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Abstract

Indoor localization is of great importance in our daily lifeDifferent
from GPS in outdoor environments, there is still no satisfigcsystem
for indoor localization. There are many problems that neelet solved
in indoor localization, for example, the effects of revedimns and
obstacles.

This study develops an accurate indoor localization systarthis thesis,
we use low energy Bluetooth signals for localization. Theetulifference
of arrival measurements are obtained through the subiradti time of
arrival measurements. The time of arrival information ofreaeceiver
is measured with the generalized cross correlation witts@hiensform.
With the time difference of arrival information, the locadtion is solved
in a distributed way. Four proposed time-difference-oivaft localization
methods are compared. The optimal sensor geometry is atsuiesd
based on the Cramer-Rao lower bound. Experimental results stad
we can localize the source with an accuracy of less than ominceter
when the SNR is higher than 5dB. Furthermore, the proposedomd
localization system is robust to multipath effects and hoe-of-sight
sources. In addition, we examine how many sources we camraebu
localize simultaneously in an indoor environment in thestbe
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Abstract

Indoor localization is of great importance in our daily lifBifferent from GPS in outdoor
environments, there is still no satisfactory system foomdocalization. There are many
problems that need to be solved in indoor localization, k@ameple, the effects of reverbera-
tions and obstacles.

This study develops an accurate indoor localization systenis thesis, we use low energy
Bluetooth signals for localization. The time difference ofal measurements are obtained
through the subtraction of time of arrival measurement fline of arrival information of
each receiver is measured with the generalized cross atorelwith phase transform. With
the time difference of arrival information, the localizatiis solved in a distributed way.
Four proposed time-difference-of-arrival localizatiortinods are compared. The optimal
sensor geometry is also examined based on the Cramer-Rao bowed. Experimental
results show that we can localize the source with an accuwhtgss than one centimeter
when the SNR is higher than 5dB. Furthermore, the proposembimdcalization system is
robust to multipath effects and non-line-of-sight sourdesddition, we examine how many
sources we can accurately localize simultaneously in amonenvironment in the thesis.
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Introduction

Localization techniques are more and more important inyeaspect of daily life. In
many applications with multiple sensors, the relative sem®sitions are required to be
known. For example, in the hospital, the position of pasecan be obtained by the
medical staff if the patients take the sensors with them. ufpesmarkets, customers with
sensors can be provided with specific sales informationcbasethe current location. In
outdoor environments, global positioning system (GPSjopers well and is widely used.
However, GPS does not work well in the indoor environmentabee of many obstacles
and line-of-sight is not guaranteed. Nowadays, diversknigces for indoor localization
are proposed, such as methods based on received signatst(@&®sS), time-of-arrival
(TOA), time-difference-of-arrival (TDOA), or angle-oftaval (AOA). In most of these
examples, the signals to be used for localization can vam fipplication to application. As
an example, TOA measurements can be obtained from acdusticals, WiFi signals or
Bluetooth signals, each having its own characteristics.

TOA, TDOA, AOA and RSS are the most widely used indoor locaiaratechniques. TOA
based techniques estimate the location of the source thrthegintersection of the range
of the receivers. The range information can be obtained fiteenTOA measurements by
multiplying them with the propagation speed of the signadsdito measure the TOAsS
[1]. TOA based techniques can be used in indoor environmergsuse they are robust
against multipath effects. However, TOA based techniqae® o deal with the unknown
onset time, the time that the signals are generated, andrikown internal delay, the
time that the receiver uses to register the signal as rateifter the signal reaches the
receiver P]. In order to obtain accurate TOA measurements, preciselsgnization is
required among transmitters and receivélls There are several TOA based algorithms for
localization, such as, multidimensional scaling (MDS), jmaximum likelihood algorithm
(MLS) [1] and singular value decomposition (SVD)-based approagh Different from
TOA based techniques, TDOA based techniques use the tifieeetites of arrival between
several receivers to locate the sources. TDOA often usegdheralized cross correlation
of the received signals to compute the TDOAs. In order to agmphe generalized cross
correlation, the receivers must have a data link betweeh etiter to share the received
signals, which requires large bandwidth and power consiampi]. Since the difference of
arrival times is used for localization, only the receivers @quired to be synchronized and
there is no need to eliminate the effect of the unknown onset.t Similar to TOA based
techniqgues, TDOA based techniques are robust againstpathiteffects §]. In addition,
TDOA based techniques can obtain the same accuracy as T@A tehniques.

Alternatively, angle information or received signal sgéncan be used for localization. The

basic principle of AOA is that the intersection between thglas of received signals can
locate the sensors], AOA based techniques are not always considered for [pathdin
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because they require large dimensions of directional aatenlhe advantage of AOA based
techniques is that they are robust to the large scale fadin@®p the other hand, RSS based
techniques are always connected with fingerprifits The cost is low and most receivers
can estimate the received signal strength. Neverthelesgccuracy is relative low since the
strength of the received signals is sensitive to noise ataiferers []. Several algorithms
exist for RSS based localization, like the K-nearest neighidNN) scheme, support vector
machines (SVM) 9], principle component analysis (PCA), multiple discrimmhanalysis
(MDA) and dynamic hybrid projection (DHP).[].

The above mentioned localization methods are based on nesasuts obtained from certain
signals. For that purpose, different types of signals camdezl. The use of ultrasound
signals leads to good accuracy for indoor localizations(tean one meter)L[l]. In addition,
ultrasound signals are robust to the effects of indoor abstns because the wave length
is relatively long. However, the disadvantage is that therenmental temperature will
influence the speed of ultrasound signals significanilyj.[ Alternatively, we can use
ultra-wide bandwidth (UWB) signals. Because of the large badithw UWB signals are
robust to propagation fading. Moreover, interferenceshmnejected and accurate ranging
can be achievedl[J]. The backside is that when we use UWB signals for localizatibe
cost of the corresponding equipments is relatively hig#j.[ Other than ultrasound and
UWB signals, radio frequency identification (RFID) is freqtigrused for localization.
RFID uses the electromagnetic transmission to a radio frexyueircuit to store and retrieve
data [L5]. The advantage is that RFID has no requirement on linegiftdbecause it can
penetrate solid objects except for mentals. However, tiseration, the reflection and the
coverage of RF signals limit the use of RFID for indoor locdli@a [17]. Another widely
used wireless technology in localization is infrared (IRpefe is no radio electromagnetic
interference with IR technology. However, it requires {mfesight and the cost of system
hardware and maintenance is relatively higH|[ Besides these signals, Wi-Fi is widely used
in indoor localization. The popularity of using Wi-Fi sigaas mainly because almost every
indoor environment has the corresponding infrastructme: every mobile device has the
corresponding receiver, which can save a lot of money famaaxistallation. Nevertheless,
when Wi-Fi is used for RSS based localization techniquesatioerracy is limited because
the signals are sensitive to the presence of people and shjatits [L6]. Last but not least,
similar to Wi-Fi, Bluetooth signals draw attention to the dbzation as well. However,
since mobile devices are small and the power of batteriesristrained, Bluetooth signals
suit mobile devices better than Wi-Fi signals due to limipedver consumptioni[/]. In
particular, Bluetooth low energy (BLE), a subset of the latase version of Bluetooth,
can reduce the classic Bluetooth’s power consumptici). [ In addition, Bluetooth can
choose frequency hopping spread spectrum (FHSS) as themission scheme, which
can significantly reduce the effect of interferences][ Bluetooth is a highly accepted
standard and there are billions of Bluetooth devices arob@dvorld. In addition, Bluetooth
is getting to be established as one of the main foundationteofnternet of things (IoT)
[20]. Although Bluetooth signals are popular around the wotéytare not widely used in
indoor localization. Many people hold the opinion that Bagth signals cannot be used for
localization because of limited accuracy].



