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Abstract

Flood risk models are frequently used to analyse the climate and socioeconomicdriven impact of
flooding hazards. However, model validation is rarely done adequately due to the rare occurrence
of floods and even less frequent reporting of corresponding damages. In this research, validation is
defined as the process of ensuring that a model performs within a range of accuracy and precision,
satisfactory for its intended use. To guide experts in their validation efforts, a fourphased framework is
developed to validate floodevent damage estimations, created with hazard x exposure x vulnerability
models.

The framework was applied to two damage estimates created by the Global Flood Risk Tool (GFRT).
1) For damage caused by the Limburg 2021 river flood (The Netherlands  Europe) and 2), for damage
caused by a 2019 hurricaneinduced coastal flood in Beira (Mozambique  Africa). For the Limburg
case, total direct damage was determined at 349,4 million euro. An initial model overestimation of 34%
was caused primarily by a large exaggeration of exposed agricultural surface area, and significant
modelling errors of linear infrastructure. Furthermore, an uncertainty range was quantified between
271,8 (23%) and 388,2 million euro (+11%) due to uncertainty in residential assets (across all three
model parameters) and an uncertain exposure parameter of agricultural assets. To create additional
damage estimates for verification, a Structured Expert Judgement (SEJ) experiment was executed
with ten flooddamage experts. Due to the high experiment cost and low expertinformativeness, the
method is currently not advised as a validation approach. In situations with limited data, experts may
still be a relevant information source.

For Beira, damage was determined at 8,1 million US dollar. The model underestimated damage by
82% due to errors in infrastructure, industrial, and commercial assets. Besides, overestimations were
found for informal residential and agricultural assets. The estimate ranges between 5,2 (36%) and
13,2 million US dollar (+62%). This range excludes uncertainties at port and industrial assets, as
insufficient information was available. Contrary to the Limburg case study, insights from the plausibility
assessment were too uncertain for quantification, thus the validated estimate is based on damage and
construction cost data. Novel techniques were used to disaggregate the compound damage data, such
as comparing wind and flood vulnerability curves and applying employeebased estimations.

The significantly altered damage estimate for both case studies demonstrates the usefulness of the
framework. However two main limitations remain: first, lacking information on direct damage to critical
infrastructure hinders validation. Second, additional detail in data is required to allow parameter calibra
tion that increases accuracy across multiple flooding scenarios. Therefore, the main recommendation
for future research is to increase the detail in damage data reporting so that parameter calibration
is supported. This may be done by increasing the spatial resolution of reported damages or adding
additional variables such as inundation depth in reports.
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1
Introduction

Floods are one of the most impactful and frequent natural hazards globally. In the past century, more
than 1000 floods occurred in Europe (Paprotny, MoralesNápoles, et al., 2018). In the last decade,
floods resulted in up to 200 billion dollars in the US (Munich Re., 2021). More recently in the summer
of 2021, a river flood in NorthWestern Europe caused damage worth tens of billions of euro. Next to
the economical damage, many lives, cultural heritage and nature are lost each year due to floods.

In the future, the impact of floods is only expected to increase due to climate change and socio
economic developments. An increase is expected from 5,3 to 2040 Billion euro Expected Annual
Damage (EAD) in Europe by 2050 (Alfieri et al., 2015). This effect is seen on a global scale, with Arnell
and Gosling (2014) estimating even worse adverse effects occurring in Asia.

1.1. Background
The impact of flooding hazards is large and expected to increase. To mitigate this, significant invest
ments in flood protection measures are required (UNDRR, 2019; World Bank, 2021). To economically
optimize floodmitigation investments, it is essential that the mitigated flood risk is estimated accurately.
Generally, this is done with models that calculate flood risk as a function of hazard scenarios with their
probability p, assets that are exposed to the flood scenario, and their vulnerability as in Equation 1.1,
defined by Kron (2005).

