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Abstract

We propose Neural Cellular Automata (NCA) to simulate the microstructure development during the solidification process
n metals. Based on convolutional neural networks, NCA can learn essential solidification features, such as preferred growth
irection and competitive grain growth, and are up to six orders of magnitude faster than the conventional Cellular Automata
CA). Notably, NCA deliver reliable predictions also outside their training range, e.g. for larger domains, longer solidification
uration, and different temperature fields and nucleation settings, which indicates that they learn the physics of the solidification
rocess. While in this study we employ data produced by CA for training, NCA can be trained based on any microstructural
imulation data, e.g. from phase-field models.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Microstructure modelling; Convolutional neural networks; Computational speed; Cellular automata

1. Introduction

The microstructure of metals collectively denotes their grains and metallurgical phases, their size, relative
mount, shape/morphology and crystallographic orientation (texture). The microstructure strongly influences the
hysical and mechanical response of metallic materials, and a wide range of properties can be achieved by
anipulating the microstructural features through thermomechanical processing. Therefore, correlating processing

onditions and the resulting microstructure has always been an important research field. Understanding the influence
f the solidification process conditions on the features of the resulting microstructure has attracted even more
ttention since the advent of metal additive manufacturing (MAM) processes that allow site-specific control of the
olidification conditions [1,2]. However, achieving the goal of microstructure control, e.g. fabricating functionally
raded materials, via MAM requires reliable solidification microstructure models that enable quantitative prediction
f the process-microstructure relationship.

Microstructure formation during the solidification process comprises two phenomena: nucleation and grain
rowth [3]. Nucleation is the formation of stable nuclei in the molten metal and typically requires that the melt

∗ Corresponding authors.
E-mail addresses: ldelorenzis@ethz.ch (L. De Lorenzis), ehsan.hosseini@empa.ch (E. Hosseini).
ttps://doi.org/10.1016/j.cma.2023.116197
045-7825/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
rg/licenses/by/4.0/).
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cools down below its melting temperature (undercooled). Growth includes enlargement of the nuclei (or existing
grains) depending on the temperature field and microstructure state in the vicinity of the solidification interface
[3–6]. The formation of solid material during growth is accompanied by the release of latent heat of fusion
which should be extracted from the solidification interface to allow further growth. From a thermal point of
view, this indicates that the growth direction aligns with the maximum temperature gradient direction, where the
fastest heat dissipation through conduction takes place [3]. While crystallographic orientation considerations are not
relevant for nucleation and formed nuclei have random orientations [7,8], the growth phenomenon is anisotropic
and nuclei/grains grow faster along certain crystallographic orientations (i.e. preferred growth directions, <100>

or BCC/FCC crystals) [3]. Thermal and crystallographic factors collectively result in the selective growth of
uclei/grains or the so-called competitive grain growth phenomenon, which means that the nuclei/grains whose
referred growth directions are aligned with the maximum temperature gradient grow faster and become the
ominant feature of the microstructure [3]. Consideration of the above phenomena is the essential part of the
olidification microstructure modelling strategies [3,9–17].

Besides simple analytical/empirical models [3,9,10], the two ’physics-based’ microstructure modelling techniques
re Phase Field Modelling (PFM) and Cellular Automata (CA). The main focus of these two modelling strategies is
n representing the grain growth phenomena, while they often adopt empirical probabilistic or ad-hoc considerations
or the nucleation phenomena [7,18]. PFM for microstructure modelling [19,20] represents the microstructure by
set of conserved, e.g. for solute atom concentration, and non-conserved phase field parameters, e.g. for the state

solid/liquid) and grain ID (grains with various crystallographic orientation). PFM defines the free energy of the
ystem as a function of the conserved and non-conserved phase field parameters, their gradients, temperature, and
ossibly additional variables. An anisotropic grain boundary energy is considered to account for the preferred growth
irection. This energy term is maximum for grain boundaries perpendicular to the crystal preferred growth directions
o that grains tend to grow anisotropically along these directions [20,21]. The Cahn–Hilliard [22,23] and Allen–
ahn [19,24,25] equations are respectively used to govern the evolution of conserved and non-conserved phase-field
arameters such that the free energy of the system tends to its minimum. The kinetics of the evolution depends
n the reduction rate of the system’s free energy and on temperature-dependent mobility factors. PFM is a very
etailed microstructural modelling strategy that not only well represents important phenomena such as preferred
rowth directions and competitive grain growth, but also can provide predictions about microscale features such as
econdary dendrite growth morphology and solute atom distribution [11,12,26]. However, the need for space and
ime resolutions in the orders of 0.01–1 µm and 0.1–10 µs leads to a very high computational cost for PFM, which

limits the simulation domain size to hundreds of micrometres [11–14,26–29]. As an example, Yan et al. [13] report
a computational time of 13 days for the solidification microstructure simulation of a 350 × 350 × 150 µm3 domain

sing an NVIDIA Tesla M2090 GPU.
The CA method, developed by Gandin and Rappaz [15,16], evaluates the microstructure and temperature state

ocally in the vicinity of the solidification interface and combines crystallographic considerations and experimentally
r theoretically driven dendrite tip growth rate equations to predict the grain growth phenomenon [4–6]. Numerous
xamples of the application of CA for investigating the microstructure development during casting [16,17,30]
nd MAM [31–33] demonstrate the experimental relevance of the CA method and its ability for representing the
referred grain growth and competitive grain growth phenomena. CA is often used to predict grain size, morphology,
nd crystallographic texture [31,32,34], although there are a few studies that extend CA for predicting solute atom
istribution [35,36]. The typical space and time resolutions for CA simulations are 0.1–10 µm and 0.5–100 µs,
espectively. In comparison with PFM, the coarser discretization and the rather local and simple calculations lead
o lower computational cost for CA, such that the simulation domain size can be up to several cubic millimetres
or a few days of computations [31–34]. Still, it is obvious that even CA cannot be used for large-scale simulations
r, importantly, for optimization problems where numerous simulation runs are required to find the optimum set
f process conditions for a desired type of microstructure. Therefore, there is a substantial need to develop novel
icrostructure simulation techniques which retain physical relevance and reliability but reduce the computational

ost by orders of magnitude.
Deep learning has recently emerged as a central tool for scientific computing, and there are many successful

xamples where a deep neural network (DNN) is trained to serve as a highly efficient simulation tool [37–39]. A
ommon DNN-based strategy for microstructure modelling is to project the microstructure onto a low-dimensional

pace by utilizing statistical descriptors and/or dimensionality reduction techniques, and to use DNNs to describe

