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Abstract. We present an analysis of three datasets of 10 min metocean measurement statistics and our resulting
recommendations to both producers and users of such datasets. Many of our recommendations are more gen-
erally of interest to all numerical measurement data producers. The datasets analyzed originate from offshore
meteorological masts installed to support offshore wind farm planning and design: the Dutch OWEZ and MMIJ
and the German FINO1. Our analysis shows that such datasets contain issues that users should look out for
and whose prevalence can be reduced by producers. We also present expressions to derive uncertainty and bias
values for the statistics from information typically available about sample uncertainty. We also observe that the
format in which the data are disseminated is sub-optimal from the users’ perspective and discuss how producers
can create more immediately useful dataset files. Effectively, we advocate using an established binary format
(HDF5 or netCDF4) instead of the typical text-based one (comma-separated values), as this allows for the in-
clusion of relevant metadata and the creation of significantly smaller directly accessible dataset files. Next to
informing producers of the advantages of these formats, we also provide concrete pointers to their effective use.
Our conclusion is that datasets such as the ones we analyzed can be improved substantially in usefulness and
convenience with limited effort.

1 Introduction

The planning and design of offshore wind farms depends
heavily on the availability of representative meteorological
and ocean or “metocean” measurement data. For example,
the wind resource (the wind speed and direction distribution)
at the candidate farm location is used to estimate energy pro-
duction over the farm’s lifetime, and information about ocean
waves is needed for wind turbine support structure design
and planning installation and maintenance.

The data are collected by instruments placed on fixed off-
shore platforms, met masts, or measurement buoys deployed
in measurement campaigns. These campaigns are ordered by
the project owner (a government or a farm developer) and
set up and carried out by contractors (applied research in-
stitutes or companies). The dataset producer (one or more
of the contractors) collects and processes the data generated
in these campaigns and provides them to dataset users. The
datasets produced are often available publicly to these users,

although usually with some access and usage restrictions, es-
pecially for commercial purposes.

We became interested in evaluating metocean measure-
ment datasets after encountering a number of issues in a spe-
cific dataset, both in data quality and in the dissemination
format. (Our concrete purpose was to use it for wind farm
energy production estimation.) Discussion with other users
of such datasets showed that many found the typical dis-
semination approach, providing multiple files with comma-
separated values, to be inconvenient or even a hindrance to
their application. Most were not aware of the data quality is-
sues we encountered, which can be categorized as faulty data,
missing documentation, inappropriate statistic selection, lim-
ited data quality information, and sub-optimal value encod-
ing.

Therefore, we performed a study of three commonly used
metocean datasets to answer essentially the following ques-
tions. (i) Are these issues commonly shared in metocean
datasets? (ii) How can the issues that are present be ad-
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dressed? This paper reports the results of that study. In brief,
(i) yes, there are shared issues, but, not unexpectedly, not all
of them in all datasets, and (ii) dataset producers can address
the issues with a few non-burdensome additions to their cre-
ation practice. Next to providing arguments for and detailing
these conclusions, this paper is meant to raise awareness of
the issues mentioned by giving concrete examples. Further-
more, it provides dataset producers with concrete ideas about
how to achieve substantial improvements with reasonable ef-
fort.

The users of the produced datasets are of course the farm
developers, but also the academic world, whose usage is not
necessarily restricted to wind energy applications. The con-
text of our academic research is offshore wind energy, but
the work we present here is relevant outside that area as well.
Therefore, we treat all measured quantities on equal footing
and do not focus on wind and wave data. When our discus-
sion goes beyond the analysis of the specific datasets we con-
sidered, it is also mostly independent of their metocean na-
ture but generally applies to any numerical time series data.

We structure the paper into two main sections. We start
with an essentially descriptive Sect. 2, to give an overview
of the datasets we considered and to identify the issues we
encountered. The original contributions here are our thor-
ough description, in-depth analysis, and expressions of the
uncertainties and bias in the statistics’ values that make up
the datasets. In this section we also mention options for ad-
dressing issues described, where it can be done compactly
and where we believe it adds value for dataset producers. In
the instructional Sect. 3 we discuss how the format of these
datasets can be improved and thereby disseminated more
conveniently. This section includes an up-to-date evaluation
of binary dataset file format functionality. The recommen-
dations to project owners, dataset producers, and users that
follow from these analyses are collected at the end of this
paper (Sect. 4), preceding the overall conclusions (Sect. 5).

2 The datasets and their analysis

We split our discussion of the datasets into two parts: first,
in Sect. 2.1, we present the three datasets in terms of context
and content, and then, in Sect. 2.2, we go over the issues we
encountered.

2.1 A first look at the datasets

All three datasets we consider come from measuring masts in
the North Sea and contain multiple multi-year 10 min statis-
tics data, called “series”. These 10 min statistics are derived
from higher-frequency measurements, called “signals”, of
quantities measured by various instruments at various loca-
tions on the mast. The available statistics are the sample min-
imum, maximum, mean, and standard deviation.

For each dataset, we give a brief description of the mea-
surement site and setup, list the measurement period and

quantities measured, describe the dissemination approach,
point to available documentation, and highlight some further
important aspects. We do this in full detail here for the first
dataset, but for the other two we put aspects that are not sub-
stantively different in Appendix A1. We also provide a brief
FAIRness analysis (Wilkinson et al., 2016) of the datasets in
Appendix A1.3.

Common to all three datasets is that they can be down-
loaded from a website, where some documentation is avail-
able. But, also for all three, we needed to look up external
sources and contact parties involved in the dataset creation
process to get a more complete view. The collected meta-
data are available as part of a separate bundle (Quaeghebeur,
2020). It also includes details not mentioned in this paper,
such as the make and type of instruments and loggers.

2.1.1 OWEZ – offshore wind farm Egmond aan Zee

To gather data before and after construction of the offshore
wind farm Egmond aan Zee (OWEZ; “Offshore Windpark
Egmond aan Zee” in Dutch), a met mast was built on-site. Its
location is 52◦36′22.9′′ N, 4◦23′22.7′′ E (WGS 84), which is
15 km off the Dutch coast near the town Egmond aan Zee.
The location is indicated in Fig. 1. The mast was erected in
2003 and construction of the wind farm started in 2006. Data
are publicly available for the period July 2005–December
2010. The instruments used and quantities measured and
some of their characteristics are listed in Table 1.

Due to an agreement between the Dutch government and
the OWEZ developer, data gathered and reports written in the
context of the wind farm’s construction have been made pub-
licly available. This is done through a website where these
materials can be downloaded (NoordzeeWind, 2019). The
metocean dataset can be downloaded as 66 separate monthly
compressed Excel (xls) spreadsheet files. The total size is
almost 1 GB, or about 400 MB compressed. This represents
data points for 289 296 10 min intervals. The data in each file
are structured as follows:

– six date–time columns (year, month, day, hour, minutes,
seconds);

– 48 “channels” of five columns each: an integer identi-
fier “Channel” and four real-valued statistics, “Max”,
“Min”, “Mean”, and “StdDev”, with each channel cor-
responding to a specific measured quantity and location
on the mast.

In the Excel files, the statistics’ values are encoded as 8 B
(byte) binary floating point numbers.

Information about the dataset, the met mast, and its con-
text is available through the same website. In particular,
there is a user manual (Kouwenhoven, 2007) and several re-
ports from which further information can be learned (e.g.,
Curvers, 2007; Eecen and Branlard, 2008; Wagenaar and
Eecen, 2010a, b). Information about the instruments used and
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Figure 1. A map with the location of the three offshore met masts from which data were analyzed: OWEZ, MMIJ, and FINO1.

in particular the measurement uncertainty had to be looked
up in specification sheets or obtained through personal com-
munication with people involved in the project (see Ac-
knowledgements).

2.1.2 MMIJ – measuring mast IJmuiden

The second dataset, “MMIJ”, comes from a met mast in the
Dutch part of the North Sea. The location is indicated in
Fig. 1. Details can be found in Appendix A1.1.

The exact set of signals differs of course from the OWEZ
dataset; we have given an overview in Table A1 in the ap-
pendix. The data were collected during the period 2011–
2016, a period of time comparable in length to OWEZ. The
dataset is made available as a single semicolon-separated-
value (csv) file, and the statistics’ values are encoded in
a decimal fixed-point format with five fractional digits
(x...x.xxxxx).

2.1.3 FINO1 – research platform in the North Sea and
the Baltic Sea Nr. 1

The third dataset, “FINO1”, comes from a met mast in the
German part of the North Sea. The location is indicated in
Fig. 1. Details can be found in Appendix A1.2.

The exact set of signals again differs from the OWEZ
dataset; we have given an overview in Table A2 in the ap-
pendix. The data investigated were collected during the pe-
riod 2004–2016, so a period of time more than twice as long
as for the other two datasets. A difference with the other two

datasets is that not all statistics are available for all signals.
Also, it is free for academic research purposes but not for
commercial use, in contrast to the two other datasets. The
dataset is made available as a set of tab-separated-value (dat)
files, and the statistics’ values are encoded in a decimal fixed-
point format with up to two fractional digits (x...x.xx). For
each quantity, a quality column is included next to the statis-
tics’ columns.

2.2 Dataset issues

We split the issues encountered in the datasets into five
categories each discussed in their own section: faulty data
(Sect. 2.2.1), documentation (Sect. 2.2.2), statistic selection
(Sect. 2.2.3), quality flags (Sect. 2.2.4), and value encoding
and uncertainty propagation (Sect. 2.2.5).

2.2.1 Faulty data

It is not unusual that the measured signals (raw data) contain
faulty data. With this we mean data values that cannot corre-
spond to the actual values or are very unlikely to correspond
to them. The dataset producers deal with such faulty data,
e.g., by flagging or removing it, when creating the datasets
of statistics series we study. Nevertheless, each of the three
datasets presented above contained remaining faulty data.
We stumbled upon initial examples, but then systematically
looked for issues.

To facilitate this systematic and partly automated investi-
gation, we created binary file format versions of the datasets
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Table 1. An overview of the instruments and their locations on the OWEZ met mast (height in meters above mean sea level and boom
orientation), the quantity measured, measurement uncertainty, the measurement ranges, and the sampling frequencies.

Instrument (No.) Heightah Orientationao Quantity Unit Uncertaintym Rangem Freq.m

(m) Abs. Rel. (%) (Hz)

Accelerometer (1) 116 mast N–S accel. ms−2 0.01 −30–30 33
W–E accel.

