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Abstract

This study focuses on automated malaria diagnosis in low quality blood smear images, cap-
tured by a low-cost smart phone microscope system. The aim is to localize and classify the
healthy and infected erythrocytes in order to evaluate the parasitaemia of the blood. Due
to the lower quality of the smartphone microscope system compared to traditional high-end
light microscopes, conventional algorithms fail to process these images. We propose a frame-
work using a convolutional neural network as a pixel classifier to localize the erythrocytes.
Afterwards we classify them accordingly, using a convolutional neural network as an object
classifier. Such a system can offer in-the-field malaria diagnosis without human intervention
or can act as an aid for human experts to lower workload and increase diagnosis accuracy.
The algorithm successfully localizes the erythrocytes with an average sensitivity of 97.31%
and precision of 92.21%. Classification performed inadequate, in terms of low agreement
with two human experts. This can due to the low image quality or the small amount of
training data available at the time.
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1. Introduction

Malaria is a serious disease caused by a peripheral blood parasite of the genus Plasmod-
ium. In 2015 alone, the global tally of malaria reached 212 million cases and 429 000 deaths.
Most of these deaths occurred in the African region (92%) and the vast majority is due to P.
falciparum malaria (99%) [1]. Early and accurate Malaria diagnosis and prompt treatment
can cure a patient, preventing severe malaria cases and possible fatal disease states [1] [2].
All around the world there are still millions of people lacking access to malaria prevention
and treatment [3].

Microscopy examination of Giemsa (or similar) stained thick and thin blood smears is
regarded as the most suitable diagnostic instrument for malaria. It has numerous advan-
tages, it is inexpensive, supports direct parasite count and discriminating different parasites.
However, it requires skill and experience that is scarce even in developed countries [2][4].
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Rapid Diagnostic Tests (RDTs) provide an alternative to microscopy. These (’dipstick’)
tests, also known as lateral flow immunochromatographic assays, are simple tests that allow
detection of malaria antigens, and can be used by persons without diagnostic expertise [4].
To be a applicable diagnostic, RDTs must achieve greater than 95% sensitivity [5]. While
most RDTs today can achieve this sensitivity for P. falciparum malaria, their results depend
heavily on the storage, quality assurance and end user training. Despite some advantages,
current RDTs are not intended to replace microscopy [6].

Light microscopy remains the gold standard for malaria diagnosis [6], however the man-
ual inspection has numerous disadvantages. The costs of purchasing and maintaining mi-
croscopes are high [7]. Trained personal is scarce and also expensive since the technique
is labour intensive and time-consuming [8]. The accuracy of this technique is ultimately
determined by the expertise and reader technique of the microscopist and quality of the
blood smear [9]. While theoretically very high sensitivity and specificity can be reached us-
ing microscopy analysis, practice shows big discrepancies between different technicians and
on-field versus laboratory diagnosis results [9][10].

This current study is an extension to recent developments made by the Optical Smart
Malaria Diagnosis (OSMD) project from the Technical University Delft. These developments
include the substitution of a light microscope by a smartphone camera for the analysis of
Giemsa stained thin blood smears [11]. This can mean drastic improvements to the cost,
availability and readiness of malaria diagnosis in areas where proper equipment is limited or
absent. Despite these advantages, the analysis of the blood smears is still done by human
technicians. With the lack of proficient personnel and an image quality of smartphones that
is inferior to that of light microscopes, these previously mentioned improvements are not
exploited to their maximum.

Automated image analysis software could remove the most serious limitation of this sys-
tem and microscopy in general, dependency on human expert performance for the diagnostic
accuracy of the results. This software is not new, different image processing techniques has
been applied in the past to tackle this problem. Most of these techniques are dedicated to
the quantification of parasites with respect to the total amount of erythrocytes (red blood
cells). Conventional techniques like morphology [12][13], edge detection [14], region grow-
ing [15] and more, have reported positive results with respect to their data. However all these
researches are based on image data acquired using digital cameras coupled to light micro-
scopes, examining Giemsa (or similar) stained thin blood smears under oil immersion. This
data acquisition results in high resolution, highly detailed, uniform illuminated, altogether
high quality images, and even in this type of images inconsistent light intensities is causing
problems [13]. A low cost device using a smartphone camera to capture images will inher-
ently produce inferior images, and these conventional techniques will not be sophisticated
enough to analyze these images.

