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A comprehensive mouse kidney atlas enables
rare cell population characterization
and robust marker discovery

Claudio Novella-Rausell,1,2 Magda Grudniewska,2 Dorien J.M. Peters,1 and Ahmed Mahfouz1,3,4,5,*

SUMMARY

The kidney’s cellular diversity is on par with its physiological intricacy; yet identi-
fying cell populations and their markers remains challenging. Here, we created a
comprehensive atlas of the healthy adult mouse kidney (MKA: Mouse Kidney
Atlas) by integrating 140.000 cells and nuclei from 59 publicly available single-
cell and single-nuclei RNA-sequencing datasets from eight independent studies.
To harmonize annotations across datasets, we built a hierarchical model of the
cell populations. Our model allows the incorporation of novel cell populations
and the refinement of known profiles as more datasets become available. Using
MKA and the learned model of cellular hierarchies, we predicted previously
missing cell annotations from several studies. The MKA allowed us to identify
reproducible markers across studies for poorly understood cell types and transi-
tional states, which we verified using existing data frommicro-dissected samples
and spatial transcriptomics.

INTRODUCTION

Kidneys are organs with a high degree of cellular complexity reflected in an array of different renal func-

tions: from filtering the blood, regulating water homeostasis, production of hormones, to excretion of

waste products. These diverse functions are driven by distinct anatomical structures called nephrons.

Each nephron comprises more than tens of highly specialized cell types, including abundant epithelial cells

supported by vascular, stromal, and immune cells.1 Notably, the function and nomenclature of cells that

assemble the nephron depend on their location relative to themain tubular structures: the proximal tubule,

loop of Henle, distal convoluted tubules, and the collecting duct.2

More than 150 L of filtrate are reabsorbed by the nephrons in a day. Most of this reabsorption occurs in the

proximal tubules, which are primarily located in the cortex, the outermost portion of the kidney. Sodium

gradient, generated by the activity of numerous Na⁺/K⁺-ATPase channels, drives the transport of salts, wa-

ter, glucose, and amino acids, back to the bloodstream. This process requires large amounts of energy,

supplied by the abundant mitochondria. Proximal tubules are thus, themost metabolically active structures

in the nephron.3–5 The filtrate then enters the loop of Henle that connects the proximal and distal tubule

and is most notably involved in extracellular fluid volume and blood pressure regulation, as well as Ca2+,

Mg2+, and acid-base homeostasis. Through the activation of several processes required to generate a

gradient of increasing osmolality from cortex to medulla, this segment also contributes to urine concentra-

tion.6 Finally, the filtrate travels through the distal convoluted tubule and collecting duct system, where

water is reabsorbed and urine is concentrated7 (Figure 1A).

Although, outstanding efforts to characterize the transcriptomic profiles of the different cell types present

in the kidney have been supported by the recent advances in single-cell technologies,8–15 the identification

of markers for distinct and, in particular, rare cell types remains elusive. A substantial portion of the tran-

scriptomic data comes from the proximal tubule and loop of Henle cells, which are one of the largest struc-

tures of the nephron.16 Rare cell populations usually remain undetected and the cost to profile these cells

often precludes the studies of less abundant cell populations.17,18 The aforementioned challenges could

be addressed by creating a reference atlas of the kidney that leverages the vast collection of available cells

and nuclei profiled, which can then be used to annotate specific kidney cell types in a supervised manner.

Integrating different datasets into a common space can overcome batch effects which occur due to the
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Figure 1. Generation of the mouse kidney atlas from eight independent studies

(A) Schematic of a kidney and a nephron. Arrows indicate the flux of glomerular filtrate through the tubular segments.

(B) Workflow guiding the generation of the mouse kidney atlas. Colors represent different hypothetical cell type annotations from two independent studies

(A, B, and A1, A2), whereas shapes depict originally annotated (circle) or unannotated (triangles) cells and/or nuclei.

(C) Metadata information across all datasets. Age of the animals is represented in weeks or months (w, m) when available, otherwise an overall age estimator

is provided (Adult). Tissue resolution varied from whole kidney (WK), cortex, medulla to more selected regions, such as Outer Medulla (OM), Inner Medulla

(IM), or Glomerulus (Glom). The suspension type was either single cell or single nuclei sequenced using Drop-seq, DroNc-Seq or 10x Genomics.

ll
OPEN ACCESS

2 iScience 26, 106877, June 16, 2023

iScience
Article



differences in library preparation protocols and data processing steps. However, in most studies to date,

the annotation of cell populations is performed in an unsupervised manner, a process that is time-

consuming and involves several refinement iterations.19 The subjective nature of this approach limits the

ability to compare populations across studies due to annotation inconsistencies. Ideally, the reference atlas

would account for the different resolutions at which cell populations have been annotated and include a

harmonized annotation that allows for a better characterization of rare cell populations.

Here, we create an atlas of the adult healthy mouse kidney (MKA: Mouse Kidney Atlas) by integrating and

harmonizing annotations from publicly available single-cell and single-nuclei transcriptomic studies. We

integrated �140.000 cells and nuclei from 59 healthy samples sequenced in eight different studies8–14 to

generate an atlas that reflects the biological component of the different samples, while accounting for

technical differences. We built a hierarchical model of the cell populations present in the healthy mouse

kidney that accurately predicts cell annotations in unlabeled datasets. In addition, MKA allows further inte-

gration of new datasets as they become available by relying on a progressive learning approach20 (Fig-

ure 1B). We show and verify novel and robust markers for both known cell types and previously unexplored

rare cell populations.

RESULTS

Integrated atlas accounts for technical differences among seven independent studies

To create a comprehensive atlas of the healthy mouse kidney, we downloaded the raw sequencing data

(FASTQ) from eight different studies including a total of 59 samples8–15 (Table 1). To reduce variability in

alignment rates between different genetic make-ups, we only included healthy samples with a C57BL/6

background. The raw reads of all samples were processed using the same pipeline and we recovered

140,000 cells and nuclei after filtering low quality cells and nuclei (see STAR Methods section for details).

The samples included in this study differ in single-cell technology, source of material, tissue resolutions,

and age of sacrifice (Figure 1C). Approximately 40% of the cells and nuclei included in this study were

missing computer-readable annotations (Figure 1D). These differences can be visualized in the uni-form

manifold approximation and projection (UMAP) of the data (Figure 1E), where source-specific populations

were identified. To resolve these batch effects, we evaluated the performance of five batch correction

methods (Seurat, Harmony, Scanorama, scVI and scVI-scANVI21–25) using their respective default parame-

ters (Figure S1A and Table S1). The best performing method was scVI (overall score of 0.72). Notably, while

algorithms, such as Seurat efficiently correct the batch effects (batch effect removal score of 0.84)

compared to scVI (batch effect removal score of 0.71), the latter better maintains the biology of each indi-

vidual dataset after integration (biological conservation scores of 0.72 and 0.38 for scVI and Seurat, respec-

tively). We also observed that methods, such as Seurat overcorrected for batch differences by aligning all

datasets to a common latent space. This is especially evident in the case of Dumas20, a dataset that only

contains endothelial cells. Its cells are overcorrected by Seurat and hence aligned with all other datasets

and cell types (Figures S1B and S1C).

Based on these evaluation results, we built an integration pipeline in which we first use a tuned (see STAR

Methods) version of scVI to integrate all eight datasets. Second, we apply scANVI24,25 to the integrated

latent space results from scVI together with cell type labels to refine the integration. We computed the

same integration metrics as before for our tuned version of scVI-scANVI (Figure S1A). Notably, tuning

scVI’s hyperparameters to maximize both batch separation and cell type similarity (see STAR Methods)

improves the performance of scVI-scANVI considerably in both batch correction and biological conser-

vation metrics.

After integration, the aligned compendium demonstrates that the different data sources have been prop-

erly aligned and no metadata is driving the differences observed in the UMAP space (Figures 1F and 1G).

Figure 1. Continued

(D) Proportion of all annotated cell types across all datasets. Relevant cell types in the nephron are highlighted, namely Proximal Tubule cells (PT), Principal

Cells (PC), Loop of Henle cells (LOH), Distal Convoluted Tubule cells (DCT) and Endothelial cells (Endo).

