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Quadrotor Safe Flight Envelope Prediction in the

High-Speed Regime: A Monte-Carlo Approach

S. Sun,∗ C.C. de Visser†

Delft University of Technology, 2629HS Delft, The Netherlands

The Safe Flight Envelope (SFE) is a prerequisite for flight envelope protection and
essential for preventing Loss of Control (LoC) of a flying vehicle. Reachability analysis
has been proposed for defining a SFE considering the dynamic characteristics of a sys-
tem. However, the conventional Level Set approach for conducting reachability analysis
is computational inefficient and impractical to solve problems having a state space with
more than 4 dimensions. For this, we have proposed a computational efficient Monte-Carlo
(MC) based approach. As an application, the SFE of an off-the-shelf quadrotor during the
high-speed forward flight are estimated, based on the aerodynamic model identified from
the high-speed flight data (V < 16 m/s). Taking into account the actuator dynamics, the
state space of the problem has 6 dimensions in excess of the computational capabilities of
the Level Set approach. By contrast, the result shows that the Monte-Carlo simulation
based approach is able to solve this high dimension problem in a matter of seconds.

Nomenclature

Vx, Vz Velocity projection on the body frame, m/s
p, q roll rate and pitch rate, rad/s
V airspeed, m/s
θ pitch angle, rad
γ path angle, rad
α angle of attack, rad
Ω1,Ω2,Ω3,Ω4 rotor speeds, rad/s
h simulation time step, s
N segment number of the discretized trajectory
Ntraj trajectory number of estimating a reachable set
ps probability of changing the control input in the next simulation step
pc probability of generating a trajectory with constant control inputs amongh Ntraj trajectories
T time horizon of the reachable set, s
m mass of the quadrotor, kg
g gravitational acceleration, m/s2

Fx,Fz resultant forces projecting on the body frame, N
My pitch moment projecting on the body frame, Nm
τ time constant of a first-order actuator dynamic model, s

I. Introduction

The safety of multi-rotor drones, such as quadrotor, has become a major concern because of the rapid
growth of the drone industry. Loss of Control (LoC) is considered as a major factor of aviation accidents,
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which has contributed to more than 22 accidents of commercial aircraft in the fixed-wing configurations since
1999.1 On the other hand, for the multi-rotor vehicles which is inherently unstable, preventing the LoC is a
crucial factor of improving their safety and should be fully investigated.2

There is an extensive body of literature focus on the issue of Safe Flight Envelop Protection (SFEP). As a
prerequisite, a Safe Flight Envelop (SFE) must be predicted within which the LoC can be effectively avoided.
A quantitative approach of defining the LoC and five safe envelopes for commercial fixed-wing aircraft was
proposed3 and several following researches were carried out.4–6 However, it is inappropriate to utilize these
approaches to a quadrotor vehicle because of its distinction from the fixed-wing aircraft in terms of flight
mechanism.

By contrast, the physical approach7 based on the aerodynamic forces and moments model instead of
the statistics is possible to be utilized to a quadrotor. In the physical approach, the reachability analysis is
carried out to estimate the forward and backward reachable set from the trim set in a given time horizon.
As is shown in Fig. 1, the intersection of the forward and backward reachable sets are regarded as the SFE
within which the vehicle possesses the ability to leave, and then, return the trim condition in a finite time
period, based on the knowledge of its physical model. To this end, a global model need to be established to
predict the dynamic of the vehicle and take into account its nonlinearity. Among different types of numerical
methods for reachability analysis, the level set method was applied in estimating the reachable set of a
fixed-wing aircraft.8–10

Figure 1: Forward backward reachable set and the definition of SFE.9

In comparison with the fixed-wing aircraft, the maneuverability of a multi-rotor vehicle is much greater.
Therefore, the SFE should be defined in a much briefer time horizon in which the actuator dynamics of the
quadrotor must be considered. As a consequence, additional states of the actuator need to be involved in
the reachability analysis that the level set is unable to address due to the curse of dimensionality.9,11 For
this reason, alternative method must be employed.

Numerical simulation based method is another type of promising approach for reachability analysis,12–14

especially for large dimensional problems.15 For a nonlinear system, the reachable set is able to be estimated
by performing infinite numbers of simulations with randomly sample the inputs, i.e. a random-walk Monte-
Carlo Simulation approach. However, this can be time consuming.