2
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their evolution in this latent space [40–42]. However, the employment of simple statistical descriptors, such as
spatial correlation functions of phases or concentration distributions, may compromise the accuracy of predictions
and impede the back transformation to microstructure images [40–44]. Alternatively, advanced auto-encoders can
be used to reduce the dimensionality and reconstruct from the latent space back to the original microstructure with
minimal loss of information [45,46]. However, modelling the development of the microstructure in a latent space
precludes the direct integration of physical constraints and laws into the DNN, resulting in black-box solutions with
limited applicability beyond their trained domain.

In this paper, we propose a new DNN-based approach, denoted as neural cellular automata (NCA), to predict
icrostructure development during the solidification process. It is similar to the classical microstructure modelling

rameworks (e.g. CA and PF) that ‘graphically’ describe the evolution of microstructure, and allows for the direct
ncorporation of physical concepts. Our NCA idea is inspired by the work of Mordvintsev et al. [47,48], who
ntegrated a fully connected neural network into the CA framework to reconstruct or repair dedicated image patterns
een during the training. Similar to their work [47,48], our NCA is an extension of the conventional CA, where a
onvolutional neural network (CNN) acts as a highly efficient and flexible ‘brain’ for governing the evolution of
ells.

. From cellular automata (CA) to neural cellular automata (NCA)

The CA microstructural modelling framework discretizes the simulation domain into a series of cubic/square
ells, each containing a set of microstructure-related parameters such as phase state, crystallographic orientation,
emperature, and possibly more [31,32]. The phase state can be either solid (S), liquid (L), or growing (G). The (G)
ells are located between the (S) and (L) cells, representing the solidification interface. Three Euler angles describe
he crystallographic orientation of (S) and (G) cells; these are angles between the global reference coordinate
ystem and the principal directions of the crystal at the cells (i.e. <100> crystallographic orientations, which for
CC/FCC coincide with their preferred growth directions). A number of simple rules then govern the evolution of

he parameters of each cell, based on information from the cell itself and from those in its local neighbourhood. The
ules are devised such that the physics of grain growth during solidification is reproduced. For example, a (G) or (S)
ell with a temperature higher than the melting point transforms to the (L) state, or a (G) cell with no (L) cell in the
eighbourhood changes to the (S) state. As essential constituent, CA employ the so-called ’decentred octahedron
ethod’ [15,16] to consider the preferred growth directions. For BCC/FCC systems, the ’decentred octahedron’
ethod assumes an octahedron for each (G) cell whose diagonals are parallel to the <100> directions of the cell’s

rystal. A theoretically or empirically driven equation for dendrite tip growth rate takes the cell’s temperature and
efines the growth of the octahedron along its diagonals. The octahedron envelope finally grows into neighbouring
ells, and when it captures the centre of a neighbour liquid cell, its state (L) transforms to (G). The new growing
ell inherits the same crystallographic orientation as the parent cell and starts to grow its own octahedron. The
rowth of octahedra along <100> crystallographic orientations and the dependency of their growth rate on the
ocal temperature ensure that CA reproduce the phenomena of preferred growth directions and competitive grain
rowth in solidification microstructure modelling. The ’decentred octahedron method’ schematic and the detailed
lgorithm of CA are given in Appendix A.

There are factors which constrain the computational efficiency of CA. The incremental progress of CA
imulations should be small to ensure that the ‘capture’ of the neighbouring cells – i.e. the transformation of the (L)
eighbouring cells into the (G) state due to growth – is accurately modelled. The time increment is often limited to
t = αd/vmax , where d: cell size, α: a constant between (0, 1], and vmax : maximum growth rate among all growing

ells in the simulation domain. Additionally, the consideration of information from neighbouring cells is typically
imited to their immediate surroundings and is done through a ’for loop’ method. NCA enhances the computational
fficiency and, potentially, the flexibility and physical relevance of CA through the power of CNNs.

Fig. 1 illustrates a schematic representation of the NCA modelling strategy. Similar to CA, NCA discretize the
imulation domain into cubic/square pixels and incrementally (i.e. frame after frame) update the microstructure
ased on the temperature and microstructure states in the local neighbourhoods of individual pixels. The required
nput data to initialize NCA are the locations of the nuclei, their size and their crystallographic orientation. Also
equired is the temperature evolution within the simulation domain during the solidification process; the temperature
ata are fed to the network as undercooling magnitude (i.e. ∆T = Tmelting − T ). A continuous variable P ∈ [0,1]
s considered for each pixel to represent its phase state, where P = 0 and P = 1 indicate fully liquid and solid
3
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Fig. 1. Schematic of the NCA modelling strategy.

states, respectively. Similar to CA, the crystallographic orientations of the pixels are defined with three Euler angles
θ = (α1, α2, α3), i.e. the angles between the principal directions of the solidified pixel and the reference coordinate
system.

NCA predicts the sequential microstructure evolution by recurrently employing a trained CNN. The CNN takes
the temperature, phase state, three Euler angles and six hidden channels as inputs and delivers pixel-wise increments
of the phase state, Euler angles and hidden channels (i.e. ∆P, ∆θ and ∆H, respectively) as output. Apart from
the phase state and Euler angles, the hidden channels allow the CNN to exchange information between different
frames and better track the evolution of microstructural features. The physical meaning of the hidden channels is
not explicitly defined and they have zero value at the start of the analysis. The number of hidden channels and
the CNN architecture are decided based on a hyperparameter tuning exercise (see Section 3.4). Accordingly, six
hidden channels and 1+5+1 convolutional layers with ReLU activation function and 96 neurons per hidden layer,
including 3 × 3 input/hidden-layer kernels and 1 × 1 output-layer kernels, are utilized in the NCA. The details of
the adopted CNN and NCA training are given in Section 3.2 and Section 3.3, respectively.