(E) Uni-form Manifold Approximation and Projection (UMAP) embedding of all used datasets prior integration. Colors correspond to the different datasets.

(F) UMAP visualization of merged datasets following integration and batch correction (see STAR Methods). sCell: single-cell, sNuc: single-nuclei.

(G) UMAP representations of the 140K cells and nuclei after integration. Relevant metadata was extracted for each of the datasets. Age of the animals is

represented in weeks or months when available, otherwise an overall age estimator is provided (Adult).
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Table 1. Dataset metadata

Abbreviation Technology GEO Reference Samples Cell sorting SC/SN Dissociation

Genes per

cell or nuclei

Counts per

cell or nuclei

Reads

(Mill.)

% of

pseudoaligned

reads

Available

annotations

Wu18 Dropseq, 10X,

DroNcSeq

GSE119531 11 4 WT SN, SC Mechanical 805 1482 55 76 Yes

Miao21 10X GSE157079 14 4 WT SC Enzymatic 1175 2822 152 75 Yes

Park18 10X GSE107585 8 35 WT SC Enzymatic 657 1374 745 76 Yes

Kirita20 10X GSE139107 9 4 WT SN Mechanical 1032 1862 1481 85 Yes

Dumas20 10X E-MTAB-8145 13 3 C, G, M SC Enzymatic 1229 2072 462 59 Noa

Conway20 10X GSE140023 12 1 WT SC Enzymatic +

Mechanical

842 2027 343 83 No

Hinze21 Drop-seq, 10X GSE145690 10 7 IM, OM, C, WT SC Mechanical 711 1419 177 80 No

Janosevic21 10X GSE151658 15 1 WT SC Enzymatic +

Mechanical

1608 4100 407 77 Nob

10X: 10X Genomics, SC: single-cell, SN: single-nuclei, WT: Whole Tissue, C: Cortex, G: Glomerulus, M: Medulla, IM: Inner Medulla, OM: Outer Medulla.
aAnnotations were not available in the manuscript or its supplemental information, but a manual annotation based on reported markers was performed.
bAnnotations were not available in the manuscript or its supplemental information, but annotations were retrieved from: https://github.com/hato-lab/kidney-endotoxin-sepsis-timeline-featureplot/blob/

master/app.R.

ll
O
P
E
N

A
C
C
E
S
S

4
iS
cie

n
ce

2
6
,
1
0
6
8
7
7
,
Ju

n
e
1
6
,
2
0
2
3

iS
cience
A
rticle

https://github.com/hato-lab/kidney-endotoxin-sepsis-timeline-featureplot/blob/master/app.R
https://github.com/hato-lab/kidney-endotoxin-sepsis-timeline-featureplot/blob/master/app.R


Integration highlights annotation inconsistencies across studies

After integration, we investigated cell population annotations across the four datasets for which annota-

tions were available or were manually annotated (Park18, Wu19, Kirita20, Miao21, Dumas20, and

Janosevic21). The six datasets varied significantly in the resolution and the ontology used to annotate

distinct cell populations. Only two cell populations were common between the five studies (Dumas20

only surveyed endothelial cells) based on the set of author’s annotated terms, with most of the annotations

A

B

C

Figure 2. Learned classification tree from independently annotated datasets

(A) UpSet plot visualizing the intersection and the number of common cell type annotations between the different datasets. Disconnected dots correspond

to the number of unique cell types in each dataset, while connected dots represent the intersection between the datasets. Additionally, the number of cell

types identified in each study is plotted alongside each dataset.

(B) UMAP representation of the originally annotated cell types across all datasets.

(C) Learned classification tree applying a k-Nearest Neighbor (kNN) classifier on the six annotated datasets. The color(s) of the tree nodes correspond to the

supporting dataset(s) Missing populations: PTS1Janosevic21, PTS2Janosevic21. Arrows mark both inaccurate placements in the tree (Fib, Stroma) and cell types

that can be further annotated to increase resolution IC: Intercalated Cell, ICA: Intercalated Cell Type A, ICB: Intercalated Cell Type B, Endo: Endothelial Cell,

Fib: Fibroblast, Macro: Macrophage, B lymph: B lymphocyte, Stroma: Stroma cell, NK: Natural Killer, T lymph: T lymphocyte, PT: Proximal Tubule, PTS1:

Proximal Tubule Segment 1, PTS2: Proximal Tubule Segment 2, PTS3: Proximal Tubule Segment 3, PTS3T2: Proximal Tubule Segment 3 Type 2, PC: Principal

Cell, PEC: Parietal Epithelial Cell, Per: Pericyte,DCT: Distal Convoluted Tubule,ATL: Ascending Thin Limb of Henle,MD: Macula Densa, LOH: Loop of Henle,

CTAL: Thick Ascending Limb of Henle in Cortex, MTAL: Thick Ascending Limb of Henle in Medulla, CNT: Connecting Tubule, Podo: Podocyte, DTL:

Descending Thin Limb of Henle, MC: Mesangial Cell, Neutro: Neutrophil, Asc-Vas-Recta: Ascending Vasa Recta, Desc-Vas-Recta: Descending Vasa Recta,

Glom Endo: Glomeruli Endothelial.
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being dataset-specific (Figure 2A). For example, collecting duct intercalated cells (IC) can be further clas-

sified into type A (ICA) or type B (ICB), depending on the expression and localization of Slc4a1 in the mem-

brane and the presence of a transport protein called pendrin, encoded by the Slc26a4 gene. Whereas ICA

cells lack pendrin and acidify the urine by excreting H+, ICB cells have pendrin, and secrete OH� equiva-

lents.26 Another example is proximal tubule cells (PT). While certain studies identify PT cells, some others

further classify these cells in three different segments (PTS1, PTS2, or PTS3) depending on their location

along the nephron (Figures 1A and 2B). These differences in ontology, together with the distinct annotation

resolutions, highlight the subjective nature of unsupervised cell type annotation and the need for an inte-

grated and comprehensive view of cell heterogeneity in the kidney.

To overcome these challenges, we used single-cell hierarchical progressive learning (scHPL),20 a method that

automatically infers cell hierarchies from annotated datasets and builds a classification tree that can be used

to classify unlabeled cells. We used scHPL to build a cell hierarchy and capture the relationships between kidney

cell populations from the six annotated datasets. Perfect matches were found between cell populations across

five (principal cells, PC), four (Endothelial and Podocytes), three (distal convoluted tubule, DCT, and T lympho-

cytes) and two datasets (PTS1, PTS3, ascending thick limb of Henle, ATL,macrophages, ICA, ICB andCNT). Not

a single cell populationmatched across all six datasets (Figure 2C). On the other hand, some cell populations are

misplaced in the tree. For example, the fibroblasts from Park18 (hereafter cell typedataset) are placed underMac-

rophagesKirita20, Miao21 another example are PTS1Janosevic21 cells which are placed under EndothelialKirita20, Wu19,

Park18, Miao21 cells. Other populations are lacking available resolution. For example, ICPark18, Miao21 cells, which

appear as parent node of ICAKirita20, Wu19 and ICBKirita20, Wu19 cells. Peri StromalJanosevic21 cells Moreover,

some cell populations are missing in the final tree because they have been rejected (e.g., PTPark18 cells,

PCTMiao21, PSTMiao21, PTS1Janosevic21, and PTS2Janosevic21 cells could not be classified).

