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Virtual Reality (VR) is transforming cognitive and psychological research by enabling immersive simulations that elicit 
authentic emotional responses. The high demand for VR-based emotion recognition is also evident in fields such as mental 
healthcare, education, and entertainment, where understanding users’ emotional states can enhance user experience and 
system effectiveness. However, the lack of comprehensive datasets hinders progress in VR-based emotion recognition. In this 
paper, we present a comprehensive, multi-faceted eye-tracking dataset collected from 26 participants using 28 emotional video 
stimuli rendered in a custom virtual environment. Our dataset is the first to incorporate high-frame-rate periocular videos, 
capturing subtle motions, such as micro-expressions and eyebrow shifts, which are critical for emotion analysis. Additionally, 
it includes high-frequency eye-tracking data, offering gaze direction and pupil dynamics at four times the frequency of 
existing datasets. Our dataset is also unique in providing emotion annotations according to Ekman’s emotion model and, as 
such, offering experiments impossible using existing datasets. Our benchmark evaluations show that fusing the multi-faceted 
eye-tracking signals in our dataset significantly improves emotion recognition accuracy. As such, our work has the potential 
to significantly accelerate and enable entirely new research on emotion-aware VR applications.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing design and evaluation methods; 
Virtual reality.
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1 INTRODUCTION
In recent years, Virtual Reality (VR) has received substantial attention from academia and industry. In VR, users 
can see, hear, and interact with virtual 3D environments, experiencing a sense of presence that isolates them 
from the real world and fosters deep physical and emotional immersion [77, 111]. Due to its immersive and 
interactive nature, VR has become a powerful tool for cognitive and psychological research [64, 68]. By simulating 
environments and scenarios that elicit genuine emotional and cognitive responses, VR enables researchers to 
observe and analyze emotional cues in realistic yet controlled environments [24, 51, 64].
Studies have shown that VR environments can effectively t rigger and a ssess a  b road s pectrum o f emo-

tions [63, 84, 107], leading to applications across fields, such as mental healthcare [31, 40], education [2, 14], and 
entertainment [65]. For instance, in mental healthcare, VR was used in exposure therapy to treat phobias and 
anxiety disorders [23, 26, 31]. Similarly, educational institutions employed VR to provide immersive learning 
experiences, enhancing knowledge retention and comprehension [96, 110]. In the entertainment industry, VR has 
created more emotionally engaging storytelling experiences [19, 89].
In addition to its benefits for effective emotion elicitation, awareness of the VR user’s emotional states and 

responses to VR content is crucial for various applications in affective computing [85]. For instance, in VR-based 
social interaction [37, 92], the emotional state of the user can assist the creation of expressive avatars that 
dynamically reflect their emotional expressions [3, 7, 82, 118, 128]. Such emotionally responsive avatars can 
enhance social presence and empathy, making interactions more authentic and engaging. Recognizing patients’ 
emotional responses is also critical in the healthcare domain, such as VR-based mental health treatments [31]. 
For instance, the real-time emotional feedback from the patients can be used to tailor therapeutic experiences to 
individual needs and to assess progress in reducing symptoms of anxiety, depression, or post-traumatic stress 
disorder [31].
As with many human context-sensing and recognition applications, developing robust and highly accurate 

emotion recognition algorithms relies on the availability of suitable training datasets. However, collecting 
large-scale emotion datasets in VR with accurate annotations is notoriously challenging [5, 123], and thus, 
only a few such datasets are available [42, 63, 111, 122]. Most of them rely on external physiological and 
behavioral data, such as electrocardiogram, galvanic skin response, and heart rate, which are not integrated 
into most commercial VR devices, making these approaches intrusive and limiting their scalability in practical 
VR applications. Moreover, unlike conventional, non-immersive settings that have access to a wide variety of 
validated audiovisual stimuli [30, 78], standardized emotional stimuli for VR are rare [51, 63, 111]. The scarcity of 
validated VR stimuli adds complexity to creating large-scale emotion recognition datasets, which is essential for 
advancing research in this emerging area.

To address this gap, we present a comprehensive, multi-faceted eye-tracking dataset, collected from 26 subjects 
exposed to 28 emotional video stimuli rendered in a virtual environment customized to enhance user’s immersive 
experience. Alongside the dataset, we introduce a purpose-built data collection tool that streamlines synchronized 
capture of gaze and contextual data, specifically tailored for emotion recognition research in VR settings. Our 
work advances the state of the art in three distinct ways:

• We present the first emotion recognition dataset in VR that incorporates periocular videos captured by
binocular near-eye cameras. These cameras record subtle movement cues, such as micro-expressions, pupil
constriction and dilation, and eyebrow movements, that are closely linked to affective states and emotional
shifts, enabling fine-grained analysis of users’ emotional and mental states.

• Our dataset includes high-resolution binocular eye-tracking data featuring 2D gaze direction, pupil di-
ameter, and pupil positions, captured at four times the frequency of state-of-the-art datasets [111]. This
enhanced detail can enable a more precise analysis of eye movement-related features, which is critical for
understanding emotional and cognitive states in VR.
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• Our dataset uniquely applies Ekman’s basic emotion model [29] for emotion annotation in VR. Unlike
existing datasets [42, 63, 111, 122] that primarily based on the Circumplex Model of Affect [93], our
dataset provides a discrete emotion framework that enables real-time emotion recognition in immersive
environments. This supports a range of future applications, including adaptive training and education,
emotionally responsive virtual assistants, dynamic game engines, and personalized therapeutic experiences.
These use cases benefit from the interpretability and responsiveness offered by categorical emotionmodeling,
which is more challenging to achieve with continuous valence-arousal representations.

To demonstrate the value and validity of our dataset, we present a benchmark evaluation that highlights its 
potential to enable highly accurate emotion recognition. Specifically, we demonstrate that by fusing the new 
periocular video data incorporated in our dataset with conventional eye-tracking signals, we can significantly 
improve the emotion recognition performance in cross-session scenarios (with unseen video stimuli) and few-shot 
learning settings. The dataset and software tool introduced in this paper are available via: https://github.com/
MultiRepEyeVR/Through-the-Eyes-of-Emotion.

2 RELATED WORK
2.1 Emotion Models
Existing methods for measuring emotion are broadly classified into categorical and dimensional models [81]. 
Categorical models require selecting a single emotion from a predefined set to best represent the feeling conveyed, 
with examples including Ekman’s six basic emotions [29] and Izard’s ten core emotions [49]. By contrast, 
dimensional models use quantitative measures through multidimensional scaling, where each dimension reflects 
a specific feature of human emotion, and their combination provides an interpretation of the emotional state. For 
instance, the widely adopted Circumplex Model of Affect, introduced by Russell [93], uses a two-dimensional 
framework in which emotions are mapped within a circular space to represent valence (pleasantness) and arousal 
(intensity or activation level). In order to differentiate closely related emotions, the pleasure-arousal-dominance 
(PAD) model introduces dominance as a third dimension [76]. To quantify these dimensional scales, researchers 
employ tools such as the self-assessment manikin (SAM) [10], or Feeltrace [20].

In this study, we adopt Ekman’s model and consider seven basic emotions, i.e., Happiness, Sadness, Fear, Disgust, 
Anger, Surprise, and Neutral. We also incorporate the emotional intensity rating [108, 138] to capture the strength 
or degree of each emotion experienced by our research participants. This intensity rating enables us to move 
beyond basic categorization. By capturing variations in emotion intensity, our dataset provides a foundation for 
future research to explore the relationship between human visual behaviors, such as gaze, pupil dynamics, and 
periocular micro-movements, and subtle differences in emotional intensity.

2.2 Methods for Emotion Recognition
Emotion Recognition Using a Single Modality. Early work in emotion recognition primarily focused on 
uni-modal approaches, utilizing a single modality, such as facial expressions, voice, or physiological signals, 
to train machine learning models for emotion recognition. For instance, Siqueira et al. [103] leverage facial 
expressions as input and achieve 87.15% accuracy on the FER+ dataset using a convolutional neural network 
(CNN)-based classifier. In voice-based emotion recognition, recurrent neural networks (RNNs), particularly long 
short-term memory (LSTM) networks, have shown strong performance in capturing temporal dependencies. For 
example, Zhao et al. [131] achieve over 95% accuracy across seven emotions on the Berlin EmoDB dataset [12] 
in both speaker-dependent and speaker-independent scenarios. Similarly, emotion recognition methods using 
physiological signals have benefited from deep learning advancements. Zhong et al. [134] achieve 73.84% accuracy 
in classifying four emotions on the SEED-IV dataset using graph neural networks (GNNs), which effectively model 
the spatial relations among brain regions by using the inherent graph structure of EEG electrode placements.
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Emotion Recognition Using Multi-modality. While uni-modal approaches have made significant progress
in emotion recognition, there is a growing trend toward multi-modal methods, which leverage complementary
modalities for robust results. For instance, Tan et al. [112] demonstrate an 83.33% recognition rate by integrating
facial expressions with EEG signals. Wampfer et al. [116] combine touch events during smartphone keystrokes
with inertial sensor data to generate two-dimensional heat maps, which are then processed by a CNN to predict
users’ affective states. In an in-vehicle setting, Bethge et al. [8] improve driver emotion prediction by incorporating
contextual data from smartphones, such as road conditions, visual scenes, audio, weather, and car speed. This
integration yields a 7% accuracy improvement over facial expression only methods. In the setting of passive social
media usage, Gebhardt et al.[36] explore emotion recognition by combining behavioral data (phone interaction,
motion, touch, facial expressions, and eye tracking) with physiological signals (ECG, PPG, and EDA). Their
classifier, trained with multi-modal data, accurately detects up to eight emotional states, achieving a peak accuracy
of 83%. More recently, Park et al. [83] leverage multi-modal data, including audio, ECG, EEG, EDA, acceleration,
and temperature signals from wearable devices, to assess workers’ emotional workload in emotional labor settings.
By using statistical features and standard machine learning methods, they achieve up to 87% accuracy for both
binary and three-class emotion state classifications.

2.3 Datasets for Emotion Recognition
As with many context-sensing and recognition applications, the development of robust and highly accurate
emotion recognition systems depends heavily on the availability of comprehensive datasets. However, collecting
large-scale emotion data with precise annotations is notoriously challenging [5, 123]. There are a few datasets in
the literature, collected either in conventional, non-immersive interaction setups [52, 55, 78, 106], or immersive
environments [42, 111, 123, 133] (as considered in our work). We review these works briefly below.
Datasets Collected with Non-immersive Setup. There are many datasets collect physiological and behavioral
data using dedicated sensors, such as eye trackers, galvanic skin response (GSR), electrocardiograms (ECG),
and electroencephalograms (EEG), while subjects engage with affective stimuli [52, 55, 78, 106]. For instance,
the MAHNOB-HCI dataset [106] is a multi-modal emotion recognition dataset that collects facial expressions,
audio signals, eye-gaze data, and physiological signals (ECG and skin conductivity), and respiration from 27
participants when they watch 20 emotionally charged videos. Similarly, the DREAMER dataset [52] contains
EEG and ECG signals collected during emotion elicitation via audio-visual stimuli, with data from 23 participants
and self-assessments of valence, arousal, and dominance after each stimulus.
There are also datasets that focus on facial expressions for emotion recognition without relying on wearable

sensors. FER+ [6], for example, includes 28,709 internet-sourced images annotated with multi-label classifications
across seven emotions. Similarly, AffectNet [78] features 440,000 images manually annotated with single-label
emotions across the same seven categories as FER+. Unlike static images, video provides a temporal dimension for
emotion recognition, enabling the capture of dynamic expressions. For instance, the MAFW dataset [66] contains
multi-modal clips from sources such as movies, TV dramas, and short videos, where subjects express a range of
emotions in diverse contexts, adding valuable contextual information for more nuanced emotion recognition.
Datasets Collected in VR. Despite the substantial body of work on studying user emotion and affect in
VR [68, 71, 125], to the best of our knowledge, there are very limited publicly VR datasets exist for
emotion recognition [42, 63, 111, 122]. These works often incorporate external sensors to capture behavioral
and physiological data, such as heart rate variability (HRV), electrodermal activity (EDA), gaze patterns, and
brain wave signals [42, 111, 122], when the participants are presented with stimuli designed to evoke specific
emotions in an immersive environment. For example, the VREED dataset [111] includes eye movement data
(gaze estimation and pupil diameter), ECG, galvanic skin response, and self-reported emotional states from 34
participants while they are viewing 360◦ videos in a VR headset. Similarly, the PEM360 dataset [42] captures
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similar signals to VREED, with the addition of head movements and heart rate, from 32 participants watching 
eight videos. The CEAP-360VR dataset [122] is collected from 32 participants and includes self-reported levels of 
motion sickness and presence, in addition to eye movement and ECG signals, offering insights into user comfort 
in immersive environments such as VR.

