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Abstract

Indoor localization is of great importance in our daily life. Different
from GPS in outdoor environments, there is still no satisfactory system
for indoor localization. There are many problems that need to be solved
in indoor localization, for example, the effects of reverberations and
obstacles.

This study develops an accurate indoor localization system. In this thesis,
we use low energy Bluetooth signals for localization. The time difference
of arrival measurements are obtained through the subtraction of time of
arrival measurements. The time of arrival information of each receiver
is measured with the generalized cross correlation with phase transform.
With the time difference of arrival information, the localization is solved
in a distributed way. Four proposed time-difference-of-arrival localization
methods are compared. The optimal sensor geometry is also examined
based on the Cramer-Rao lower bound. Experimental results show that
we can localize the source with an accuracy of less than one centimeter
when the SNR is higher than 5dB. Furthermore, the proposed indoor
localization system is robust to multipath effects and non-line-of-sight
sources. In addition, we examine how many sources we can accurately
localize simultaneously in an indoor environment in the thesis.
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Abstract

Indoor localization is of great importance in our daily life. Different from GPS in outdoor
environments, there is still no satisfactory system for indoor localization. There are many
problems that need to be solved in indoor localization, for example, the effects of reverbera-
tions and obstacles.

This study develops an accurate indoor localization system. In this thesis, we use low energy
Bluetooth signals for localization. The time difference of arrival measurements are obtained
through the subtraction of time of arrival measurements. The time of arrival information of
each receiver is measured with the generalized cross correlation with phase transform. With
the time difference of arrival information, the localization is solved in a distributed way.
Four proposed time-difference-of-arrival localization methods are compared. The optimal
sensor geometry is also examined based on the Cramer-Rao lowerbound. Experimental
results show that we can localize the source with an accuracyof less than one centimeter
when the SNR is higher than 5dB. Furthermore, the proposed indoor localization system is
robust to multipath effects and non-line-of-sight sources. In addition, we examine how many
sources we can accurately localize simultaneously in an indoor environment in the thesis.
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Introduction 1
Localization techniques are more and more important in every aspect of daily life. In
many applications with multiple sensors, the relative sensor positions are required to be
known. For example, in the hospital, the position of patients can be obtained by the
medical staff if the patients take the sensors with them. In supermarkets, customers with
sensors can be provided with specific sales information based on the current location. In
outdoor environments, global positioning system (GPS) performs well and is widely used.
However, GPS does not work well in the indoor environment because of many obstacles
and line-of-sight is not guaranteed. Nowadays, diverse techniques for indoor localization
are proposed, such as methods based on received signal strength (RSS), time-of-arrival
(TOA), time-difference-of-arrival (TDOA), or angle-of-arrival (AOA). In most of these
examples, the signals to be used for localization can vary from application to application. As
an example, TOA measurements can be obtained from acoustical signals, WiFi signals or
Bluetooth signals, each having its own characteristics.

TOA, TDOA, AOA and RSS are the most widely used indoor localization techniques. TOA
based techniques estimate the location of the source through the intersection of the range
of the receivers. The range information can be obtained fromthe TOA measurements by
multiplying them with the propagation speed of the signals used to measure the TOAs
[1]. TOA based techniques can be used in indoor environments because they are robust
against multipath effects. However, TOA based techniques have to deal with the unknown
onset time, the time that the signals are generated, and the unknown internal delay, the
time that the receiver uses to register the signal as received after the signal reaches the
receiver [2]. In order to obtain accurate TOA measurements, precise synchronization is
required among transmitters and receivers [1]. There are several TOA based algorithms for
localization, such as, multidimensional scaling (MDS) [3], maximum likelihood algorithm
(MLS) [1] and singular value decomposition (SVD)-based approach [2]. Different from
TOA based techniques, TDOA based techniques use the time differences of arrival between
several receivers to locate the sources. TDOA often uses thegeneralized cross correlation
of the received signals to compute the TDOAs. In order to compute the generalized cross
correlation, the receivers must have a data link between each other to share the received
signals, which requires large bandwidth and power consumption [4]. Since the difference of
arrival times is used for localization, only the receivers are required to be synchronized and
there is no need to eliminate the effect of the unknown onset time. Similar to TOA based
techniques, TDOA based techniques are robust against multipath effects [5]. In addition,
TDOA based techniques can obtain the same accuracy as TOA based techniques [6].

Alternatively, angle information or received signal strength can be used for localization. The
basic principle of AOA is that the intersection between the angles of received signals can
locate the sensors [1]. AOA based techniques are not always considered for localization
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because they require large dimensions of directional antennas. The advantage of AOA based
techniques is that they are robust to the large scale fading [7]. On the other hand, RSS based
techniques are always connected with fingerprints [8]. The cost is low and most receivers
can estimate the received signal strength. Nevertheless, the accuracy is relative low since the
strength of the received signals is sensitive to noise and interferers [1]. Several algorithms
exist for RSS based localization, like the K-nearest neighbors (KNN) scheme, support vector
machines (SVM) [9], principle component analysis (PCA), multiple discriminant analysis
(MDA) and dynamic hybrid projection (DHP) [10].

The above mentioned localization methods are based on measurements obtained from certain
signals. For that purpose, different types of signals can beused. The use of ultrasound
signals leads to good accuracy for indoor localization (less than one meter) [11]. In addition,
ultrasound signals are robust to the effects of indoor obstructions because the wave length
is relatively long. However, the disadvantage is that the environmental temperature will
influence the speed of ultrasound signals significantly [12]. Alternatively, we can use
ultra-wide bandwidth (UWB) signals. Because of the large bandwidth, UWB signals are
robust to propagation fading. Moreover, interferences canbe rejected and accurate ranging
can be achieved [13]. The backside is that when we use UWB signals for localization, the
cost of the corresponding equipments is relatively high [14]. Other than ultrasound and
UWB signals, radio frequency identification (RFID) is frequently used for localization.
RFID uses the electromagnetic transmission to a radio frequency circuit to store and retrieve
data [15]. The advantage is that RFID has no requirement on line-of-sight because it can
penetrate solid objects except for mentals. However, the absorption, the reflection and the
coverage of RF signals limit the use of RFID for indoor localization [12]. Another widely
used wireless technology in localization is infrared (IR). There is no radio electromagnetic
interference with IR technology. However, it requires line-of-sight and the cost of system
hardware and maintenance is relatively high [12]. Besides these signals, Wi-Fi is widely used
in indoor localization. The popularity of using Wi-Fi signals is mainly because almost every
indoor environment has the corresponding infrastructure and every mobile device has the
corresponding receiver, which can save a lot of money for extra installation. Nevertheless,
when Wi-Fi is used for RSS based localization techniques, theaccuracy is limited because
the signals are sensitive to the presence of people and smallobjects [16]. Last but not least,
similar to Wi-Fi, Bluetooth signals draw attention to the localization as well. However,
since mobile devices are small and the power of batteries is constrained, Bluetooth signals
suit mobile devices better than Wi-Fi signals due to limitedpower consumption [17]. In
particular, Bluetooth low energy (BLE), a subset of the latestcore version of Bluetooth,
can reduce the classic Bluetooth’s power consumption [18]. In addition, Bluetooth can
choose frequency hopping spread spectrum (FHSS) as the transmission scheme, which
can significantly reduce the effect of interferences [19]. Bluetooth is a highly accepted
standard and there are billions of Bluetooth devices around the world. In addition, Bluetooth
is getting to be established as one of the main foundations ofthe Internet of things (IoT)
[20]. Although Bluetooth signals are popular around the world, they are not widely used in
indoor localization. Many people hold the opinion that Bluetooth signals cannot be used for
localization because of limited accuracy [21].
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1.1 Problem Definition and Outline

The work presented in this thesis is a cooperation between TUDelft and the company
ELPANAV. ELPANAV is interested in localization using Bluetooth signals in indoor envi-
ronments. The set-up we will consider in this thesis is described here. The sources broadcast
Bluetooth signals periodically. We assume the receivers aresynchronized precisely, but not
synchronized with the transmitters. Moreover, the positions of the receivers are assumed
to be known beforehand. As a consequence, we will use TDOA based techniques to locate
the sources in indoor environments. In the thesis, the imagemethod is used to simulate the
communication channel in indoor environments [22].

In the thesis, the following questions are addressed. Giventhe set-up described above,

• How can we use TDOA measurements for localization?

• How accurate can we locate the sources with TDOA measurements?

