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Abstract  
A bilevel nonlinear mathematical programing model is formulated to determine the optimal pricing 

and operator-based relocations in a one-way station-based carsharing system in competition with private 

cars. In the upper level, the carsharing operator determines the vehicle fleet, prices, and relocation 

operations with the objective of maximizing profits, considering the potential reaction of travelers. In 

the lower level, travelers choose travel modes from a cost-minimization perspective. Travel utilities are 

calculated through a logit model. The Karush–Kuhn–Tucker conditions are used to transform the bilevel 

model into a single-level model and then a genetic algorithm is proposed to solve it. Computational tests 

in four different scenarios show the combined strategy is the best one. The four scenarios are base, 

relocations, dynamic pricing, and a combination of relocations and pricing separately. The combined 

strategy can make the best trade-offs between the operator’s profit and the travelers’ cost. 
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1. Introduction 
 

Over the last few decades, shared cars have emerged as an alternative to private cars in view of 

their cost and environmental benefits. With the carsharing system, passengers can still have access 

to a car despite not owning one. Several studies have confirmed that carsharing not only helps 

reduce car ownership, but also greenhouse gas emissions (Martin and Shaheen 2011; Namazu and 

Dowlatabadi 2018). A National Household Travel survey pointed out that automobiles in the USA 

spend approxi- mately 90% of the time parking in a lot (Hu 2001). Shared cars have a higher 

utilization rate, making them more efficient than the private ones (Jorge and Correia 2013). 

Furthermore, the environmental and social benefits of carsharing can be enhanced by the use of 

electric vehicles (EVs) (Li et al. 2016; Vasconcelos et al. 2017). Because of these aspects, 

carsharing is now becoming popular all over the world, and many studies are focusing on how to 

improve the management of such systems to make them more efficient and convenient. 

Carsharing systems are classified into round-trip and one-way carsharing, depending on the need 

to return the car to its point of origin. Logically, one-way systems are much more convenient, which 

is contributing to their rising popularity. However, compared with the round-trip systems, one-way 

systems are facing increasing challenges, especially the vehicle stock imbalance problem (Correia 

and Antunes 2012). This problem is caused by the asymmetric demand between the pairs of stations 

or zones. Vehicle stock imbalance is when more cars arrive at stations with low demand, or fewer 

cars arrive at stations (zones) with high demand (Boyaci, Zografos, and Geroliminis 2015). 

Relocation of vehicles is the most popular way to avoid the concentration of shared cars in a certain 

zone or station (Barth, Han, and Todd 2001; Boyaci, Zografos, and Geroliminis 2015; Jorge, 

Molnar, and Correia 2015; Illgen and Hock 2019). 

The relocation can be divided into staff-based and user-based operations. In staff-based opera- 

tions, the operator hires staff members to relocate the automobiles between zones or stations. Staff 
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members use bike or public transportation to move before and after the relocation. In user-based 

oper- ations, policies are used to influence the travelers’ behavior to obtain a desirable and more 

balanced outcome (Clemente et al. 2018). For example, pricing can be used to convince users to 

change their origin or destination, or even departure time (Jorge, Molnar, and Correia 2015). 

In this paper, we intend to study the combination of relocations and pricing strategy to influence 

the performance of a station-based one-way carsharing system from the perspectives of both the 

com- pany and the travelers. The rest of the paper is organized as follows. Section 2 presents a 

literature review of the present practices related to the pricing and relocations in one-way 

carsharing systems. Section 3 introduces a bilevel nonlinear mathematical programing (BLNLMP) 

model for optimizing the relocations and pricing of a one-way station-based carsharing system. 

Section 4 details the transfor- mation and solution algorithm for the model. Section 5 describes a 

case study on the application of the model in the city of Rotterdam, The Netherlands. Section 5 

summarizes the conclusions of the study. 

2. Literature review 
Vehicle relocation is a common method to bring balance to the one-way carsharing systems. 

Jorge, Correia, and Barnhart (2014) presented two models to study different relocation policies in 

a one- way station-based carsharing system. A mathematical model was proposed to optimize the 

relocation operations, and a simulation model was built to test different real-time relocation policies. 

The two models demonstrated the potential of relocations in improving the profits earned by a 

carsharing operator. Nourinejad and Roorda (2014) used a dynamic, integrated optimization–

simulation model to maximize the profits earned by the carsharing operator. A discrete event 

simulation was proposed to solve the model. In the system they tested, all shared cars were required 

to be reserved beforehand. The results showed that the relocation hours and fleet size were 

influenced by the reservation time. Weikl and Bogenberger (2016) built an integrated model to get 

the optimal relocation policy. Zakaria et al. (2018) built a single level integer linear programming 

model to solve the relocation problem. A greedy algorithm was used to test the staff-based 

relocation strategy by considering three different policies. Policy 1 prioritized the time required by 

the relocators to move between stations, policy 2 prioritized the number of available cars in each 

station to make the system more balanced, and policy 3 considered the consequences of current 

relocations. The results found a strong relationship between the user request satisfaction and the 

relocation operations. Hu and Liu (2016) showed that the customer service rate could be higher 

even under lower parking capacities and fleet size. Spieser, Samaranayake and Gruel (2016) 

analyzed the relationship among the key performance, fleet size and relocations to maximize the 

carsharing operator’s profit. Huang, Correia, and An (2018) proposed a single-level mixed-integer 

nonlinear programming model to solve the carsharing location and capacity problems associated 

with relocations. A customized gradient algorithm was proposed to solve the nonlinear model. They 

applied the model to the case study of Suzhou, China, and demonstrated that the location and 

capacity of carsharing stations affect the performance of relocations. Gambella et al. (2017) used 

relocations to restore balance to the vehicle distribution in one-way shared EV systems. Relocations 

can be done either in the operating hours or at night. An integer programming model was defined 

by considering the battery consumption and charging time of EVs. The authors concluded that 

relocations played a pivotal role in determining the performance of carsharing. Santos and Correia 

(2019) considered hiring a permanent team of employees to oversee maintenance operations, 

including relocations, and concluded that staff-based relocations brought about only a small 

improvement in the revenues, since the staff can only relocate a limited number of vehicles in an 

hour. Nevertheless, most research papers on the topic assumed that it would be possible to hire 

people for each relocation trip, and that there would be enough people for all the required 

relocations. 

As explained earlier, the operator changes the price to influence the travelers’ behavior, i.e. to 

encourage travelers to pick up vehicles from an oversupplied station or zone and/or drop them off 

at an undersupplied station or zone. Discount, coupon, price incentive, or penalty are some of the 

pricing strategies. Febbraro, Sacco, and Saeednia (2012) pointed out that setting the right price was 



of paramount importance to carsharing systems. Waserhole and Jost (2013a, 2013b) used pricing 

as incentive to improve the efficiency of carsharing systems. Ren et al. (2019) showed that a novel 

dynamic pricing scheme can help the electric vehicle-sharing operator maximize the profit. Wood 

and Jones-Meyer (2016) showed that the travelers’ choices can be affected by the adjustment of 

prices. In their study, they performed this adjustment by applying different discount rules. The core 

rule that they proposed was that the more the number of travelers in a car, the higher the discount 

for all travelers. In their study, a two-person carpool receives a 50% discount, and three or more 

people would travel free. The application of the model to a case study showed that discounts draw 

more users in real- time to share rides. Jorge and Correia (2013) proposed a trip pricing strategy 

for one-way carsharing systems, to control the demand. The prices varied for each zone and time. 