2.4 Discussion: Rationale for a New Dataset
Compared to existing VR emotion recognition datasets, our work stands out in four key ways.

First, to the best of our knowledge, our dataset is the first one to incorporate periocular videos captured 
by two near-eye cameras. These videos record subtle motions, such as micro-expressions and eyebrow shifts, 
that are valuable for emotion recognition and cognitive studies. The effectiveness of the periocular videos has 
been shown in previous works with the head-mounted eye tracker [129, 132], yet it has not been studied in 
the immersive VR settings considered here. Our experiment shows that utilizing the periocular videos can 
significantly improve emotion recognition performance.
Second, our dataset provides high-resolution, multi-faceted eye-tracking data, including 2D gaze 

direction, pupil diameter, and pupil position at four times the frequency of current state-of-the-art datasets [111, 
122]. It is distinct from existing datasets that include only pre-processed eye-tracking data [111, 122], such as 
gaze and fixation patterns, for emotion recognition in VR [43, 111, 122]. Our dataset enables future studies to 
explore the rich information within the eye movement information.
Third, ours is the first to apply Ekman’s basic model for emotion recognition in VR. Although all 

existing datasets [42, 63, 111, 122] adopt the Circumplex Model of Affect [93] as their emotion model, there 
is ongoing debate about whether emotional expressions are universally recognized or influenced by cultural 
context [28, 73, 94]. Nonetheless, we believe our dataset offers a  valuable alternative for studying emotion 
recognition in VR. By leveraging Ekman’s core emotion types, algorithms developed using our dataset can directly 
map recognized emotions to real-world applications, making it highly suitable for cognitive-aware applications in 
VR. For instance, detected core emotional states of VR users can be used to help generate “expressive avatars” [7] 
that exhibit realistic emotional expressions and responses [3, 82, 118, 128]. By contrast, achieving this level of 
emotion expressive accuracy is far more challenging when relying on the complex, continuous dimensions of 
valence and arousal in the Circumplex model.

Fourth, we provide an open-source dataset collection software tool in VR headset using only the 
standard onboard sensors. The developed data collection pipeline can collect eye movement data as well as 
periocular video data simultaneously, which can be used for data collection of variant tasks such as cognitive 
load estimation, attention estimation, human-AI interaction, etc. Distinct from all existing datasets that rely 
on additional external sensors [42, 111, 122], our software tool enhances compatibility with a broad range of 
commercial extended reality (XR) hardware, improving the practicality and scalability of dataset collection.

3 DESIGN OF THE DATA COLLECTION SYSTEM
In this work, we develop an end-to-end system to facilitate future multi-modal data collection and annotation for 
VR-based emotion and affective computing studies.

3.1 Hardware
The VR platform we used for data collection is the VIVE Pro EYE VR headset, which integrates eye-tracking 
alongside conventional sensors like IMUs and microphones. This setup enables simultaneous capture of multiple 
signal modalities on a single device, i.e., eye movement [111], head movement [97, 121], and voice [30, 83], that are 
known to be useful for emotion recognition. Moreover, the VIVE Pro EYE is a widely available, high-performance 
VR device that delivers professional-grade graphics and audio. Its dual OLED displays, with a combined resolution
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of 2880 × 1600 pixels and 615 PPI (pixels per inch), provide vivid colors and sharp contrast. The integrated
Hi-Res certified headphones deliver 3D spatial sound for an immersive audio experience. Together, these features
enhance the ability of our system to elicit genuine emotional responses of the participant by creating a deeply
immersive virtual environment both physically and emotionally.

However, extracting raw periocular images from the integrated eye-tracking module of VIVE Pro EYE requires
the Tobii XR SDK license. As shown in Figure 14 (in Appendix D), to overcome this, we integrate the VR headset
with an external eye-tracking add-on from Pupil Labs, allowing us to collect raw periocular images at a high
frame rate. Specifically, the Pupil Lab eye tracker includes two infrared near-eye cameras that capture images
of the periocular area at 120Hz with a resolution of 400×400 pixels. The eye tracker is connected to the VR
headset via the onboard USB port, which ensures stable data transmission and sufficient bandwidth for dual eye-
tracking video streaming. We are particularly interested in periocular images, as studies in affective computing
and psychology [13, 91] have shown that the periocular area, i.e., the region surrounding the eyes, including
the eyebrows and upper cheeks, contains rich information about emotional states. For instance, changes in
shape, wrinkles, and movements around the eyes can effectively signal emotional states. As demonstrated in our
benchmark study (Section 5), integrating these periocular features with conventional eye-tracking signals, such
as pupil dilation and gaze direction, significantly enhances emotion recognition performance.

3.2 Software
We develop a software tool for data collection and labeling, consisting of three main components: the virtual
environment, the data recording module, and the data labeling module.

3.2.1 Virtual Environment. The virtual environment is where participants are immersed while wearing the
VR headset during data collection. Instead of using the default video player, we custom-designed the virtual
environment to create a controlled setting that enhances emotion elicitation. Specifically, the main challenge is
the lack of affective 360◦ videos in the literature that can reliably elicit Ekman’s basic emotions [29]. Existing
VR emotion datasets primarily use panoramic videos focused on dimensional emotion states, such as valence
and arousal [51, 63, 64, 111, 122, 123]. To incorporate conventional non-panoramic 2D videos that have proven
effective in eliciting the six basic emotions, we design the virtual environment to render these videos in a way
that ensures participant comfort while preserving the effectiveness of the emotional stimuli. Two key design
considerations were made. First, the viewing experience of non-panoramic videos is crafted to feel as natural
as possible within the virtual environment, allowing participants to become fully immersed. Second, the video
stimuli are presented to enable participants to easily comprehend and focus on the context, ensuring that the
intended emotional reactions can be effectively elicited.
For the first design goal, we implement a VR video player with a curved display to replicate the natural

curvature of human vision. This design enhances immersion by aligning the rendered display with the way
participants naturally perceive their surroundings. By simulating this curvature, the viewing experience becomes
more engaging and comfortable, reducing visual strain and increasing the sense of presence in immersive
environments [59]. This alignment with human visual perception improves spatial awareness and allow a deeper
emotional connection with the content, even without the use of panoramic videos. Figure 1 shows a snapshot of
a participant’s view with non-panoramic video stimulus rendered in the virtual environment.

Second, to improve participants’ comprehension of the video content, the display dimensions are adjusted to
fit within the mid-peripheral field of vision, which spans approximately 120° horizontally and 60° vertically [58].
This design enables participants to view the entire video frame and easily shift their focus with their eyes, without
the need for constant head movement. Our initial testing revealed that exceeding this mid-peripheral field of
vision can cause excessive head movement, which significantly distracts the participants from the video and
hinders their overall comprehension (and thus, the effectiveness in eliciting the emotion). This issue is largely
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Fig. 1. An illustration of the participant’s view when a non-panoramic 2D video is rendered in the virtual environment. The
video is displayed on a curved screen to enhance immersion and provide a more comfortable viewing experience. To avoid
occupying the entire field of view, the video dimensions are adjusted to fit within the participant’s mid-peripheral field of
vision (120° horizontally and 60° vertically). This design significantly reduces distractions from unnecessary head movements
during data collection, helping participants maintain focus on the video content.

eliminated after adjusting the display size to fit within the mid-peripheral field of vision. We implemented the
virtual environment using the Unity engine to ensure compatibility with a wide range of VR hardware.

3.2.2 Data Recording Module. The data recording module includes the Recording User Interface and the Data
Recording Program.

Recording User Interface (UI). To streamline and ensure the effectiveness of data collection, we design the
Recording UI to allow the researcher full control, monitoring, and management of the data collection process.
Figure 2 shows the Recording UI in a data collection session. In addition to ensuring reliable data synchronization
and recording, a key design priority is that all the collected signals must be continuously monitored and clearly
visible to the researcher, enabling quick identification and resolution of any malfunction or issue during the
data collection. As shown, the interface integrates multiple functional elements, including control commands
(e.g., session creation, eye tracker calibration, data recording, and processing) and monitoring functions (e.g., VR
sensors status, eye tracker status, eye images, and head movement tracking).
Data Recording Program. The data recording program is implemented in Unity, with the primary role of

handling session control actions initiated by the researcher in the Recording UI and coordinating data flows
during recording to ensure synchronized collection of multi-modal signals from various sources. Specifically,
it manages signals from the Pupil Labs eye tracker (e.g., near-eye images) and the VR headset (e.g., IMU, scene
images, and audio), while coordinating control commands and data flows between the Recording UI, the Virtual
Environment, the external eye-tracking tool (Pupil Capture), and the data storage system.
Figure 15 (in Appendix C.2) illustrates how the Data Recording Program manages different data flows from

the hardware platforms, i.e., VR headset and the Pupil Labs eye tracker, and the control command from the
Recording UI. Four types of signals are recorded and stored in external data storage: audio and IMU data from
the VR headset’s onboard sensors; near-eye images from the Pupil-Labs eye tracker; and scene images generated
in Unity that represent the participant’s view in the virtual environment when watching the rendered stimuli.

3.2.3 Data Labeling User Interface. To ensure the label is created as accurate as possible, we perform data
annotation right after the participant views each video stimulus. Additionally, instead of applying a single
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Fig. 2. An illustration of the Recording User Interface, which offers a range of control and monitoring functions, allowing the 
researcher to fully operate, monitor, and manage the data collection process. During data collection sessions, the Recording 
UI is visible only to the researcher and is exclusively used by them.

emotion label to the entire recording, participants are asked to review the video they have just seen and create 
as many segments as they wish within the recording. The motivation behind is that emotional responses are 
not uniform throughout the entire duration of the video (in terms of emotional state and intensity). In fact, an 
effective emotional trigger often requires a buildup of background and context [95, 114]. Depending on how 
participants interpret the video content, their emotional responses can vary significantly across different phases 
of the video, with the true emotional peak typically occurring after sufficient context and buildup. Thus, labeling 
the entire session with a single emotion would overlook these natural fluctuations.
In this work, we design and implement a Data Labeling User Interface based on Label Studio1 to enable 

segment-based annotations, allowing us to capture nuanced shifts in emotion type and intensity. Figure 16 (in 
Appendix C.2) shows a snapshot of the Data Labeling UI. The participant collaborates with the researcher to 
create and label data segments after viewing each video stimulus. Note that we do not load every data modality 
into the UI, as they have been synchronized by their timestamps. Instead, only the stimulus video is loaded, with 
its timestamps serving as a reference. After reviewing and reflecting on the stimuli video, participants can then 
create data segments and assign labels and intensity rating directly along the video timeline.

4 DATA COLLECTION AND PRELIMINARY VALIDATION
In this section, we begin by introducing the emotion model and video stimuli used in the data collection process, 
followed by a description of the data collection setup and procedure. We then present the characteristics of the 
collected dataset and provide a preliminary validation of its effectiveness.

