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PREFACE

These lecture notes are, in one sense, systematic. It was the intention
to show that, starting from the linearized equations of hydrodynamics, it is
possible to give a logically consistent treatment of the propagation of waves
in water of variable depth. This theory does not, in all respects, conform
to observation; it was the intention to exhibit the assumptions that underlie
the theory, so that later . investigators might alter them with a view to
improving the theory. The later parts of Section 7 show in detail how the
theory fails when the water depth becomes very small.

In another sense, the lectures are eclectic: two phenomena are
emphasized at the expense of others. The earlier lectures are directed toward
the study of "edge waves," (Section 9). These seem closely related to the
surf beat phenomena described by Munk¥ and to recent speculations concerning
the reflection of surface waves by deep water**, In the later lectures, a
new wave equation is deriveéd. (Section 14), that appears able to account for
the dispersion and refraction that occur simultaneously in water of moderate
depth. This equation is consistent with the "energy theory" previously used
to deal with this case, but appears to have Systematic-advantages over the
earlier theory.

— — - — — Y— e e - — - — —

¥Munk, W. H., Trans, A.G.U., 30, 849 (1949).
¥*Isaacs, J.D., Williams, E. A., and Eckart, C., Trans. ACU, 32, 37 (1951).
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SURFACE WAVES ON WATER OF VARIABLE DEPTH

1, The Cencral Equaticnsi.

Let the z-axis be vertically upward, the x- and y-axes in the hori-
zontal plane; let o, v, W be the three components of velocity and the
pressure be - ffj ¥ Toplxy %Jil) . Then the linearized equations

of motion are

QA Dy QW

L = = oy ‘
D% Dy 23 > 1,
duw . 2P _

¢ S5t 7 3x T

?9_;5 + 2F - o 5,
ot Dé !
%.li——)‘ \[, .Q__E- :_:O

f ¢ >3 7

provided one negleots al density gradients.,

Differentiating Bq. (1) with respect to t and substituting from

Eq. (2), we obtain laplace®s equation:

5:43 + C.?_z—-c— + Q:——E— = O. 3‘
O x* b(;&l— Oj"
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If the atmospheric pressure is constant (say zero), the equation

of the free surface is

4.

- 043 4 Pu.n‘sz)t) = 0.

\
However, the free surface must also move with the water: this is expressed

by the equation

D gy + plry3®d] =0

DE
or, since
D é,.._. 4+ g—" - J "‘b"’" v wr \‘; >
3 U vodvatic Terms =o
_.g%cd + Sf | K

Neglecting the quadratic terms and eliminating Gy between this equation

4z.
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and the third of Eq. (2):

g L o4 2P oo | ‘.
O dt>

The Eq. (4) and (5) must both be gatisfied at the free surface;

since FD is gmall, we may approximate Eqi (4) by

f4% = plrg o), . .
e
and consider Eq. (5) to be imposed at 7 = O , rather than

ot 3 - .Pcmjot)/fg/.

If the bottom of the body of water is impermeable and has the

equation

6

3 = —h ey
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it is necessary to formulate the condition of impermeability in mathematical

form, The vector

oh ok
()%’c)zs)

is normal to the bottom surface, and hence the condition that no water

flows through it is

Oh
u'?.b_ + 5 — + W =0

aX- 03 6a.

ot 3 = a_,lmgx83.

Foee o

By differentiating this with respect to 1+ and eliminating VU Ve

by means .of Eq. (2), we obtain the equatioh

2p 2k dpdh o 2R Lo
OX OX% dy O o3
at é = =l

The mathematical problem is now one of a single dependent variable
P . that solution of Laplace's equation (Eq.(3)) which satisfies the
boundary conditions Eq. (5) and (7) is required.

To simplify matters, we seek only those solutions that are periodic
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in time, so that Eq.‘ (5) becomes

8":3.‘2 _»U_DLF:O 5a.

vhere 2 ﬂ’/a) is the period of the waves.
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2, The Shallow Water Aporoximation.

Since the function t; is to be without singularities, one may

expand it in powers of 5,:

\ .

Plry3) = polry) + ,:_; Pty + L p ) 3T e

8,

Tf this series is substituted intd Laplacels equation, one can collect
terms having the same power of 2/ , and separately equate the coefficient
of each power of 9, to zero. In this way one obtains the set of

equations

Do + fr =

Ap, + Pa =0
é?tfc:.)
where the abbreviation
: S? S
N = +
axl OBL

has been used,
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If the series is substituted into Eq. (5a) and evaluated for

2 =0

, only the terms independent of 3 remain, and these are

GPr — @ fe = O 10,

with Eq. (9) and (10), all the functions P ‘can be expressed
in terms of f" and its derivatives: héii’xg the abbreviation st = ? / c?’

(Note that 2/ # 1is the deep water wave~length) we have

Py = = % AQ’“ 11.
2
doq - A @0
*'JQ - H O* &90
et ¢

In this way, one obtains one solution of Eg. (3) and (5a) for

every choice of the function ()Q . It remains to determine F“ in such

a way that Eq. (7) is also  atisfied. Parenthetically, it may be
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remarked that Eq. (4%) becomes

3 pow/fr e

so that, except for the factor (/}93/, r% is thevheighﬁ of the displaced
free surface above its undisturbed level, The problem has thus been
reduced to that of finding the shape of the free surface; once this has
been found, the distribution of pressure and velocity can be calculated
from Eq. (11), (8) énd (2).

>Substituting Eq. (8) into Eq. (7), one finds that

0O = (3@ oh + ‘B_JJ_\}M oh 3‘».)

I X D X Jd \3 8} 'J
: L Op., i
LLofop ok Op 2 2
{ OX  OX + J% 33 * ‘)‘>-?

o4 ?_A")z dh 9‘)‘# _().Jil 4+ P
+ 2.‘{ Sx Sx by 9y P2 )

+ ohe.
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Settiﬂgw:‘zﬁ = —-Vi and using Eq} (11), this becomes

U&) Ok 5\1
C = ( Y S x S%g b‘és N K(?")

Ry R - aph

Ox Ox ‘33 a3 12,

L (, d0ps. Ok _ 8¢ dh L ¢ APQBL\L
2 Ox  OX Dy Vg :

Eq.:(li) is a partial differential equation of infinite order, to
be solved for Po. * While such.equations have been discussed at
intérv&ls since the time of Fouler, no systematic method of solving them
has béenbdeveloped. In this case,'we suppose that the dimensionless

qualities

are small for all X and 13 . If we then neglect products of these

small qualities, we arrive at the approximate differential equation of
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second order:

Dp. Oh Dpe dh
- &‘3 sl & ( A
©= Sy OX * Oy 2y N KK% A &

or
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3., Water of Constant Depth.

It is worth coﬁsidering the case of constant h , since in this

case, we know the rigorous solution.

In this case, Eq. (13) becomes

z

/.)\?0 = = &70 {L\ = -k Pe 14,

vhere 271 / k = =2F Ji\h / () is the shallow water wave-length,

Using this result in Eq. (11) it becomes




- 12
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so that -
{(u— i?k Ry
3,3 . L SL8
hogs o+ S,‘ké Jj)

A

crlklig ¢ 5
15.

GJ“ [ wlf\.kﬁ + kh ato lg%]

i

Now the rigorous solution is known to be

e = Ps ceah K (%+ L) "‘:16.

Since Eq. (16) may be written

where~‘%) is any solution of Eq. (14)

&a: 6>§ LM kg .o,m,f& k + @ug kS accel, k(\]

it is seen that the errors in Eq. (15) are of the order of magnitude

, as was to be expected,

kK’ ht = s h




N
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" 4, Canonic Form of the Shallow Water Equation.