A single-level mixed-integer nonlinear programming model was developed to maximize the profit 

earned by the carsharing company. An iterative local-search metaheuristic was proposed to solve 

the model. The application of the model to the case study of Lisbon, Portugal, showed that pricing 

can help the operator increase their daily profits by a considerable margin. Angelopoulos et al. 

(2018) used a pricing strategy to solve the imbalance problem. Different price incentives were 

given to travelers based on the vehicle relocation priority. Users rejected the pricing scheme with 

a certain probability. In the end, more cars would be picked up from oversupplied stations, and 

consequently more cars would be dropped off at undersupplied stations. Cheng, Liu, and Szeto 

(2019) showed the importance of dynamic pricing in reducing the total travel time, considering the 

travel distance and time delay. Jakob, Menendez, and Cao (2020) proposed an optimal parking 

pricing scheme to maximize the revenue for city councils without a significant negative effect on 

the network. Jian, Rey, and Dixit (2019) linked user demand and vehicle supply by vehicle 

availability in one-way carsharing systems. A case study of a Sydney carsharing system showed 

that the importance of the price variations with change of demands. 

However, relocations can significantly increase the operational costs of a carsharing system, 

especially due to the high labor costs of the staff used to relocate cars. A pricing scheme can avoid 

the labor cost, but not all prices will be accepted by the passengers. Few studies have focused on 

the combination of pricing and relocation. Barth, Todd, and Xue (2004) studied pricing to 

encourage users to avail trip splitting or registering with a carsharing system. Based on the stock 

of vehicles, travelers starting from the same origin and traveling to the same destination at the same 

time were incentivized to drive in separate cars if the destination needed more cars, or travel in one 

car if the destination was over- supplied. The results showed that pricing can help reduce the 

number of relocation trips by 42%. Reiss and Bogenberger (2017) proposed a combination strategy 

for a free-floating bike-sharing system by integrating relocations and a pricing scheme. All the 

relocation tasks were rated based on the imbalance urgency levels. If less than 15% of the bikes 

needed to be relocated, only the pricing strategy was applied. Otherwise, relocations needed to be 

combined with the pricing method. This exemplified how these two strategies can work together. 

However, it is important to recognize that relocations in bike-sharing systems are essentially a 

routing problem since several bikes can be transported in a truck simultaneously. Xu, Meng, and 

Liu (2018) set up a single-level mixed-integer nonlinear and non- convex programming model in 

one-way carsharing systems. Trip pricing, fleet size, vehicle relocation and personnel assignment 

were all considered to maximize the profit of the carsharing operator. And the outer-approximation 

method was proven to be efficient. 

Existing researches have studied the performance of relocations or pricing strategies by propos- 

ing single-level optimization models. In most cases, the objective function is one of the following: 

maximize the daily profit earned by the carsharing operator (Jorge, Correia, and Barnhart 2014; 
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Vasconcelos et al. 2017; Bruglieri, Pezzella, and Pisacane 2017; Chang et al. 2017; Huang, 1 

Correia, and An 2018; Febbraro, Sacco, and Saeednia 2019), minimize the total costs of the operator 2 

(Nourinejad   et al. 2015), minimize the total unused time of shared cars (Barth, Todd, and Xue 3 

2004), maximize the satisfaction rate of travel requests (Bruglieri, Colorni, and Luè 2014; Bruglieri, 4 

Pezzella and Pisacane 2018), maximize the number of trips (Carlier, Munierkordon, and Klaudel 5 

2015; Boyaci, Zografos, and Geroliminis 2017), maximize the service level to satisfy more potential 6 

requests (Pfrommer et al. 2014), minimize the total relocation time (Kek et al. 2009), or minimize 7 

the number of staff (Bruglieri, Pezzella, and Pisacane 2018). These objectives depend either on the 8 

operator’s interests or the travelers’. It is obvious that, in some situations, the objective of the 9 

operator to increase profits and the travelers’ goal of traveling cheap and fast are in conflict. 10 

The operator is a leader in the carsharing system management, and travelers are the followers. As 11 

a leader, the operator must determine the system configuration considering the potential actions of 12 

the travelers. As followers, travelers make their choices to achieve their goals within the conditions 13 

laid down by the leader. As far as we know, only one paper considered the trade-offs between the 14 

carsharing operator and travelers in the same model. Nair and Millerhooks (2014) built a bilevel 15 

mixed-integer model to determine the optimal configuration of a carsharing system. In the upper 16 

level, the operator aimed to maximize the revenue by determining the location and size of stations 17 

and vehicle inventories. At the lower level, all travelers’ costs were minimized, considering the 18 

equilibrium of the network. The KKT conditions were used to transform the model into a single-19 

level, mixed-integer programming model. That research, however, mainly focused on the location 20 

and size of carsharing stations; the strategies that should be performed in a given system state, such 21 

as pricing and relocations, were not studied. 22 

In this paper, we propose a bilevel nonlinear mathematical programing (BLNLMP) model that 23 

con- siders the profit earned by the operator and the travelers’ costs simultaneously. In this model, 24 

private and shared cars coexist, and travelers make mode choices based on the travel utility. The 25 

carsharing travel utility changes with the price set by the operator. The utility of the private car 26 

alternative is mainly related to the travel time of the trip, the depreciation and maintenance costs of 27 

the vehicle, as well as the parking fee. Relocations and pricing schemes are combined to improve 28 

the performance   of the carsharing operation. Relocations are performed at the beginning of each 29 

time step. Pricing is used to modulate the demand of carsharing according to each OD pair and the 30 

time of day. Decisions of relocations and pricing as well as vehicle fleet are all made by the operator 31 

to maximize its profit in the upper level. Mode choices are done by all travelers to minimize their 32 

costs in the lower level. The reactions of travelers are therefore strongly linked to the decisions of 33 

the carsharing operator. A set of KKT conditions are proposed to transform the bilevel model into a 34 

single-level model. Since the model is nonlinear, a genetic algorithm (GA) is used to solve the 35 

transformed model. 36 

3. Model formulation 37 

 38 

3.1 Assumptions 39 

 40 

The following assumptions are made for the bilevel model: 41 

• The total travel demand for a car in each OD pair and the time of day are known in advance 42 

through historical data. 43 

• The entire car demand is satisfied by two modes: private cars or shared cars. Each person 44 

owns a private car for every trip. 45 

• Cars do not change travel times on the road network. 46 

• Parking spaces for shared vehicles in each zone are the property of the operator. 47 

• The operator pays the maintenance fee of the parking places per day and private car users 48 

have to pay their parking. 49 

• The fuel consumption rate of shared cars is paid for by the operator. 50 

• The carsharing system charges users by time step. 51 

• Cars are relocated at the beginning of each time step. 52 

• The carsharing operator pays the relocation costs based on the time of relocation. 53 

• Private cars and shared cars are the same type of vehicle. 54 

• The depreciation costs of shared cars and private cars are calculated in the same manner. 55 
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The operator covers the costs for shared cars. The customers pay the costs of private cars. 1 

