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We study the competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) quadratic and biquadratic
spin-spin interactions of two magnetic impurities in twisted bilayer graphene away from the magic angle. We
apply the Bistritzer-MacDonald model of two graphene layers twisted with respect to each other by a small
angle. By reducing the model to the Dirac-type one with modified Fermi velocity, we derive expressions for the
RKKY quadratic and biquadratic spin interactions using perturbation theory for the free energy. The biquadratic
interaction is suppressed by a larger power of the interaction constant and decreases faster with the distance
between impurities compared to the quadratic one. Nevertheless, due to the different period of the oscillations
with the impurity separation distance, chemical potential, twist angle, and temperature, it is possible to fine-tune
the system to the regime of dominating biquadratic interaction. The existence of such a fine-tuned regime might
provide a promising opportunity to observe nonconventional spin ordering.

DOI: 10.1103/wkp4-2n5b

I. INTRODUCTION

The study of exchange spin-spin interactions started from
the pioneering work of Heisenberg on ferromagnetism [1].
One of the key questions arising for all spin-spin interaction
problems is the role of the surrounding medium. A mile-
stone in studies of the foundational principles of magnets
was reached with the discovery of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [2—4], which describes
the exchange interaction between two magnetic impurities
induced by the conduction electrons of the medium. This
usually appears as a leading-order contribution from perturba-
tion theory in the coupling constant between spin impurities
and valence electrons of the underlying material. Integrating
out the electronic degrees of freedom, one obtains the con-
tribution of the exchange interaction to the total free energy
of the system. However, as pointed out in Ref. [5], little is
known about the next higher-order spin-spin interactions com-
ing from the next terms in perturbation theory. The simplest
non-Heisenberg coupling term of this kind that should be
taken into account represents a biquadratic interaction: For
two impurities with spins S| and S; it has the form (S5, )? for
isotropic systems, whereas the standard RKKY term is §1S5.

The model with biquadratic interaction was applied in
Ref. [5] to describe magnetic phenomena in layered magnets
such as Crl; and CrBr3. A number of candidate materials in
which biquadratic spin couplings play a key role, such as NiX,
(X =Cl, Br, and I) [6] and iron-based superconductors [7],
have been studied. Theoretical studies of effective bilinear-
biquadratic models of magnets with both RKKY quadratic
and biquadratic interactions found that unconventional mag-
netic order parameters can be formed: quadrupole [8,9], spiral,
stripe, and tetrahedral orders [7,10]. In addition, a large bi-
quadratic interaction constant is expected to stabilize the
ferromagnetic state in NiX;, (X = Cl, Br, and I) [6].
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Usually, biquadratic spin-spin interactions are added to
phenomenological spin Hamiltonians to describe the stabil-
ity and competition of different phases of the system. Very
rarely are such interactions derived from more microscopic
theories. We will consider such a derivation in this article,
where we use the reduced low-energy Hamiltonian of the
Bistritzer-MacDonald model [11] for twisted bilayer graphene
as a microscopic Hamiltonian. The model system is presented
in Fig. 1. The idea of twisting graphene layers to exploit an
additional twist angle degree of freedom to vary interlayer
electronic hopping terms was first proposed in Ref. [12] and
tested experimentally in Ref. [13]. The famous seminal paper
by Bistritzer and MacDonald [11] found that at a specific
(“magic”) angle a flat band is formed after complete flattening
of the Dirac cone. Later, this prediction was confirmed in a
number of experiments [14,15], leading to the first observa-
tion of superconductivity in bilayer graphene without heavy
doping.

In the present paper we focus on twist angles that are away
from the first magic angle, where the Dirac cone remains.
The corresponding model used in this study is obtained from

FIG. 1. Schematic representation of the system considered in this
paper: Two impurities are placed on top of twisted bilayer graphene
with layer rotation angle 6. It is assumed that impurities are placed
near individual atoms. The distance between impurities equals R.