𝑅𝑖𝑠𝑘 = ∫
𝑝=1

𝑝=0
𝐻𝑎𝑧𝑎𝑟𝑑(𝑝) ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑝) ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝)𝑑𝑝 (1.1)

Unfortunately, these flood models are generally not validated properly, with large uncertainties remain
ing in the hazard and vulnerability component (Arrighi et al., 2021; Merz et al., 2008; Molinari et al.,
2019). Validation is defined as the process of ensuring that a model performs within a satisfactory range
of accuracy and precision1 for its intended use. Verification is a main validation tool and is defined as
the comparing of observations with simulated values. Subsequently after verification, the validity of a
model can be improved through calibration. Calibration is defined as the altering of a model’s param
eters to fit more accurately to the observations.

Inadequate flood model validation is mainly caused by a lack of observational damage data. Gener
ally, flood damage is characterised across four axes as shown in Table 1.1. Direct damages occur
immediately at the flooded location, whereas indirect effects can occur outside of the area or at a later
point in time2. On the other axis, tangible damages can be priced, whereas intangible damages are by
definition difficult to quantify (Jonkman et al., 2008).
1Accuracy describes how close the average of all estimates are to the real value. Precision describes the variability of the
estimates, and how close the estimates are to each other.

2Indirect damage are for instance longterm macroeconomical effects on regional development.

2



1.2. Problem statement 3

For this research, the Global Flood Risk Tool (GFRT) is applied (Bos et al., 2020). This model incorpo
rates Equation 1.1 to estimate direct tangible flood damage as shown in bold in Table 1.1

Table 1.1: Classification of damage types. Bold types are integrated in the Global Flood Risk Tool. Altered from Jonkman et al.
(2008)

Direct Indirect

Tangible

Property damage or destruction Production loss outside of flooded area
Loss of inventory Temporary housing
Infrastructure damage Cost of traffic disruption
Vehicles
Agricultural losses
Business disruption
Flood defence repairs
Clean up costs

Intangible

Loss of life / injuries Societal disruption
Environmental damage Reduced government trust
Cultural loss Psychological Trauma

1.2. Problem statement
All computational models should undergo a strenuous validation process to ensure that their results can
be reliably used (Balci, 1994; Carley, 2017; Klügl, 2008). Validation of flood risk models is of particular
importance, as their outcomes support decisions on large public investments, public policy, and risk
premium decisions in the (re)insurance industry (Kron, 2005). However, the use of flood risk models
remains limited by the inadequate validation of their vulnerability analysis and damage estimations (de
Moel et al., 2015; Jongman et al., 2012; Merz et al., 2010; Molinari et al., 2019; Wing et al., 2020).

The main reason for the inadequate validation is the limited amount of empirical direct flood damage
data. Despite many calls from the academic world to increase and standardize flood damage docu
mentation, too few events are recorded (McBean et al., 1986; Merz et al., 2010; Wagenaar, 2020).
Direct flood damage is frequently documented by (Re)insurance companies as damage claims, but not
made publicly available for academia. When flood damage is publicly documented, it is generally done
only for high return period events due to the large societal impact (Downton & Pielke, 2005). As direct
flood damage data is highly specific for its geographic region, and flood characteristics data application
to other flood events introduces additional transfer uncertainty (Smith, 1994). Data availability also
decreases further with a smaller spatial modelling scale (de Moel et al., 2015). Damage observations
may be available in aggregated form for a flood event, but observations are less available on a smaller
scale (e.g. objectbased observations).

Furthermore, it can be questioned how relevant historical direct flood damage observations are for
future flood events, due to three reasons: First, the initial damage estimations can differ significantly
from actual replacement costs. To give an example: For a 2002 German flood, estimations were altered
from €22 billion to € 9 billion in the course of a few months, with actual costs amounting to €11,6 billion
(Merz et al., 2010). Second, the accuracy of flood damage data highly depends on the spatial scale, with
small local areas being extremely inaccurate (Downton & Pielke, 2005). Third, it has to be mentioned
that even when historical data is well documented, it remains questionable how representative the data
is for the current situation. Under the ‘Building back better’ principle, an area usually gets upgraded
after a flood occurs (Mannakkara & Wilkinson, 2014; Municipality of Beira, 2019). Furthermore, asset
values and characterizations, as well as flood defences change significantly over time (Merz et al.,
2008).