In this research, a quadrotor is modeled as a nonlinear control-affine system that are linear in the input.
Based on the viscosity solution of the Hamilton-Jacobi partial differential equation (HJB-PDE), a bang-
bang control is proven optimal for a trajectory to reach the boundary of the reachable set, though the
switching time still remains unknown. As a result, the search space of the system input is largely reduced
and performing Monte-Carlo simulations becomes applicable to reachability analysis.

The quadrotor aerodynamic force and moment model in the high-speed flight regime, as well as the
actuator model, are identified from the data of free flight tests conducted in the wind tunnel. Subsequently,
the trim set are calculated from the aerodynamic models, and are regarded as the initial condition to estimate
forward and backward reachable sets using the proposed Monte-Carlo approach. The method is found to be
efficient since a reachable set with 6 dimensions can be estimated in a few seconds on a desktop computer.

This paper is organized as follows. Section II introduces the methodology. Section III presents the
quadrotor longitudinal model and the trim condition. Section IV presents the result of Safe Flight Envelope,
which is validated in the Section IV.B.
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II. Methodology

II.A. Optimal Control for Reachability Analysis

Consider a nonlinear control-affine system

ẋ = f(x, t) + g(x, t)u (1)

where x ∈ Rn, u ∈ U = [u, ū]. The definition of reachable set and invirant set can be characterized as16

R(t,K) = {x ∈ Rn|∃u ∈ U ,∃τ ∈ [t, T ], φ(τ, t,x, u(·)) ∈ K} (2)

I(t,K) = {x ∈ Rn|∀u ∈ U ,∀τ ∈ [t, T ], φ(τ, t,x, u(·)) ∈ K} (3)

where T is the time horizon, K is the target closed set, φ(τ, t,x, u(·)) is the state trajectory with x(t) as the
initial state.

The principle of duality provides the relationship between the reachability and the invariance

R(t,K) = (I(t,Kc))c (4)

By calculating the invariant set, one can use the above relationship to determine the reachable set. Specif-
ically, the reachable set R(t,K) and the invariant set I(t,Kc) share the same boundary, which is to be
determined. The invariant set can be linked to an infiumum minimum optimal control problem

I(t,K) =

{
x ∈ Rn|V2(x, t) = inf

u(·)∈U [t,T ]

min
τ∈[t,T ]

l(φ(τ, t,x, u(·))) ≥ 0)

}
(5)

where K = {x ∈ Rn|l(x) ≥ 0} and l(x) is a continuous function l : Rn → R.
The viscosity solution of a Hamilton-Jacobi partial differential equation (HJB PDE) can be characterized

as the solution of the value function V2 in Eq. 5

∂V2
∂t

(x, t) + min

{
0, inf

u(·)∈U

∂V2
∂x

(x, t)(f(x, t) + g(x, t)u)

}
= 0 (6)

The zero level set of the V2 is the estimated boundary of the invariant set, and subsequently the boundary
of the reachable set is obtained. The evolution of the boundary relies on the optimal control such that the
infiumum term in Eq. 6 is realized

u?(x, t) = argmin
u(·)∈U [t,T ]

∂V2
∂x

(x, t)(f(x, t) + g(x, t)u) (7)

For notational simplicity, we define the array

λ(x, t) =
∂V2
∂x

(x, t)g(x, t) ∈ Rm (8)

By virtue of the affine form of the system Eq. 1, the optimal control required in the HJB PDE can be chosen
as

u?i (x, t) =

{
ūi, λi(x, t) < 0

ui, λi(x, t) > 0
(9)

Assume λi 6= 0 almost everywhere, then the optimal control for calculating the reachable set lies on the
boundary of the control constraint. This means that, trajectory initialized at the boundary of the reachable
set is a solution of the bang-bang control. Therefore, while conducting a Monte-Carlo simulation, we can
randomly sample the ui(t) among {ui, ūi} instead of the entire control space, and the sampling space of
conducting a Monte-Carlo simulation can be significantly reduced.
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II.B. Monte-Carlo Simulation

Given a time horizon T of the simulation, the trajectory can be discretized into N segments such that the
time step equals h = T/N . Numerical methods for solving ordinary differential equations (ODE) such as 4th
order Runge-Kutta method can be applied to iteratively calculate the predicted trajectory from an initial
state x0 with given input u(τ)τ∈[k,k+h] where k = 0, 1, 2, ..., N − 1.