To improve the physical relevance of the algorithm, the NCA integrates a ‘physics-based activation function’ at
the output layer to prevent the CNN from violating explicit known physical laws of solidification. This ’activation
function’ directly encodes the knowledge that the grain growth mainly takes place at the solidification interface; it
enforces no change of microstructure states for a pixel when: (i) P < 0.1 and T > Tmelting , i.e. the liquid pixel
s at a temperature above the melting point, (ii) no neighbour pixel with P ≥ 0.1, i.e. not in the vicinity of the
olidification interface, (iii) P > 0.99 and T < Tmelting , i.e. the solid pixel temperature is below the melting point.
alues of 0.1 and 0.99 are the thresholds for the phase state P indicating liquid and solid. They can be seen as
etwork hyperparameters and are taken from [47,48].

The adoption of multi-layer convolution enables NCA to implicitly consider information from large neighbour-
oods and integrate complex and highly nonlinear rules for governing the evolution of the microstructural parameters
f the pixels. This leads to an advantage of NCA over CA in encoding the complexity of the solidification process,
.g. when an NCA model is trained based on data from PFM. Section 5 also discusses the significantly higher
omputational speed of NCA over CA.

. Methods

.1. Materials

In this work, we choose Hastelloy X as a model alloy to investigate the applicability of NCA in predicting its
icrostructure development under various solidification conditions. The generation of NCA training and validation

ata through CA necessitates information about the preferred growth direction and dendrite growth kinetics.
astelloy X is a nickel-based alloy with an FCC crystal structure (solid-solution strengthened) and hence has the
4
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Fig. 2. Schematic of selected CNN architecture for NCA (image generated by the online tool NNSVG). The numbers at the top represent
he dimensions of the input/output for each convolutional layer, and the bottom numbers indicate the size of each convolutional kernel.

referred growth direction along the <001> orientation [3,49,50]. Meanwhile, the Kurz–Giovanola–Trivedi (KGT)
odel [5] is used to define the dendrite tip growth rate of Hastelloy X as a function of undercooling as:

v(∆T ) = 4.60× 10−10
×∆T 2

+ 3.15× 10−6
×∆T 3 (1)

Further details about the derivation of the above KGT model for Hastelloy X are described in Appendix B.

3.2. Convolutional neural networks for NCA

The architecture of the CNN in NCA is composed of fully connected convolutional layers, as depicted in Fig. 2.
Each convolutional layer consists of a kernel that performs pixel-wise convolution. The mathematical transformation
in a convolutional layer is:

xl+1
i jk = f (

∑
o

∑
p

∑
q

wl
opqkxl

i±o, j±p,q + bl
k) (2)

where w and b denote the trainable convolutional kernel weights and bias, f represents a non-linear activation
function, xl is the input of the current convolutional layer and xl+1 is its output, which serves as the input for the
next layer.

In brief, CNN can be considered a neural network ‘function’ that decides the evolution in the state of a pixel
by analysing the information from its neighbouring pixels. The weights and biases of the network are determined
through network training, where a high-dimensional optimization problem is solved to minimize the difference
between the CNN predictions and the ground truth data generated by the CA (as explained in Section 3.3). To
achieve the best performance, the hyperparameters of CNN, such as the number of hidden layers and the activation
function type, need to be optimized (as discussed in Section 3.4).

3.3. NCA training & testing

Table 1 shows that different variants of NCA are trained to represent Hastelloy X solidification microstructure
under different conditions. Ground truth data are created using CA simulations with a domain size of 55 × 55
µm2 for each solidification condition. The data are divided into a 9:1 ratio for training and validation [51,52].
Additionally, ten further CA simulations are performed to evaluate the generalization error of NCA variants under
unseen cases, e.g. larger domain sizes, longer solidification durations, different temperature fields and nucleation
settings. The orientation and location of nuclei are randomly assigned in the CA simulations for generating training,
validation, and testing data except explicitly mentioned otherwise (i.e. single grain growth). The CA simulations
adopt a time increment of ∆t = 8 µs, except for quasi-3D cases, where ∆t = 40 µs.

During training, the CA-predicted phase state and Euler angles, along with undercooling values, are used as
inputs for the NCA (the Euler angles and undercooling are normalized by 90◦ and 100 K, respectively). The CNN
is initialized with zero biases and random weights and kernel parameters (except for the output layer). The training
uses the Adam optimizer (learning rate of 10−3 decaying to 9 × 10−5) for 7000 epochs and the L2 loss defined

by Eq. (3). To achieve faster convergence and following [47,48], the weight and bias of the output layer are initialized

5
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Table 1
Details of the NCA training for different solidification conditions.