4.1 Emotion Model and Stimuli for Emotion Elicitation
4.1.1 Emotion Model. We consider Ekman’s basic emotions [29], i.e., Happiness, Sadness, Fear, Disgust, Anger, 
Surprise, and Neutral, in this study. This discrete categorization simplifies the labeling of subjects’ emotional
1Label Studio is an open-source data labeling platform: https://labelstud.io/
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responses. Additionally, to account for the subjectivity and variability in emotions experienced by different
participants, we incorporate an emotional intensity rating [108, 138] to capture intensity levels. Each of the
discrete emotions is assigned a numerical rating to represent the intensity experienced by participants. This
intensity rating allows us to go beyond basic categorization, offering a more nuanced and accurate representation
of human emotions in terms of both state and intensity.

4.1.2 Selection of Emotion Stimuli. Emotion stimuli are crucial for creating a high-quality emotion recognition
dataset, as they directly affect its utility. In selecting stimuli for data collection, we prioritize those capable
of evoking the seven basic emotions, and whose effectiveness has have been validated through large-scale
psychological studies.
For emotion elicitation in VR, stimuli are typically categorized as either active or passive [77]. Active stimuli

require participants to interact with the virtual environment by engaging with elements or completing tasks [1,
15, 24], whereas passive stimuli involve simply observing content without interaction [63, 70, 98, 111]. Active
stimuli include VR games and custom-designed Virtual Reality Environments (VREs) intended to provoke specific
emotions. VR games can elicit authentic emotional responses due to their immersive nature [17, 24], but their
unpredictability complicates emotional trigger identification and data labeling. In contrast, custom-designed
VREs offer a controlled setting where emotional responses can be reliably anticipated at specific moments [1, 15],
facilitating structured data collection. However, the development of comprehensive VREs capable of evoking
all basic emotions remains in its early stages [68], and no publicly available VRE stimuli meeting our criteria
were available at the time of this study. Passive VR stimuli include 360° panoramic videos, standard 2D videos,
and images. While 360° videos offer a more immersive experience, most existing datasets focus on valence and
arousal [51, 63, 69, 71, 111], and do not support elicitation of all discrete emotions defined in Ekman’s model.
To this end, we select non-panoramic 2D videos as stimuli, without compromising on effectiveness. In fact,

these videos, often drawn from films, are well-documented in psychological literature [38, 41] and have been
proven to effectively elicit targeted basic emotions since as early as 1993 [86]. Specifically, we select movie clips
from the database compiled by Zupan et al. [138], which re-validates and expands upon a selection of well-studied
film clips [35, 41, 99, 137]. Zupan et al. have applied additional selection criteria to ensure that all clips are of
high audio-visual quality, resonate with modern social contexts, cover a wide range of emotions, are in English,
are under three minutes to prevent mental fatigue, and are easy to understand without prior knowledge of the
storyline or characters.

In our study, data collection was conducted in two stages, each involving a separate set of 14 video clips selected
to evoke the seven basic emotions, with two clips per emotion. The detailed information of the selected video
clips is provided in Tables 9 and 10 in the Appendix, corresponding to Study One and Study Two, respectively.
In both stages, the video clips were chosen from the original database provided by Zupan et al. [138], based
on emotional intensity ratings collected from 113 participants. Emotional intensity was rated on a scale from
1 (not at all) to 9 (extremely). For each emotion, we selected the four clips with the highest average emotional
intensity. This selection process ensured strong emotional elicitation while maintaining diversity in content and
scenarios. Each clip was accompanied by a brief content sentence to help participants contextualize the scene
before viewing.

4.2 Data Collection Setup and Procedure
The data collection is conducted in a controlled lab environment, i.e. a quiet, isolated room free from external
disturbances and interference, as shown in Figure 3. The room is featured an ergonomic chair and maintains a
comfortable temperature ensure participants feel at ease.
The data collection process begins with the participants completing a questionnaire to gather demographic

information and look for any conditions that can cause discomfort. Specifically, we exclude participants who
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Fig. 3. The data collection setup: (a) a participant watching
video stimuli displayed in the VR headset, and (b) the re-
searcher briefing the participant using the content sentence
of the video clip, and (c) the developed system recording and
monitoring the entire data collection process.

(a) Participants demographics
Total number 26
Gender Female (11), Male (15)
Age Min: 20, Max: 41, Mean: 26.2 ± 4.2
Ethnicity Caucasian (11), East Asian (7), Middle East-

ern (2), South Asian (4), African (1), South-
east Asian (1)

(b) Participants self-reported states
Stress level Mean: 3.9, Std: 1.8, CI: (3.2, 4.6)

(1: Very Low, 10: Very High)
Fatigue level Mean: 4.6, Std: 1.8, CI: (3.9, 5.3)

(1: Not Fatigued at all, 10: Extremely Fa-
tigued)

Comfort level Mean: 7.7, Std: 1.6, CI: (7.1, 8.4)
(1: Very Uncomfortable, 10: Very Comfort-
able)

Table 1. (a) Demographic information of the 26 participants
shows a diverse representation in gender and ethnicity. (b)
The statistics of self-reported states, including mean, standard
deviation, and 95% confidence interval, indicates low stress and
fatigue levels among participants prior to data collection, with
participants expressing comfort with the experiment setup.

experience motion sickness in VR, as well as those with epilepsy, anxiety, or claustrophobia, due to potential
increased symptoms or discomfort in VR environments. We measure each participant’s inter-pupillary distance
to adjust the VR headset for a comfortable and accurate fit. Once the VR headset is in place, the researcher
checks the data streams, activates SteamVR in Night Mode to minimize visual distractions, and calibrates the
participant’s gaze in Unity. The VR headset audio is also set to a comfortable level. Participants report their levels
of stress, fatigue, and comfort before the data collection process. For each session, we follow the screen marker
calibration choreography provided by Pupil Labs. Specifically, we developed a Unity application that displays the
screen marker within the virtual environment and sends the calibration data to Pupil Capture upon completion.
As shown previously in Figure 2, our data recording program monitors whether calibration has been completed
before each data collection session, and the user interface allows researchers to easily re-calibrate when needed.
A total of 26 participants contributed to our dataset through two stages of data collection. In Study A, we

recruited 20 participantswho completed the first round of data collection. For Study B, an additional six participants
were invited to take part in a second round of data collection using a new set of video stimuli. The demographic
information and self-reported emotional state statistics are presented in Tables 1 (a) and (b), respectively. Our
dataset includes a diverse sample in terms of gender and ethnicity. Self-reported data from the participants indicate
generally low levels of stress and fatigue, along with high levels of comfort throughout the study. Participants for
the second stage were newly recruited to avoid bias from prior exposure to similar stimuli in the first stage.

Stimuli Presentation and Playback. During data collection, the 14 video stimuli are played in a predefined
sequence. Playing a high-arousal clip (e.g., video evokes fear) immediately before or after a low-arousal clip (e.g.,
video evokes happiness) could cause unintended emotional carryover effects [136]. According to the excitation-
transfer theory, residual physiological arousal from one event can intensify emotional reactions to a following
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event, even if they’re unrelated. For instance, a recent study has found that participants who watched high-
arousal negative video clips experienced retrograde memory impairments for neutral information presented
afterward [105]. To address this, we establish a specific order: starting with Neutral (a), followed by Surprise (a),
then Neutral (b), Surprise (b), and continuing through Happiness (a,b), Sadness (a,b), Anger (a,b), Disgust (a,b),
and Fear (a,b). Here, ‘a’ and ‘b’ denote the two clips intended to evoke the same emotional response, as outlined
in Table 9. Moreover, participants are given sufficient break time between each video and engaged in labeling the
most recently viewed video to help minimize emotional carryover effects.
To introduce an element of unpredictability, the initial Surprise (a) clip is presented to the participants as

Neutral, while the Surprise (b) clip is labeled as Happiness. Additionally, since these video clips are all extracted
from movies and lack sufficient standalone context, before each video stimulus is played, we provide participants
with a brief overview by reading a context sentence provided by the original database to prepare them emotionally
without diluting the intended effect. The corresponding context sentences for each video clip are listed in Table 9.
This briefing has proven effective in enhancing participants’ understanding of the video content, and thereby
improving the effectiveness of the stimuli in eliciting the intended emotional responses [138]. For clips designed
to evoke surprise, context sentences were slightly modified to maintain the element of surprise.
Data Labeling. After each video, the participant and researcher use the Data Labeling UI together (shown

in Figure 16) to identify and annotate emotional segments in the recordings. In addition to assigning emotion
labels to each segment, participants are asked to rate the intensity of the labeled emotion on a scale from 1 to 10,
reflecting their emotional response intensity [63]. Specifically, participants answer the question: “How [happy,
sad, angry, etc.] would you say you felt during this segment of the video on a scale from 1 to 10?” A rating of 1
indicates no experience of the labeled emotion, while a rating of 10 reflects a very intense experience. A rating of
6 represents a noticeable experience of the emotion with minimal intensity.

4.3 Dataset Characteristics
An overview of our dataset is provided in Table 2. The dataset includes a diverse set of data types, i.e., eye
movement [111], head movement [97, 121], and periocular images [91], each known to contribute to emotion
recognition. As discussed in Section 3.2.3, we consider data segments created and labeled by the participants as
effective emotional periods, rather than using the entire recording. Thus, the final length of these segmented data
is shorter than the total duration of the emotional stimuli presented in Tables 9 and 10. In the end, as shown in
Table 2 the segmented data length for each of the seven emotion types ranges from 279 seconds (Surprised) to
4,067 seconds (Happiness) for Study A, and from 121 seconds (Surprised) to 900 seconds (Anger) for Study B. We
also release the full data recordings with our dataset for future comparison studies and research purposes.

Multi-faceted, High-resolution Eye-tracking data. Our dataset includes high-resolution eye-tracking data
captured at a high sampling rate: two-dimensional gaze direction is recorded at 240Hz, while pupil diameter and
pupil position for both eyes are tracked at 120Hz. This sampling rate, and thus the data resolution, is four times
higher than that of the current state-of-the-art VREED dataset [111] (240Hz vs. 60Hz). This enhanced eye-tracking
resolution enables precise analysis of subtle gaze shifts and pupil dynamics during emotional fluctuations, offering
valuable insights into moment-to-moment emotional and cognitive processes.

Additionally, our dataset includes near-eye grayscale images recorded at 120fps with a 400×400 resolution,
capturing fine details in the periocular regions during various emotional states. Periocular regions, encompassing
the eyelids, eyebrows, and surrounding skin, are crucial for emotion recognition [91], as they reveal rich visual
cues related to emotional responses. With such a high frame rate, our data captures subtle movements in this area,
such as micro-expressions, eyebrow shifts, and muscle tension, to effectively reflect underlying emotions. This
newly introduced periocular video data provides a valuable resource for emotion analysis in VR and head-mounted
display contexts. The VR scene recordings, representing the participant’s view within the virtual environment, are
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Table 2. Summary of the collected dataset. Our dataset offers high-resolution, multi-faceted eye-tracking data, capturing 2D
gaze direction, pupil diameter, and pupil position at four times the resolution of existing state-of-the-art datasets. Additionally,
it includes periocular video, which records fine-grained motions such as micro-expressions and eyebrow movements—features
highly relevant for emotion recognition.

Recording length (Study A)
Total length (in second) of seg-
mented data for each emotion

Neutral (1,477 s), Surprised (279 s), Happiness (4,067 s), Sadness (1,885 s),
Anger (2,694 s), Disgust (2,443 s), and Fear (3,142 s)

Total length (in second) of full
recordings for each emotion

Neutral (1,477 s), Surprised (2,640 s), Happiness (5,240 s), Sadness (4,960 s),
Anger (4,680 s), Disgust (3,900 s), and Fear (4,040 s)

Recording length (Study B)
Total length (in second) of seg-
mented data for each emotion

Neutral (807 s), Surprised (121 s), Happiness (422 s), Sadness (877 s), Anger
(900 s), Disgust (403 s), and Fear (879 s)

Total length (in second) of full
recordings for each emotion

Neutral (807 s), Surprised (348 s), Happiness (960 s), Sadness (1,248 s), Anger
(1,284 s), Disgust (810 s), and Fear (1,626 s)

Video stimuli
Emotion intensity rating Participant self-reported emotional response intensity ranges.
Stimuli Each emotion is elicited by a pair of stimuli (‘a’ and ‘b’) as listed in Tables 9

and 10 shown in Appendix. For both studies, two data sessions, each with
seven video stimuli, are presented to each participant.