Cup anemometer (9) all all hor. wind sp. ms−1 0.5 0–50 4
Ultrasonic anemometer (3) all NE hor. wind sp. ms−1 0.01 1.5 0–60 4

vert. wind sp.
wind direction ◦ 2 0–359 4

Wind vane (9) all all wind direction ◦ 1.4 0–360

Barometer (1) 20 mast atm. pressure mbar 0.5 600–1100
Thermometeri (3) all S ambient temp. ◦C 0.1 −40–80
Hygrometeri (3) all S rel. humidity % 1 0–100
Precipitation sensor (2) 70 NE, NW precip. level –

Thermometer (1) −3.8 mast water temp. ◦C 0.15 0.1 −180–600
Acoustic wave and (1) −17 ? water temp. ◦C 0.1 −4–40 1
current profilerf water level m 4

wave height m 0.01 1 −15–15 4
wave direction ◦ 2 0–359 2
wave period s 0.5–50 2
current vel. 7 m ms−1 0.005 1 −10–10 1
current vel. 11 m
current dir. 7 m ◦ 0–359 1
current dir. 11 m

ah For height, “all” corresponds to 21, 70, and 116 m.
ao For orientation, “all” corresponds to NE, NW, and S or −60◦, 60◦, and 180◦, respectively (north corresponding to 0◦).
i Thermometer and hygrometer are contained in a single package.
f The given sampling frequencies are upper bounds.
m Missing values are unknown.

(HDF5 format for OWEZ and netCDF4 format for MMIJ and
FINO1) in which metadata such as range and possible values
can be stored alongside the data themselves. We discuss these
formats in more detail in Sect. 3. The automation essentially
consisted of looping over all signals and statistics to detect
issues; further investigation was done manually.

More concretely, our procedure was as follows.

1. We performed interactive visual inspection of plots
of the individual datasets, including zooming in on
suspicious-looking parts. Figure 2 provides an example.
The plots should be read as follows: the mean value is
given by the “inner” full (black) line; mean values plus
and minus 1 standard deviation are given by the “inter-
mediate” dotted (blue) lines; minima and maxima are
given by the “outer” dashed (red) lines. The plots in this
figure are snapshots of an interactive visualization pro-
cedure: even though the lines overlap in the unzoomed
left-hand plot, an anomalous extreme mean value is visi-
ble around the 2007–2008 year change. Zooming in a bit
gives the middle plot, where the statistics start becom-
ing visually separated and where the anomaly stands out

even more. Zooming in further gives the right-hand plot,
which shows that many missing values surround the
anomaly, further suggesting that the values still present
here may not be reliable. (We do not know why the sur-
rounding values are missing.)

2. We ran automated checks for values outside the instru-
ment’s range for the series or for inconsistent sets of
statistics’ values. Let us clarify what inconsistent sets
of statistics’ values are. Statistic values imply bounds
on the value of other statistics. If such a constraint is
violated for some 10 min interval, the tuple of statis-
tics (minimum x̌, maximum x̂, mean x̄, standard devia-
tion sx) for that interval is inconsistent. For example, it
should be the case that x̌ ≤ x̄ ≤ x̂; violations of this con-
straint are present, e.g., in the FINO1 cup anemometer
wind speed data. Less obvious constraints involving the
sample standard deviation also exist. We used 1

2 |x̂− x̌|

as the general upper bound for the standard deviation,
given that the values lie in the interval [x̌, x̂] (Shiffler
and Harsha, 1980). (Here x̌ and x̂ can be replaced by
range bounds in case the minimum and maximum statis-
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Figure 2. An illustration of the visual inspection and zooming of plots. We present the OWEZ vertical wind speed data collected by the
ultrasonic anemometer at the NE-116 m location. (Mean in black; mean ± standard deviation in blue; minimum and maximum in red.)

Table 2. An overview of the (largest) range violations present in the FINO1 dataset. (Values rounded to three digits.)

Instrument Quantity Unit Statistic Lowest Instr. range Highest

Cup anemometer hor. wind sp. ms−1 Minimum 0.0313 0.1–75
Maximum 0.1–75 1690

Ultrasonic anemometer hor. wind sp. ms−1 Maximum 0–45 45.6
wind direction ◦ Average 0–359 360

Wind vane wind direction ◦ Maximum 0–360 521
Average 0–360 366

Barometer atm. pressure hPa Average 0.00391 800–1060
Hygrometer rel. humidity % Average 0.0313 10–100 102
Precipitation sensor precip. intensity mA Average 0.00195 4–20 45.3

Pyranometer global radiation Wm−2 Average −4.86 0–4000 145 000

tics are not present in the dataset.) Any such incon-
sistency is a serious issue, as it indicates a deficiency
somewhere in the procedures for calculating statistics
and their post-processing.

As an example, the range violations in the FINO1
dataset gave the results listed in Table 2. Some range
violations point to faulty data (e.g., cup anemometer–
hor. wind sp.–max, where the value exceeds the bound
by more than an order of magnitude), but others sug-
gest a need for more elaborate uncertainty analysis (e.g.,
hygrometer–rel. humidity–avg., where the violating val-
ues probably correspond to the bounds) or more elab-
orate handling of the range bounds (e.g., wind vane–
wind direction–max, where the upper bound could be
increased; also see Appendix A2.1).

The code producing the results of Table 2 is pub-
licly available (Quaeghebeur, 2020). The fact that our
netCDF4 version of the dataset is (uniformly) structured

and contains metadata allows the code to be generic, i.e.,
not variable-specific, and therefore compact.

3. We did checks of the occurring values, for quantities
with a discrete number of possible values. One exam-
ple is the synoptic code “max” values from the MMIJ
precipitation monitor. The check showed the following
values to be present.

−998 −997 −953 −952 −950 −900 −176
−16 0 51 53 55 58 59

61 63 65 68 69 71 73
75 77 87 88 89 90 108

Synoptic code values below 0 and above 99 do not ex-
ist (World Meteorological Organization, 2016, p. 356–
358), so faulty data are present here. Only integer values
are present here, but erroneous fractional values would
also be detected. The code for performing this check is
publicly available (Quaeghebeur, 2020).

www.wind-energ-sci.net/5/285/2020/ Wind Energ. Sci., 5, 285–308, 2020
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4. We ran automated checks for outlier candidates. There
can be both “classical” outliers, i.e., values outside
the range typical for that series, and “dynamic” ones,
i.e., subsequent value pairs whose difference (“rate of
change”) lies outside the difference typical for that se-
ries’s time variation. Both types of outliers can, but do
not necessarily, correspond to faulty data.
In further manual analysis of outlier candidates, causes
may be identified, providing feedback on the data col-
lection and processing procedures. For example, in both
the MMIJ and FINO1 datasets, we encountered sudden
drops to the value zero for some series at regular time
instances; this quite likely corresponds to foreseeable or
detectable sensor resets of some kind.
There are many methods for outlier detection (Aggar-
wal, 2017). But, in this paper, we just wish to point out
that there is a clear need for some form of outlier detec-
tion to be used in the creation of metocean 10 min statis-
tics datasets. Namely, the datasets we analyzed would
benefit enormously from even a basic analysis; we sus-
pect this generalizes to other such datasets produced in
the wind energy field. To make this need apparent, we
present a set of plots in Figs. 3–6 that illustrates that in-
deed there are still outliers present in the datasets. We
devised this type of plot as an alternative to lag-1 plots
(which plot xk+1 versus xk), so that rate-of-change mag-
nitudes can be read off directly.
These plots, of which examples are given in Figs. 3–6,
should be read as follows. The horizontal x axis shows
measurement value; the vertical y axis shows the ab-
solute value of the mean of the differences with the
preceding and next measurement values. Each dot cor-
responds to a measurement. Lines connect successive
measurements. Only those measurements are shown
with an x percentile outside [0.1,99.9] or a y percentile
above 99, so the brunt of the measurements are not
shown. (These bounds are somewhat arbitrary, but rea-
sonable for the size of the datasets.) The y axis is linear
until the 99th percentile and logarithmic above. To give
an idea about the distribution of all the measurement
points, so also the ones that are not shown, we add (blue)
lines for specific fractiles: thick dashed for the median
and thin dotted for { 1

26 , . . .,
1
8 ,

1
4 ,

3
4 ,

7
8 , . . .,1−

1
26 }. Thick

full (red) lines are added as necessary to indicate range
bounds.
In Fig. 3, there are some suspiciously high values, some
even beyond the nominal measurement range of the
instrument. This is also the case for the “Min” and
“Mean” statistics, even if the probably isolated respon-
sible data points are not visible. In Fig. 4, there are sus-
picious 0 % values and several values beyond 100 %. In
Fig. 5, we see a cluster of data points at suspiciously
low values and some impossibly fast 10 min pressure
changes, a number of them more than 100 hPa. In Fig. 6,

we see a quite large number of atypically high tem-
peratures and some impossibly fast 10 min temperature
changes, a couple of them of more than 30 ◦C.

Outlier plots for all data series are available in the Sup-
plement for this paper. The code producing them is pub-
licly available (Quaeghebeur, 2020).

Our analysis was generic in the sense that we did not make
use of quantity-specific domain knowledge (e.g., empirical
relationships between mean and maximum) or measurement-
setup-specific knowledge (e.g., met mast influence on wind
speed). In the context of wind resource assessment, Brower
(2012) gives a description of a data validation procedure that
does take into account such specifics. Meek and Hatfield
(1994) proposed signal-specific rules for checking meteo-
rological measurements for range violations, rate-of-change
outliers, and no-observed-change occurrences.

For all of the issues presented in this section, the dataset
producer is better placed to interpret them, given that they
have information about the data acquisition and processing
procedures that the user lacks. Therefore it is the dataset pro-
ducer who would ideally identify such issues and fix them,
if possible, or otherwise at least mask or flag them. Given,
as illustrated, the relative simplicity of the required analy-
ses, relatively little effort may be required for a substantial
increase in dataset quality.

2.2.2 Documentation

As mentioned in Sect. 2.1, for each of the three datasets we
investigated, documentation on the measurement setup, in-
struments, and quantities measured is available. Usually, this
takes the form of a website, data manual, overview table, or
a combination thereof. However, for purposes of interpreta-
tion and use of these datasets, some essential or potentially
useful information is often missing.

