -

Ym = Eeaﬁnaﬁ (3.86a)
1 —

Yp = Epaﬁmaﬁ (3.86b)

l,z)s = %Caﬁa (3.86C)
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3.6. Implementation

3.6.1. Creation of new layers

In this work, the process of generating multiple layers for shell elements is designed to avoid the need
for manual updates to the mesh file for each configuration. Initially, the mesh for the first layer of
elements is created using Gmsh, serving as the foundational mesh upon which all subsequent layers
are based. For cases where only a single layer is required, the additions developed in this thesis remain
unused. However, if more than one layer is requested, the program enters a loop to continuously
generate additional layers until the maximum requested number is reached.

Start

|

Create mesh for
original layer

Requested
layers > 1?

Calculate nomal vector
at each node

|

Create new nodes
using normal vector

|

Create new elements
using new nodes

|

Increment LayerlD

— No

l€«— Yes

€«— Yes

Create sets of all
elements in mesh

End

Figure 3.10: Flow chart illustrating the process of creating new layers.

For each new layer, the program calculates the normal vector at each node of the existing mesh. This
normal vector is used to offset the node positions according to the specified layer thickness, ensuring
that the method is applicable to shell structures of any shape or curvature. New nodes are created
based on this offset, and these new nodes are then used to define new elements corresponding to the
additional layer. After each iteration, the new layer ID is incremented, and the process is checked to
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ensure that the correct number of layers has been generated (i.e., when the layer ID equals the desired
number of layers N).

Once the desired number of layers has been reached, interface elements are created between all layers
to model the interaction between them. The creation of interface elements follows a similar process
as for the layers, offsetting nodes and creating elements, with the primary difference being that the
new nodes are offset to sit between the newly created bulk elements. Finally, a set of all newly created
out-of-plane interface elements is generated. The entire process is summarized in Figure 3.10.

3.6.2. Inertia Correction

NS o> OIS s

Figure 3.11: Inertia correction.

Section 3.2 introduced the variables p and I without giving explicit representations, that is because it
depends on the number of layers to be modeled. 5° denotes the translational inertia, and I represents
the rotary inertia, they are integrated over the thickness of the laminate, from —h/2 to h/2.

p= / pldes (3.87a)
h
I= / pPesdes (3.87b)
h
: :
ﬁ:/h pldés = (/h P0d§3+/h p0d53+ﬁ p0d§3) = p°h (3.88a)
2% 2 % 6 ¢ 6 4 043
I= ) 05% dés = ( p0§§ d53+/h p0§§ d§3+ﬁ ‘0055 dés) = ‘01_2 (3.88b)
w2 - % 4

This can be rewritten using the parallel axis theorem, the rotational inertia must be calculated with
respect to a common mid-surface. This theorem is expressed as:

I=1.+p°hd? (3.89)

In this equation, I, is the rotational inertia about each shells’s own mid-surface, poh is the density
per unit thickness of each shell, and d is the distance from each shell’s mid-surface to the common
mid-surface.
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Start

A 4

Calculate distances
from mid-surface

— No Damaged ?

[ €<— Yes

A

Create partition

A 4

A

Increment layers

— Yes

No
Yes

Damaged
interface ?

| Calculate updated
distances

A 4

> Calculate inertia

|

End

Figure 3.12: Flow chart illustrating the proposed computational workflow for the rotational inertia calculation in multi-layered
structures.

Before the simulation begins, the inertia for all elements within the thickness is calculated, assuming no
damage. This calculation uses the predefined thickness, inertia (I), and density per unit thickness (),
determining the inertia with respect to each layer’s mid-surface. If damage were present, the calculation
would need to be updated for all elements within the thickness, as damage to one element would affect
the inertia of all layers within the partition it belongs to. For example, in a scenario with three layers, see
Figure 3.11, if the second interface were damaged, the structure would be divided into two partitions:
one with two layers and one with a single layer. The distance to the mid-plane of each partition would
then be updated accordingly. The process for calculating inertia with damaged interfaces involves two
main steps. First, the number of partitions is identified by iterating through the layers and checking
for damaged interfaces. Partitions are sections of layers separated by damaged interfaces. Starting at
the bottom, the process increments the current partition count for each layer until a damaged interface
is encountered or the top layer is reached. This partition is then stored, and the count is reset for the
next partition. Second, the inertia for each element within the identified partitions is recalculated. This
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involves iterating through the partitions and calculating the distance to the mid-plane of each partition,
starting from the bottom layer. For each layer in the partition, the element inertia is updated using the
rotary inertia, the calculated distance squared, and the density per unit thickness. This ensures that the
inertia is accurately calculated with respect to the common mid-surface for each partition. Although
the current model assumes no damage, this two-step process would be crucial for maintaining accurate
inertia calculations in the presence of damage, ensuring that the simulation results remain reliable. The
proposed computational workflow is illustrated in Figure 3.12.

3.6.3. The Four Pillars of Summit

C++ was selected for its support of Object-Oriented Programming (OOP) paradigms, which are ex-
tremely beneficial. The language’s object-oriented features—such as abstraction, encapsulation, inher-
itance, and polymorphism—enable efficient organization and manipulation of complex algorithms
essential for finite element simulations. For instance, the weak form can be split into separate files,
each responsible for calculating its own contribution, rather than implementing all calculations within
a single, monolithic file. This approach allows the finite element framework summit to maintain a
modular and easily extensible codebase, which was crucial for adding the out-of-plane contribution.
An overview of summit is given in Figure 3.13.

The finite element framework employed in this research is known as summit, it contains the
geometrically exact shell element developed by researchers at the Massachusetts Institute of
Technology, primarily by Talamini and Radovitzky. Summit is implemented in C++, an OOP
language that is well-suited for high-performance computational tasks.

.
/ ~_

Discretization Elements Weak Form Material

Supplementary Files

Figure 3.13: The four pillars of summit that form the foundation of this work.

* Discretization: Refers to the process of creating new layers within the multi-layered structure
using the Discontinuous Galerkin method.

* Elements: Refers to the geometrically exact shell element utilized along with the corresponding
interface elements.

* Weak Form: Refers to the contribution of the new out-of-plane stabilization terms from Equa-
tion 3.59.

* Material: Refers to the isotropic material and the newly implemented composite material.
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3.7. Solving Incremental Variations
3.7.1. Iterative Newton Solver
For a nonlinear system of equations (DJ,(V),0V) = 0, writing the increment AU/ = (Au, At), the
linearized system is then given by:

(DI, (V), 6V) + (D?J,(V), 6V, AUy =0, VoV €V (3.90)
The tangent stiffness matrix K represents the linearization of the system of equations around an initial
estimate. Using the Newton-Raphson method, the correction Al{ is obtained by solving the system:

(D?Ju(V), 8, AUy = ~(D](V), 5V) (391)

D?Jj, corresponds to the second variation of the energy functional J;, and is used to define the tangent
stiffness matrix. This leads to a bilinear form:

(D*u(V), 6V, AUy = SVTKAU (3.92)
Where:
Au1
ATy
AU = (3.93)
Auy,
ATy,

Each nodal Au; is a 3 X 1 vector and each nodal AT; is a 2 X 1 vector. Therefore, the combined elemental
vector is 24 x 1, considering there are six displacement nodes and three director nodes. As usual the
tangent stiffness matrix consists of a material part and a geometric part, however, a third part related to
the stability term also exists:

K = KMt 4 KO 4 K5 (3.94)

3.7.2. Time Integration
Substituting the field interpolations into the principle of virtual power, as shown in Section 3.2, results
in the following two expressions:

Nx
Z MupXp = £y, Bxt ()4 = [fx, 1t (X8, XB) | , — [fx stab (XB)],, VA €[L,Nx], VteT (3.95a)
B=1

Nr
Z IapTs = [f1,xt (D14 — [f1,1m¢ (t8, t8) | , — [ 5t (t8)],, VA €[L,Nr], VteT (3.95b)
B=1

In the following incremental displacements Aug are defined as )'(’éJrl — Xp- The incremental displacement
and the velocity predictor are marched in time using;:
Aup = AtX}, + ——XJ} (3.96a)
)‘kg“ =Xj + (1 - p)Atx]; (3.96b)

The nodal accelerations are then solved for using these quantities:

Ny
Z MpXpH = [fx, Ext (f”+l)] - [fx, Int (ig“,i’g”)] - [fx, Stab (%”)] (3.97)
4 A A A

Here, a lumped mass matrix is used to avoid having to invert the mass matrix. Finally, the corrector is
applied to the velocities as follows:
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Xprh = X8 4 (1— ) At + y At (3.98)
Second order accuracy is only obtained when y is set to 1, this corresponds to an explicit Newmark
integration scheme, also known as the central difference method. The same approach is used to obtain
the incremental material director variations ATy defined as Tg“ - T’Bf, and the predicted material
velocity:

. 1 .
T = T8 + (1 - y)At TS (3.99b)

At this point the kinematic update algorithm is used to obtain the new director t};*! and rotation matrix
A*!. The spatial director velocity is obtained by multiplying with the rotation matrix A% € SO(3):

in+l _ 1n+1
el = AL (3.100)

And the material accelerations are solved for using:

Nr
Z LT = [fT, Ext (f”H)]A - [fT, Int (tgﬂ,fgﬂ)]f] - [fT, Stab (t§+1)]A (3.101)
B=1

The final step is correcting the material velocity using:

T = T8+ (1-p)At T+ (1 —y)Ar T (3.102)

It can be seen that the process is the same for both the displacements and material director, hence, both
are combined in a single vector for computational ease.