For brutal force simulation, the u(·) is randomly sampled among U in every time step and lead to
enormous number of possible trajectories to be simulated. With the aim of finding the boundary of reachable
set, only u? as given in Eq. 9 need to be selected in each time step leading to a bang-bang control driven
trajectory. To further decrease the number of required trajectory, a tuning parameter is defined to determine
the probability of changing the control input from one extreme value to the other

ps = 1− P (ui(k + h) = ui(k)) (10)

The selection of ps is a major concern to guarantee that the trajectories are mostly ended at the boundary
of the reachable set. A parameter denoted by pc is designed to indicate the probability of a trajectory with
constant control input

(1− ps)N = pc (11)

The safe flight envelope is defined as the intersection of forward and backward reachable sets.8,9 There-
fore, the trajectories from Monte-Carlo Simulation for estimating the forward reachable set are initialized at
the trim condition. Then the boundary of the forward reachable set can be approximated by the outer con-
tour formed by the end points of these trajectories. As for the backward reachable set, the system equation
(Eq. 1) is multiplied by −1 such that

ẋ = −f(x, t)− g(x, t)u (12)

and the simulation is initialized at the target state (trimming) and backward propagate through time and
end up at the initial state. In the following, we will employ this method to a quadrotor to compute the
longitudinal safe flight envelope.

III. Problem Formulation

III.A. Modeling of Quadrotor Longitudinal Motions

The longitudinal model of quadrotor considering aerodynamic effect is given in this section. This model is
used for estimating the trim curve, from which the backwards and forwards reachable sets is computed using
the same model. For simplicity, only longitudinal dynamic is considered

V̇x = Fx/m− g sin(θ)− qVz (13)

V̇z = Fz/m+ g cos(θ) + qVx (14)

θ̇ = q (15)

q̇ = My/Iy (16)

where m and Iy stand for the mass and inertia of a quadrotor respectively; x = [Vx Vz θ q]
T is longitudinal

quadrotor state, namely the air-velocity component on the xB and zB axis, pitch angle and pitch rate. Fx,
Fz and My are resultant forces (except the gravity) and moments. The tested quadrotor is a Parrot Bebop2
as Fig. 2 shows, together with the numbering of rotor speeds and the definition of the body frame with the
origin at the center of mass.

The aerodynamic effects have been found to significantly affect the external forces and moments.17,18

Therefore, a gray-box model of Fx, Fz and My is established from flight test data in the form of

Fx = Cd,1Vx + Cd,2V
2
x + Cd,3V

3
x + Cd,4Vz (17)

Fz = Cz,0(Vx,Vz) + Cz,1(Vx,Vz)u1 + Cz,2(Vx,Vz)u2 (18)

My = Cm,0(Vx,Vz) + Cm,1(Vx,Vz)u1 + Cm,2(Vx,Vz)u2 (19)

4 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
A

pr
il 

15
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
09

48
 



Figure 2: Tested quadrotor (Bebop2) and the numbering of rotor.

where C?(·) denotes a coefficient which depends on the variables in the bracket. u1 and u2 are the sum of
square of front rotors and back rotors respectively.

[u1, u2] = [Ω2
1 + Ω2

2, Ω2
3 + Ω2

4] = [2Ω2
f , 2Ω2

b ] (20)

Due to the high maneuverability of a quadrotor, the time horizon of the reachability analysis can be very
short. For this reason, the actuator dynamics become non-negligible. For simplicity, the actuator is modeled
as a first-order system mapping from the command rotor speed to a real rotor speed.

u̇1 = −τu1 + τu1,ref (21)

u̇2 = −τu2 + τu2,ref (22)

The augmented problem, consequently, has 6 degrees of freedom.
The aerodynamic coefficients and the actuator dynamic model can be identified from the flight test

data obtained in the wind tunnel. The model structure of Fx is determined while the structure of the
other two models are selected using a stepwise regression method.18,19 The estimated model structure and
corresponding parameters in Eq. 17-19 are listed as follows:

Cd,1 = −2.17× 10−1

Cd,2 = 1.84× 10−2

Cd,3 = −9.61× 10−4

Cd,4 = 6.170460× 10−2

Cz,0 = 2.98× 10−2|Vz|Vz − 3.77× 10−3V 3
z

Cz,1 = 1.67− 8.58× 10−2Vx + 2.20× 10−3V 2
x

Cz,2 = 2.15 + 1.97× 10−2V 2
x + 7.28× 10−2Vz − 6.84× 10−4V 3

x − 1.97× 10−4V 3
x Vz + 4.34× 10−3V 2

x Vz

Cm,0 = 1.03× 10−2Vx − 6.77× 10−4V 2
x + 8.64× 10−3Vz + 7.17× 10−5V 2

x Vz + 2.63× 10−4VxV
2
z

Cm,1 = 1.52× 10−1 + 1.04× 10−3V 2
x + 1.66× 10−3VxVz − 1.86× 10−3Vx

Cm,2 = −1.63× 10−1 + 8.04× 10−3Vx − 2.11× 10−4VxVz − 6.31× 10−4V 2
x ;