1.1 Problem Definition and Outline

The work presented in this thesis is a cooperation betweerD€&lft and the company
ELPANAV. ELPANAV is interested in localization using Bluetth signals in indoor envi-
ronments. The set-up we will consider in this thesis is deedrhere. The sources broadcast
Bluetooth signals periodically. We assume the receiversymehronized precisely, but not
synchronized with the transmitters. Moreover, the pos#iof the receivers are assumed
to be known beforehand. As a consequence, we will use TDOAdBhniques to locate
the sources in indoor environments. In the thesis, the imagfod is used to simulate the
communication channel in indoor environmenis]|

In the thesis, the following questions are addressed. Giveset-up described above,
e How can we use TDOA measurements for localization?

How accurate can we locate the sources with TDOA measursment

How can we implement the localization methods in a disteduvay?

What is the optimal sensor geometry?

How to deal with problems like multipath and non-line-of{si?

How many sources can we accurately localize simultanedasin indoor environ-
ment?

This thesis is organized as follows. Chapter 2 is about the AD@asurements. In Chapter
3, we discuss TDOA based localization techniques, whergae®d methods and decen-
tralized methods are included. In addition, we present tlae@r-Rao lower bound of TDOA

based localization and the optimal sensor geometry. Weawdlyze the practical aspects in
Chapter 4, like multipath effects, the absence of line-ghsietc. At the end, in Chapter 5,
we draw conclusions and address further works.






Time Difference of Arrival
Measurement

As mentioned in the introduction, we will use TDOA based lazdion. Before localization,
we must have access to the TDOA measurements. There are tygofegracomputing the
TDOA measurements. The first method is that the receivecsileaé the cross correlation
between the received signals and compute the TDOA measntéyénding the peak of the
cross correlation function. However, this requires theergars to transmit signals between
each other, which is not applicable to the project at handisz with low energy Bluetooth,
the receivers can only transmit a small quatity of data, 8KEOA measurement, instead
of a complete signall[Z]. We therefore, use an alternative method, which is basetth®n
subtraction of the TOA measurements between receiverd) egeiver stores a segment of
the Bluetooth signal as the reference signal. The receiadeslate the cross correlation be-
tween the received signal and the reference signal. The T@€#sarements can be estimated
by finding the peak of the cross correlation function, aftéich the receivers communicate
these TOA measurements to calculate the TDOA measurements.

2.1 Time of Arrival Measurement

We choose GCC-PHAT to estimate the time delay between thentrtias and the receiver
because GCC-PHAT is robust against multipath effects, whiehwil illustrate later in this
chapter. Assume the transmitted signal, say), is uncorrelated with the noise and inter-
ferences at receive, sayn;(t). The received signals at receivers ar€),. .., g (t). The
attenuation of the signal received by sensisrdenoted byy;, wherel < j < M. Moreover,

let go(t) denote the reference signal stored in each receiver. Itianldi; is the time delay
between the transmitter and the receiyehat we want to estimate.The signal received by
receiver;j can be modeled as

g;(t) = aym(t +d;) +n;(t), 1 < j < M, (2.1)

wherem(t) andn;(t) are real jointly stationary random process.

2.1.1 Generalized Cross Correlation

A general method to estimate the time dedgyis the generalized cross correlation (GCC).
We will start from the cross correlation. The cross coriefabetween the received signal
and the reference signal is

Rgogj (T) = E[go (t)gj (t - 7—)]7 (22)
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whereE denotes the expectation operator amtenotes the time lags. The estimation of the
time delay is provided by the argumenthat maximizes (2.2)43), that is,

~

dj = argmax Ry, (7). (2.3)

The cross correlation function can also be computed throlghnverse Fourier transform
of the cross power spectral density functigp,, (f),

Rgogj (1) = /_OO Pgogj (f)ej%ﬁ df. (2.4)

o0

Combine (2.1) with (2.2), under the assumption that the $sgaad noises are uncorrelated,
we can derive

Rgogj (T> = Oéijm<T - d]) + Rnonj (7—)7 (25)
and the cross power spectral density is given by
Py, (f) = Oéjpmm(f)e_j%fdj + Prgn; (f)- (2.6)

We assume the noise process is uncorrelated, we Rgye(f) = 0. With this, (2.5) can be
reformulated as

Rgogj (T) = O‘J'Rmm(T) * 5(7 - dj)a (2.7)
wherex denotes the convolution operation. In addition, (2.6) caexpressed as
Pyog, () = 0t P (f)e ™71 (2.8)

According to (2.7), the delta function is spread by the ardgorelation function of the signal.

For a single time delay estimation, spreading may not catgsgms becausg,,,, (1) will

peak at the time lag; whether it is spread out or not. However, in indoor localaat
multipath effects may cause multiple delays of a singleaifor one sensor. In this case,
spreading can cause a serious problem. d;etindd;; denote the attenuation and the time
delay at the receiver from theith path, respectively. In that case, we can express the cross
correlation function as

Rgogj (7') = Rmm(T) * ZO&Z‘J‘(S(T — dz’j); 1 Sj < M. (29)
ieN

For multiple delays, the convolution may spread one deltection to another. As a
consequence, it is difficult to distinguish peaks][

In order to improve the accuracy of the time delay estimatwe will pre-filter received
signals before the correlation operation. Assume the kignafiltered through the pre-filter
H; to yield y;, where0 < j < M. The generalized cross correlation is provided through
the introduction of the pre-filter for the estimation of thené delayd; [23]. In order to
distinguish with the ordinary cross correlation, we usestingerscript.)? and the subscript

6



g to represent the variables related to the generalized carsslation. Consequently, the
generalized cross correlation function is given by

R, (1) = [ 001 P, (1) 4, 210

wherev,(f) = Ho(f)H;(f) is a general frequency weightingj). With this, the cross
power spectral density of the filter output can be expressed a

Pyoy; (f) = Ho(f ) Hj (f) Pgog, (f), (2.11)

where* represents complex conjugatiorty].

However, in practice, since we do not know the statistichefdrocess, we can only get an
estimation of the cross power spectral density, Bay. (f), because of finite length of obser-
vations. With this, the generalized cross correlation fimmcused for time delay estimation
is

Ry, (1) = / V() Poog, (F)e*™7 df. (2.12)

A

With a proper weighting,(f) and a proper estimatioR,,,, (f), the estimation of the time
delayd; = arg max, kYY) (r) can be obtained’[d.