Eye tracking data
Gaze coordinates 2-dimensional gaze direction, with 240Hz sampling rate.
Pupil diameter 1-dimensional data, for both left and right eyes, with 120Hz sampling rate.
Pupil position 2-dimensional data indicates pupil position in the near-eye images, for both

left and right eyes, with 120Hz sampling rate.
Periocular video recording Grayscale video recorded by two near-eye cameras for both left and right

eyes, with 120fps frame rate and 400 × 400 resolution.
VR scene recording

Scene recording Participant’s view in the virtual environment (as shown in Figure 1) captured
at 120fps frame rate with 648 × 480 resolution.

Head movement
9-DoF IMU measurements 9-dimensional time-series data capturing angular velocity, linear acceleration,

and orientation at 30Hz sampling rate.

collected at 120fps with a resolution of 648×480. Additionally, head movement data are recorded through 9-DoF
IMU sensors, providing a 9-dimensional dataset (including angular velocity, linear acceleration, and orientation)
sampled at 30Hz. We believe this new multi-modal dataset (eye tracking, scene view, and head movement), along
with multi-faceted eye-tracking signals (gaze direction, pupil dynamics, and periocular imagery) offers a rich
resource for advancing future research in emotion recognition within VR environments. Applications and use
cases of our dataset are further discussed in Section 6.

Ethics. The research received approval from the Research Ethics Review Group at the host institution, adhering
strictly to all institutional guidelines. All participants sign a consent form before participating and are informed
of their right to withdraw from the study at any time. To address privacy and security concerns associated with
physiological data, all identifying information are removed from the dataset to ensure participant anonymity.
Additionally, all data will be securely stored in a local data repository. Any future requests for dataset access will
be thoroughly reviewed, and all data downloads will be logged to maintain an access record.
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μ=7.38±1.49, CI=(7.17, 7.59) 

μ=8.28±1.63, CI=(7.91, 8.64) 

μ=7.70±1.34, CI=(7.45, 7.95) 

μ=7.46±1.28, CI=(7.21, 7.71) 

μ=7.05±1.61, CI=(6.76, 7.34) 

μ=7.52±1.66, CI=(7.07, 7.97) 

Fig. 4. Participants reported emotional intensity ratings for six emotions, displayed in a boxplot with scatter points. Each dot 
represents a participant’s rating for an emotion segment they created and labeled. There are 189, 77, 107, 99, 117, and 52 
segments for Fear, Disgust, Anger, Sadness, Happiness, and Surprise, respectively. For each emotion, we also display the 
mean (𝜇) and the 95% confidence interval of the intensity ratings. Overall, our experiment effectively evoked the intended 
emotions in participants, achieving high intensity levels across emotions.

4.4 Emotion Elicitation Measurement
Below, we analyze participants’ self-reported emotion intensity ratings to assess how effectively our experiment 
(i.e., the combination of selected stimuli and VR rendering) elicited the intended emotions. We use an emotional 
response rating scale similar to that of Zupan et al. [137] to gauge emotion elicitation. Participants rated the 
intensity of each labeled emotion on a scale from 1 to 10, where a rating of 1 indicates no experience of the 
emotion, 10 reflects a very intense experience, and 6 suggests a noticeable but moderate intensity.

In total, we received 641 emotion intensity ratings across 189, 77, 107, 99, 117, and 52 participant-created 
segments for the emotions Fear, Disgust, Anger, Sadness, Happiness, and Surprise, respectively. Figure 4 presents 
a boxplot with scatter points, where each dot represents a participant’s rating for a segment they created and 
annotated. For each emotion, we also provide the mean (𝜇) and 95% confidence interval (CI) for the intensity 
ratings, indicating a notably high success rate in emotion elicitation.

5 VALIDATION
In this section, we present preliminary benchmarks to showcase the potential of our dataset in emotion recognition. 
We emphasize the use of the new periocular video data collected in our dataset, and combined it with the 
widely used eye movement time-series signals [43, 111, 122], to enhance recognition accuracy. We compare 
the effectiveness of using periocular data alone, eye movement data alone, and their combination to evaluate

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 143. Publication date: September 2025.



143:14 • Yang et al.

each method’s contribution to overall emotion recognition performance. In addition to the classification results,
the Appendix presents a case study that qualitatively and quantitatively analyzes pupil diameter variations in
response to emotional changes. This highlights the potential of the proposed dataset for future research on
emotion-induced physiological responses and eye movement-based biometric feature analysis.

5.1 Multi-faceted Eye Tracking Fusion
Overall design. To effectively leverage both periocular eye videos and eye movement time-series signals (gaze
direction and pupil diameter) for emotion recognition, we propose the multi-faceted eye-tracking fusion method.
A naive approach for data fusion would be to feed all available signals into a complex neural network for
feature extraction and classification. However, for VR-based emotion recognition, we must consider the model’s
computational complexity. Given the resource constraints of VR platforms, feeding high-dimensional, large-scale
data into a deep learning model can lead to significant computational latency. In particular, the original periocular
eye videos in our dataset are recorded at a high frame rate of 120fps. Directly using these high-frame-rate videos
as neural network inputs can significantly increase computational costs due to the large data volume. By contrast,
the eye movement time-series signals are more computationally efficient because they are lower-dimensional.
However, this efficiency comes at the cost of information richness. Eye movement time-series signals capture
quantitative changes in the time domain, e.g., changes in gaze direction, fixation, or pupil dynamics, but lacks
the spatial context and fine-grained detail that the periocular eye video frames can provide, e.g., changes in eye
shape, wrinkles, and subtle movements around the eyes that can effectively signal emotional states.

To balance the trade-off between model performance in emotion recognition and computational efficiency, we
utilize eye movement time-series signals at their maximum available sampling rates, i.e., 240Hz for gaze direction
and 120Hz for pupil diameter, while down-sampling the periocular eye videos to a lower frame rate (e.g., 10fps).
This multi-faceted fusion approach retains rich information while minimizing computational demands, creating
a practical and efficient solution for emotion recognition in VR contexts. Below, We refer to this method as the
multi-faceted eye tracking fusion. As shown in Figure 5, the proposed model comprises four main components:
a video feature extractor, an eye movement feature extractor, a feature fusion module, and an emotion classifier.
The video feature extractor learns features from the periocular videos for both the left and right eyes, while the
eye movement feature extractor captures features from eye movement data. The feature fusion module then
combines the extracted features from these different input sources. Finally, the emotion classifier uses the fused
features to predict the user’s emotional state. We present the details for each component below.
Periocular Feature Extractor.We adopt the Video Vision Transformer (ViViT) [4] as the periocular feature
extractor, denoted as F𝑉 , to capture spatio-temporal features from the recorded eye region frames. Given an
input periocular video clip 𝑉 ∈ R𝑇×𝑊 ×𝐻 consisting of 𝑇 gray-scale frames with width𝑊 and height 𝐻 , the
extractor F𝑉 maps the clip to a video feature vector 𝑓𝑣 ∈ R𝑑 , expressed as 𝑓𝑣 = F𝑉 (𝑉 ). We can set the 𝑇 to be a
low number to reduce the computational cost. Note that, We process the periocular videos from the left and right
eyes using two periocular feature extractors with shared model weights. Moreover, we retain information from
both eyes, rather than selecting only one of them, to account for the potential feature differences introduced by
the dominant eye phenomenon [115]. In terms of model design, the periocular feature extractor is designed with
a hidden dimension of 256 and includes three spatial transformer layers followed by a single temporal layer, each
with eight attention heads. To improve generalization, we apply a dropout rate of 0.1 in both the encoder and
embedding layers.
Eye movement Feature Extractor.We design the eye movement feature extractor F𝐸 based on the multivariate
time-series transformer framework [127]. We represent a sequence of eye movement time-series signals as
𝑋 ∈ R𝑁×𝑀 , where 𝑁 is the sequence length and𝑀 is the dimensionality. In our model, we concatenate the 1D
pupil diameter for both left and right eyes and the 2D gaze directions as the inputs, resulting a four-dimensional
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Fig. 5. Overview of the proposed multi-faceted emotion recognition model, which extracts features from both periocular eye
videos and eye movement data, and then fused them for emotion recognition.

eye movement time-series signal 𝑋 . The feature extractor F𝐸 then extracts a 𝑘-dimensional feature vector 𝑓𝑒 ∈ R𝑘

from 𝑋 , i.e., 𝑓𝑒 = F𝐸 (𝑋 ). It employs a model dimension of 64 and uses eight attention heads within a single
transformer layer. Like the ViViT module, it includes a dropout rate of 0.1 for regularization.
Multi-modal Feature Fusion.With the extracted features from periocular videos and eye movement time-series
signals, we design a feature-fusion module to combine them for the emotion recognition task. First, we linearly
project the features extracted from the left periocular video, right periocular video, and eye movement time-series
signals into three separate ℎ-dimensional vectors using distinct fully connected layers. These three projected
ℎ-dimensional vectors are then stacked to form a feature matrix of dimension ℎ × 3. This matrix is fed into a
transformer encoder to apply self-attention for effective feature fusion [21, 88]. We denote the resulting fused
multi-modal feature as 𝑓𝑚 .
Emotion Classifier. Finally, we apply a fully connected layer with a softmax function to classify the emotion
based on the fused multi-modal feature 𝑓𝑚 . The emotion recognition model is trained by minimizing the cross-
entropy loss between the predicted emotions and the ground-truth emotion labels. The classification includes
Ekman’s six basic emotions, along with a neutral state.

5.2 Data Pre-processing
To minimize the noise inherent in eye movement data, both gaze directions and pupil diameters, we pre-process
the raw signals with several filters and operations. First, a confidence filter removes corrupted eye movement
samples by excluding those with a confidence score below a threshold of 0.6. Next, we calculate the median
absolute deviation (MAD) using a one-second window and discard samples with values exceeding three times the
MAD. For pupil diameter samples, we apply a Z-score filter [72] with a threshold of 0.1, followed by a low-pass
filter (cutoff = 5Hz). These filters smooth out rapid fluctuations in pupil diameter [56, 102], given that pupil
diameter changes respond more slowly than gaze movements [109]. Since each filtering step removes some eye
movement samples, we resample the data back to its original length using linear interpolation after each filter.
Finally, we standardize and normalize the filtered eye movement samples within each session.
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For the periocular video data, we first apply horizontal and vertical flips to the right-eye video to align its
spatial orientation with the left eye. We then resize each video frame from 400× 400 to 224× 224 pixels, balancing
computational efficiency with sufficient detail to retain informative features. To standardize pixel values across
both videos, we normalize by dividing each pixel by 255, following standard preprocessing practices for deep
learning models [39].

For both eye movement time-series and periocular video data, we extract the emotion-elicited segments based
on the subject’s self-reported emotion intensity rating. Each segment begins when the subject reports an intensity
level above six and continues until the end of the video. The periocular recordings are down-sample from 120fps
to 10fps. The eye movement time-series is sampled at 120Hz. We create data instances (for modeling training and
testing) from these segments using non-overlapping sliding windows with a maximum length of two seconds.

5.3 Experimental Design
5.3.1 Baselines. We compare our proposed multi-faceted approach with two baseline methods: deep learning
model that uses only periocular video and a model that leverages only the eye movement time-series data.

Specifically, the (1) periocular method uses only periocular video recordings as input, employing the upper
portion of the architecture shown in Figure 5. This includes feature fusion to combine features extracted from the
periocular videos of both eyes. The (2) eye movement method, on the other hand, uses only eye movement data,
i.e., gaze directions and pupil diameters of both eyes, as input and utilizes the lower portion of the architecture in
Figure 5, excluding the feature fusion module.