(23)
Fig. 3 provides the residual auto-correlation of the longitudinal force and moment model. The auto-
correlations are mostly lying in the 2− σ confidence interval, showing an acceptable quality of the identified
model.

III.B. Trim Condition

Similar to helicopters and fixed-wing aircrafts, a quadrotor vehicle also has a trim curve. Here we define the
longitudinal trim as a condition such that the drone maintains level flight with constant flight speed and
pitch angle. Therefore, states of the quadrotor should satisfy that

γ = θ − α = 0 (24)
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Figure 3: Residual autocorrelation of the Fx, Fz and My model.

where γ indicates the path angle, and α = arctan(Vz/Vx) denotes the angle of attack of a quadrotor. To
maintain the constant flight speed and pitch angle and by recalling Eq. 13-16, the following conditions need
to be satisfied

Fx −mg sin(θ) = 0

Fz +mg cos(θ) = 0

My = 0

(25)

Note that Fx, Fz and My are modeled as functions of u1, u2, Vx and Vy. Hence in different flight speed, the
corresponding θ, u1 and u2 are able to be obtained by solving Eq. 25. The calculated trim curves based on
the aerodynamic model Eq. 17-19 are illustrated in Fig. 4.

To validate the accuracy of the trim curve, the flight data selected in the following intervals are also
plotted

V̇ ∈ [−0.5, 0.5]m/s2, q ∈ [−5, 5]◦, q̇ ∈ [−5, 5]◦/s2, γ ∈ [−1, 1]◦ (26)

The θ-V curve accords with the observation that the faster the drone flights, the more negative pitch angle
it should maintain. The Ω-V curve shows that larger rotor speeds are required for back rotors than front
rotors according with the hypothesis that a nose-up moment is generated in the forward flight.20 As the
back rotors saturate, the drone reaches its highest level flight speed. This trim curve also indicates that
the maximum flight speed of a quadrotor can be achieved by solely increasing the capacity of rear motors
instead of all actuators.

0 2 4 6 8 10 12 14 16 18 20

V [m/s]

-0.8

-0.6

-0.4

-0.2

0

0.2

θ
 [

ra
d

]

(a) Relationship of θ and V in the trim condition, com-
pared with the flight data.

0 2 4 6 8 10 12 14 16 18 20
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600

700

800

900

1000

1100

1200

1300

Ω
 [

ra
d

/s
] front rotors speed

rear rotors speed

maximum

rotor capacity

maximum

trim-flight

speed

(b) The front and back rotors speed in the trim condition
compared with the flight data.

Figure 4: Trim curve of the Bebop2 quadrotor in forward flight.
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IV. Results

IV.A. Estimation of the Reachable Sets

The forward reachable set from the trim point at V = 8 m/s, θ = −13.1◦, Ωf = 709.5 rad/s and Ωb =
860.4 rad/s are computed for demonstration. The time horizon is chosen as T = 0.15 s, which is much more
brief than those of a fixed-wing aircraft (at the magnitude of 1s) as the quadrotors have more agility than a
fixed-wing. The trajectory is discretized into N = 100 segments and Ntraj = 1000 trajectories are generated.
The CPU of the computer performing the simulation is Intel(R) Xeon(R) E51620 v3 at 3.50GHz, the RAM
is 16.0GB. As a result, a reachable set in a 6 dimension state space can be generated within 3.6 seconds.

In Fig. 5 and Fig. 6 the forward reachable sets are estimated with different pc. It is evident that different
selection of the control inputs are essential for the reachable set estimation. In this problem, a larger pc
indicates a larger probability of performing aggressive maneuvers that is essential for reaching the boundary
of the reachable set. By contrast, the endpoints of MC simulations with smaller pc mostly fall in the internal
of the reachable set. This makes the reachable set estimated with a larger pc less conservative comparing
with a smaller pc.
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500

1000
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2000
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-100 -50 0 50 100
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1000

1500

2000
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b

trim point
end points
est ReaSet

Figure 5: Forward reachable set projection on q − θ plane. a.) pc = 0.1. b.) pc = 0.001.
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Figure 6: Forward reachable set projection on V − γ plane. a.) pc = 0.1. b.) pc = 0.001.