• How can we implement the localization methods in a distributed way?

• What is the optimal sensor geometry?

• How to deal with problems like multipath and non-line-of-sight?

• How many sources can we accurately localize simultaneouslyin an indoor environ-
ment?

This thesis is organized as follows. Chapter 2 is about the TDOA measurements. In Chapter
3, we discuss TDOA based localization techniques, where centralized methods and decen-
tralized methods are included. In addition, we present the Cramer-Rao lower bound of TDOA
based localization and the optimal sensor geometry. We willanalyze the practical aspects in
Chapter 4, like multipath effects, the absence of line-of-sight, etc. At the end, in Chapter 5,
we draw conclusions and address further works.
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Time Difference of Arrival
Measurement 2
As mentioned in the introduction, we will use TDOA based localization. Before localization,
we must have access to the TDOA measurements. There are two ways for computing the
TDOA measurements. The first method is that the receivers calculate the cross correlation
between the received signals and compute the TDOA measurement by finding the peak of the
cross correlation function. However, this requires the receivers to transmit signals between
each other, which is not applicable to the project at hand because with low energy Bluetooth,
the receivers can only transmit a small quatity of data, likea TOA measurement, instead
of a complete signal [18]. We therefore, use an alternative method, which is based onthe
subtraction of the TOA measurements between receivers. Each receiver stores a segment of
the Bluetooth signal as the reference signal. The receivers calculate the cross correlation be-
tween the received signal and the reference signal. The TOA measurements can be estimated
by finding the peak of the cross correlation function, after which the receivers communicate
these TOA measurements to calculate the TDOA measurements.

2.1 Time of Arrival Measurement

We choose GCC-PHAT to estimate the time delay between the transmitter and the receiver
because GCC-PHAT is robust against multipath effects, which we will illustrate later in this
chapter. Assume the transmitted signal, saym(t), is uncorrelated with the noise and inter-
ferences at receiverj, saynj(t). The received signals at receivers areg1(t), . . . , gM(t). The
attenuation of the signal received by sensorj is denoted byαj, where1 ≤ j ≤M . Moreover,
let g0(t) denote the reference signal stored in each receiver. In addition, dj is the time delay
between the transmitter and the receiverj that we want to estimate.The signal received by
receiverj can be modeled as

gj(t) = αjm(t+ dj) + nj(t), 1 ≤ j ≤M, (2.1)

wherem(t) andnj(t) are real jointly stationary random process.

2.1.1 Generalized Cross Correlation

A general method to estimate the time delaydj is the generalized cross correlation (GCC).
We will start from the cross correlation. The cross correlation between the received signal
and the reference signal is

Rg0gj(τ) = E[g0(t)gj(t− τ)], (2.2)
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whereE denotes the expectation operator andτ denotes the time lags. The estimation of the
time delay is provided by the argumentτ that maximizes (2.2) [23], that is,

d̂j = argmax
τ

Rg0gj(τ). (2.3)

The cross correlation function can also be computed throughthe inverse Fourier transform
of the cross power spectral density functionPg0gj(f),

Rg0gj(τ) =

∫ ∞

−∞

Pg0gj(f)e
j2πfτ df. (2.4)

Combine (2.1) with (2.2), under the assumption that the signals and noises are uncorrelated,
we can derive

Rg0gj(τ) = αjRmm(τ − dj) +Rn0nj
(τ), (2.5)

and the cross power spectral density is given by

Pg0gj(f) = αjPmm(f)e
−j2πfdj + Pn0nj

(f). (2.6)

We assume the noise process is uncorrelated, we havePn0nj
(f) = 0. With this, (2.5) can be

reformulated as
Rg0gj(τ) = αjRmm(τ) ∗ δ(τ − dj), (2.7)

where∗ denotes the convolution operation. In addition, (2.6) can be expressed as

Pg0gj(f) = αjPmm(f)e
−j2πfdj . (2.8)

According to (2.7), the delta function is spread by the auto-correlation function of the signal.
For a single time delay estimation, spreading may not cause problems becauseRg0gj(τ) will
peak at the time lagdj whether it is spread out or not. However, in indoor localization,
multipath effects may cause multiple delays of a single signal for one sensor. In this case,
spreading can cause a serious problem. Letαij anddij denote the attenuation and the time
delay at the receiverj from theith path, respectively. In that case, we can express the cross
correlation function as

Rg0gj(τ) = Rmm(τ) ∗
∑

i∈N

αijδ(τ − dij), 1 ≤ j ≤M. (2.9)

For multiple delays, the convolution may spread one delta function to another. As a
consequence, it is difficult to distinguish peaks [23].

In order to improve the accuracy of the time delay estimation, we will pre-filter received
signals before the correlation operation. Assume the signal gj is filtered through the pre-filter
Hj to yield yj, where0 ≤ j ≤ M . The generalized cross correlation is provided through
the introduction of the pre-filter for the estimation of the time delaydj [23]. In order to
distinguish with the ordinary cross correlation, we use thesuperscript(.)(g) and the subscript
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g to represent the variables related to the generalized crosscorrelation. Consequently, the
generalized cross correlation function is given by

R(g)
y0yj

(τ) =

∫ ∞

−∞

ψg(f)Pg0gj(f)e
j2πfτ df, (2.10)

whereψg(f) = H0(f)H
∗
j (f) is a general frequency weighting [23]. With this, the cross

power spectral density of the filter output can be expressed as

Py0yj(f) = H0(f)H
∗
j (f)Pg0gj(f), (2.11)

where∗ represents complex conjugation [23].

However, in practice, since we do not know the statistics of the process, we can only get an
estimation of the cross power spectral density, sayP̂g0gj(f), because of finite length of obser-
vations. With this, the generalized cross correlation function used for time delay estimation
is

R̂(g)
y0yj

(τ) =

∫ ∞

−∞

ψg(f)P̂g0gj(f)e
j2πfτ df. (2.12)

With a proper weightingψg(f) and a proper estimation̂Pg0gj(f), the estimation of the time

delayd̂j = argmaxτ R̂
(g)
g0gj(τ) can be obtained [23].

2.1.2 The Phase Transformation

One of the principles to choose the weighting functionψg(f) is to ensure a large and sharp
peak for a high time-delay resolution. However, a large and sharp peak is more sensitive
to the errors which are introduced by finite length of observations, particularly when the
signal to noise ratio (SNR) is relatively low. Hence, the choice of the weighting function is a
compromise between the resolution and the stability [23].

The phase transformation proves to avoid the spreading out by the auto-correlation function
of the signal, which is expressed as

ψPHAT
g (f) =

1

|Pg0gj(f)|
, (2.13)

where we use the superscript(.)PHAT to denote the generalized cross correlation with phase
transfrom. With this, (2.12) is expressed as

RPHAT
y0yj

(τ) =

∫ ∞

−∞

P̂g0gj(f)

|Pg0gj(f)|
ej2πfτ df. (2.14)

According to (2.8),|Pg0gj(f)| = αjPmm(f). Under ideal conditions where the estimated
cross power spectral density equals to the cross power spectral density, i.e.,P̂g0gj(f) =

7
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Pg0gj(f),
P̂g0gj

(f)

|Pg0gj
(f)|

= ejθ(f) = ej2πfdj has a unit magnitude. Accordingly, (2.14) can be

expressed as [23]
RPHAT

y0yj
(τ) = δ(τ − dj). (2.15)

In this case, only the phase information is preserved. Comparing with (2.7), (2.15) illustrates
that under ideal conditions, there is no spreading when we use GCC-PHAT to estimate the
time delay. As a consequence, it is suited to indoor environments with many reverberations.
Since the cross correlation after the phase transformationis a delta function, the accuracy
depends on the sampling frequency.

However, there are two disadvantages. The first one is that the generalized cross correlation
function will not be a delta function if the estimated cross power spectral density is different
from the cross power spectral density. Another disadvantage is since the weighting function
is an inverse of the cross power spectral density, errors will be accentuated where signal
power is relatively small. Especially, when the cross powerspectral density is zero, the
estimation will be erratic [23].

We will do a simulation to compare the error of the time of arrival measurements between
the cross correlation method and GCC-PHAT. Figure 2.1 illustrates the simulation result.