It is important to note that, because the use of amore advanced deep learning architecture, i.e., the transformer [4,
127], these two methods serve as stronger baselines compared to existing works [42, 43, 111, 122] that rely on
conventional machine learning algorithms, e.g., random forest and support vector machine, with hand-crafted
features, as deep learning-based methods have been shown to achieve superior classification performance on
gaze and eye movement-based inputs [60, 61].

The goal of this comparison is to highlight the effectiveness of combining periocular video and eye movement
time-series data for emotion recognition, showcasing the advantages of our fusion strategy. Additionally, it
underscores the value of the newly incorporated periocular videos in our dataset, demonstrating how these
data enhance emotion recognition research by providing richer, complementary visual cues that improve model
performance when fused with traditional eye movement signals.

5.3.2 Experiment Setups. We perform five-fold cross-validation on the 20 subjects, with each fold containing
four subjects. In our dataset, as each of the seven emotions contains two data recordings, we treat them as two
separate data sessions. We consider the following settings in the evaluation.
First, in the (1) Pre-train only setting, we train a randomly initialized model using data from four folds

(comprising 16 subjects, each with two sessions of data) and test it on the remaining fold (including 4 subjects,
each with two sessions of data). We report the average performance across all five folds to assess the model’s
ability to generalize to unseen subjects.
Second, in the (2) fine-tune setting, we begin with the model initially trained with the pre-train setting and

further fine-tune it using 10% of instances sampled from the test set. Here, the test set consists of four unseen
subjects, each with two data sessions. Without shuffling the test set, we select instances for fine-tuning from
the beginning of each data session for the four subjects, while reserving the remaining instances within the
same session for testing. This setting reflects a real-world scenario where only a limited amount of data from
the start of a recording, such as the initial interactions with a new user, is available for model adaptation. By
fine-tuning on these data instances obtained at the beginning of the VR interaction, we can then assess how well
the model generalizes to subsequent interactions within the same session. More specifically, we employ two
different strategies to evaluate model performance within the fine-tune setup:
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• Same-session:We use instances from both sessions for fine-tuning and testing, meaning that data instances
for fine-tuning and model testing are coming from the same data sessions, though sequentially without
random shuffle. This allows us to evaluate how well the model adapts when it has a small amount of
fine-tuning data from all the sessions (subjects and video stimuli) it will encounter in testing.

• Cross-session: We fine-tune the model on instances from one session and test it on the other session.
Since each subject has two sessions per emotion, this setup is repeated twice for each subject, and we
report the averaged performance. The cross-session approach examines the model’s ability to generalize
across sessions, reflecting cases where fine-tuning data is limited to one session, yet testing occurs on a
different set of video stimuli.

Performance metric. For all experiments, we report both accuracy and weighted F1-score as performance
metrics. While the accuracy provides a high-level view of the model’s overall correctness, the weighted F1-score
accounts for class imbalance among the emotion categories.

5.4 Implementation Details
The training process consisted of 25 epochs, using the Adam optimizer with a learning rate scheduler. The
scheduler included a five-epoch warm-up phase, gradually increasing to a peak learning rate of 8𝑒 − 5. This was
followed by 20 epochs of cosine annealing, where the learning rate decreased to 8𝑒 − 6. In the final five epochs,
the lower learning rate was maintained to ensure stable convergence. We applied a label smoothing factor of 0.4
and consistently allocated 30% of the training data for validation. For the fine-tuning setting, we use the same
optimizer and learning rate scheduler as in the initial training but extend each phase duration by five times to
support gradual adaptation. The peak learning rate is reduced to 1𝑒 − 5, with a final learning rate of 1𝑒 − 6 to
minimize overfitting. Label smoothing is omitted in this phase.
The training process outlined above applies to both the multi-faceted and periocular methods. For the eye

movement method, however, we increase the number of training epochs and use a higher learning rate to ensure
convergence. For model configuration, we set the periocular feature extraction window 𝑇 to five, with video
frame width𝑊 and height 𝐻 at 16. The dimensionality of the periocular feature 𝑑 was set to 1024, while the eye
movement feature dimension 𝑘 was set to 256. We configured the feature fusion module dimension ℎ to 256.

5.5 Evaluation Results
5.5.1 Performance Analysis in Pre-train Settings. We show the performance of different methods in Table 3 with
different time window sizes. The periocular only method achieves better performance than the eye movement only
method across all window sizes with big margins. The multi-faceted method further outperforms the periocular
only method in most settings.
Taking the 2.0-second window size as an example, the multi-faceted approach shows a 15.6% improvement

over the periocular only method (0.52 vs 0.45) and a 73.3% improvement over the eye movements-only method
(0.52 vs 0.30). However, an exception occurs at the 0.5-second window size, where the multi-faceted approach
slightly underperforms (F1-score of 0.43) compared to the periocular-only method (F1-score of 0.45). It could
be attributed to the limited information provided by eye movements in such a short time frame, potentially
introducing noise rather than valuable features to the multi-faceted approach. This suggests that there exists a
minimum input window size to effectively leverage eye movement data for emotion recognition.

Overall, the results underscore the wealth of information contained within the periocular images for emotion
recognition. The multi-faceted method, for instance, combines the strengths of both the high-frequency time-
domain features from eye movement signal and the fine-grained spatial details captured in the periocular video.
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Table 3. Recognition performance of different methods in the pre-train only setting with different window sizes. Both
periocular only and multi-faceted methods achieve better performance than the eye movement only approach, underscoring
the wealth of information contained within periocular image frames for emotion recognition.

Method Metric Window size (s)

0.5 1.0 1.5 2.0

Eye movement F1-score 0.26 0.27 0.29 0.30
Accuracy 0.28 0.29 0.31 0.31

Periocular F1-score 0.45 0.44 0.46 0.45
Accuracy 0.45 0.44 0.47 0.45

Multi-faceted F1-score 0.43 0.44 0.46 0.52
Accuracy 0.43 0.44 0.47 0.52

Table 4. Recognition performance of different methods in the fine-tuning setting for both same-session and cross-session
configurations. The results indicate that the multi-faceted method demonstrates superior generalizability, especially in
cross-session configurations where testing is conducted on a different set of unseen video stimuli. This highlights the
robustness and capability of the multi-faceted approach in adapting to new and unseen scenarios.

Method 10% Same-session 10% Cross-session

F1-score Accuracy F1-score Accuracy

Eye movement 0.46 0.49 0.23 0.25
Periocular 0.82 0.82 0.54 0.55

Multi-faceted 0.84 0.85 0.70 0.71

5.5.2 Performance Analysis in Fine-tune Settings. Below, we fix the window size to one second to balance
performance and efficiency. Table 4 shows the results of 10% proportional fine-tuning for both same-session and
cross-session configurations. The multi-faceted approach achieves the highest F1-score in all examined cases,
reaching 0.84 in the same-session configuration and 0.70 in the cross-session configuration. By contrast, the eye
movement-only method shows poor cross-session accuracy, with an F1-score of just 0.23, indicating that eye
movement data alone is insufficient to capture generalized features that are robust for emotion recognition in
unseen video stimuli.
The periocular-only method performs comparably to the multi-faceted method in the same-session setting;

however, in the more challenging cross-session setting, where testing is conducted on a different set of unseen
video stimuli, the multi-faceted approach shows a clear advantage. This demonstrates the benefit of integrat-
ing both eye movement and periocular information for emotion recognition, underscoring the multi-faceted
approach’s adaptability and robustness in handling new and unseen scenarios.

5.6 Few-shot Performance in Cross-session Configuration
In the previous fine-tuning experiments, we used 10% of the data to fine-tune the pre-trained model, which
corresponds to approximately five training instances per class on average. Given that the number of training
instances available for fine-tuning is a crucial factor in real-world applications scenarios, we further explore its
impact by conducting a few-shot study in the challenging cross-session configuration. Specifically, the pre-trained
model is fine-tuned using a few-shot instances from one of the data sessions, and test it on data from the other
session (a different set of video stimuli).
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Table 5. Performance when a few-shot of instances are used for the fine-tuning in the cross-session configuration. The
multi-faceted approach consistently and significantly outperforms the periocular-only baseline across all few-shot settings,
highlighting its strong generalization capability in real-world scenarios where labeled training samples from unseen scenarios
(new video stimuli) are difficult to obtain.

Method Metric 1-shot 2-shot 3-shot∗ 4-shot∗ 5-shot∗

Periocular F1-score 0.53 0.56 0.57 0.57 0.57
Accuracy 0.53 0.56 0.57 0.57 0.57

Multi-faceted F1-score 0.67 0.68 0.69 0.70 0.70
Accuracy 0.66 0.67 0.69 0.69 0.70

∗: For emotion class Surprise, at most two shots (i.e., two training instances) are taken.

Table 5 compares the recognition performance of the periocular-only andmulti-faceted methods across different
few-shot settings, where one to five instances per class are used for fine-tuning. For the emotion class Surprise,
we limit the number of instances to a maximum of two due to the scarcity of data for this class. We also exclude
the results for the eye movement-only method, as its performance remains poor given the limited information
that eye movement data alone can provide (as demonstrated in Table 4).

The results indicate that the multi-faceted approach consistently and significantly outperforms the periocular-
only baseline across all few-shot settings. With just one shot, the multi-faceted method achieves an F1-score of
0.67, compared to 0.53 for the periocular baseline. This performance gap persists as the number of shots increases;
at the 4-shot setting, multi-faceted method reaches an F1-score of 0.70, while the periocular-only method peaks
at 0.57. These findings highlight the multi-faceted method’s strong generalization capability with limited training
data and demonstrate its robustness in real-world scenarios where labeled training samples from unseen scenarios
(new video stimuli) are difficult to obtain.

5.7 Impact of Eye Movement Signal Window Size
In the previous experiments, we use short window sizes, i.e., up to two seconds, for the eyemovement-only method.
This choice was driven by the high computational demands of the video feature extractor when processing
longer periocular videos. However, prior emotion recognition studies using eye movement time-series data have
explored considerably longer window sizes, such as 10 seconds [53] and even 180 seconds [111]. To ensure a fair
comparison and gain a deeper understanding of how window size impacts the performance of the eye movement
baseline, we evaluate its performance across a range of time window sizes up to 15 seconds. Note that extending
the time window beyond 15 seconds was not feasible in this study, as the natural occurrence of the seven emotions
we investigate does not typically persist for longer durations.

As shown in Table 6, there is a consistent trend of improvement as the time window size increases. In the
pre-train setting, the F1-score rises from 0.26 at 0.5 seconds to 0.39 at 15 seconds. A similar pattern is observed
for fine-tuning: for the 10% same-session scenario, the F1-score improves from 0.46 with a 1-second window to
0.54 with a 15-second window, a 17.4% increase. This suggests that a larger window size continue to capture
additional informative features beneficial for emotion recognition.

However, it is important to note that even with a 15-second window, performance (0.39 in the pre-train setting,
0.54 in the fine-tune setting) remains lower than that of the multi-faceted method, which achieves 0.44 in the pre-
train setting and 0.84 in the fine-tune setting using shorter, 1-second windows (as reported in Tables 3 and 4). These
results indicate that while longer window sizes provide additional information for emotion recognition when
using the eye movement baseline, the performance ceiling of this approach is limited. The multi-faceted approach
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Table 6. Impact of window size on the eye movement-only method. We examine the effect of various window sizes on
performance for both pre-train only and fine-tune settings.

Method Setting Window size (s)

0.5 1 1.5 2 5 10 15

Eye movement F1-score (Pre-train) 0.26 0.27 0.29 0.29 0.34 0.37 0.39
Accuracy (Pre-train) 0.28 0.29 0.31 0.31 0.34 0.38 0.40

Eye movement∗ F1-score (Fine-tune) 0.46 0.46 0.44 0.43 0.50 0.52 0.54
Accuracy (Fine-tune) 0.49 0.49 0.48 0.46 0.51 0.53 0.56

∗: 10% same-session fine-tune.

demonstrates superior performance, highlighting the effectiveness of fusion high-frequency eye movement data
with periocular video for emotion recognition.