Manual curation of annotations significantly improves hierarchy learning

To refine the cell tree constructed by scHPL and reduce the number of rejected populations, we performed

amanual curation of the original cell population annotations (Figures S2–S4). The initial tree constructed by

scHPL indicates that StromaMiao21 cells have similar transcriptomic profiles to T lymphocytesPark18 (Fig-

ure 2C), which is supported by their overlap in the UMAP and the high similarity of their average expression

profile (Figures S2A–S2C). This observation was supported by the expression of T lymphocyte mar-

kers27,28(Cd4, Cd8a,Cd28) in cells annotated as Stroma (Figure S2D). In addition, we compared the expres-

sion of Cd4, Cd8a, and Cd28 in StromaMiao21 cells, T lymphocytesPark18 and Kirita20 non-immune cell types

(Figure S2E). As expected, StromaMiao21 cells share the expression of these markers with T lymphocytes-

Park18 but not with non-immune populations. A similar scenario applies to FibroblastsPark18, which are

placed under the macrophages node (Figures 2C and S2E). We checked whether these cells might have

been mislabeled by visualizing the expression of M1-M2 macrophage markers27,29(Cd68, H2-Ab1, and

Il4r) (Figures S2F and S2G). We also plotted the expression of markers for all cell types present in the

MKA in both StromaMiao21 and FibroblastsPark18 (Figure S2H). This confirmed that StromaMiao21 mainly ex-

press T lymphocyte markers (Cd247, Cd4 and Cd8a), whereas FibroblastsPark18 express macrophage

markers (Cd68, H2-Ab1, and Cd74). Based on these observations, we re-annotated StromaMiao21 and

FibroblastsPark18 to T lymphocytes and macrophages, respectively.

We then evaluated the location of PT cells in the tree, which can be further classified in different segments

(Segments 1, 2, 3, and 3 type 2; PTS1, PTS2, PTS3, PTS3T2). The proximal tubule is the first nephron

segment after the glomerulus where numerous transporters regulate reabsorption and excretion.5 Jano-

sevic21 specified the different PT cell types (i.e. PTS1, PTS2, PTS3, PTS3T2), while Park18 included the lower

resolution term PT (Figure S3A) and Miao21 annotations included the terms proximal straight tubule (PST)

and proximal convoluted tubule (PCT) (Figure S3B), Wu19 grouped PTS1 and PTS2 cells together (Fig-

ure S3C) and Kirita20 did not include PTS3T2 (Figure S3D). To re-annotate these cells as PTS1, PTS2,

PTS3, or PTS3T2, we used unsupervised clustering and visualized known markers to rename the resulting

cell populations. The visualized markers were Slc5a12, Cyb5a, Slc27a2, and Cyp7b1 for PTS1, PTS2, PTS3,

and PTS3T2, respectively.15,30 In the case of PTS1-2Wu19, the population was matched to PTS1Kirita20 during

training of scHPL. We re-annotated PTS1-2Wu19 as PTS1Wu19.

We refined the annotation of ICPark18, ICMiao21, and EndothelialPark18 cells following the same strategy

as described above (Figsures S4A and S4B). ICPark18 and ICMiao21 cells were re-annotated as either ICA

or ICB based on the expression of Slc4a (ICA marker) and Insrr (ICB marker) in the unsupervised clusters
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Figure 3. Hierarchically defined kidney mouse atlas

(A) Learned classification tree on the four annotated datasets after manually harmonizing annotations. Tree nodes are colored by the supporting dataset or

datasets in case of two or more cell populations matching.

(B) UMAP plot visualizing cells used to train the classification tree (blue) and cells for which cell type was not known (orange).

(C) UMAP representation of annotated cell typesPark18, Kirita21, Dumas20, Miao21, Janosevic21, and Wu19.

(E) UMAP embedding of predicted cell types for Hinze20, Conway20 and cells labeled ‘‘unknown’’ or ‘‘missing.’’ e UMAP plot combining predicted and

available annotations resulting in the integrated mouse kidney atlas. IC: Intercalated Cell, ICA: Intercalated Cell Type A, ICB: Intercalated Cell Type B,

Endo: Endothelial Cell, Fib: Fibroblast, Macro: Macrophage, B lymph: B lymphocyte, Stroma: Stroma cell, NK: Natural Killer, T lymph: T lymphocyte, PT:

Proximal Tubule, PTS1: Proximal Tubule Segment 1, PTS2: Proximal Tubule Segment 2, PTS3: Proximal Tubule Segment 3, PTS3T2: Proximal Tubule

Segment 3 Type 2, PC: Principal Cell, PEC: Parietal Epithelial Cell, Per: Pericyte, DCT: Distal Convoluted Tubule, ATL: Ascending Thin Limb of Henle, MD:
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(Figure S4C). EndothelialPark18 cells were originally re-annotated as descending thin limb of Henle (DTL) by

the original authors in the manuscript, but this correction was missing from the annotations provided with

the dataset. Therefore, we similarly refined the annotation based on the expression of Slc14a2 (DTLmarker)

and Adgrl4 (Endothelial marker) (Figure S4D).

Following these annotation refinements, we applied scHPL to rebuild the cell tree and re-trained the clas-

sifier on the new tree. The new tree correctly captures the expected cell hierarchy, placing similar popula-

tions within the same node (Figure 3A). This is exemplified by the identification of the medullary and corti-

cally thick ascending limb of Henle (MTAL andCTAL) as child nodes of loop of Henle (LOH) cells (Figure 1A).

This shows the ability of the hierarchical model to group functionally andmorphologically related cell types

in the nephron. In this case, perfect matches between datasets were more easily identified, likely due to the

lower number of rejected cells while training.

Next, we used the refined classification tree from scHPL (Figure 3A) to predict the cell type annotations for

cells and nuclei from the remaining two unlabeled studies (Conway20 and Hinze20) (Figures 3B–3D). After

merging the predicted and original labels, we obtained the final fully annotated adult healthy kidney atlas

(MKA) (Figure 3E). The complete overview of the cell population shows that the integration process pre-

served the shared biological component between the different studies.

Due to the lack of labels for these two datasets, we could not perform a quantitative analysis of the ob-

tained labels. To confirm our annotations, we visualized known markers for the major cell types in the

nephron. Namely PT, Podocytes, DTL, ATL, MTAL, CTAL, DCT, CNT, ICA, ICB, and Endothelial cells (Fig-

ure S5A–S5D). Moreover, we compared the cellular composition of each dataset to that reported in the

original studies. We found that the proportion of all predicted proximal tubule cells, i.e., PTS1, PTS2,

PTS3 and PTS3T2, matches the proportion described in the original publications, 77% in Conway20 and

approximately 60% in Hinze20 (Figure S5E). The same applies to MTAL, CTAL and DCT in the MKA. These

cell populations were described as LOH/DCT in Conway20 and TAL in Hinze20 with a proportion of approx-

imately 7% and 10%, respectively (Figure S5E).

The MKA allowed us to annotate these datasets at a higher resolution than originally reported. For

example, in Conway20 they annotated 15 cell types. We now identify 28 distinct populations, providing

further resolution for annotations such as LOH/DCT (MTAL, CTAL, and DCT in the MKA) or CD (CD-Trans,

ICA, ICB, and CD in the MKA). We also identify previously overlooked important cell populations, such as

PC (Figure S5B). Another example is Hinze20, in which MKA identified 25 subpopulations among the

original set of 10 cell types, including: PTS1, PTS2, PTS3, and PTS3T2 instead of PT; ICA, and ICB instead

ofCD-IC; andDTL andATL instead of TL (Thin Limbs) (Figure S5A). In summary, these annotations provide a

comprehensive collection of cell types in the healthy kidney and are supported from at least one published

dataset. Moving forward, we keep this resolution and cell type set. However, we could identify other cell

types that were missing in the set of input annotations, such as vascular smooth muscle cells (Figure S6A).

Unfortunately, we couldn’t find higher resolution populations for other cell types, such as macrophages.

Markers for infiltrating monocytes did not show any expression pattern in the latent space that could indi-

cate their presence, or any other subpopulations (Figure S6B).

Given the two different suspension types present in the MKA (i.e., single-cell and single-nuclei), we inves-

tigated whether there are sampling differences between them at the cell type level. Most cell types have an

equal contribution of single-cell and single-nuclei datasets (Figure S7A). CNT, DCT-CNT, DTL-ATL, Fibro-

blasts, ICA, PC, Podocytes and PTS3T2 have a significantly higher contribution from single-nuclei datasets

when compared to single-cell ones. We observed the biggest effect size in the PTS3T2 population. To un-

derstand if these differences are due to variability in sampling between single-cell and single-nuclei data-

sets, we compared the total number of detected PTS3T2 cells or nuclei in each of the datasets (Figure S7B).