2.1.2 The Phase Transformation

One of the principles to choose the weighting functigiif) is to ensure a large and sharp
peak for a high time-delay resolution. However, a large dmats peak is more sensitive
to the errors which are introduced by finite length of obseowes, particularly when the
signal to noise ratio (SNR) is relatively low. Hence, the cleaf the weighting function is a
compromise between the resolution and the stabilit}. |

The phase transformation proves to avoid the spreadingyothtebauto-correlation function
of the signal, which is expressed as

L) p—— (2.13)

’ | Poog; ()

where we use the superscript’’47” to denote the generalized cross correlation with phase
transfrom. With this, (2.12) is expressed as

o ﬁgogj (f) 27 fT
RZZ]JAT(T) _ /_OO meﬂ T qf. (2.14)

According to (2.8),| Py, (f)| = a;Pnm(f). Under ideal conditions where the estimated
cross power spectral density equals to the cross powerrapeensity, i.e.,Pgogj(f) =

7



Time of Arrival Measurement Error

2.5 T T T T T
GCC-PHAT
Generalized Cross Correlation
2 - -
015t .
S
o
Q
£ 1t .
05 b
X:4.911
N\ Y:0.03052
O L 1 1 1 1
0 10 20 30 40 50 60
SNR(dB)
Figure 2.1: Time of Arrival Measurement Error
Pyg: (f . . _ . . .
Puog; (), IPZEZEJ”;\ = /%) = /2714 has a unit magnitude. Accordingly, (2.14) can be

expressed as’f]
RPHAT(2y — §(7 — dj). (2.15)

Yoy;

In this case, only the phase information is preserved. Comgarith (2.7), (2.15) illustrates
that under ideal conditions, there is no spreading when welGC-PHAT to estimate the
time delay. As a consequence, it is suited to indoor envienmtswith many reverberations.
Since the cross correlation after the phase transforma&iandelta function, the accuracy
depends on the sampling frequency.

However, there are two disadvantages. The first one is teageheralized cross correlation
function will not be a delta function if the estimated crossvpr spectral density is different
from the cross power spectral density. Another disadvanigince the weighting function
is an inverse of the cross power spectral density, erronsbeilaccentuated where signal
power is relatively small. Especially, when the cross posmectral density is zero, the
estimation will be erratic{3].

We will do a simulation to compare the error of the time of\@rimeasurements between
the cross correlation method and GCC-PHAT. Figure 2.1 illist the simulation result.

As shown in the simulation result, GCC-PHAT always perform$itdoethan the cross
correlation method. In fact, the cross correlation metlsathé generalized cross correlation
method with all-pass filters. When the signal to noise ratioadess than 5dB, the error of
the time of arrival measurement with GCC-PHAT is no larger t&3ns. This is consistent
with the previous explanation. When we use GCC-PHAT to estittegdime of arrival, we

8



Bluetooth Signal (Bit pattern)
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Figure 2.2: The Bit Pattern of the Bluetooth Signal

can achieve sampling accuracy. In our experiments, the Isagnipequency is 32.8GHz.
That is, the error of the time of arrival measurement is al@od8ns. Because GCC-PHAT
is relatively sensitive to noise, the error of the time ofhairmeasurement is large when the
SNR is relatively low.

2.2 Signals for TOA measurements

In this section, we want to explore the signals that we usgptoee the time of arrival infor-
mation. Bluetooth signals can be divided into two signal segs The first part is identical
among all users. The second part is different, which is usedentify the different trans-
mitters. In the thesis, the first part of Bluetooth signaldigsen for the TOA measurements
because itis fixed. The bit pattern of the first part of Bludt@ignals is shown in Figure 2.2.
In the thesis, GFSK modulation is chosen to avoid the largelWwalth faced by FSK. Under
GFSK modulation, a Gaussian pre-modulation filter is ajifiiest. After that, the output is
used as the input of a voltage controlled oscillator (VCO)iclltonverts the amplitude to a
frequency shift P4]. The GFSK signal and the filtered baseband signal are showigure
2.3.

There are two options for the signal used for TOA measuresndraseband Bluetooth
signals and GFSK modulated Bluetooth signals. On the basgG83-PHAT, the accuracy
depends on the sampling frequency. For the same sampliggeiney, GFSK modulated
signals can achieve the same accuracy as baseband sigraiseved, demodulation will

introduce some distortion, which may result in incorrectAT@easurements. Considering
the complexity and the accuracy, we decided to use GFSK ratatlBluetooth signals for

9



GFSK signal
Filtered Baseband Signal
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Figure 2.3: GFSK modulated Bluetooth Signal

TOA measurements in this thesis.
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TDOA Localization

Since we already have TDOA measurements, we can do thezZagah. In this chapter,
we would like to develop a centralized method for TDOA basazhlization and further,
implement it in a distribute way. Moreover, we want to know @iccuracy we can achieve
with the proposed methods and compare it with the highestracg we may achieve, i.e.,
the Cramer-Rao lower bound. Based on the CRLB, we will examine themalbway to
place receivers.

3.1 Preliminary

Consider the situation with M receivers with known locati@rs one transmitter whose
location is to be estimated with TDOA based techniquessket, . . ., s); denote the loca-
tion of receivers and, denote the location of the transmitter. In a three dimeradispace,
the coordinate of the receivers and the transmitter can fr@sented by, = (z;,y;, 2;)
andsy = (g, Yo, 20), respectively. For receiver, the time of arrival information is given by

7; = ¢ Yso — s;] + n;, wherec is the speed of light, and, is the measurement noise at
receiverj with E[V;] = 0 and VafN;| = o7 < co. Moreover, we assume measurements are
uncorrelated at different receivers. Without loss of galigt we choose receiver 1 as the
reference receiver and assume receiver 1 is at the origimat, p.e.,s; = (0,0, 0).

3.2 Centralized Localization

Considering centralized localization, all TOA measurersané transmitted to a central com-
puter. In this case, we choose the receiver 1 as the refereocewer to compute all TDOAs.
Let Ar; denote the TDOA measurement at receiver j, which is given by

ATU =T —T; = 071‘80 — 51‘ —071‘80 — Sj’ —|—n1j, 2 S] S M, (31)

where n,; is a Gaussian distributed measurement noise of TDOA measumte be-
tween receiver 1 and receiver ,,; ~ N(0,07;). Because of uncorrelated measure-
ments,o;; = o} + o;. The noiseless TDOA measurement at receiver j is defined as
hij(r) = ¢ Yso — s1| — ¢ tso — s

The distance difference between receiver j and receivexyk;;s, can be calculated from the
time difference of arrival by multiplying it with the propagon speed of the signal, which is

Ti1i=7T; — 11 = Ale X c, (32)

11



wherer; =/(x; — 20)? + (y; — y0)? + (z; — 20)? denotes the distance between the trans-
mitter and the receivef, ¢ denotes the speed of the signal. With that, we can derive the
following equation,

(rjpntr1)? =715 = (@;—m0)°+(y;—y0)*+(25—20)% = K —2x;00—2y;50—22;20+77, (3.3)
where we define(> = =7 + y7 + 22. Rewrite (3.3), we arrive at

1
—(L'jl'o—yjyo—ZjZo :Tj1T1+§(TJ2»1 —KJQ) (34)

Write (3.4) in the vector form wit < j < M,

AS() =T7cC + d7 (35)
where
2 2
o= To — 1 Ky =1y
A = ;S0 = (Yo | ,C = 7d =5
2 2
T Ym Em % —Tm Ky —rin

Since the measurements are noisy, we would like to find aitotastimation to minimize
the noise,
min || Asy — (ric+ d)|3. (3.6)
S0

The least-squares solution to problem (3.5) is given by
§0 = (ATA)_lAT(T1C + d) (37)

Combining the solution with? = 22 + 32 + 22, the location of the transmitter can be
estimated 15).