We consider the information we listed in the overview Ta-
bles 1, A1, and A2 to be essential: instrument location, quan-
tity measured, its unit, information about accuracy (e.g., by
giving absolute and relative uncertainty)1, range, and, given
our focus on statistics data, sampling frequency. For categor-
ical data such as binary yes or no sensors (e.g., precipitation
presence) or enumeration values (e.g., synoptic codes), range
is of course replaced by a set of possible values and unit by
a description of how to interpret those possible values.

How do the three datasets fare in terms of documentation?

1We follow the Joint Committee for Guides in Metrology (2012)
in our usage of “(measurement) accuracy” and “(measurement) un-
certainty”. Namely, the former refers to a qualitative description of
the “closeness of agreement between a measured quantity value and
a true quantity value of a measurand” and the latter to a quantitative
measure, i.e., a “non-negative parameter characterizing the disper-
sion of the quantity values being attributed to a measurand, based
on the information used”. These terms cover both systematic and
random aspects.
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Figure 3. Illustrative plots for visually identifying outliers (see text for an explanation): OWEZ 21 m NW ultrasonic anemometer horizontal
wind speed data (ms−1).

Figure 4. Illustrative plots for visually identifying outliers (see text for an explanation): MMIJ 21 m relative humidity data (%).

Figure 5. Illustrative plots for visually identifying outliers (see text
for an explanation): FINO1 21 m air pressure data (hPa).

Figure 6. Illustrative plots for visually identifying outliers (see text
for an explanation): FINO1 72 m ambient temperature data (◦C).

Timestamps All data values are accompanied by times-
tamps spaced 10 min apart. However, for none of the
three datasets is it mentioned whether this timestamp
refers to the time of the first, last, or even some other
sample. Knowing this is necessary for the precise com-
bination of datasets. If we assume that the samples un-
derlying the dataset start at the full hour, which corre-

sponds to the raw data we have seen for OWEZ, we can
deduce the convention used. Based on whether the first
timestamp in a data file has “00” or “10” for its min-
utes value, we assume that OWEZ and MMIJ are first-
sample based and FINO1 is last-sample based.

Location For all three datasets, the documentation about lo-
cation was good to excellent: technical drawings of the
mast with instrument locations or detailed data about
orientation and height. (Pictures or video footage would
of course further increase confidence in the accuracy of
the drawings.) A small comment we can make here is
that the location information in the series names used
sometimes does not directly correspond to the actual
situation. For example, in the MMIJ dataset a 46.5◦

angle offset of boom orientation relative to the (geo-
graphic) north needs to be accounted for and in the
FINO1 dataset some height labels differed from the doc-
umented heights.

Quantities and units The description of the actual quanti-
ties measured and their units was in general also quite
good. There were two clear exceptions. (i) The precipi-
tation detector was completely omitted from the MMIJ
documentation. (ii) Precipitation data from FINO1 at
23 m contained the concatenation of both presence (yes
or no) and intensity data. Also, the interpretation of bi-
nary codes (e.g., does 0 correspond to yes or no?) was
not explicitly given for any of the datasets, but had to be
deduced from the data.

www.wind-energ-sci.net/5/285/2020/ Wind Energ. Sci., 5, 285–308, 2020



292 E. Quaeghebeur and M. B. Zaaijer: How to improve the state of the art in metocean measurement datasets

Ranges Ranges and sets of possible values were mostly left
unmentioned in the documentation, except for those
available in instrument data sheets included in the
OWEZ and MMIJ data manuals. Making the data sheets
of the instruments available in such a way turned out to
be convenient, as tracking them down is, in our experi-
ence, not always possible.

Accuracy1 Accuracy information was available in the
FINO1 overview table and for those instruments for
which the data sheet was included in the OWEZ and
MMIJ data manuals. For the other signals, we had to
rely on the information found in data sheets not avail-
able in the datasets’ documentation or on their website.
Entirely absent is a discussion of the impact on accu-
racy of all other aspects of the measurement setup (e.g.,
analog-to-digital conversion) and data processing (e.g.,
the application of calibration factors). Such a discussion
would allow researchers using the datasets to get a more
complete picture of the accuracy of the values in the
datasets.

Sampling frequency The sampling frequencies were avail-
able in the documentation for MMIJ and FINO1, but not
for OWEZ. This information is essential for the estima-
tion of the uncertainty of the mean and standard devia-
tion statistics (see Sect. 2.2.5).

Instruments and their settings We mentioned our use of
data sheets a few times before. To find these when
they are not included in the documentation, the exact
instrument models need to be available. This was the
case for all three datasets. However, this may not be
enough: the measurement characteristics of some in-
struments (e.g., barometers) depend on specific settings,
especially when they perform digital processing. These
settings were never described. Furthermore, loggers are
an essential piece of the measurement chain and there-
fore need to be documented as well. For MMIJ and
FINO1 this is the case, but not for OWEZ.

Data processing Next to its relevance for assessing the ac-
curacy of the values in the dataset, a good view of the
data processing pipeline is important for other aspects
as well.

– When are data considered to be faulty and flagged
in or omitted from the dataset accordingly? This is
entirely missing for OWEZ and FINO1, but some
information is given for MMIJ: if some values in
a 10 min interval are missing, the corresponding
statistics are marked as missing. How faulty data
values are encoded is documented for OWEZ (as
the value−999999), but not for MMIJ and FINO1.
For MMIJ, the convention used (the string “NaN”)
seems to be used quite consistently, although some
precipitation monitor outlier values might actually

be other markers for faulty data. For FINO1, there
are two main faulty data placeholder values easily
identified from the datasets: −999.99 and −999.
However, other values are also present, such as 0
and variants of the two main ones, such as 999,
−999.9, and −1000.

– How are the statistics calculated? This is never
mentioned in the documentation. For most signals
not much ambiguity can arise, as there is not much
choice, being limited to a possible bias correction
approach for the standard deviation. However, for
directional data, it is very much pertinent which
definition of mean and standard deviation have been
used: arithmetic or directional mean, classical or
circular standard deviation (see, e.g., Fisher, 1995).

– Do the data processing steps to arrive at the statis-
tics have any weaknesses, numerical or other? For
example, in the FINO1 wind speed data, there ap-
pear max values that, suspiciously, are a factor of
10 or 100 times larger than the surrounding values.
Leaving such things unexplained severely reduces
the trust in the dataset.

It is clear from the above list that while already a good
amount of information is available, quite a number of very
useful pieces of information are missing. Many of these are
available to the dataset producers, so again the quality of the
datasets, now in terms of documentation, can be substantially
improved with little effort relative to the whole of the mea-
surement campaign.

Unmentioned as of yet is that essentially all the documen-
tation for these datasets is provided in a way accessible to
humans, but not in a machine-readable way. Much of the in-
formation described in the documentation can however be
encoded as metadata in a standardized and machine-readable
way. Metadata are discussed further in Sect. 3.1.

2.2.3 Statistic selection

As seen in the overview Sect. 2.1.1, 2.1.2, and 2.1.3, for all
three datasets the statistics provided are essentially the same:
minimum, maximum, mean, and standard deviation. Only
for FINO1 are not all statistics included for all quantities. In
this section, we are going to discuss these statistic selection
choices, pointing out issues that arise from them.

The uniformity of the statistics provided is convenient
when reading out the data, as it reduces the user’s quantity-
specific code. However, when the signal’s values do not rep-
resent a (underlying) linear scale, providing the minimum,
maximum, mean, and standard deviation does not make
much sense; it may actually cause misinterpretation. This is
usually the case for categorical signals, such as the MMIJ
synoptic code signal. In such cases, other statistics must be
chosen. For example, for binary quantities such as yes–no
precipitation data, giving the relative frequency of just one
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of the two values captures all the information present in the
typical set of four statistics.

As said, in the FINO1 dataset statistics are sometimes
omitted, but mostly for other reasons. For quantities that are
considered to be “slow-varying” (such as atmospheric pres-
sure, ambient temperature, and relative humidity) only the
mean has been recorded. However, next to the convenience
of uniform sets of statistics, having multiple statistics for
a measurement interval is useful for data quality assessment.
(Possible storage and transfer constraints are of course valid
reasons for limiting the number of statistics.) For directional
quantities such as wind direction, the minimum and maxi-
mum were omitted because these are considered meaning-
less by the dataset producer.2 The OWEZ and MMIJ datasets
show, however, that it is possible to give meaningful defini-
tions of maximum and minimum for directional data. (See
Appendix A2.1 for a concrete approach.) This can be valu-
able information, as it makes it possible to deduce, for exam-
ple, the sector extent from which the wind has blown during
a time interval.

2.2.4 Quality flags

Next to statistics, we saw in Sect. 2.1.3 that the FINO1
dataset also contains a categorical quality flag for each set
of statistics. Such information is not present in the other two
datasets.

Including such a flag makes it possible to also provide
information about missingness, i.e., to indicate why one or
more statistic values are missing at that time instant. Such
information is often encoded using a bit field, i.e., a binary
mapping from quality issues and missingness mechanisms
to true (1) and false (0); this bit field can be recorded as
a positive integer. For example, consider the following tu-
ple of quality issues and missingness mechanisms: (“sus-
pect value jumps”, “out-of-range values”, “unknown miss-
ingness mechanism”, “icing”, “instrument off-line”). Then
the bit string “00000” (or integer 0) would denote a measure-
ment interval without any (identified) issues and for example
“010010” (or integer 18) would correspond to a measurement
interval with both instrument icing and out-of-range values
detected.

Of course other information next to missingness mecha-
nisms can be included in the quality flag bit field, also for
non-missing values, as is done for FINO1. For example, this
can be used to indicate possibly faulty data (see Sect. 2.2.1)
that have not been removed (made missing).

2.2.5 Value encoding and uncertainty propagation

In the overview Sect. 2.1.1, 2.1.2, and 2.1.3, for all three
datasets, the values themselves are encoded as fixed-point
values for MMIJ and FINO1 and as a binary floating point

2Personal communication on 27 June 2017 with Richard
Fruehmann (see Acknowledgements).

double for OWEZ. There is, however, more to be said about
what exactly is encoded and which information can be re-
flected in the encoding. We do that here.