As shown in the simulation result, GCC-PHAT always performs better than the cross
correlation method. In fact, the cross correlation method is the generalized cross correlation
method with all-pass filters. When the signal to noise ratio isno less than 5dB, the error of
the time of arrival measurement with GCC-PHAT is no larger than0.03ns. This is consistent
with the previous explanation. When we use GCC-PHAT to estimatethe time of arrival, we
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can achieve sampling accuracy. In our experiments, the sampling frequency is 32.8GHz.
That is, the error of the time of arrival measurement is about0.03ns. Because GCC-PHAT
is relatively sensitive to noise, the error of the time of arrival measurement is large when the
SNR is relatively low.

2.2 Signals for TOA measurements

In this section, we want to explore the signals that we use to explore the time of arrival infor-
mation. Bluetooth signals can be divided into two signal segments. The first part is identical
among all users. The second part is different, which is used to identify the different trans-
mitters. In the thesis, the first part of Bluetooth signals is chosen for the TOA measurements
because it is fixed. The bit pattern of the first part of Bluetooth signals is shown in Figure 2.2.
In the thesis, GFSK modulation is chosen to avoid the large bandwidth faced by FSK. Under
GFSK modulation, a Gaussian pre-modulation filter is applied first. After that, the output is
used as the input of a voltage controlled oscillator (VCO), which converts the amplitude to a
frequency shift [24]. The GFSK signal and the filtered baseband signal are shown in Figure
2.3.

There are two options for the signal used for TOA measurements, baseband Bluetooth
signals and GFSK modulated Bluetooth signals. On the basis ofGCC-PHAT, the accuracy
depends on the sampling frequency. For the same sampling frequency, GFSK modulated
signals can achieve the same accuracy as baseband signals. However, demodulation will
introduce some distortion, which may result in incorrect TOA measurements. Considering
the complexity and the accuracy, we decided to use GFSK modulated Bluetooth signals for
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TOA measurements in this thesis.
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TDOA Localization 3
Since we already have TDOA measurements, we can do the localization. In this chapter,
we would like to develop a centralized method for TDOA based localization and further,
implement it in a distribute way. Moreover, we want to know the accuracy we can achieve
with the proposed methods and compare it with the highest accuracy we may achieve, i.e.,
the Cramer-Rao lower bound. Based on the CRLB, we will examine the optimal way to
place receivers.

3.1 Preliminary

Consider the situation with M receivers with known locationsand one transmitter whose
location is to be estimated with TDOA based techniques. Lets1, s2, . . . , sM denote the loca-
tion of receivers ands0 denote the location of the transmitter. In a three dimensional space,
the coordinate of the receivers and the transmitter can be represented bysj = (xj, yj, zj)
ands0 = (x0, y0, z0), respectively. For receiverj, the time of arrival information is given by
τj = c−1|s0 − sj| + nj, wherec is the speed of light, andnj is the measurement noise at
receiverj with E[Nj] = 0 and Var[Nj] = σ2

j < ∞. Moreover, we assume measurements are
uncorrelated at different receivers. Without loss of generality, we choose receiver 1 as the
reference receiver and assume receiver 1 is at the original point, i.e.,s1 = (0, 0, 0).

3.2 Centralized Localization

Considering centralized localization, all TOA measurements are transmitted to a central com-
puter. In this case, we choose the receiver 1 as the referencereceiver to compute all TDOAs.
Let∆τ1j denote the TDOA measurement at receiver j, which is given by

∆τ1j = τ1 − τj = c−1|s0 − s1| − c−1|s0 − sj|+ n1j , 2 ≤ j ≤M, (3.1)

where n1j is a Gaussian distributed measurement noise of TDOA measurement be-
tween receiver 1 and receiver j,n1j ∼ N (0, σ2

1j). Because of uncorrelated measure-
ments,σ2

1j = σ2
1 + σ2

j . The noiseless TDOA measurement at receiver j is defined as
h1j(r) = c−1|s0 − s1| − c−1|s0 − sj|.

The distance difference between receiver j and receiver 1, sayrj1, can be calculated from the
time difference of arrival by multiplying it with the propagation speed of the signal, which is

rj1 = rj − r1 = ∆τ1j × c, (3.2)
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whererj =
√

(xj − x0)2 + (yj − y0)2 + (zj − z0)2 denotes the distance between the trans-
mitter and the receiverj, c denotes the speed of the signal. With that, we can derive the
following equation,

(rj1+r1)
2 = r2j = (xj−x0)2+(yj−y0)2+(zj−z0)2 = K2

j−2xjx0−2yjy0−2zjz0+r
2
1, (3.3)

where we defineK2
j = x2j + y2j + z2j . Rewrite (3.3), we arrive at

−xjx0 − yjy0 − zjz0 = rj1r1 +
1

2
(r2j1 −K2

j ). (3.4)

Write (3.4) in the vector form with2 ≤ j ≤M ,

As0 = r1c+ d, (3.5)

where

A =







x2 y2 z2
...

...
...

xM yM zM






, s0 =





x0
y0
z0



 , c =





−r21
...

−rM1



 ,d =
1

2





K2
2 − r221

...
K2

M − r2M1



 .

Since the measurements are noisy, we would like to find a location estimation to minimize
the noise,

min
s0

||As0 − (r1c+ d)||22. (3.6)

The least-squares solution to problem (3.5) is given by

ŝ0 = (AT
A)−1

A
T (r1c+ d). (3.7)

Combining the solution withr21 = x20 + y20 + z20 , the location of the transmitter can be
estimated [25].

3.3 Centralized Localization with Arbitrary Reference Sensor

In this case, all TOA measurements are still transmitted to acentral computer. Instead of
choosing receiver 1 as the reference receiver, we choose arbitrary receivers as the reference
receiver. Afterwards, we average among them. Assume the receiver k is chosen as the
reference receiver, and the estimated source location is denoted ass0k. With this, the problem
can be formulated as

min
s0k

||Aks0k − (rkck + dk)||22, (3.8)

where

Ak =























x1 − xk y1 − yk z1 − zk
...

...
...

xk−1 − xk yk−1 − yk zk−1 − zk

xk+1 − xk yk+1 − yk zk+1 − zk
...

...
...

xM − xk yM − yk zM − zk























, s0 =





x0k
y0k
z0k



 ,
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ck =



















−r1k
...

−rk−1k

−rk+1k
...

−rMk



















,dk =
1

2



















K2
1 −K2

k − r21k
...

K2
k−1 −K2

k − r2k−1k

K2
k+1 −K2

k − r2k+1k
...

K2
M −K2

k − r2Mk



















.

The estimated source location is given by the least-squaressolution to problem (3.8),

ŝ0k = (AT
kAk)

−1
A

T
k (rkck + dk). (3.9)

Given M estimations in total, which are computed by M different reference receivers, we
average among them to calculate the estimation of the transmitter’s location, which is given
by

ŝ0 =
1

M

M
∑

k=1

ŝ0k. (3.10)

3.4 Decentralized Localization with Full Information

We would like to decentralize the problem step by step. In this case, in contrast to the previous
methods, we will estimate the location of the source locallyat each receiver. Assume each
receiver gets access to full time of arrival information. Based on the information from the
neighbors, the receivers can update the local estimation. The receivers will communicate with
each other to get a consensus of an estimated location iteratively. With this, our problem is
expressed as

min
s0k

M
∑

k=1

||Aks0k − (rkck + dk)||22,

subject tos0k = s0j, ∀(k, j) ∈ E , (3.11)

where

Ak =























x1 − xk y1 − yk z1 − zk
...

...
...

xk−1 − xk yk−1 − yk zk−1 − zk

xk+1 − xk yk+1 − yk zk+1 − zk
...

...
...

xM − xk yM − yk zM − zk























, s0 =





x0k
y0k
z0k



 ,
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ck =



















−r1k
...

−rk−1k

−rk+1k
...

−rMk



















,dk =
1

2



















K2
1 −K2

k − r21k
...

K2
k−1 −K2

k − r2k−1k

K2
k+1 −K2

k − r2k+1k
...

K2
M −K2

k − r2Mk



















As a consequence, we can rewrite the problem (3.11) as a quadratic problem,

min
s0k

M
∑

k=1

sT0kPks0k + 2Qks0k + bk,

subject tos0k = s0j, ∀(k, j) ∈ E , (3.12)

where

Pk = A
T
kAk, Qk = −(rkck + dk)

T
Ak, bk = (rkck + dk)

T (rkck + dk),

which we can solve with PDMM. The details of PDMM will be presented in Chapter 3.7.