The introduction of the new variable
) '/1‘ | - 17|
reduces the Eq. (13) to the form

AP 4+ k*P =0 18,

where

kl S = H./ :(x e hﬁl/z‘ /—5—1’\.‘“— ‘ 19.

The expression for the wave number in water of constant depth is
k* = LQ‘/!J h = K/h, . Consequently, the second term of Eq. (19)
may be expected to function as a correction factor to the usual formula.
To estimate its magnitude, let = _a —)5) 4 being the constant slope

of the bottom; then Eq. (19) becomes
, | 2
k* = w“/gﬂﬂ r YVax?

Consequently, the correction term is negligible when

X > 70/4@0‘ = af4r
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Taking 9 - /(93} O = /d'j' :Z/T/u) = /0 sec, this becomesXx>> 6 coae .
Thus, wéumay neglect this term everywhere except very close to the water's
edge. It appearé that it is justifiable to use the ordinary formula in
almost all, if not in all, cases of interest. The small region ncar the
water's edge is in the surf, and we cannot expect our linearized theory
to give a good account of this phencmenon anyway.

It is possible that the correction term may be important at the edge
of the continental shelf, in the case of the 3, 6, and 12 hr. components of
the tide, Moreover, in some problems, the neglect of the correction term

complicates, rather than simplifies the analysis,

nn?¥’fw’ -
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.5, The Approximation of Ray Theory.

A traditional way of obtaining an approximate solution of Eq. (18)
Jeads to Huyghenst! construction for the wave fronts, and to other well-known
formulae., It is assumed that there are solutions of the equation that have

the forms

P= A ces (S-wt),

?: /~\ SDAdA, (5-——(4)&)) 20,

P AQLLS*wt)

the functions A and S being the same in all these solutions and being real.

If we substitute the exponential form for P in Eq. (18), the result is

e _ . oS
et wt)i/ﬁ% + kA - AU%%&)L ‘”33]

s T/ OA 9S8 DA o3 | -
+ A[,_U—K 5 03) v AAns b =o.

Since /\ and S are both real, this equation is equivalent to the

two equations
95 \* 25 \* 2 -\
.:m) « ( 33) -k = ATAA 21.

and

25 2 23

/ a‘ﬁ DS
Ans - QK OX X Oy Oy 22,
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~which will be considered successively.

In Eq. (21), the term AV A is known as the diffraction term.
It has the same dimensions as I* , and is somewhat similar to the term
H’""‘ AN \/\f’”\_, in Eq. (19). However, instead of depending on the known
bottom topography, the former depends on the unknown amplitude function.
The method of solution now under discussion is useful only when the
diffraction term is negligible compared to \<_1 , the sduare of the wave.number.

Under these conditions, we may write

(32)7+ (55)7 = &% e
this equation is known as the geometric - wave equation, because it can be
solved graphically by a simple method. This method will first be described
and then proven.

Siﬁce Eq. (2la) is a partial differential equation, it will involve
an arbitrary function of integration: this may be taken as the curve C
in the x~y plane on which S takes on some constant numerical
value ~— say the curve S = Go . The construction for finding the:
curve C" - S = a + Sa Sc. being small) is as follows: at
points of Co , one erects the n\ormals. On these normals, one locates
points at the distance SA = (fa/k(ws)fx‘om CQ . This is possible
since k is a known function of X, 4 and §¢_ is given, The curve

C\ passes through these points. Having obtained @l , one can repeat

the procedure to obtain CDZ.: S =+ 2 SQ,) ,etc., thus obtaining
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the contour lines of the function & in succession., In addition to obtain~-

ing the contours, one also obtains a family of curves that intersect the

contours at right angles; these are the rays. ,
To prove this, let X 2 be a point on £  and X+ gx) :]: + Xéf‘

the point on C:‘ where the normal to Co intersects the latter. Then

because S (x4 S g+ g‘_\p = S(xy) + S« we have

S8 DS
Bx ox © X“S oy SO‘.. 21b.

Because the vector o x ) Sd igs normal to CQ , we have

. 23S '
Sx:—:(:m) 55:6%

where € is a t;ggtor of proportionality. It is related to 45‘/6 by - the

equation.

(ia)r = (Sayt e () = e [ ()7 ()]

k*e® by Egn(z’q).

——
—

Hence
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substituting into Eq. (21b), we have

ss “ﬂy +<<§-§)“j - Sa

or by Eq. (21a), J/o = 'ga,/k, which was to be shown,
We can therefore consider the function S , which is known as the
phase function, or as the Hamilton-Jacobi function, to have been determined.

Turning to Eq. (22), it may be written

ax(w/y\zas>'+§§(/\2(§'§):o 23,

which has the form of an equation of conservation., It suggests that the

quantities

E—:. H_L__Azbfé E-__\.... 2.(2_-_5_
X '.lfuo oxX ) ' ZFLA &

24,

may be interpreted as the vector flow of energy in the wave-train. (The
constant of proportionality, ! / 2 f W, will be justified below. )
To prove this, we return to Eq. (1) and (2); multiplying the first

by ‘3 , the others by w. , o and (o~ respectively, and then adding,

one obtains

0 Ll (%2.4’0'1 1] TR \)Lﬂl DI _
13 )|+ =P TR A 25.
Jt f O % .)3 /35

Since —‘2-: f (W? ¢ o tpert)is the density of kinetic energy, we identify
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-~

o= (REA[pw) e (s-wb) 5

Hence
T A0S
F) - 2 f*uJ O X
and hence
— A+ DS
gl thx) A X

Ve have had to make many approximations to obtain this interpretation
of [Sx s it is therefore important to notice that Eq. (23) was derived with-
out making theée approximations, and has a higher degree of validity than
our intefpretation.

To summarize these results: it has been shown that a certain approxim-
mation, Huyghens! wave~front construction is part of the approximate solution
of the Eq, (18). Then it has been shown that the 'energy flow" is normal to
- the wave fronts, and is proportionai to the square of the -amplitude function,
and to the gradient of the phase function.

This section has been entitled "Ray Theory," but thus far, rays have
scarcely been mentioned. They are defined as those curves that intersect
all of the curves S = const. at right angles: they are the orthogonals of
the family of curves S = const, They derive their importance from a very

elegant, though somewhat inobvious, analytic method for solving Eq. (2la).
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Consider any curve, |! , joining two points A and B in the
x~y plane, and let d a be its element of length, Then we can calculate

the integral

B
I = 5 \<(.xu3§ da

‘ A
If we keep A and I3 fixed, but change the curve o, j:f‘ will
change its value. Among all the possible curves, there will often be one
for which ]fﬁ has a smaller value than any other; alternatively, there may
be one for which it has a larger value than for any other; these "extremals!
will be shown to be the rays: this is Fermat!s principle of least times.