We observed that single-cell datasets had a very similar size in total to their single-nuclei counterparts, indi-

cating that the lack of PTS3T2 cells in single-cell datasets is not due to overall under-sampling.

Figure 3. Continued

Macula Densa, LOH: Loop of Henle, CTAL: Thick Ascending Limb of Henle in Cortex, MTAL: Thick Ascending Limb of Henle in Medulla,

CNT: Connecting Tubule, Podo: Podocyte, DTL: Descending Thin Limb of Henle, MC: Mesangial Cell, Neutro: Neutrophil, Asc-Vas-Recta (Asc VR):

Ascending Vasa Recta, Desc-Vas-Recta (Desc VR): Descending Vasa Recta, Glom Endo: Glomeruli Endothelial, V afferens: Vas Afferens, V Efferens: Vas

Efferens.
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We sought to further explore the impact of suspension type in the cell types present in theMKA at the gene

expression level. To this end, we correlated the batch-corrected expression for a given cell type between

single-cells and single-nucleus (Figure S7C). All cell types had a significant correlation between cells and

nucleus, with their correlation coefficient being higher than 0.65 in all of them.

MKA accurately classifies unseen cells

To evaluate the accuracy of cell type classification usingMKA as a reference, we performed leave-one-data-

set-out cross-validation experiments with two different classifiers. In the first experiment, we chose one of

the annotated datasets as a test set and trained the scHPL classifier on the remaining datasets (hereafter

MKA*) at each iteration, with the same parameters as defined earlier in this manuscript. We then compared

the performance of scHPL with Azimuth,31 a widely used pipeline to automatically annotate cells based on

Seurat, in a second experiment. Following a similar approach as in the first experiment, we chose one of the

datasets as a query dataset and set the rest of annotated datasets as our partial reference (MKA*) and per-

formed Azimuth’s workflow with default parameters. Finally, we evaluated the performance of Azimuth to

predict mouse cell types using the available human ref.32 To do this, we performed a third experiment in a

similar fashion to the previous two. At each iteration, we submitted each test set’s raw counts (namely

Park18, Miao21, Kirita20, Wu18, Dumas20, and Janosevic21) as a query to the Azimuth web application us-

ing the human kidney reference. The median F1 score of all folds across the three experiments (Figure 4A),

highlighted the importance of using theMKA when transferring labels to mouse datasets, regardless of the

classifier. The human reference is also more likely to have outliers in terms of label transfer performance in a

human-to-mouse scenario. For example, when using the human reference available, Park18 seems to be

predicted at an accuracy closer to that obtained by using MKA (F1 score of 0.73). On the contrary, Jano-

sevic21 is predicted with very poor accuracy (F1 score of 0.03).

To further highlight the value of the MKA, we tested the cell-type label transfer accuracy when using sin-

gle-dataset references. Overall, the accuracy greatly depends on the query dataset for which we are

trying to predict the labels (Figure S8), something that is mitigated by using the MKA as a reference (Fig-

ure 4A). Despite matching the predicted and original sets of labels to account for inconsistencies in anno-

tation resolution (i.e., original labels included PTS1, PTS2, and PTS3 but the predicted labels from using a

single-dataset reference include only PT), the accuracy of the predictions for a given query greatly

depend on the reference used. An example of such case is Park18. Miao21 is the best reference in this

case with other datasets quickly dropping in accuracy (F1 scores of 0.68, 0.46, and 0 for Wu19, Kirita21,

Janosevic21, and Dumas20, respectively). Another important pitfall of using single-dataset references

is exemplified by Kirita21. In this dataset, the authors define novel cell states that lay in-between known

cell types (i.e., DCT-CNT or ATL-DTL) and annotate other cell types at a great resolution. These cell types

are not captured by other datasets, which affects their performance as references when predicting labels

from Kirita21.

In order to understand the contribution of different cell types to the overall F1 scores, we choseMiao21 as a

test set and trained the scHPL classifier on theMKA*. The resulting tree (Figure S9) was then used to predict

the labels of cells fromMiao21. Most of the original annotations from the dataset were accurately predicted

Figure 4. Evaluation of the scHPL classifier

(A) Boxplot of median F1 scores (y axis) computed over 6-folds in three different scenarios (x axis). From left to right, scHPL trained with MKA*, Azimuth’s

label transfer using the HubMAP reference available33 and Azimuth’s label transfer using MKA* as reference. Each dot corresponds to the median F1 score

computed across cell populations for a given training and validation set (i.e. MKA* and each of the annotated datasets in MKA respectively).

(B–D) Confusion matrices normalized by class support size, computed using the predicted annotations by scHPL and our Atlas reference (B), the transferred

labels from Azimuth’s human kidney reference.32 (C) or the transferred labels from Azimuth using our reference (D). Higher values indicate higher agreement

between predicted and true cell labels.

(E–H) UMAP plot of the Miao21 dataset colored by the original cell types (after manual re-annotation) (E), by the predicted cell types from the learned

classification tree (F), by the transferred cell types from the Azimuth human reference (G) and by the transferred labels using Azimuth with our Atlas reference

(H). IC: Intercalated Cell, ICA: Intercalated Cell Type A, ICB: Intercalated Cell Type B, Endo: Endothelial Cell, Fib: Fibroblast,Macro: Macrophage, B lymph: B

lymphocyte, Stroma: Stroma cell, NK: Natural Killer, T lymph: T lymphocyte, PT: Proximal Tubule, PTS1: Proximal Tubule Segment 1, PTS2: Proximal Tubule

Segment 2, PTS3: Proximal Tubule Segment 3, PTS3T2: Proximal Tubule Segment 3 Type 2, PC: Principal Cell, PEC: Parietal Epithelial Cell, Per: Pericyte,

DCT: Distal Convoluted Tubule, ATL: Ascending Thin Limb of Henle, MD: Macula Densa, LOH: Loop of Henle, CTAL: Thick Ascending Limb of Henle in

Cortex,MTAL: Thick Ascending Limb of Henle in Medulla, CNT: Connecting Tubule, Podo: Podocyte, DTL: Descending Thin Limb of Henle,MC: Mesangial

Cell, Neutro: Neutrophil, Asc-Vas-Recta (Asc VR): Ascending Vasa Recta, Desc-Vas-Recta (Desc VR): Descending Vasa Recta, Glom Endo: Glomeruli

Endothelial.
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by the scHPL classifier with median F1 score of 0.84 (Figures 4B and 4F). Moreover, scHPL further classified

cells at a higher resolution than the low-resolution labels present in the original dataset (Figure 4E). For

example, in the original study, Miao21 identified LOH cells, which scHPL can classify into MTAL and

CTAL, the twomajor cell types present in the thick ascending limb of the loop of Henle. Notably, some cells

and nuclei were assigned to the root node (i.e. unclassified). For example,Neutrophilsweremostly rejected

(Figure 4B). This is not surprising, since there were only 26 Neutrophil cells in the training data (i.e. MKA*),

which inevitably led to a poor performance in predicting Neutrophils in Miao21. On the other hand, one of

the most abundant cell types in the training data (DCTwith 4559 cells and nuclei) is correctly predicted 90%

of the time (DCT and DCT-CNT). scHPL can reject cells due to the lack of cells from a specific population

during training, e.g. neutrophils. But rejection can alsomean that the query dataset includes novel cell pop-

ulations not seen during training. In the latter case, rejected cells assigned can be further characterized and

annotated to update the cellular knowledge stored in MKA.

As in our cross-validation experiments, we used Azimuth to predict the labels of our query dataset (Miao21)

using both the human reference and our MKA*. In the case of the human reference, despite having a wider

array of cell populations (46 populations), Azimuth misclassified many cells with a median F1 score of 0.40

(Figures 4C and 4G). For instance, PC cells were classified as CNT or DCT 80% of the time. Previous studies

have identified a transitional CNT-PC subpopulation of cells in healthy human kidney samples.34 This

finding suggests that the mislabeled cells may not be a distinct cell type, but rather in a transitional stage,

given their transcriptomic overlap. This is a high rate of misclassification considering that these are two very

distinct cell types specialized in different functions in the nephron. These misclassifications can be due to

the lack of a rejection option in Azimuth or differences in the cell type-specific transcriptomic profiles be-

tween human and mouse kidney, or a combination of both factors. When using our partial reference atlas

(MKA*) we were able to accurately classify cells in the query data with a median F1 score of 0.88 (Figures 4D

and 4H). This result indicates that the low performance of Azimuth than scHPL is mainly due to the use of a

human reference to classify mouse cells.