3.3 Centralized Localization with Arbitrary Reference Sensor

In this case, all TOA measurements are still transmitted ¢erdgral computer. Instead of
choosing receiver 1 as the reference receiver, we choogeagylreceivers as the reference
receiver. Afterwards, we average among them. Assume thevexck is chosen as the
reference receiver, and the estimated source locatiomstee as .. With this, the problem
can be formulated as

min || Agsor — (rrex + di)|[3, (3.8)
S0k
where
[ 1 — 23 Y1 — Yk 21— 2k |
Lok

Tp—1 — Tk Yk—1 — Yk Rk—1 — 2k
Ay = y S0 = | Yok |
Tht1 = Tk Ykl — Yk k41 — 2k 2ok

| T — Tk Ym — Yk ZM — Rk
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- . r 2 2 27
Tk Ki — Kj =iy,
2 2 2
cp = T htk d, = ! Klﬁ_l - Kl% _ 7“15—11;
)
—Tk+1k 2 | Kiyr — K — g
2 2 2
| =Tk | | Ky — K — e |

The estimated source location is given by the least-sqsataton to problem (3.8),
Sor, = (AgAk)ilAg(’f‘ka + dk) (39)

Given M estimations in total, which are computed by M differeeference receivers, we
average among them to calculate the estimation of the trgesinlocation, which is given

by
. 1 Z .
So — — Sok- (310)

3.4 Decentralized Localization with Full Information

We would like to decentralize the problem step by step. i¢hse, in contrast to the previous
methods, we will estimate the location of the source locatlgach receiver. Assume each
receiver gets access to full time of arrival information. &h®n the information from the
neighbors, the receivers can update the local estimatio@rdceivers will communicate with
each other to get a consensus of an estimated locationvedyatWith this, our problem is
expressed as

S0k

M
min Z | Aksor — (recr + di)|[3,
k=1

subject tasg, = soj, V(k,j) € E, (3.11)

where

[ 1 — 23 Y1 — Yk 21— 2k |

T
Tp—1 — Tk Yk—1 — Yk Rk—1 — 2k Ok
A = y S0 = | Yok |
Tht1 = Tk Ykl — Yk k41 — 2k 2ok

| T — Tk Ym — Yk ZM — Rk
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r 2 2 2
—T1k Ky — K — 1y,

2 2 2
Ky — Ki =1

i = —Tk—1k dj, = 1
= Qg = = 2 2 2
—Tk+1k 2 | Ki — K — g
2 2 2
| — "Mk | | Ky — K — 7 |

As a consequence, we can rewrite the problem (3.11) as aajiapiroblem,

M
min Z sorPrsor + 2Qxsox + by,
k=1

S0k

subject tosg, = so;, V(k, j) € E, (3.12)

where
Py = A[ Ay, Qr = —(ryex + di) T Ay, by, = (rie + di) " (riey + dy),

which we can solve with PDMM. The details of PDMM will be praesed in Chapter 3.7.

3.5 Decentralized Localization with Neighboring Information

Considering decentralized localization, each receiverpdes a local estimated transmit-
ter's location with the time of arrival information from itseighboring nodes. The local
estimated transmitter’s location measured by receiverdemsted bys,,. Based on the in-
formation from the neighbors, the receivers can updatedbal lestimation. The receivers
will communicate with each other to get a consensus of amastid location iteratively.
Assume the neighboring nodes of receieaire denoted b¥, ..., ky,, WhereM;, = | N |
and\V;, is the set of the neighboring nodes of nddéVe assume the degree of each receiver
is not smaller than 2, i.e|N,| > 2. In addition, each receiver itself is considered as the
reference receiver for location estimation. With this, problem is expressed as

My,

minz || Aksor — (reex + di)|]3,
k=1

S0k

subject toso, = so;, V(k,j) € E, (3.13)
where
Ty — T — 2k — % 2 2 2
e T o ~Thyk L[ B B T
Ap = : : : s Sok = | Yok | ,Cr = Do de=3 :
2 _ 2 2 .2
Thyy — Tk Ykny — Yk Zhyy — 2k Ok Tkark K = K = Tiyn
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As a consequence, we can rewrite the problem (3.13) as aajicpiroblem,

M
min Z SOTkPkSOk + 2QkSox + br,
S0k 1
subject toso, = so;, V(k,j) € E, (3.14)
where

Py = A[ Ay, Qr = —(ryex + di)T Ay, by, = (rrer + di) " (riey, + dy),

which we can solve with PDMM. The details of PDMM will be presed in Chapter 3.7.

It is shown in Appendix A that using neighboring TDOA measuneat information instead
of full TDOA measurement information will not decrease tloewacy.

3.6 Low Rank Reformulation

When we place all the receivers on the ceiling, the rank of ttoblpm is lower. In this
case, the problem should be reformulated. To begin with, iseadd thez coordinate and
solve the problem with the two-dimensional method to deteenthex andy coordinates.
With the time of arrival information and the range of theoordinate, we can calculate the
corresponding coordinate. In this way, we can also get an accurate estihhatation.

3.7 PDMM Implementation

Since Section 3.4 and Section 3.5 have the same form, PDMNementation is same
except that the notation is different.

Use a graphz = (V, ) to define the network, wher& denotes the set of nodes ahd
denotes the set of edges between nodes. The separablevebjecttion can be written as

f(z) = Zfi(xi)' Let A;; and A;; with 4, € V denote the linear constraint matrices. In
eV

addition, ¢;; is the coefficient of the linear constraint. With this, tharstard primal-dual

method of multipliers (PDMM), a node based optimizatioroaithm, is described as

minimize Zfi(xi)’

eV

subject toA;;x; + Ajx; = ¢;;, forall (4,5) € E. (3.15)

Comparing our linear constraints shown in (3.12) and (3.1#) thhe standard PDMM, we
can get
ij = 0,
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A I ifk <y
M T otherwise

where! denotes an identity matrix. If we writé;; = [;;1, where

o 1 ifk<jy
M g otherwise

we obtainiy; = 1 andl;l;, = —1[26].