—r

The extreme value of o (: T ) is related to the phase function in a
simple way.
First, we obtain Euler's differential equation of the rays. For this

purpose, supposé that the equation of the rays is
X = x(T), q= 3(.?)

where 7T is any parameter, such that the point /A corresponds to

= T and the point B to T = + Then
“7 A P 3

0.60_: L/LCQI'/ W{W ucl_%(coY/(jZ)L+(C[j‘/(4t)ls
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and hence
T3
I‘: ] k (o (ﬁf

Ca

If we consider a neighboring curve joining A to (S , we may write
— Y/ - - - f
X = Yt) + J\X(L)) J = j(b) + LJ(fJ
provided that
Yoy " -
&X(Z‘A): fx(rlg): Jy(t,;) = o{fr(Lb-,) = O,

The value of T nust be, to a first approximation, unaltered, since the

curve is an extremal. But, value for the neighboring path is

—

Qs , .
T - ey ok gy, ke dbe dy 4’;3) d
S TNCTRRF S T

ol

[

Ta

If we infegrate the last two terms by parts, and remember that the ,5:x, Jép

vanish for 7T« Z:Aand 7::[3 , we get
s T ok A& Oy "ok 4 [ d

_ L s Ok _ & [k

r [ ke stk () M AR
A

Since. gx»and él{ are arbitrary functions, their coefficients must
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vanish in order that the two expressions for i]; be equal:

LL-JEEi 'ééi‘ <"< éff 5 -0

o T -4 K Qﬁ.‘i‘) Z 0

oY  de
These are Eulerts differential cquations. By solving them, we obtain the
rays: through any point, there is one ray in every direction, since these
equations are of second order.

Having thus determined what we mean by "rays,'" we now proceed to
determine the function S . As before, we supposec the one contour S = <
to be given, as the arbitrary element that enters into the solution of
Eq. (215). Then tﬁrough each point of this curve, we construct that ray
which in%efsects the contour at right angles. Then, in general, if }4’3/
is any point, one of these rays will pass through it, and will intersect
the surface S . in the point Yo * The required function is now

to be calculated by the formula

\S(—ZJ)-—- o+ f /(41’
Yoy,

the integration being along the ray in question,

There are various ways of proving this; perhaps the simplest is to
take x g_ very near to mal yu. + then this formula reduces to the
previous Huyghens® construction, Repeating the construction for succesgsive
elements ol 4 , and adding, we obtain the result just given. However, this

argument does not make it clear that the rays must be determined by FEuler's
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equations, and it cannot be considered to be entirely satisfactory for this
reason.
A more satisfactory proof was given by W, R, Hamilton: consider two

in - ‘ r 2 . i i

points B - %3 and G) =X+ 6x sz,s%, These will in general
lie on two different rays, which intersect S = a perpendicularly
in the points Am“)(‘a.‘:ga_ and  A'z x 487, ) 4 6yt Let the equations

of the two, rays be

Y = L{T) ) 3—:3(?)

and_ |
| ’X:M(r)wta&x[t)J L(g-:‘-&(‘t)i—&tr(-c)_

Now, however, &.X, E)Zj are not zero at T = T, and ’L‘B. We can

calculate

5(3(1“844,»6&-6%) — S(x“j) = &/scg":; +£~3%%

3!

- |

A
kow de - J kw cQ,T.
a\ R




!
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by the same method as was previously used in deriving Euler's cquations:

TB
By DS _ - ok & k&
= 22 50 - A LT

. Because - X(T.)l, Lj (¢) is a solution of Euler's equation, the integral

" ‘vanishes; the last bracket also vanishes, since r&xa 6;1a is a wvector.

parallel to S = o , while Z.Q»L.’f ) %‘i ) _.is .a vector normal to the
<7 * )T .
same curve; this leaves : n N
i R >SS 153 (ds( L& >
2l e TSy = B+ pLen).
DXbK B 'JJ 83‘ N ZC:L: ® CLT:K i

4t being understood that T-= 7 on the right,  Since- H%- ~and. 83‘__

are arbitrary increments, we have

OS 'k A= 05 kK "Lg/
SX = w dT .o\j‘vcliz‘

‘but, because of the definition of .., this Yeads to=.. . . . =~ -

- . (03%()1. + (%%z‘\)\sk;_

which -was to be. shown.- o e AR
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6. Straight, Parallel Contours. (Ray Theory)
If [~ and /& are constants, the geometric wave equation can be

solved by inspection: if we set

S:: o X + bé’

the equation reduces to

ot + bt = KT or o a-= /<c/u'a<-///' b - /mw—'ocl]b

and
T = Alxy) ess (ax+by ~wt),

Moreover, one solution of Eq. (23) is then A(zug) - constant, In this
solution, the wave-fronts are straight lines, and the amplitude of the waves
js everywhere the same. However, evcn when k is constant, Eq. (21a)
has solutions that are more complicated.

If k and < are independent of lé( , we have the case of straight
bottom contours, parallel to the y-axis. In this case, we try to find a

function X.(x) such that

5:‘. X(X)—F E(Lf, ' 26.
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This leads to the equation

(5) v b= W

or

X = ‘[‘/'kl(x.)--'b“ 0’1\,( . 28.

A particular solution for the amplitude function can also be found:

if A is a function of X only, Eq. (23) reduces to

Lo/ dX
ey A Ty ) ° o | 4 )
or . .

—
‘ [\L = eruAA’//\/}§2~ b* . | 29.

Now, the vector

—— - 2 bR D‘—"' ‘-b
Jx""k"b D‘j"

is normal to the wave-fronts: consequently, if 7T is the angle these

—

make with the y-axis

Q'é‘-:k&c*ot (g'é“: /’\ﬂ»’ul—
O X '
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Hence
/—\2;: @mwk~/K¢MI

and hence the wave height is proportional to

(1

A /, ‘\1/7 coih // ('L\(g com T )’/2~

30.

\

cncak / (R (kr-e)]

Nearshore, c.so T ~» | and we have proven the known result that the wave

height is proportional to ‘//Fulﬂ$

To illustrate these calculations in more detail, let

¥\ = ‘\oo ( \ - E{FO—K ) = L\oa (\ - 5 5 3

where Lboa and g are constants. Then

>
T -y 52
j‘\ob S \ -
\\"’Q\.Q.,\,c.,
Gl o+ oY = u.\‘[x)&\u_\ = kX

Thuae N

K o=-if fozrets dE

- Cr'\) l‘,r,;ﬂ 5;

‘T{\L Mj‘\,\_; P2 3N Qf‘ l::..\ N L?"(S— . - AL U‘O.«\J:Q-Ll Q.L J 6 , ((-'vd‘-""uv'&

by

pi@ = [TT7 ace b, e = blke gy
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the vector bk@ ’ 0‘«> ; LﬁYGD with the cnergy flow in three dimensions.

We then show that, to an adequate approximation,

™
iy

—
F

x 2 ‘&?

i
i
—
G
G
N
o
N

where the bar indicates a time average.

Taking

T= A eoo (S-wt)
we have, by Eq. (17),
s i,
F° = L\ /2'/X <$ty3(«5-u.t ) B to a rough approximation.

Hence, by Bq. (2),

, ‘ JS
N A\M,\(s-ujt) S x

where the dots indicate terms in OL,/annd DA/)x We have already

+ SO

supposed that such terms are small, in deriving Eq. (13) and (21a), so we

are perhaps justified in neglecting them here. In that case,
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makes it possible to evaluate the integral:

X = %;:é © + = QQ:S m.u(\b"be)« 33
] a . s (,q)__e)

. which is well suited for numerical evaluation, and will be useful below.