Observations for flood model validation are either available for a single hazard event with questionable
quality, or not available at all. This poses two problems: First, regarding validation of a probabilistic
model with only single event observations, and second, validation when no data is available at all.



1.3. Research objective 4

Probabilistic flood models attempt to represent all possible events that can occur with a coinciding prob
ability. When only a single event is known, it is difficult to assess the accuracy of the used distribution.
This is mainly related to the hazard analysis, where limited documentation of the flood extents and
depth usually occurs for a single flood event. This single event documentation is then compared to a
probabilistic estimate of a flood extent, that indicates the most likely flood extent for a certain return
period. Limited research on validation with this disparity is done (Molinari et al., 2019).

When no local data is available at all, engineers need to look at other data sources that can be used
to validate the model. Different options such as damage assessments of similar regions, insurance
data, plausibility checks, and (Structured) expert judgement are known (Cooke & Goossens, 2008).
However, no systematic approach exists as of yet.

The lack of sufficient empirical flood damage data complicates the verification and calibration proce
dures of floodrisk experts. Difficult verification results in low credibility of flood damage models, and
poor calibration means more accurate damage predictions could be achieved. The credibility and
accuracy of flood damage models is directly transferred to the credibility and accuracy of flood risk pre
dictions, which need to be dependable because they support decisions on major industry and public
investments (de Moel & Aerts, 2010; Merz et al., 2004).

1.3. Research objective
The economics of flood mitigation measures are highly affected by the estimated flood risk and risk
reduction. As the major part of flood risk uncertainty lies in damage predictions, a need for more reliable
and accurate damage predictions is present. It is expected that improved validation procedures can
significantly help this process. Therefore, this study aims to develop a guiding framework that can help
engineers validate their flood damage models.

1.4. Research question
The defined problem statement and research objective lead to the following research (sub)questions:

How can direct economic damage predictions of a probabilistic flood risk model be validated,
using plausibility and empirical data?

1. What are the root causes for uncertainty and inaccuracy in flood risk model predictions, and what
methods are available in literature and industry to validate those predictions?

• For probabilistic flood hazard models?

• For flood vulnerability models?

• For exposure data?

• For aggregated direct economic damage data?

2. What framework can be developed to validate direct economic damage estimates for a single
flood event?

• How can data in economic damage reports be disaggregated for the verification of damage
estimates?

• How can Structured Expert Judgement be used as a validation tool?

• How can private and governmental claim data be used to indicate model validity?

3. Can the GFRT be calibrated further after applying the framework, to improve accuracy and pre
cision?

4. What are the remaining found uncertainties in the damage estimate that the framework does not
reduce?
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1.5. Approach
A conceptual drawing of the simulated flood damage verification is shown in Figure 1.1, starting with
the described problem at the top. Probabilistic flood risk models can generally not be verified directly.
Either no historical observations are available at all, or observations of a single event are available.
In the second case, it may be that the probabilistic hazard map differs significantly from the unique
flood event, as the probabilistic map is a combination of many possible flood events. Therefore, direct
verification of a probabilistic hazard map may be difficult.

Figure 1.1: Conceptual model of the problem statement and proposed framework contents and their relationships.

Due to this difficulty, it is hypothesized that validation will need to be build upon the simulation of a
single flood event. Subsequently, validation can be executed using two approaches. Approach 1 will
assess internal model assumptions and results through plausibility. If the model has valid results for a
single event, validity for a probabilistic flood assessment can also be argued. Subsequently, approach
2 will aim at damage estimate verification by using empirical data. In the case that no extra data is
available, engineers will be guided on using expert judgement to generate new data.