©2025 American Physical Society
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the Bistritzer-MacDonald model. It reduces to an effective
two-component Dirac Hamiltonian with modified Fermi ve-
locity depending on the rotation angle [16,17]. This allows
for complete analytic treatment of the RKKY interaction for
all parameters [18] and at zero temperature for the biquadratic
interaction. The main finding of this paper is that the bi-
quadratic interaction has a different oscillation period with
distance and doping compared to the RKKY second-order
term at zero temperature. This implies a specific selection of a
twist angle and impurity location where the spin ordering will
be predominantly determined by the biquadratic interaction.

This paper is organized as follows: We start by introducing
the effective model of twisted bilayer graphene in Sec. II.
Next, using the free energy expression, we derive the contri-
bution of the biquadratic interaction in terms of the Green’s
functions of the free electron in Sec. III and obtain analytic
expressions for interaction integrals in Sec. III A. Next, we
present results for the zero-temperature case in Sec. IV and
discuss the possibility of detecting biquadratic interaction at
certain fine-tuned values of the twist angle for given impurity
positions. In Sec. V we analyze the role of finite tempera-
ture using numerically evaluated expressions for interaction
integrals. We present conclusions in Sec. VI. Finally, as an ex-
ample, Appendix B contains the calculation of the interaction
integral to the second order of perturbation theory.

II. THE EFFECTIVE MODEL
OF TWISTED BILAYER GRAPHENE

We start with the Bistritzer-MacDonald (BM) model [11].
It is obtained in the vicinity of a single K point by taking
into account the fast decay of the interlayer hopping param-
eter with distance. The BM model contains in total eight
spin-degenerate bands and reduces to the following effective
linearized model for the two lowest-energy bands [11,16,17]
with an effective Hamiltonian:

1 + 6a2

where v}y is the effective Fermi velocity, Pauli matrices t,
and 7, act on the layer degree of freedom in the spinor wave
function, and £ is the valley index. The parameters in v} are
defined through the twist angle 6 and parameters of monolayer
graphene as

N N 1 — 3a?
Hefi (k) = hvp(teky + §1yky ), vp = ve, (D)

a = w/livpkg, ke = 87 sin(6/2)/3ay. 2)

The numerical values used throughout the paper are the
Fermi velocity of monolayer graphene vy = +/3tag/2h =
9.3 x 107 cm /s, lattice constant ay = 0.246 nm, and the mag-
nitude of the interlayer hopping parameter w = 110 meV. The
approximation used to obtain Eq. (1) imposes particle-hole
symmetry. For magic values of the angle, the effective Fermi
velocity vanishes, and the next order of the expansion in a
wave vector should be taken into account. This results in
the appearance of Van Hove singularities close to charge
neutrality point [11,19,20], for which the calculation of spin-
spin interactions in the perturbation theory would present a
challenge due to the divergent density of states. Thus, the
calculations below always assume a finite value of the effec-
tive Fermi velocity. The model (1) should work decently well

in the range of twist angles between 6 ~ (0.8° and 6 = 10°,
where the lower bound estimated from the middle of the
interval between first and second magic angles is at 1.05° and
0.5°, respectively; the upper bound was numerically estimated
from the applicability of Bloch’s functions in Ref. [11]. The
energy range of the applicability of the full BM model and of
the linearized two-band model is estimated to be up to 1 eV
from the charge-neutrality point [11,16,17].

The retarded Green’s function of the model (1) is given by

w + hvg(tck, +&E10ky)
(w +ie)* — (hvE)?k?
Using the results from monolayer graphene with reduced

Fermi velocity, the real space version of the Green’s function
for a given valley index & takes the form

GR(w, k, &) =

3

Gg(l', w,§)= W
F

(i @E
seifﬁﬂHl(l)(Z)

= Ir|(w + ig)
o hp

e—i§<ﬂH1(1)(Z)
—iH" ()

“

Here Hi(l)(z) is the Hankel function of the first kind, and ¢ is
the polar angle measured from the x axis.

In the following sections we perform the calculation for
only a single valley & to extract the behavior of RKKY
quadratic and biquadratic interactions that is sensitive to
Fermi velocity changes due to the twist angle. Later, we dis-
cuss the effects of taking into account two valleys in the moiré
Brillouin zone.