In order to solve the problem (3.12) and (3.14), we defif{8o:) = 52, Prsor + 2QxSok + b
The Lagrangian function is given by

Ly(so,v) = Y _ fulsow) + Y vig(—Axjsor — Ajusoy), (3.16)
keV (k,j)eEE
wherey;,; are edge variables. Given the primal Lagrangian, the dwdllem is given by

g(v) = ig})fZ(fk(SOk) — > v Akson)

keV JENE

= —sup Z( Z V]Z}Akjsok) — fk(Sok)) (317)

%0 keV jeN;
Hence, the problem can be expressed as
max  —fi(> " Afw), (3.18)
keV JENE
wheref; denotes the conjugate function Hf[26].
To decouple the node decencies, for each édgg) € E, we introduce two auxiliary node
variables),; and \;;, one for each nodé andj, respectively. The node variablg,; is

owned and updated at noéleand related to nodg Hence, M, new variables are introduced
at nodek. With this, the dual problem can be reformulated as

max )~ — fi (AL M),
keV

subject tov,; = Ay, = A forall (k,j) € E. (3.19)
The associated dual Lagrangian problem is given by

La(v, \y) = > (=00 AL + D il (s — Mwgy))- (3.20)

keV JENE JENL

At a saddle point of.,;, we arrive at

0 € Oy, La(V* X %) = O, FE O AL Nws) + vy (3.21)
JENG
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On the other hand, Frenchel’s inequality must hold with étyuadn that case, we can derive
0 € On, i (D ALy + Ajesy. (3.22)
JENG

Therefore, at a saddle point, we haye = Aj;;sg;. In this case, we restrict the Lagrange
multipliers y;; to be of the formy,; = Aj.so;. As a consequence, the dual Lagrangian
problem is given byZ6]

La(v, A, 80) = Z(—fﬁ(z AZjAklj) - Z /\;ﬂkAk:jSOk‘) - Z Vk]( Apjsor — Ajrso;)-

keV JENE JEN (k.j)EE
(3.23)

Define the primal-dual Lagrangian function

Lpa(s0, A) = Lp(s0,v) + La(v, A, s0) = Z(fk sox) — fr( Z AL Awj) — Z M Akssor),

keV JENE JENE
(3.24)
which is convex ins, for fixed A and concave in for fixed s, [26].
To enforce the primal feasibility, we introduce two penaéyms,
L,(s0,A) = Lpa(s0, A) + hyp(s0) — ha(N), (3.25)
where p
hp(s0) = Z 3p||f4k:j50k + Ajusos|[*,
(k,j)eE
P
ha(N) = Y e = gl
(k,j)eE

Moreover, in order to simplify the equations and be able maibroadcast protocol, we use
—1
p=pp=py [26].

Solving the minimization problem, we can arrive at the updatheme,

8(()1]:_1) =arg IIllIl fk SOk: SOk Z Agj)\ﬁk Z %HAkjSOk + Ajks(()zj)”2)
FEN JENE
= 2P+ Y )7 (=2Qu + D (A + psi), (3.26)
JENk ]GNk
i+1 i
At = argmin(fi( 7 AT ) + Y MAgshy Z By = A1)
JENK JEN JEA@
= A0 = lp(sor = s4)), V(k,j) € E, (3.27)

where® denotes theth iteration.

The PDMM implementation is summarized in Algorithm 1. As aasequence, we have

lim s) = so forall k e V

1—00
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Algorithm 1 TDOA Localization with PDMM
At iterationi + 1,
1. Select nodé uniformly at random.
2. Updates(”l) by solving0 € 9, L (s((f), (D), which gives

S0k

(H_l = (2P, + Z (—2Qk + Z (LA g|k -I-ps(()j)))
JENK JENK

3, Broadcass., " to neighboring nodeg € AV

4, Updatex(l‘“) = )\gl& —1 jp(séz,:'l) - s(()l])) Vi e Ny

3.8 Cramer-Rao Lower Bound

In order to examine the highest accuracy we may achieve Vil@@A localization, we would
like to study the Cramer-Rao lower bound. In this case, we \wiltulate the variance of
localization with a fixed reference receiver, i.e., the nemel. With the TDOA measure-
ment defined in (3.1), the probability distribution functiof the TDOA measurement can be

derived as .

AT|s ——ex A hii(r))?). 3.28
p( le‘ ]) \/_Ulj p( ( Tij — 1]( )) ) ( )
We can write TDOA measurements in the vector form
AT = h(sy) +n, (3.29)
whereAr = (ATlg, A’Tlg, . ,A71M> RM 1 h(So) <h12(80) h13(80) . th(So)) €
RM_l, n = (nlg, n13, ... ,’n,lM) € RM L'and n ~ N(O, R) with R =
oi+o3 o - o}
i ot+ai o ot
0'% O'% s 0% + 0%4
The likelihood function can be formulated as
1 1
p(AT|s) = —————exp(—= (AT — h(s)))" )R (AT — h(sy)). (3.30)
(2m) "= /| R 2

The Cramer-Rao lower bound is the inverse of Fisher informatiatrix, which is given by
FIM = E[57s,Inp(AT|8) (s Inp(AT|8))]. (3.31)
Insert the likelihood function (3.30), we arrive at

ah(So) T -1 8h(30)

FIM = ( Jso ) Jso

(3.32)
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where 2260)  _ [ahu(so) 3h1M(50)]T’ and Ohyj(s0) _ 1 x (o= To—Tj  yo—y1

dsg Osg ) dso dso [so—s1| - |so—s;|’ |so—s1|
Yo—Y; 20—21 __ R0—”Z%j )
Iso—s;|” [so—s1|  |so—s;]

With this, we can obtain the CRLB for the variance of TDOA basexhlization,
var(sy) > tr(FIM™1) (3.33)

There are three conclusions which can be derived from the CRik&ly-only whenM > 3,
the existence of the CRLB can be guaranteed. Moreover, no mmiwariance unbiased
(MVU) estimators can achieve the CRLB under the Gaussian proaiel. It can be proved
with the PDF, the derivative of PDF with respectstois given by
Oh(s

Vsolnp(AT|s) = (%)TR_I(AT — h(sp)). (3.34)
If there exist an MVU estimator, the bound must be attainedllyx . That is, the derivative
of PDF should be of the form

Vsolnp(AT|s) = I(s)(g(AT) — 3), (3.35)

for some functiong; and I, whereg(Ar) is an MVU estimator. Comparing (3.34) and
(3.35), it can be concluded that they can not be same. As &qaeace, an MVU estimator
can not exist under the Gaussian error model. Last, we wokédtb examine which
variables will have an influence on the CRLB. According to (3.3 CRLB can be
affected by TOA measurement variances. Since the nor(ﬁz—o(b:f%, %, §3?§§|> equals
to 1, the relative direction, instead of the distance betweenrdnsmitters and the receivers,
have an influence on the CRLB. In other words, the distributiathefsensors will affect the

CRLB [27].

3.9 Optimal Sensor Geometry

For simplicity, we examine the best way to place receiveis two-dimensional plane. The
optimal sensor geometry can be derived by minimizing the CRLB.

Rewriteath(OSO) = ¢ x (=t ooy (20t 0] gt first. Given the unit norm,

] [so—s1|’ [so—s1] [so—s;]’ |so—s;l
(= W0y — (cos(6;), sin(f;)), whered; is the incline angle from the transmitter to the
[so—s;|7 [so—s;| J J J

jth receiver P4].