Signal values have a natural set they belong to. Relative
humidity, for example, is a fraction, i.e., a value between
zero and 1. Categorical signals take values in a predefined
enumerated set. If for such signals values are given outside
of this set, this is a source of confusion: the user may wonder
whether they can just round erroneous values to the near-
est enumerated one or treat them as faulty. For example, the
MMIJ precipitation detector’s precipitation presence signal
contains values around the enumerated ones and its precipi-
tation monitors’ precipitation presence signals contains val-
ues far outside the range of enumerated values. Another case
are continuous signals that are at one point expressed as cur-
rent or voltage values: the end user will be less certain about
the correct translation procedure to the correct units than the
data processor. For example, the FINO1 precipitation inten-
sity signal is expressed as a current instead of an accumula-
tion speed.

In the OWEZ and FINO1 datasets it sometimes occurs that
certain statistics are marked as faulty or missing, while nev-
ertheless other statistics for the same signal at the same in-
stance are available. From inspection of such data, it is clear
that it can happen that the values of these other statistics seem
reasonable or faulty. An explanation of why the data values
are partly missing would preserve trust in the non-missing
values. This requires a description of the processes creat-
ing such a situation (see Sect. 2.2.2), but could also include
instance-specific information in a flag value (see Sect. 2.2.4).

The values stored in the dataset do not in general encode
their accuracy. For the MMIJ and FINO1 datasets, values
used a fixed-point format, but the number of decimal digits
used is not directly related to the accuracy information avail-
able for the different quantities. This fact may be overlooked
by users, resulting in possible misinterpretations.

To avoid misinterpretation, it is possible to add an esti-
mate for a value’s uncertainty, e.g., by rounding and speci-
fying a corresponding number of significant digits. Accuracy
information was only available for signal values (i.e., high-
frequency samples), typically as absolute uncertainties εa
and relative uncertainties εr. Below, we give expressions for
propagating this information to the statistics, as these do not
seem available in the literature, and we discuss further factors
affecting the statistics’ uncertainty. The nontrivial deriva-
tions of these expressions and a description of the underly-
ing model for the measurement process can be found in Ap-
pendix A2.2. The most important assumption made in these
derivations is that ε2

r � 1� n, where n is the number of
samples per averaging interval.

Sample uncertainties can be propagated to the statistics
of the n signal values xk per averaging interval, which is
10 min for the datasets discussed in this paper. For this, we
essentially assume independence and normality of the corre-
sponding uncertainties εxk . Also, the uncertainty in the statis-
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tics due to the finite nature of the samples can be quanti-
fied based on the fact that the sum appearing in the calcu-
lation of the mean and standard deviation can be seen as
a simple form of quadrature. Let x̌ and x̂ be the minimum
and maximum values in the sample; let x̄ = 1

n

∑n
k=1xk and

s2
x =

1
n

∑n
k=1(xk − x̄)2 be the sample mean and sample vari-

ance. We find the following expressions for the squared un-
certainties of the statistics:

ε2
x ≈

(
ε2

a + ε
2
r x

2
)
+

1
n2 δ

2 for x ∈ {x̌, x̂},

ε2
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≥

1
n

(
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))
+

1
n2 δ

2.

Here δ ≈ x̂−x̌
2 ; in case x̂ and x̌ are unavailable, δ ≈ z1−1/nsx

can be used instead, where z1−1/n is the standard normal
quantile for exceedance probability 1/n. The uncertainty due
to the finite sample size, the term 1

n2 δ
2, diminishes much

faster as a function of n than the uncertainty due to the mea-
surement noise, expressed by the other terms. In practice, this
second term is therefore negligible unless εa and εr are taken
to be zero because no information is available about them.

Next to having associated uncertainties, the sample statis-
tics can also be biased estimators of the statistics for the un-
derlying signal. It turns out that only the sample standard de-
viation sx is biased and that

s′x =

√
max

{
s2
x −

(
ε2

a + ε
2
r x̄

2
)
,0
}

would be a better estimate from this perspective.
To get a more concrete view of these uncertainties and

bias, we provide average relative uncertainty and bias values
for the MMIJ dataset in Table 3. (The code producing the re-
sults of this table is publicly available; Quaeghebeur, 2020.)
The variation in the uncertainties and bias is substantial, so
this table of averages does not provide a complete picture,
but enough to draw some conclusions.

– A fixed-point format does not have the flexibility to give
the appropriate number of significant digits; usually ei-
ther too many or too few are given.

– While the uncertainty is usually rather small (up to a few
percent), in some cases it is substantial (around 10 % or
more).

– The bias in the sample standard deviation can in general
not be ignored. (For example, for ambient temperature,
we see that the bias-corrected value is smaller than the
uncertainty.)

What the impact of uncertainty and bias is depends on the
application. (For example, turbulence intensity estimation is
clearly affected by the bias in the wind speed sample standard
deviation. Concretely TI′/TI= s′x

x̄
/ sx
x̄
= s′x/sx for horizontal

wind speed, e.g., an average reduction of turbulence intensity
up to about 20 %.) But to be able to assess this impact, uncer-
tainty and bias values must be available, making expressions
such as the above essential.

Before closing this section, it is important to stress that the
expressions for propagated uncertainties and biases above are
generic. Namely, their derivation does not depend on the spe-
cific quantity considered or instrument used. Detailed knowl-
edge of the measuring instrument’s properties may allow
for better uncertainty estimates or additional uncertainty and
bias terms. For example, for cup anemometers, it is known
that there is a positive bias of 0.5 %–8 % in the mean wind
speed but that this bias can be greatly reduced using wind
direction variance estimates (Kristensen, 1999). Also, the
IEC 61400-12-1 standard prescribes how the wind speed un-
certainty should be calculated for calibrated cup anemome-
ters (IEC, 2017, Appendix F), which may lead to high-quality
estimates for εa and εr.

3 Dataset formatting

We split our discussion of dataset file formats into two parts.
First, in Sect. 3.1, we give an overview of the formats that are
currently used for the dissemination of the datasets studied
and existing alternatives that we argue to be superior. Then,
in Sect. 3.2, we take a closer look at the potential of these
alternatives based on our practical experience with them.

3.1 A comparison of dataset file formats

We saw in Sect. 2.1, during our first look at the datasets we
studied, that these were disseminated as a compressed set of
Excel files for OWEZ, a compressed semicolon-separated-
value file for MMIJ, and a compressed set of tab-separated-
value files for FINO1. In the Excel files, the values are
stored as 8 B binary floating point numbers. In the delimiter-
separated-value files the values are specified in a fixed-point
decimal text format, with five (MMIJ) and two (FINO1)
fractional digits. All of these are essentially table-based for-
mats, where columns correspond to series and rows corre-
spond to values for a specific time instance. (This structure
satisfies the requirements of “tidy data” according to Wick-
ham (2014), apart from being split over multiple files.) Some
metadata are included in two or more header lines, such as
series identifiers and the unit.

We created binary file format versions of the datasets; in
HDF5 format (The HDF Group, 2019a) for OWEZ and in
netCDF4 format (Unidata, 2018) for MMIJ and FINO1. Both
formats are platform-independent. Files in netCDF4 format
are actually HDF5 files, but adhering to the netCDF data
model (Rew et al., 2006). The use of a different data model
is reflected in the application programming interfaces (APIs)
available for HDF5 and netCDF4. A number of HDF5’s tech-
nical features are not supported by the netCDF data model,
which on the other hand provides additional semantic fea-
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Table 3. Average relative uncertainties and bias in percent for quantities from the MMIJ dataset for which some (likely incomplete) uncer-
tainty information is available. (See Table A1 for more information about the quantities. The values are given with two digits, but it is not
implied that both are significant.)

Instrument Quantity
εx̌

x̌

εx̂

x̂

εx̄

x̄

εsx

sx

s′x

sx
1−

s′x

sx

Cup anemometer hor. wind sp. 4.3 2.7 0.067 1.0 81 19
Ultrasonic anemometer wind sp. X dir. 10 11 2.4 3.0 88 12

wind sp. Y dir. 11 12 2.4 3.0 89 11
wind sp. Z dir. 16 29 7.7 3.3 81 19

Wind vane wind direction 2.2 0.77 0.056 1.4 94 6.4

Barometer atm. pressure 0.017 0.0099 0.00021 7.2 5.2 95
Thermometer ambient temp. 2.3 2.3 0.067 35 4.4 96
Hygrometer rel. humidity 1.3 1.3 0.026 8.7 17 83
Precipitation monitor precip. intensity 17 17 0.45 3.4 98 2.0

Fromv,s cup anemometer hor. wind sp. 2.7 1.7 0.044 0.76 89 11
Fromv ultrasonic anemometer wind sp. magn. 3.9 3.0 3.0 3.4 97 3.5

hor. wind sp. 2.0 0.79 0.042 0.44 98 2.3
Fromv,s ultrasonic anemometer hor. wind sp. 1.2 0.58 0.045 0.31 99 1.2
Fromv,s wind vane wind direction 1.8 0.56 0.042 0.51 96 3.9
Fromv barometer and thermometer air density 0.016 0.0085 0.00018 2.0 72 28

s Correction for tower shadow by selective averaging of values at the same height.
v Virtual measurement, namely, derived from signals obtained with one or more actual instruments.

tures, most notably, shared dimensions and coordinate vari-
ables. The netCDF4 format and its predecessors are popu-
lar for the storage of Earth science datasets, including meto-
cean ones. These formats allow the data to be placed into
multidimensional arrays, called “variables”, in a hierarchical
file system-like group structure. Arbitrary key-value meta-
data attributes can be attached to both groups and variables.
The variables support various common data types, such as
1, 2, 4, and 8 B integers; 2, 4, and 8 B binary IEEE float-
ing point numbers (Cowlishaw, 2008); and character strings.
Also, custom enumerations, variable-length arrays, and com-
pound types can be defined, e.g., a combination of four floats
and an integer. Furthermore, variables can be compressed
transparently, i.e., without the user having to manually per-
form decompression before use.

Let us give a brief evaluation of support in software tools
for the different file formats. Even if the delimiter-separated-
value files are not really standardized (however, see Lindner,
1993; Shafranovich, 2005), support for them is near univer-
sal. Software tools usually include options to deal with the
particulars of the actual encoding (delimiter, quoting, head-
ers, etc.), but this does require manual discovery of these
specifics. These text-based formats can in principle be read
and modified in a text editor, but these are usually not de-
signed to deal with large files, so this is actually impracti-
cal for all but the smallest datasets. The Excel “xls” format,
even though proprietary, has broad reading support. Support
for HDF5 and netCDF4 formats in software tools is very ex-
tensive (The HDF Group, 2019b; Unidata, 2019b). This, in
addition to their feature set, is also a reason for us choosing

to use them; they appear to be the most future-proof of the
many binary formats in existence. We used Python modules
to work with all these formats (McKinney et al., 2019; Co-
lette, 2018; Unidata, 2019a).