Stable Time Step

The stability of the numerical system relies on choosing a time step that is smaller than a specified
maximum value. This critical time step is determined using the material’s celerity ¢, which represents
the speed of sound in the material, the characteristic mesh length /1, and the density p. The formula for
the critical time step is given by:

he
At < Atcrit = ﬁ? (3103)

In this equation, f§ is an additional safety factor introduced by the Discontinuous Galerkin method, it
ranges from 0 to 1 and is determined by ——=—. The Discontinuous Galerkin method thus imposes
\max(cx,cT)

a stricter time step size constraint on top of the significant increase in the number of nodes and result-
ing degrees of freedom, this is somewhat mitigated by the method’s high scalability. However, this
scalability is not investigated in this work.

For isotropic materials, the celerity ¢ is defined as:

E
c= |B o =2 (3.104)
p p

Where:

* B= % is the effective modulus under plane stress conditions.
e [ is the Young’s modulus.

* v is the Poisson’s ratio.

® pis the material’s density.
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For composite materials the longitudinal speed of sound c in a composite material can be calculated
using an equivalent elastic modulus which takes into account the material’s longitudinal and transverse
modulus, shear modulus, and plane stress or strain condition [17]. This equivalent modulus replaces
the isotropic elastic modulus in the equation for wave speed, assuming plane stress:

B= ! (3.105)

511533 Sa 4 2531+8555
2 S11 2511

Where S;; are the compliance matrix components.

3.8. Kinematic Update

The exponential mapping is used to map director variations At4 € S? onto the unit sphere S?, thus
enforcing the unit length constraint by design. Given any point t’;‘ € S? and corresponding variation
Aty € Ttg S? there exists a unique arc which start at tf‘4 and tangent to Aty € Tt; S? at tfﬁl. Essentially
the variation Aty results in straight lines starting from tfﬁl in the direction of At4 and the exponential

mapping projects this straight line onto the unit circle resulting in an arc equal to the rotation angle in
radians since the radius is one [41].

The derivation of the exponential map can be found in Appendix C.3, the equation might look complex

. . . . k+1 1: . k At .
at first but becomes easier when noticing that t,"" lies in the plane spanned by t;, and m. Figure 3.14

illustrates this intuitively. From this, it can be shown that:

tfi‘ -tfi;’l = cos ||At4]| (3.106a)
Aty .
At -t = sin || Ata]| (3.106b)

Figure 3.14: (a) The geodesic starting at tllg € 52 and tangent to Aty € Tk $2. This curve, which is an arc of great circle, is the
A

image of the straight line t,]fx + eAty. (b) 2D representation of the exponential map [41].

The process of updating the nodal director field, using director increments determined in Section 3.7, can
be understood geometrically as following the director along the unit sphere S2. During each iteration k,
the director tff‘ € §?is updated based on the given increment Aty € Tt’/g S? and the previous director using
the exponential map expy : Tt;/; $%? — S2. Each director node has its own unit sphere on which it can trace
A
curves made up of arcs of geodesics (great circles) on S2. Since no assumptions about the deformation
have been made, this method updates the director exactly even when the incremental rotation At4 €
th S? is large, this in contrast with standard plate and shell theory. The update procedure follows the
following steps: the spatial (deformed configuration) and material (undeformed configuration) director
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increments are related by Aty = AI;‘ATA, where E3 — tff‘ = A’;‘E;; e §2. Ttis important to note that
Aty € Tt; 52 because, by definition:

€51 Aty = AjEs - A4ATA = B3 -ATa = 0 (3.107)

Because the director is always tracing curves on the unit circle it is trivial to note that its norm is
always one, therefore enforcing the inextensibility constraint. After updating the nodal director field, the
orthogonal transformation A is updated using the relation AK™ = AA% A%, where AAK € SO(3) is the
unique orthogonal transformation that rotates t{ € S? to tg” € S?, see Figure 3.15. The update problem,

A
summarized in Algorithm 1, can now be defined.

Figure 3.15: The rotation increment AA4 € SO(3) which is used to rotate tg to tff‘“ [41].

Update problem
(i) Given a configuration at the kth iteration, defined by:

k) e RPx % Ak es0(3)

(ii) Given (nodal) increments

(Aug, AT,) € R® X Tg, S?
(iii) Obtain x5, ! in R® x 52
(iv) Update A% — A% € SO(3)
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Table 3.1: Algorithm 1: Geometrically exact kinematic update procedure [19, 41]

Algorithm 1: Kinematic Update Procedure

1: Update nodal positions by simple addition:

X = %K+ Aug (3.108)
2: Compute spatial director increment:
Ata = ALATA (3.109)

3: Update directors using exponential map:

sin ||Ata|

it = expy (Atg) = cos || Ata | th + At 3.110
A Py (Ata) [|Atall ty TR (3.110)
4: Compute orthogonal transformation increment:
sin [|Atall 7, . 1—cos||Atall , x
ANy = cos ||Ata [T + ————— (t}, X Atg) + ————(t; X Ata) ® (t;; X Ata)
IAta] 4 IAtal> 4 .
(3.111)
5: Update orthogonal transformation:
AR = AALAK (3.112)
3.9. Through-the-Thickness Stretching
The following set defines the extensible one-director Cosserat surface [73]:
€ :={(p d): ACR* 5> R*xR’|d-[a1 xaz] > 0} (3.113)

Where:

* The map ¢ : A — R3 is used to define the mid-surface position.
e The map d: A — R3 is used to define an extensible normal vector at any point in the mid-surface.

The shell is once again subjected to prescribed Dirichlet boundary conditions, given by:

PEat) = P(East) on IpAX[0,T] (3.114a)
d(&a,t) =d(Ee,t) on g AX[0,T] (3.114b)

Any configuration of the extensible shell is described as:

Bi={xeR®| x=® (&, &, &) for (&1,&, &) € 6} (3.115)

Just as in the inextensible case, an exact description for the reference configuration exists:

B = {(XeR?| X =@ (&, &, &) for (&1,&,&3) € 6} (3.116)

Any material point in B is located using the director field d : A — R?, where now the assumption of
unit length is relaxed. This means that the director can take any value in R3. Points x in B are thus
described by the mapping;:

x=®(&1,82,E3) = @ (&1, &) + E3d (&1, E2) (3.117)

Points X in the undeformed configuration B° are described by:
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X = @Y (&1,8,8) = @ (&1, &) + &d° (&1, &) (3.118)

A(&1, &) =[|d (&1, &) || > 0 for (&1,&2) € A (3.119)

The removal of the inextensibility assumption on the director field means that the director variations
are no longer confined to be tangent to the unit sphere. When the director field d is inextensible, the
magnitude of the director vector remains constant. Mathematically, this can be expressed as ||d|| = 1.
This constraint ensures that any variation in the director field, denoted as 6d, must be tangent to the
unit sphere. In other words, 6d - d = 0, meaning the variation is orthogonal to the director itself. Now
the director vector is no longer restricted to have a constant magnitude (i.e., ||d|| # 1). This implies
that the variations in the director field are not necessarily tangent to the unit sphere. Consequently, the
variation 6d is no longer orthogonal to the director field d.

§=(¢,6) t §?
P
A \\ (inextensible)
]/
CEHE N
b A
d (thickness
(director) change)
d(€)
A¢) -1
(&)
R? R.

Figure 3.16: Multiplicative decomposition of the director field d into stretching A and inextensible part t [73].