In order to understand how different populations contributed to the F1 score, we computed a median F1

score per cell type, model and for each fold in the cross-validation experiments (Figure S10). Two of the 14

populations included were accurately classified (F1 > 0.8) across the different validation experiments. In the

case of the MKA*+scHPL experiment, the number of accurately classified populations increases to seven

out of 14. Despite proximal tubule cells (PTS1, PTS2, PTS3, and PTS3T2) being the most abundant cell

type in the nephrons,27 we saw a lot of variation in the classification accuracy of these populations. In

the training data (MKA*), PT cells account for 45% of the total number of cells and nuclei. PTS3T2 cells

(3%) are accurately predicted when using MKA* and either scHPL or Azimuth. This can be explained by

the lack of this population in the human kidney reference available. PTS1 and PTS2 cells (10% and 17%)

display a high degree of F1 score variability across the different experiments (Figure S10). This is expected,

as segments 1 and 2 can be identified morphologically but have almost identical functionality in the

nephron.35 As a consequence, their transcriptomic profiles are highly overlapping, which has led to several

authors considering them a single cell type.11,14 None of the reference and classifier combinations we

tested accurately classifies both segments. PTS3 is the least abundant cell type in the nephron and have

the highest accuracy score when using the MKA* with Azimuth. Even in this case, 50% of the time PTS3 cells

are misclassified as either PTS1 or PTS2 (Figure 4D).

Mouse kidney atlas facilitates the identification of robust cell population markers

Technological limitations in single-cell transcriptomics result in a high proportion of unmeasured genes

leading to low replicability of cell type markers across different studies. We capitalized on the large collec-

tion of cells and nuclei from diverse samples in MKA to identify replicable cell population markers.

Based on MKA, we identified meta-markers, which are genes that have a high detection rate and are reli-

able markers for a given cell population across different datasets (see STAR Methods for details). The re-

sulting set of meta-markers per cell type included previously known markers (e.g. Slc12a1 for both MTAL

and CTAL, and Slc12a3 for DCT), as well as novel candidates (e.g. Bst1 for DTL or Rhcg for CNT) (Figure 5A

and Table S2).

To verify our newly identified meta-markers, we verified their expression in the respective cell types using:

(i) bulk gene expression data from micro-dissected samples and (ii) 10x Visium spatial transcriptomic data.
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First, we used the gene expression profiles of 64 bulk RNA-seq samples obtained frommicro-dissected kid-

ney segments generated by Chen et al.30 These segments (excluding CD and Glomerulus) are identified

morphologically and ideally contain a single cell population each. We confirmed the expression of the

top three meta-markers that appeared in at least two per cell population in the bulk RNA-seq samples.

These correspond to PTS1, PTS2, PTS3, CTAL, MTAL, ATL, CNT, DCT and DTL (Figure 5B). Furthermore,

we found a significant overlap between the MKA-based meta-markers and the microdissection-defined

markers (Table S3). Second, we used 10x Visium spatial transcriptomic data of the healthy mouse kidney

from GSE171406.37 We plotted the gene expression of two meta-markers for each of the following popu-

lations: PTS3T2,DCT-CNT,DTL-ATL, andCD-Trans (Figures S11A–S11D).Napsa and Slc6a18 expression in

the corticomedullary junction of the kidney co-localizes with what others have previously described as a

PTS3T2 cluster.15DCT-CNT (Slc12a3-Trpm6) andDTL-ATL (Cryab-Phgdh)meta-markers follow a character-

istic cortical and medullary expression pattern, respectively. This is expected given that the individual cell

types are mainly localized in the cortex (DCT and CNT) or medulla (DTL and ATL). CD-Transmeta-markers

(i.e. Slc4a9 and Wscd2) display a heterogeneous pattern across the tissue slide. This suggests a location

similar to CD and IC cells in the kidney. The low number of spots with detectable gene expression of

both meta-markers is in agreement with the low fraction of cells labeled CD-Trans in MKA (less than

0.5%) and what others have reported.8

To highlight the value of MKA and the meta-markers we identified, we investigated rare, understudied cell

populations. First, we characterized a recently described cell type, PTS3T2 cells.15,34 Together with PTS3,

PTS3T2 cells are thought to play an important role in the kidney injury process.33 However, the few available

marker genes for PTS3T2 are based on unsupervised clustering of single-cell RNA-seq studies15 and are yet

to be validated. Within our MKA-based meta-markers for PTS3T2, we identified previously known markers,

such as Slc22a13, as well as novel markers:Ghr orMep1b (Figure S10A).Ghr has been previously associated

with chronic kidney disease,38 whereas Mep1b plays a role in acute kidney injury, with Mep1b�/� mice

showing improved renal function compared to WT mice.39 We compared the expression of the top five

PTS3T2 meta-markers with the top five PTS3T2 differentially expressed genes in the MKA (Figure 5C and

Table S4). Meta-markers, such as Slc6a18 and Napsa displayed a robust expression pattern across the

non-endothelial datasets (excluding Dumas20). However, DEGs, such as Gramd1b, Wdr17, Rnf24, and

Osbpl8 were expressed mostly at datasets with the highest number of PTS3T2 cells, lacking replicability

across studies. This was the case for the meta-markers Mep1b and Slc22a19 too. Ghr, which encodes

the growth hormone receptor was identified as both a meta-marker and a DEG with detectable expression

in all datasets. However, Ghr is a significant DEG in 30 of the 36 cell populations included in the MKA

(Table S2), indicating that Ghr expression is not specific. Cyp7b1 is also identified as both a meta-marker

and DEG but its expression pattern is biased toward Hinze20, Kirita20, and Wu19.

Although single-cell studies usually aim to describe discrete cell types, kidney’s nephrons are tubular

structures formed by a continuum of epithelial cells. Due to this, cells with mixed transcriptomic profiles

are likely to be sequenced.9 We set out to define meta-markers that are known for the cell types that

are not only part of the mixed population, but also to identify novel markers of transitional cell types. In

the case of DCT-CNT (Figure S11B), meta-markers included known markers for both DCT30 (Slc12a3

and Slc8a1) and CNT30 (Trpm6) cells. Novel markers for this mixed population included Acss3 and

Ltc4s.

Figure 5. Joint downstream analyses highlight known cell type markers and help define meta-markers across studies

(A) Dotplot of the top 3meta-markers (when their recurrence is equal or greater than 2) per cell type across datasets. Values sorted by fold change and auroc.

(B) Heatmap showing the scaled and normalized transcript per million (TPM) expressions of the top meta-markers in the micro-dissected kidney bulk-

RNAseq libraries.36 Only matching cell types between the two experiments were kept. Columns represent the RNA-seq libraries, rows correspond to genes.

Both rows and columns are annotated by cell type. In the case of rows, the annotation corresponds to the cell type from which these markers were identified

in the atlas. For the columns, the annotations are the different regions from which the RNA-seq libraries are derived from.