We assume variances are equal among receivers, the caenaairix can be written as
R = o?(Tp;1 + 1p-11%, ), wherel,, ; denotes théM — 1) x (M — 1) identity matrix
and1,, ; denotes(M — 1) x 1 all one vector. Hence, we can derive the inverse of the
covariance matrix, .

R =
Mo?

(MIyy — 1y 413, ). (3.36)
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Combine (3.36) with
cosfy —cosf; sinfy —sin by
Oh(s) . .
650 - . . 9

cos Oy —cosfy sinfy; — sin 6,

the Fisher information matrix is given by

ah(So) T —1 8h(80) 1
FIM = =
( 05 )R 050 Mc2o? %
[ M M M
M—1) ZCOSQ(Qk) — ZCOS(@,’) cos(6;) MZCOS (0y) sin(6y) — ZCOS (Or) Zsm (Or)
k=1 z;éj k= k:l
MZCOS (0)) sin(6y) — Zcos (Or) Zsm (Or) (M —1) ZsinQ(Qk Zsm sin (6
L k=1 k=1 1#]
(3.37)
With this, the CRLB can be expressedd®), where© = [0, 0,, ..., 0] [24],
var(sy) > tr(FIM ™) = f(©)
M
M-1) - 22008(9,- —0;)
i>j
= - Y : (3.38)
M(M —2) Zsin%&i )+ QMZ Zsm O, — 6;)sin(60; — 6)
1> k=1 i>j

(3.38) illustrates that the CRLB does not depend on the chditeeaeference receiver.

To find the optimal sensor geometry, the derivativg @) with respect tdy, k = 1,..., M
should equal to zero. Usg©) > 0 andv(©) > 0 as the numerator and denominator,
respectively, we arrive at

ou(O) ov(O)
— C) k=1,..., M, 3.39
S . f(©) 90 |y o (3.39)
where [él, o ,éM] denotes the optimal incline angle from the transmitter ® réeceivers.
(3.39) can be further simplified to
9u(9) _gand 22 k=1,... M. (3.40)
% g4, 90 g, —g,

The equation (3.40) can only be satisfied if

M A M A M ) M A
Zcos(@k) =0, Zsin(@k) =0, Zcos(?&k) =0, Zsin(%k) = 0. (3.41)
k=1 k=1 k=1 k=1
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The Positions of the Receivers
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Figure 3.1: Receiver Distribution

A set of solution to (3.41) is given by

.2
Qk:MW(k:—lﬂ—qzﬁ, k=1,...,M, (3.42)

where¢ € (0, 27), which corresponds to a uniform angular array (UAAJ]L

However, in real applications, the transmitter’s locat@amnot be known a prior. So the
model with the transmitter uncertainty is important to st{il].

3.10 Numerical Simulation
In this section, we present some experimental results bypaten simulation.

In the first simulation, we would like to compare the accuratfour localization methods.
We compare the estimated source location with the real somaation to calculate the
variance and compare the variance of localization with thant@r-Rao lower bound.
Assume the room is 5mbmx5m with 26 receivers uniformly distributed on the boundsrie
The positions of the receivers are shown in Figure 3.1. Tdrestnitter’s position is randomly
deployed according to a uniform distribution. We perforn® ¥f&ndom configurations. In
each configuration, the TOA measurement variance is deglageording to a Gaussian
distribution. In order to compute the variance of the lazation, we average the variances
among 100 configurations. The simulation result in showniguie 3.2.
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Figure 3.2: TDOA Localization with Gaussian Measurement Error

The simulation result shows that the four proposed methed®pn well and the variance
of the localization is close to the CRLB. As what is shown in Chaptehe time of arrival
measurement variance is no larger than 0.03ns when the SiNRess than 5dB. According
to Figure 3.2, when the time of arrival variance is 0.03ns,wariance of the localization is
within one centimeter. We can arrive at the conclusion, the time difference of arrival
localization methods are relatively accurate. The ceamtrdllocalization with the arbitrary
reference receiver performs a little bit better than theredimed localization with one fixed
reference receiver because more TOA information is useld¢ation estimation.

In the second simulation, we would like to examine the eftddhe different measurement
error distribution. In Figure 3.3, the TOA measurementeisaniformly distributed. Com-
paring with the simulation result shown in Figure 3.2, thisraot much difference between
two error distribution. It is reasonable because the unifpdistributed noise can be trans-
formed into the Gaussian distributed noise.

In the following simulations, for simplicity and a betterew of the receivers’ distribution,
we will do the simulations in a two-dimensional plane.

In the third simulation, we would like to examine the effetitloe choice of the reference
sensor on the variance of the localization in the differereeeiver geometries. In a
20mx20m room, we have four receivers and one transmitter. #inst fix the transmitter
in the room center. The receiver positions are randomlyayenl according to a uniform
distribution. We perform 500 random configurations. In eaghfiguration, the variance of
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Figure 3.3: TDOA Localization with Uniformly Distributed Measurement Error

the TOA measurement is deployed according to a Gaussiaibdigin. In order to compute

the variance of the localization, we average the varianoesng 500 configurations. In

the second receiver geometry, instead of random receipesstions, the four receivers are
placed at the corners of a two-dimensional plane, which eaodnsidered as a UAA. The
simulation results are shown in Figure 3.4 and Figure 3.5.

Comparing these two receiver geometries, we can arrive acfmclusions. Firstly, the av-
eraging method always performs better than choosing afgpesfierence sensor. Secondly,
the choice of the reference receiver for the centralizedrélgnm is important, which will
have an effect on the accuracy. When the receivers are urffamgular distributed, it does
not matter which receiver is chosen to be the reference serswever, when the receivers
are randomly distributed, it is always better to choose #ference receiver whose incline
angle is close to a uniform distribution, for example, thstribbution of receivers 1, 2, 3 in
Figure 3.4 is close to a UAA and they perform relatively betitean receiver 4.

From the third simulation, we already know the choice of mefiee sensor will result in
different localization accuracy in some receiver georastri We would like to examine
the best way to place all receivers. Because the CRLB is a theadritwer bound of the
variance of the localization, it can be used as an indicatayur simulation. Before the
simulation, we have to make sure whether the CRLB will be adi@dty the choice of
reference receiver. The simulation result is shown in Fagu6.

As what is shown in Figure 3.6, the choice of the referenceivec does not affect the
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Figure 3.5: TDOA Localization2
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Figure 3.6: CRLB of TDOA Localization with different reference sensor

CRLB. As a result, it does not matter which reference sensor toshwhen we use the
CRLB to determine the receiver geometry.

In the fourth simulation, we would examine the optimal semggometry. We first generate

a transmitter position, which is uniformly distributed dretplane. We compare the Cramer-
Rao lower bound between the uniformly angular distributetkikers and the randomly

distributed receivers. The simulation result is shown gue 3.7.

Based on the experimental result, we can conclude that loweBGRh be attained when
the receiver geometry is a UAA. Consequently, the receiMeosilg be placed according to
the uniform angular array in the room.