The ‘amplitude function A is proportional to \ / (.o:u \&/ alr @) ‘/,"
and the height of the waves to ( aian 1P /,a/:.:t,\ 2 6)”1 .
Note: If 1\) - & , this fornula becomes indeterminate, but the

result X = (}‘\oo /0">Q,043L(\ +JT_—-§)/({'JT—:Z3] is

easily obtained.
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7. The Solutions Near the Water's Edge

We return to Eq. (13) and consider the case¥

h = A 31%,

which represents a bottom with constant slope 4 . This will not be justified
for large values of X, since the depth of water will ultimately become greater
than one wave-length, Ijowever, one can obtain useful conclusions concerning the
wave-motion near the watcr's edge, and resﬁlts that can be used later in other
connections,

Substituting Eq. (31%) into Eq. (13), and making the simplifying assumption
that ‘Oo is independent of %f (normal incidence of the waves) the wave equation

bgcomes
4
g, dp _ 32 %,
y‘(’é 5‘1) -+ /C,g = O,

Define the operator

l -—-—;~ ’;_ - /{//d 334,
Ax

and expand

f: Q;‘{‘ Cl;{’ +C:1X“L+"‘

where C_10,

# This problem has been discussed by J. J. Stoker, Quarterly of Applied Mathe—

matics 5 31 (1947).
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Then, since
y L
M x” = prx + (r/d) %
we obtain

O = (\"lﬁ: Co [o‘ + (K/d)]

yoe [T+ el x|

ce Loty vl 2]

v [atwt e (ea) ]
+ NN «4\

In order that this equation shall be valid, the coefficlent of each power of

X must vanish, so that

i*c, + (®/4) C =0

2
2%¢c,

+ (#]a) C, "o

32 C:_% + (/(/A)Ca*-*o

or
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This is an infinite series for 5#3 , and, as such would be rather difficult to
(s}

use for numerical computation. Fortunately, however, the function

:E:(}f) S ,];: <€§f) 1“%- 0 (\ﬁf )‘+ 3 | t{j)(a"“

12>\ 2. (¥ 253\ %

(known as Besselts function) has been tabulated,* and we may write Eq. (34)

g= L)

so that is is simple to construct a graph of this solution. (Fig. 1 and 2.)
Unfortunately, this is not the most general solution of the Eq. (32%), and
it is rather difficult to obtain the most general one. It is much easier to

‘obtain the general solution of the equation

_ d | 2 got,
"o mOEE) clE- Bl T

It will be instructive to consider this case; to obtain the result, it is neces~

sary to 3el

Lgal BR1 ¢ m+ 2
%‘-‘1 G x 7+ c :Z +~ O X ~+ s

n e o G e g g0 goa e B

# References: Maénes & Oberhettinger "Special Functions of Mathematical -
Physics," p. 16 (Chelsca, 1949) (hereafter cited as S.F.M.P.).

— Jahnke & Ende, "Tables of Functions' p. 128 et seq. (Dover,
1943).
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where v, 1is a constant that must be determined. Since

M " = (v =n*) AL (ref4) %"

we now get |
A, - w
O = W\cﬁ = C_ (‘(m"— -;';n’“) T/J,L‘ + (refa)x .}

c ( Sl,(wl)L" sn’) 2" e (1]h) y'uiwj

+ I
. Wt e
‘(, 2, D\ ekl C//’X-
e, [foat by w (e 2]
+ Na h
whence ‘

! L _

CQ%W\L-—-JY\} = O

etc,
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The first equation could be satisfied if C = o , but then all the cfs

o
would vanish and the trivial solution x__ = ¢ would result. Hence m = L '1- "
are the only other possibilities. Corresponding to these, we can determine two

e L Lo neT o tnteger,
sets of ¢ts and get two solutions; which may be written
A\

_ { A1e x _ Y x ) 36.
%l - J;t (\/ A ) ) E'?—‘ J.:n, V/ o

where
| \)’ v - ‘ (:{_)2 ‘ 0_,\‘ﬂ
T/L ((f) = Co (2) i-' - | (V!*H) 2 T (.'."2\(1’114')(\'\#-2_){;’/3 w) 3

—

For systematic reasons the arbitrary constant C{)’ is set equal to l/{—’(nﬂ) .
It is seen that, when 11 = ¢ , these two solutions become identical, thus ex-
plaining the pec.uliar difficulty with Eq. (32%). The general solution of Eq.
(32%%) is Ck = /A T - GZ + consequently the function Mn (0‘)

T

where

/
is also a solution of this equation;# it is known asNeumann's function. When
n —> O , both numerator and denominator become zero, but the furction

can be determined by evaluating the indeterminate form:

'*SQRMOPQ, p- 16
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From Eq. (37),

T O (M(ntr)
O“Jv’i, _ Lﬂ_o _(_i- _ ( l(\ K j—(d")
C}Y\. - : 2 l-"(vH")
] / o\ _ | ™ /:)- R
—t‘("(mB~ <2) ZO * t(ﬂ*‘)(»-"“]\z)

’ s e sG]
- e S > + e
— le2

(2 (WH)('H))

Hence

Z [

(
‘ , ¢
A [T e e ()OS

(2% L .

where P(l ) =\ and

- ﬂog(}/: [2—% QDBP(M(J)T[ | = C.577 .
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It 1s now clear that the two independent solutions of Eq. (32#) are

/. ~ ‘[(éncxjuwf /é N/J4K“f 30,

and we proceed to consider them in more detail.

Figure 1 shows a graph of these two functions, plotted with A?;()C/CO
as abscissa. It is scen that both are oscillatory, and that their wavelength
diminishes with diminishing > . As x approaches zero, ‘j; -> ( , while
hdo—a>~oo . However, ?\ﬂ) has its last root so close to the origin that it is
difficult to represent this feature already on the scale of Fig., 1. Figure 2
is plotted with the ‘Y-scale enlarged by a factor of 100, and shows, among

others, a graph of - N This graph has its smallest root at

4‘“'25/'4 = o, ¢/ » and rises to infinity between this point and x =z o .
The function: n]; , on this same scale, is represented by a straight line that
has approximately the same slope as the graph of Y a, for larger values of
x |

The question arises, whéther the infinity of the function FQO can pos—
sibly represent the hreakers. This must be answered negatively. This is most
simply seen by a numcrical example: let the period of the waves be 20 sec., and
the slope of the bottom 2 %; then /4w = £ocm. For this example,
therefore, the wholc graph of Fig., 2 represents only 125 cm, the water's edge
beiﬁg at the left. “he maximum depth of water, at the right hand edge, is only
2.5 cm. The smallest root of Ny occurs 40 cm from the water's edge, and the
depth here is only 0.8 cm. It is obvious that there is little physical signi-

ficance to be ascribed to the solution in this range of ¥ -values, It is
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scarcely necessary to enter into all the reasons: one is that the wave heighté
in which we are interested ave all very much greater than the water depths in-
volved. The contrary has becen assumed in deriving the boundary condition at
the free surface,

A second example is of interest: the periods of tsunamis are of the order
of 15 minutes., For this period and A = 2%, Al4w = | l<ue, Thus, in this case,
Fig. 2 covers 2.5 lm, and water depths up to 50 meters. Even so, the function
~N, does not exceed J, except for X < 60 meters, where the water depth is
less than 1.2 meters. Again, it is scarcely possible to ascribe any physical
significance to the different mathematical properties of the two solutions at
% = o .« We shall return to this matter below.

These examples mzke it clear that, for waves of less than 1 minute period,
on beaches that do not slope very steeply, we shall be interested primarily in

values of 4 4 ¥ /.4 that are greater than 100, For such large values of the

argument, it is known that¥

T () ~ oos( o - Ta) [T

40.

N (o) o e U‘—'T/'4~)/J";rw/z.

These equations hdve been used to construct Fig, 3, which extends the graphs of
Jo and No o larger values of X .
It is interesting to note that Eq. (40) is exactly the result we should

have obtained from the ray theory approximation: for, if

# S.FMP. p. 22,




Lecture, Fall Semester 1950-51 - 37

A X a 73 /

dX _ m = o

Moreover, the height of the waves, from Eq. (40), is proportional to \/J Jo
]

or | //lx 4 , again in complete agreement with ray theory.