In this paper a novel approach to the automated malaria diagnosis problem is presented.
We show a two-phase procedure to localize erythrocytes and classify them as healthy or
infected in relative low quality thin blood smear images. Localization of the erythrocytes is
done using a Convolutional Neural Network (CNN) as a pixel classifier, inspired on Cireşan’s
work on Mitosis detection [16]. The classification of individual erythrocytes is also done using
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a CNN as an object classifier. The system must be able to provide a quantification and exact
locations of healthy and infected erythrocytes shown in different field of views captured using
the smartphone camera. Such a system would either enable a fully automated diagnosis or
act as an aid to improve accuracy and lower workload of human experts.

The paper is organized as follows. Section 2 describes the specifications and differences
of the acquired data using the smartphone camera and will show the performance of conven-
tional algorithms on this data. Section 3 shows the two-phase approach using an Artificial
Neural Network to localize erythrocytes and elaborates on the more conventional classifica-
tion problem. In section 4 the experimental results can be found. Section 5 consist of the
conclusion and discussion of this work.

2. Materials

Samples of malaria infected blood were obtained by Leiden University Medical Center,
Leiden, Netherlands. All samples contain the Plasmodium falciparum parasite. Slides are
placed in the smartphone set up and manually re-positioned to capture multiple fields of
view. In total 120 images are taken, manually 40 images with the highest quality are
selected and used for the research. The smartphone based microscope has specifications
listed in table 1, as a comparison a standard light microscope used for malaria diagnosis is
also listed. The smartphone based imaging platform consist of a Motorola Camera XT1572
with 20.7 megapixels camera sensor with a pixel size of 1.12 microns. Directly on the camera
a 0.5 mm ball lens is placed, as explained in [11]. Images are captured in the JPEG format
in the maximum resolution possible by the camera, 4080x5344 pixels. Since the imaging
system has been optimized to minimize system aberrations, the usable field-of-view for the
0.5 mm ball lens is therefore limited to 100 microns (equivalent to approximately 1300x1300
pixels).

Mag NA Dl Res FOV
Standard Light Microscope 50x 1.25 0.22 µm 180 µm
Smartphone (0.5mm Ball Lens) 8.5x 0.2 1.8 µm 100 µm

Table 1: Specifications of smartphone based microscope system versus and a standard laboratory light
microscope

Figure 1 shows a comparison between an example image captured using the smartphone
set up and a digital camera coupled to a light microscope, taken from the Mamic Database
used by Linder [17]. Both images show only the green colour channel in which the purple
colour from stained parasites is most visible [13]. Big differences in illumination, contrast
and detail (not visible at print-scale) can be found. These differences in quality can be
explained by table 1. For the optimal quality the following applies; magnification, higher is
better, numerical aperture, higher is better, diffraction limit resolution, lower is better, field
of view, higher is better, but can be nullified by examining more field of views per sample.
The smartphone is outperformed by the light microscope on all fronts by at least a factor
4, hence produces low contrast and low resolution images.
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Figure 1: Example of smartphone image (a), with corresponding image histogram (c). Example of light
microscope image, taken from Mamic Database (b) , with corresponding image histogram (d).

The differences in figure 1 also becomes clear looking at the distribution of the pixel value
histograms. Histogram (d), corresponding to the light microscope, shows a typical bimodal
histogram, the principal mode corresponds to the greyscale intensities of the background
colour, and the second mode to those that make up the erythrocytes [13] [17]. Histogram (c),
that of the smartphone image, shows a less distinct bimodal distribution. Most researchers,
for example [13][17][12], use this distribution to their advantage, an easy way of segmenting
the erythrocytes from the background is by selecting a threshold level that maximizes the
separability of the resultant classes, this can be done automatically using Otsu’s method [18].
The result of using this method on both examples from image 1 is shown in figure 2.
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Figure 2: (A) Smartphone based microscope example image with Otsu’s thresholding method. (B) Example
image from a light micrsoscope taken from the Mamic Database with Otsu’s thresholding method.