A multiplicative decomposition of the director is employed to treat bending deformations separately
from thickness stretching, as shown in Figure 3.16. Thus making it an addition to the inextensible
director part. Mathematically, this can be expressed as:

d(&1,82) = A(&1, &) (&1, &) , with [[t(E1, &)l =1 and A(&1,&2) >0 (3.120)

As before, a set is defined to state the new kinematic assumptions:

€ ={®=(p,tA): ACR> 5 R>x S XR|t-[a1 X a2] > 0} (3.121)

The decomposed stress resultants are now given by:

n® = ﬁaﬁaﬁ(P + n‘iaﬁ&’ﬁd + ﬁad (3122a)
0 = fadap + m%d (3.122b)
1= 0,00 +°%9,d + Pd (3.122¢)

When thickness stretch is included, the stress resultants no longer contain indeterminate components.
Compare Equation 3.122, which presents the new equations that account for thickness stretch, with
Equation 3.38, which presents the previous equations without thickness stretch. Differentiating Equa-
tion 3.120 with respect to the parametric coordinates, the following is obtained:
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dad (&1, &2) = daA (E1, E2) 1 (&1, &2) + A (&1, &2) Dat (&1, &2) = A[pat + dat] (3.123)

And for the variation:

0d (&1, &2) = 0A (&1, E2) t (&1, &) + A (&1, &2) Ot (&, &2) = A[Out + 6t] (3.124)
Introducing the logarithmic stretch p, its variation 6y and the stretch gradient p

p=InA (3.125a)
ou=0A/A (3.125b)
B, = 0aA[/A = dap (3.125¢)

Using these variables the strains can be written as:

1
€ap = 5 (aaﬁ - agﬁ) (3.126a)
Ca=Ya=—7Ya (3.126b)

Pap = Kap ~ Kog (3.126¢)
Xo=daInA=3,nA° = 9, In (/\/)\0) (3.126d)

x=InA-InA° = In (/\/)\0) (3.126¢)

Where the membrane strain €,4, the bending strain p,s and the transverse shear strain C, are defined
as before. x, is the newly introduced thickness stretch gradient and x defines the thickness stretch. The
space of admissible variations now becomes:

V = {6V = (6¢,0t,01) € A > R*XTS* X R : 6¢p|y,.4 = 0and 6t 4 = 0and 645, 4 =0}  (3.127)
and the internal power becomes:
Wint(6V) = / (ﬁaﬁéeaﬁ + ﬁaﬁépaﬁ +ﬁa6Ca + fﬁ3"‘6)(a +T3(5}() ds (3.128)
s

The strains in Equation 3.21 remain the same along with the following additions:

-
x =il (3.129)
-

The logarithmic thickness stretch u associated with 0y, and expanding power throughT?’ is interpolated
using nodal values as:

Nt nr
W(E &) = > Na(Er, &)y = 3 Naler, 2y (3.130)
A=1 A=1

Where its variations are interpolated as before:

NT nr
Sp(E1,&) = D" Na(€1, &0, = Y. Nalér, &)0p, (3.131)
A=1 A=1

The logarithmic strains d,p associated with 6x,, and expending power through m3® are:
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Nt nr
Dabt(&1,82) = D aNa(Er, &)ty = ) aNalér, 2ty (3132)
A=1 A=l
With variation:
Nt nr
80t (€1,€2) = ) daNalEr, E2)0py = ) AaNa(E1, E2)0p, (3.133)
A=1 A=1

The updated kinematic formulation now includes an additional step for updating the thickness stretch,

which can be expressed as:

Table 3.2: Algorithm 2: Geometrically exact kinematic update procedure including thickness stretch [41, 73]

Algorithm 2: Kinematic Update Procedure Including Thickness Stretching

1: Update nodal positions by simple addition:
X =K+ Aug
2: Compute spatial director increment:
<k
Aty = A ATy

3: Update directors using exponential map:

k+1 : ko, sin[|Atal
t, " = expu (Aty) = cos||Aty|| t, + ——— At
57 = expy (M) = cos IAtall ¢, + i Aty
4: Compute orthogonal transformation increment:
sin ||[Atal|l 7>, 1—cos|Atall
AA4 = cos || Ata ][I + ——— (t§, X Atg) + ————
[Atall 4 [|Ata|l?

5: Update orthogonal transformation:

k+1 _ k
AR = AALAR

6: Update logarithmic stretch:

(tfq X Aty) ® (tfq X Aty)

pitt = b+ Apy, (3.134)
The final stretch is then obtained by:
Afinal = eXP[Hﬁnal] (3.135)



Chapter 4

Results and Discussion

This chapter presents the results of numerical simulations conducted to verify and analyze the behavior
of multi-layered shells under various loading conditions. The key scenarios examined include free
vibration, post-buckling behavior, and torsional effects. The findings confirm that explicitly modeling
each layer yields accurate results in most of the verification cases cases. However, an error related to
the stability term has been observed.

4.1. Verification

To verify the implemented multi-layered shell model, several problems including the free vibration
problem are selected. The free vibration problem involves computing the natural frequencies and
mode shapes of the structure without external forces, which can be compared against the well-known
analytical solution. The natural frequencies and mode shapes depend on the mass distribution and
stiffness of the shell, making them ideal for verifying whether the model accurately represents the
physical behavior of the system.

4.1.1. Free Vibration of Clamped Beam
The equation of motion for an undamped free vibration assuming small deflections can be written as
[75]:

ot 4 07
ﬁu(x, t)+ B ﬁu(x, £)y=0 (4.1)

This equation of motion has the general solution:

u(x,t) = Z un(x) (Ay sin wyt + By cos wyt) (4.2)

n=1
Where u,(x) are the mode shapes:
cos(Bna) + cosh(B,a)
sin(B,,a) + sinh(B,a)

The eigenvalues of the system f,, are given by:

Uy (x) = [cosh(Bnx) — cos(Bnx) + ( (sin(B,x) — sinh(B,x)) (4.3)

)
pt = PO (4.4)
Where:

¢ Eis the Young’s modulus of the material,

e [ is the second moment of area (or the moment of inertia) of the beam’s cross-section %
b is the width of the beam.

h is the thickness of the beam.

p is the linear mass density phb

63
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The eigenvalue of the first mode is expressed as 1 =
associated natural frequency is:

18510 where a is the length of the beam. The

w1 = ﬁ%\/% (4.5)

u(x,0)=0 (4.6a)

The initial conditions are given as:

%u(x,o) =v(x,0) = u1(x)Vo (4.6b)

Using these initial conditions, the response of the beam is limited to its first mode:
u(x, t) = ul(x)a‘j_(i sin(w1t) (4.7)
The equations of motion were solved over one time period T of the exact solution, where T = 7/ w;.
Figure 4.1a presents the models used throughout this thesis, featuring one, two, four, and eight layers,

each maintaining the same total thickness. The figure illustrates the position of each layer along the
z-axis.

8.7e-02 8.7e-02
[}

—0.05

1
l_ 0.0e+00¢

—0.05

l 0.0e+00

\

Distance h (m)
Distance h (m)

8.7e-02

8.7e-02

N ]

—0.05 —0.05

| |
l_ 0.0e+00 l_ 0.0e+00 ¢

(a) The models used throughout the remainder of this thesis consist of one, two, four, and eight layers, all maintaining the same total thickness.

Distance h (m)
Distance h (m)

(b) Mesh used in the free vibration problem.

Figure 4.1: Free vibration verification problem.

First, a convergence study on the penalty parameters ¢, and cr has been performed, as shown in
Figure 4.2. Values in the range of 1 to 10 yield good results, with a slight shift to the left. It has been
decided to use the value 5 for both parameters in all models.
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Figure 4.2: Convergence study evaluating the effect of cx and ct. Increasing these parameters shifts the curve slightly to the left,
indicating a marginal but observable impact on the system’s response.

The parameters used in this problem can be seen in Table 4.1.

Table 4.1: Simulation parameters for the free vibration of a cantilever beam.

Parameter Value
E 12 x 10° Pa
v 0
p 1000 kg/m?
a 5m
b Im
h 0.1m
Vo 0.01m/s
Cy 5
cr 5

Figure 4.3 investigates the effect of the inertia correction. First, the results for one layer with thicknesses
of 0.1 and 0.05 have been plotted. As expected, the response of the single layer with half the thickness
exhibits a lower frequency and double the amplitude compared to the layer with double the thickness,
indicating it is less stiff. Two layers with a combined thickness of 0.1, without correcting the inertia,
match the result of the more flexible single layer rather than the response of the thicker single layer. The
code essentially treats both layers as a single layer with half the thickness. When the inertia of both
layers is corrected, the response now perfectly matches that of the thicker single layer.
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Tip Displacement Over Time

0.015 -
0.010 -
~, 0.005 4
S~
m
1>
0.0004 —® 1 layer (h=0.1)
—4— 1 layer (h=0.05)
0.005 —m— 2 layers uncorrected (2h =0.1)
e —»— 2 layers corrected (2h=0.1)
——  Analytical solution
_0'010 h T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t/T [-]

Figure 4.3: Comparison of results between a single layer with thickness & = 0.1 and h = 0.05, and two coupled layers with
uncorrected and corrected rotational inertia of the bulk elements. The results of the two coupled layers now align closely with
those of the single layer with thickness & = 0.1. The uncorrected results correspond to that of a single layer with thickness
h = 0.05.