(C) Dotplot of the top 5metamarkers (when their recurrence is equal or greater than 2; sorted by fold change of detection rate and auroc) and the top 5 DEGs

for PTS3T2. Barplots show the number of PTS3T2 cells in each dataset both in relative (% of total cells in the dataset) and absolute terms (total number of cells

on top of each bar). IC: Intercalated Cell, ICA: Intercalated Cell Type A, ICB: Intercalated Cell Type B, Endo: Endothelial Cell, Fib: Fibroblast, Macro:

Macrophage, B lymph: B lymphocyte, Stroma: Stroma cell,NK: Natural Killer, T lymph: T lymphocyte, PT: Proximal Tubule, PTS1: Proximal Tubule Segment 1,

PTS2: Proximal Tubule Segment 2, PTS3: Proximal Tubule Segment 3, PTS3T2: Proximal Tubule Segment 3 Type 2, PC: Principal Cell, PEC: Parietal Epithelial

Cell, Per: Pericyte, DCT: Distal Convoluted Tubule, ATL: Ascending Thin Limb of Henle, MD: Macula Densa, LOH: Loop of Henle, CTAL: Thick Ascending

Limb of Henle in Cortex,MTAL: Thick Ascending Limb of Henle in Medulla, CNT: Connecting Tubule, Podo: Podocyte,DTL: Descending Thin Limb of Henle,

MC: Mesangial Cell, Neutro: Neutrophil, Asc-Vas-Recta (Asc VR): Ascending Vasa Recta, Desc-Vas-Recta (Desc VR): Descending Vasa Recta, Glom Endo:

Glomeruli Endothelial.
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Cryab, a known marker for ATL and LOH cells, is identified as a meta-marker for ATL-DTL cells (Fig-

ure S11C). Others not previously known meta-markers include Rbms3, Phgdh, and Slc4a11. Some of these

genes have already been implicated in the kidney biology. For instance, Phgdh has been identified as a

treatment target in kidney cell carcinoma in patients resistant to HIF2a antagonists.40 Slc4a11 is known

to be expressed in DTL cells, although expression has been described only in the medullary part of the

kidney.41

Next, we investigated the novel collecting duct transitional cell population (CD-Trans), which was

described by Park and colleagues8 and by Chen et al.36 who labeled these as ‘‘hybrid cells’’. CD-Trans cells

have been described as an intermediate state between PC and IC cells, expressing markers for both cell

types.8,36 While ICA and ICB cells play a role in the regulation of acid-base homeostasis,35 PCs main func-

tion is salt and water transport. In the latter case, sodium (epithelial sodium channel, Scnn1a/b) and water

(Aquaporin 2, Aqp2) channels control the levels of Na+ and K+ in plasma, blood pressure, and extracellular

fluid osmolality. Further understanding ofCD-Trans cells has been hampered by their low abundance in the

kidney, often being masked by other cell types, such as proximal tubule cells. In MKA, CD-Trans cells were

identified in four datasets (Park18, Miao21, Janosevic21, and Conway20) after annotation of the full atlas

with 60 cells in total. Our meta-marker list for CD-Trans cells includes Hsd11b2, Slc4a9, Wscd2, and

B3gnt7 which were found to be highly accurate and able to confidently classify cells as CD-Trans (Fig-

ure S11D). Kidney-specific Hsd11b2�/� mice show systemic salt-dependent hypertension.42 Moreover,

CD-Trans cells in theMKA express bothAqp2 and Slc4a9 (meta-marker for ICB), further confirming the tran-

sitional state between PC and IC of these cells.

DISCUSSION

The maturity of single-cell and single-nuclei transcriptomics becomes apparent by the ever-increasing

number of publications applying these technologies.43,44 Although this has given rise to a vast collection

of publicly available cellular transcriptomes, researchers continue to analyze their work in an isolated envi-

ronment, often without considering the data from other reports. As it has been recently noted in the liter-

ature,34 the relationships between the populations defined in kidney single-cell studies are not clear and

integrative studies are needed. Here, we integrate cells and nuclei from eight independent studies (Table 1)

to create the first mouse kidney atlas. We demonstrate that, despite between-sample biological and tech-

nical differences, our atlas establishes a robust and comprehensive view of the cell heterogeneity present in

the mouse kidney.

A major challenge in single-cell analyses is cell type annotation. Usually, cell types are annotated based on

the expression of marker genes in unsupervised clusters. Clustering algorithms require the tuning of hyper-

parameters, leading to a subjective choice on the number of clusters. This is aggravated by the possible

presence of new (sub) cell types in the dataset, which usually causes over-clustering.45 This introduces

subjectivity to the analysis, ultimately leading to incomplete and ambiguous annotations between studies.

We highlight these inconsistencies in the case of the mouse kidney using scHPL, a supervised hierarchical

machine learning model. By refinement of these annotations and further cell type learning, we improve the

atlas reference transcriptome, accurately capturing consensus cell identities across studies. An important

feature of such a model is its ability to capture the different resolutions at which cell types have been an-

notated. For example, some studies limit their labeling to LOH cells while others further classify these cells

asMTAL or CTAL.9,14 In our work we convey a hierarchically defined atlas, further characterizing the variety

of cell types present in the healthy mice kidney (Figure 3E). In consequence, we identify 35 distinct cell

types, including both high- and low-resolution annotations. We have shown that most of these cell types

are equally detected in both single-cell and single-nuclei studies (Figures S7A and S7B). Despite single-

cell studies having a similar number of cells, PTS3T2 cells are detected in higher proportions in single-

nuclei studies. We hypothesize that PTS3T2 cells are harder to detect in single-cell studies, possibly due

to differences in their survival in cell and nuclei isolation protocols. Differences in cell type composition be-

tween single-cell and single-nuclei studies have been reported before.46 As noted by Wu et al., single-

nuclei RNA-seq was able to detect 20-fold more Podocytes than the proportions reported by single-cell

studies. In addition, mesangial cells were completely missing from their single-cell dataset, further eluci-

dating the differences in detection between dissociation protocols.

Unfortunately, our atlas cannot predict, with full accuracy, all cell types in the kidney. This limitation is not

exclusive to this organ, as supervised cell classification remains a challenge for all tissues. It is often due to

ll
OPEN ACCESS

14 iScience 26, 106877, June 16, 2023

iScience
Article



the lack of a precise definition of cell types, lack of robust markers, technical limitations, and sampling vari-

ability.46 In addition, renal plasticity and the ability of renal cells to switch cell type might generate some

less defined cells.47,48 In our work, we highlight the commonmisclassification of PTS1, PTS2, and PTS3 cells

by different methods (Figures 4B–4D). Although functional differences between the segments are known,

the different segments have traditionally been identified based on cell ultrastructure.49 This results in their

transcriptomes being too similar, rendering these cells hard to classify computationally. As indicated by

Shanley and colleagues,50 the third segment of the proximal tubule is particularly vulnerable to ischemic

damage. It is not yet clear whether what we and others15 have identified as PTS3T2 constitutes a genuine

cell type or rather a damaged state of PTS3 cells. We would like to note; however, that by extensive inte-

gration of datasets we can largely overcome these shortcomings, as we have demonstrated in the present

work. As the field develops, and clearer definitions are proposed, the inclusion of more datasets into our

atlas will further enhance cell type identities and classification. For example, if including larger unannotated

healthy samples in the MKA results in more cells being classified as PTS3T2, there would be in silico evi-

dence that this cell type is indeed present in healthy proximal tubules. However, to confirm its identity

as a cell type, a complete understanding of its origin from a developmental perspective is probably

needed.

The importance of our work is further highlighted by the pressing need to develop novel therapies for kid-

ney failure. Kidneys are the most frequently transplanted organ. Due to the increasing prevalence of

chronic kidney diseases in the population, demand exceeds the number of available donors. And strate-

gies based on renal (stem) cells are being investigated. On grounds of these and other shortcomings, as

noted in the literature,51 an understanding of the cell heterogeneity present in the kidney is needed in or-

der to develop much-needed therapies. The efficacy of these will depend on the cell type-specific expres-

sion and activity of pathways.52 Despite this, the knowledge of cell types, its markers and the molecular

mechanisms and pathology underlying these diseases at the single-cell level is still incomplete. For

example, a recent study shows that CNT cells can display a partial DCT phenotype.53 However, this tran-

sitional cell type (DCT-CNT) is usually not identified or masked by more abundant cell types in single-

cell studies. Consequently, most reports identify individualCNT andDCT clusters.54 To this end, the kidney

atlas can aid the discovery of robust novel markers for DCT-CNT cells. These markers are detected across

the different datasets and can accurately classify DCT-CNT cells. As demonstrated by the above example,

we identify meta-markers for the cell types present in our atlas, including previously known and novel ge-

netic markers. When compared to markers obtained without accounting each individual dataset in an in-

tegrated space, meta-markers with a high detection rate can provide replicability that generalizes the

cell type identities defined in our atlas. A clear example of such a scenario is DTL-ATL cells. As has been

described previously, one of the meta-markers identified for this population is Slc4a11 which expresses

a membrane transporter involved in water, ammonia, and H+ transport. Its expression has been located

in DTL cells within the outer medulla and the outer stripes of the inner medulla in mice.41

These findings will benefit the broader kidney research community, for example, by aiding the robust in vivo

identification of cell types. Since human and mouse kidneys show important physiological differences at

the cellular level,55 we believe our work is especially relevant in mouse models. The discovery potential

of our atlas; however, is much broader and largely not explored. We acknowledge that, although statisti-

cally robust and in silico verified with micro-dissected nephron segments30 and spatial transcriptomics tis-

sue slides,37 these compendium-wide markers need further in vivo validation.