As can be seen in figure 2 the threshold method is not capable of segmenting all the
erythrocytes from the background in the smartphone image. Due to a lack of uniform
lightning, pixels that belong to erythrocytes in the top part of the image share the same
intensity as the background in the lower part. Modern scientific light microscopy makes
use of Köhler illumination, this illumination method results in extremely even illuminations,
however, this increases the cost of the system. The smartphone set up is aimed to be very
low cost and used a LED covered with a white paper, this can be improved a bit but will
never reach the even distribution of Köhler illumination [19]. This result shown in figure
2 and the inherent lower quality of the smartphone set-up is the motivation for the use of
more intelligent algorithms.

3. Method

Our proposed automated malaria diagnosis procedure consists of two stages: 1) Local-
ization of all erythrocytes present in the image, 2) Classification of each found erythrocyte
as either infected or healthy. Both phases are done using Convolutional Neural Networks,
first as a pixel classifier, secondly as an object classifier. The results from the classification
stage along with confidence scores for each classified erythrocyte can be shown for expert
validation, afterwards parasitemia can be estimated. The overview of this process is shown
in figure 3.

3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a class of deep, feed-forward Artificial Neural
Networks specialized at analyzing image data [20]. After its introduction in 1980 [21] and
early successes of digit classification in the 90’s [22], these models have lately outperformed
the well known algorithms for large-scale visual recognition and are widely adopted by
industry giants as Google, Facebook and Baidu [23].

In the biomedical field CNNs are starting to make an impact as well, see Suzuki [24]
for various examples. Segmentation of tissues in medical images is the basis of many im-
age analysis applications developed for medical diagnosis [24].Many of these segmentation
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problems are done by means of pixel classifiers. These problems are relatively simple due
to the distinct appearance of the objects to be detected. Difficulties arise when objects are
touching or clumped together and are harder to separate and identify [25]. In our case not
only the clumped together erythrocytes pose problems, but due to the image quality the
appearance of the ’same’ object differs in different regions of a single image. Convolutional
Neural Networks can deal with these problems with relative ease. Being able to ’learn’ the
features that make up the erythrocytes from raw RGB pixel values it can recognize the
erythrocytes much in the same way humans do. This gives Neural Networks a certain ver-
satility and high robustness against illuminance differences as well as clustering and overlap
of objects.

6



Figure 3: Overview of the proposed automated diagnostic method for the smartphone based microscope
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3.2. Erythrocyte Localization

Given a RGB input image I the goal is to find the set C = {c1, c2, c3, ..., cn} with elements
c living in R2 and n is unknown beforehand. This set contains the centroid coordinates of
all n erythrocytes present in I. To achieve this goal a CNN is trained to classify cropped
images of I in two classes: erythrocyte or non-erythrocyte. The erythrocyte class should
show one erythrocyte centred in the image with possible overlap or parts of others. The
non-erythrocyte should show off-centre erythrocytes or no erythrocytes at all.

Using this CNN every pixel p in image I is classified, this process is shown in figure 4.
This process is done by classifying small x by x windows of I that have pixel p as a centre and
moves over every pixel p in I. At every pixel p the CNN computes the class for that specific
window, stores this in a matrix and moves to the next pixel. After this process, every pixel
p has a class designated and confidence matrix M can be constructed. This matrix depicts
the confidence scores at every pixel for a specific class. For the first class, erythrocyte, we
expect to see high scores (close to 1) around the erythrocyte centroids and low scores (close
to 0) everywhere else. Using the post-processing steps explained in subsequent section 3.2.3
we can compute the set C from this matrix M .

Figure 4: Localization process, (A) is a part of the input image, where p depicts the centre of the n by n
window to be classified as erythrocyte or non-erythrocyte, (B) shows the confidence matrix M that holds
output scores for one output class, (C) shows the centre locations found after post-processing the matrix M

3.2.1. Localization Network Architecture

We utilize a relatively narrow and shallow CNN for the localization phase, this is possible
because of the simple shape of the erythrocyte that has to be detected. This network has
to analyze very large amounts of data, a separate window for every pixel in I, so a small
network is necessary to get acceptable computation times. The malaria infections, which
are more detailed features inside the erythrocyte are only of importance in the second stage.