 2 

3.2 Notation 3 

 4 

Listed below are the notations used in this paper: 5 

 6 

3.3 Problem setting  7 

 8 

The research objective of this paper is to find the best pricing and relocation operations to achieve 9 

the goals of the operator and travelers simultaneously. As a leader in the upper level, the operator 10 

will aim to maximize profit by weighing revenue and relocation, maintenance, and depreciation 11 

costs of shared cars, as well as the maintenance cost of shared parking places. Travelers are followers 12 

in the lower level, and they aim to minimize transport costs either by using carsharing or their 13 

personal car. 14 

The decision variables 𝑎𝑖𝑡
 set the number of available shared cars at the beginning of each time 15 

step 𝑡  in different zones 𝑖 . Variables 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
  determine the relocation trips from zone 𝑖  to 𝑗  from 16 

time steps 𝑡 to 𝑡 + 𝛿𝑖𝑗
𝑡 . Variables 𝑃𝑖𝑡𝑗

𝑠  determine the final price per time step the carsharing users are 17 

Sets  

𝑨: {(𝑖𝑡, 𝑗𝑡+𝛿𝑖𝑗
𝑡 )} Set of arcs representing a movement between zones 𝑖  and 𝑗 , ∀𝑖, 𝑗 ∈ 𝑱, 𝑖 ≠ 𝑗 , 

from time step 𝑡 to 𝑡 + 𝛿𝑖𝑗
𝑡  

𝑱: {𝑖} Set of traffic zones. The indices used for zones are 𝑖, 𝑗. 

𝑻: {𝑡} Set of time steps in the operation period. The index used for the time steps is 𝑡. 

𝑿: {𝑖𝑡} Set of nodes of the time-space network combining 𝐽 zones with 𝑇 time steps, 

where 𝑖𝑡 represents zone 𝑖 at time step 𝑡. 

Parameters  

𝛼 Average number of private car trips per day 

𝑏0 Coefficient used in the logit model to express the special preference for the car 

in relation to carsharing 

𝑏1 Coefficient used in the logit model to express the importance of cost for the 

mode choice 

𝛿𝑖𝑗
𝑡  Travel time from zone 𝑖 ∈ 𝑱 to 𝑗 ∈ 𝑱 where 𝑖 ≠ 𝑗, departure time step is 𝑡 

𝐶𝑓 Depreciation and maintenance costs per day for shared and private cars 

𝐶𝑔 Fuel consumption per time step 

𝐶𝑚 Maintenance costs of a carsharing parking spot per day 

𝐶𝑠 Parking fee per private car per trip 

𝐶𝑟 Relocation cost per time step 

𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡   Total demand for using a car (carsharing and private cars) from zone 𝑖 ∈ 𝑱 to 

𝑗 ∈ 𝑱, where 𝑖 ≠ 𝑗, from time step 𝑡 to 𝑡 + 𝛿𝑖𝑗 

𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑝𝑠
 Potential carsharing demand from zone 𝑖 ∈ 𝑱 to 𝑗 ∈ 𝑱, where 𝑖 ≠ 𝑗, from time 

step 𝑡 to 𝑡 + 𝛿𝑖𝑗
𝑡  

𝑃𝑖𝑡𝑗
𝑙𝑜𝑤, 𝑃𝑖𝑡𝑗

𝑢𝑝
 Lower and upper bound of the price per time step charged from zone 𝑖 ∈ 𝑱 to 

𝑗 ∈ 𝑱, where 𝑖 ≠ 𝑗 starting at time step 𝑡 

𝑄𝑖 Number of parking places in zone 𝑖, ∀𝑖 ∈ 𝑱 

𝑟 Ratio of the price of shared cars to the cost of private cars per time step 

Decision variables for the upper level 

𝑎𝑖𝑡
 Number of shared cars in zone 𝑖 at the beginning of a time step, ∀ 𝑖 ∈ 𝑱, 𝑡 ∈ 𝑻 

𝑅𝑖𝑡𝑗𝑡+𝛿𝑖𝑗
 Number of shared cars relocated from zone 𝑖 ∈ 𝑱  to 𝑗 ∈ 𝑱 , where 𝑖 ≠ 𝑗  from 

time step 𝑡 to 𝑡 + 𝛿𝑖𝑗 

𝑃𝑖𝑡𝑗
𝑠  Price charged by the operator per time step from zone 𝑖 ∈ 𝑱 to 𝑗 ∈ 𝑱, where 𝑖 ≠

𝑗 from time step 𝑡 

Decision variables for the lower level 

𝑉𝑖𝑡𝑗𝑡+𝛿𝑖𝑗

𝑠  Number of shared cars being used from zone 𝑖 ∈ 𝑱 to 𝑗 ∈ 𝑱, where 𝑖 ≠ 𝑗 from 

time step 𝑡 to 𝑡 + 𝛿𝑖𝑗 
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charged for transport from zone 𝑖  to zone 𝑗 , starting at time step 𝑡 . The three types of decision 1 

variables are in the upper level and determined by the carsharing operator. Variables 𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠  2 

determine the number of travelers choosing carsharing from zone 𝑖 to 𝑗, starting at time step 𝑡, in 3 

the lower level. 4 

  5 

3.4 Bilevel Mathematical Model 6 

 7 

By using the above notations, we formulated both levels of the model as follows.  8 

 9 

 3.4.1 Upper level 10 

 11 

max
𝑅𝑖𝑡𝑗𝑡+𝛿𝑖𝑗

,𝑎𝑖𝑡
,𝑃𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠
𝜃 = ∑ (𝑉𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡  

𝑠 𝛿𝑖𝑗
𝑡 (𝑃𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠 − 𝐶𝑔) − 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
𝛿𝑖𝑗

𝑡 (𝐶𝑟 + 𝐶𝑔))

(𝑖𝑡,𝑗𝑡+𝛿𝑖𝑗
)∈𝑨

12 

− ∑(𝑎𝑖1
∗ 𝐶𝑓 + 𝑄𝑖 ∗ 𝐶𝑚) ∗ 𝑒

𝑖∈𝑱

 13 

(1) 14 

Subject to: 15 

𝑎𝑖𝑡
≤ 𝑄𝑖  ∀ 𝑖𝑡 ∈ 𝑿  (2) 

∑ 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑗∈𝑱

≤ 𝑎𝑖𝑡
 ∀ (𝑖𝑡. 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (3) 

 

𝑃𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑙𝑜𝑤 ≤  𝑃𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ≤ 𝑃𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑢𝑝
 ∀ (𝑖𝑡. 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (4) 

 

𝑎𝑖𝑡
≥ 0 ∀ 𝑖𝑡 ∈ 𝑿 (5) 

 

𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
≥ 0 ∀ (𝑖𝑡, 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (6) 

     

 16 

The objective function (1) in the upper level maximizes the profit earned by the operator in the 17 

operation time, factoring in the revenue paid by the travelers, cost of fuel, relocation, parking space, 18 

and depreciation and maintenance of the shared cars. 𝑒 is a coefficient used to express the proportion 19 

of the study period in relation to one day. Constraints (2) ensure that the number of available shared 20 

cars in zone 𝑖 at time step 𝑡 is lower than the capacity of that zone. Constraints (3) assure that the 21 

number of cars relocating from zone 𝑖 since the beginning of time step 𝑡 is fewer than those of the 22 

available shared cars. Constraints (4) are used to restrict the lower and upper bounds of the price the 23 

operator can charge the clients. Expressions (5)–(6) set the domain for the decision variables in the 24 

upper level. 25 

 26 

3.4.2 Lower level 27 

 28 

𝑚𝑖𝑛
𝑉𝑖𝑡𝑗

𝑠

𝑡+𝛿𝑖𝑗
𝑡

𝜋 = ∑ {𝑉𝑖𝑡𝑗
𝑠

𝑡+𝛿𝑖𝑗
𝑡 𝑃𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠 𝛿𝑖𝑗
𝑡 + (𝐷𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