III. DERIVATION OF THE RKKY QUADRATIC
AND BIQUADRATIC INTERACTIONS

For the purpose of deriving a general expression for the
biquadratic interaction from perturbation theory, we start with
the free energy expressed through the partition function as
F=-TnZ:

zZ=2z" /DWDW

1T 9
x exp{/ dr/dzxw(r,x)[—— —H:|1//(r,x)},
0 at

&)

where T is the temperature (the Boltzmann constant kg is set
equal to 1) and fermion fields v carry layer and spin indices.

The integration over the fermionic fields ¥ takes into
account low-energy electrons close to the charge neutrality
point. Here the Hamiltonian H = Hy 4+ V consists of two
parts, the kinetic part of the free quasiparticles, Hy, in the un-
derlying material and the interaction part, V, which describes
the coupling between magnetic impurities and the itinerant
electrons of twisted bilayer graphene [18,21-24]:

V =—=A[S;-s8(r —R)P; + Sz -88(r — Ry)Pp].  (6)

In this model spins S; and S, of two impurities are assumed
to be classical, the s = o/2 operator stands for the electron
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spin in graphene expressed through the Pauli matrices, R »
are impurity positions, and P;; and Pj, are the projectors onto
the layers where the respective impurities are placed (layer in-
dices /1 and /2 take the values of 1 and 2). These projectors are
diagonal matrices P, = diag(1,0) and P, = diag(0, 1). The
coupling constant A depends on the type of impurity placed on
the graphene sheet. In what follows we consider Co impurities
bound to carbon atoms in monolayer graphene, in this case the
coupling reaches the value 1 eV a¢, where ac is the area per
carbon atom, ~ 2.62A2 [25].

Since the action in the partition function is quadratic in
fermionic fields, we find the following result for the free
energy:

Det[—2 — H]
F=-Tln 5
Det [— - — Ho]

Here the Tr operation includes matrix trace tr, summation
over valleys, and integration over coordinates. The last ex-
pression can be rewritten in terms of the free particle Green’s
function via the substitution —% —Hy =G, ! This leads to
the corresponding series expansion in powers of the coupling
constant A:

F=—TTrin(1 =VGy) =T Tr(=VGy — 3VGoV Gy
- %VGOVGOVGO - %VGOVGQVGOVGO — e )
8)

In this expansion even powers of V terms contain contribu-
tions to the RKKY quadratic interaction, and starting at fourth
order, additional biquadratic interactions appear (odd power
terms vanish due to spin traces).

Now we analyze the second- and fourth-order contributions
to the free energy. We evaluate the traces over spin matrix
operators, taking into account that for graphene the Green’s
function is proportional to the unit matrix oy = 1 in real spin
space. The combinatorial coefficients from spin traces 8F>
enter the full nth-order correction to free energy as 6F =
A'8FSI,, and I, contains integrals that depend on layer indices
and distances between impurities. For the spin traces we find

SFZS = itr [SlyiO',’Sle'_j] = %SISZ: )
8F3S = %tr [Slq,’O‘,'SQ’jO'jSI,kO‘k]
= 518281k tr[0:(8jx + igjuio1)] =0, (10)

SF} = 12 tr[(51,01)* 45110182, ;081 4Ok Sa.mOm + -+ -]
2
= 1[ST+ S5 +25:5,]". (11)

All odd contributions vanish due to the absence of odd power
invariants composed of two spins that preserve rotational sym-
metry in space. In the next calculations we also do not take
into account energy shifts appearing from terms not contain-
ing the dependence on the scalar product S;S5,. Finally, from
the expression for the fourth order, we extract constant terms
and RKKY quadratic and biquadratic interactions:

SES = L[(ST+S82)" +4(S2+53)(S18)+4(5:152)]. (12)

Having identified the orders and combinatorial coefficients
of the leading contributions to the RKKY quadratic and bi-
quadratic interactions, we proceed with the calculation of
distance-dependent prefactors.