The effect of actuator dynamics is demonstrated in Fig. 7. The reachable sets without actuator rate
limits taken into account are much larger than those with actuators dynamics. This is due to the short
time horizon of the simulation (T = 0.15s). Within such a short time period, the the real rotor speeds lag
behind the commands resulting in less control moment on the drone. Therefore, an accurate actuator model
is essential for estimating the reachable set of a quadrotor.

The safe flight envelope with respect to flight with V = 8 m/s is given in Fig. 8 and Fig. 9. The safe
envelope is defined as the intersection of the forward and backward reachable set. It can be seen from
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Figure 10: a.) Forward and backward reachable set from the trim curve, projected in θ − γ − q subspace.
b.) The safe flight envelope.

Figure 11: a.) Forward and backward reachable set from the trim curve, projected in V − γ − θ subspace.
b.) The safe flight envelope.
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the forward reachable set in Fig. 8, during the forward flight, a quadrotor can reach a pitch up rate over
1500 deg/s and a pitch angle up to 70 deg from the trim condition within 0.15 seconds. By contrast, the
amount of pitch down angle and rate are smaller because of the pitch up aerodynamic moment in the forward
flight. There is more information can be interpreted from the plot, for instance, the pitch angle from which
the drone is recoverable within the time horizon and so forth.

In order to estimate the entire SFE with respect to a certain time horizon, the trim curve is then dis-
cretized into 20 points, from which 20 sets of Monte-Carlo simulations are conducted. The other parameters
are the same as those presented above, that is, pc = 0.1, T = 0.15 s, N = 100 and Ntraj = 1000. The
forward reachable set indicate the state space in which the drone is able to reach within 0.15 s from the trim
curve. The backward reachable set indicate the state space from which the drone is possible to return the
trim condition (which we define as safe) within T = 0.15 s. The intersection, i.e the safe flight envelope,
indicate the state space in which and from which the drone is able to reach and return within 2T = 0.3 s.

IV.B. Validation of the Reachable Sets

The forward and backward reachable sets have been validated in a 6-DoF simulation platform. For validating
the forward reachable set, several trajectories originated from the trim curve have been generated with
random rotor speed command. Fig. 12 shows the validation result in the subspace of V -γ-θ. The trajectories
are confined to the forward reachable set within the time horizon, showing the validity of the forward
reachable set.

As for the backward reachable set, the control input sequence archived in the envelope prediction proce-
dure are retrieved for a trajectory originated from a randomly selected initial state closed to the boundary of
the backward reachable set. Fig. 13 shows that all these trajectory are able to return the trim curve within
the time horizon.

Figure 12: Validation of the forward reachable set with respect to the trim curve.

Figure 13: Validation of the backward reachable set with respect to the trim curve.

The validity of the reachable sets are found to be sensitive to the model uncertainties as is shown in Fig 14.
If the aerodynamic model are identical to the one employed for estimating the backward reachable set, the
drone is able to return to the trim condition (trajectories in dot-dash lines). However, if the aerodynamic
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models are different from the one for estimating the reachable set, the trajectory may diverge as is shown in
the solid lines. This is due to the fact that a quadrotor is open loop unstable and a slight difference in the
aerodynamic model may lead to large divergence of the simulated trajectory, which hinders the selection of
a large time horizon.

Figure 14: Validation of the backward reachable set with respect to the trim condition at V = 8m/s. a.) The
trajectories from different initial conditions. The trajectories using precise aerodynamic models are in dot-
dash line; the trajectories with different aerodynamic models are in solid line. b.) The corresponding control
inputs of each trajectory. The command inputs are in dot-dash line; the real rotor speeds are presented by
solid lines.

V. Conclusion

This report demonstrates a computationally efficient approach to estimate the reachable set of a nonlinear
control-affine high-dimensional dynamic system. The method is utilized to estimate the longitudinal Safe
Flight Envelope of a quadrotor. This application requires solving a 6 dimensional reachability problem in
excess of the ability of the conventional Level Set approach. By contrast, the simulation based approach
implemented in this research is able to estimate the 6-D reachable set efficiently. This provides an alternative
approach of estimating the SFE for other types of aircraft.
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