The phase constants, /4. , in Eq, (40) are rather typical, and will recur

in other applications, It may be noted that, for large U,

\/L - N, + J, B vov(u")/) Taf e

V- ([\[ ) = MU‘)//”J/Z

These two combinations are plotted, for small 4 , on Fig. 2.

The different behavior of the two solutions J, and No.cannot be dismissed
without further investigation. It may serve to clarify the probiem if it is
known that these functions also occur in other physical problems; a typical one
is that of altérnating electromagnetic fields. In that case, the function Ny
represents fields near a very thin wire that is located at the logarithmic
singularity and carries a current; the function J, fepresents fields in the
absence of such a wire. In this case there is a clear physical reason for the
mathematical difference between the two solutions.

In the present case, it would seem that no physical reason is to be ex~
pected, since the equations we are solving cease to be valid for such small
values of X . It is therefore suggested that we somehow exclude these re-
‘gions of very shallow water from consideration, in order to obtain an under-~

standing of the problem. Let us suppose that the water depth is still given
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by Lq = g for x > X, but that, at K = %; a’vertical wall exists.
Moreover, suppose the wave-height is small enough so that the waves do not
break against this wall, but are reflected without breaking. Then all our pre-
vious equations remain valid for YK > yg, but a new equation enters the probi
lem; this cquation states that no water flows past the point X - % , and is

W(¥, Y, 3) =0 This will be satisfied if and only if

. 41,
(g-g);)- - é(."\_ X = /}éo
A -

Now, the most general solution for &ﬂ> is (A, B constant)
po = (A3« BN )erp[dutagy) @

and the Eq. (41) will be satisfied if

-y

e / -—f—zt
A= C ‘\JO((J%;%) ) R = ~<?J;(\‘;;‘_~)) 4A2a.

where C is an arbitrary constant, and the accent indicates differentiation with
respect to the argument of the function., If 2% is large enough so that Eq.
(40) may be used, this becomes

{(—

d’)‘b = C Ctzy LL\};E (J\; -—J—ZQX:( /\// /Tdn x /A 43,
v LY p - iu<wt++)

and represents a wave that has been totally reflected at X = X; .
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The important thing to be noted is that the additional boundary condition,
Eq. (41) has reduced the number of solutions from two to one; but it has not
eliminated the Neumann function from consideration. If we wish to let >{|
become small, we cannot use Eq, (43) any longer; more important is the physi-
cal fact, that in order to keep the waves from breaking, the constant C must

be made ever smaller. We can assure this if we set

[STTN

e T LT,

if we do this, then, when X_ - o A “’"( 13»5() and we do (rather artifi-

ciallyﬁeliminate the functionn Ny from our consiceratices,

This example has definitely excliuded surf or the treaking of waves. We
consider aﬁother example that has one characteristic in common with the surf:
the removal of energy from the orderly motion of the wave., In the case of surf,
this energy is converted into disorderly ' motion, We cannot treat this within
the framework of our present theory, but, if we suppose the sea wall to be
movable, and that its motion is resisted by friction, we can treat the removal
of enebgy from the waves.,

Let U be the velocity of the wall, M its mass, R the frictional constant
and F the force exerted on it by the waves (M, R, and F are all to be calculated

per unit length): then
M du - RU = F,

or, if </Q/(,(f AN




L~
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By analogy to clectrical and acoustical quantities, we may call Z the
complex impedance of the wall,

Now, since the wall moves with the wave,

: .. 9 po
f)(chw (S—%—

X=X,

and (to a certain approximation)

B o= =X o Uxe) .

These equations reduce to the boundary condition

a/)r) \ i
el L CWAX = O ade xe= K. 44y
7 (ax‘ ) “f ef 0

Substituting the general solution for ()c , we find

A = C (:Z \/;%; ’Ya/ -+ /_‘]nwaxo /Vo]

el 7 pwan o]

L " V4 x,

45,

the argument in the Bessel functions being Y4 X X, /< throughout.

Again, we obtain an additional boundary condition, and this again reduces
the number of independent solutions from two to one but, again, we do not elimi-

nate the Ncumann function.
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At the expense of some algebra, one may write the expression for f%) in

the form :
YA C o) et =4
P = /Mi} i© | ’
46.
| L ( "Jo "O‘)t “C&)J
-+ AR e [* Y )
where
e [ K - .
A, = [(R-smw) ] 55 pwax, [C
47,

A= [(R-co) [ = pusx [C

and X is supposed large. The equation (46) represents an incoming wave of
amplitude proportional to /qk" and a reflected wave of amplitude proportional

to /Qn . The fraction of the incoming energy that is reflected is

I Aa//'\,(' ( ~ i[l?—f(éxo)yav 8"’2}'/2 - W zw"} | 18,
- 2 (R +JO(ZL><°\M % ',LJ s M’m*f :

These examples are highly artificial but serve several purposes, One is

the introduction of the quantityqp(%&jgg3/a ( )'/f' If one may argue by

analogy to electrical and acoustical problems (always a dangerous procedure)
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this quantity will be of impbrtance in any theory of surf., It may be called
The value of

the characteristic impedance of the surf-zone.”/ X 1is the distance from

shore at which the waves begin to break.

The other purpose is to show fhat our previous equations have been physi-
cally incomplete, and that one additional boundary condition is needed. If it
is imposed at some point other than X=o or ¥ = oo, it may take the general
form of Eq. (41); or (44), depending on the physical nature of the problem.
However, it may also be imposed at % - o ¢ then, in most physical problems, it

takes the form

QL\./V- = L,\‘.AVL-»:-Q‘L | 49
-~ . = : .
K-y o .

In our present case, this seems rather artificial (but so are the previous

' . possibilities); if we accept it, then we can restrict our attention to the
solution \7; and exclude /Vi. The last possibility is that the boundary con-

dition be imposed at great distances, and is

o X

b (f ey ikp) o w

_’X -3 2D

This says, essentially, that there are no waves running away from shore at great
distanceg. All of the energy of the incoming waves is somehow absorbed in the
surf zone., Perhaps this ecquation makes the best scnse; this is certainly true
of waves whose periods and amplitudes correspondAto ordinary sweil. Howéver,

if we deal with very long period, low amplitude waves, such as the surf beat,

the tides or the seiches of lakes and harbors, it is unlikely that Eq. (S0)
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will be reasonable, since these waves do not break. For such problems, there-
fore, one of the other boundary conditions would seem more reasonable, Be~

cause of its mathematical simplicity, we will choose Eq., (49) in such cases;

this definitely constitutes an assumption, however.
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8. The Solutions near the Water's Fdge (continued)

e

’

‘We Teturn to Huyghén?é construction, but continue to take h = s 7.
Since k* = s/ h , it follows that the separation between successive phase

- -—

lines will be =

s = da / k= 5}? Lx

/C

and will thus increase with distance from shore. If the initial, arbitrary,
phase line is not parallel to shore (i.e., to the y~axis) the successive
phase lines will be more and more inclined as they leave the shore.

This can be verified from the geometric wave equation:

::é, - oS 2 |
<;x) ”“‘<;’;) = ZJ% 50,

As befofe, let \S‘= )({x/'+—é&& Then
7 _ e '
P .
pusnamy — e L 2 . - . 51-
X / 7/ < = bo} L2

The substitutions

. 52.
v=J x = JZR wou é:é) ; 2R= /CV//JIJZ .
enable one to evaluate the integral, and obtain
53.