A. Expressions for distance-dependent prefactors

In this section we extract the distance-dependent prefac-
tors in both the RKKY quadratic and biquadratic interaction
terms and write them in terms of integrals over frequency.
The corresponding interaction strengths, which depend on the
distance R between two impurities, temperature, and chemical
potential u, are the prefactors of spin-dependent interaction
terms:

OF = Juaa(R, T, 1)(8182) + Joiq(R, T, ;1)($182)*.  (13)

Substituting the real space Green’s function (4) into Eq. (8)
and performing the summation over Matsubara frequencies
by means of the well-known formula (BS), we arrive at the
following expressions:

)\'2
— 2)
Jquad(Rv T,u) = 16(}‘11);)41“’]2(13’ T, 1)

)\'4
2 2 @)
+ (Sl +S2)WU;)SIHJZ(R’ T, pL),

(14)

IOPYR, T, ). (15)

A
Joig(R, T, ) = GAGhvE)E 12
F

Here the indices /1 and /2 denote the positions of impurities
in the spinor components of the Hamiltonian (1) according
to projectors (6). The summation over the valley index was
already performed in these expressions and resulted in an
additional factor of 2. In the lattice model the result can be
further modified by the factor 1 + cos(AKR), with AK =
K — K'. In what follows, for numerical calculations we take
cobalt atoms with effective spin § = 3/2 as impurities [26].
We recall that the spins of magnetic impurities are considered
to be classical, so for cobalt §7 = 9/4.

The integrals defined above are expressed through Hankel
functions. In the case of the quadratic RKKY interaction we
have to evaluate the integrals:

0 (m)
m%mMquf Jg#%?’ (16)
—00 e T
7 2
F
- (0 + ie)R\ T
filefer=tm {(“’ ]

. 2
% |:Hél)<%)i| }’ (18)
F

where n = 1 — §;1 ;». Here u is the chemical potential, and T
is temperature, measured in units of the hopping parameter ¢
of monolayer graphene. In the case of biquadratic interaction,
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we find a different expression for the f(w) function:

. 4
A9 (@) = Im {(a) +is)* [H;”((‘”;_fmﬂ }
o

n—= 1 —311,12. (19)

One should note that the above expression is the same as
Eq. (18) in the case of impurities being on the same layer and
sublattice, 1 = [2.

Some integrals above, for example, 11(12, )IZ(R, u, T), can be
evaluated using Mellin-Barnes transformation, which reduces
them to a sum over various Meijer G functions. This procedure
was discussed in Ref. [18]. However, to describe qualitative
behavior, the numerical evaluations at finite temperature are
more appropriate. Thus, in the following sections we first
analyze zero-temperature expressions and then discuss the
effects of finite temperature found by numerical evaluations.

IV. ZERO-TEMPERATURE LIMIT

In the case of the RKKY quadratic interaction at zero tem-
perature the integral ﬁ)zz(R’ W, 0) has the following analytic
form in terms of Meijer’s G function:

IP,R, 0, T = 0)
vy 1 30 2
— —GO( (keR
( R ) Nz (ke R)

Here the Fermi wave vector kr is defined as kp = w/hvj.. For
zero chemical potential we have

2,1
0,%,%+n,%—n ’
(20

2,1 @n> - 1)Jm
GOlo ’ = 21
8032 0m3-0) =5 ey
Hence,
fvi\ an? — 1
IR, o,T=0)=< RF) — @

To study the asymptotical behavior of our functions at large
distances, kR > 1, it is convenient to single out in the
corresponding zero-temperature integrals the parts that are
independent of the chemical potential: /() = 1(0) + f()”. For
the integrals depending on p we use an asymptotical expan-
sion of Hankel’s function (see Ref. [27]):

2 e (v
HP@ =\ — ey ik%, (23)
k=0

where
T'(3 —v+k)I(3+v+k)
T(5—v)L(5+v)(=2k!

Thus, we find an asymptotical behavior of the oscillating part
atkpR > 1:

2nv 47
o=2- .

ar(v) =

hu* 3 (_] )n+l )
IP,(R, 1, T =0) = (TF) o [4keRsin(2heR)
+ (4n” 4 1) cos(2krR)). (24)

The same asymptotical behavior follows, of course, from
Eq. (20). A similar expression was obtained earlier in studies
of monolayer graphene [23,28] and a pseudospin-1 system
[18] in which the corresponding J integral described the
second-order interaction of impurities on sublattices.