The network architecture is build up (from input to output) by 3 convolutional layers
followed each by a max-pooling layer, hereafter 2 fully connected layers with a final double
class softmax layer. Furthermore we use neurons with a ReLu activation function. This
activation is a simpler computation compared to a traditional tanh, which requires com-
puting an exponent. This results in decreased training and evaluation times[20]. Next to
this, networks using ReLu activation usually result in sparse networks, sparsity in neural
networks has various advantages, these are explained neatly by Glorot [26] in section 2.2 .
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3.2.2. Training data

An expert manually annotated a total of 1473 erythrocytes centroids in 10 blood smear
training images. To create a large enough training data set, 9 windows are cropped around
each erythrocyte, the first window having its centre coincide with the annotation, and 8
others all shifted +/− 1 pixel in either x or y direction. This results in a total of 13257
training images for the erythrocyte class.

For the non-erythrocyte class 13000 patches are randomly cropped from the same 10 blood
smear images annotated by the expert. The only rule we impose on the these patches is that
the center of a patch q can not be closer to a annotated centroid c by a euclidean distance of
20 pixels, i.e. d(qi, cj) > 20 ∀ i, j ∈ Z. This way we ensure that all non-erythrocyte training
patches contain either off-centre erythrocytes or no erythrocytes at all.

Erythrocyte detection is rotational invariant. During each network training step we have
a 50 % chance to augment the input image by rotating it 90 degrees, this should ensure a
rotational invariance after training.

3.2.3. Processing an image

Localizing the erythrocytes in an unseen image I is straightforward at this point. Since
the network learned the features of the erythrocytes on raw RGB values we do not have to
do any preprocessing on a new image. Using the sliding window technique discussed before
we get confidence matrix M , which yield the classification score for the erythrocyte class for
every pixel p in image I.

To obtain set C we have to post-process the matrix M . First we threshold matrix M
with a threshold level of 0.9, this leaves us with a new binary matrix that has value 1 for all
areas where the network has a confidence of at least 90 % and a 0 every else. Secondly, we
segment this binary image and split clumped areas with a watershed algorithm [27] on the
binary matrix. Thirdly we calculate the centre of mass of all connected regions found by
the watershed algorithm, these points make up the set C. At last we use our knowledge we
have about the erythrocytes, due to their round shape we know the centres can not lie too
close to each other. To ensure this we add a constraint to set C, that all points must have a
minimum distance dmin from all other points. If two points lie too close to each other, both
points are excluded from the set and a new point that is the average of both is added, this
is done until the constraint is met. This yield final set C with all centroid coordinates.

Before the next phase we create a set of cropped images from I with the centre coordinates
equal to those of the elements in C, if the algorithm was successful this set of images contain
all erythrocytes present in I in separate images.

3.3. Erythrocyte Classification

Given the set of erythrocyte images derived from the localization step, the goal is to
classify these as infected or healthy. To do this we use a CNN with a 2 class softmax output
again, this is a straightforward classification problem discussed many times before and will
not be discussed in detail.

The erythrocytes annotated by the expert before are divided in the healthy and infected
class. Due to a small amount of blood smear training images, with relative low parasitemia,
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the examples of infected erythrocytes are sparse. We have increased this data set by aug-
menting all sample windows, flipping them vertically to increase the data set by a factor
2.

The result of the classification yields two sets of images, set h with healthy erythrocytes
and set i with the infected. The infected set and uncertain instances from the healthy
set (with confidence scores around 0.5) can be shown to a human expert for validation.
Incorrect classified instances can be added to the training database to improve the network
performance over time. The parasitemia l can be derived by dividing the amount of images
in the infected set by the total amount of images l = ni/(ni + nh).

4. Experimental Results

To asses the performance of our proposed method we will treat the algorithm as if it is a
fully automated diagnostic tool, this means no human validation is used at the classification
stage.

The algorithm is analyzed in two stages, the ability to localize the erythrocytes and the
ability to diagnose an image, which means to estimate the parasitemia (amount of infected
erythrocytes to total amount of erythrocytes).

Two human experts are shown 10 blood smear images captured by the smartphone .
These images are enhanced using image editing software, where changes to brightness and
contrast are made to make the parasites more visible for the human experts. Note that the
original images are used for the algorithm evaluation. Expert 1 (5 years work experience)
counted all erythrocytes manually using a tally counter, as if the image was viewed through
a microscope. Expert 2 (4 months research experience) used computer software to manually
annotate all erythrocytes and computed the counts from this. After counting, the amount
of infected erythrocytes are determined by both the experts. After this manual step, the
same 10 images, now annotated with all erythrocyte centroids having a red dot, is shown to
the experts and verified as the ground truth. For the infections we are not able to establish
this ground truth due to the poor image quality, uncertain cases will always persist even
after careful inspections.