− 𝑉𝑖𝑡𝑗
𝑠

𝑡+𝛿𝑖𝑗
𝑡 ) (𝐶𝑔𝛿𝑖𝑗

𝑡 +
𝐶𝑓

𝛼
+ 𝐶𝑠)}

(𝑖𝑡,𝑗
𝑡+𝛿𝑖𝑗

𝑡 )∈𝑨

 (7) 

 

 29 

Subject to: 30 

𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑝𝑠
=

e
𝑏1𝑃𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠 𝛿𝑖𝑗
𝑡

e
𝑏1𝑃𝑖𝑡𝑗

𝑠 𝛿𝑖𝑗
𝑡+𝛿𝑖𝑗

𝑡
𝑡

+ e𝑏0+𝑏1(𝐶𝑔𝛿𝑖𝑗
𝑡 +

𝐶𝑓

𝛼
+𝐶𝑠)

𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨  
(8) 

 

𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ≤ 𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑝𝑠
 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (𝜶𝒊𝒕𝒋
𝒕+𝜹𝒊𝒋

𝒕
) (9) 

𝑎𝑖𝑡
+ ∑ (𝑉𝑗𝑡−𝛿𝑖𝑗

𝑖𝑡

𝑠

𝑗𝑡−𝛿𝑖𝑗
∈𝑿

+ 𝑅𝑗𝑡−𝛿𝑖𝑗
𝑖𝑡

) − ∑ (𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 + 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
)

𝑗
𝑡+𝛿𝑖𝑗

𝑡 ∈𝑿

= 𝑎𝑖𝑡+1
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∀𝑖𝑡 ∈ 𝑿, (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨  (𝜷𝒊𝒕

) (10) 

∑ (𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 + 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ) ≤ 𝑎𝑖𝑡

𝑗∈𝑿

 ∀𝑖𝑡 ∈ 𝑿, (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (𝝆𝒊𝒕

) (11) 

𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ≥ 0 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (𝜸𝒊𝒕𝒋

𝒕+𝜹𝒊𝒋
𝒕

) (12) 

 1 

Objective function (7) in the lower level minimizes the total travel cost for both shared and private 2 

car users. For carsharing travelers, the rental fee of a shared car is the only applicable cost. For 3 

private cars, the total cost consists of the costs of fuel, maintenance, depreciation per trip, and 4 

parking space rental. The parking fee for private car users is charged per trip because, in this model, 5 

the duration of parking of the cars in each zone cannot be predicted. Constraints (8) help compute 6 

the potential number of carsharing travelers, which means the maximum number of carsharing users 7 

according to the logit model. Constraints (9) assure that the number of users will not surpass that 8 

maximum. Constraints (10) impose flow conservation in the network. Subscript 𝑡 ,  finds the 9 

departure time step of the car’s departure from zone 𝑗 to its arrival at zone 𝑖 during time step 𝑡. 10 

Constraints (11) ensure all the number of shared cars departing from a zone does not exceed the 11 

available cars. Constraints (12) set the domain for the decision variables in the lower-level model. 12 

4 Solution approach 13 

 14 

The upper-level formulation has an objective function that includes the lower-level decision 15 

variables. The objective (1) and logit model used in constraints (8) render the bilevel model 16 

nonlinear and non-convex. To solve this complex model, we used a combination of GA and KKT 17 

conditions. 18 

The dual variables (also called KKT multipliers or Lagrange multipliers) for each lower level 19 

constraints are indicated in bold and parenthesis in each constraint. They are 𝛼𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
 for constraints 20 

(9), 𝛽𝑖𝑡
  for constraints (10), 𝜌𝑖𝑡

  for constraints (11) and  𝛾𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
 for constraints (12) respectively. 21 

There are no dual variables for constraints (8), because the derivations obtained by the only decision 22 

variable in the lower level, 𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 , amount to 0. Those variables are used in the KKT conditions to 23 

help convert the lower-level model into a mathematical program with equilibrium constraints 24 

(MPEC). The prices are set to be constant value, varying only during the GA process, which makes 25 

the lower-level model linear and convex. Thus, the KKT conditions are necessary and sufficient for 26 

𝑉𝑖𝑡𝑗𝑡+𝛿𝑖𝑗

𝑠  to be a solution of the lower-level problem (Kanzow, 1994). The feasible prices are found 27 

by a metaheuristic approach such as GA. 28 

 29 

4.1 KKT conditions for the lower-level model 30 

 31 

The KKT conditions include stationarity conditions, primal feasibility constraints, dual feasibility 32 

constraints, and complementary slackness. The KKT conditions of the lower-level model are 33 

defined by objective (7) and constraints (8)–(12). The stationarity conditions are:  34 

𝑃𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 𝛿𝑖𝑗
𝑡 − (𝐶𝑔𝛿𝑖𝑗

𝑡 +
𝐶𝑓

𝛼
+ 𝐶𝑠) + 𝛼𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

+ 𝛽𝑗𝑡−𝛿𝑖𝑗
− 𝛽𝑖𝑡

+ 𝜌𝑖𝑡
− 𝛾𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

= 0 

 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
) ∈ 𝑨 (13) 

Primal feasibility constraints are (8) to (12) 35 

Dual feasibility implies the following: 36 

 37 

𝛼𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
, 𝜌𝑖𝑡

, 𝛾𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
≥ 0 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (14) 

  38 

The set of complementarity conditions are as follows: 39 

 40 
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𝛼𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
× (𝑉𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠 − 𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑝𝑠
) = 0 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (15) 

𝜌𝑖𝑡
× (∑ (𝑉𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠 + 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ) − 𝑎𝑖𝑡

𝑗∈𝑿

) = 0 ∀𝑖𝑡 ∈ 𝑿, (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (16) 

𝛾𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
× 𝑉𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

𝑠 = 0 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (17) 

   1 

The MPEC is now defined by objective function (1), upper-level constraints (2)–(6), KKT primal 2 

feasibility constraints (8)–(12), KKT stationarity conditions (13), dual feasibility constraints (14), 3 

and complementarity constraints (15)–(17). The complementarity constraints are nonlinear, but 4 

they can be converted into linear constraints. 5 

 6 

4.2 Dealing with complementarity 7 

 8 

A big-M is used to transform the complementarity constraints. A typical nonlinear constraint is 9 

𝑧(𝑞 + 𝑄𝑧) = 0, which can be converted into two linear constraints by using a binary variable, 𝑢, 10 

where constraints 𝑧 ≤ 𝑀𝑢  and 𝑞 + 𝑄𝑧 ≤ 𝑀(1 − 𝑢)  are imposed (Nair et al. 2014). The 11 

complementarity constraints (15)–(17) can be rewritten as linear constraints in the same way. Binary 12 

variables 𝜂𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
, σ𝑖𝑡

 and 𝜆𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
 are introduced to perform these transformations. 13 

Constraints (15) can be transformed into constraints (18)–(20) as follows, 14 

 15 

𝛼𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
≤ 𝑀𝜂𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (18) 

𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 − 𝐷𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑝𝑠
≤ 𝑀 (1 − 𝜂𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

) ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (19) 

𝜂𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
∈ {0,1} ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (20) 

    16 

Constraints (16) can be transformed into constraints (21)–(23), 17 

 18 

𝜌𝑖𝑡
≤ 𝑀σ𝑖𝑡

 ∀ 𝑖𝑡 ∈ 𝑿 (21) 

∑ (𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 + 𝑅𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ) − 𝑎𝑖𝑡

𝑗∈𝑿

≤ 𝑀(1 − σ𝑖𝑡
) ∀𝑖𝑡 ∈ 𝑿, (𝑖𝑡, 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (22) 

σ𝑖𝑡
∈ {0,1} ∀ 𝑖𝑡 ∈ 𝑿 (23) 

 19 

Constraints (17) can be transformed into (24)-(26), 20 

 21 

𝛾𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
≤ 𝑀𝜆𝑖𝑡𝑗

𝑡+𝛿𝑖𝑗
𝑡

 ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗
𝑡 ) ∈ 𝑨 (24) 

𝑉𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡

𝑠 ≤ 𝑀 (1 − 𝜆𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
) ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (25) 

𝜆𝑖𝑡𝑗
𝑡+𝛿𝑖𝑗

𝑡
∈ {0,1} ∀ (𝑖𝑡 , 𝑗𝑡+𝛿𝑖𝑗

𝑡 ) ∈ 𝑨 (26) 

   22 

Now, the BLNLMP model can be expressed as a single-level, nonlinear programming model. The 23 

new model is defined by objective (1), upper-level constraints (2)–(6), and KKT primal feasibility 24 

constraints (8)–(12), KKT stationarity conditions (13), dual feasibility constraints (14), and the set 25 

of transformed complementarity constraints (18)–(26). If a set of prices is given for a carsharing 26 

system, the model is linear and can be solved by any commercial solver, including Cplex or Xpress 27 

(which is the tool we use in this paper). 28 

 29 

4.3 Solution algorithm 30 

 31 

The following pseudo-code shows the GA procedure used to iterate between the sets of prices. 32 
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Let 𝐾 be the maximum number of iterations, 𝑁 the solution population size, and 𝜃 the value of the 1 

objective function (1) 2 

  3 

Algorithm 1: Iterative procedure for the genetic algorithm 4 

Initialization 

Step 1: Set 𝑘 = 1, initialize 𝑃𝑘.𝑛 randomly. 

Step 2: Given 𝑃𝑘.𝑛, the daily profit 𝜃𝑘,𝑛(𝑃𝑘,𝑛) can be calculated by the new single-level model.   

Step 3: Sort the value of the objective and update the maximum in each iteration, save it as 𝜃𝑘∗
. 

Step 4: 
If 

|𝜃𝑘∗
−𝜃(𝑘−10)∗

 |

𝜃𝑘 < ɛ and 𝑘 > 20 or 𝑘 = 𝐾, stop. Else, proceed to Step 5. 

Step 5: Crossover and mutation of the sorted price. 

Step5.1: when the random rate is lower than the crossover rate 𝑃𝑐, intersection occurs. Select two 

prices by Roulette Wheel Selection and perform a crossover. The new prices are formed for the next 

iteration. 

Step5.2: when the random rate is lower than the mutation rate 𝑃𝑚, mutation occurs. New prices 

then are generated randomly in steps of 0.1 between the lowest and highest prices for the next 

iteration. 

Step 6: New prices are generated after Step 5, set 𝑘 = 𝑘 + 1, and go to Step 2. 

 5 

In this paper, the parameters of the GA are set as follows: maximum number of iterations 𝐾 =6 

100 , population size 𝑁 = 30 , crossover rate 𝑃c = 0.9 , and mutation rate 𝑃𝑚 = 0.1 . The initial 7 

prices 𝑝1.𝑛 of the first iteration are generated randomly between the lowest and highest prices. Based 8 

on the given prices, the objective can be calculated directly. The maximum objective is always 9 

retained, and if the value of the previous iteration is less than the latest iteration, then it is replaced. 10 

The algorithm terminates when the number of iterations is greater than 20, and the difference 11 

between the value of the objective function of the current iteration and the value of the objective 12 

function of the previous ten iterations is less than ε, which is set to be 0.001. 13 

5. Case study: Rotterdam, The Netherlands 14 

 15 

5.1 Setting up the case study 16 

 17 

To demonstrate the working of the algorithm, we performed a case study with Rotterdam, in The 18 

Netherlands, as the study area (Fig. 1 a). The population of the city as per 2016 census was 994,000. 19 

The municipality of Rotterdam covers a total surface area of 325.79 km2. 20 

Data required for conducting the study are a) a set of zones, b) a demand trip matrix, c) the price 21 

range per time step charged by the operator, d) time taken by the cars to drive between different 22 

zones, and e) operating costs for shared cars and parking lots. The locations of carsharing parking 23 

lots are assumed to be in the centroid of each zone (Fig. 1 b). 24 

 

 

a) Rotterdam in Google maps b) Centroids of all 39 zones in the city 

center 
 25 

Fig. 1 Study region in Rotterdam and centroids of all the zones 26 
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 1 

The trip matrix is based on data provided through a macro-transport demand model built with 2 

OmniTrans software, which the city uses for its transport planning. The data includes a full-day OD 3 

demand matrix and an OD matrix for every 15 min. In this case study, the number of zones used is 4 

39 (the central area of the city). The number of car trips during the operation time is 46,423. Based 5 

on the number of shared cars in Rotterdam, the number of carsharing spots in each zone is set to 50. 6 

Therefore, the upper bound for the fleet size in this case study is 1,950. We consider a daytime 7 

operation of 4.5 h from 5:30 am to 10:00 am. Therefore, the study covered only the morning period, 8 

partitioned into 18 time steps with a total duration of 15 min.  9 

Values of the parameters in the model are taken from relevant material (Ashkrof et al. 2019; 10 

Huang et al. 2018) and the official website of the Government of the Netherlands (Table 1). 11 

 12 

Table 1 Parameters for the case study 13 

Parameter α 𝑏0 𝑏1 𝐶𝑓 𝐶𝑔 𝐶𝑟 𝐶𝑚𝑝 𝐶𝑠 

Value 2 0.751 -0.328 7 0.5 2.34 2 2 

Unit - - - € per day € per 15 

min 

€ per 15 

min 

€ per day € per trip 

 14 

α, the average trip number of private car users per day, is 2. The depreciation cost per fuel car per 15 

day is € 7 per day (Kai et al., 2018). 𝑏0  and 𝑏1  are coefficients representing the importance of 16 

carsharing or private cars in the logit model in constraints (8), and their values were taken from 17 

Ashkrof et al. (2019). In this paper, the salary of staff members is € 9.36 per hour, and 𝐶𝑟 is € 2.34 18 

per time step. This information is published by the Government of the Netherlands 19 

(https://www.government.nl/topics/minimum-wage/amount-of-the-hourly-minimum-wage). The 20 

remaining parameters 𝐶𝑚𝑝 , 𝐶𝑠 , and 𝐶𝑔  were derived from the average market prices. For a 21 

carsharing company in Rotterdam, we vary the price between € 0.28 per min to € 0.36 per min, 22 

which means it can take any value between € 4.20 per 15 min and € 5.40 per 15 min. 23 