For the case of zero temperature in the fourth-order
term, we find the polynomial pre-factor (%)5 for inter-
action integrals. Simple analytical expressions are obtained
for zero chemical potential by replacing integration over the
negative real axis with integration over the positive imaginary
axis. Then, using the well-known formula relating the Hankel
function of the imaginary argument to the modified Bessel

function, we obtain
hvg e 454
dzz"K
J (%) [

%) (i)
{

4
4

I9M9R,0,T = 0) = (

0.046, n=0 (1=12),

X10.561, n=1(14#£12).

(25)

4 2\* (v [
IR0, T = 0) = (;) ( R ) / dzZ' K3 (2K} (2)
0

4 %\ S
- (3> (h”F> x 0.132, (26)
T R

IVPYR,0,T =0) =11, (R,0, T =0). (27

For the asymptotic behavior kg R > 1 we find

hvg\ (=1
R 8n?

x [—8(kpR)? cos(4kpR)

+ 8n*(kpR) sin(4krR)

+ (3 — 6n* + 4n*) cos(4kpR)),
(28)

IR, 1, T =0) = (

R
+ 16n* (kg R) sin(4kpR)

+ (3 — 12n* + 16n*) cos(4kpR)].
(29)

; A\ 1
IR, p, T = 0) = — ( F) 5[ =8(keR)? cos (ks R)

These results show that the biquadratic interaction Jy;q gen-
erally has a much faster decay with distance than the quadratic
one Jquag. This is connected, of course, to the presence of a
contribution of order A? in the interaction strength Jguaq [see
Egs. (14) and (15)]. Thus, the long-range ordered phases de-
fined by biquadratic interaction will be less stable with respect
to perturbations. In Fig. 2 we compare the results of numerical
evaluation for two different distances between impurities and
chemical potential £ = 1 meV with respect to the change in
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04 ‘.' (a) n=0, R=1nm T=0, QUAD :_ (b) n=0, R=0.5 nm T=0, QUAD T=0, QUAD
E ----- T=40, QUAD ] E ----- r=40,QuAD| Ll  |eeeas T=40, QUAD
0.2ff 7=0, BIQ '_ T=0, BIQ T=0, BIQ
> &\ ----- T=40, BIQ > MINL eeees =40,BQ || = ofk\  |eeeaa
£ 00 i £ of %
= ) 5
-0.2 \ 1 A\
-04ft
z -2
1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30
0, deg 6, deg 0, deg

FIG. 2. Comparison of interaction strength dependences on the twist angle for n = 0 (same layer) and n = 1 (different layers). Interactions
are evaluated via the integrals listed in Sec. IV for zero temperature 7" = 0, while the temperature corrections for 7' = 40 K are accounted with
the integrals from Sec. V. The interaction constant A = 1eV x2.62A2, and the distance between impurities R = 1 nm in (a) and (c), while
R = 0.5 nm in (b). The chemical potential © = 1 meV lies within the applicability range of the low-energy model for almost all angles. The
strong enhancement of both interactions happens close to the magic angle. For the (n = 0)-type interaction it is possible to find zero quadratic

interaction while having a nonzero biquadratic one.

twist angle value. Let us emphasize that the J > 0 coupling
for quadratic interaction is of the ferromagnetic type, while
J < 0 is antiferromagnetic.

As is known for monolayer and bilayer graphene, the
spin-spin interactions are generally weak. But in the vicinity
of the magic angle, where the Dirac dispersion has a low
effective Fermi velocity, interactions are strongly enhanced.
That is clearly visible in all panels of Fig. 2. In addition, the
oscillatory structure of the interactions starts playing a role.
The mathematical origin of these oscillations is related to the
quickly growing argument of Hankel functions under integrals
when v}, goes to zero. The growth of 1/v}; also sets a limit on
the applicability of perturbative expansion in Eq. (14). The di-
mensionless factor of the form A2/ (21711);R)2 controls the ratio
between the first and second terms and reaches a value of 1 for
angle 6 = 1.08° and distance between impurities R = 1 nm
(see Appendix C). At the same time, the small values of the
integrals in Eqs. (25) and (26) further extend the applicability
range, which is applied in Fig. 2. Figures 2(a) and 2(b) show a
sequence of points at which the RKKY quadratic interaction
passes zero while the biquadratic one does not. This allows for
turning off the RKKY quadratic interaction for twist angles
below 1.1° and short distances. This feature can be used
to obtain novel types of correlated states in twisted bilayer
graphene by fine-tuning the distance between impurities. The
dependence on chemical potential is weak in the applicability
range of the model (see Appendix A). At the same time, the

03f | (a) =0, 6=1.07, =1 meV
0.2F Y QUAD
oab | e BIQ

%

g 0.0F | ""===-

S

_0.1.