4.1. Localization Results

For the first stage, the ability to correctly localize the erythrocytes we will make use of
two performance measures, the precision and sensitivity. Precision will depict the amount of
erythrocytes among all identified spots by the network. Sensitivity will depict the amount
of erythrocytes localized among all erythrocytes annotated in the ground truth image.

Precision =
TP

TP + FP
Sensitivity =

TP

TP + FN

True positive (TP) is a localized centroid also annotated in the ground truth. False
Positive (FP) is a localized centroid not annotated in the ground truth. False Negative
(FN) is a centroid annotated in the ground truth but not localized by the network. For all
these binary measures above, the hits and misses of the network, we stick to a small radius
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around the annotated ground truth, if a localized centroid is close enough to an annotated
centroid it ’hits’ and count as a TP, if it too far off it ’misses’ and counts as a FP.

It is of very high importance for us to have a high sensitivity since all found locations
will be the input for classification stage, missed erythrocytes could mean missed infections.
Besides, high precision is also needed to estimate the parasitemia correctly.

Results of the localization stage of all 10 images are shown table 2.

Table 2: Erythrocyte localization results of the algorithm against the ground truth for 10 images

Image #
Ground Truth
Erythrocytes

Algorithm
Detections

Precision Sensitivity

1 151 150 98.00% 97.35%
2 149 155 94.84% 98.66%
3 132 132 96.97% 96.97%
4 185 193 94.82% 98.92%
5 87 96 90.63% 100.00%
6 77 81 90.12% 94.81%
7 93 104 85.58% 95.70%
8 129 141 87.23% 95.35%
9 141 146 96.58% 100.00%
10 128 140 87.14% 95.31%

The average precision has a mean of 92.21 % with a standard deviation of 4.60 %,
the average sensitivity reaches a mean of 97.31 % with standard deviation of 1.99 %. As
being said the sensitivity is the most important measure and scores on 9 out of 10 samples
above 95 %, which is the lower bound to be an applicable diagnostic [5]. The precision
is also reasonable. Most mismatches are found at areas where erythrocytes are clustered,
which is a well known problem where other researches devote a lot of energy to [13]. This
approach does not need extra steps to solve this problem, which is a nice advantage over
other solutions. It can probably be improved by adding more training samples containing
overlapped erythrocytes to the database.

4.2. Diagnostic Results

The results of the algorithm at diagnosing an image, which means first localizing the
erythrocytes and afterwards classifying them accordingly is compared against the two ex-
perts. The results are shown in table 3, as an illustrative example the result of one of the
images is shown in figure 5
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Figure 5: Erythrocyte localization and classification result of image 9, from left to right; the input image,
the found centroid locations annotated with a red dot and a review of the classification result, showing the
4 infected erythrocytes (confidence scores greater than 0.9), 4 erythrocytes with possible infections (scores
above 0.5 but below 0.9) and 4 examples of healthy erythrocytes with low scores, note that there are many
more of these healthy erythrocytes but only 4 are shown in this figure

Table 3: Diagnosis Results of two human experts versus algorithm
Amount of Erythrocytes Infected Erythrocytes Parasitemia

Image # Expert 1 Expert 2 Algorithm Expert 1 Expert 2 Algorithm Expert 1 Expert 2 Algorithm
1 112 150 150 3 3 1 2.68% 2.00% 0.67%
2 118 152 155 2 4 4 1.69% 2.63% 2.58%
3 116 134 132 1 4 3 0.86% 2.99% 2.27%
4 177 189 193 0 2 4 0.00% 1.06% 2.07%
5 81 88 96 1 2 5 1.23% 2.27% 5.21%
6 65 77 81 4 6 6 6.15% 7.79% 7.41%
7 91 94 104 3 4 5 3.30% 4.26% 4.81%
8 123 132 141 3 6 6 2.44% 4.55% 4.26%
9 125 143 146 2 5 4 1.60% 3.50% 2.74%
10 128 130 140 1 1 5 0.78% 0.77% 3.57%