Next let us consider the impact of a format being text-
based or binary-based. Text-based formats in principle give
a lot of freedom in choosing the format in which values are
represented, but usually this is done in a single fixed-point
format. To use the data, the values’ representations need to
be parsed into the standard binary number formats used by
computers, namely floats and integers of various kinds. Bi-
nary file formats use binary number formats directly, which
are faster to load into memory and more space-efficient.3

Because of their standardized nature, they can include other
binary-specific features, such as transparent compression and
checksums (data integrity codes).

Now let us look at the metadata. HDF5 and netCDF4 are
considered self-describing formats, as they allow arbitrary
metadata to be included next to the data. These data are easy
to access, also programmatically. Table-based data files typi-
cally include one or two header lines of metadata (sometimes

3In text files, every decimal digit costs 8 bits (1 B) to store, so
a length-n number requires 8n bits. In binary formats, a more effi-
cient encoding is used (numbers as bit strings), requiring m bits. To
round-trip from decimal to binary and back,m= bnlog2(10)+2c ≈
b3.3n+2c is sufficient (Matula, 1968). This picture does not change
substantively if sign and magnitude are taken into account. In prac-
tice a 32-bit binary format is used for storing values, which uses
23 bits for representing the significand, sufficient for six decimal
significant digits; 1 bit is used for the sign and 8 for the exponent.
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more), but there is no universal convention about what can be
found there. So making use of information included in this
way always requires user intervention. There are initiatives to
create metadata inclusion standards for delimiter-separated-
value formats, but these have not gained significant adoption
and are aimed at either web-based material (Tennison et al.,
2015) or small datasets (Riede et al., 2010), or they are very
recent proposals (Walsh and Pollock, 2019).

Section 2.2.2 mentioned that the documentation available
for the datasets we investigated is not machine-readable. It
can be made so by providing it as metadata. Such metadata
can be used to facilitate analyses and uses of the data. For ex-
ample, if a tool has access to the range and units associated
with series of values, air pressure, and temperature, say, then
it can automatically determine those for derived series, such
as air density. Examples of metadata standards for datasets
are the “CF Conventions” (Eaton et al., 2017), ISO 19115-1
(ISO/TC 211, 2014), and the recently developed “Metadata
for wind energy Research and Development” (Sempreviva
et al., 2017; Vasiljevic and Gancarski, 2019). It is encour-
aged in the Earth science community to not just add arbitrary
metadata, but also include at least standard attributes from
the “CF Conventions” (Eaton et al., 2017) and follow the
“Attribute Convention for Data Discovery” (Earth Science
Information Partners, 2015). These facilitate reuse and dis-
covery and also make it possible, for example, for software
to enhance the presentation of the dataset elements (see, e.g.,
Hoyer et al., 2018). They also allow for adding further useful
metadata, such as provenance information, e.g., in the form
of an ISO Lineage (ISO/TC 211, 2019). These conventions
are aimed at netCDF files, but can to a large degree be applied
to HDF5 files as well. Of course the metadata to be included
as recommended by these conventions can also be specified
for table-based formats, but not in the same self-describing
way.

3.2 Practical experiences with binary formats

We already mentioned in Sect. 2.2.1 that we created binary
HDF5 and netCDF4 file versions of the datasets we studied.
In this section, we first, in Sect. 3.2.1, report on the process
and its results. Then, in Sect. 3.2.2, we discuss the limitations
of these formats, including limitations of software support.

3.2.1 The transformation process

Transforming the supplied data files was done by writing
a specific script for each case. The general setup is similar
for each script.

1. One needs to import the supplied datasets into in-
memory data structures that can be manipulated by the
scripting language. An important part of this step is the
identification of missing data or data marked as faulty
and encoding them appropriately. Storing them as the

“not a number” binary floating point value is the com-
mon approach we followed. Using a Boolean mask sep-
arate from the dataset itself is an alternative that can also
be used in case the data stored do not consist of floating
point values.

2. One must decide on and create a structure for the file, to
organize the data and make them conveniently accessi-
ble. We used a hierarchical structure for this, grouping
first by device (class) and then by quantity. For instru-
ment locations, we tried two approaches:

– adding the locations as groups in the hierarchy, be-
low the “quantity” groups (done for OWEZ);

– collecting the data for all locations in a multidimen-
sional array with additional axes next to the time
axis, e.g., for height and boom direction (done for
MMIJ and FINO1).

For the different statistics (minimum, maximum, mean,
and standard deviation), we tried three approaches:

– adding the statistics series as separate variables in
the hierarchy (done for all three);

– keeping the statistics together in a compound data
structure, essentially a tuple of values, where each
value is accessed by (statistic) name; such com-
pound values then formed the elements of the mul-
tidimensional arrays (done for MMIJ and FINO1);

– adding the statistics as an extra axis to the multidi-
mensional array (done as well for MMIJ).

3. One must collect and compose the metadata for the
dataset, the devices, and the quantities. Then one must
add these as attributes in the file. The latter is almost
trivial to do once the former time-consuming task is
completed.

4. One must choose an encoding and the storage parame-
ters for the data and write them out to the file. We chose
to store the values as 4 B binary floating point numbers,
compress them using the standard “Deflate” algorithm,
and add error detection using “Fletcher-32” checksums.
Furthermore, we used the information available about
the accuracy of the values to round to the least signif-
icant binary digit. This is a lossy transformation that,
however, does not lose significant information, but fur-
ther improves compression.

Let us finish this section with some remarks.

– During the transformation process, we could load the
datasets studied entirely into memory. This is conve-
nient, but not necessary, as the process of reading the
supplied datasets can be done in a piece-wise fashion.
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– The size of the files resulting from the transformation
we made was one-eighth of the supplied files’ size or
smaller and one-half their compressed size or smaller.
(More precisely, the sizes of the uncompressed (com-
pressed) supplied files versus the sizes of our HDF5
or netCDF4 versions are as follows: OWEZ: 1 GB
(400 MB) vs. 65 MB; MMIJ: 500 MB (120 MB) vs.
55 MB; FINO1: 800 MB (120 MB) vs. 50 MB.)

– Tools exist to facilitate the transformation process, most
notably the online service Rosetta (Unidata, 2013),
which generates netCDF files satisfying the CF Con-
ventions.

– Templates to facilitate the creation of netCDF files satis-
fying the CF Conventions and the Attribute Conventions
for Data Discovery are available (NOAA National Cen-
ters for Environmental Information, 2015). These do not
make use of hierarchical grouping, but can to a large de-
gree be used within each group.

3.2.2 Limitations of binary formats tested

When creating the transformed dataset files, we tested many
of the features available in the HDF5 and netCDF4 formats.
Not all of these features turned out to be as useful as initially
expected or have sufficient software support. We here dis-
cuss features for which we encountered issues, to help others
make an informed choice when considering their use.

Compound data structures Compound data structures are
essentially tuples of values, where each component
value is accessed by its name. These allow for a tight
grouping of related data, for example to group all the
statistics for a given signal for a given measuring inter-
val, to attach a quality flag, or to group the components
of a vector (e.g., the wind velocity). However, metadata
cannot be attached to the structure’s components, and to
read any one component the whole structure is loaded
in memory, multiplying the memory requirements. Fur-
thermore, support for creating these structures for use
in netCDF4 files using Python was buggy and support
for reading compound value data is currently far from
universal; for example, it is not included in MATLAB’s
netCDF interface. Also, documentation of their use is
currently limited.

2 B floating point numbers HDF5 allows the storage of 2 B
(16-bit) floating point numbers, which is more space-
efficient if the precision is sufficient. The support in the
core HDF5 library turned out to be buggy and support
was non-existent, e.g., in MATLAB.

Scale-offset filters Another approach for efficiently storing
floating point values x is to transform them to integer
values k of shorter bit length, namely choosing series-
specific scale and offset parameters α and β such that

x is equal to αk+β within required precision. HDF5
has a built-in filter to do this, but it does not preserve
special floating point values like NaNs used for rep-
resenting missing values. The CF Conventions (Eaton
et al., 2017) often used in netCDF files also describe
a metadata-based approach, but not all software auto-
matically applies the inverse transformation, so it is not
transparent to the user.

Dimensions When creating variables, the netCDF4 format
requires using defined “dimensions” (e.g., time and
height). These can be shared between variables and as-
sociated with “coordinate variables” (e.g., arrays with
concrete time values and instrument heights). There is
also a similar concept of “dimension scale” in HDF5,
but it is not as convenient.

Unicode In principle both HDF5 and netCDF4 support Uni-
code text for group, variable, and attribute names and
for attribute values. Software support for Unicode text
in attribute values is not universal, however; notably,
MATLAB does not support this yet for netCDF4.

String values Both HDF5 and netCDF4 support variable-
length strings as variable values. This can for exam-
ple be useful for coordinate variables, such as when
instrument position is designated by “left” and “right”.
However, again MATLAB does not support this yet for
netCDF4.

4 Recommendations

Based on our analysis of the three datasets and on our work
transforming them into binary file formats, we have the fol-
lowing recommendations for the three main stakeholders.
(We also briefly indicate their role in the shared responsi-
bility for creating high-quality, well documented, and usable
datasets.)

Project owner (Through the “scope of work” part of the
contract with the dataset producer, this party can specify
requirements for the dataset format, quality, and docu-
mentation, so that it meets the needs of the considered
dataset users.)

– Require the dataset producer to provide the datasets
in a standardized binary format.

– Agree with the dataset producers about a concrete
level of quality control.

– Require the datasets to be accompanied by (explic-
itly specified) extensive metadata and documenta-
tion, including accuracy and quality information.

Dataset producers (Next to being responsible for produc-
ing the dataset, this party can inform the project owner
about the possibilities for dataset creation and the
dataset users about efficient dataset use.)
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– Expand the automated checks performed on the
signals the dataset series are based on, to effi-
ciently remove avoidable issues that are currently
still present (Sect. 2.2.1).

– Make the documentation of the dataset and its cre-
ation process more comprehensive (see Sect. 2.2.2).
This is best done by attaching metadata right next to
the data. External documentation such as data man-
uals and websites, if still needed, can be semiauto-
matically generated from metadata that are stored
in a structured way.