Cellular knowledge of the kidney is likely to change in the coming years. As technologies improve and inno-

vative studies are published, novel cell types will be described. Likewise, cell identities will be re-defined in

newer contexts. We aim to incorporate these changes within the atlas in a continuous fashion. We provide a

learnt transcriptome-based cell hierarchy that can be easily updated and improved with newer studies, up-

dating the cellular knowledge captured in the compendium. In addition, our atlas is missing cell types that

were not present in the original set of annotations provided by the authors. We’ve shown that the MKA can

potentially detect previously unannotated cell types, such as vascular smooth muscle cells. Because we

used scVI and scANVI as our integration model, we can leverage scAarches56 to update the latent space

of our atlas without retraining. For example, the recently published dataset by Song et al.,57 could be

used to enhance the MKA with rich immune annotations. In other instances, updating the latent space

and scHPL’s classification tree will allow us to annotate matching cell types and identify potential novel

populations that arise from treatment or disease state. To account for the technical variation of new
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datasets in the context of the MKA, one can make use of the pre-trained and optimized model, we present

to obtain an updated latent space that we then use to update the classifier. Tomake this easily accessible to

the community, we share our atlas via a user-friendly web interface, hosted at cellxgene (https://cellxgene.

cziscience.com/e/42bb7f78-cef8-4b0d-9bba-50037d64d8c1.cxg/).

In summary, we leverage the large collection of publicly available single-cell and single-nuclei studies and

establish a dynamic atlas of the mouse kidney. We demonstrate the extraordinary power of such approach

by providing robust markers for elusive cell types. However, the full potential of the created compendium is

yet to be explored.

Limitations of the study

This is the first complete single-cell and single-nuclei atlas of the mouse healthy kidney that harmonizes

annotations across several publicly available datasets. However, there are several limitations in our study.

Firstly, the lack of in vitro or in vivo validation of the computed metamarkers. Secondly, lack of more recent

studies and different single-cell technologies. All the cells and nuclei in our atlas come from droplet-based

libraries and short read sequencing. Adding plate-based technologies in the atlas might prove beneficial in

the future, as more low-abundant transcripts are detected, a more accurate cell type classification will be

achieved.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for analyses or method details will be fulfilled by the lead contact, Ahmed

Mahfouz (a.mahfouz@lumc.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All single-cell and/or single-nuclei RNA-seq datasets used in this study are publicly available. Their

accession numbers are listed in the key resources table.

d Jupyter notebooks and scripts used in the analyses as well as supplemental data are available on

Github (https://github.com/nrclaudio/MKA). Interactive visualization and downloading of the kidney

mouse atlas are available at cellxgene (https://cellxgene.cziscience.com/e/42bb7f78-cef8-4b0d-9bba-

50037d64d8c1.cxg/).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Collecting raw data and quantification of reads

All raw fastq files were downloaded from the Sequence Read Archive (SRA) using parallel-fastq-dump

(v0.6.7; https://github.com/rvalieris/parallel-fastq-dump). Accession numbers and other relevant metadata

are provided in Table 1. Single-cell and single-nuclei droplet-based sequencing data were aligned and

quantified using kallisto/bustools58,59 (kb-python v0.26.4) ref and count wrappers, specifying –workflow

nucleus in the case of single-nuclei sequencing experiments. Reads were pseudo aligned to the mouse

reference genome GRCm38 downloaded from Ensembl.60

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3.7.12 Python python.org

R 4.0.5 R r-project.org

scvi-tools 0.19.0 GitHub github.com/scverse/scvi-tools (0.19.0)

scHPL 1.0.0 GitHub github.com/lcmmichielsen/scHPL (1.0.0)

Custom code This paper github.com/nrclaudio/MKA

Datasets

Wu19 https://doi.org/10.1681/ASN.2018090912 GSE119531

Miao21 https://doi.org/10.1038/s41467-021-22266-1 GSE157079

Park18 https://doi.org/10.1126/science.aar2131 GSE107585

Kirita20 https://doi.org/10.1073/pnas.2005477117 GSE139107

Dumas20 https://doi.org/10.1681/ASN.2019080832 E-MTAB-8145

Conway20 https://doi.org/10.1681/ASN.2020060806 GSE140023

Hinze21 https://doi.org/10.1681/ASN.2020070930 GSE145690

Janosevic21 https://doi.org/10.7554/eLife.62270 GSE151658

ll
OPEN ACCESS

20 iScience 26, 106877, June 16, 2023

iScience
Article

mailto:a.mahfouz@lumc.nl
https://github.com/nrclaudio/MKA
https://cellxgene.cziscience.com/e/42bb7f78-cef8-4b0d-9bba-50037d64d8c1.cxg/
https://cellxgene.cziscience.com/e/42bb7f78-cef8-4b0d-9bba-50037d64d8c1.cxg/
https://github.com/rvalieris/parallel-fastq-dump
http://github.com/scverse/scvi-tools%20(0.19.0)
http://github.com/lcmmichielsen/scHPL%20(1.0.0)
http://github.com/nrclaudio/MKA
https://doi.org/10.1681/ASN.2018090912
https://doi.org/10.1038/s41467-021-22266-1
https://doi.org/10.1126/science.aar2131
https://doi.org/10.1073/pnas.2005477117
https://doi.org/10.1681/ASN.2019080832
https://doi.org/10.1681/ASN.2020060806
https://doi.org/10.1681/ASN.2020070930
https://doi.org/10.7554/eLife.62270


Pre-processing of sequencing data and normalization

Filtered count matrices from Kallisto/bustools were used when the cell count was within a 10k margin from

the matrices deposited by the authors. Otherwise, the unfiltered count matrices were loaded, and barco-

des were matched between the author’s and the unfiltered set of cells. Count matrices were pre-processed

using Scanpy61 (v1.8.1). We applied quality filters to all samples, specifically, we filtered out cells with more

than 50% of counts derived from mitochondrial genes. Furthermore, we applied dataset-specific quality

filters based on the number of detected genes. These filters are available in Table S5. Samples were

merged and normalized for plotting purposes with Scanpy’s normalize_total.

Integration benchmark

We compared several integration methods for our use case, including scVI, scANVI,24,25 Harmony, Scanor-

ama,21,23 and Seurat’s.22 Based on the evaluation results (see below in the results section), we chose to use a

hybrid approach in which we start with fully unsupervised integration using scVI followed by a refinement

step using scANVI (Figure S12, steps 1–2). scANVI uses cell type labels to inform the manifold-learning pro-

cess such that cells with the same label are explained by similar low-dimensional features. This improves

the representation learnt by scVI by incorporating biological information (such as cell types) in the model.

This workflow (i.e. improving the latent representation of scVI with cell type labels using scANVI) is denoted

as scVI-scANVI from now on. As different hyperparameter combinations and model configurations can

affect the performance of deep learning models, we used Ray tune62 to optimize scVI’s model. Raw counts

and batch information were used to test 1000 different hyperparameter combinations. Our search space

consisted of model configurations such as continuous and categorical covariates; model hyperparameters

such as dropout rate, number of layers and number of latent dimensions; learning hyperparameters such as

learning rate and pre-processing steps such as highly variable genes (HVG) filtering and number of HVGs.