To compare the results between the individual experts and the algorithm we observe the
relation between the results of expert 1 (A), expert 2 (B) and the algorithm (C), for these we
compute the covariance, correlation coefficient and the Root Mean Squared Error (RMSE)
between A-B, A-C and B-C. The results are shown in table 4
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Table 4: Diagnostic result comparison of expert 1 (A), expert 2 (B) and the algorithm (C). Relation between
each participant is given by the covariance, correlation coefficient and Root mean Squared Error (RMSE).
Relations are computed on the total number of erythrocytes annotated, total number of infected erythrocytes
annotated and the estimated parasitemia from table 3

Covariance Corrrelation RMSE
A-B 971.18 0.93 19.18

Erythrocytes A-C 953.80 0.96 22.09
B-C 1100.87 0.99 6.31

A-B 1.56 0.73 2.02
Infections A-C 0.33 0.18 2.85

B-C 0.77 0.30 1.90

A-B 0.03 0.90 1.40%
Parasitemia (%) A-C 0.02 0.65 2.08%

B-C 0.03 0.73 1.45%

We already determined the erythrocyte localization performance against the ground
truth, which gave good results. Compared to the experts it is also positive, from the results
shown in table 4 we can conclude the correlation is stronger between the algorithm and
the individual experts than the experts with each other, which indicates a nice in-between
performance.

In the infection classification stage our performance is unfortunately deficient, looking
at table 4. The scores are not enough in agreement with the human experts and are not
acceptable for an automated diagnosis system. The foremost reason for this result could
well be the size of the training data set, while there is no hard rule for a minimum dataset
size, most neural networks start to perform well with a database of a few thousand samples
per class [28]. We only have around 50 samples (not augmented) of infected erythrocytes
in our database, acquiring more examples of infected erythrocytes should result in a better
trained network with higher accuracy.

From closer inspection of the full results in table 3 we can see the algorithm has a excess
of erythrocytes marked as infected, in 9 out of 10 cases compared to expert 1 and in 4 out
of 10 compared to expert 2. This is essentially not a bad thing, proposed in figure 3 there
is a possibility for human expert validation after the classification stage. We rather see the
algorithm returning too much erythrocytes as infected which can be easily be checked and
discarded by an expert than the algorithm missing infections.

5. Discussion and Conclusion

The recent developments by the OSMD project can mean a big improvement to the
availability, readiness and costs of malaria diagnosis in low-resource areas. The low-cost
smartphone based microscope system should enable in-the-field optical malaria diagnosis
in areas where they currently lack proper diagnostic tools. But the diagnosis problem is a
two-fold, not only proper equipment is lacking but experienced personnel is also scarce [7]
[8] . The accuracy of optical malaria diagnosis is heavily dependent on the expertise and

13



reader technique of the microscopist. [9]. To overcome one of the biggest obstacles of this
system and microscopy diagnosis in general, an automated diagnosis tool is proposed. Such a
system is not new, various algorithms have been proposed for the quantification of parasites
in stained thin blood smears [17][25][12][13] However, all these algorithms are based on high
quality images captured using digital cameras coupled to high-end laboratory microscopes
with extremely even illuminations due to Köhler illumination [19]. We have shown that the
images from the low-cost smartphone based microscope are of too low quality to be analyzed
with these conventional algorithms, and so the need for smarter algorithms arises.

In this thesis we presented an automated malaria diagnosis algorithm that analyzes
smartphone acquired blood smear images. The problem is split in two stages, the first stage
is to localize all erythrocytes so their locations and total number is known, hereafter in the
second stage the erythrocytes are classified as either healthy or infected. This algorithm can
serve as an independent diagnostic tool to calculate the parasitemia of a patient, which is an
indication for the severeness of the disease. It can also serve as a diagnostic aid for human
experts to lower workload and increase accuracy.