Finally, Figure 4.4 compares the results of all models shown in Figure 4.1a, an excellent match between

all these models is observed in this case. Note that the same initial condition has been applied to all
layers.

Tip Displacement Over Time
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—— Analytical solution

—0.0075 A

0.0 0.2 0.4 0.6 08 1.0
t/T [-]

Figure 4.4: Comparison of the same problem using multiple layers with the same combined thickness, the results is exactly the
same in all models.
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4.1.2. Post-buckling of Clamped beam

This section models the post-buckling behavior of a beam using the Euler buckling load. The model is
shown in Figure 4.5a, and the mesh used is illustrated in Figure 4.5b. It is clamped on one edge and the
buckling load F is applied on the other, since this is a numerical model, an out-of-plane perturbation
P has to be applied in order for buckling to occur, the magnitude of this perturbation is very small
compared to the buckling load.

F
X

(a) Boundary conditions and applied forces of the beam post-buckling where a small out-of-plane load must be added to ensure that the shell will
buckle at the buckling load F;.

(b) Mesh used in the post-buckling problem.

Figure 4.5: Beam post-buckling problem.

Euler’s theory predicts that a shell clamped at one end and free at the other, buckles at the the critical
buckling load F.r, which is given by:

_ m?El

Fa= 2 (48)

Where:

¢ E is the Young’s modulus of the material,
¢ [ is the second moment of area (or the moment of inertia) of the beam’s cross-section,
® g is the length of the beam or shell.

The parameters used in this case are shown in Table 4.2.
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Table 4.2: Simulation parameters for the beam post-buckling problem [2, 76].

Parameter Value
E 75 % 10° Pa
v 0.316
p 2700 kg/m?>
a 0.3m
b 0.06 m
h 6x1073m
P 1.25N
F 2.75F+ N
Cy 5
cT 5

Figure 4.6 illustrates several configurations of the beam during the simulation. The total applied load
remains the same in all four models, with the force evenly divided among the layers.

4.1e-01

0.35

— 0.3

— 025

—02

—0.15

displacement Magnitude

0.1

0.05

0.0e+00

Figure 4.6: Several configurations of the post-buckled beam with eight layers.

cr

Figure 4.7 shows the non-dimensional force (Fi) against the non-dimensional tip displacement (%) for

all four models. As before, a strong match can be observed. The results have been compared to existing
literature, and a good agreement is noted.
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Non-dimensional Force Against Tip Displacement
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Figure 4.7: Comparison of the same post-buckling problem using multiple layers with the same combined thickness, The obtained
graphs have a great match with literature [2, 76].
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4.1.3. Twisting of Clamped Beam

The twisting of an initially clamped beam with length a, width b, and thickness #, is analyzed under an
applied torque T at its tip (see Figure 4.8a). The mesh used for this analysis is shown in Figure 4.8b,
and the problem parameters are listed in Table 4.3. This example represents a thick shell, with a
thickness-to-width ratio of /1/b = 0.2. Since this model is subjected to an applied torque, the torque is
distributed among the layers based on their contribution to the inertia. The outer layers experience a
higher torque compared to the inner layers, the combined torque on all layers is constant.

(a) Boundary conditions and applied moment of the beam twist problem.

TAVAVAN AVAVAVANAVAVAVANA
\VAAVAAN \NAVAVAVAVAVAVAVAN.

(b) Mesh used in the beam twist problem

Figure 4.8: Twisting of beam.

Table 4.3: Simulation parameters for the beam twist problem.

Parameter Value
E 12 x 10° Pa
v 0
p 1.0kg/m?
a 10m
b Im
h 0.2m
T 20 x 10° Nm
Cy 5

cT 5
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The final state of twist for all four models is shown in Figure 4.9. It is evident that the four-layer and
eight-layer models rotate slightly further than the single-layer model. This is likely due to an issue with
the stability term allowing the layers to pass through each other.

— 7

8
itude

placement Magn

|
)
2
&
i

%

%
.
|
=
o o
o o
[
2
3
isplacement Magnitude
~

I
st

d
d

itude
itude

i
i

4 r 1.1e+004
- / - 0.5
v
g l 0.0e+00.

Figure 4.9: For the final state of twist in the one, two, four, and eight-layer models, it was observed that the layers move through
each other instead of maintaining the appropriate thickness offset. Additionally, the final state of the two-layer model slightly
deviates from that of the single-layer model. Both the four-layer and eight-layer models stopped converging at approximately the
same time.
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A close-up of this issue is shown in Figure 4.10. In the current implementation, the mid-surface
displacements are constrained by enforcing zero relative displacement. However, the displacements at
the interfaces should be coupled while accounting for the layer thicknesses. It is expected that modifying
the stabilization term to reflect this will resolve the issue. Currently the stabilization parameter preserves
the correct distance between mid-surface nodes, however this is not along the direction aligned with
the director. Due of this and the applied moments, each shell essentially rotate in place, preventing
the bottom layer from transitioning to the uppermost position after a full twist (see Figure 4.11). This
preserves the original orientation of the layers, which is unintended. This results in displacements
progressively becoming worse as the simulation progresses since initial discrepancies compound in
larger errors.
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Figure 4.10: A close-up view of the layers shows them interpenetrating, with the same issue occurring in the middle and near
the clamp, causing the orientation of the layers to remain unchanged near the tip. This behavior indicates an error with the
stabilization terms.
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e
A

(a) Untwisted configuration. (b) Deformation after one twist.

(c) Deformation after two twists. (d) Final deformation after three twists.

Figure 4.11: Twisting of two-layer model where blue corresponds to the first layer and red corresponds to the second layer, it can
be observed that the blue layer never transitions to the top position and always rotates in place. Additionally, the interpenetration
of layers can clearly be seen.
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Applied Moment Against Tip Displacement
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(a) Torque against displacement 1.
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(b) The absolute error in displacement w7 increases throughout the simulation, reaching a maximum of 3.5% for the two-layer model. The four-layer
and eight-layer models exhibit much larger errors, indicating that the issue with the stability term actually impacts the results rather than just
affecting visualization.

Figure 4.12: Displacement u; under applied torque T and the absolute error compared to a single layer.

Figure 4.12a compares the u;-displacement of all four models, while the absolute error with respect
to the single-layer model is plotted in Figure 4.12b. The match is not as accurate as in the previous
cases, with errors reaching up to 3.5%. The four-layer and eight-layer models behave similarly but
exhibit significantly larger errors compared to the single-layer model. It is believed that this is due
to the stability term not working properly since the layers do not deform as would be expected, the
bottom layer remains the bottom layer during the entire simulation.
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Applied Moment Against Tip Displacement
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(b) The absolute error in displacement 15 is much larger compared to that of the 11 component, which makes sense since the deformation due to
the moment is primarily focused in the yz-plane. It is observed that the absolute error is zero at two points for all models, with maximum errors

occurring between these two points. These are the points of maximum displacement; naturally, these should match in all models. Additionally, the
error increases with each turn, each time the layers fail to switch orientation.

Figure 4.13: Displacement u; under applied torque T and the absolute error compared to a single layer.

Figure 4.13a compares the ur-displacement of all four models. As before, the absolute error with
respect to the single-layer model is plotted in Figure 4.13b. The u, displacement component matches
relatively well in all cases; however, the error increases with each turn. It is clearly visible that the
model undergoes three turns. As in previous cases, the four-layer and eight-layer models show similar
behavior, but the error in these models increases much faster than in the two-layer model. Interestingly,
there exist two points at which the error is close to zero in between the turns, these are the extremes
reached during the simulation.
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Applied Moment Against Tip Displacement
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(b) The absolute error in the displacement component 3 is the largest compared to the previous two components, reaching values of 50%. As for
the up displacement, points with errors close to zero exist here as well which are the extremes reached during the deformation.

Figure 4.14: Displacement u3 under applied torque T and the absolute error compared to a single layer.

Finally, Figure 4.14a compares the u3-displacement of all four models, with the absolute error relative
to the single-layer model plotted in Figure 4.14b. Every observation made about the u, displacement
curves applies here as well: large errors up to 50% that increase with each turn, while reaching the same
maximum displacement.
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4.1.4. Roll-up of Clamped Beam
The classic roll-up problem involves an initially flat cantilever beam with length a, width b, and
thickness 1, subjected to a moment M applied at its tip (see Figure 4.15a). The mesh used for this

problem is shown in Figure 4.15b. Based on Euler’s theory, the beam should roll up into a complete

circle when the moment reaches M = %, where I = % is the second moment of the area [41].

The parameters of the problem are indicated in Table 4.4. As in the twisting problem, the moment is
distributed according to each layer’s contribution to the moment of inertia.