NCA model variant Single-grain growtha Multi-grain growth Training timeb

Isothermal 2D single-grain growthc 18 CA simulations – 0.8 h
Isothermal 2D multi-grain growth 18 CA simulations 27 CA simulations 2 h
Isothermal quasi-3D multi-grain growth 729 CA simulations 929 CA simulations 72 h
Non-isothermal 2D multi-grain growthd 180 CA simulations 270 CA simulations 24 h

aThe domain size is 55×55 µm2 and the nucleation density for the multi-grain simulations is 8260–11570 mm−2. The
nuclei locate at the centre of the domain for the single-grain growth samples. It is observed that including single-grain
growth data enhances the training efficiency for representing multi-grain growth (See Appendix A).
bAn NVIDIA RTX A5000 GPU is employed.
cA constant undercooling of 20 K is used for isothermal simulations.
dNon-isothermal simulations include solidification with 45 different nuclei settings (including single and multi-nuclei) under
10 different temperature fields with undercoolings in the range of 20–25 K.

ith zero and the gradients of the loss are normalized by their Frobenius norms at every epoch (to prevent gradient
xplosion).

l =
∑

Frame

⎡⎣ ∑
Solidpi xel

[
(P NC A

−PC A)2
+ ∥θ NC A

−θC A
∥

2] /NSolidpi xel

⎤⎦ /NFrame (3)

ere NFrame and NSolidpi xel are the numbers of the time frame and solid pixel in each frame (pixel with P > 0.99),
espectively. Finally, NCA’s accuracy is evaluated by comparing its results with CA predictions:

Accuracy = 1− N∆φ(C A,NC A)>15◦/Ntotal (4)

here Ntotal is the total number of pixels and N∆φ(C A,NC A)>15◦ is the number of pixels with orientation error ∆φ

xceeding 15◦ (i.e. the threshold of establishing grain boundary).

.4. Hyperparameter tuning

A hyperparameter tuning exercise is conducted to find the optimal CNN architecture. This involves training and
valuating multiple neural networks with different architectures, varying the number of hidden convolutional layers
nd neurons per hidden layer. We keep other details, such as kernel size, learning rate, and activation function,
onsistent with Refs. [47,48].

The hyperparameter tuning exercise is conducted solely for non-isothermal solidification data, and the CNN
rchitecture that yields the best results is used for all other conditions. To reduce the computational costs of
yperparameter tuning, we limit the number of epochs for training each model to 2500 and use a fast-decaying
earning rate schedule (70% decay every 1000 epochs). This approach ensures that each model is trained in less
han 0.5 h.

Table 2 shows that the best training and validation accuracy is achieved with five hidden layers and 96 neurons
er hidden layer and hence is adopted for this study. The impact of varying the number of input hidden channels on
NN accuracy is also examined which indicates that the adoption of six hidden channels produces the best results

Table 3).

. NCA results

.1. Isothermal solidification: 2D single-grain growth

Initially, the NCA model is trained with 2D CA isothermal simulation data for a domain size of 55 × 55 µm2

55 × 55 pixels). A single nucleus with a random α1 and α2 = α3 = 0 is placed in the centre of the domain
ith a uniform and steady temperature field representing an undercooling of 20 K. The model achieves training

nd validation accuracies of 98.0% and 97.7%, respectively, which indicates that it learns well the kinetics of
rain growth and the preferred growth direction mechanism. Furthermore, the trained model is used to predict the
olidification microstructure for a 3× larger domain and a 5× longer solidification duration with the nucleus located

ff the centre. As presented in Fig. 3, the NCA can predict such cases with an accuracy of 99.6 ± 0.2%.

6
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Table 2
Training and validation accuracies of the NCA model with various numbers of hidden layers and neurons per hidden layer.

Number of hidden layers Number of neurons per hidden layer Training accuracy (%) Validation accuracy (%)

9 32 95.0 93.5
12 32 95.0 93.3
9 64 96.1 93.2
12 64 95.7 92.9
3 96 96.8 95.1
5 96 96.7 95.7
7 96 96.0 94.4

Table 3
Training and validation accuracies of the NCA model with various numbers of hidden channels.

Number of hidden channels Training accuracy (%) Validation accuracy (%)

0 96.6 96.1
3 97.3 96.1
6 97.1 96.4
9 97.1 96.3

Fig. 3. Test case for 2D isothermal single-grain growth in a domain of 160×160 µm2 with a randomly selected nucleus location: CA results
(a and d), NCA results (b and e), and orientation difference ∆φ between them (c and f). Note that the domain size and time duration of
the test are 3× larger and 5× longer than those adopted for the training.

4.2. Isothermal solidification: 2D multi-grain growth

In the second stage, the data from additional multi-grain CA simulations are added to the previous ones for
training and validation of the NCA. In these data nuclei are placed randomly in the 55 × 55 µm2 domain with
a nuclei density in the range of 8260–11,570 mm−2. Similar to the previous simulations, the 2D nature of the
imulations allows considering α2 = α3 = 0 while α1 takes a random value. The assessment of the NCA model for
ulti-grain simulations indicates training and validation accuracies of 99.9% and 96.5%. The trained model further

hows a test accuracy of 98.0 ± 0.9% in predicting multi-grain growth in a larger domain. Fig. 4 illustrates NCA and
A results for a test case, showing that NCA well reproduces the microstructure evolution and the effect of nuclei
ensity on the final grain size. For both single and multi-grain growth cases, the main inconsistency between NCA
nd CA is observed at the grain boundaries and solid–liquid interfaces. While CA represents the grain boundaries
s a sharp interface, the involvement of the convolution operator in the NCA leads to a diffusive interface at the
rain boundaries.

To obtain grain size distributions from the microstructures generated by NCA (shown in Fig. 4g), it was essential
o establish a clear boundary between grain domains and hence, a post-processing algorithm was devised to address
his requirement. The algorithm corrects the Euler angle of each pixel by replacing it with the Euler angle of a
earby nucleus that displays the most similar orientation. This correction serves to convert the diffuse interface into
well-defined sharp boundary. For more comprehensive information about this post-processing technique, refer to
.
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b

Fig. 4. Test case for 2D isothermal multi-grain growth in a domain of 160×160 µm2 with nucleation density of 1562 mm−2: CA results (a
and d), NCA results (b and e), and orientation difference ∆φ between them (c and f), grain size distributions derived from CA and NCA
results (analysed by the MATLAB toolbox MTEX [53]) (g).