5.8 Impact of Periocular Video Frame Rate
Although our dataset contains periocular video at up to 120fps, it is not resource-efficient to feed all video data into
the neural network due to computational constraints on consumer devices. Therefore, in the previous experiments,
we down-sample the periocular recordings to 10fps while maintaining high-frequency eye movement time-series
data at 120Hz to compensate for the reduced temporal resolution of periocular videos. However, higher frame
rate periocular video should theoretically help in improving performance. To test this hypothesis, we evaluate
the impact of varying the frame rate of periocular videos while keeping eye movement time-series data at 120Hz.
We set the window size to one second.

Figure 6 shows results for fine-tune setting across different frame rates. These results show that a higher
frame rate generally leads to a better performance for both the periocular-only baseline and the multi-faceted
method. Specifically, in the same-session scenario, the performance difference between the periocular-only and
multi-faceted methods is minimal. However, in the more practical and challenging cross-session scenario, the
multi-faceted method shows substantial improvements over the periocular-only method across all examined
frame rates. For example, at 20fps, the multi-faceted method achieves an F1-score of 0.71, representing a 26.8%
improvement over the periocular baseline’s 0.56. We also notice that the performance of the multi-faceted method
become stable when the frame rate increases to 15fps. We believe this is due to the current lightweight design
of the periocular feature extractor: with more frames are added, the periocular video content reaches a point
of saturation. Consequently, the feature extractor’s ability to capture meaningful features does not improve
significantly with the increased input load, as it becomes less efficient in discerning new information from the
additional data.

Overall, these results validate the approach of combining low frame rate periocular video with high-frequency
eye movement time-series data. The consistency of the multi-faceted method outperforming across all frame
rates demonstrates its robustness and effectiveness in emotion recognition tasks.

5.9 Fine-tuning with Empirically Estimated Labels
In previous experiments, we use the self-reported annotations from subjects to crop and label the raw data
recordings. Specifically, participants rate the intensity of their emotions for each segment they created. In
evaluation, we consider an emotion has been effectively elicited if a segment received an intensity rating of six or
higher. We then mark the first segment with an intensity rating of six as the starting point of the emotion and
crop the raw data recording from this segment onward. However, in real-world scenarios, user-defined segments
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Fig. 6. Recognition performance of the multi-faceted method across different frame rates for periocular video, evaluated
in the fine-tuning setting for both same-session and cross-session scenarios. The y-axis shows the F1-score for emotion
recognition (higher is better), while the x-axis represents various frame rates, ranging from two to 20fps.

Table 7. Recognition performance with statistically derived labels. We evaluate the periocular and multi-faceted methods in
the fine-tune setting using data labeled through statistically derived estimates.

Method 10% Same-session 10% Cross-session

F1-score Accuracy F1-score Accuracy

Periocular 0.83 0.83 0.54 0.56
Multi-faceted 0.85 0.85 0.71 0.72

with emotion intensity rating are unavailable. Even during a calibration process, when an emotion-aware system
might feed video stimuli designed to elicit specific emotions to the user for data collection, it would be impractical
to also ask users to manually mark and annotate their emotional segments as was done during our data collection.

To simulate a more practical scenario, we use leave-one-subject-out cross-validation. We assume that detailed
labels and annotations are available from 19 subjects, and assume the video stimuli can reliably elicit certain
emotions. Using data from these 19 subjects, we then empirically estimate the point in the stimuli where the
emotion of the unseen subject is likely to be triggered. Specifically, we set the estimated emotion onset to the
lower limit of the 95% confidence interval derived from the starting points of the 19 subjects. This method enables
us to approximate emotion onset times without relying on individual self-reports from the new subject.
Table 7 presents the recognition performance of the periocular only and multi-faceted methods when using

the estimated labels for both training and testing. Both models achieve reasonable performance in same-session
and cross-session settings. Moreover, as these estimated labels are statistically derived from the self-reported
data of the participants, they demonstrate the reliability of the labels in our dataset: the statistically obtained
annotations can still be used to train the machine learning model and achieve good classification performance on
new users even when personalized data annotation is unavailable.

Figures 7 and 8 (in Appendix B) give details of the confusion matrices of the recognition results for Subjects 3
and 7 as examples. Note that the cross-session results in Table 7 represent the average performance across the two
cross-session A and B. In the same-session setting, both the multi-faceted and periocular-based methods achieve
high accuracy for emotions such as happiness, sadness, and anger. However, both approaches face challenges in
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Table 8. Performance when a few-shot of instances are used for the fine-tuning in the cross-study configuration. The multi-
faceted approach consistently and significantly outperforms the other baselines across all few-shot settings, highlighting its
strong generalization capability in real-world scenarios where labeled training samples from unseen subjects and unseen
scenarios video stimuli.

Method Metric 1-shot 2-shot 3-shot∗ 4-shot∗ 5-shot∗

Eye movement F1-score 0.12 0.14 0.14 0.14 0.15
Accuracy 0.16 0.17 0.17 0.17 0.18

Periocular F1-score 0.52 0.52 0.53 0.54 0.55
Accuracy 0.52 0.52 0.53 0.54 0.55

Multi-faceted F1-score 0.57 0.59 0.59 0.61 0.62
Accuracy 0.58 0.60 0.60 0.61 0.62

∗: For emotion class Surprise, at most two shots (i.e., two training instances) are taken.

distinguishing between neutral and surprise, as well as between high-arousal emotions such as disgust and fear. 
In the cross-session settings, performance generally degraded. Both methods exhibit consistent confusion between 
neutral and surprise, as well as among disgust, anger, and fear.

These confusions are partly due to the fact that these emotions often exhibit similar eye movement patterns and 
share overlapping visual cues in the periocular region. For instance, research has shown that expressions of anger 
and disgust share similar activation of facial muscles in the eye area [33], leading to potential misclassifications 
when relying solely on periocular features. Another reason for the observed confusion is that many of these 
emotions are not experienced in isolation. In practice, participants often feel a mixture of emotional responses. 
For example, the same video stimulus might simultaneously evoke both disgust and fear, or a combination of 
disgust and anger, as reported in previous studies [137, 138]. This is because these emotions are psychologically 
and physiologically interconnected. As a result, even when using precise Ekman’s model, it is still difficult for the 
participant to assign a single label to present their emotional states, particularly for high-arousal or negatively 
valenced emotions such as anger, disgust, and fear.

5.10 Few-shot Performance in Cross-study Evaluation
To further investigate model’s generalization capability in the context of unseen subjects and unseen emotional 

stimuli, we conduct a second few-shot learning evaluation. Specifically, each method is first pre-trained on data 
collected from Study A (20 subjects). We then fine-tune the pre-trained model using samples from Study B, 
which consists of six new subjects and a distinct set of emotional video stimuli. The evaluation is performed in 
a subject-specific manner: for each subject in Study B, we fine-tune the model using only a few-shot samples 
from that specific subject and test it on the remaining samples from the same subject. The final performance is 
reported as the average across all 6 subjects. The results are shown in Table 8.

As shown, the multi-faceted model consistently outperforms the eye movement and periocular baselines in all 
cases. Notably, even in the 1-shot setting, the multi-faceted model achieves an F1-score of 0.57 and an accuracy 
of 0.58, significantly surpassing the other methods. This performance advantage remains robust as the number 
of shots increases, reaching an F1-score of 0.62 and accuracy of 0.62 in the 5-shot setting. These results again 
suggest that the multi-faceted approach holds promise for improving generalization in real-world scenarios, 
especially when training data from the targeted user is scarce. However, there remains room for improvement
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in recognition performance. Future work could explore more advanced fusion strategies, adaptive fine-tuning 
mechanisms, or few-shot learning techniques to further enhance cross-subject and cross-context generalization.

6 DISCUSSION
6.1 Applications and Future Work
6.1.1 Multi-modal Sentiment Analysis in VR. Our benchmark study focuses on using diverse eye-tracking data, 
such as gaze, pupil diameter, and periocular images, for emotion recognition. In addition to this data, our dataset 
also includes high-frame-rate scene recordings of participants’ view within the virtual environment when they 
engage with emotional stimuli, as well as the original audiovisual content of these stimuli. Together, this fusion 
of multi-modal information, supplemented by emotional labels and intensity ratings, provides a rich foundation 
for future multi-modal visual sentiment analysis in VR. Conventional visual sentiment analysis [119, 124, 132] 
often relies on visual cues from the stimuli to assess users’ emotional responses. Our dataset, however, supports a 
more comprehensive multi-modal sentiment analysis [45, 119] by combining audiovisual stimuli with signals of 
attention (derived from gaze), excitement (from pupil diameter), and periocular micro-movements. This line of 
research allows for a more nuanced understanding of how VR content impacts user sentiment, which can further 
benefit applications such as personalized content adaptation, where VR experiences and content are dynamically 
tailored based on the user’s real-time emotional responses and an accurate understanding of the VR content. 
Additionally, our dataset can support the development of multi-modal analytics systems that analyze emotional 
coherence across users in VR [126].

6.1.2 Benchmark for Privacy-preserving Emotion Recognition in VR. The potential leakage of sensitive information 
from raw eye images poses a major obstacle to allowing full access to eye trackers in modern head-mounted 
devices [22, 27]. A common solution to this problem is to prohibit any third-party application from accessing the 
raw data (with exceptions, such as devices with Tobii eye-tracking modules, where third-party applications can still 
obtain full access by purchasing the Tobii SDK license). However, as demonstrated in our benchmark study, certain 
applications, such as emotion recognition, rely on (and benefit significantly from) the raw periocular images to 
achieve effective functionality and maintain acceptable performance. Simply denying access to raw eye-tracking 
data would significantly limit the capabilities of legitimate third-party applications that require such information. 
Therefore, similar to ongoing efforts in privacy-preserving techniques for speech [25, 34] and face image-based 
emotion recognition [50, 79], it is essential to develop privacy-preserving solutions that eliminate sensitive user 
information from raw eye-tracking data while still enabling legitimate emotion recognition classifiers to operate 
effectively. However, there are currently no publicly available datasets that contain rich, raw eye-tracking data 
paired with emotion labels, creating a significant gap for advancing research in this area. Our dataset will bridge 
this research gap, and offer the research community a valuable resource for advancing privacy-compliant emotion 
tracking in VR and beyond. This includes developing anonymization or data abstraction techniques that retain 
essential features for emotion recognition while reducing privacy risks.

6.1.3 Advanced Emotion Recognition in VR. The preliminary results from our benchmark (Section 5) show that 
fusing multiple eye-tracking data types, i.e., gaze direction, pupil dynamics, and periocular images, can enhance 
emotion recognition, achieving an F1-score of 0.7 in both cross-session (unseen emotion stimuli) and few-shot 
learning scenarios. While promising, this level of accuracy highlights the need for further advancements, as 
practical VR applications demand higher, more reliable performance to ensure consistent accuracy across varying 
emotional contexts and user conditions. Our dataset, with its high-resolution, multi-faceted eye-tracking data, 
is designed to support this line of research by enabling new developments in deep learning and recognition 
algorithm design. For instance, the diverse signal types in the dataset provide opportunities to explore more 
effective multi-modal fusion methods, such as attention-based fusion [44] or cross-modality attention [62], to 
maximize the complementary nature of gaze, pupil, and periocular information. Moreover, our dataset encourages
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research into domain adaptation techniques tailored for emotion recognition, which can improvemodel robustness
across different stimuli and user groups. By providing detailed and varied data, our dataset enables researchers to
develop models that are not only more accurate but also adaptable for real-world VR applications where user and
contextual diversity introduce practical challenges.