02}

03f
05 10 15 20 25 30 35 40

R, nm

J, meV

distance between impurities allows for efficient control of the
relative strength between interactions.

In addition, we present an analysis of the distance depen-
dence of the quadratic and biquadratic interactions in Fig. 3.
Figure 3 shows the optimal fine-tuned position of impuri-
ties to achieve the suppression of quadratic interaction for
a fixed doping level of 1 meV. This dependence should be
compared with the same dependence for monolayer graphene
(see Fig. 4). The results for monolayer graphene are obtained
by setting the effective Fermi velocity to be the same as
the usual one, vy — vF, in all expressions. The biquadratic
interaction in the case of monolayer graphene is much weaker
even for a very high doping level. Thus, we should point out
that, while our approach works for every Dirac-type system,
suitable observable results are expected to appear for a larger
constant A of spin-spin interaction between impurities and
band electrons.

V. TEMPERATURE DEPENDENCE

In this section we present the numerical results for
the temperature-dependent case. The analysis contains both
the twist angle dependence to estimate the possibility of
observing the effect at high temperatures and the chemical
potential dependence at specific values of the twist angle.

Numerical integration is performed by dividing the integra-
tion interval into two parts, [—oo, 0] and [0, co], and changing

0.005 . . —

H (b) n=1, 6=1.07 , y=1 meV
0.004f ' S——TTY
0003 r ‘|‘ _____ BIQ
0.002f
0.001f
0.000}——————"=r==sad D —

-0.001f :
-0.002 : :
5 10 15 20
R, nm

FIG. 3. Distance dependence of interactions for the zero-temperature case and a small chemical potential for the two example twist angles.
The values of both interactions quickly decay with distance but have a larger relative value for the biquadratic interaction than in monolayer

graphene (see Fig. 4).
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1x1078
RN QUAD

5x107°} . L | Fyopy BIQ 1
> : ‘\‘ A
() 0 : . 2 eF = .
= H ‘et

-5x107°F ]

~1x10-8L : : : : :

05 10 15 20 25 30 35 40
R, nm

FIG. 4. Distance dependence of interactions for monolayer
graphene at chemical potential © = 0.9eV and the same sublat-
tice position of impurities, n = 0. For the fine-tuned distance of
impurities it is possible to achieve a dominant role of biquadratic
interaction. However, the absolute values of both interactions for
distances of impurities greater than 1 nm are small. Even for
quadratic interaction, the interaction values are of the order of tens of
meV [22,23].

the sign of w in the first case. Replacing the variables in
Eq. (16) with dimensionless ones, we find

() "
m m
Ly p(R T, ) = < R ) /0 dxfj ()

1 Z
X —-1), @30
<Zex/T*+1 +ex/T*+z ) G0

where T* = % 7z =e T The last term in Eq. (30) (—1
in the parentheses) describes the contribution at zero tempera-
ture and p = 0; it diverges at the upper limit and thus requires
a regularization. The appearance of divergences in separate
terms of the perturbation series for the RKKY interaction was
noticed long ago [29,30] and is related to the local nature of
the RKKY interaction used. The regularization can be done
either by replacing the polynomial part of the fl'i' 1» functions
by x*~! and further analytic continuation to the needed values
of « (see, for example, [18]) or by implementing a finite
frequency cutoff in the integral according to the energy range
of applicability of the model (1). In the last case it is important
to use smooth cutoffs instead of a sharp one to obtain cutoff-
independent results in the long-distance limit [21]. There is
also the issue of the convergence of the entire perturbation
series for the RKKY interaction raised in the recent work of
Rusin and Zawadzki [31], which we discuss in more detail
in Sec. VL.