– Use clear version identification in dataset files, to
avoid confusion when updated or extended datasets
are released.

– Provide datasets in a binary format that allows
for a structured combination of data and metadata
(see Sect. 3.2). Based on our experience, we cur-
rently advise, for metocean measurement statistics
datasets, using the netCDF4 format, with

– metadata added according to the Attribute Con-
ventions for Dataset Discovery and CF Conven-
tions (see Sect. 3.1);

– metadata describing absolute and relative sam-
ple uncertainty (see Sect. 2.2.5);

– coordinate variables for all dimensions of the
data variables;

– each statistic series as a separate variable, so not
using compound data structures or expanding
the multidimensional array;

– values binary-rounded according to the avail-
able uncertainties (see Sect. 2.2.5), which do
not preclude inclusion of “ancillary” variables
for the uncertainty values themselves;

– sample standard deviations corrected for bias
(see Sect. 2.2.5) or inclusion of an ancillary
variable for the bias (modifying the values
themselves may be seen as too invasive);

– variables compressed transparently, so not us-
ing a metadata-based scale-offset filter.

Its better support for dimensions and coordinate
variables is what makes the netCDF4 format cur-
rently more attractive than the plain HDF5 format.

– Add a quality flag variable for each signal (see
Sect. 2.2.4).

Dataset users (This party can communicate its needs and
provide feedback to the project owner and dataset pro-
ducers.)

– Invest in learning to work with formats like HDF5
or netCDF4, as this will allow them to work more
efficiently with datasets (see Sect. 3).

– Provide feedback to the dataset producers about is-
sues encountered and dataset features that would
have added value for research (our experience in
this regard is positive).

– And of course do not trust the data blindly and per-
form some checks in the vein of those we discussed
in Sect. 2.2.1.

5 Conclusions

The questions of our study were as follows. (i) Are these is-
sues commonly shared in metocean measurement datasets?
(ii) How can the issues that are present be addressed?

The answer to the first question is “yes, but not uniformly”.
The analysis of three datasets with statistics of metocean sig-
nals aimed at wind energy applications presented in Sect. 2.2
showed that indeed there are shared issues, such as the pres-
ence of unmarked faulty data (outliers, most clearly), incom-
plete documentation (signal accuracy, most generally), and
value encoding (lack of uncertainty information, most im-
portantly). Some issues are not shared, and one dataset can
actually be seen as an example of good practice in some as-
pects (the quality flags included in the FINO1 dataset, most
concretely).

An abstract answer to the second question is “by the
dataset producers, in a straightforward way, with limited ef-
fort”.

– The techniques we used to bring faulty data to light are
straightforward to implement, which supports our claim
that they can be detected and fixed with relatively little
effort.

– Concerning documentation, in our quest for creating
a good overview of the datasets, we collected informa-
tion from various sources to supplement the documen-
tation provided; this is a time-consuming task. Much of
the information that we had to search for is available to
the dataset producers, so the effort for them is smaller.
Given that one cannot expect all dataset users to perform
data quality analyses and information collection efforts
themselves, it would be beneficial if the project owners
explicitly make this a duty of the dataset producers. This
will make their datasets more useful and therefore more
valuable.

– As noted above, a specific issue with the datasets was
the limited information about and quantification of the
uncertainty of the dataset values. The expressions for
uncertainties and bias we derived provide a straightfor-
ward quantification of the statistics’ uncertainties and
bias based on the information that is typically available,
absolute and relative uncertainties for the sample val-
ues. These expressions can be used by users if needed
by their application. The dataset producers can also ap-
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ply them and use the uncertainty values found to im-
prove their dataset, e.g., by rounding the dataset values
(reducing the size requirements) or by including the un-
certainty values as ancillary variables.

– In support of our analysis of the datasets, we created
versions in a binary format. In comparison to the tabular
formats in which the datasets are made available, such
binary formats are more convenient for users, as they
make the data available in a much more structured for-
mat and as they are self-describing when documentation
is added as metadata. The description of our effort, ex-
periences, and feature evaluation provides a high-level
guide and suggested best practices to dataset producers
who wish to also improve their datasets in this way.

In summary, this paper shows why and how metocean
measurement datasets for wind energy applications can be
improved in various, useful ways, with relatively little ef-
fort. This effort can be seen by the project owner as neces-
sary for getting the most value out of the raw data collected.
Such a well-documented dataset with uncertainty and quality
information included creates the possibility for consciously
making possibly different choices (trade-offs) when setting
up future measurement campaigns.

www.wind-energ-sci.net/5/285/2020/ Wind Energ. Sci., 5, 285–308, 2020



300 E. Quaeghebeur and M. B. Zaaijer: How to improve the state of the art in metocean measurement datasets

Appendix A: The datasets and their analysis

A1 A first look at the datasets

A1.1 MMIJ – measuring mast IJmuiden

In the context of a Dutch governmental research program,
a met mast was built in the Dutch part of the North Sea with
the aim to gather metocean data with a frequency and quality
needed for the planning and development of offshore wind
farms in the Dutch North Sea. Its location is 52◦50′53.4′′ N,
3◦26′8.4′′ E (WGS 84), which is 82 km off the Dutch coast
near the province North Holland. The location is indicated
in Fig. 1. The mast was ready for operation in 2011 and was
decommissioned by 2017. Data are available for the period
November 2011–March 2016. Multiple datasets can be ob-
tained; we restricted attention to the one for meteorological
signals. The instruments used and quantities measured and
some of their characteristics are listed in Table A1.

The MMIJ datasets can be obtained by registering, which
is free, and filling in a request form on the website of the En-
ergy research Centre of the Netherlands (ECN, 2019).4 The
meteorological statistics dataset can be downloaded via an
e-mailed link as a single compressed semicolon-separated-
value (csv) file. The total size is a good 500 MB, or about
120 MB compressed. This represents data points for 229 248
10 min intervals. The data in the csv file are structured as fol-
lows:

– one date–time column (YYYY-MM-DD hh:mm);

– 65 sets of four columns each: one for each of the four
real-valued statistics, “min”, “max”, “avg”, and “std”,
with each set corresponding to a specific measured
quantity and location on the mast.

The statistics’ values are encoded in a decimal fixed-point
format with five fractional digits (x...x.xxxxx).

Information about the dataset, the met mast, and its con-
text is available through the same website. In particular, there
is an instrumentation report (Werkhoven and Verhoef, 2012).
Some information about the instruments used and in particu-
lar the measurement uncertainty had to be looked up in spec-
ification sheets. Further clarifications were obtained through
personal communication with people involved in the project
(see Acknowledgements).

A1.2 FINO1 – research platform in the North Sea and
the Baltic Sea Nr. 1

In the context of the German governmental research pro-
gram FINO (“Forschungsplattformen in Nord- und Ostsee”)
started in 2002, three measuring stations with met masts
were built: two in the German part of the North Sea and

4Since the work reported on in this paper was carried out, ECN
has become part of TNO, the Netherlands Organisation for applied
scientific research. Its name will change in the coming period.

one in the Baltic Sea. The aim is to support technologi-
cal developments for and study the effect of offshore wind
farms. We have looked at data from the first mast erected,
FINO1, which became operational in 2003. Its location is
54◦0′53.5′′ N, 6◦35′15.5′′ E (WGS 84), 45 km north of the
island of Borkum, near the site where the offshore wind
farm “Alpha Ventus” was built in 2009–2010. The location
is indicated in Fig. 1. Data from 2004 onward are available;
measurements are still ongoing. Multiple datasets can be ob-
tained; again we restricted attention to the one for meteo-
rological signals. The instruments used and quantities mea-
sured and some of their characteristics are listed in Table A2.

The FINO1 datasets can be obtained after requesting ac-
cess (BSH, 2019a), which is free for academic research, but
not so for commercial purposes; re-dissemination is not al-
lowed. Credentials are then provided to login to the down-
load website (BSH, 2019a), where one can select the desired
signals and time period. The resulting dataset is delivered as
a compressed set of tab-separated-value (dat) files, one for
each selected quantity–height combination. We selected the
meteorological statistics data for the years 2004–2016. The
total size is a good 800 MB, or about 120 MB compressed.
This represents data points for 683 856 10 min intervals. The
data in each dat file are structured as follows:

– one date–time column (YYYY-MM-DD hh:mm:ss);

– four statistics columns, “Value”, “Minimum”, “Maxi-
mum”, and “Deviation”;

– one quality column (“0” is raw, “1” is doubtful quality,
“2” is quality controlled).

The statistics’ values are encoded in a decimal fixed-point
format with up to two fractional digits (x...x.xx).

Information about the dataset, the met mast, and its context
are available through the platform’s websites (FINO 1, 2019;
BSH, 2019b). A detailed overview table regarding the mast’s
instrumentation (DEWI, 2015) is available upon request by
e-mail. Some information about the instruments used and
in particular the measurement ranges had to be looked up
in specification sheets. Further clarifications were obtained
through personal communication with people involved in the
project (see Acknowledgements).

Others have looked at the FINO1 data before. For exam-
ple, an initial data analysis was presented after 5 years of op-
eration (Beeken et al., 2009) and detailed studies have been
performed on the wind speed data gathered (Westerhellweg
et al., 2012; Stepek et al., 2015).

A1.3 FAIRness analysis

There is currently a movement in the academic community
to try and make datasets FAIR: findable, accessible, interop-
erable, and reusable (Wilkinson et al., 2016). This appendix
provides a brief analysis of the FAIRness of the three datasets
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Table A1. An overview of the instruments and their locations on the MMIJ met mast (height in meters above the Lowest Astronomical Tide),
the quantity measured, the measurement uncertainty, the measurement ranges, and the sampling frequencies.

Instrument (No.) Heights Pos.b Quantityqc Unit Uncertaintym Rangem Freq.

(m) Abs. Rel. (%) (Hz)

Cup anemometer (8) 27,58.5 reg. hor. wind sp.1 ms−1 0.2 1 0.3–75 4
92 irr.