3.5 Decentralized Localization with Neighboring Information

Considering decentralized localization, each receiver computes a local estimated transmit-
ter’s location with the time of arrival information from itsneighboring nodes. The local
estimated transmitter’s location measured by receiver k isdenoted bys0k. Based on the in-
formation from the neighbors, the receivers can update the local estimation. The receivers
will communicate with each other to get a consensus of an estimated location iteratively.
Assume the neighboring nodes of receiverk are denoted byk1, ..., kMk

, whereMk = |Nk|
andNk is the set of the neighboring nodes of nodek. We assume the degree of each receiver
is not smaller than 2, i.e.,|Nk| ≥ 2. In addition, each receiver itself is considered as the
reference receiver for location estimation. With this, ourproblem is expressed as

min
s0k

Mk
∑

k=1

||Aks0k − (rkck + dk)||22,

subject tos0k = s0j, ∀(k, j) ∈ E , (3.13)

where

Ak =







xk1 − xk yk1 − yk zk1 − zk
...

...
...

xkM − xk ykM − yk zkM − zk






, s0k =





x0k
y0k
z0k



 , ck =





−rk1k
...

−rkMk



 ,dk =
1

2





K2
k1 −K2

k − r2k1k
...

K2
kM −K2

k − r2kMk



 .
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As a consequence, we can rewrite the problem (3.13) as a quadratic problem,

min
s0k

M
∑

k=1

sT0kPks0k + 2Qks0k + bk,

subject tos0k = s0j, ∀(k, j) ∈ E , (3.14)

where

Pk = A
T
kAk, Qk = −(rkck + dk)

T
Ak, bk = (rkck + dk)

T (rkck + dk),

which we can solve with PDMM. The details of PDMM will be presented in Chapter 3.7.

It is shown in Appendix A that using neighboring TDOA measurement information instead
of full TDOA measurement information will not decrease the accuracy.

3.6 Low Rank Reformulation

When we place all the receivers on the ceiling, the rank of the problem is lower. In this
case, the problem should be reformulated. To begin with, we discard thez coordinate and
solve the problem with the two-dimensional method to determine thex andy coordinates.
With the time of arrival information and the range of thez coordinate, we can calculate the
correspondingz coordinate. In this way, we can also get an accurate estimated location.

3.7 PDMM Implementation

Since Section 3.4 and Section 3.5 have the same form, PDMM implementation is same
except that the notation is different.

Use a graphG = (V ,E ) to define the network, whereV denotes the set of nodes andE
denotes the set of edges between nodes. The separable objective function can be written as
f(x) =

∑

i∈V

fi(xi). LetAij andAji with i, j ∈ V denote the linear constraint matrices. In

addition,cij is the coefficient of the linear constraint. With this, the standard primal-dual
method of multipliers (PDMM), a node based optimization algorithm, is described as

minimize
∑

i∈V

fi(xi),

subject toAijxi + Ajixj = cij, for all (i, j) ∈ E . (3.15)

Comparing our linear constraints shown in (3.12) and (3.14) with the standard PDMM, we
can get

ckj = 0,
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Akj =

{

I if k < j

−I otherwise
,

whereI denotes an identity matrix. If we writeAkj = lkjI , where

lkj =

{

1 if k < j

−1 otherwise
,

we obtainl2kj = 1 andlkjljk = −1 [26].

In order to solve the problem (3.12) and (3.14), we definefk(s0k) = sT0kPks0k+2Qks0k+ bk.
The Lagrangian function is given by

Lp(s0, ν) =
∑

k∈V

fk(s0k) +
∑

(k,j)∈E

νTkj(−Akjs0k − Ajks0j), (3.16)

whereνkj are edge variables. Given the primal Lagrangian, the dual problem is given by

g(ν) = inf
s0

∑

k∈V

(fk(s0k)−
∑

j∈Nk

νTkjAkjs0k)

= − sup
s0

∑

k∈V

(
∑

j∈Nk

νTkjAkjs0k)− fk(s0k)). (3.17)

Hence, the problem can be expressed as

max
∑

k∈V

−f ∗
k (

∑

j∈Nk

AT
kjνkj), (3.18)

wheref ∗
k denotes the conjugate function offk [26].

To decouple the node decencies, for each edge(k, j) ∈ E , we introduce two auxiliary node
variablesλk|j andλj|k, one for each nodek andj, respectively. The node variableλk|j is
owned and updated at nodek and related to nodej. Hence,Mk new variables are introduced
at nodek. With this, the dual problem can be reformulated as

max
∑

k∈V

−f ∗
k (A

T
kjλk|j),

subject toνkj = λk|j = λj|k for all (k, j) ∈ E . (3.19)

The associated dual Lagrangian problem is given by

Ld(ν, λ, y) =
∑

k∈V

(−f ∗
k (

∑

j∈Nk

AT
kjλk|j) +

∑

j∈Nk

yTk|j(νkj − λk|j)). (3.20)

At a saddle point ofLd, we arrive at

0 ∈ ∂λk|j
Ld(ν

∗, λ∗, y∗) = ∂λk|j
f ∗
k (

∑

j∈Nk

AT
kjλk|j) + y∗k|j. (3.21)
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On the other hand, Frenchel’s inequality must hold with equality. In that case, we can derive

0 ∈ ∂λk|j
f ∗
k (

∑

j∈Nk

AT
kjλk|j) + Ajks

∗
0j. (3.22)

Therefore, at a saddle point, we havey∗k|j = Ajks
∗
0j. In this case, we restrict the Lagrange

multipliers yk|j to be of the formyk|j = Ajks0j. As a consequence, the dual Lagrangian
problem is given by [26]

Ld(ν, λ, s0) =
∑

k∈V

(−f ∗
k (

∑

j∈Nk

AT
kjλk|j)−

∑

j∈Nk

λTj|kAkjs0k)−
∑

(k,j)∈E

νTkj(−Akjs0k − Ajks0j).

(3.23)

Define the primal-dual Lagrangian function

Lpd(s0, λ) = Lp(s0, ν) + Ld(ν, λ, s0) =
∑

k∈V

(fk(s0k)− f ∗
k (

∑

j∈Nk

AT
kjλk|j)−

∑

j∈Nk

λTj|kAkjs0k),

(3.24)
which is convex ins0 for fixedλ and concave inλ for fixeds0 [26].

To enforce the primal feasibility, we introduce two penaltyterms,

Lρ(s0, λ) = Lpd(s0, λ) + hp(s0)− hd(λ), (3.25)

where
hp(s0) =

∑

(k,j)∈E

ρp
2
||Akjs0k + Ajks0j||2,

hd(λ) =
∑

(k,j)∈E

ρd
2
||λk|j − λj|k||2.

Moreover, in order to simplify the equations and be able to use a broadcast protocol, we use
ρ = ρp = ρ−1

d [26].

Solving the minimization problem, we can arrive at the update scheme,

s
(i+1)
0k = argmin

s0k
(fk(s0k)− sT0k(

∑

j∈Nk

AT
kjλ

(i)
j|k) +

∑

j∈Nk

ρp
2
||Akjs0k + Ajks

(i)
0j ||2)

= (2Pk +
∑

j∈Nk

ρ)−1(−2Qk +
∑

j∈Nk

(lkjλ
(i)
j|k + ρs

(i)
0j )), (3.26)

λ
(i+1)
k|j = argmin

λk

(f ∗
k (

∑

j∈Nk

AT
kjλk|j) +

∑

j∈Nk

λTj|kAkjs
(i)
0k +

∑

j∈Nk

ρd
2
||λk|j − λ

(i)
j|k||2)

= λ
(i)
j|k − lkjρ(s

(i+1)
0k − s

(i)
0j ), ∀(k, j) ∈ E , (3.27)

where(i) denotes theith iteration.
The PDMM implementation is summarized in Algorithm 1. As a consequence, we have
lim
i→∞

s
(i)
0k = s0 for all k ∈ V
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Algorithm 1 TDOA Localization with PDMM
At iterationi+ 1,
1. Select nodek uniformly at random.
2. Updates(i+1)

0k by solving0 ∈ ∂s0kLρ(s
(i)
0 , λ(i)), which gives

s
(i+1)
0k = (2Pk +

∑

j∈Nk

ρ)−1(−2Qk +
∑

j∈Nk

(lkjλ
(i)
j|k + ρs

(i)
0j ))

.
3. Broadcasts(i+1)

0k to neighboring nodesj ∈ Nk.