(a) Boundary conditions and applied moment of the beam roll-up problem.

(b) Mesh of the beam

Figure 4.15: Beam roll-up problem.

Table 4.4: Simulation parameters for the beam roll-up problem.

Parameter Value
E 12 X 10° Pa
v 0
p 1.0kg/m®
a 10m
b 1m
h 0.1m
M 2007t Nm
Cy 5
cr 5

Figure 4.16 shows the final configurations of the same problem modeled with one and eight layers.
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(a) Several configurations of the single layer beam during the simulation.
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(b) Several configurations of the eight-layer beam during the simulation.

Figure 4.16: Beam roll-up configurations for one and eight layers.

Plotting the displacement components for all four models—shown in Figure 4.18 for the #1-displacement,
Figure 4.19 for the u;-displacement, and Figure 4.20 for the u3-displacement—demonstrates an excellent
match between the models. Interestingly, the same issue as observed in the twist model, where the
layers move through each other, is also present (see Figure 4.17); however, this did not result in big
errors. This can be explained by the fact that twisting is a complex deformation involving all three
displacement components, and the interpenetration of layers leads to inconsistencies in how they
respond to the applied loads, as the layers are no longer in their correct positions. In the roll-up
problem, the deformation is simple bending where the orientation/position of the layers does not
matter as much. Nevertheless, a discrepancy is observed in the up-displacement (see Figure 4.19),
although it is insignificant compared to the dimensions and has been included only for completeness.
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Figure 4.17: As in the beam twist problem, there is an issue where one layer moves through the other, failing to maintain the
correct separation and thickness. This occurs again towards the end of the simulation, leading the layers to return to their original
positions after effectively swapping places twice, resulting in the correct final configuration.
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Figure 4.18: The moment M against displacement u; shows a strong match for all models. Despite the interpenetration of layers,
the models remain equivalent to the single-layer model.
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Figure 4.19: The moment M against displacement u; also shows a good match in all models. However, near the end of the
simulation some discrepancies are observed. Note that the absolute values are negligible compared to the other two displacement
components and have only been included for completeness.
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Figure 4.20: The moment M against displacement 3, similar to the u; displacement, shows a good match across all models.
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4.2. Computational Experiments

4.2.1. Composite Strip

A straightforward test for evaluating the added composite material is the bend-twist coupling. The
test model is illustrated in Figure 4.21a, where the fiber angle is defined as a positive rotation around
the z-axis. The mesh used for this analysis is depicted in Figure 4.21b. A point load is applied at
the midpoint of the right edge, resulting in unresisted twisting. The parameters of the problem are
indicated in Table 4.5.

X

(a) Boundary conditions and applied load of the composite strip problem.

(b) Mesh of the composite strip.

Figure 4.21: Composite strip problem.

Table 4.5: Simulation parameters for the composite strip problem [77].

Parameter Value
E: 113 x 10° Pa
E, 9 % 10° Pa
V12 0.37
G12 3.82 x 109 Pa
Gos 3.446 x 10° Pa
P 1580 kg/m>
a 0.2m
b 0.02m
h 1.5%x10™*m
P 05N
Cy 5

ct 5
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Figure 4.22a illustrates the out-of-plane displacement for the laminate [0°/6°],s across four cases:
6 =0°0=230° 0 =60° and 6 = 90°. It can be observed that the 6 = 30° model exhibits the greatest
twist, while the 0 = 60° model shows only a slight twist. As expected, the 0 = 0° and 0 = 90° models
exhibit no twist. However, the out-of-plane displacement is significantly higher in the 6 = 90° model.
Figure 4.22b provides a front view to better visualize the twist.
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(a) The out-of-plane displacement for the eight-layer laminate [0°/0°]ps is depicted for fiber orientations 6 = 0° (top left), 30° (top right), 60°
(bottom left), and 90° (bottom right). A clear twist is observed in the 30° model, with a slight twist in the 60° model. As expected, the 0° model

barely deforms since the fibers provide significant strength in this direction. The 90° model, however, deforms considerably, as its response is
entirely influenced by the matrix material.
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(b) Front-view out-of-plane displacement for the eight-layer laminate [6°/0°]»s depicted for fiber orientations 8 = 0° (top left), 30° (top right), 60°
(bottom left), and 90° (bottom right).
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Figure 4.22: The influence of fiber orientation on the out-of-plane displacement is demonstrated for the symmetric eight-layer
laminate [6°/6°]5s.
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Finally, the layup [30°/-30°/-30°/30°/-30°/30°/30°/—30°], which is symmetric in the upper and lower
halves but unsymmetric overall, should not twist when bent. The resulting deformation is shown in
Figure 4.23a, with a frontal view provided in Figure 4.23b. It can be observed that the correct behavior of
antisymmetric layups is achieved, where opposite orientations and loads produce the same deformation
without shear, as the resulting couples cancel each other out.
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(a) Out-of-plane displacement u3.

2.1e06

-0.002
L -0003
—-0.004

—-0.005

—-0.006

displacement Z

—-0.007
4
—-0.008

-0.009

-1.1e-02

(b) Front view out-of-plane displacement u3.

Figure 4.23: Displacement for the eight-layer laminate [30°/-30°/-30°/30°/-30°/30°/30°/-30°] shows no twist, which is
expected for an antisymmetric layup with symmetric upper and lower halves. Layers with opposite orientations and loads tend
to show similar deformations, as the resulting couples negate the total shear due to their equal and opposite nature.
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4.2.2. Open Hole Tension

The open hole test model is illustrated in Figure 4.24a, where, as before, the fiber angle is defined as
a positive rotation around the z-axis. The mesh used for this analysis is shown in Figure 4.24b, with
refinement around the hole to capture the stress concentrations. An axial tension load is applied at one
edge, while the opposite edge is clamped. The parameters for this problem are detailed in Table 4.6.
Due to time restrictions, the simulation completed approximately 22%, reaching a displacement of
5.5x 107> m.

u
X 1

(a) Boundary conditions and applied load of the open hole tension strip.

(b) Mesh of the open hole tension strip.

Figure 4.24: Open hole tension problem.

Table 4.6: Simulation parameters for the open hole tension problem [25].

Parameter Value
Eq 139.835 x 10° Pa
E; 8.515 x 10° Pa
V12 0.275
Gio 6.3 x 10° Pa
Gos 3.2 % 109 Pa
P 1580 kg/m’
a 0.2m
b 0.04m
h 15%x10™#m
i 25x107*m
Cy 5

cT 5
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(a) Experimental matrix cracks in the 0° laminae. (b) Stress component #11 for the 0° laminae in the model.

(c) Experimental matrix cracks in the 45° laminae. (d) Stress component 7111 for the 45° laminae in the model.
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(e) Experimental matrix cracks in the —45° Jaminae. (f) Stress component 7111 for the —45° laminae in the model.

shess3

(g) Experimental matrix cracks in the —45° laminae. (h) Stress component 71, for the 90° laminae in the model.

Figure 4.25: Comparison of experimental matrix cracks [25] and model stress distributions for the 0°, 45°, —45°, and 90°
laminae. For the 0°, 45°, and —45° laminae, the stress component 711 is analyzed; for the 90° lamina, the stress component 715 is
considered. The model effectively illustrates the stress distributions that correspond to the observed matrix crack directions from
the experiments.
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The comparison of experimental matrix cracks and model stress distributions, as shown in Figure 4.25,
illustrates the model’s effectiveness in capturing the stress concentrations of various lamina orientations.
The comparison focuses on the stress component 111 for the 0°, 45°, and —45° laminae, where the stress
concentrations align closely with the direction of matrix cracking in the experimental results. For the
90° laminae, the stress component 715, is compared, as 7117 is close to zero. This can be explained by the
fact that stress is attracted to stiffness, and the 90° laminae lack stiffness in the x-direction.

Figure 4.26: Open hole tension stress component 7111 for the composite laminate layup [0°/45°/-45°/90°/90° /—45° /45° /0°]. The
stress distribution is shown, illustrating the impact of the hole on the 71 stress field throughout the thickness of the laminate.

Figure 4.26 shows the complete model of the open hole tension test, visualizing the stress component
n11 for the composite laminate layup [0°/45°/-45°/90°/90° /—45° /45° /0°]. The figure illustrates the
impact of the hole on the 71; stress field throughout the thickness of the laminate. Notably, the stress
concentrations around the hole reveal the influence of the fiber orientation on the stress distribution,
with close to zero stress in the 90° laminae and very high stresses in the 0° laminae.