 24 

5.2 Experiments and results 25 

 26 

The transformed MPEC was implemented using the solver Xpress 8.5 (FICO) in four different 27 

scenarios. All experiments were performed on a computer equipped with a 3.6 GHz Intel Core W-28 

2123 processor and 32 GB of RAM with Windows 10 OS. 29 

The four scenarios are named: base, relocation, pricing, and combination. The base scenario is 30 

used as the benchmark, but not pricing or relocation. In the relocation scenario, the relocations 31 

performed by the staff are applied. In the pricing scenario, the operator defines the prices that must 32 

be charged for transporting customers between different zones at different time periods. The 33 

combination scenario is the most complex among the four scenarios, because it implements both 34 

pricing and relocations simultaneously. In the base and relocation scenarios, prices are the inputs, 35 

which means the models are single-level linear models and have optimal, rapid and easily solutions. 36 

In the other two scenarios, prices are decision variables, making the model nonlinear, for which the 37 

GA described in the previous section is used. Thus, the model can be solved with fixed prices, and 38 

optimality cannot be proven. 39 

Several indicators are used to analyze the performance of the model in increasing the profit and 40 

reducing the costs paid by the travelers. The results for the four scenarios are presented in Table 3. 41 

In the following sections, each scenario will be analyzed and compared in detail. 42 

 43 

5.2.1 Base scenario  44 

 45 

The operator does not solve the vehicle imbalance problem in the base scenario since it is the 46 

benchmark against which the results from the other three scenarios will be compared.  47 

The price is constant for different OD pairs at different time periods. To study the performance 48 

of the system, the carsharing price was increased from € 4.20 per 15 min to a high price of € 15.00 49 

per 15 min in steps of € 0.05. As for the cost of private car travelers, the carsharing price is kept 50 
constant at € 6.00 per 15 min. The charts with different indicators for both the base and relocation 51 

scenarios are shown in Fig. 2. The results show that this price is vital to the profit earned by the 52 

https://www.government.nl/topics/minimum-wage/amount-of-the-hourly-minimum-wage
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operator. 1 

To demonstrate the impact of price on the operator and the travelers, we will explore different 2 

price ranges where the price is divided into four parts based on a ratio 𝑟. The ratio 𝑟 equals the price 3 

that the carsharing operator charges per time step divided by the amount that the private car drivers 4 

pay per time step. When 𝑟 < 1 , the price charged by the carsharing operator from travelers in 5 

Rotterdam is in the range of € [4.20, 5.40] per 15 min. When 𝑟 ≤ 1, the price range is € [4.20,6.00] 6 

per 15 min. When 𝑟 > 1, there are two price ranges. The first one is € [4.20,7.50] per 15 min, which 7 

extends the price range mentioned before, and the second one is € (6.00,7.50] per 15 min. We chose 8 

€ 7.50 per 15 min randomly, and it could be any value above € 6.00 per 15 min. Thus, € 5.40 per 15 9 

min, € 6.00 per 15 min, and € 7.50 per 15 min were set as the benchmark prices for the base and 10 

relocation scenarios. As shown in Fig. 2 a), when the price of a shared car equals € 5.40 per 15 min, 11 

the operator can earn the highest profit in the price range of € [4.20, 5.40] per 15 min. When 𝑟 > 1, 12 

as the charges increase, the profits decrease. 13 

When 𝑟 ≤ 1, in the base scenario, as the price increases from € 4.20 to 6.00 per 15 min, the profit 14 

peaks at € 5.65 per 15 min and then decreases (Fig. 2 a)). The cost of traveling rises quickly (Fig. 2 15 

b)). The cost of all the carsharing travelers increases with price and peaks when at a price of 5.30 16 

per 15 min, after which it decreases (Fig. 2 c)). Meanwhile, the number of shared cars (Fig. 2 i)) 17 

and carsharing trips (Fig. 2 e)) continues to fall as the price increases. Similarly, the total time steps 18 

taken by the vehicles also reduces (Fig. 2 g)). These results show that even when the price of 19 

carsharing is less than the cost of using a private car, an increase in the cost of carsharing will 20 

encourage fewer travelers to choose shared cars, reducing the total travel time spent in the shared 21 

cars, while the operator still benefits from the price increase. 22 

When 𝑟 > 1, i.e., when the carsharing price is higher than the cost of using a private car, the 23 

profit keeps decreasing with the price (Fig. 2 a)). The number of shared cars in the system sees a 24 

sharp decline (Fig. 2 i)). The number of carsharing trips continues to decrease (Fig. 2 e)). When the 25 

price is € 9.90 per 15 min, the total cost for all travelers reaches its highest point before gradually 26 

decreasing (Fig. 2b)). This result indicates that the same travel costs can be associated with different 27 

prices and trip patterns. 28 

In the base scenario, the objective of profit maximization is achieved with a price of € 5.65 per 29 

15 min, with a profit of € 47,753. Nevertheless, a carsharing company may not only aim to maximize 30 

its profits but also increase its market share, for which proper strategies are required. 31 

 32 

 33 
 34 

Fig. 2 Sensitivity analysis of the average carsharing price in the base and relocation scenarios 35 

 36 

5.2.2 Relocation scenario 37 

 38 

In the relocation scenario, cars in the oversupplied zones can be relocated to the undersupplied 39 

ones, thus tackling the vehicle imbalance problem. As shown in Fig. 2, the all indicators in the base 40 

scenario follow a similar trend. The profits in the relocation scenario are higher than in the base 41 
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scenario, for any given price (Fig. 2 a)). This shows that relocations can help the operator earn more 1 

revenue when the price is constant. 2 

When 𝑟 ≤ 1, the advantage of relocations is obvious (Fig. 2 a)) and the difference between the 3 

two profits is more than € 3,000 € (Fig. 3). From the perspective of the travelers, when the shared 4 

cars are relocated, savings on the cost will increase (Fig. 3). The fleet size in the relocation scenario 5 

is much higher than that in the base scenario (Fig. 2 i)). That is, when the carsharing price is lower 6 

than the cost of private cars, the system can offer more shared cars as they can be relocated, thus 7 

yielding more profit and increasing the level of service offered to the clients. 8 

When 𝑟 > 1, the profit in the relocation scenario is still much higher. The profit is the highest 9 

when the carsharing price is € 7.60 per 15 min. In fact, it is € 10,530 higher than that in the base 10 

scenario, as shown in Fig. 3, after which it reduces continuously. Meanwhile, the total cost for 11 

travelers increases. When the carsharing price is € 5.95 per 15 min, the total costs of travelers in 12 

both scenarios are nearly the same. This in turn means there are no savings when the price increases. 13 

When the carsharing price is € 8.90 per 15 min, the gap between the cost of all the travelers is the 14 

largest as shown in Fig. 3 (4,709 €). The difference in the fleet size between the two scenarios 15 

continues to reduce (Fig. 2 i)).  16 

In short, when the price of a shared car is lower than the cost of a private car, relocations can help 17 

the operator increase the profit and the travelers save on travel costs. When the price of the shared 18 

car is higher than the cost of the private car, relocations can always help the operator earn more 19 

revenue. However, the travelers cannot save on the travel costs. 20 

 21 

 22 
Fig. 3 Gaps between the objectives of the relocation scenario and base scenario 23 

 24 

5.2.3 Pricing scenario 25 

 26 

Many studies have shown that pricing can help the operator solve the stock imbalance problem 27 

to a certain extent (Angelopoulos et al. 2018; Jorge et al. 2014). The pricing strategy works by 28 

varying the prices depending on the zone and time of day. In this model, the pricing helps customers 29 

decide to choose either a shared car or a private car. For example, if the origin zones are oversupplied 30 

with cars and/or the destination zones are undersupplied, setting a lower price can encourage more 31 

customers to choose shared cars, and vice versa. 32 

The results in all scenarios are listed in Table 4. The convergence processes in the pricing scenario 33 

are shown in Fig. 4. The running time and iterations within different price ranges are shown in Table 34 