In the fifth simulation, we will examine the effect of the rangf the receivers. Firstly, we
fix the transmitter in the center. The first geometry is that tbceivers are at the corners
of a 20mx20m plane. The second geometry is that the receivers are abtimers of the
centering 12mx12m plane. That is, the incline angle is uniformly distréaitand the only
difference is the range. Secondly, we want to know whethetrdmsmitter should be inside
the range of the receivers. The receivers are placed at twoers on the 20m20m plane
and the left-bottom 10m10m plane, respectively. The transmitter is placed on tji-up
10mx10m plane randomly. Compare the CRLB between two geometries.siftulation
results are shown in Figure 3.8 and Figure 3.9.

The simulation result shows when the transmitter is in tinigeaof the receivers, it does not
matter what the range of the receivers is. However, wherrémsmitter is outside the range
of receivers, the localization accuracy decreases signific As a consequence, we should
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Figure 3.7: CRLB of TDOA Localization with different sensor geometry
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Figure 3.9: CRLB of TDOA Localization with different sensor geometry@tfier inside the range of
Receivers)

place the receivers on the boundaries to make sure the titterswill always be inside the
range of the receivers.

We have already known that we should place the receiversebdhbndaries, but we still

don’t know whether we should place all the receivers on thendary or we only need to

guarantee there are some receivers on the boundary. Theefiester geometry is that all

8 receivers are on the boundaries and they are uniformlyilalistd. The second receiver
geometry is that only 4 receivers are at the corners of theepénd the other 4 receivers
are randomly placed on the plane. The transmitter is rangiphaced on the plane. In the
sixth simulation, we will compare the accuracy betweendhe® receivers geometries. The
simulation result is shown in Figure 3.10.

To conclude, we should place all the sensors uniformly orbthendaries.
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Practical Aspects

In Chapter 2 and Chapter 3, we have already known how to meaf@A3 and use the
measurements for localization. However, when they are usedal world applications,

there are still some practical problems that we need to sdlVe need to know how many
sources we can accurately localize simultaneously oneinelovironment. How to deal with
multipath effects? Moreover, what if the line-of-sight id¢ked in indoor environments?
Last but not least, we want to know how to get the correct edtoh location if there are
some errors when we transmit the time of arrival informatiosl the questions will be

answered in this chapter.

4.1 Multiple Users

For one Bluetooth transmitter, the time interval betweentr@nosmissions is assumed to be
uniformly distributed ir25 + 5ms. The length of the advertisement signal is variable, but the
maximum length i$76..s. The transmission is assumed to be independent of each @ker
want to calculate the probability that no transmitters srait Bluetooth signals at the same
time. If there are no overlapped transmitted signal, we oaalize the source accurately.

To begin with, divide the time0, co) into sufficiently small sub-intervals. The length of
one interval is assumed to e UseN(t) to denote the number of transmissions at time
Assume the transmission rateXgransmissions per unit timef]. Since the time interval
between two transmissions is assumed to be uniformly biged in25+5ms, A = 1/25ms.

A set of binary random variables are defined as

_ )1 iftransmission is in the intervdinA, (m + 1)A] 4.1)
™10 otherwise '
Therefore,
EY,, = Pr{Y,, =1} = AA = p. (4.2)

To conclude N (t) ~ Bionomial(n, p), wheren ~ ¢/A [3(].

As A — 0, the probability mass function d¥ (¢) converges to a rat& Poisson distribution,
i.e., the number of transmissions in the time interval oftéery” follows a rate\T Poisson
distribution. It can be expressed as

AT)" r

pn(AT,n) = e ™, n=0,1,2,.... (4.3)

n!
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Note that the intervals between two transmissions at eacistmitter, X, X5, ..., are inde-
pendent identically distributed sequences with an exptmadetistribution,

Pr{X, >z} = Pr{N(z) =0} = e, (4.4)
Hence, we havey]
Fx,(v) = Pr{X, <z} =1-e"", (4.5)
and
fx(z) = fx, (z) = %;(x) = e 2. (4.6)

Since the intervals between two transmissions at eachntittes are exponentially dis-
tributed with rate\ and independent across all transmitters and over time, riiidgm of
n transmitters is equivalent to the problem that a singlestratter transmits Bluetooth sig-
nals according to a rate\ Poisson process at timé% and the interval Z,..; — Z,} are
independent identically distributed sequences with aroeeptial distribution. Use;, to
denote the interva] 7.1 — Z.}, we have §0]

F(q)=1—e\, (4.7)

and
flg) = e "M (4.8)

Given that the maximum length of the advertisement signalrég.s, the probability that
there are no overlapped transmissions can be considerdte ggdbability that the time
interval between two transmissions should be larger 87aps. In this case, the probability
is given by

Pr{No two transmitters will transmit at the same tifne 1 — F/(376us). (4.9)

At the end of this section, we would like to examine the relaghip between the probability
of no overlapped transmitted signal and the number of tratems. Moreover, we would

like to examine the effect of the changed time interval betwevo transmissions. The
simulation result is shown in Figure 4.1.

The simulation result shows when there are ten transmitie¢he room, the probability that
no transmitter transmits signals at the same time is ak@ygt As the average time interval

between two transmissions increases, the probability @veolapped transmitted signals is
also increased.

4.2 Multi-path Effects

Multipath effects are common in the indoor environment dreytare difficult to deal with.
As what we mentioned in Chapter 2.1, we use GCC-PHAT to estirhatéirne of arrival,
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Figure 4.1: The probability of no overlapped transmitted signal

which proves to be robust to multipath effects. Compared tighgeneralized cross cor-
relation method, GCC-PHAT applies the phase transformatioa sharp peak in the cross
correlation function, which avoids the spreading from otteghs. To conclude, GCC-PHAT
can eliminate multipath effects and distinguish the timaroival from the direct path.

4.3 Non-Line-of-Sight Scenarios

In indoor environments, non-line-of-sight caused by oflst is a common problem.
However, it will dramatically decrease the localizatiorta@cy. The time of arrival from
the direct path may be lost or masked by reverberations eesoiAs a result, the estimated
time of arrival from the direct path may be incorrect. Theref we need to make sure that
the estimated time of arrival corresponds to the direct.path

We would like to exploit a method to decide whether an eseahéitme of arrival is associated
with the true direct path through the information providgd3CC-PHAT. A reliability index
is defined as the ratio between the energy of highest pealharréinaining samples,

PHAT
Z RQOHJ

— %’ R (4.10)
9gogj
n¢D i

whereD = [n — np,n + np) is an interval centered at the highest péadf the generalized
cross correlation function with the width equal2a, + 1. The energy of the direct path
is expected to be inside the interval. Generally, the latigereliability index is, the more
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Figure 4.2: Non-line-of-sight scenarios

likely the estimated time of arrival is associated with theect path. The reliability index
is sent together with the corresponding TOA measuremente TTOA measurement is
considered to be reliable and associated with the direbtipat> 77, wherer is the average
reliability index. « is a threshold value, which is set with the trade-off betwesly keeping
most reliable TOA measurements and keeping all TOA measamen 1].