Taking into account the convergence subtlety in the ex-
pression above, the fully numerical calculation is more
efficiently performed via the following equivalent partition
into temperature-dependent and -independent parts:

(m)

fiv* m+1 krR 00
= ( RF) / dxf")(x) + T* /
—00 0

« dx[flr?,zz(kFR+T*x)—fl'?,lz(kFR_T*x)] :|

€1y

e“+1

In this form, the first term is known from Sec. IV. The last two
terms represent a finite-temperature correction. In the brackets
of the second integral, the function f(u — 7Tx) might contain
a jump at the point x = u/T. This feature is still integrable
due to polynomial factors in all fj} ,, functions. However, it
requires splitting of the integration interval at this point to
ensure proper numerical convergence.

Performing the evaluation for different angles starting from
close to the magic value § = 1.05°, we find the results pre-
sented in Fig. 2. A comparison with the zero-temperature
case shows that T = 40 K contributes a correction in Eq. (31)
of the order of a few percent for most of the twist angle
values. But it shifts the position of zero in quadratic inter-
action towards smaller angles. The structure of oscillations
close to the first magic angle is altered; however, the zeros
of quadratic interaction do not match the zeros of biquadratic
interaction. Thus, it is still possible to fine-tune the system
to a regime in which biquadratic interaction dominates. The
varying value of the chemical potential has little influence
on the results. The main contribution comes from the zero-
doping integrals. Thus, we do not present a separate plot of the
dependence on u.

VI. CONCLUSIONS

In the present paper we studied the twist angle dependence
of the RKKY quadratic and biquadratic spin-spin interac-
tions between two magnetic impurities mediated by itinerant
electrons in twisted bilayer graphene away from the magic
angle. General expressions for both interactions were derived
from the free energy of the system with two impurities. The
qualitative analysis showed that quadratic and biquadratic in-
teractions have different oscillating terms, and thus, regions in
the parameter space of the angle, distance between impurities,
chemical potential, and temperature where the biquadratic
interaction dominates should exist.

Using analytic and numerical approaches, we showed that
in all cases it is possible to identify the angle and distance
for which the RKKY quadratic interaction vanishes while
the biquadratic one remains finite. The dominant value of bi-
quadratic interaction comparing to RKKY quadratic term can
lead to the formation of the new correlated phases discussed
in Refs. [7-10] when a number of impurities are sparsely
placed on top of a graphene sheet. The oscillatory behavior
of interactions close to the magic angle shows the effect of
band flattening on the enhancement of both interactions with
more fine-tuned competition between them.

Analyzing the results for an angle approaching the magic
angle, we found the quick divergence of all interactions. From
a mathematical point of view, this is a result of the trivial fact
that the series expansion in A //iv}; R loses its applicability due
to vanishing Fermi velocity. The physics behind this is the
divergent density of states when the system approaches the flat
band. In this regard, a more thorough study should be carried
out along the lines of that in Refs. [18,32] for the BM model.

Finally, we address the problem of convergence of the
entire RKKY perturbation series raised in the very interesting
recent work of Rusin and Zawadzki [31]. These authors
obtained an exact RKKY Green’s function for electrons
with parabolic isotropic dispersion at zero temperature in
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FIG. 5. Comparison of the effective Dirac model (1) (red dashed lines) and Bistritzer-MacDonald model spectrum (solid lines) with the
band-touching point shifted to zero. Long-dashed lines show the chemical potential levels at which the linear Dirac model loses applicability
independently of series expansion accuracy. This happens at local band minima, which are located slightly away from K points. Two different

twist angles are shown.

three space dimensions. They got a criterion for the series
convergence: the quantity g9 = Ggee(r = 0, 7 = 0) must be
finite, where Gye(r, r') is the free electron Green’s function.
Obtaining an exact Green’s function in the considered model
with the effective Hamiltonian (1) is an unsolved problem.
Assuming that the convergence criterion will be similar, we
see that in our case it is not fulfilled due to the integration by
momenta of the free Green’s function (3) up to infinity (go is
logarithmically divergent). Certainly, there is a natural cutoff
k. of the wave vector in the model under consideration, related
to the applicability domain of the model (see Appendix A).
Because of this, g¢ is finite, and one can expect the RKKY
series of perturbation theory to converge.