By posing the problem in such a way to enable the use of Convolutional Neural Networks
for the localization of erythrocytes, the problems that arose due to low quality images with
uneven lightning, were solved. Where previous studies used tools like morphological opera-
tors, as explained in section 2, these are shown to be insufficient for the smartphone images.
The visual appearance of different erythrocytes in the same smartphone image differ too
much as opposed to those from the high-end light microscope where all erythrocytes closely
resemble each other. A Convolutional Neural Network is trained to recognize these differ-
ent erythrocytes and to base its judgment on a deeper understanding of the shape, texture
and colour of the erythrocyte rather than a difference in pixel intensity as a morphological
threshold method would. Via this more advanced method, not only was the network able to
localize the erythrocytes in the low quality images with a high average sensitivity of 97.31 %
and precision of 92.21 %, but was also able to deal with clustered and overlapping erythro-
cytes without extra processing steps as other researches have implemented [17][25][12][13].
This provides a great perspective for the use Convolutional Neural Networks in the erythro-
cyte localization problem. Not only to employ this algorithm in the low-quality smartphone
based microscope system. But also to work in an on-field setting where blood smears are
often of sub-optimal quality compared to the laboratory setting most researches aim at.

The way we use the Convolutional Neural Network as a pixel classifier to localize multiple
objects is not a common practice, actually is not to be found in the literature in this way.
One of the downsides is the huge amount of data to be processed this way, where other
researches use high quality, proper smeared blood samples the need for this more complex
algorithm is absent. However, there is a lot of improvement to be made concerning efficiency.
More efficient coding combined with pooling layers and the sparse network characteristic
from the ReLu activations can mean very fast computing networks. Once these networks
efficiency matches the conventional techniques they could provide benefits also for the high
quality images. In sub-optimal quality blood smears that show more clustering or overlap
of erythrocytes, we believe CNNs could provide the solution, however a detailed comparison
using the same input data and different algorithms should prove this first.
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The second phase, the classification of erythrocytes performed inadequate. The compari-
son with the human experts showed too little agreement, specifically, a correlation coefficient
of 0.65 with expert 1 and 0.73 with expert 2 on the estimated parasitemia. Note must be
made that the correlation of 0.90 between both experts is also considered quite low, as other
researches report correlations between 0.97 and 0.99 [25] [29]. This lower correlation can be
the cause of difference in experience between both the experts but is more likely to be the
result of the low image quality, since both experts reported to feel uncertain in classifying
particular erythrocytes due to the image quality.

On a positive note, the classification network annotated more erythrocytes as infected
compared to the experts in 9 out of 10 cases compared to expert 1 and 4 out of 10 compared
to expert 2. Closer inspection showed that the experts annotations were often subsets of the
algorithms annotations. This is an encouraging result to use the network as an diagnostic aid,
since the excess of infections can be easily checked by experts while still having confidence
that no infections are missed by the algorithm.

The best result so far on erythrocyte classification is reported by Diaz [25], which clas-
sifies erythrocytes based on infections and also in life stages (ring/trophozoite or schizont
infection). Diaz uses machine learning in the form of a SVM (support vector machine) and
MLP (multilayer perceptron neural network) to perform the classification. A big difference
with Diaz and a very probable cause for our lower performance is the size of our training data
set, with only 50 (not augmented) samples of infected erythrocytes, compared to over 600
samples of Diaz, the training set is very small to train a CNN [28]. Another big difference
is the image quality, with various luminance, smudged texture and edge distributions, and
variations in saturation levels per individual erythrocyte from the same smartphone input
image, the classification task becomes harder. We do believe convolutional neural networks
could provide the outcome for this problem, especially Cirecsan, [30] shows promising results
on the classification of traffic signs that deals with similar differences in detail and contrast
using a multi-column deep neural network. Cirecsan has around 1000 training images per
class. Future work should prove the increase in performance when using a larger training
database. Also with an increase in size of the training database different possibilities open up
for deeper convolutional neural networks, multi-column networks and other state-of-the-art
solutions.

To conclude and summarize our contributions. We have investigated and proposed a
solution to the diagnosis of malaria in low quality blood smear images. The quality of these
images presented problems that conventional techniques of similar researches on automated
malaria diagnosis could not solve. We have split the problem in two parts, first localization
of erythrocytes and secondly the classification of these as healthy or infected. By using the
framework proposed in this thesis, so that convolutional neural networks can be used for
the localization of erythrocytes we believe to have found a suitable solution for the first
part. The second part, the classification, is performing inadequate to serve as an automated
diagnosis tool. Based on other sources in the literature, we do believe that the convolutional
neural network provided here can offer the solution to this problem. Future work, with
increased training databases and other improvements should prove this.
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