We do a simulation to examine the changed accuracy when wardishe TOA measure-
ments from the non-direct path. In a 6@m room, eight receivers are placed uniformly.
We use Method 1 (the centralized localization with the mxfiee sensor 1) to compare the
accuracy between only keeping the most reliable TOA measemées and keeping all TOA
measurements. Suppose the receivei6al) are blocked by obstacles, that is to say, the
direct path from the transmitter to the receive(@t0) disappears. When we only keep the
TOA measurements from the direct paths, werseual t00.9 and when we include all
TOA measurements, we seequal to0.1. The simulation result is shown in Figure 4.2.

From the simulation result, we can conclude that keepingribst reliable time of arrival
measurements can achieve higher accuracy than includifignalof arrival measurements.

4.4 Pruning incorrect TOA measurements

The true TOA measurements are easy to be masked in noisyrisdemonments. Besides,
the dynamic obstacles will mask the time of arrival from theect path for some short
time interval. Moreover, errors may occur during the timeagifval transmission. Since
the incorrect time of arrival estimation will result in theramg location estimation, it is
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important to select a subset of the accurate measured TQAschlization [37].

In a three-dimensional room, there are a sef aficrophones and acoustic events at un-
known locations. Théth microphone and thgth source location is represented by vectors
r; ands;, respectively. Without loss of generality, we assume tieedmf the signal is 1 and
the internal delays and the onset time can be compensatet}; denote the observed TOA
at theith microphone to thegth acoustic event, which is given by

tij = ||7‘Z — Sj” + Ez'j, (411)

wheree;; denotes the measurement noise. Subtracting the squareaifay(4.11) for = 1
andj = 1, we obtain

—(r; — 'rl)T(sj —8) = 0.5(t?j - t%j — t?l +t2), (4.12)
fori =2, ..., andj = 2, ..., J. With this, we can express it in the vector form,
“RS' =T (4.13)

whereR is the relative microphone location (ig) matrix, S is the relative acoustic event
location (tos,) matrix andT;_,;_, = 0.5(t}, — ti; — t; +t1,) [37].

According to (4.13), if there is no error in TOA measuremelR$  is at most rank. This
property can be used to find out the correct subset of TOA nneamnts £7].

For all I microphones, frony acoustic events, the TOA measurement set is denotég as
and allJ — 1 unique combinations aof; is given by

Uy = (JS_J 1) . (4.14)

Take a specific combinatiomfrom U;_, to constructZ, for j = u« and compute the error,
which is defined as

N,
ew = |Tullp =) ol(T.). (4.15)
=1

whereN, = min(/—1, .J—2) ando;(T,,) is the singular value df;,. If all TOA measurements
are correct, the errors are close to equal and the minimwnaan represent the most reliable
TOA measurements if they are different. When no TOA measunéimseorrect, all errors
are small but the maximum error is relatively large compaoetthe error of all correct TOA
measurements. Therefore, the subset of TOA measuremenie clected asi?]

(4.16)

g _Jarg min, var{e,} if maxe, < «
N otherwise

The iterative method to prune all erroneous TOA measuresnigisummarized in Algorithm

2[37].
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Algorithm 2 Pruning incorrect TOA measurements

1. Forn=0,1,J — Jmin
2. Generate the set of all possible combinations of the get

S
Urent1 = <J— r}]+ 1)

3. For eachu € U;_, 1, constructl;, and compute the error.
4. Update the best TOA sets,

arg ming e, if mine,/maxe, < «
SanJrl = .
Sy n otherwise

5. End ifSJ7n+]_ =S5_n

34



Conclusions

Global positioning system (GPS) has already achieved hauracy in localization in
outdoor environments. However, there is still no satisfigcsystem for indoor localization
because of multipath effects, non-line-of sight scenaribsdoor localization is of great
importance in our daily life, like the hospital and superkeds. \We developed an accurate
indoor localization system in this master thesis.

Low energy Bluetooth is getting to be one of the foundationdadf and it is widely
used around the world. In this thesis, we used low energy 8dtletsignals for indoor
localization. Considering the accuracy, TDOA based teakesqgwere chosen for indoor
localization. Since the first part of Bluetooth signals isiitiieal, we used this signal segment
for localization. The sources broadcast GFSK modulatedtBaik signals periodically.
After the receiver receives the signal, we used GCC-PHAT toutate the time delay
between the transmitter and the receiver. GCC-PHAT provestieee sampling accuracy
in indoor environments, which is essential to resist mattipeffects. The receivers will
communicate with each other to exchange its time delay imédion. We proposed four
TDOA localization methods in this thesis, two centralizedthods and two decentralized
methods. We used PDMM to implement the decentralized lpatdin methods. Moreover,
we compared the accuracy of the four proposed methods. Expatal results showed that
we can localize the source with an accuracy of less than omiénueter when the SNR is
higher than 5dB. Furthermore, based on the Cramer-Rao lowerdhave examined the
best way to place receivers in indoor environments. We gt@e@niform angular array
is the optimal sensor geometry. Besides, the proposed syst@ndeal with multipath
effects, NLOS scenarios and the incorrect time of arrivahsaeements. What's more, we
derived the number of sources that we can accurately l@calinultaneously in one indoor
environment in the thesis.

To conclude, we have developed a relatively accurate inldboatization system and we can
implement the localization method in a distributed way. Beseaof time limitation, | have
not done any real experiment. Further works can focus ondaleexperiments and adding
the synchronization errors among the receivers.
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Appendix A

As shown in Chapter 3iar(sy) > tr(FIM ™). Use the subscriptfull” and “nei” to denote
the full TOA measurement information and the neighboringhTi@easurement information,
respectively. We can get the Fisher information matrix wtita full TDOA measurement

information,
ahfull(so)

380

_1 Ohypuu(so)
T 1 Full\20
) Rfulla—so

FIMu = (

We want to compare the accuracy between using the neiglgomfiormation of receiver 1
and the full measurement information. Assuivigis the set of the neighboring nodes of node
1 andM; = |NVi|. The Fisher information matrix with the neighboring TDOA aserement
information is derived as

ahnei(SO) )T 71ahnei(30)
aS(] nei 850 '

The relationship between the full measurement matrix aednighboring measurement
matrix is expressed as

FIM,ye; :<

8hnei(30) - X ahfull(SO)
- 5. — tr— o
680 880
Rnei - Xterull(Xt’r)T-
where X, denotes the transformation matrix from the full measurdnrdarmation to the
neighboring measurement informatioX,, ¢ R *(M-1 s of the form that each row is

unique with only one numbédrwhose column position denotes the neighboring node number,
and all other elements are numlfeMVith this, we arrive at

ahfull(SO)
880

ahfull<50)
650

Oh 11 (s0) )
880

F[Mnei = (Xtr )T(Xterull<Xtr>T)71(Xtr )
Oh i1 (s0)

= ( D5y ) (Xi) (X)) T Ry (X)) ™H (X )(

_ (ahfull(so) Oh (o)
880 880
— FIM;u.

)

To conclude, using the neighboring TDOA measurement in&ion instead of the full
TDOA measurement information will not decrease the acgurac
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