The study of the RKKY interaction in this work indicates
the ever-increasing role of such a control parameter as a twist
angle in multilayer systems. For future study, we expect the
numerical analysis of the full Bistritzer-MacDonald model
and similar effective models for transition-metal dichalco-
genides to be of great interest.
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APPENDIX A: APPLICABILITY RANGE
OF THE LINEARIZED MODEL

In this Appendix we discuss the applicability range of the
linearized version of the BM model: the effective Dirac model
near the band-touching point.

The main results are presented in Fig. 5. They show that the
calculations within the Dirac model are limited to the narrow
interval of chemical potentials. This interval is not symmetric
on the positive and negative sides and shrinks towards zero
when the twist angle approaches the magic value. In Figs. 5(a)
and 5(b), we show that the intervals are . € [—1.65, 2.8] meV
for 6 =1.2° and pu € [—11.5,12]meV for 6 = 1.4°. This
limitation in energy of the linearized model naturally trans-
forms into limiting the allowed values of the wave number to
kea ~ 0.01.

APPENDIX B: EXACT EVALUATION OF THE SECOND
-ORDER CONTRIBUTION TO FREE ENERGY

In this Appendix we demonstrate as an example of the cal-
culations the second-order contribution of perturbation theory
to the free energy defining the strength of the RKKY quadratic
interaction. This contribution is given by the expression

AT 1 1
3h = Ttrfdl'ldrzfdfldfz{ |:Sl : 505(1'1 —Rp)P + S - 505(1’1 - RZ)PIZ]UOGO(I'I» ;T — T2)

1 1
X [Sl . 50‘5(1‘2 —R)P+S,- 505(1'2 - Rz)P12:|00G0(1‘2, ry;; T — Tl)}-

B
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FIG. 6. The angle dependence of the dimensionless coupling
constant that controls the ratio between RKKY and biquadratic
interactions.

Evaluating the integrals over § functions and performing the
trace operation over the spin matrices, we find

52 1T
0F, = 25152/ dt tw[P1Go(Ry, Ry; T)PGo(Ry, Ry —17)
0

+ (1 < I2,R; < Ry)]. B2)

The integration over T can be equivalently rewritten as a sum
over Matsubara frequencies using the Fourier transform of the
imaginary-time Green’s function,

o0
Go(r) =T Z Goliwp)e ™", w, = 2n+ DnT,

n=—0o0
(B3)
where n is an integer. For 6 F, we get
)\‘2
SF :?S152T Xn: tr [P Go(R; iw, + )P
x Go(—R;iw, + )], (B4)

where R = R| — R, and we introduced the chemical potential
. The sum over the Matsubara frequencies is performed by

means of the formula

oo

1Y o) =~ [

where np(w) = 1/[exp(w/T) + 1] is the Fermi distribution
function and the superscript R denotes the retarded function.

To obtain the results in the main text, one has to substi-
tute the Green’s function from Eq. (4) with w replaced by
o + w. In the considered case, the evaluation of the traces
over sublattice-layer degree of freedom results in the function
presented in Eq. (17). For example, for impurities placed on
the same layer, we find

N (1 o)w+u —iH"(2)
0 0/ a(hvr)* \eetH" (2)

><<1 O) o+ un
0 0/ 4(hvp)?

( —iH"(2)

i—‘”nF (@)ImfR(w+ie), (BS)

o]

e vH ()
~iH;"(2)

ge—ié(ﬂ+w)[_]l(1)(z)):|

geié(nJr(p)Hl(l)(Z) _l-Hél)(Z)
_lotn? oo RI@+
= W[Ho @I, = T (B6)

Similarly, we can evaluate the fourth-order correction to
the free energy and thus arrive at the main expressions in
Sec. IIT A.

APPENDIX C: THE CONVERGENCE
OF SERIES EXPANSION

In this Appendix we analyze the convergence of series
expansion by evaluating the relative coupling constant. This
relative constant is defined as A2 / (2ﬁv;§R)2 and fixes the fac-
tor by which the terms following biquadratic interaction are
suppressed. At the same time, it does not take into account the
values of the zero-doping integrals, which could be smaller
than 1. The dependence of dimensionless constant that con-
trols convergence of series on twist angle is plotted in Fig. 6
for few different R values.
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