4. Updateλ(i+1)
k|j = λ

(i)
j|k − lkjρ(s

(i+1)
0k − s

(i)
0j ), ∀j ∈ Nk

3.8 Cramer-Rao Lower Bound

In order to examine the highest accuracy we may achieve with TDOA localization, we would
like to study the Cramer-Rao lower bound. In this case, we will calculate the variance of
localization with a fixed reference receiver, i.e., the receiver 1. With the TDOA measure-
ment defined in (3.1), the probability distribution function of the TDOA measurement can be
derived as

p(∆τ1j|sj) =
1√

2πσ1j
exp(− 1

2σ2
1j

(∆τ1j − h1j(r))
2). (3.28)

We can write TDOA measurements in the vector form

∆τ = h(s0) + n, (3.29)

where∆τ = (∆τ12,∆τ13, . . . ,∆τ1M ) ∈ RM−1, h(s0) = (h12(s0), h13(s0), . . . , h1M (s0)) ∈
RM−1, n = (n12, n13, . . . , n1M ) ∈ RM−1 and n ∼ N (0,R) with R =








σ2
1 + σ2

2 σ2
1 · · · σ2

1

σ2
1 σ2

1 + σ2
3 · · · σ2

1
...

...
. ..

...
σ2
1 σ2

1 · · · σ2
1 + σ2

M









The likelihood function can be formulated as

p(∆τ |s) = 1

(2π)
M−1

2

√

|R|
exp(−1

2
(∆τ − h(s0))

T )R−1(∆τ − h(s0)). (3.30)

The Cramer-Rao lower bound is the inverse of Fisher information matrix, which is given by

FIM = E[▽s0lnp(∆τ |s)(▽s0lnp(∆τ |s))T ]. (3.31)

Insert the likelihood function (3.30), we arrive at

FIM = (
∂h(s0)

∂s0
)TR−1∂h(s0)

∂s0
, (3.32)
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where ∂h(s0)
∂s0

= [∂h12(s0)
∂s0

, . . . , ∂h1M (s0)
∂s0

]T , and ∂h1j(s0)

∂s0
= c−1 × ( x0−x1

|s0−s1|
− x0−xj

|s0−sj |
, y0−y1
|s0−s1|

−
y0−yj
|s0−sj |

, z0−z1
|s0−s1|

− z0−zj
|s0−sj |

)

With this, we can obtain the CRLB for the variance of TDOA based localization,

var(ŝ0) ≥ tr(FIM−1) (3.33)

There are three conclusions which can be derived from the CRLB. Firstly, only whenM ≥ 3,
the existence of the CRLB can be guaranteed. Moreover, no minimum variance unbiased
(MVU) estimators can achieve the CRLB under the Gaussian errormodel. It can be proved
with the PDF, the derivative of PDF with respect tos0 is given by

▽s0lnp(∆τ |s) = (
∂h(s0)

∂s0
)TR−1(∆τ − h(s0)). (3.34)

If there exist an MVU estimator, the bound must be attained byall ∆τ . That is, the derivative
of PDF should be of the form

▽s0lnp(∆τ |s) = I (s)(g(∆τ )− s), (3.35)

for some functionsg and I, whereg(∆τ ) is an MVU estimator. Comparing (3.34) and
(3.35), it can be concluded that they can not be same. As a consequence, an MVU estimator
can not exist under the Gaussian error model. Last, we would like to examine which
variables will have an influence on the CRLB. According to (3.32), the CRLB can be
affected by TOA measurement variances. Since the norm of(

x0−xj

|s0−sj |
,

y0−yj
|s0−sj |

,
z0−zj
|s0−sj |

) equals
to 1, the relative direction, instead of the distance between the transmitters and the receivers,
have an influence on the CRLB. In other words, the distribution ofthe sensors will affect the
CRLB [27].

3.9 Optimal Sensor Geometry

For simplicity, we examine the best way to place receivers ina two-dimensional plane. The
optimal sensor geometry can be derived by minimizing the CRLB.

Rewrite ∂h1j(s0)

∂s0
= c−1 × [( x0−x1

|s0−s1|
, y0−y1
|s0−s1|

) − (
x0−xj

|s0−sj |
,

y0−yj
|s0−sj |

)] at first. Given the unit norm,

(
x0−xj

|s0−sj |
,

y0−yj
|s0−sj |

) = (cos(θj), sin(θj)), whereθj is the incline angle from the transmitter to the
jth receiver [28].

We assume variances are equal among receivers, the covariance matrix can be written as
R = σ2(IM−1 + 1M−11

T
M−1), whereIM−1 denotes the(M − 1) × (M − 1) identity matrix

and1M−1 denotes(M − 1) × 1 all one vector. Hence, we can derive the inverse of the
covariance matrix,

R
−1 =

1

Mσ2
(MIM−1 − 1M−11

T
M−1). (3.36)
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Combine (3.36) with

∂h(s0)

∂s0
=







cos θ2 − cos θ1 sin θ2 − sin θ1
...

...

cos θM − cos θ1 sin θM − sin θ1






,

the Fisher information matrix is given by

FIM = (
∂h(s0)

∂s0
)TR−1∂h(s0)

∂s0
=

1

Mc2σ2
×















(M − 1)
M
∑

k=1

cos2(θk)−
M
∑

i 6=j

cos(θi) cos(θj) M

M
∑

k=1

cos(θk) sin(θk)−
M
∑

k=1

cos(θk)
M
∑

k=1

sin(θk)

M
M
∑

k=1

cos(θk) sin(θk)−
M
∑

k=1

cos(θk)
M
∑

k=1

sin(θk) (M − 1)
M
∑

k=1

sin2(θk)−
M
∑

i 6=j

sin(θi) sin(θj)















.

(3.37)
With this, the CRLB can be expressed asf(Θ), whereΘ = [θ1, θ2, . . . , θM ] [28],

var(ŝ0) ≥ tr(FIM−1) = f(Θ)

=

M(M − 1)− 2
M
∑

i>j

cos(θi − θj)

M(M − 2)
M
∑

i>j

sin2(θi − θj) + 2M
M
∑

k=1

M
∑

i>j

sin(θk − θj) sin(θi − θk)

. (3.38)

(3.38) illustrates that the CRLB does not depend on the choice of the reference receiver.

To find the optimal sensor geometry, the derivative off(Θ) with respect toθk, k = 1, . . . ,M
should equal to zero. Useu(Θ) > 0 and v(Θ) > 0 as the numerator and denominator,
respectively, we arrive at

∂u(Θ)

∂θk

∣

∣

∣

∣

θk=θ̂k

= f(Θ)
∂v(Θ)

∂θk

∣

∣

∣

∣

θk=θ̂k

, k = 1, . . . ,M, (3.39)

where[θ̂1, . . . , θ̂M ] denotes the optimal incline angle from the transmitter to the receivers.
(3.39) can be further simplified to

∂u(Θ)

∂θk

∣

∣

∣

∣

θk=θ̂k

= 0 and
∂v(Θ)

∂θk

∣

∣

∣

∣

θk=θ̂k

, k = 1, . . . ,M. (3.40)

The equation (3.40) can only be satisfied if

M
∑

k=1

cos(θ̂k) = 0,
M
∑

k=1

sin(θ̂k) = 0,
M
∑

k=1

cos(2θ̂k) = 0,
M
∑

k=1

sin(2θ̂k) = 0. (3.41)
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Figure 3.1: Receiver Distribution

A set of solution to (3.41) is given by

θ̂k =
2π

M
(k − 1) + φ, k = 1, . . . ,M, (3.42)

whereφ ∈ (0, 2π), which corresponds to a uniform angular array (UAA) [28].

However, in real applications, the transmitter’s locationcannot be known a prior. So the
model with the transmitter uncertainty is important to study [29].

3.10 Numerical Simulation

In this section, we present some experimental results by computer simulation.

In the first simulation, we would like to compare the accuracyof four localization methods.
We compare the estimated source location with the real source location to calculate the
variance and compare the variance of localization with the Cramer-Rao lower bound.
Assume the room is 5m×5m×5m with 26 receivers uniformly distributed on the boundaries.
The positions of the receivers are shown in Figure 3.1. The transmitter’s position is randomly
deployed according to a uniform distribution. We perform 100 random configurations. In
each configuration, the TOA measurement variance is deployed according to a Gaussian
distribution. In order to compute the variance of the localization, we average the variances
among 100 configurations. The simulation result in shown in Figure 3.2.
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Figure 3.2: TDOA Localization with Gaussian Measurement Error

The simulation result shows that the four proposed methods perform well and the variance
of the localization is close to the CRLB. As what is shown in Chapter 2, the time of arrival
measurement variance is no larger than 0.03ns when the SNR isno less than 5dB. According
to Figure 3.2, when the time of arrival variance is 0.03ns, the variance of the localization is
within one centimeter. We can arrive at the conclusion, the four time difference of arrival
localization methods are relatively accurate. The centralized localization with the arbitrary
reference receiver performs a little bit better than the centralized localization with one fixed
reference receiver because more TOA information is used forlocation estimation.