6.1.4 Emotion-aware Applications for Immersive Computing Systems. The dataset can help in developing emotion-
aware applications for next-generation head-mounted immersive platforms (both augmented and virtual reality
systems). Specifically, by leveraging the rich eye-tracking and periocular data in our dataset, emotion-aware
systems can infer subtle affective cues in real time, enabling more natural, human-like interactions that adapt
continuously to the user’s emotional context. Such capabilities are especially valuable in training, education,
and mental health support, where emotionally intelligent responses can improve user engagement, reduce
cognitive load, and foster trust [87]. For example, we can develop dynamic game engines in VR that can adapt
narratives, character behavior, or the progression of the storyline based on the real-time emotional state and
intensity of the user as inputs. This capability will support the creation of deeply immersive, engaging, and
personalized experiences in future interactive systems and gaming [46, 90]. Additionally, the dataset can support
the development of emotionally adaptive virtual assistants [101, 117] that dynamically adjust their tone, pace,
and interaction style in response to users’ emotional states. For example, speaking more slowly and calmly
when frustration is detected [67]. Furthermore, the dataset can enable personalized therapeutic experiences on
immersive computing platforms [32, 57]. By leveraging real-time emotion recognition from eye movements and
periocular cues, therapy sessions can be adapted to match the user’s emotional state. In anxiety and phobia
exposure therapy, emotion feedback can be used to adjust difficulty or pace in real time, ensuring user comfort
and safety throughout the session.

6.1.5 Open-source Tool for Multi-modal Data Collection in VR. Alongside the dateset, we are also open-sourcing
the data collection software tool (Section 3), which is designed to streamline future multi-modal data collection
in VR. This comprehensive tool includes software components that other researchers can easily use to elicit
emotional responses in virtual environments, reliably monitor and record diverse multi-modal signals from
the VR device, and simplify the data annotation process. Specifically, key features of our software tool include
a customizable emotional stimulus presentation module, allowing researchers to design and manage virtual
scenarios that evoke specific emotional reactions. Additionally, the tool supports high-frequency signal processing
and recording, ensuring that the multi-modal, high-resolution signals are captured accurately and synchronously
for further analysis. A user-friendly data labeling interface is also included, enabling collaborative data annotation
between participants and researchers, enhancing data accuracy and consistency.

By open-sourcing this tool, we aim to foster broader research initiatives in emotion recognition andmulti-modal
VR applications. For example, researchers can easily use our software tool to build a large-scale VR emotion
dataset by incorporating the recent immersive and interactive 360-degree video dataset [51], to evoke emotional
responses along arousal and valence dimensions.

6.2 Limitations
Our work can be further improved in the following ways.

Emotions beyond the Ekman’s model. Our current work focuses on Ekman’s seven basic emotions. While
discrete emotional states enable direct mapping from the recognition results to downstream emotion-aware VR
applications, i.e., using the detected emotion class of a VR user to generate expressive avatars with corresponding
emotional expressions [3, 7, 82, 118, 128], it is important for future research to expand the emotion taxonomy
and include more nuanced social or situational emotions, such as embarrassment, guilt, or pride. These complex
emotions play a central role in real-world experiences and daily social interactions.
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However, eliciting such emotions in a consistent and controlled manner remains an open challenge, as there is 
currently a lack of scientifically validated visual stimuli specifically designed to induce these emotions. Unlike the 
basic emotions, which are considered biologically universal and can be reliably evoked through audiovisual content, 
social and situational emotions are highly context-dependent and often involve an additional layer of cognitive 
appraisal or social reasoning [75]. Moreover, many of these complex emotions are not entirely independent 
from the basic emotions considered in this work; rather, they are often conceptualized as blends or contextual 
modulations of core affective states [100, 120]. For example, guilt and embarrassment may involve elements of 
sadness and fear, while pride may build upon happiness combined with surprise or self-awareness [120]. This 
hierarchical or compositional view of emotional experience supports our idea that robust recognition of the 
seven basic emotions can serve as a necessary foundation for modeling and interpreting more complex affective 
phenomena. As a direction for future work, we see strong potential in extending our current methodology by 
designing reliable, ethically approved stimuli that can elicit these more complex emotional states. Researchers can 
leverage the flexible data collection framework introduced in this work to explore a broader emotional spectrum 
in immersive environments and build richer, context-aware emotion recognition systems.

Age Limitations and Elderly Inclusion. A limitation of the current study lies in the age range of participants, 
which currently includes young adults from our university community. While this demographic is commonly 
used in early-stage VR and affective computing research [42, 43, 122], it limits the generalizability of our dataset 
to elderly populations. Prior research in affective science has shown that older adults often exhibit distinct 
emotional responses compared to younger individuals [47]. For instance, they tend to regulate emotions more 
effectively, focus more on positive stimuli, and demonstrate reduced physiological reactivity and altered gaze 
behavior, such as less fixation on negative emotional cues [48]. These age-related shifts in emotion perception 
and attention could significantly affect eye movement and periocular patterns. To address this limitation, future 
work can explore the use of suitable affective stimuli, enabling the safe and ethical inclusion of older participants.

Audio Data and Future Opportunities. As described in Section 3, our data collection system also captures 
audio recordings of participants. The raw audio recordings contain background noise, which primarily from 
spontaneous communication between participants and the researcher. We believe these audio signals still hold 
significant potential for future research, as they contain meaningful acoustic cues such as tone, pitch, and 
speech dynamics that can contribute to emotion recognition tasks. With appropriate noise filtering and audio 
segmentation, clean audio snippets can be extracted for use in multimodal analysis. We will include the audio 
data as part of the public dataset release to support further exploration of multimodal emotion recognition in 
immersive environments.

Emotion Elicitation Through Fully Immersive VR Stimuli. Although the emotional stimuli used in this 
study are drawn from a well-validated database and have been shown to elicit strong emotional responses [138], 
a potential limitation lies in the rendering of 2D video content within a 3D VR environment. Despite our design 
efforts to optimize visual immersion through curved display and field-of-view alignment, the experience may not 
fully replicate the spatial immersion provided by native 360° or interactive VR content. Future work can leverage 
the open-source framework developed in this work to explore the integration of fully immersive VR-native 
stimuli to further enhance emotional presence.

7 CONCLUSION
We presented a comprehensive eye-tracking dataset specifically designed for emotion recognition research in VR, 
along with a data collection software tool and extensive benchmarking analysis. Our dataset is the first to provide 
periocular eye videos and Ekman’s basic emotion annotations, distinguishing it from previous VR-based emotion 
recognition datasets. As such, it addresses key research gaps and enables new research in emotion recognition and 
affect-aware computing in VR. To validate its effectiveness, we conducted a benchmark evaluation demonstrating
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that fusing the new periocular video data available in our dataset with conventional eye-tracking signals, such as 
gaze direction and pupil dynamics, significantly enhances emotion recognition performance. Our data collection 
software, relying solely on standard sensors found in most AR headsets, ensures compatibility and scalability 
across commercial platforms. We believe this work provides a valuable, scalable resource for exploring emotional 
and cognitive processes in VR, paving the way for more emotionally responsive and immersive VR experiences.

8 DATA AND CODE AVAILABILITY
We are open-sourcing all research artifacts from this work, including the data collection software framework, 
video stimuli, and scripts for data processing and deep learning models used in benchmarking, to enhance 
reusability and reproducibility. These resources are available at https://github.com/MultiRepEyeVR/Through-
the-Eyes-of-Emotion. The dataset is maintained in our institutional repository and is available upon request 
following the signing of a sharing agreement.
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A Appendix: Information of Video Stimuli
This section describes the video stimuli used in our data collection process (introduced in Section 4). The

dataset was collected in two stages of user studies. The first stage involved 20 participants, and the second stage
involved six participants. In each stage, participants were shown a curated set of 14 short video clips designed
to evoke the seven basic emotions. The video stimuli were selected based on the emotional intensity ratings
reported in the prior study by Zupan et al. [138]. Emotional intensity was rated on a scale from 1 (not at all) to 9
(extremely).

For Study One, we selected clips with the highest intensity ratings for each target emotion, prioritizing both
emotional impact and narrative clarity. Each video clip was accompanied by a brief content sentence presented
to participants before playback to provide context and aid in emotional engagement. Study Two used a different
set of 14 clips, also selected from the same source, with comparable emotional intensity values but different
scenarios and character portrayals. This allowed us to evaluate the generalizability and robustness of participants’
emotional responses across diverse stimuli. The complete list of video clips, along with their emotional intensity
ratings, durations, and briefing content, is provided in Tables 9 and 10 for Study One and Study Two, respectively.

Table 9. Details of the 14 video clips used in Study One to evoke the seven basic emotions. Emotional intensity ranges from 1
(not at all) to 9 (extremely). The content sentence is used to brief the participants about the video clip before playing.

Emotion Video clip Emotional
intensity Length (s) Content sentence

(a) Ex Machina 6.8 (2.5) 43 A man was selected to assist another man in a research
project. The two are discussing topics related to the job.Neutral

(b) Rudderless (business meeting) 6.9 (2.6) 30 A group of coworkers are having a business meeting to try and
secure a partnership with a fellow company.

(a) One Day 8.2 (1.7) 38 A woman is riding her bike to meet her husband for a date.
Surprise (b) Deep Blue Sea 7.7 (2.0) 94 A man tries to convince his fellow scientists to not give up

when they find themselves trapped in the middle of the ocean.

(a) Soul Surfer (homeless girl) 7.6 (1.9) 151
After a girl loses her arm in a shark attack while surfing,

she goes on a mission trip with her church to help
Tsunami victims.Happiness

(b) Lottery Ticket 7.5 (1.9) 112 A young man was buying a lottery ticket for his grandmother
when the store clerk convinced him to buy one for himself too.

(a) Still Alice 7.5 (1.6) 142
A woman and her husband are spending time together

at their beach house after they find out she has
early onset Alzheimer’s.Sadness

(b) My Sister’s Keeper 7.7 (1.7) 106 A girl is dying from terminal cancer and she doesn’t
want to fight anymore.

(a) 12 Years a Slave 7.8 (1.7) 115 A mother and her two children have been
kidnapped by slave traders and are up for sale at a slave auction.Anger

(b) Enough 8.2 (1.5) 119 A young woman working in a diner for a meager
wage marries her dream man and has a child.

(a) American History X 8.3 (1.2) 149 After some men try to rob his car, a white supremacist takes action
despite his young brother’s protests.

Disgust
(b) Limitless (blood) 7.7 (2.0) 46

A gang has broken into a man’s house to steal his drugs which
unlock the full potential of one’s brain. The man has run out of the
drug and is suffering the withdrawals on the floor of his apartment

while the gang searches for the tablets.

(a) Kings of Summer 6.7 (2.4) 61
Three friends ran away from home and built a cabin in the woods.
Eventually, two of them return home but the third insists on staying

and living alone.Fear

(b) The Conjuring 7.3 (2.4) 141 A woman hears something and heads into the
basement to investigate.
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Table 10. Details of the 14 video clips used in Study Two to evoke the seven basic emotions. The emotional intensity values
(mean and standard deviation) are drawn from the study by Zupan et al. [138].

Emotion Video clip Emotional
intensity Length (s) Content sentence

Neutral (a) Good Will Hunting 5.5 (2.8) 88 A man and a woman go on a date at a greyhound racing track,
where she asks about his family.

(b) The Other Woman 5.4 (2.8) 45
A husband and wife discuss everyday matters:

she updates him on household issues,
and he talks about work and signing new contracts.

Surprise
(a) The Call (parking garage) 6.4 (2.4) 26 A young girl, walking through a parking garage,

makes a phone call to her mother.

(b) Joe 7.4 (2.1) 32 A group of butcher friends chat about an elderly woman’s birthday.
One man plans a trip to town to pick up items that others need.

Happiness
(a) Forrest Gump (reunion) 7.5 (1.7) 51

In the middle of a presentation, a man rushes off stage upon
spotting the love of his life running toward him. They embrace in a pond

near the Lincoln Memorial.

(b) Soul Surfer (surfing) 7.4 (1.7) 109 A disabled girl who loves surfing heads to the beach with friends.
After several attempts, she finally succeeds in catching a wave.

Sadness
(a) I Am Sam 7.9 (1.5) 108 A mentally challenged father is struggling in court as he

fights to keep custody of his daughter.