Chapter 5

Conclusion

The goal of this work was to develop a high-fidelity framework for modeling multi-layered composite
structures by explicitly representing each layer. This approach allows for the accurate simulation of
interlaminar interactions, particularly under large deformations and buckling conditions. By employing
geometrically exact shell finite elements, this method enables the modeling of large deformations and
buckling while effectively capturing the independent behavior of each layer. Consequently, the primary
research objective previously stated is as follows:

Research Objective

To investigate the feasibility of high-fidelity Finite Element Methods for explicitly modeling each
layer in multi-layered materials subjected to large deformations and buckling at the component
level.

The research objective was achieved by employing the Discontinuous Galerkin method. This method
is particularly well-suited for capturing the complexities of multi-layered composite structures, as it
allows for the explicit representation of each individual layer, including their interlaminar interactions.
By using the Discontinuous Galerkin method, the model effectively simulates these interactions under
challenging conditions such as large deformations and buckling, which are critical for understanding
the material’s behavior in smart structures and buckling applications.

Sub-Question 1

How can the Discontinuous Galerkin method be employed to model any number of layers
through-the-thickness?

Answer

The Discontinuous Galerkin method can be applied to multi-layered structures by allowing
for the explicit modeling of each layer through-the-thickness. By discretizing the equations for
each layer and implementing interlaminar coupling, the method can capture the layer-specific
behavior and interactions under various loading conditions.

To apply the Discontinuous Galerkin method through the thickness, two key aspects need to be
addressed. First, each individual layer must be meshed using its own independent set of nodes (Subsec-
tion 3.6.1). Second, the interface forces between these layers must be incorporated into the weak form
(Section 3.4).

To create any number of layers through the thickness, a base layer is first required. The mesh of this
layer is then duplicated and shifted in the thickness direction until the desired number of layers is
achieved. This process involves calculating the director at the nodes in the reference configuration
and using it to offset each new layer, ensuring that any shape can be replicated without resorting
to hardcoded geometries. Since each of these layers is meshed independently without the need for
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added constraints, each layer maintains its own set of unknowns, effectively functioning as a Layerwise
displacement field (Subsection 2.1.2).

It is important to note that the inertia of each layer must be adjusted to account for the new mass
distribution. Simply adding layers without correcting the inertia would result in an inaccurate model.
The parallel axis theorem must therefore be applied to ensure that the addition of layers does not alter
the overall response of the structure (Subsection 3.6.2).

Sub-Question 2

How do the multi-layer predictions from the proposed method compare to Equivalent Single
Layer configurations across several benchmarks?

Answer

The proposed method can be compared to Equivalent Single Layer configuration using numerical
benchmarks, such as the free vibration of a beam, post-buckling of a beam, beam roll-up, and
beam twist. The four models are set-up to compare several aspects of the model: the first
confirms proper rotational inertia calculation, the second ensures that distributing the load
across all layers produces the same post-buckling response as a single-layer model, the third
model tests performance under large torsional deformation, and the fourth evaluates large
deformations in the classic Euler beam roll-up problem. the method showed good agreement
with Equivalent Single Layer models, although some discrepancies, like in the beam twist case,
may arise due to factors such as the incorrect stability parameter and load application.

To verify the proposed method, several benchmarks were created. The models included the free vibra-
tion of a beam, the beam roll-up problem, the beam twist problem, and the beam post-buckling problem.
In most cases, a strong match was observed, with no visible error compared to the single-layer model.
These four benchmarks were designed to verify key aspects of the overall modeling approach. The
first model excites the shell using its first mode shape, allowing for a comparison with the analytical
solution to confirm the correct calculation of rotational inertia for each layer. The second model assesses
how the four configurations respond to the buckling load from a single-layer model, ensuring that
load distribution across layers yields the same post-buckling response. The third model examines
the behavior of a thick shell under an applied torque, evaluating its performance during significant
torsional deformation. Lastly, the fourth model uses the classic Euler beam roll-up problem, where a
moment is applied at the shell’s tip, rolling it into a complete circle.

The beam twist exhibited significant absolute errors in displacement, reaching up to 50%. This discrep-
ancy can be attributed to the stabilization parameter and the method of load application. Currently,
the stabilization parameter maintains the correct distance between mid-surface nodes; however, this
distance is not aligned with the director. It is believed that ensuring the correct distance between
the mid-surface nodes in the direction of the director will resolve the issue of layer interpenetration.
Additionally, in all models, the total load was distributed across all layers: membrane loads were
divided equally among the layers, while moments were allocated based on each layer’s contribution to
the moment of inertia. This approach, combined with the stabilization term, may explain why, in one
benchmark, the layers rotated in place instead of following the rotation of adjacent layer.
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Sub-Question 3

Question

What adjustments are needed for the proposed method for it to be able to model interlaminar
damage effectively along any interface using the Discontinuous Galerkin approach?

Answer

To model interlaminar damage effectively, modifications such as incorporating cohesive zone
models at the interfaces is required. These adjustments will allow the Discontinuous Galerkin
approach to account for the initiation and propagation of damage between layers, providing a
more accurate simulation of interlaminar failure.

Since an extrinsic cohesive element is used, delamination initiation cannot be directly modeled. To
address this, an initiation criterion must be employed, particularly a stress-based criterion. However,
this requires capturing out-of-plane stresses on both sides of the interface. In the current implementa-
tion, a plane stress state is assumed, meaning out-of-plane normal stresses are absent. The out-of-plane
shear stresses are captured due to the use of shear-flexible shells. It is possible, however, to incorporate
out-of-plane normal stresses while maintaining the geometrically exact nature of the elements. This
can be achieved by relaxing the inextensibility constraint on the directors. By introducing additional
unknowns for the director stretch, out-of-plane normal stresses will be present, alongside the drilling
moments (see Section 3.9).

When these stresses are available, a stress-based delamination failure criterion must be used to evaluate
delamination initiation. While simple maximum stress criteria can be applied, more complex models
that account for the interaction of out-of-plane stress components are also possible. The necessary
stresses can be easily obtained from the implemented composite constitutive matrix on both the left
and right sides of the interface. The average of these stresses is then combined with the out-of-plane
normal vector in the consistency terms to evaluate fracture initiation (Section 3.4).

With all sub-questions addressed, the main research question can now be answered:

Main Research Question

How can high-fidelity Finite Element Methods be employed to investigate the feasibility of
explicitly modeling each layer in multi-layered materials subjected to large deformations and
buckling at the component level?

Answer Main Research Question

A high-fidelity Finite Element Method can be used to model interlaminar interactions in multi-
layered materials by using the Discontinuous Galerkin approach. By discretizing each layer
explicitly and implementing interlaminar coupling, the method captures layer-specific behav-
ior under large deformations and buckling. Several numerical benchmarks demonstrate the
method’s ability to model each layer individually while producing accurate results at the com-
ponent level. However, further adjustments—such as incorporating out-of-plane stresses and
cohesive zone models—are required to accurately simulate interlaminar damage initiation and
propagation at the interfaces. Additionally, modifications to the stability term are necessary to
prevent layer interpenetration, which is believed to be the cause of the observed discrepancy.

The thesis demonstrates the applicability of the proposed method to model multi-layer composite
components. It shows that a wide range of thicknesses can be effectively accommodated, from thick
shells to very thin configurations. The use of second-order displacement elements and linear rotation
elements ensured that no locking occurred, even at very small thicknesses, which is crucial for accurately
modeling realistic composite structures. The bend-twist problem was modeled for the composite
material, revealing a distinct twist when using a unidirectional symmetric layup. As anticipated,
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the antisymmetric layup, characterized by symmetric upper and lower halves, exhibited no twisting,
confirming that the mechanical behavior was accurately captured. Following this, the open hole tension
test was conducted, demonstrating the influence of the fiber orientation on the stress concentrations
around the hole compared to experimental results.
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5.1. Recommendations for Future Work

If at this point there are still brave souls willing to take on this topic, several recommendations can be
made for effectively modeling delaminations at arbitrary interface:

5.1.1. Through-the-Thickness Stretching

Including through-the-thickness stretching into shell models, as explained in Section 3.9, is essential for
accurately capturing out-of-plane stresses, particularly if delaminations are to be modeled. Traditional
shell theories, which assume an inextensible thickness, do not take into account the out-of-plane normal
stress, leading to the model only being able to model shear delamination. By allowing the thickness
stretch as an independent field, not constrained by the plane-stress condition, the three out-of-plane
stresses can be used together in a failure criterion.

An advantage of shell models with thickness stretch is the implementation of full 3D constitutive
models. Unlike the classical inextensible director theory, where the plane stress assumption must be
explicitly enforced, formulations with an extensible director avoid this, allowing for direct use of 3D
constitutive relations, while still recovering plane stress behavior for thin shells.