X= bR (-6 + Me)
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Since Ey., (52) is equivalent to

X = U+ coe) . 53%,

it is easily seen that the phase lines S= X+ by =const. are
cycloids, generated by a circle of radius R rolling on the line £ = 2R. They
therefore have cusps on the line x = 2R, and are tangent to the y-axis at
points separated by ‘the distance 2 m'R. It can be shown that the rays are
similar cycloids, generated by rolling the circle of radius R vn the y-axis.
For convenience, the distance 2 - R will be called the spring-length of the
rays.

This indicates that waves originating in shallow water may be refracted
until they run parallel to shore, and then turned even more, so that they
ultimately return to the beach at a distance frem their.point of origin. If
such waves do not break, they may repeat this history indefinitely, unless,
because of the topography (curved shore line, etc.) they find an open route
to sea. (Our present simple assumption that h = sx does not enable us to
deduce all details, and this last remark is really based on an example that
will be considered later.)

The. amplitude function A can be casily calculated (see Eq. (29)):

offE

/,_\ 3

il

"
My~
®©

The amplitude of the waves is proportional to
i . V . \ L
(sRY: AR = VAU N

Hence the ray theory approximation yields
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D ve bQ(/‘p:.n.e ’*é}*‘(ib
Po - ffL--———w”ﬁ**& -—-~—-] [CEY ) b‘d Cay t.\)t v

(/341\'.4..8) V2

This expression becomes infinite for ©= 0O and T , which values correspond
to ¥=2/Rand o . We shall see that these infinities do not occur in the
more exact physical thcory; lowever, the above equation for s can be

made reasonably accurate for values of (@ not too near the singular points,
if the constant phase angle g is given the right value,

Very 1itt1e1attention has been given this phenomenon until recently.
Stokes and Lamb™ considered it sufficiently to bestow the name "edge waves"
on it, However, because there appeared to be no observational evidence for
their existence, little more was done. Munk? recently has found that very
long period (about 4 min) waves of low amplitude (about 10 cm.) occur near
shore, and has shown that they are generated by groups of high breakers which
occur at about such time intervals., Later Isaacs® adduced reasons for sup-
posing that the phase lines of this "surf beat" are inclined to the shore.
The two data: generation near shore and inclined phase lines seem to equate
edge waves to surf beat. :

When the edge waves are gxamined from the point of view of the physical
wave equation, the phenomenon .ppears somewhat different than described above, -
However, the principal recagon for this is that ray theory is valid only when
the diffraction terms are negligible, The appearance of infinities in the
approximate solution is sufficient evidence to show that this is not the case
here. However, we may still take it as a working hypothesis that edge waves
and surf beat are identical,

L A e e N -

1 Lamb, Hydrodynamics, p. 447 (N.Y. 1945).
2 W. H. Munk, Trans. A.G.U., 30, 849 (1949).

3 Isaacs, Williams, and Eckart, Trans. A.G.U., 32, 37 (1951)

<
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The canonic form of the physical wave equation becomes

D2 P o' P :
+ N — P:: .
O X* Oy = T o ©

The assumption that the phase lines are inclined to the shore takes the form

Tlr, 4) = (N (x) %’Z;:kg(bx)

where b +0O . (We have considered the case [ =¢ in the last sectinn,) This
reduces the partial differential equation to the ordinary one:

T F (Zﬁl - b)) Q=0 54.

By inspection of this equation, we irmediately see that, when % < 2R ’
(R and A >/ d x *have opposite signs, Interpreting this graphically, the
graph of must everywhere be concave toward the x —axis: 1i.e., the

function oscillates for x <« &R. When x> 2Ron the other hand, ¢«
and ()% have the same sign, so that its graph is convex tovard the
x ~-axis. Typical functions having this property are o <~ ¥, sinh X,
cosh x . Consequently, we may expect that, in general, () will become

infinite for large values of w ; only ins pecial cases will it behave like
e~ % or (/x and approach zero, Now, since we are interested in waves gen-—
erated near shore, we shall certainly exclude those solutions for which

No) = .o 3 this gives us one boundary condition; the other is given
by the condition that the waves are so low that they do not break; this gives
us Gl (a) = finite,

We proceed to study the physical wave equation in order to find these
solutions, and the conditions for their existence. The Eq. (13), with
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Pty = 00 { ST 0y

becomes

Ax /

M = (e de) o (5 1) g =0

which is rather more gencral than Eq. (33%), This is an awkward equation to
study because M x ¥ turns out to be a trinomial. The further substitution

~bx

i% = € ’f: 56,

reduces Eq, (55) to the seemingly more elaborate equation (known as Laguerre's
equation)

A

Nf:— X Cf'[if *(/“251);‘;{ = (:;-‘,LJ)L =Q s7.

but, since

) . 4 ! —- -
Ny’ = 22x"= 2b(v+x) ¥, =3 (1 b) 58.

is a binomial, Eq. (57) is actually much more tractable than Eq. (55).

We easily obtain the one solution

X - |
§ e gz b ST (bt e e
p] L 4
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which is a generalization of the Bessel function ;T; . We also see that we
again have to do with an eXCpptiondl case, However, since we are interested
only in those solutions that remain finite at the waterfs edge, we need not
trouble to find the analogue of Neumann's function. The series of Eq. (59) is
well suited to determining the value of f for small values of =zfx, but we
wish to find its behavior for large valucs, To do this, we note that the
first few terms form an increasing prograssion when 24 x is large, but that
later terms diminish, The largest term is that for which the exponent of X
is the integer nearest v, where

2bx (\:/i.+ 1)0)/1)02' = .

If 2b»>>¢4 this is # = 2b¥, Under these conditions, we can approximate
the most important terms in the series by setting & =o:- this will make an
appreciable error in the early terms, but not in the largest, and results in

«f— = | =+ -;—;(2/.“&) + “:‘2‘('1‘“(2/6)()1 +

-

2bx :
= & o > w/zb,

Actually, this crude calculation has led us to a quite correct result: in
general {l becomes infinite for large = , and increases so rapidly that
?% also becomes infinite like <y DN

This shows that, in general, there is no solution for that remains
finite both at x =o and »x =00, DBut our argument is subject to exceptlon'
when o 1is a negative integer (say(4—~arL), the coefficient of (2bxj”
is zero when ¢>n . The infinite series reduces to a polynomial — called
the Laguerre polynomlal (. (2by) + There are several notations for these
polynomials: one is

. N T bt L ?
LHC)C): -1) . é‘- ‘,J.;L P50 25 592,

-
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As can be verified by trial, or proven in other ways,*

e Sl

The first few of these polynomials are

L'o(v;(') = |, “Lho(x) = o~ x|

Lox)= x*=dx +2

: 2
“ha(xX) = =X+ G- 18x + 6
The graphs*¥ of the functions , (Figs. 4, 5, 6)

%n(2bx) = c?wEAL (lbx)/m\

verify the conclusions we drew concerning the function P: the

- 50

590,

oscillate

for small values of % , but approach zero asymptotically for large X e

The function,

‘3"(%’3) = fé_n(x) au,ba s €

— 4 pu G OR gp e ke e em

% Courant and Hilbert, Methoden der mathem, Physik., p. 77 (Berlin, 1924).

%% Brief tables of %m ( %) are to be found in Physical Review 45 833

(1934).
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represents standing waves. Their amplitude vanishes on the "nodal lines"

determined by the roots of the factors «. and sin by . Consequently,
there are rn nodal lines parallel to shore, whxle those" “erpendlcular to
shore have the spacmg b = ’\i )\6 . .