(b) My Sister’s Keeper (doctor) 7.9 (1.5) 100 A young girl with leukemia hears a grim update from her doctor,
who tells her mother that she may not have much time left.

Anger
(a) Crash 8.1 (1.1) 92 A black couple is pulled over by a racist cop. He treats the man

violently and sexually harasses the woman.

(b) The Hunting Ground 7.8 (1.7) 122 Several women recount their experiences of being raped and describe
the frustration they faced when seeking help.

Disgust
(a) Wild 7.6 (2.0) 62 A woman takes an arduous hike until her feet become severely

swollen, causing immense discomfort.

(b) Slumdog Millionaire (blinded) 8.3 (1.4) 73 Two human traffickers force a boy to witness another child being drugged
and then blinded with scalding liquid.

Fear
(a) The Life Before Her Eyes 7.2 (2.2) 120 Two girls apply makeup in a school bathroom when they hear screams

from outside, followed by gunshots.

(b) Insidious 6.95 (2.6) 151
A woman describes a chilling dream involving a child’s room and

a frightening presence, which suddenly appears
and sends her running in terror.

B Appendix: Confusion Matrix
Figures 7 and 8 present the confusion matrices correspond to the recognition results reported in Table 7. As the

evaluation follows a leave-one-subject-out protocol, the results are subject-dependent. Instead of showing the
results for all the subjects, we take Subjects 3 and 7 as two representative examples. The figures below present the
confusions between different emotional classes when the two models (periocular and multi-faceted) are fine-tuned
by data with empirically estimated labels (10% data from the same-session or 10% data from cross-session).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 143. Publication date: September 2025.



143:34 • Yang et al.

(a) Periocular (10% Same-session), Accuracy: 79.7%. (b) Multi-faceted (10% Same-session), Accuracy: 82.1%.

(c) Periocular (10% Cross-session A), Accuracy: 51.6%. (d) Multi-faceted (10% Cross-session A), Accuracy: 55.1%.

(e) Periocular (10% Cross-session B), Accuracy: 78.2%. (f) Multi-faceted (10% Cross-session B), Accuracy: 87.1%.

Fig. 7. Confusion matrices of the recognition results for Subject 3 when fine-tuning by data with empirically estimated
labels. These results correspond to the setting and performance reported in Table 7.
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(a) Periocular (10% Same-session), Accuracy: 79.2%. (b) Multi-faceted (10% Same-session), Accuracy: 80.4%.

(c) Periocular (10% Cross-session A), Accuracy: 52.2%. (d) Multi-faceted (10% Cross-session A), Accuracy: 58.4%.

(e) Periocular (10% Cross-session B), Accuracy: 72.4%. (f) Multi-faceted (10% Cross-session B), Accuracy: 90.5%.

Fig. 8. Confusion matrices of the recognition results for Subject 7 when fine-tuning by data with empirically estimated
labels. These results correspond to the setting and performance reported in Table 7.
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C Appendix: Interpreting Pupil Diameter Changes in Response to Emotions
Below, we provide an analysis of the recorded pupil diameter data, given its well-established association with

emotional arousal in cognitive and affective computing research [11, 54, 104]. Specifically, we analyze changes
in pupil diameter across different emotional categories in our dataset. We first pre-process the data to remove
blinks, noise, and outliers. Next, we mitigate the influence of luminance on pupil diameter change, to isolate the
pupil’s response to emotional stimuli. Finally, we conduct both qualitative and quantitative analyses to examine
emotion-specific patterns in pupil diameter changes.

The results reveal a clear trend: pupil dilation tends to increase for high-arousal emotions (e.g., fear) compared
to neutral emotional states, which aligns with findings reported in prior literature [11, 54]. This analysis illustrates
the potential of our dataset for studying emotion-induced physiological responses and serves as a representative
example for future in-depth analysis of other biometric features [104] such as gaze direction, blinking rate, and
periocular dynamics.

C.1 Eliminating Influence from Ambient Light
First, we apply the data pre-processing steps introduced in Section 5.2 to remove noise and outliers in the raw
pupil diameter signals. However, pupil diameter is not only affected by changes in emotional state but is also
strongly influenced by ambient illumination levels [16, 135]. In brighter environments, pupils constrict; in dimmer
conditions, they dilate. Since our data is recorded from subjects wearing a VR headset, all ambient light came
from the videos displayed within the headset. Thus, the illumination level can be retrieved for each frame of
the videos by converting the frames of the videos into HSV color format and isolating the ‘V’ component which
represents the luminance level. Given that the luminance source is known, its influence on pupil diameter can be
modeled as [122]:

𝑃𝐷 = 𝑃𝐷L + 𝑃𝐷E, (1)
where, 𝑃𝐷 is the recorded pupil diameter, composed of a luminance-dependent component (𝑃𝐷L) and an emotion-
dependent component (𝑃𝐷E). Following current studies [113, 122], we leverage a linear regression model to
estimate the luminance-dependent component of the pupil diameter by:

𝑃𝐷L = 𝑎 × 𝐿𝑉 + 𝑏, (2)
where 𝐿𝑉 is the luminance level retrieved from the video frame, 𝑎 is the scaling factor and 𝑏 represents the
offset. Specifically, the coefficients 𝑎 and 𝑏 are obtained by fitting a linear regression between the average pupil
diameter of both eyes recorded for the given participant, and the luminance value calculated for each movie
frame [113, 122]. Finally, 𝑃𝐷L is subtracted from the recorded pupil diameter 𝑃𝐷 to obtain the emotion-dependent
component 𝑃𝐷E. An example of the processed 𝑃𝐷E is shown in Figure 9, in which the original signal is recorded
when the participant is watching the video “Still Alice”. The estimated luminance-dependent component of pupil
diameter, 𝑃𝐷L (in orange), has been subtracted from the recorded data 𝑃𝐷 (in blue) to obtain the component
primarily influenced by emotional state, 𝑃𝐷E (in green).

C.2 Qualitative Analysis of Pupil Dilation and Constriction in Video Clips
Below, we present a case study that leverages the estimated emotion-dependent pupil diameter to qualitatively
examine how pupil size changes in response to visual stimuli associated with different emotional states.

We take the session when one subject is watching the video clip “Still Alice” as an example. The video is selected
to evoke the emotion of sadness (as shown in Table 9). In this scene, a woman and her husband are spending time
at their beach house after learning she has early-onset Alzheimer’s disease. Before going for a run, she attempts
to find the bathroom but becomes disoriented, opening several doors without success. Eventually, her husband
finds her standing in the hallway, having wet herself. She begins to cry, overwhelmed by the realization that she
can no longer remember even simple things.
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Fig. 9. An example of the emotion-dependent pupil diamter, 𝑃𝐷E, calculated by subtracting the luminance-dependent
component 𝑃𝐷L from the recorded raw pupil diameter signal 𝑃𝐷 .

Happiness triggers pupil dilation. As shown in Figure 10, we annotate a few signal peaks observed in 𝑃𝐷E,
which indicate moments of pupil dilation when the subject is watching the video. The four peaks are labeled
numerically from 1 to 4. For each peak, we include a snapshot from the corresponding video segment along
with a brief description of the associated scene. Peaks 1, 2, and 3 correspond to moments when: (1) the woman
looks at old photos; (2) smiles at her newly arrived husband; and (3) when her husband appears with an amicable
expression. These scenes evoked feelings of joy and happiness in the subject (as reported by the subject during
data labeling), which also triggered pupil dilation. This aligns with previous studies [74, 80], which show that
pupils dilate in response to pleasant stimuli such as images of loved ones, attractive faces, and emotionally
engaging scenes. However, Peak 4 occurs when the woman becomes visibly distressed after forgetting where the
bathroom is, and the subject’s pupil dilates. This response was initially unexpected, since sadness has been linked
to reduced pupil dilation in some studies [9, 11]. Our understanding is that the subject experienced empathy
rather than sadness only. While empathy is not classified as one of the basic emotions, it often involves both
cognitive and emotional engagement, increases arousal, and has been shown to cause pupil dilation [18, 130].
Sadness triggers pupil constriction. Similarly, in Figure 11, we annotate six signal troughs in 𝑃𝐷E, which

indicate moments of pupil constriction. These troughs correspond to emotionally significant, sadness-inducing
scenes. Specifically, Trough 1 occurs when the woman forgets she had just agreed to go running and continues
looking at photos, prompting her husband to repeat the question that offers the first indication of her cognitive
decline. Trough 2 occurs as she enters the house and immediately appears disoriented, revealing a second sign
of her condition. Trough 3 aligns with a moment of clear confusion, intensified by the sad background music.
Trough 4 occurs when the woman, visibly distressed, frantically opens several doors in search of the bathroom.
In Trough 5, it is revealed that she has peed her pants. Finally, Trough 6 marks the moment she breaks down in
tears as her husband approaches to comfort her. All six troughs coincide with sad moments and are consistent
with typical pupil constriction observed during low-arousal emotional states such as sadness [9, 11].
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Fig. 10. Analyzing the signal peaks appear in 𝑃𝐷E and the corresponding scenes that elicit the subject’s emotion.

Fig. 11. Analyzing the signal troughs in 𝑃𝐷E and the corresponding scenes.
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Fig. 12. The averaged 𝑃𝐷E over all subjects when watching the video stimulus “Still Alice". All subjects share similar overall
patterns in pupil diameter changes, when comparing to that shown in Figure 9.

Overall investigation. Figure 12 shows the average 𝑃𝐷E across all subjects for the video “Still Alice”. Notably,
the Peaks and Troughs observed in the participant-specific signal (Figure 9) are also appeared in the averaged
signal. This observation suggests that subjects exhibit similar emotional response patterns throughout the video.

We apply the same processing steps to all recorded pupil diameter signals across the seven emotional states and
computed the averaged 𝑃𝐷E for all participants corresponding to each emotion. The resulting distributions are
shown in Figure 13. Note that, for clearer visual comparison, the box plots have been slightly shifted downward
so that the median pupil diameter for the Neutral condition aligns with the x-axis. Moreover, as discussed earlier,
that labeling an entire video clip with a single emotion can be inaccurate. Therefore, for each video, only the pupil
data from the participants labeled segments were included in this analysis. In the box plots shown in Figure 13,
the average 𝑃𝐷E values for Surprise, Happiness, Anger, Disgust, and Fear are higher than those for Neutral
and Sadness. This aligns with findings from the recent study [122] that low-valence, low-arousal emotion (i.e.,
Sadness) lead to the greater pupil constriction, whereas high-valence, high-arousal emotions (i.e., Surprise) lead
to the greater dilation.
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Fig. 13. The box plot shows the distribution of the 𝑃𝐷E of all participants combined, for each of the seven emotions. The
low-valence and low-arousal emotion (i.e., Sadness) has greater pupil construction, whereas, high-valence and high-arousal
emotion (i.e., Surprise) leads to the greater dilation.

D Appendix: Details of Hardware and Software Designs
This section gives the details of the hardware and software designs.

Periocular image 
of left eye Two near-eye cameras

USB cable connects to the headset

Periocular image 
of right eye

Fig. 14. The hardware setup. The Pupil Labs eye-tracking add-on is connected to the VR headset through the USB port,
which enables stable and interference-free video streaming of the periocular video.
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Fig. 15. The data recording program captures multiple signal streams from the VR headset and the Pupil Labs eye tracker.
Specifically, four types of signals are recorded and stored in external storage: audio and IMU data from the VR headset’s
onboard sensors, near-eye images from the Pupil Labs eye tracker, and scene images generated in Unity, representing the
participant’s view in the virtual environment while watching the rendered stimuli.

Fig. 16. An illustration of the Data Labeling UI and its main elements. After viewing each video stimulus, the participant,
together with the researcher, can replay the video to create segments along the timeline and annotate each segment with an
emotion label. Additionally, in the emotion intensity rating field, a numerical rating is assigned to each segment to represent
the intensity of the participant’s emotional response.
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