5.1.2. Integration of Cohesive Elements

Employing the Discontinuous Galerkin method to explicitly model each layer has proven feasible
in this work. However, while cohesive elements for intralaminar damage are already established
through the DG/CZM method, which has been successfully applied to homogeneous materials [19]
and is currently under development for intralaminar damage in orthotropic materials [78], interlaminar
cohesive elements should also be included. This addition will enable the modeling of delaminations
within multi-layered composite structures along arbitrary interfaces without the artificial compliance
observed in literature.

5.1.3. Support for Unsymmetric Laminates

The current framework is limited to symmetric laminates, see Subsection 3.5.2. However, unsymmetric
laminates could provide more flexibility in tailoring stiffness. Unlike symmetric laminates, unsymmetric
laminates introduce coupling between in-plane and out-of-plane loads, which leads to more complex
behavior under mechanical loads. This complex coupling could be used to obtain a certain buckling
shape. By including the possibility of unsymmetric laminates, the model will be able to capture
important effects such as bending-shear and extension-twist coupling.

5.1.4. Parallel Implementation

By utilizing parallel computation, the workload can be distributed across multiple processors, thus
reducing simulation time and enabling the analysis of larger, more detailed models that were previously
not feasible. This approach will allow the current method to handle larger and more complex problems,
making applications such as delamination modeling actually practical. The DG/CZM method lever-
ages its well-established scalability, significantly reducing inter-processor communication. The only
necessary communication occurs during the calculation of the interface stability term, requiring the
exchange of the jump in displacement and directors across processor boundaries.

5.1.5. Shear Correction Factors

A shear correction factor of ¥ = 2 was used in this work for all layers. While this is appropriate for
isotropic materials, it is not generally valid for composite materials. As stated in Subsection 2.1.1, the
shear correction factor depends on both the material properties and the layup [79]. Shear correction
factors should be calculated for each layer, additionally both out-of-plane shear strains generally have
different shear correction factors as well: k13 # x23. The shear correction factor x can be calculated by
equating energies, as follows:

_ Xie kiGihi
i=1 Gihi

In other words, the shear correction factor is the ratio between the corrected and uncorrected shear

(5.1)
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stiffness. Here «;, G;, and h; represent the shear correction factors, shear modulus, and thickness of
each layer, respectively. For certain layups, applying x = 2 uniformly across layers may still provide
reasonable accuracy. However, for more complex layups or material properties, layer-specific shear
correction factors are needed to capture the correct shear behavior.
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Appendix A

Weak Form of the Dynamic Linear
Momentum Equation

The body experiences a force per unit mass f. Its boundary surface dB is divided into two distinct
parts: a Dirichlet section dpBy, where displacements are fixed to i, and a Neumann section dy By,
where surface tractions are specified as T. It holds that dBy = dp By U dn By and dpBy N dn By = 0. The
governing equations in the material form are [28]:

Vo-P+f = p()ii VX € By (A.1a)
u=u VYX€dpBy (A.1b)
P-t=T VXe€dnBy (A1c)

The finite element discretization approximates the domain, denoted as Bo, = -, Q¢, where ()¢ is the
union of the elemental domain () with its boundary dQ)f. The elemental boundary consists of multiple
parts, namely:

an = 81)()8 U &NQS U aIQS (A.2a)
31)@8 = QS N dpBoy (A.2b)
aNQS = QS N dnBon (A.2¢)

9;Boy, = \ 9Bon (A.2d)

E
L)oo
e=1

Where J; By, refers to the set of all internal boundaries that are specific to the Discontinuous Galerkin
method.

Multiplying the governing equation with a test function and integrating over the body results in the
weak form:

/ 6u-(V0-P+f)dV=/ ou - poit dV (A.3)
Bon Bon

Which can be rewritten as:

/ 5u-p0ﬁdV—/ 6u-VO~PdV—/ ou-£dv =0 (A.4)
Bon Bon Bop,

The integrals over the body can be written as a summation of integrals over the elemental domains:

n ) n apl] n
Z/eéu-poudV—Z/eéui-a—deV—Z‘/Eéu-dezo (A.5)
e=1 0 e=1 0 e=1 0

Applying integration by parts to the second term results in the addition of an external boundary term:
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Z/ 6u-p0iidV+Z/ P:VooudV - Z/ Su-P-tdS —Z/ Su-£dV=0  (A.6)
e=1 S e=1 S e=1 9'6 e=1 8

Now focussing on this external boundary term which can be rewritten over the Dirichlet, Neumann,
and internal boundaries using Equation A.2 as:

n n O n n
Z/ Su-P-tdS :W +Z/ 6u~P-tdS+Z/ du-P-tdS
e=1 Y% =1 /9 e=1 YN e=1 Y91y

:Z/ 6u-TdS+Z/ ou-P-tdS
e=1 aNQS e=1 ‘9[06

Since the variation of displacement over the Dirichlet boundary is zero, this term cancels out leaving a
Neumann and internal boundary term:

(A7)

n n n n
Z/ 6u-p0ildV+Z/ P:Vosudv - Z/ Su-P-tds —Z/ su-Tds
e=1 0 e=1 0 e=1 91y e=1 N
n
—Z/ ou-£dvV =0
e=1 0

Now the Internal boundary term can be rewritten using the jump and average operators by noting that
t"isequal to —t™:

(A.8)

Z/ ou-P-tdS =/ 6u-P-t+dS+/ 6u-P-tdS+...+/ ou-P-ttds
0 Yo Q) o !

+/ 6u'P-t_d5=—/ [6u-P]-tdS
Q] I1Bon

The last term can be rewritten and simplified since the jump in stress [P] is zero across crack interfaces:

(A.9)

0
/ [ou-P]-tdS|= / [ou] - {P}-tdS + 1) -tdS (A.10)
91 Bon 91Bon

0h

Substituting this result into the weak form results in:

n n n
Z/ 6u-p0ﬁdV+Z/ P:Voéudv+/ ﬂéuﬂ-{P}-tdS—Z/ su-Tds
e=1 Q4 e=1 Q4 91Bon e=1 8NQ(CJ
n
—Z/ Su-£dV =0
e=1 6

At this point, the summation of the elemental body integrals can be rewritten as an integral over the
entire body By, again:

(A.11)

/Boh ou - poit dV + / P :Vooudv +/z9,BOh [[6u]]'{P}-tdS+/ hﬁ[[u]]‘[[éu]] ds

Bon al Bon '*S

—/ 6u-TdS—/ ou-£fdv =0
IN Bon Bon

(A.12)
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The second term can be rewritten using the equality 0F = ‘9;% = Vobu:

/ P :VooudV |= / P:0FdV (A.13)
Bop Bop

Now the stability terms over the internal boundary are introduced by simply adding it to the weak
form:

/ 6u'poildV+/ P:éPdV+/ [[buﬂ-{P}~tdS+/ E[[uﬂ-[[éuﬂ das
Bon Bon 91Bon d1Bon hs (A.14)
=/ 6u-TdS+/ ou-£dv
InBon Bon
The terms over the internal boundaries can be rewritten as a summation over the interfaces k:
/5 n-1
/ [6u] - {P} - tdS +/ = [u] - [ou] dS |= Z/ [6u]® - {P}® - tds
91Bon d1Bon hs — Jo,0k
k=1 0
(A.15)

n—1

B )
+ — [u]™ - [ou]*” dS
2 i

As explained in [80], a parameter « can be introduced to disable the stability and consistency terms
while simultaneously activating the cohesive traction. This parameter illustrates the strength of the
Discontinuous Galerkin method, as it allows for the selection of either stability tractions or cohesive
tractions based on the failure criterion:

n-1 n-1
/ St - poii dV+/ P:c‘SFdV+Z/ (1-a) Héu]]“‘)-{P}(")-tdS+Z/ aou]™ - Trs ™ ds
Bon Bon k=1 ‘9195 k=1 ‘910(1;

n-1
+Z/ (1—04)%[[11]](1‘)-[[611]](1‘) dSz/ 6u'TdS+/ ou-£dv
=1 210k hs) IN Bon Bon
(A.16)

For plate and shell structures, integration over the domain can be represented as integration over the
mid-surface of the plate followed by integration over the thickness of the plate [33]:
£k

L dV = oudSdes, [ ... dEs = S PTIER h(k)/% d A17
/V ./hL pdSdés ‘/h & ;‘/h(k) & ; . & ( )

i
<3
Since tractions and forces can only be applied the the shell mid-surface, the Neumann boundary integral
needs to be slightly rewritten:

/ Su-TdS = // ou-T udSdés; (A.18)
aNBOh h aNSh

Finally the weak form can be rewritten as:

n-1

/ / du - poil pdSdés + / / P: 6F udSd&s + (1-a) [ou]® - {P}W .t uPds
hJSy hJSy k=1 Sh

n-1 n-1

> / a[ou]® - Tro® pPds + " / (1= a) L= [u]® - ou]® ds (A19)
—1 ¢S — Js h(k)
k=1 h k=1 h s