Ultrasonic anemometer (3) 85 reg. status1 – {−103,0}eo 4
wind sp. X dir.1 ms−1 0.1 2 −60–60 4
wind sp. Y dir.1

wind sp. Z dir.1

Wind vane (9) 27,58.5,87 reg. wind direction1 ◦ 1 0–360d 4

Barometer (2) 21,90 atm. pressure1 hPa 0.1 500–1100 4
Thermometeri (2) 21,90 ambient temp.1 ◦C 0.12 −80–60 4
Hygrometeri (2) 21,90 rel. humidity1 % 1 0–100 4
Precipitation detector (1) 27 U precip. presence1 – {0,100}en 4
Precipitation monitor (2) 21 l, r status1 – {0,100}eo 4

quality5 % 0–100 4
synoptic code5 – {0, . . .,99}ew 4
precip. presence5 – {0,100}en 4
precip. intensity5 mmmin−1 15 0.005–250 4
precip. amount5,r mm 0– 4
visibility5 m 0–10000 4

Fromv,s cup anemometer (3) 27,58.5,92 hor. wind sp.1 ms−1 0.14 0.3–75 4
Fromv ultrasonic anemometer (3) 85 reg. wind sp. magn.1 ms−1 0.07 0–104 4

hor. wind sp.1 ms−1 0.07 0–85 4
Fromv,s ultrasonic anemometer (1) 85 hor. wind sp.1 ms−1 0.05 0–85 4
Fromv,s wind vane (3) 27,58.5,87 wind direction1 ◦ 0.7 0–360d 4
Fromv barom. and thermom. (2) 21,90 air density1 kgm−3 0.0001 0.5–2.0 4

b For instruments on booms, positions are boom orientations (◦), with (geographic) north at 46.5◦; “reg.” corresponds to {0,120,240} and “irr.” to {180,300}. For those not on booms other
identifiers are used, if known.
d Means lie between 0◦ and 360◦; minima and maxima can be outside of that interval so that min≤ avg≤max.
en No, yes.
eo “0” is OK; non-zero is not OK.
ew Using synoptic “present weather” codes defined by the World Meteorological Organization (2016, p. 356–358).
i Thermometer and hygrometer are contained in a single package.
m Missing values are unknown.
qc Quality code: “1” is “ISO 17025 approved, in accordance with IEC61400-12”; “5” is “no or unknown calibration”.
r Between sensor resets.
s Correction for tower shadow by selective averaging of values at the same height.
v Virtual measurement; namely, derived from signals obtained with one or more actual instruments.

that were investigated. It first looks at the current status, then
moves to what role the recommendations of this paper play
in changing that status, and finally evaluates the role of the
non-user stakeholders. Our analysis is based on the checklist
“How FAIR is your data?” of Jones and Grootveld (2017).

We look at each of the FAIRness principles.

Findable None of the datasets has a persistent identifier as-
signed to them. While metadata for each dataset are
available online, they are not present in a searchable re-
source for any of the datasets, but are less conveniently
in manuals or on a custom website. So none of the
datasets are really findable (according to the FAIRness
criteria).

Accessible For all of the datasets, the protocol by which
the data can be retrieved follows a recognized standard;
namely, it can be downloaded from a website. Further-

more, even if obtaining the data requires authorization
as for MMIJ and FINO1, the available metadata are ac-
cessible without it. So, setting aside the lack of a persis-
tent identifier, all the datasets are quite accessible (ac-
cording to the FAIRness criteria).

Interoperable All of the datasets are provided in a com-
monly understood format, although the format for
OWEZ (old, proprietary Excel format) is not open. The
metadata provided do not follow any standard, and nei-
ther are controlled vocabularies used. Also, no quali-
fied references or links to other (meta)data are provided.
Given the above, all the datasets are only interoperable
in a very basic way (according to the FAIRness criteria).

Reusable The (meta)data are fairly accurate and reasonably
well described for all three datasets. Only FINO1 has
a fairly clear (but restrictive) license. For all datasets,
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Table A2. An overview of the instruments and their locations on the FINO1 met mast (height in meters above the Lowest Astronomical
Tide), the quantity measured, the measurement uncertainty, the measurement ranges, and the sampling frequencies.

Instrument (No.) Heights Quantity Statisticss Unit Uncertaintym Rangem Freq.

(m) Abs. Rel. (%) (Hz)

Cup anemometer (8) 34,41,51,61, hor. wind sp. −+µ σ ms−1 0.1 1 0.1–75 1
71,81,91,102

Ultrasonic anemometer (3) 42,62,82 hor. wind sp. −+µ σ ms−1 0.01 1 0–45 50
wind direction µ σ ◦ 1 0–359 50

Wind vane (9) 34,51,71,91 wind direction +µ σ ◦ 2 0–360 1

Barometer (2) 21,93 atm. pressure µ hPa 0.3 800–1060 1
Thermometeri (5) 34,42,52,72,101 ambient temp. µ ◦C 0.1 1
Hygrometeri (5) 34,42,52,72,101 rel. humidity µ % 3 10–100 1
Precipitation monitor (2) 23,101 precip. presence meas.v – {0,1}c

Precipitation sensor (1) 23 precip. intensity µ mA 4–20 1

Pyranometer (2) 34,93 global radiation µ Wm−2 3 0–4000 1

c No, yes.
m Missing values are unknown.
i Thermometer and hygrometer are contained in a single package.
s Statistics included (with column name): “−” is minimum (“Minimum”), “+” is maximum (“Maximum”), “µ” is mean (“Value”), “σ” is standard deviation (“Deviation”).
v The measurement is given (in the “Value” column in the dataset file), as there is essentially one measurement per 10 min.

the provenance is clear. While collected for wind energy
applications, the datasets contain Earth science data; the
metadata standards relevant in that domain are not met.
Based on the above, the datasets are somewhat reusable
(according to the FAIRness criteria).

This paper’s recommendations argue for the data to be
made available in a standardized binary format with metadata
included. It also promotes more extensive quality checks.
Such transformed datasets would raise the level of interoper-
ability and reusability, mostly because of the improved han-
dling of metadata.

The dataset producers can furthermore make sure the
datasets are assigned a persistent identifier pointing to a loca-
tion in a data repository, where they are stored under a clear
license. They could also make the metadata collected for in-
clusion in the binary dataset file available there. These ef-
forts would raise the level of findability, accessibility, and
reusability. In line with what was mentioned in our rec-
ommendations (Sect. 4), the project owner can specify the
FAIRness criteria as requirements, to ensure that this is actu-
ally done.

A2 Dataset issues

A2.1 Maximum and minimum for directional data

We here give a proposal for definitions of maximum and
minimum for directional data. We assume the sampling fre-
quency is high enough to make direction changes larger than
180◦ for successive samples practically impossible.

Transform the direction sequence from 0 to 360◦ to the
real line so that “360◦ jumps” are removed; e.g., the se-

quence 356, 358, 1, and 4◦ would become 356, 358, 361, and
364◦. Call the minimum and maximum of this transformed
sequence χ and ξ ; so χ = 356◦ and ξ = 364◦ in our exam-
ple. If ξ −χ > 360◦ the direction has changed at least one
full rotation for the given sequence. Let µ be the (vector)
mean, expressed within 0–360◦; so µ≈ 359.75◦ in our ex-
ample. Now choose k such that χ +k 360◦ ≤ µ≤ ξ +k 360◦

with max{|χ+k 360◦−µ|, |ξ+k 360◦−µ|} minimal; k = 0
in our example. Then χ+k 360◦ and ξ+k 360◦ are the sought
for minimum and maximum.

A2.2 Statistic value uncertainty

The statistics present in the dataset are derived from n mea-
surements xk uniformly sampled over a length-T interval,
where T = 600s for the datasets we consider. To get a view
on the uncertainty of the statistics, we model the process gen-
erating the measurements as follows: There is an underlying
signal y with samples yk = y(tk). On measurement, noise is
added, so that xk = yk + ek for all k ∈ {1, . . .,n}. The noise
is assumed to consist of independent absolute and relative
zero-mean Gaussian components (Cramér, 1946, chap. 17),
i.e., ek = εaza,k+εrykzr,k with zr,k and za,k samples from in-
dependent standard normal distributions, so that the compo-
nent’s standard deviations are εa and εryk .

We first consider the contribution of sampling and then the
contribution of the noise to the uncertainty of the statistics.
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Uncertainty due to sampling

The “ideal” statistic values are defined in terms of the
continuous-time signal:

y̌c = min
t∈[0,T ]

y(t), ŷc = max
t∈[0,T ]

y(t), (A1)

ȳc =
1
T

T∫
0

y(t)dt, s2
y,c =

1
T

T∫
0

(y(t)− ȳc)2dt.

The “noiseless” sample statistics values are

y̌ = min
k∈{1,...,n}

yk, ŷ = max
k∈{1,...,n}

yk, (A2)

ȳ =
1
n

n∑
k=1

yk, s2
y =

1
n

n∑
k=1

(yk − ȳ)2,

where for the sample variance s2
y , we did not apply the usual

bias correction because n is assumed sufficiently large.
As we assume is done in the datasets, we take tk = (k−

1) 1
n
T . So we are applying the “left-hand rule” numerical in-

tegration method (see, e.g., Tucker, 1997) to get estimates
ȳ for ȳc and s2

y for s2
y,c. A corresponding error estimate is

T 2

2n
∑n
k=1f

′(tk), where f is equal to 1
T
y and 1

T
(y− ȳc)2, re-

spectively. An estimate for the sum of derivatives is obtained
by assuming y is linear, i.e., y′ ≈ ŷ−y̌

T
and

(
(y− ȳc)2)′

=

2(y− ȳc)y′ ≈ 2sy
ŷ−y̌
T

. Similarly, for uncertainty estimates
of the maximum and minimum statistics, we assume that
the signal continues to linearly increase (decrease) for half
a sample step beyond the maximum (minimum) sample.

To get concrete values, we replace the noiseless statistics
with the actual noisy ones. This results in the following ex-
pressions:

τy̌ ≈
x̂− x̌

2n
, τŷ ≈

x̂− x̌

2n
, τȳ ≈

x̂− x̌

2n
, (A3)

τs2
y
≈ sx

x̂− x̌

n
, τsy ≈

1
2sx

τs2
y
≈
x̂− x̌

2n
,

where the uncertainty for the standard deviation sy was de-
rived from the one for the variance by applying a first-order
Taylor approximation of the square root. In case the mini-
mum and maximum statistics are not available, but the sam-
ple standard deviation is, one could use the crude estimates
x̌ ≈ x̄− z1−1/nsx and x̂ ≈ x̄+ z1−1/nsx , where z1−1/n is the
standard normal quantile for exceedance probability 1/n.