The objective function to optimize was the silhouette score of both batch and cell type information as im-

plemented in scib.63 Detailed information and the scripts used to perform these analyses are available at

https://github.com/nrclaudio/MKA.

Integration metrics

Batch and biological conservation metrics were computed using scib (v1.0; https://github.com/theislab/

scib). Note that some of the metrics are scaled to range from 0 to 1, for details refer to the original publi-

cation.63 Batch conservation metrics include graph Local Inverse Simpson’s Index21 (LISI), kBET, Average

Silhouette Width (ASW) and Principal Component Regression (PCR).64 In short, these metrics quantify

the alignment between the different batch labels in the data. Specifically, kBET examines to what extent

the different batches are mixed when neighborhoods are randomly sampled, LISI captures the diversity

of batches within a local neighborhood of cells and PCR explains the total variance attributed to the batch

variable when regressed on the Principal Components of the data. Biological conservation metrics include

some of the previous metrics applied to cell type labels (cell-type ASW and LISI), Adjusted Rand-Index

(ARI),65 Normalized Mutual Information (NMI),66 trajectory, cell cycle and variable gene conservation.

These metrics quantitatively assess how much of the original biological variation is kept in the integrated

space. The final score for each evaluation was computed as a weighted average of biological conservation

and batch removal scores, with weights 0.6 and 0.4 respectively.

Dataset integration

We used the method with the highest overall score in the benchmark to integrate the different studies (i.e.

our tuned version of scVI-scANVI). The hyperparameter configuration with the highest silhouette score ob-

tained in our tuning experiment (see Integration benchmark) was then used to train scVI. In our case, we

reduced the feature space of our atlas to the top 3000 HVGs. Variable genes were obtained using Scanpy’s

highly_variable_genes with the flavor set to seurat_v3 and the batch_key set to the different datasets of

origin. We included the percentage of mitochondrial reads as a continuous covariate in the model and

the source of the material (cells or nuclei) as a categorical covariate. The model was initialized with 2 hidden

layers, 26 latent dimensions, a dropout rate of 0.096 and the gene likelihood set to a Negative Binomial

distribution. The model was then trained for a total of 111 epochs with a learning rate of 0.0013. The ob-

tainedmodel was then used as input for scANVI in order to further improve the latent space representation.

We included available cell type annotations and set the unlabeled_category to the set of cells with missing

annotations. The scANVI model was trained to a maximum of 20 epochs and with 100 cell subsamples per

label class per training epoch.
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Dimensionality reduction

After integration and batch -correction, 26 latent dimensions were obtained from the model. These were

used as input for the Nearest Neighbor graph calculation using Scanpy’s neighbors function. We further

reduced the dimensionality to visualize the data in a 2D UMAP using 26 latent dimensions.

Similarity metrics

To assess cell population similarity across studies, pairwise similarity measures were computed using

sklearn66 (v0.23.2) pairwise_distances with the correlation metric. The similarity between two cell popula-

tions is reported as 1 – correlation distance between their average normalized transcriptomic profile.

Correlations between single-cell and single-nuclei profiles were computed using scipy’s pearson r

(scipy.stats.pearsonr). The input vectors per cell type and suspension type type were obtained using

scANVI’s get_normalized_expression with the transform_batch option set to the list of datasets in the atlas.

The counts were then scaled by a factor of 1000.

Cell type learning and classification

All 26 latent dimensions from the annotated datasets (Park18, Wu19, Miao21, Kirita20, Dumas20 and Jano-

sevic21) along with their original (Figure S12 step 3) or curated (Figure S12 step 4) cell type labels were used

as input for single-cell Hierarchical Progressive Learning20 (scHPL, v1.0.0). For both the original and the

curated labels, the classification tree was learnt using a kNN and default values. To classify the cells that

were missing annotations, the learnt tree and the latent dimensions from Hinze20 and Conway20 were

used as input for scHPL’s predict_labels function.

Evaluation of the classifier

We used leave-one-dataset-out cross-validation experiments to evaluate the classifiers performances.

At each iteration we select one of the six datasets as a test set and treat the rest of the dataset as our

training set.

To evaluate the performance of scHPL, the classification tree was learnt as described in the previous sec-

tion. At each iteration, the test set labels were predicted and compared to the original curated labels. To

measure the accuracy of the prediction, the F1 score (harmonic mean of the precision and recall) was

computed, for every cell population, using scikit-learn v1.0.1 f1_score function with the average set to mi-

cro. The overall F1 score per dataset were computed as the median of F1 scores across cell populations.

To compare the performance of scHPL trained in our reference with other methods and references, we sub-

mitted each test set’s raw count data as a query to Azimuth with the Human Kidney Reference atlas.31,32 We

kept the quality control filters we applied in our own pre-processing. The l2.annotation labels were trans-

ferred to the query using Azimuth. We also tested the performance of Azimuth’s workflow (In Seurat22:

Seurat::SCTransform, Seurat::FindTransferAnchors and Seurat::MapQuery) to transfer the labels from

our reference to the test query dataset. As described previously, the annotations predicted by Azimuth

with the Human Kidney Reference and our own reference were compared to the original curated labels

of the query. The accuracy of this prediction was computed as an overall F1 score.

For each evaluation experiment (i.e. scHPL trained with our reference, Azimuth trained with our reference

and Azimuth trained with the available Human reference) the median F1 score across all folds was

computed.

In the case of Miao21, for each pair of predicted and original labels, confusion matrices were computed

using scHPL’s confusion_matrix function. The row vectors of these matrices were normalized to sum up

to 1.

To compare the label-transfer accuracy of using single-dataset references against using our atlas as a refer-

ence, we performed evaluation experiments on each of the studies in our atlas that have available annota-

tions (i.e. Miao21, Park18, Kirita21, Janosevic21, Wu19 and Dumas20). For each dataset, we predicted the

original labels using Azimuth’s label transfer workflow treating each of the remaining studies as a reference.

For example, in the case of Miao21, we predicted its labels from five different references, corresponding to
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each of the remaining datasets (i.e. Park18, Kirita21, Janosevic21, Wu19 and Dumas20). We then computed

a median F1 score across references for a given query.

Differential gene expression analyses, meta-marker discovery and verification

Cell type markers were computed using Scanpy’s rank_gene_groups function with the Wilcoxon rank-sum

test. Meta-markers were computed using the MetaMarkers R package67 (v0.0.1; https://github.com/

gillislab/metamarkers). Raw counts were converted to CPM values (as in original work). Markers were

computed for each dataset with compute_markers to then obtainmeta-markers usingmake_meta_markers.

These two functions are using a Mann-Whitney test per dataset and an aggregation based on meta-analysis

of the obtained p-values, respectively. Pareto boundary markers (i.e. markers with high precision and detec-

tion rate) were visualized using plot_pareto_markers.

In silico verification of meta-marker expression in kidney tissue

To verify that the expression of the computed meta-markers agrees with the spatial location of their cell

types, we plotted their log-normalized gene expression values in a healthy mouse kidney spatial transcrip-

tomics tissue slide37 from Gene Expression Omnibus (GEO, GSE171406). Spots with less than 2000 unique

genes expressed or higher than 50% of mitochondrial reads were removed.

Comparison with microdissected kidney bulk RNA-seq

TPM values were downloaded fromGSE150338. From a total of 96 cell type bulk RNA-seq libraries, we kept

64 corresponding to the matching cell types in our atlas. TPM values were normalized as log2(TPM + 1). We

then visualized the normalized expression of the previously computed cell type markers in the bulk RNA-

seq context using pheatmap (https://github.com/raivokolde/pheatmap).

To test the significance of the overlap between the lists of differentially expressed genes (i.e. cell type

markers defined by either our kidney atlas or the microdissection study) we used scipy’s v1.5.4 Fisher exact

test (fisher_exact) in every cell type present in both the atlas and the microdissection study. We used the list

of genes present in the atlas as background in the test. In both cases we considered as significant those

genes with an adjusted (using Benjamini-Hochber’s FDR correction) p-value < 0.01. 99% Confidence inter-

vals were computed for the odds ratios obtained in the test. This test evaluates whether a list of significant

markers is independent of the list of markers that it is being compared to.
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