=// 5”Tyd8d€3+// 6ufyd$d£3
h aNS,, h Sh



Appendix B

Configuration of an Undeformed Shell

An example of a mapping ¢" for plates is [81]:

=& Pl=& @Y=& (B.1)
With:

D = 0 + &5t° (B.2)

The convected basis is calculated as:

1
0. 99° _ 0._‘9‘P0_0 0_ _MXa _0
1o 2 |p a1 X az 1
Using the convected basis, the surface metric tensor is:
10
agﬁ =dap - dpp = [0 1} (B.4)

The Jacobian of the surface metric tensor can be shown to be equal to one since in the case of a plate dS
is equal to d.A. The covariant base vectors g? are:

1 0 0
oY oY
0. 0. 0 _ 40
=—=10 = — =11 =t'=10 B.5
S £=55 1, 8 ) (B.5)
The metric tensor of the entire body is then given by:
100
gl =g gl=10 10 (B.6)
0 01
Finally, the shifter tensor is given as:
5 |10
o = [0 1] (B.7)

Its determinant does not depend on the thickness coordinate &3. This implies that in the reference
configuration, quantities are the same in both the {ag}azm and in the { g?}i=1,2,3 reference frames. This
is a trivial result, however, for curved shells, different interfaces will have different areas.
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Appendix C

Exponential Map

C.1. Rotation Group and its Lie Algebra

Following [41], SO(3) is denoted by the rotation group of all possible orthogonal transformations in R?
with determinant equal to +1. Formally:
SO@B) = {AeR* > R*| AT = A" and det(A) = +1} (C.1)
This means all proper orthogonal rotation tensors that preserve the angle between vectors and their
magnitude. Any matrix A € SO(3) possesses an eigenvector W € R? such that:
AV =W (C2)

Geometrically, A represents a rotation about W. The tangent space to SO(3) at the identity matrix I is
denoted by so(3). The identity matrix I represents zero rotation, so the tangent space at the identity
matrix consists of all infinitesimal rotations (rotations close to identity). These infinitesimal rotations
are described by elements of so(3), which is the Lie algebra of SO(3). Hence, so(3) describes all rotations
with infinitesimally small increments. This set consists of all skew-symmetric matrices, and is defined
as:

s0(3) i= {é cERP SR O = —@} (C3)
Any matrix @ € s0(3) has an eigenvector ® € R such that:

€0 =0 (C.4)

This defines the isomorphism #: s0(3) — R by the relation:

®Oh=0xh VheR® (C.5)

For any Oc s0(3), the matrix representation relative to the inertial basis {E; };=123 is:

R 0 —@3 @2 ®1
=6 0 -0, 6=|0, (C.6)
—@2 @1 0 ®3

where @1, ®,, ©3 are components of the eigenvector ©. The tangent space at any A is given by rotating
so(3):

0 = AOAT (C.7)
Now the set of finite rotations with rotation axis perpendicular to E; can be defined as:

81253 = {A € SO(3) | where W € R?, such that AV =\, satisfies ¥ - E3 = O} (C.8)

It can thus be stated that 51253 is a subset of SO(3), e.g., (51253 C S0O(3)). Essentially, each point on the unit
sphere 5% can be uniquely associated with a certain rotation A in S%S. As before, the tangent space at
the identity can be defined as:

TISIZ53 = {® €50(3) | where ® - E; =0} (C.9)

100



C.2. Derivation of Rotation Tensor 101

C.2. Derivation of Rotation Tensor

The exponential mapping exp: so(3) — SO(3) maps infinitesimal rotations, which are represented by
skew-symmetric matrices in so(3) and transform incremental changes in orientation, into finite rotations.
These finite rotations are represented by orthogonal rotation matrices in SO(3), which actually perform
the incremental rotation on directors. The derivation starts with the rotation formula, it holds for any
rotation around any axis no matter its magnitude [82]:

exp[®] = A = cos(||®|)I + sin(||©]|)é + (1 — cos(||@]]))e ® e (C.10)
Where e = ﬁ and ¢é is its skew-symmetric counterpart. Since t = AEj:
t = (cos(||®|I + sin(||O]|)é + (1 — cos(||O]|))e ® e)E3 (C.11)

This can be rewritten as:

t = cos(||©||)Es + sin([|©]])(e X E3) + (1 - cos([|O]))(Es - e)e (C.12)
Since Ej3 - ¢ = 0 this equation simplifies to:

t = cos(||®||)Es + sin(||O][)(e X E3) (C13)

Thus t = AE; becomes cos(||®||)Es + sin(||®]|)(e X E3). From this equation the following relations can
be obtained:

t- E3 = (cos(||®||)E3 + sin(||®||)(e X E3)) - E3 (C.14a)
E; X t = E3 X (cos(||®||)E3 + sin(||®]|)(e X E3z)) (C.14b)
Which becomes:
t-E; = cos(||®]]) (C.15a)
E3 x t = sin(||®||)E3 x (e X E3) = sin(||®||)[e — (E3 - €)E3] = sin(]|©]|)e (C.15b)

Where Lagranges’s formula ¢ x (a X b) = (¢ - b)a — (¢ - a)b has been used. Substituting these two equation
into Equation C.10 while leaving the last term as is:

exp[©@] = A = (t-Eg)I + B3 X t + (1 — cos(||O])))e ® e (C.16)

Now focussing on the last term:

(1-cos([|®[))e®e (C.17)
Starting with:

sin(||®]]) + cos*([©]]) = 1 (C.18)
Rearranging this and dividing both sides by 1 + cos(||®||):

sin’(|©1) _ 1-cos’(I®l))

= N
1+cos(|®]]) 1+ cos(|[O]) (C19)
Simplifying the right-hand side:
sin’(|©])
=1- 2
Substituting this into the original term:
(2
(1-cos(||®]))e®e = Me@e (C.21)

T 1+ cos(]|®]))
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Now, expressing e ® e in terms of E3 X t:

_ E; xt
“ Sm(en 2
E; xt E; xt ) 1
e®e=|— - = Es xt)® (Ez xt C.23
() ® (amrom) = sragrop & <0 ® 0 2
Substitute into the previous:
sin’(|©]) 1
1-cos(||®])))e®e = . Es Xt)® (E3 Xt C.24
(1 costlOe @ e = e son B X © B XY (€24)
Simplifying:
1
1- = ——— —(Esxt) ® (Eg xt 2
(1~ cos(©l)e & ¢ = s (B x 9@ (s x (€25)
The final explicit representation then becomes:
A —— 1
eXp[@] =A:(t'E3)I+(E3Xt)+m(E:;Xt)@(E:«;Xt) (C26)
- Es

C.3. Derivation of eXpy

Starting with the following expression which presents the incremental rotation of the director:
t'j‘” = exp[é]t’;l = expy [Ata] (C.27)
Where 0 = tff‘ X At that is director variations Ata are perpendicular to the infinitesimal rotations axis
0. Asaresult O - tff‘ = Aty - tff1 = 0. The rotation formula is given as before:
exp[é] = A = cos(||0|)I + sin(]||0]])é + (1 — cos(||B]]))e ® e (C.28)

Multiplying this formula by the previous nodal director and rewriting it as:

t51 = cos(|01)t5 +sin(||0]])(e x t) + (1 — cos(||O1))(E, - e)e (C.29)

Since e = ot (tff1 - e) is zero as defined before:

sin([[6]])
6]

It also holds that € x tffx = Aty, substituting this into the previous result together with the fact that
18] = ||Ata|| results in the expression:

t51 = cos(|0IDE,, + (O xth) (C.30)

sin([|Atall)

t1 = cos(||Ata|DEE +
A A IAtAll

Aty (C.31)
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C.4. Derivation of AAy

As before, starting with the following expression which presents the incremental rotation of the director:
tff;rl = exp[G]tI;‘ = expy. [Ata] (C.32)
From this the unique rotation can be determined:
5 = AAat, (C.33)
With rotation axis 0 = tff‘ x Aty as before. Using this, the rotation is given by:

AA4 = cos(||0|DI + sin(]|0]])é + (1 — cos(||O]]))e ® e (C.34)
0

. _ 4k : )
Using e = et and 6 = t; X Aty, this becomes:

sin((lt, x Ata])
15 % At

(1 - cos(||th, x Atall))
It X Ata][2

AA4 = cos([|th x Ata|DI + (th x Ata) + (th X Ata) ® (85 x Aty)

(C.35)
The final results follows from the fact that ||t’;‘ X Atall = ||0]|, which is equal to [|Ata]|:

sin(||Atall)
llAtall

(1 — cos(llAtall)

AA4 = cos(||Ata|DI +
llAtall?

(th x Aty) + (t x Ata) ® (£ x Aty) (C.36)
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