Fig. 5. Test case for conditions with three evolving Euler angles in a domain of 160×160 µm2 with 40 nuclei: CA results (a and d), NCA
results (b and e), and orientation difference ∆φ between them (c and f), grain size distributions derived from CA and NCA results (analysed

y the MATLAB toolbox MTEX [53]) (g). The three Euler angles of the nuclei are randomly selected from [0◦, 90◦ ]. The RGB values of
the pixel colour in (a), (b), (d), and (e) are the Euler angles normalized by 90◦. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

4.3. Isothermal solidification: towards quasi-3D multi-grain growth

Without changing the NCA architecture, we now examine its applicability for a scenario similar to quasi-3D
grain growth simulation. A quasi-3D simulation, where the 3D domain is replaced by three perpendicular 2D
cross-sections [54,55], serves as a computationally cheaper alternative for a 3D microstructure simulation. Such
simulations require coupling between the simulations in the three perpendicular 2D cross-sections and allow for
the evolution of all three Euler angles. Here, as a preliminary study, we allow for the evolution of all three Euler
angles in the 2D simulations.

A new set of CA simulations including 1658 2D runs with three evolving Euler angles for isothermal solidification
with undercooling of 20 K are conducted to generate the training and validation datasets for NCA. Comparison
of CA and NCA for such simulations indicates training, validation and test accuracies of 93.7%, 87.9% and
89.7 ± 1.8%, respectively. Fig. 5 presents CA and NCA outcomes of an examined test case, showing that the
trained model is capable of simulating 2D multi-grain growth with three evolving Euler angles. Compared with the
previous cases in Section 4.2, a higher level of inconsistency between CA and NCA is observed, particularly at the
grain boundaries. This indicates that a more complex NCA architecture may ultimately be required for quasi-3D
microstructure simulations with NCA; however, this development is outside the scope of the present study.

4.4. Non-isothermal solidification: 2D multi-grain growth

For adopting the proposed simulation strategy for practical applications, we need to demonstrate its accuracy

in predicting the solidification microstructure under non-isothermal conditions. In this section, the NCA model is

8
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Fig. 6. Test case for 2D multi-grain growth with a random temperature gradient in a domain of 160×160 µm2 with nucleation density of
562 mm−2: CA results (a and d), NCA results (b and e), and orientation difference ∆φ between them (c and f), grain size distributions
erived from CA and NCA results (analysed by the MATLAB toolbox MTEX [53]) (g). A temperature gradient with maximum and minimum
ndercooling of 25 and 20 K is applied as shown by the arrow in (b).

Fig. 7. Test case for 2D multi-grain growth under a vertical temperature gradient with maximum and minimum undercooling of 30 and 20
K (60×60 µm2 domain with nucleation density of 2778 mm−2): CA results (a), NCA results (b), and orientation difference ∆φ between
hem (c), grain size distributions derived from CA and NCA results (analysed by the MATLAB toolbox MTEX [53]) (d). Nuclei are set 5
m above the bottom boundary of the domain.

rained based on CA simulations for 2D steady non-isothermal solidification. Accordingly, training, validation and
est accuracies of 95.8%, 95.4% and 96.2 ± 1.1% are obtained, respectively. Fig. 6 shows that the NCA model
redicts slower and faster growth rates for the areas with lower and higher levels of undercooling, respectively.
urthermore and as shown in Fig. 7, NCA can also well predict the competitive growth mechanism, i.e. the grains
hich have one of their preferred growth directions aligned with the maximum temperature gradient grow faster

han the others.
Without further training, the NCA model is finally used for predicting solidification under a transient non-

sothermal temperature field, i.e. under continuous cooling. As shown in Fig. 8, although no cases with continuous
ooling are included in the training, the model accurately predicts the growth kinetics and the final microstructure
test accuracy of 96.9 ± 0.8%).

In summary, the results presented in this section demonstrate the accuracy of the NCA microstructure modelling
trategy and its ability to learn critical physical mechanisms of solidification such as preferred growth direction and
ompetitive growth under various solidification conditions.

. NCA computational speed

This section compares the computational speed of NCA and CA for a set of benchmark cases. As noted in
he introduction, of the two most common physics-based microstructural modelling approaches, CA has a lower
omputational cost than PFM. Therefore, discussing the computational speed of NCA in comparison with CA
erves as a conservative estimate for the speed increase achieved by NCA over the conventional microstructure
imulation strategies. The trained NCA model in Section 4.2 is used here, and its computational speed is evaluated

2 2 2 −2
or simulating eight different domain sizes between 40 and 880 µm with a nuclei density of 625 mm . A

9
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Fig. 8. Test case for 2D multi-grain growth under continuous cooling with an initial undercooling of 20 K and cooling rate of 3.125×103 K/s
n a domain of 160×160 µm2 with nucleation density of 1562 mm−2: CA results (a and d), NCA results (b and e), and orientation difference
φ between them (c and f), grain size distributions derived from CA and NCA results (analysed by the MATLAB toolbox MTEX [53])

g). Note that the NCA did not see any data for continuous cooling during training.

onstant time increment of 8 µs is adopted for both CA and NCA for the primary assessments. The measured CA
nd NCA runtimes on Intel(R) Xeon(R) Gold 6248R CPU for various simulation domain sizes are shown as the
ed and yellow curves in Fig. 9. An acceleration factor of 6 to 37 is observed for NCA, depending on the domain
ize.

While most CA codes for microstructure modelling are only compatible with CPUs [15,31,32], NCA can easily
xploit the computational power of GPUs (without extra coding). As seen in Fig. 9, GPU computation further
ccelerates NCA and makes them four orders of magnitude faster than CA. Notably, the runtime of NCA on GPU
s not sensitive to the simulation domain size, at least within the examined range. Therefore, even higher acceleration
actors can be expected for larger domain sizes.

Adopting a larger time increment of the simulation reduces the computational cost for both NCA and CA. To
valuate how much this deteriorates accuracy, NCA is trained for a time increment increased by a factor of K in
he range of 1–50, based on a subset (one frame every K) of the CA simulation database described in Section 4.2.
urthermore, the time increment for CA is similarly increased K times and the corresponding results, along with

he results of NCA, are compared with the reference CA results (those for K = 1). Fig. 10 shows the accuracy of
oth CA and NCA for different acceleration factors in comparison with the results of the reference CA simulation
with K = 1). Expectedly, the accuracy of CA significantly decreases with the increase of K. Notably, NCA are
ound to be very accurate up to the acceleration factor of 20 since the multi-layer CNN implicitly considers a larger
eighbourhood and utilizes more complex functions for grain growth prediction than CA.