In the second simulation, we would like to examine the effectof the different measurement
error distribution. In Figure 3.3, the TOA measurement error is uniformly distributed. Com-
paring with the simulation result shown in Figure 3.2, thereis not much difference between
two error distribution. It is reasonable because the uniformly distributed noise can be trans-
formed into the Gaussian distributed noise.

In the following simulations, for simplicity and a better view of the receivers’ distribution,
we will do the simulations in a two-dimensional plane.

In the third simulation, we would like to examine the effect of the choice of the reference
sensor on the variance of the localization in the differencereceiver geometries. In a
20m×20m room, we have four receivers and one transmitter. Firstly, we fix the transmitter
in the room center. The receiver positions are randomly deployed according to a uniform
distribution. We perform 500 random configurations. In eachconfiguration, the variance of
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Figure 3.3: TDOA Localization with Uniformly Distributed Measurement Error

the TOA measurement is deployed according to a Gaussian distribution. In order to compute
the variance of the localization, we average the variances among 500 configurations. In
the second receiver geometry, instead of random receivers’positions, the four receivers are
placed at the corners of a two-dimensional plane, which can be considered as a UAA. The
simulation results are shown in Figure 3.4 and Figure 3.5.

Comparing these two receiver geometries, we can arrive at four conclusions. Firstly, the av-
eraging method always performs better than choosing a specific reference sensor. Secondly,
the choice of the reference receiver for the centralized algorithm is important, which will
have an effect on the accuracy. When the receivers are uniformly angular distributed, it does
not matter which receiver is chosen to be the reference sensor. However, when the receivers
are randomly distributed, it is always better to choose the reference receiver whose incline
angle is close to a uniform distribution, for example, the distribution of receivers 1, 2, 3 in
Figure 3.4 is close to a UAA and they perform relatively better than receiver 4.

From the third simulation, we already know the choice of reference sensor will result in
different localization accuracy in some receiver geometries. We would like to examine
the best way to place all receivers. Because the CRLB is a theoretical lower bound of the
variance of the localization, it can be used as an indicator in our simulation. Before the
simulation, we have to make sure whether the CRLB will be affected by the choice of
reference receiver. The simulation result is shown in Figure 3.6.

As what is shown in Figure 3.6, the choice of the reference receiver does not affect the
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Figure 3.4: TDOA Localization1
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Figure 3.6: CRLB of TDOA Localization with different reference sensor

CRLB. As a result, it does not matter which reference sensor to choose when we use the
CRLB to determine the receiver geometry.

In the fourth simulation, we would examine the optimal sensor geometry. We first generate
a transmitter position, which is uniformly distributed on the plane. We compare the Cramer-
Rao lower bound between the uniformly angular distributed receivers and the randomly
distributed receivers. The simulation result is shown in Figure 3.7.

Based on the experimental result, we can conclude that lower CRLB can be attained when
the receiver geometry is a UAA. Consequently, the receivers should be placed according to
the uniform angular array in the room.

In the fifth simulation, we will examine the effect of the range of the receivers. Firstly, we
fix the transmitter in the center. The first geometry is that the receivers are at the corners
of a 20m×20m plane. The second geometry is that the receivers are at the corners of the
centering 12m×12m plane. That is, the incline angle is uniformly distributed and the only
difference is the range. Secondly, we want to know whether the transmitter should be inside
the range of the receivers. The receivers are placed at four corners on the 20m×20m plane
and the left-bottom 10m×10m plane, respectively. The transmitter is placed on the right-up
10m×10m plane randomly. Compare the CRLB between two geometries. The simulation
results are shown in Figure 3.8 and Figure 3.9.

The simulation result shows when the transmitter is in the range of the receivers, it does not
matter what the range of the receivers is. However, when the transmitter is outside the range
of receivers, the localization accuracy decreases significantly. As a consequence, we should
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Figure 3.9: CRLB of TDOA Localization with different sensor geometry(Whether inside the range of
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place the receivers on the boundaries to make sure the transmitter will always be inside the
range of the receivers.

We have already known that we should place the receivers on the boundaries, but we still
don’t know whether we should place all the receivers on the boundary or we only need to
guarantee there are some receivers on the boundary. The firstreceiver geometry is that all
8 receivers are on the boundaries and they are uniformly distributed. The second receiver
geometry is that only 4 receivers are at the corners of the plane and the other 4 receivers
are randomly placed on the plane. The transmitter is randomly placed on the plane. In the
sixth simulation, we will compare the accuracy between these two receivers geometries. The
simulation result is shown in Figure 3.10.

To conclude, we should place all the sensors uniformly on theboundaries.
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Practical Aspects 4
In Chapter 2 and Chapter 3, we have already known how to measure TDOAs and use the
measurements for localization. However, when they are usedin real world applications,
there are still some practical problems that we need to solve. We need to know how many
sources we can accurately localize simultaneously one indoor environment. How to deal with
multipath effects? Moreover, what if the line-of-sight is blocked in indoor environments?
Last but not least, we want to know how to get the correct estimated location if there are
some errors when we transmit the time of arrival information. All the questions will be
answered in this chapter.

4.1 Multiple Users

For one Bluetooth transmitter, the time interval between twotransmissions is assumed to be
uniformly distributed in25± 5ms. The length of the advertisement signal is variable, but the
maximum length is376µs. The transmission is assumed to be independent of each other. We
want to calculate the probability that no transmitters transmit Bluetooth signals at the same
time. If there are no overlapped transmitted signal, we can localize the source accurately.

To begin with, divide the time[0,∞) into sufficiently small sub-intervals. The length of
one interval is assumed to be∆. UseN(t) to denote the number of transmissions at timet.
Assume the transmission rate isλ transmissions per unit time [30]. Since the time interval
between two transmissions is assumed to be uniformly distributed in25±5ms, λ = 1/25ms.

A set of binary random variables are defined as

Ym =

{

1 if transmission is in the interval(m∆, (m+ 1)∆]

0 otherwise
. (4.1)

Therefore,
EYm = Pr{Ym = 1} = λ∆ = p. (4.2)

To conclude,N(t) ∼ Bionomial(n, p), wheren ≈ t/∆ [30].

As∆ → 0, the probability mass function ofN(t) converges to a rateλt Poisson distribution,
i.e., the number of transmissions in the time interval of length T follows a rateλT Poisson
distribution. It can be expressed as

pN(λT, n) =
(λT )n

n!
e−λT , n = 0, 1, 2, . . . . (4.3)
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Note that the intervals between two transmissions at each transmitter,X1, X2, . . . , are inde-
pendent identically distributed sequences with an exponential distribution,

Pr{Xn > x} = Pr{N(x) = 0} = e−λx. (4.4)

Hence, we have [30]
FXn

(x) = Pr{Xn ≤ x} = 1− e−λx, (4.5)

and

fX(x) = fXn
(x) =

dFXn
(x)

dx
= λe−λx. (4.6)

Since the intervals between two transmissions at each transmitter are exponentially dis-
tributed with rateλ and independent across all transmitters and over time, the problem of
n transmitters is equivalent to the problem that a single transmitter transmits Bluetooth sig-
nals according to a ratenλ Poisson process at timesZk and the interval{Zk+1 − Zk} are
independent identically distributed sequences with an exponential distribution. Useqk to
denote the interval{Zk+1 − Zk}, we have [30]

F (q) = 1− e−nλq, (4.7)

and
f(q) = λe−nλq. (4.8)

Given that the maximum length of the advertisement signal is376µs, the probability that
there are no overlapped transmissions can be considered as the probability that the time
interval between two transmissions should be larger than376µs. In this case, the probability
is given by

Pr{No two transmitters will transmit at the same time} = 1− F (376µs). (4.9)

At the end of this section, we would like to examine the relationship between the probability
of no overlapped transmitted signal and the number of transmitters. Moreover, we would
like to examine the effect of the changed time interval between two transmissions. The
simulation result is shown in Figure 4.1.