2. The results obtained for the pricing scenario were compared with the benchmarks of the base and 35 

relocation scenarios. 36 

 37 

Table 2. Price variation range, running iterations, and running time in the pricing scenario 38 

 39 

Price range (€ per 15 min) [4.20, 5.40] [4.20, 6.00] [4.20, 7.50] (6.00, 7.50] 
Running iterations 53 48 45 44 
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Running time 4 h 32 min 4 h 7 min 3 h 51 min 3 h 46 min 

 1 

The results obtained from the price range of € [4.20, 5.40] per 15 min and € [4.20, 6.00] per 15 2 

min when 𝑟 ≤ 1  are used to highlight the advantages of the pricing strategy. The values of the 3 

objective function in the upper level through pricing are almost the same as those obtained in the 4 

base scenario, while the total costs of all the travelers are much lower. For example, when the price 5 

varies in the range of € [4.20, 5.40] per 15 min, the travelers now pay € 5,273 € less, when compared 6 

with the results of the benchmark price of € 5.40 per 15 min in the base scenario. Simultaneously, 7 

the number of carsharing travelers will increase by 2.03%, which means the number of shared cars 8 

required will rise by 1.96%. If the price range is € [4.20, 6.00] per 15 min, the travel cost will be € 9 

7,369 less than that in the base scenario, the number of carsharing travelers will increase by 3.16% 10 

more, and the fleet size will have to grow by 3.58%. Compared with the relocation strategy, the 11 

pricing strategy does not perform very well, regardless of whether the price range is € [4.20, 5.40] 12 

per 15 min or € [4.20, 6.00] per 15 min. For example, when the price range is € [4.20, 5.40] per 15 13 

min, the profit earned through pricing is € 7,424 less than that through relocations, and the travel 14 

costs reduce by € 3,425. With this pricing strategy, the number of carsharing travelers will reduce 15 

by 5.27% compared with the relocation strategy. In short, when the carsharing price is lower than 16 

the cost of private cars, the relocations yield better results than the pricing strategy in improving the 17 

profits and attracting more carsharing travelers. 18 

 19 
Fig. 4 Convergence processes of the operator’s profit in the pricing scenario 20 

 21 

After extending the price range to overlap with the reference cost of private cars, i.e., the price 22 

range of € [4.20, 7.50] per 15 min, the results obtained in the pricing scenario are compared with 23 

those in the base and relocation scenarios for a benchmark price of € 7.50 per 15 min. Compared 24 

with base scenario, the pricing scenario saw a 7.75% increase in the number of shared cars yield € 25 

4,743 € more profits, and the overall traveler cost reduced by € 9,419. Additionally, carsharing in 26 

this scenario could attract 5.58% more travelers. Compared with relocations, the pricing strategy 27 

offers better savings on travel costs saving, attracting more users to carsharing. The profit, however, 28 

is € 5,778 lower than that obtained through relocations. The cost is also € 13,198 lower, and the trip 29 

ratio of shared cars is even 0.2% higher. 30 

When 𝑟 > 1, which means € (6.00, 7.50] per 15 min, the operator can earn € 2,639 more profits 31 

with the pricing scenario, while all travelers will pay € 3,121 less compared with the base scenario 32 

(benchmark price of € 7.50 per 15 min). In the relocation scenario, the operator can earn an 33 

additional profit of € 10,521, and travelers will have to spend an additional sum of € 3,785. Both 34 

pricing and relocations can help the operator attract more carsharing travelers. However, relocations 35 

perform better than pricing and attract an additional 3.11 % travelers than a strategy with pricing 36 

alone. In terms of fleet size, the pricing strategy will reduce the number of shared cars by 88 37 

compared with relocations. Therefore, when the carsharing price is higher than the cost of private 38 

cars, travelers will benefit from the pricing strategy as they save on travel costs. The operator, 39 
however, may prefer the relocation strategy because of the huge increase in profits it offers. 40 

In summary, relocations and pricing can both lead more travelers to choose shared cars. The 41 
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pricing strategy benefits the travelers and reduces the average travel cost of carsharing per time step, 1 

while the relocation strategy benefits the operator. Logically, a better strategy that combines the 2 

advantages of both pricing and relocation is needed. 3 

 4 

5.2.4 Pricing–relocation combination scenario 5 

 6 

In the pricing–relocation combination scenario, the operator can price the trips as well as perform 7 

relocations. The convergence process of the GA algorithm in this case is presented in Fig. 5, when 8 

different price ranges are used. The running details are shown in Table 3. The results obtained in 9 

this scenario are compared with the benchmarks of the base, relocation, and pricing scenarios. 10 

 11 

 12 
Fig. 5 Convergence processes of the operator’s profits in the pricing–relocation combination 13 

scenario 14 

 15 

Table 3. Price variation range, running iterations and running time in the combination scenario 16 

 17 

Price range (€ per 15 min) [4.20, 5.40] [4.20, 6.00] [4.20, 7.50] (6.00, 7.50] 
Running iterations 59 60 56 45 

Running time 5 h 11 min 5 h 17 min 4 h 56 min 3 h 51 min 

 18 

At 𝑟 ≤ 1, i.e., the price range is either € [4.20, 5.40] or [4.20, 6.00] per 15 min, both relocation 19 

and the pricing–relocation combination strategies offer similar advantages. Let us take the second 20 

price range of € [4.20, 6.00] per 15 min as an example. The relocation strategy can help the operator 21 

increase their profits by € 8,738 and reduce the travel costs by € 4,843. With the combination strategy, 22 

the profit can be increased by 8,832 € and the travel costs can be reduced by € 9,629. With the 23 

combination strategy, the portion of carsharing trips is 3.29% higher with the combination strategy 24 

than with the relocations. The average cost per carsharing trip in the combination scenario is also 25 

much lower. In other words, when the carsharing price is lower than the cost of private cars, the 26 

influence of the combination and relocation strategies on the value of the objective function in the 27 

upper level is almost the same, while the combination strategy performs better in terms of cost 28 

savings and converting travelers. A comparison of the results of the pricing and combination 29 

scenarios shows that the combination strategy performs better. The combination strategy also yields 30 

higher profits than the pricing strategy, while keeping the travel costs slightly lower. Most 31 

importantly, the proportion of carsharing travelers is more than 7.00% higher in the combination 32 

than the strategy that considers only pricing. 33 

When the price range is € [4.20, 7.50] per 15 min, the combination strategy still has the best 34 

performance. For example, this strategy yields the highest improvement in profit among the four 35 

strategies, which is € 12,912 higher than that of the base scenario. Additionally, the savings on travel 36 
costs are € 9,273 compared with the base scenario. The combination strategy also draws the most 37 

people. 38 
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At 𝑟 > 1, the performance of the combination strategy is similar to the previous case where the 1 

price varies in the range of € [4.20, 7.50] per 15 min), except for the travelers’ costs. The travelers’ 2 

costs in the combination scenario are nearly identical to those in the base scenario. This cost is still 3 