The accuracy of the NCA model drops for larger K values (e.g. K = 50). However, as shown in Fig. 10, employing
more complex CNN architecture (e.g. with a 9 × 9 convolution kernel for the input layer or with 9 hidden

onvolution layers) leads to an excellent accuracy even for K = 50. The ability of NCA to accurately reproduce the
icrostructure evolution using significantly larger time increments than CA originates from adopting a multi-layer

onvolution operator in NCA, which delivers the change in the pixel states based on information from a larger
eighbourhood. These results prove that NCA is able to release the requirement for small time increments which
imits the computational speed of conventional microstructure modelling techniques; hence, NCA can significantly
utperform the computational speed of such simulations.

To summarize, NCA exhibits up to six-orders-of-magnitude improvement in computational efficiency compared
o CA (see Fig. 9). The fast computational speed of NCA comes from three contributions. Firstly, NCA replaces
he ‘for’ loop in conventional CA with efficient convolutions, leading to over 10 times speed-up without GPUs.
econdly, the high efficiency of GPUs for parallel computation further accelerates the NCA by around three orders
f magnitude. Finally, NCA can benefit from the possibility of adopting larger time increments, up to 50 times
arger than the conventional CA in the shown cases.

. Conclusions

In this work, we have presented NCA, a deep-learning-based approach for modelling solidification microstruc-

ures. NCA leverages a multi-layer CNN to replace the simple rules of CA, providing higher computational efficiency

10
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Fig. 9. Runtime of CA and NCA models for simulating microstructures with eight different domain sizes (initial nucleation density of
625 mm−2). The time for I/O processing is not included in the runtime. The maximum error for all the presented NCA simulations remains
below 8%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. (a) Accuracy of CA and NCA results with different acceleration factors of K = 1, 20, 50; microstructure of 2D multi-grain growth
with K = 20 from CA (b) and NCA (c); orientation difference ∆φ of CA (c) and NCA results (e) with K = 20 with respect to CA reference
(K = 1).

and flexibility. The convolution operator in NCA is particularly relevant to the physics of solidification, which is a
time-progressive phenomenon governed by temperature and microstructure state in the vicinity of the solidification
interface. Importantly, NCA allows for encoding physical knowledge into the framework by adopting a ’physics-
based activation function’, ensuring the satisfaction of solidification physics while easing the training process and
reducing the required data size.

We have demonstrated that NCA effectively learns from a relatively small number of CA simulations, since each
CA simulation generates a very large dataset by exploring the spatiotemporal evolution of microstructure states for
each cell. Interestingly, the trained NCA is independent of boundaries/initial conditions and can accurately predict
solidification microstructures even for unseen scenarios during training. This is evident from the high test accuracy
when testing the models for larger domain sizes, longer solidification durations, various initial nuclei settings and
diverse temperature fields. Moreover, NCA is proven to successfully reproduce the solidification with continuous
nucleation (see Appendix C), where nuclei are activated at various time steps, while all the nuclei in the training
data are activated at the initial step.

NCA is shown to maintain a high level of accuracy and is up to six orders of magnitude faster than conventional
CA, thanks to the efficiency of the adopted computational algorithm, compatibility with GPU computing, and ability
to adopt larger time increments for simulations.

Several future extensions of the NCA framework are worth exploring. Firstly, NCA can be trained by data from
other high-fidelity microstructure simulations, such as those based on phase-field models, to tackle more complex
problems, e.g. the solute atom distribution during phase transition. Training such an NCA model can be achieved
by introducing solute concentration as additional input and output channels and implementing a physics-informed
loss constraint based on solute atom mass conservation.

Secondly, optimizing the training data and CNN architecture can further improve the predictability and efficiency
of NCA. For instance, incorporating larger domain sizes in the training data or using a CNN with larger
11
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neighbourhood sizes can capture grain growth under larger undercoolings or time increments, as demonstrated
in Appendix D and Section 5. Adopting a 3D-CNN in NCA can extend the current model into 3D microstructure
simulations. Finally, further computational acceleration might be achieved by replacing the CNN with a Fourier
Neural Operator (FNO) [56], which employs the Fast Fourier Transform to compute convolutions more efficiently.
In summary, we believe NCA bears great potential as a universal method for fast and accurate microstructure
simulation.
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ppendices

The NCA simulation strategy is developed to capture the physics of the solidification microstructure formation,
n which a CNN is trained by the outcomes of CA simulations. The details of the CA method and the generated data
or training and validation of NCA are presented in Appendix A. Appendix B explains the derivation of the dendrite
rowth rate of Hastelloy X for consideration in the CA simulations. Appendix C and Appendix D demonstrate the
pplicability of NCA for simulating consecutive nuclei activation and solidification with larger undercooling ranges.
inally, Appendix E elaborates a post-processing method for NCA and its effect on the predicted microstructure.

ppendix A. CA simulations for training & validation data

CA simulations are used to generate data for training, validation and ultimately testing NCA. Algorithm 1
escribes the pseudocode for the performed CA simulation in this study. As mentioned in Section 2 of the main
ext, the CA domain is discretized into cells, each containing information such as cell state P , Euler angles θ ,

temperature T , etc. The incremental evolution of the information of the cell at every increment δt is governed by
the information of the cells within a 3 × 3 neighbourhood in the previous increment.