A2.3 Uncertainty due to measurement noise

We use the following random variables to model the pro-
cess that adds noise to the measurements: Xk for the mea-
surements and Ek for the noise, with auxiliary standard nor-
mal variables Za,k and Zr,k , so that Xk = yk+Ek with Ek =
εaZa,k+ εrykZr,k . Here, the basic random variables Za,k and

Zr,k are assumed to be independent from each other and all
other random variables Za,`, Zr,`, ` 6= k.

Some further notation: E is the expectation opera-
tor. Var and Cov are the variance and covariance oper-
ators, respectively, defined for any random variables V

and W by Cov(V,W )= E ((V −E(V )) (W −E(W ))) and
Var(V )= Cov(V,V ). Furthermore, we let V̌ =minnk=1Vk ,
V̂ =maxnk=1Vk , V̄ (p)

=
1
n

∑n
k=1V

p
k , with V̄ = V̄ (1), and

s2
V =

1
n

∑n
k=1(Vk − V̄ )2.

Recall that standard normal variables Z are completely
determined by their expectation E(Z)= 0 and variance
Var(Z)= E(Z2)= 1. Also, the expectation of any odd power
is zero: E(Z2m+1)= 0 (Cramér, 1946, Eq. 17.2.3).

For the sample minimum and maximum we assume that
the measurement noise does not substantially influence the
order statistics, so X̌ = y̌+E

ǩ
and X̂ = ŷ+E

k̂
. (Otherwise

this noise introduces bias in the estimate and an extra term in
the variance (see Cramér, 1946, Eq. 28.6.16).) This implies

x̌ ≈ E(X̌)= y̌+E(E
ǩ
)= y̌,

σ 2
y̌
= Var(X̌)= Var(E

ǩ
)= ε2

a + ε
2
r y̌

2, (A4)

x̂ ≈ E(X̂)= ŷ+E(E
k̂
)= ŷ,

σ 2
ŷ
= Var(X̂)= Var(E

k̂
)= ε2

a + ε
2
r ŷ

2, (A5)

because

E(Ek)= εaE(Za,k)+ εrykE(Zr,k)= 0,

Var(Ek)= ε2
a Var(Za,k)+ ε2

r y̌
2Var(Zr,k)= ε2

a + ε
2
r y̌

2,

where for the variance the first equality follows from inde-
pendence of the variables Za,k and Zr,k .

For the sample mean we can deduce that

x̄ ≈ E(X̄)= ȳ+E(Ē)= ȳ and

σ 2
ȳ = Var(X̄)= Var(Ē)=

1
n

(
ε2

a + ε
2
r

(
ȳ2
+ s2

y

))
(A6)

because

E(Ē)=
1
n

n∑
k=1

(
εaE(Za,k)+ εrE(Zr,k)

)
= 0,

Var(Ē)=
1
n2

n∑
k=1

(
ε2

a Var(Za,k)+ ε2
r y

2
kVar(Zr,k)

)
=

1
n2

n∑
k=1

(
ε2

a + ε
2
r y

2
k

)
=

1
n

(
ε2

a + ε
2
r

1
n

n∑
k=1

y2
k

)

=
1
n

(
ε2

a + ε
2
r ȳ

(2)
)
=

1
n

(
ε2

a + ε
2
r

(
ȳ2
+ s2

y

))
,
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because it holds that ȳ(2)
= ȳ2
+ s2

y (Cramér, 1946,
Eq. 15.4.4).

For the sample standard deviation sX, we use the first-

order Taylor expansion of the square root sX =
√
s2
X with s2

X

varying around E(s2
X):√

s2
X ≈

√
E(s2

X)+
1

2
√
E(s2

X)

(
s2
X −E(s2

X)
)
.

So first-order approximations of the expectation and variance
are

sx ≈ E(sX)≈
√
E(s2

X) and

σ 2
sy
= Var(sX)≈

1
4E
(
s2
X

)Var
(
s2
X

)
. (A7)

So we see that we actually need to calculate E(s2
X) and

Var(s2
X), the expectation and variance of the sample variance.

Let us first write this sample variance in terms of our
model variables:

s2
X = X̄

(2)
− X̄2

= ȳ(2)
+ 2 ¯yE+ Ē(2)

− ȳ2
− 2ȳĒ− Ē2

= s2
y + s

2
E + 2( ¯yE− ȳĒ).

Then

E
(
s2
X

)
= s2

y +E
(
s2
E

)
+ 2

(
E
(
¯yE
)
− ȳE

(
Ē
))

= s2
y +E

(
s2
E

)
+ 0

= s2
y +E

(
Ē(2)
− Ē2

)
= s2

y +

(
1−

1
n

)(
ε2

a + ε
2
r ȳ

(2)
)

(A8)

because

E
(
¯yE
)
=

1
n

n∑
k=1

ykE(Ek)= 0,

E
(
Ē(2)

)
=

1
n

n∑
k=1

(
ε2

aE(Z2
a,k)+ 2εaεrykE

(
Za,k

)
E
(
Zr,k

)
+ ε2

r y
2
kE(Z2

r,k)
)

= ε2
a + ε

2
r ȳ

(2),

E
(
Ē2
)
=

1
n2

n∑
k=1

n∑
`=1

(
ε2

aE
(
Za,kZa,`
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+ εaεr
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(
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(
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(
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r yky`E
(
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))
=

1
n

(ε2
a + ε

2
r ȳ

(2)).

Furthermore

Var(s2
X)= Var(s2

E)+ 4Var( ¯yE− ȳĒ)+ 4Cov(s2
X,
¯yE− ȳĒ).

The last term of this expression is zero because all terms of
its expansion contain odd powers of independent standard
normal random variables. We do not perform the tedious cal-
culation of the first term, as it essentially expresses the un-
certainty of the measurement noise, which has been left un-
modeled. Therefore we ignore this term, which means we
consider a lower bound:
1
4

Var
(
s2
X

)
≥ Var

(
¯yE− ȳĒ

)
= Var

(
¯yE
)
+ ȳ2Var

(
Ē
)
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+ ȳ2

(
E
(
Ē2
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Ē2
)
− 2ȳE

(
¯yEĒ
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+ ȳ2 1
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)

− 2ȳ
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ε2

a ȳ+ ε
2
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(3)
)
,

where in the last step the first and last terms’ calculation is
analogous to the one of E(Ē2) above. It holds that ȳ(2)

=

ȳ2
+ s2

y and because we have no estimate for ȳ(3) and ȳ(4),
we use the Gaussian case, i.e., we assume ȳ(3)

≈ ȳ3
+ 3ȳs2

y

and ȳ(4)
≈ ȳ4
+6ȳ2s2

y +3s4
y (Johnson et al., 1994, chap. 13).

This gives
n

4
Var(s2

X)≥ ε2
a s

2
y + ε

2
r

(
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+ ȳ2ȳ(2)

− 2ȳȳ(3)
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y

))
.

Going back to the sample standard deviation in Eq. (A7),
using Eq. (A8), and assuming n� 1 and ε2

r � 1, we get

sx ≈ E(sX)≈
√
s2
y +

(
ε2

a + ε
2
r ȳ

(2)
)

so

s2
y ≈

1
1+ ε2

r
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, (A9)

σ 2
sy
= Var(sX)≥

s2
y

s2
y + (ε2

a + ε
2
r ȳ

(2))
1
n

(
ε2

a + ε
2
r (ȳ2
+ 3s2

y )
)

≈
1
n

(
ε2

a + ε
2
r (ȳ2
+ 3s2

y )
)
, (A10)

where for the last approximation we assumed that the mea-
surement noise’s contribution to the sample standard devia-
tion is negligible (s2

y � ε2
a + ε

2
r ȳ

2).5 In any case, in general

5The standard for what is negligible differs between estimates of

statistics and of uncertainties thereof. For example, ε
2
a+ε

2
r ȳ

2

s2
y
= 10%

is non-negligible in Eq. (A9), but is negligible in Eq. (A10).
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the bias in sx as an estimator of sy dwarfs the estimate of the
uncertainty σsy due to the measurement noise. Even the un-
certainty in the bias (the unmodeled uncertainty of the mea-
surement noise) may overwhelm σsy . These considerations
lead us to conclude that the lower bound we give is conser-
vative in general and that the real uncertainty can be substan-
tially larger.

To get concrete values, we replace y̌, ŷ, ȳ, and s2
y appear-

ing in the expressions for the uncertainties by their estimates.
We also deal with the corner case s2

x < ε
2
a + ε

2
r x̄

2. This re-
sults in the following estimates for the expectations and un-
certainty, again assuming ε2

r � 1:

y̌ ≈ x̌, σ 2
y̌
≈ ε2

a + ε
2
r x̌

2, (A11)

ŷ ≈ x̂, σ 2
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≈ ε2

a + ε
2
r x̂

2, (A12)

ȳ ≈ x̄, σ 2
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1
n
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a + ε
2
r

(
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+ s2

x
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, (A13)

sy ≈

√
max

{
s2
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a + ε
2
r x̄

2
)
,0
}
,

σ 2
sy
≥

1
n

(
ε2

a + ε
2
r

(
x̄2
+ 3s2

x

))
. (A14)

A2.4 Combined uncertainty

To arrive at a total uncertainty, we combine them using the
combination rule for independent uncertainties from classi-
cal error propagation (Taylor, 1997):

εx̌ =

√
τ 2
y̌
+ σ 2

y̌
, εx̂ =

√
τ 2
ŷ
+ σ 2

ŷ
,

εx̄ =

√
τ 2
ȳ + σ

2
ȳ , εsx =

√
τ 2
sy
+ σ 2

sy
. (A15)

Here we use x instead of y in the left-hand side subscripts
because outside of this appendix there is no need to refer to
the underlying model we use.
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Code and data availability. Code used during the re-
search is publicly available via GitHub and Zenodo
(https://doi.org/10.5281/zenodo.3611120, Quaeghebeur, 2020).
This bundle also includes the metadata included in the transformed
datasets as human-readable and machine-readable YAML files.

We are not allowed to make the transformed FINO1 dataset avail-
able. It is not yet clear whether we will obtain permission to make
the transformed OWEZ and MMIJ datasets available. If we do, these
will be put on a publicly available data repository, referenced in an
updated version of the bundle (Quaeghebeur, 2020).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/wes-5-285-2020-supplement.
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