The simulation result shows when there are ten transmittersin the room, the probability that
no transmitter transmits signals at the same time is about86%. As the average time interval
between two transmissions increases, the probability of nooverlapped transmitted signals is
also increased.

4.2 Multi-path Effects

Multipath effects are common in the indoor environment and they are difficult to deal with.
As what we mentioned in Chapter 2.1, we use GCC-PHAT to estimate the time of arrival,
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which proves to be robust to multipath effects. Compared withthe generalized cross cor-
relation method, GCC-PHAT applies the phase transformation for a sharp peak in the cross
correlation function, which avoids the spreading from other paths. To conclude, GCC-PHAT
can eliminate multipath effects and distinguish the time ofarrival from the direct path.

4.3 Non-Line-of-Sight Scenarios

In indoor environments, non-line-of-sight caused by obstacles is a common problem.
However, it will dramatically decrease the localization accuracy. The time of arrival from
the direct path may be lost or masked by reverberations or noises. As a result, the estimated
time of arrival from the direct path may be incorrect. Therefore, we need to make sure that
the estimated time of arrival corresponds to the direct path.

We would like to exploit a method to decide whether an estimated time of arrival is associated
with the true direct path through the information provided by GCC-PHAT. A reliability index
is defined as the ratio between the energy of highest peak and the remaining samples,

η =

∑

n∈D

RPHAT
g0gj

(n)2

∑

n/∈D

RPHAT
g0gj

(n)2
, (4.10)

whereD = [n̂− nD, n̂+ nD] is an interval centered at the highest peakn̂ of the generalized
cross correlation function with the width equal to2nD + 1. The energy of the direct path
is expected to be inside the interval. Generally, the largerthe reliability index is, the more
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likely the estimated time of arrival is associated with the direct path. The reliability index
is sent together with the corresponding TOA measurement. The TOA measurement is
considered to be reliable and associated with the direct path if η > κη, whereη is the average
reliability index.κ is a threshold value, which is set with the trade-off betweenonly keeping
most reliable TOA measurements and keeping all TOA measurements [31].

We do a simulation to examine the changed accuracy when we discard the TOA measure-
ments from the non-direct path. In a 6m×4m room, eight receivers are placed uniformly.
We use Method 1 (the centralized localization with the reference sensor 1) to compare the
accuracy between only keeping the most reliable TOA measurements and keeping all TOA
measurements. Suppose the receiver at(6, 0) are blocked by obstacles, that is to say, the
direct path from the transmitter to the receiver at(6, 0) disappears. When we only keep the
TOA measurements from the direct paths, we setκ equal to0.9 and when we include all
TOA measurements, we setκ equal to0.1. The simulation result is shown in Figure 4.2.

From the simulation result, we can conclude that keeping themost reliable time of arrival
measurements can achieve higher accuracy than including all time of arrival measurements.

4.4 Pruning incorrect TOA measurements

The true TOA measurements are easy to be masked in noisy indoor environments. Besides,
the dynamic obstacles will mask the time of arrival from the direct path for some short
time interval. Moreover, errors may occur during the time ofarrival transmission. Since
the incorrect time of arrival estimation will result in the wrong location estimation, it is
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important to select a subset of the accurate measured TOAs for localization [32].

In a three-dimensional room, there are a set ofI microphones andJ acoustic events at un-
known locations. Theith microphone and thejth source location is represented by vectors
ri andsj, respectively. Without loss of generality, we assume the speed of the signal is 1 and
the internal delays and the onset time can be compensated. Let tij denote the observed TOA
at theith microphone to thejth acoustic event, which is given by

tij = ‖ri − sj‖+ ǫij, (4.11)

whereǫij denotes the measurement noise. Subtracting the square of equation (4.11) fori = 1
andj = 1, we obtain

−(ri − r1)
T (sj − s1) = 0.5(t2ij − t21j − t2i1 + t211), (4.12)

for i = 2, ..., I andj = 2, ..., J . With this, we can express it in the vector form,

−RS
T
= T , (4.13)

whereR is the relative microphone location (tor1) matrix,S is the relative acoustic event
location (tos1) matrix andTi−1j−1 = 0.5(t2ij − t21j − t2i1 + t211) [32].

According to (4.13), if there is no error in TOA measurements, RS
T

is at most rank3. This
property can be used to find out the correct subset of TOA measurements [32].

For all I microphones, fromJ acoustic events, the TOA measurement set is denoted asSJ

and allJ − 1 unique combinations ofSJ is given by

UJ−1 =

(

SJ

J − 1

)

. (4.14)

Take a specific combinationu from UJ−1 to constructTu for j = u and compute the error,
which is defined as

eu = ‖Tu‖2F =
Nr
∑

i=1

σ2
i (Tu), (4.15)

whereNr = min(I−1, J−2) andσi(Tu) is the singular value ofTu. If all TOA measurements
are correct, the errors are close to equal and the minimum error can represent the most reliable
TOA measurements if they are different. When no TOA measurement is correct, all errors
are small but the maximum error is relatively large comparedto the error of all correct TOA
measurements. Therefore, the subset of TOA measurements can be selected as [32]

So =

{

argminu var{eu} if max eu < α

SJ otherwise
. (4.16)

The iterative method to prune all erroneous TOA measurements is summarized in Algorithm
2 [32].
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Algorithm 2 Pruning incorrect TOA measurements
1. Forn = 0, 1, J − Jmin

2. Generate the set of all possible combinations of the setSJ−1

UJ−n+1 =

(

SJ

J − n+ 1

)

3. For eachu ∈ UJ−n+1, constructTu and compute the error.
4. Update the best TOA sets,

SJ−n+1 =

{

argmins eu if min eu/max eu < α

SJ−n otherwise

5. End ifSJ−n+1 = SJ−n
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Conclusions 5
Global positioning system (GPS) has already achieved high accuracy in localization in
outdoor environments. However, there is still no satisfactory system for indoor localization
because of multipath effects, non-line-of sight scenarios. Indoor localization is of great
importance in our daily life, like the hospital and supermarkets. We developed an accurate
indoor localization system in this master thesis.

Low energy Bluetooth is getting to be one of the foundations ofIoT and it is widely
used around the world. In this thesis, we used low energy Bluetooth signals for indoor
localization. Considering the accuracy, TDOA based techniques were chosen for indoor
localization. Since the first part of Bluetooth signals is identical, we used this signal segment
for localization. The sources broadcast GFSK modulated Bluetooth signals periodically.
After the receiver receives the signal, we used GCC-PHAT to calculate the time delay
between the transmitter and the receiver. GCC-PHAT proves to achieve sampling accuracy
in indoor environments, which is essential to resist multipath effects. The receivers will
communicate with each other to exchange its time delay information. We proposed four
TDOA localization methods in this thesis, two centralized methods and two decentralized
methods. We used PDMM to implement the decentralized localization methods. Moreover,
we compared the accuracy of the four proposed methods. Experimental results showed that
we can localize the source with an accuracy of less than one centimeter when the SNR is
higher than 5dB. Furthermore, based on the Cramer-Rao lower bound, we examined the
best way to place receivers in indoor environments. We proved a uniform angular array
is the optimal sensor geometry. Besides, the proposed systemcan deal with multipath
effects, NLOS scenarios and the incorrect time of arrival measurements. What’s more, we
derived the number of sources that we can accurately localize simultaneously in one indoor
environment in the thesis.

To conclude, we have developed a relatively accurate indoorlocalization system and we can
implement the localization method in a distributed way. Because of time limitation, I have
not done any real experiment. Further works can focus on the real experiments and adding
the synchronization errors among the receivers.
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Appendix A

As shown in Chapter 3,var(ŝ0) ≥ tr(FIM−1). Use the subscript “full” and “nei” to denote
the full TOA measurement information and the neighboring TOA measurement information,
respectively. We can get the Fisher information matrix withthe full TDOA measurement
information,

FIMfull = (
∂hfull(s0)

∂s0
)TR−1

full

∂hfull(s0)

∂s0
.

We want to compare the accuracy between using the neighboring information of receiver 1
and the full measurement information. AssumeN1 is the set of the neighboring nodes of node
1 andM1 = |N1|. The Fisher information matrix with the neighboring TDOA measurement
information is derived as

FIMnei = (
∂hnei(s0)

∂s0
)TR−1

nei

∂hnei(s0)

∂s0
.