At the beginning of the simulation, the nuclei at locations nuc pos are activated in a nx × ny liquid domain
by assigning them the cell state of ‘growing’ and dedicated Euler angles nuc ea [31]. Based on the ‘decentred
octahedron method’ developed by Gandin and Rappaz [15], a growing octahedron with the size of 0 is considered
at the centre of the nuclei cells whose diagonals make angles as nuc ea with the reference coordinate system. The
octahedron centre location Oct and size λ are tracked during the CA simulations. The incremental growth of the
nuclei is simulated through expanding diagonals of the octahedra at a rate given by the ‘dendrite growth velocity’.
The dendrite growth velocity is calculated based on the cell undercooling (i.e. ∆T = Tmelting−T ) at each increment
and as described in Appendix B.

Fig. 11 illustrates a schematic of the decentred octahedron method for representing the movement of the
solidification interface. For each increment, it is mathematically checked if the centre of the liquid cells in the
neighbourhood of each growing cell falls inside the octahedron and if so, the state of the liquid cell is changed
to growing, and a new octahedron is assigned for it. The new octahedron shares one corner with the previous
octahedron, hence has the same spatial orientation (i.e. the Euler angles of the new growing cell are inherited from
the parent cell). The size of the new octahedron is derived based on the cell length l and the distance a between
the cell centre and the corner of the octahedra, see Fig. 11. The new octahedron then grows independently of the

parent and based on its local undercooling.

12

https://github.com/HighTempIntegrity/JianTang-NCA01
https://github.com/HighTempIntegrity/JianTang-NCA01
https://github.com/HighTempIntegrity/JianTang-NCA01


J. Tang, S. Kumar, L. De Lorenzis et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116197

W
a
m

t
n
i
w

t
w

A

e
K
v

Fig. 11. Schematic of the ‘decentred octahedron method’ for grain growth in CA simulations.

The transition of the state growing to solid occurs when the growing cell has no neighbour in the liquid state.
hen there is no liquid cell in the domain, the simulation is finished. Our developed Python CA code can be

ccessed from Github and readers are referred to Ref. [31] for more details about the CA solidification microstructure
odelling.
Various CA simulations were performed for generating training, validation and test data of the NCA. Except for

he single-grain growth study (Section 4.1), the training of the NCA uses CA simulation data from both single-
ucleus and multi-nuclei growth. It is observed that the accuracy of NCA in predicting multi-grain growth is
mproved, when the training data includes both single-nucleus and multi-nuclei CA simulations, especially for cases
ith a time increment factor K>1. For example, when K = 5, the NCA model trained with the dataset in Section 4.2

obtains a better test accuracy of 96.8 ± 0.8% compared with the model trained by the same amount of data with
only multi-nuclei CA simulations (test accuracy of 95.3 ± 0.9%). However, the performance of the NCA model
rained with only multi-nuclei data can be improved if the training data size increases, e.g. the NCA model trained
ith 80 multi-nuclei CA simulations obtains a test accuracy of 97.7 ± 0.5% for K = 5.

ppendix B. Dendrite growth velocity

Although there are examples of experimental measurement of dendrite growth rate, e.g. in [57], this is often
stimated from empirical models [4–6] or phase-field simulations [58]. One of the prevailing empirical models, the
urz–Giovanola–Trivedi (KGT) model [4,5] describes the relation between the dendrite tip radius R and its growth
elocity v by the following two equations:

Pc =
vR
2D

(B.1)

Gc(Pc, v)ϵc(Pc) =
4π2Γ

ml R2 +
G
ml

(B.2)

where G, Gc, Pc, D, ml , Γ are the mean thermal gradient at the dendrite tip, the concentration gradient in the
liquid near the dendrite tip, the Peclet number, the liquid diffusivity, the liquidus slope, and the Gibbs–Thomson
coefficient, respectively. The thermal gradient G is neglected in the dendritic growth regime [7]. The concentration
gradient Gc and the dimensionless variable ϵc are functions of the Peclet number Pc and growth rate v [5,59]:

Gc(Pc, v) =
c0(1− k)v/D

Iv(Pc)(1− k)− 1
(B.3)

Iv(x) = x · exp(x)
∫

exp(−x)
x

dx (B.4)

ϵc(Pc) = 1−
2k[

1+ (2π/Pc)2
]0.5
+ 2k − 1

(B.5)

where k, c0, and Iv(x) are the equilibrium partition coefficient, the solute atom concentration, and the Ivantsov func-
tion, respectively. Often the constitutional undercooling, resulting from the solute atom segregation, is considered
as the main contributor to the supercooling [4–6]. The constitutional undercooling with a given Peclet number Pc
is:

∆T = mlc0

[
1−

1
]

(B.6)

1− (1− k)Iv(Pc)
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Algorithm 1 Pseudocode of the CA simulation for generating training, validation, and testing data

Require: nx , ny, T (x, y, t), nuc pos, nuc ea, δt
Ensure: P , θ

1: P ←−1, θ ← (0, 0, 0), t ← 0; ▷ initialize a nx×ny liquid domain
2: P[nuc pos]← 0, θ [nuc pos]← nuc ea; ▷ activate the nuclei at the initial step
3: Half length of octahedron diagonal λ[nuc pos]← 0; ▷ initialize octahedron
4: Octahedron centre Oct[nuc pos]← Pos[nuc pos];
5: Count the number of liquid cells (P = −1) Liq num;
6: while Liq num ̸= 0 do
7: find the growing cell CG ;
8: update octahedron size λ[CG]← λ[CG]+ v(T [CG]− Tm)× δt ;
9: ------------------- Grain growth -------------------

10: find the liquid cells with neighbour growing cells CLn;
11: for each CLn do
12: dsmall = 0;
13: for each of their growing neighbour cells CGn do
14: V ec = Pos[CLn]− Oct[CGn];
15: V ec′ = Rot(θ [CGn])−1

× V ec;
16: di = λ[CGn]− sum(|V ec′|);
17: if di ≤ dsmall then
18: dsmall ← di ;
19: Ccap ← CGn;
20: end if
21: end for
22: if dsmall < 0 then
23: P[CLn]← 0, θ [CLn]← θ [Ccap];
24: assign a new octahedron for CLn;
25: end if
26: end for
27: ---------------------------------------------------

28: for each CG do
29: if no liquid cell in its neighbourhood then;
30: P[CG]← 1;
31: end if
32: end for
33: t ← t + δt
34: Count the number of liquid cells Liq num;
35: end while

The above set of equations can be solved for a range of v·R values and accordingly the dependence of the dendrite
growth rate v on the undercooling ∆T can be derived. For the sake of simplicity, a polynomial is ultimately fitted
to describe this dependence, i.e. v(∆T ).