The distance A... may also conveniently be called the longitudinal wave
length, One may also have solutions of the form

P“’ = %.n(x) %(‘:(b:s—@t)\

These represent running waves, of length A propagated parallel to shore;
their amplitude depends on y , tecause of %’Be factor (E («y and vanishes
on the n nodal lines that run parallel to shore.

If we consider the equation (= -w; it may be written

or

27 K "‘(’7*:;/‘)/\3;~ | 60.

In words, the spring-length of the rays is an odd integral multiple of half
the longitudinal wawve-length.

The period of the waves is T = i/, whence

T*:: ‘\){ 27 /\J, /.(2»’11-/)“:77. | 61.




Leeture, Fall Sewester, 1950-51 ~ 51A

and thus depends on A\, and the integer »u_: for every Ao there are many
possible periods, of which the longest is o4 A 7;]“ . Convérsely, for every

period, there are many possible A, , of which the smallest is g,o7rz/4273

J

9, The Seiches_of a Ciraular Lake

The slow oscillations of a lake or other closed body of water are called
seiches, These motions are so slow that no turhulence or breaking results.
Consequently, we expect them to be reflected from the shore and therefore to
be represented by those solutions of the wave equation that are everywhere

This is not the only analogy to the edge waves; since the water deepens
toward the center of the lake, the rays will be curved back toward the shore,
resulting in arches, perhaps of variable spring length, depending on the
topography. It the lake is circular and its bottom has no irregularities, the
ray arches will be uniform in length. Perhaps one can immediately foresee
that their vertices must coincide with those of a regular polygon; at any
rate, this is one conclusion we shall reach, :

Lamb¥* has treated the case
oo,

H: "\O((*/L"/RIB) Q:JX’W—ESL 62.

which represents a lake of radius TR in a paraboloidal basin filled to the
height %Lo above its lowest point. Using polar coordinates

X N eoo 4: 4= 2 ALL£4_4)

the physical wave equation.(Eq. (13)) becomes

329 ) C)l > CQL\ Dy
__ﬁ_u i *La _L “_g"g . ._Q).\' o
“(om o TSy Tdh o T 2O e

The simplest solutions of this equation have the forms

‘% Hydrodynamics, p. 291, (N.Y. 1945).
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A e |
Po= GOV {@;%(Wﬂ i; g(mé),‘ 64.

3]

since P(")d>)== pn, ¢4—2Jr) , it follows that nican have any of the
values O, 1, 2 ..., but no others. '

The Eq. (64) shows that the nodal lines include the 2m radii
¢>: T/, 27, BT/ a etc., in the case of the factor ace m ¢ f
or, in the cage of cos w , the 2m radii obtained from these by rotation
through the angle 7/24¢,

We might also have solutions of the form {~)sin na(4=—4c )} cos T,

where ¢, is an arbitrary constant; for these the 2m nodal radii are again

equally spaced, and one is 4~=:¢; . A slightly different type of solution is
073 7,//\)/:»«‘4.(;11-7! —-co‘f)- 632,

This has no nodal radii, but represents waves that travel around the lake with
the angular velocity cw/m . The waves therefore complete one revolution in
. periods, :

All of these solutions may have other nodal lines: the circles determined
by the equation & (74)=0, and wc now proceed to determine this function., It
must satisfy the equation ‘

1. & c *
e = (- 5)(he v g - 5 ) :
X

where I(D , defined by

‘\: = }{/hc = ‘OL/51u59 66.
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is the wave number calculated for the deepest point of the lake.

As always, we first calculate

Mn? = (v: wt ) 2T [kﬁzR'*”-(ﬂ+mu)(;/-m+1)—+—tjh“/RL,

This.can be somewhat simplified: on definin by the equation
& F

ka F32. “+— | = ( £ +s¢«b—t)(¢v~ na-rl) 67,

. At becomes

Mr? = (Vo) (V+u) 2P TF o (ep)(p Ve ) AR

Thus, -letting -

2; - ..ILH4'<'C3>‘4~<3‘.)L2” ”#»'(311~Q,4' -+ -

we find that

o W R L Lo, v/ RY
%,; R F(i‘m*‘lf, ML e ey, AR %&
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where

' b alart) b))
F: = . ‘EL“‘—" | i -L vl
(c, b, ¢, %) |+ T T elery F*

is the hypergeometric series,'which will be encountered again later and then
“studied in more detail,

It might seem that we could get another solution of the form
60’: /l\u[@ov"ﬁ’/ﬂlf‘ez&c'é'f"{)

and this would be true if y were not an integer., Being an integer, we
should be led to conclude that €. = ¢, = «s Gy .y =6 , and end with the
same solution as given by Eq. (68). The Eq. (65) is thus again an excep-
tional case; but, the second solution would become infinite at =0  1.€4
in the center of the lake. Siunce we have already concluded that such a solu-—
tion is not of interest we are spared the troutle of finding it.

We must, however, consider the behavior of the solution at the waterfs
edge, n = ® . The expericnce of the previous section lecads us to expect
difficulties at that point, And difficulties immediately appear, for the
series of Eq. (68), in general, diverges when a*//2* > ( . There is thus
no casy way to calculate ?m for ~ - R, , but there is the justified sus-
picion that it will become®infinite there.,

However, there are again special cases in which the series = la, b, C,'x)
is not infinite but represents a finite polynomial, These polynopial cases
occur whenever either o_ or b 1s a negative integer, say —,, « Then the
hypergeometric function becomes a polynomial degree n in x . In these
cases, %; certainly remaing finite for A%/ | *

We consequently conclude that the only solutions that remain finite every-
wvhere are obtained when

(28~ D) lJ 2 vor x

/

I
if J.W‘mm ’

_that is, when
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4

w?* /?'7/4Q by ,(‘,2 R

3]

(Zh+2m+/)(2n+/)—/

Arln +m+1)+ 2m.

69.
In these cases#
For ° Fomn (2 JR)T F(-n rnem+1, m+l, /z'z//?'z), - 70.
& We consider a few of these solutions: let m =7 =0, 2, =% Voor I

Thus this solution is a static one, and represents the case of a permanent

change in level of the lake. If m» =0y 7= { ‘*{,,2 = 8; by /R* and

Goy = /-2 <2/ R* . Consequently, in this case the’re are no nodal
radii, but a nodal circle at 2 = R/Z. If m=0, n=2, wozz =
2agh. JB o= 1-6(2/B)T + 6 (2 /R)T
and there are two nodal circles at A = K (/ T //;/_3‘) l/z/’}’:;
In general, the (#7, 7/ modes have # nodal circles, and the normal

(. frequencies increase with both 7 and »# , although not linearly.

This is scercely an exhaustive treatment of seiches, but will serve to

indicate their relation to edge waves, and to suggest the sclution of other

~

problems.

L e R T — e e m en Ep G e v en G G em e S o e e me WD me e b R S0 bw e w0 S

#See Courant-Hilbert, METHODEN DER MATH., Physik, p. 75.
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10. CGeneral Survey of the influence of Topography on Surface Waves,

Several examples of surface waves on water of variable depth have now
been studied. The variety of sclutions of the equations is apparent, and it
bécomes desirable to obtain scmevinsight into the conditions under which
cach phenomenon cccurs. This is best accomplished by a device that makes
use of the analogy between the rays and the motion of a partisle. It will
first be described, and then a proof of the analogy will be presented.