€ 4,412 less than that in the relocation scenario, which means that the combination strategy offers 4 

the cost-saving benefits of the pricing scenario. Therefore, the combination strategy performs the 5 

best when the carsharing price is much higher than the cost of private cars, considering the profits 6 

earned by the carsharing operator and travelers. 7 

In summary, the combination strategy leverages the advantages of both pricing and relocations. 8 

It can drastically increase the profits as well as ensure that travelers saved as much as possible. 9 

Therefore, irrespective of the price range, it can attract the most carsharing travelers compared with 10 

the other three strategies. 11 

6 Conclusions 12 

 13 

This paper proposes a bilevel nonlinear model to study the pricing and relocation problem of 14 

carsharing systems where travelers can drive a shared car or a private car. The objective is to 15 

maximize the profit earned by a carsharing operator (upper level), while minimizing the overall 16 

travel expenditure incurred on passengers (lower level). Considering the price and relocations of 17 

shared cars as decision variables under a nonlinear model, KKT conditions were used to transform 18 

the bilevel model into a single-level model. A GA was proposed to handle the nonlinearity of the 19 

objective function and the constraints related to the carsharing demand. Rotterdam, The Netherlands, 20 

was used as the study area to test the model. We studied four scenarios, base scenario, relocation 21 

scenario, pricing scenario, and relocation–pricing combination scenario to obtain insights about the 22 

carsharing system performance of different management strategies. The optimization results of the 23 

different scenarios were obtained under a computation time of 6 h. 24 

In this case study, when the price range of a shared car is less than or equal to the cost of a private 25 

car, the pricing strategy does not perform as good as the relocation or the combination strategy in 26 

terms of profit, but it reduces the travel costs incurred on the travelers. The relocation and 27 

combination scenarios can yield larger profits for the operator and lower travel costs for the users, 28 

besides guaranteeing a higher level of satisfaction when compared with the base scenario. 29 

Nevertheless, the two scenarios are still different from each other; the combination strategy brings 30 

an added value through a sizeable decrease in the travel cost incurred on the travelers’ costs and the 31 

highest ratio of carsharing trips. 32 

When the price range of carsharing is overlapped with the cost of a private car, all the three 33 

strategies yield a higher profit and attract more travelers than the base scenario. Both the pricing 34 

and combination strategies helped travelers save more on the travel cost, whereas the relocation 35 

strategy could not. The pricing strategy outperformed the relocation scenario in terms of the 36 

carsharing demand. Clearly, the combination strategy brings the highest profits, attracts the most 37 

travelers to carsharing, and decreases the cost incurred by the travelers.  38 

When the price range of carsharing is slightly higher than the cost of private cars, the three 39 

strategies help bring a higher profit than the base scenario. However, the strategies achieve said 40 

profits in different ways. In the combination scenario, the rate of carsharing trips is the highest of 41 

the three strategies, which is good for the level of service offered to the clients. The pricing strategy 42 

can still help save more on travel costs. In the same price range, the relocation strategy outperforms 43 

the pricing strategy, as far as the carsharing trips satisfaction is concerned. 44 

We conclude that the combination strategy can be considered the most effective method in 45 

improving the profitability of one-way carsharing systems, while still helping travelers save on 46 

travel costs and satisfying requests. 47 

The performance of carsharing systems still has scope for improvement. In this model, for 48 

simplicity, we considered all users to be the same, but it would be more realistic to account for the 49 

heterogeneity of customers. This is because different users react differently to the same price. 50 

Moreover, all requests were satisfied without rejection, which is not the case. Future studies should 51 

develop a system that can reject travelers and explore the influence of rejections on system 52 

profitability. GA can help finding a feasible solution, which may or may not be optimal. The 53 

development of a more efficient algorithm, or an exact algorithm, is a possible research direction 54 

for future studies. 55 
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 1 

 2 

Table 4. Performance of all scenarios (in the base and relocation scenarios, benchmark prices are set as € 5.40 per 15 min, € 6.00 per 15 min and € 7.50 per 15 min) 3 

 4 

 

Scenario Base Relocation Pricing Combination 

Benchmark price (per 15 min) 
Constant Constant Upper bound of Upper bound of 

5.40 6.00 7.50 5.40 6.00 7.50 5.401 6.002 7.503 7.504 5.401 6.002 7.503 7.504 

Carsharing 

operator 

Profit earned by operator (€) 47,678 47,592 43,877 54,977 56,330 54,398 47,553 48,236 48,620 46,516 53,364 54,868 56,789 56,429 

Number of relocations 0 0 0 3,202 3,192 2,408 0 0 0 0 3,235 3,199 2,970 2,753 

Cost of relocations 0 0 0 9,094 9,066 2,071 0 0 0 0 9,187 9,085 8,436 7,819 

Depreciation and maintenance costs (€) 2,005 1,979 1,934 2,411 2,375 6,840 2,031 2,024 2,027 1,970 2,474 2,441 2,317 2,200 

Fleet size 971 951 916 1,280 1,252 1,032 990 985 987 944 1,328 1,303 1,208 1,119 

All passengers Cost incurred on all passengers (€) 263,086 268,642 277,761 261,238 263,799 281,546 257,813 261,273 268,348 274,640 254,473 259,013 268,488 277,136 

Carsharing 

travelers 

Cost of carsharing travelers (€) 54,753 54,078 49,082 73,266 73,932 67,847 55,159 55,557 55,287 52,308 72,350 73,401 73,723 71,683 

Total time steps driven by carsharing travelers 10,139 9,013 6,544 13,568 12,322 9,046 11,152 10,593 9,280 7,643 14,650 14,013 12,361 10,470 

The number of carsharing trips 9,827 8,796 6,454 13,217 12,077 8,950 10,767 10,261 9,045 7,508 14,182 13,606 12,092 10,321 

Carsharing trips share (%) 21.16 18.94 13.90 28.46 26.01 19.28 23.19 22.10 19.48 16.17 30.54 29.30 26.04 22.23 

Average cost of a carsharing trip per time step (€) 5.40 6.00 7.50 5.40 6.00 7.50 4.95 5.24 5.96 6.84 4.94 5.24 5.96 6.85 

Private 

travelers 

Cost of private travelers (€) 208,333 214,564 228,679 232,938 194,864 213,700 202,654 205,717 213,061 222,332 182,123 185,612 194,765 205,453 

Total time steps driven by private travelers 37,549 38,675 41,144 34,120 35,366 38,642 37,095 37,578 38,408 40,045 33,038 33,675 35,327 37,218 

The number of private car trips 36,605 37,636 39,978 33,215 34,355 41,303 35,665 36,171 37,387 38,924 32,250 32,826 34,340 36,111 

Private car trips share (%) 78.84 81.06 86.10 71.54 73.99 80.72 76.81 77.90 80.52 83.83 69.46 70.70 73.96 77.77 

 5 

 6 

 7 

 
1 Reference price range for Rotterdam: [4.20, 5.40] 
2 Extended range to include the price of the private car: [4.20, 6.00] 
3 Extended range to include the price above that of the private car: [4.20, 7.50] 
4 Range starting from just above the cost of the private car: (6.00, 7.50] 
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