For the application of the KGT model to multi-component systems, the diffusion field of each solute species
should be superimposed, and hence, the undercooling ∆T and dendrite tip radius R are [4,5,60]:

∆T =
N∑
i

∆Ti (B.7)

R =

[
4π2Γ∑N i i i i i

]0.5

(B.8)

i ml Gc(Pc , v)ϵc(Pc )− G
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G

Table 4
Material properties of Hastelloy X alloy for deriving its dendrite growth velocity
[61–64].

System Ni–Cr Ni–Fe Ni–Mo

Liquidus slope ml (K wt%−1) −3.166 −1.261 −2.628
Solute composition c0 (wt%) 20 20 10
Equilibrium partition coefficient k 0.594 0.986 0.99
Liquid diffusivity D (10−9

· m2s−1) 3.04 3.20 8.861
Gibbs–Thomson coefficient Γ (K m) 3× 10−7

Fig. 12. Test case of 2D multi-grain growth with consecutive nucleation (160×160 µm2 domain with nucleation density of 1562 mm−2).
rains A, B and C are activated consecutively during the solidification process.

Fig. 13. Hidden channels of the test case in Fig. 12. The RGB values of the pixel colours are the values in the hidden channels normalized
by their maximum and minimum values, i.e. H i

normali zed = (H i
− H i

min)/(H i
max − H i

min). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

P i
c =

vR
2Di

(B.9)

We assume the Hastelloy X as a Ni-20Cr-20Fe-10Mo alloy and use the parameters summarized in Table 4 to derive
Eq. (1) (in the main text) for its dendrite growth rate.

Appendix C. NCA for consecutive nuclei activation

The results reported in the main text discuss the application of the NCA for conditions in which all nuclei
are activated at the start of the simulation. However, solidification microstructure modelling for processes such as
MAM requires consideration of continuous nucleation. We examined the ability of the trained NCA in Section 4.2 to
predict microstructure development for conditions where nuclei are activated consecutively during the solidification
process. Fig. 12 shows the NCA model predictions in comparison with CA results, showing that the trained NCA
can well represent the microstructure evolution with consecutive nucleation.

Fig. 13 represents the values of hidden channels 1–3 and 4–6 for the simulation described above. The RGB

values of the pixel colours are the values in the hidden channels normalized by their maximum and minimum, i.e.
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Fig. 14. Test case for 2D multi-grain growth with a random temperature gradient (160×160 µm2 domain with nucleation density of
562 mm−2): CA results (a and d), NCA predictions (b and e), and orientation difference ∆φ between them (c and f). A temperature
radient with maximum and minimum undercooling of 15 and 45 K is applied as shown in (b).

Fig. 15. Test case of 2D multi-grain growth under continuous cooling with an initial undercooling of 15 K and cooling rate of 1.5× 104

/s (160×160 µm2 domain with nucleation density of 1562 mm−2): CA results (a and d), NCA results (b and e), and orientation difference
φ between them (c and f). Note that the NCA did not see any data for continuous cooling during training.

H i
normali zed = (H i

− H i
min)/(H i

max − H i
min). Interestingly, an octahedron pattern is visible for each grain, where

he size and orientation of the diagonals are related to the grain size and orientation, i.e. similar to the concept of
ecentred octahedron discussed in Appendix A.

ppendix D. NCA for larger undercoolings

The main text describes training and validation of NCA for up to 25 K undercooling. Application of the NCA
or simulating fast solidification during MAM requires consideration of larger undercoolings. This section examines
he effectiveness of NCA for solidification microstructure simulation with undercooling up to 45 K. This involves
onsideration of CA simulations from a larger domain size of 128 × 128 µm2 for training NCA. The CA simulates
olidification under a temperature gradient with undercooling in the range of 15 and 45 K and for nuclei density of
831–3662 mm−2 to generate data for training and validation of NCA. NCA are trained with a fast decaying learning
ate (decaying 70% every 100 steps) for 250 epochs. The model obtains accuracies of 97.7%, 97.4%, and 96.2% for
raining, validation and testing, respectively, see Fig. 14. The trained model can also simulate solidification under
ontinuous cooling for the mentioned undercooling range, as presented in Fig. 15.

ppendix E. Post-processing of NCA results

Here describes a post-processing technique to remove the artefacts in the NCA predictions, e.g. the fluctuations
f Euler angles within the grains (see Section 4.2). As the orientation of grains inherits from its nuclei, the main
dea of this post-processing method is to replace the pixel Euler angles with that from one of the nearby nuclei that

as the most similar orientations. For a pixel located at (xi , yi ) with Euler angles θ i and a nucleus n j in its vicinity,
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Fig. 16. Comparison of CA and post-processed NCA results from Fig. 4: (a) the CA result, (b) the NCA prediction after post-processing,
(c) the orientation difference between them.

we define Di j as:

Di j =
∥θ i − θn j ∥

2

max1≤nk≤ntot {∥θ i − θnk∥
2}
+ λ

(xi − xn j )
2
+ (yi − jn j )

2

max1≤nl≤ntot {(xi − xnl )2 + (yi − jnl )2}
(E.1)

Di j is an index representing the differences of Euler angles and location between pixels and the nucleus. In
he post-processing of NCA results, we replace the pixel’s Euler angles with that of the nuclei with the smallest
Dni

i, j . Fig. 16 shows a comparison between the CA and the post-processed NCA results from Fig. 4. Most of the
rtefacts are removed after post-processing with only a few inconsistencies at the grain boundaries compared with
A results.
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