The wave nuéﬁer, k, is a function of the water depth; in the cases

we are studying

kz = wz/?h‘

Consequently, the contours of a constant depth on a chart of the sea floor
are also the contours of constant ¥k . We can also ccnstruct a relief
map of k% ~ or imagine it to have been constructed -- so that the

equation of its surface is (to some scale)

3= - 1/h (xy).

This may be called the reciprocal relief map of the bottom. The plane
EL = O will be called the datum plane of the map; all of its points
are below the datum plane. A submarine mcund or ridge will appear as a
depression on the reciprocal relief, and a submarine canyon will appear as
a ridge, The water's edge is a steep cliff that drops off to an infinite
distance beneath the datum plane,

If a ball is allowed to roll without friction on the reciprocal relief

map, it will trace out one of the possible rays, provided that it has a certain
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total energy. This energy can be imparted to it by starting it from rest

at the datum level and allowing it to roll down a chute until it reaches

the surface of the map,

The proof of this is simple: the differential equations o f the rays
are given on}p. 23; the parameter T  was not specifically determined.

If it is determined so that

[( ) N LHE)Z] ; %aka/wa=g/h 72,

<
o
1

rol—
-

The equations on p. 23 reduce to
J2

d v? ' ;—;—(C(}/h)

2 73.

R |
dx? &y(a/h‘l

B

The Eq. (73) are the equations of motion of a sphere rolling on the surface
3 = - ///)1 , while Eq. (72) specifies that the total energy is
zero, when measured from the datum level,

-It should be noted, however, that the time required for the sphere to
trace out a given segment of the ray is not equal to the time required for
the wave—front to travel the same distance. In fact, the spherefs velocity, W
will be inversely proportional to the wave velocity, ¢ = w/k.

Since it is easy to visualize the reciprocal topography, and the rolling
of a sphere, this analogy affords an easy and rapid method of analysing wave
problems, ,

Since an actual ridge becomes a trough on the reciprocal map, it follows

i P ,——_— -t Y PR ISV RN DT S I DO R T LI L} PPN -~
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Y

if the particle approaches the trough at an angle, its momentum may be
sufficient to carcy it over to the other side.

A submarine canyon is represented by a ridge on the reciprocal map.
chce, rays will tend to be deflected (refracted) away from canyons. However,
again, the sphere may have sufficient energy to surmount the barrier, and
the corresponding ray will traverse the canyén.

The cycloidal rays discussed in the preceding section are represented
by a particle st;rted up a slope, but eventually being turned back by the
increasipg elevation and returning to its original level. The analogy runs
into difficulty near the water's edge: the sphere will eventually leave the
surface and fall freely through the air. These difficulties with the
analogy correspond to the mathematical problems already encountered with the
physical wave equation. |

The problem of the paraboloidal lake takes on a simple aspect in this
analogy. The reciprocal map has its highest point at /. =0 . To avoid
the difficulties with the vertical slope'at A = 2 , we may imagine the
reflecting sea wall ofp} »* built at a radius slightly less than « . In the
analogy, this will reflect the sphere, so that, as it rolls away from the
high central region of the map, it encounters the wall and has its direction
of motion reversed, climbs up the slopé, and repeats the cycle, In this way,

"
the pat%§_p22re will circle the center; only in certain cases, however, will
it retrace its path exactly. These closed paths, and only these, correspond
to the solutions we studied;

One may expect such closed paths to occur with other kinds of topography.
For example, consider a circular sea mound, rising: from an otherwise flat

bottom. On the reciprocal map, this will correspond to a circular depression

or cup in a flat region, and the rolling sphere may describe a closed path
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in the cup, Howe?er, its encrgy may be so great that the cup cannot
restrain it. In this case, no closed paths will occur,

This can be secen by investigating possible circular paths. Let .,
A, » be the velocity and radius of the circle. Then the centrifugal force
will be LJz/fv , and mist be balanced by the horizontal component of the

force exerted by gravity. This is g;(dg/a//t.)) so that

U«a/r‘ow 2 {?//h‘z)(d,h/d/‘b)'

Hewever, by Eq. (72)

so that
o=t odk?® L dh
4 2k* d h dr
or
‘2/1—//0 T 4+ ﬁ(/b/c[/b a . 74,

Graphically, one may solve for 4 by plotting the two graphs,,% ;ZA,/QQ

and < = 4 o A Jidys Their interscction w?ll determire the radius of

the possible circular ray , However, the two graphs may not intersect: then
there will be no circular ray., If they have several points of intersection,
there will be several circular rays, It can be shown that if

there are no circuiar rays, the depression cennot ever trap a sphere whose
total energy is zcro, It can trap a sphere rolling with less energy —- i.e.,

started below the datum level, But the motion of such spheres has nothing

Ll .t P
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-0')()

11, The Case A = Aw (/-

L]

There is a great difference between the salutians'of the physical
or_does

wave equation vhen A (3() does7ﬁot bccome infinite for large ¥ . This
is best geen by considering the ray-particle analogy. If hiz] ~ oo
as ¥ —»r oo , the inverse relief surface will approach the datum plane
asymptotically, Therefore, if the ray-particle is started at a great
distance from shore, it will start practically from rest. On the other hand,
if A (};) approaches a finite value fL>a4 x -~ 00 , the relief surface will
become nearly a pléne for large <« , but the particle will start with the
finite velocity 72g/hy, . -

If A s a function of x only, the particle, in the first case,
will immediately start, sléwly, in a direction parallel to the x-axis, and
travel normally toward shore, That is, at great distances from shore, all
rays are incident normally. On the other hand, if the depth is finite, the
ray-particle will start with a finite velocity, and this can be directed at
any angle to the x-axis that one cares to choose, Thus, in this case, there
are rays in every direction, even at very great distances from shore.

If the particle is started close to shore,\this difference disappears,
but another takes its place. The particle will then start with a finite
velocity, determined by the depth of water at the starting point., 1In either
case, it may be started at any angle Z , to the x-axis. Suppose this
angle is so choscn that the particle initially moves up the slope. Then, in
the first case (Ch (00) = 00) , it has just enough energy to climb up
high enough to get far from shore. But, if it moves in any direction except
parallel to the x-axis, not all of this energy is available for climbing.
The component of its velocity parallel to the contours will remain constant,

and the kinetic energy associated with this component cannot be converted
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into potential encrgy. Consequently, the particle will stop climbing when
it reaches a certain height, and therefore, begin deécending the slope again,
We have seen that this results in the cycloidal rays,

In the second case, (/L(Zo)~ w finite ), the particle has more than
enough energy to climb onto the plateau., Consequently, it will do so unless
the longshore component of its velocity ié too great. For small angles, I
the rays will ﬁot be arched, but will extend up onto thé'plateau, becoming
straighter, and eventually ﬁaking an angle V% with the x-axis., For
larger angles, the amount of unavailable kinetic energy becomes too great,
and the particle will no longer climb onto the plateau, but will be turned
back as before; phe rays will in this case have a qualitative resemblance to
the cycloidal arches of the preceding case.

The same facts can be derived in other ways. For example, we may appeal

to Snell's law of refraction, which states that, along the ray,

K(‘/,)/J(I/)‘UI s conaldnt = b, 5.

If the ray is onc of those that extends to infinity , the value of the con-

stant will be
b= k(x)atw Tz h oo ¥ <h, .

However, there is no reason why the constant cannot have larger values than

k, t the ray can start anywhere at any angle, and near shore,
K (v) »> Koo ¢ In this case, however, nasv ° must hecome unity

(or the ray parallel to the y-axis) when K ( )= b : the root of this
equation is the quantity we called 2 A2 din the preceding section. At any

point, there 1s a critical angle, JCC , which separates those rays that