The relationship between the full measurement matrix and the neighboring measurement
matrix is expressed as

∂hnei(s0)

∂s0
= Xtr

∂hfull(s0)

∂s0
,

Rnei = XtrRfull(Xtr)
T .

whereXtr denotes the transformation matrix from the full measurement information to the
neighboring measurement information.Xtr ∈ RM1∗(M−1) is of the form that each row is
unique with only one number1 whose column position denotes the neighboring node number,
and all other elements are number0. With this, we arrive at

FIMnei = (Xtr
∂hfull(s0)

∂s0
)T (XtrRfull(Xtr)

T )−1(Xtr
∂hfull(s0)

∂s0
)

= (
∂hfull(s0)

∂s0
)T (Xtr)

T ((Xtr)
T )−1

R
−1
full(Xtr)

−1(Xtr)(
∂hfull(s0)

∂s0
)

= (
∂hfull(s0)

∂s0
)TR−1

full

∂hfull(s0)

∂s0

= FIMfull.

To conclude, using the neighboring TDOA measurement information instead of the full
TDOA measurement information will not decrease the accuracy.

37



38



Bibliography

[1] I. Guvenc and C. C. Chong, “A survey on toa based wireless localization and nlos
mitigation techniques,”IEEE Communications Surveys Tutorials, vol. 11, pp. 107–124,
rd 2009.

[2] R. Heusdens and N. Gaubitch, “Time-delay estimation for toa-based localization of
multiple sensors,” in2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 609–613, May 2014.

[3] S. T. Birchfield and A. Subramanya, “Microphone array position calibration by basis-
point classical multidimensional scaling,”IEEE Transactions on Speech and Audio Pro-
cessing, vol. 13, pp. 1025–1034, Sept 2005.

[4] C. N. Reddy and M. B. Sujatha, “Tdoa computation using multicarrier modulation for
sensor networks,” inISSN:2249-5789 CH Nagarjuna Reddy et al, International Journal
of Computer Science & Communication Networks,Vol 1(1),September-October, 2011.

[5] F. Jiang, Y. Kuang, and . strm, “Time delay estimation fortdoa self-calibration us-
ing truncated nuclear norm regularization,” in2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 3885–3889, May 2013.

[6] R. Kaune, “Accuracy studies for tdoa and toa localization,” in Information Fusion (FU-
SION), 2012 15th International Conference on, pp. 408–415, July 2012.

[7] P. Kuakowski, J. Vales-Alonso, E. Egea-Lpez, W. Ludwin,and J. Garca-Haro, “Angle-
of-arrival localization based on antenna arrays for wireless sensor networks,”Comput-
ers & Electrical Engineering, vol. 36, no. 6, pp. 1181 – 1186, 2010.

[8] C. Wu, Z. Yang, Y. Liu, and W. Xi, “Will: Wireless indoor localization without site
survey,” inINFOCOM, 2012 Proceedings IEEE, pp. 64–72, March 2012.

[9] C. Figuera, J. L. Rojo-lvarez, M. Wilby, I. Mora-Jimnez, and A. J. Caamao, “Advanced
support vector machines for 802.11 indoor location,”Signal Processing, vol. 92, no. 9,
pp. 2126 – 2136, 2012.

[10] S. H. Fang and C. H. Wang, “A dynamic hybrid projection approach for improved wi-fi
location fingerprinting,”IEEE Transactions on Vehicular Technology, vol. 60, pp. 1037–
1044, March 2011.

[11] V. Filonenko, C. Cullen, and J. Carswell, “Investigating ultrasonic positioning on mo-
bile phones,” inIndoor Positioning and Indoor Navigation (IPIN), 2010 International
Conference on, pp. 1–8, Sept 2010.

[12] L. Mainetti, L. Patrono, and I. Sergi, “A survey on indoor positioning systems,” in
Software, Telecommunications and Computer Networks (SoftCOM), 2014 22nd Inter-
national Conference on, pp. 111–120, Sept 2014.

39



[13] M. Z. Win, D. Dardari, A. F. Molisch, W. Wiesbeck, and J. Zhang, “History and appli-
cations of uwb [scanning the issue],”Proceedings of the IEEE, vol. 97, pp. 198–204,
Feb 2009.

[14] Z. Song, G. Jiang, and C. Huang, “A survey on indoor positioning technologies,” inCH
Nagarjuna Reddy et al, International Journal of Computer Science & Communication
Networks,Vol 1(1),September-October 2011, 2011.

[15] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: indoor location sensing us-
ing active rfid,” inPervasive Computing and Communications, 2003. (PerCom 2003).
Proceedings of the First IEEE International Conference on, pp. 407–415, March 2003.

[16] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “Indoor localization using fm
signals,”IEEE Transactions on Mobile Computing, vol. 12, pp. 1502–1517, Aug 2013.

[17] J. Hallberg, M. Nilsson, and K. Synnes, “Positioning with bluetooth,” inTelecommuni-
cations, 2003. ICT 2003. 10th International Conference on, vol. 2, pp. 954–958 vol.2,
Feb 2003.

[18] “Bluetooth low energy white paper,” June 2012.

[19] A. Kotanen, M. Hannikainen, H. Leppakoski, and T. D. Hamalainen, “Experiments on
local positioning with bluetooth,” inInformation Technology: Coding and Computing
[Computers and Communications], 2003. Proceedings. ITCC 2003. International Con-
ference on, pp. 297–303, April 2003.

[20] https://en.wikipedia.org/wiki/Internet_of_things.

[21] J. Schmalenstroeer and R. Haeb-Umbach, “Investigations into bluetooth low energy
localization precision limits,” in2016 24th European Signal Processing Conference
(EUSIPCO), pp. 652–656, Aug 2016.

[22] dr.ir. Emanuel A.P. Habets, “Room impulse response generator,” 2003.

[23] C. Knapp and G. Carter, “The generalized correlation method for estimation of time de-
lay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, pp. 320–
327, Aug 1976.

[24] R. Schiphorst, F. Hoeksema, and K. Slump, “Bluetooth demodulation algorithms and
their performance,” innd Karlsruhe Workshop on Software Radios, pp. 99–106, 2002.

[25] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location: chal-
lenges faced in developing techniques for accurate wireless location information,”IEEE
Signal Processing Magazine, vol. 22, pp. 24–40, July 2005.

[26] G. Zhang and R. Heusdens, “Distributed optimization using the primal-dual method of
multipliers,” IEEE Transactions on Signal and Information Processing over Networks,
vol. PP, no. 99, pp. 1–1, 2017.

40

https://en.wikipedia.org/wiki/Internet_of_things


[27] B. Yang and J. Scheuing, “Cramer-rao bound and optimum sensor array for source
localization from time differences of arrival,” inProceedings. (ICASSP ’05). IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 4,
pp. iv/961–iv/964 Vol. 4, March 2005.

[28] K. W. Lui and H. So, “A study of two-dimensional sensor placement using time-
difference-of-arrival measurements,”Digital Signal Processing, vol. 19, no. 4, pp. 650
– 659, 2009.

[29] W. Meng, L. Xie, and W. Xiao, “Optimal sensor pairing fortdoa based source local-
ization and tracking in sensor networks,” inInformation Fusion (FUSION), 2012 15th
International Conference on, pp. 1897–1902, July 2012.

[30] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”IEEE
Transactions on Information Theory, vol. 52, pp. 2508–2530, June 2006.

[31] A. Canclini, F. Antonacci, A. Sarti, and S. Tubaro, “Acoustic source localization with
distributed asynchronous microphone networks,”IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, pp. 439–443, Feb 2013.

[32] N. D. Gaubitch, “Pruning incorrect toa measurements,”2014.

41


	Abstract
	Acknowledgments
	Introduction
	Problem Definition and Outline

	Time Difference of Arrival Measurement
	Time of Arrival Measurement
	Generalized Cross Correlation
	The Phase Transformation

	Signals for TOA measurements

	TDOA Localization
	Preliminary
	Centralized Localization
	Centralized Localization with Arbitrary Reference Sensor
	Decentralized Localization with Full Information
	Decentralized Localization with Neighboring Information
	Low Rank Reformulation
	PDMM Implementation
	Cramer-Rao Lower Bound
	Optimal Sensor Geometry
	Numerical Simulation

	Practical Aspects
	Multiple Users
	Multi-path Effects
	Non-Line-of-Sight Scenarios
	Pruning incorrect TOA measurements

	Conclusions