Using this approach, it is expected that the validity of the GFRT can be showcased for the flood events.
However, as additional uncertainty remains with probabilistic assessments of unobserved events, it
can be doubted how ‘valid’ the final probabilistic model is.
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1.6. Report structure
The study is approached using eventbased validation of two case studies: The 2021 river floods
in Limburg (The Netherlands) and the 2019 hurricaneinduced coastal flood in Beira (Mozambique).
For the Limburg case study, the focus is placed on internal assumptions and available data such as
insurance and governmental claims. Furthermore, an expert judgement experiment will be designed to
create additional empirical data. For the Beira case, data from the widely spread Post Disaster Needs
Assessment (PDNA) Methodology is used.

The report is structured in four sections:

• Part 1: Background & approach summarizes relevant literature and describes the applied
methodology and case studies.

• Part 2: Results  Limburg describes the results of the first case study for Limburg. This consists
of internal model plausibility, verification using empirical data, and a Structured Expert Judgement
research.

• Part 3: Results  Beira describes the results of the second case study in Beira Mozambique.
• Part 4: Discussion & conclusion gives an academic reflection and highlights this paper’s con
tribution to literature.



2
Literature review

This literature review gives a summarized description of previously executed research related to the
validation of flood risk models. First, an overview of different types of floods is given in Section 2.1,
followed by a description of how these hazards are modelled. Then, related uncertainty and validation
procedures of flood risk models are discussed in Section 2.3 and Section 2.4. Finally in Section 2.5,
Structured Expert Judgement (SEJ) background is described.

2.1. Types of flooding
Floods affect millions of people around the globe every year. However, not all floods are produced in
the same way. In this section three significantly different types of floods are described: fluvial or river
floods, coastal floods, and pluvial floods.

Fluvial flooding
Fluvial flooding is the overflowing of a river’s banks that results in inundation of its surroundings, caused
by upstream extreme precipitation, or snowfall. The flood progresses downstream as a wave, changing
shape as it progresses.

The impact of river floods depends largely on the location and propagation of a flood wave. Low
damages can occur when unprotected assets next to small rivers are exposed, as well as extreme
damages when levee failure results in the inundation of large urban areas. The inundation depth is
directly related to the terrain. In shallow areas, floods will propagate and rise slowly, whereas hilly
terrain can result in quick flooding of canyons with high depths. When polders are flooded after a
levee failure, they can be filled up entirely, leading to large inundation depth as the water can not
flow out naturally. Damage from river floods is affected not only by inundation depth, but also by flow
velocity, large debris that is transported through the water and pollution in the form of mud or chemicals
(a major factor in the Elbe 2002 floods (Thieken et al., 2005)) Especially in steep areas this can be
major contributors with knockon effects as blockages and dynamic forces of debris. Next to economic
damage, large amounts of river bank erosion and damage to nature can be caused by river floods.

High water levels from river floods can last multiple weeks, but are luckily also predictable with flood
forecasting. As it takes time for a flood wave to transverse downstream, areas can be protected with
temporary flood protection measures such as sandbags or flood walls, or evacuated to reduce damage
and loss. Flood experience and forecasting can have major reductions of flood damage, as the Meuse
floods of 1993 and 1995 showed with a reduction of 80% (Wind et al., 1999).

7
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Coastal flooding
Coastal floods are caused by advancing seawater onto the coast. Depending on the global location,
these floods can occur due to wind from seasonal storms like hurricanes, or due to earthquakecaused
tsunamis. Storm surges are the most common, with the increase in seawater level highly dependent
on the size and duration of the storm, as well as coastal geometry. Floods caused by tropical storms
receive much public attention due to their large impact, with frequent occurrence located in the North
Western U.S.A., the East coast of Africa and SouthEast Asia. Climate change induced sea level rise
is expected to increase the risk of coastal flooding significantly in the coming century (Parodi et al.,
2020).

Coastal floods are infrequent events as mitigation structures like dunes, dykes and beach sand sup
pletions protect from lowimpact floods. When they occur, massive amounts of damage are inflicted
due to the size of the event and the high density of exposed asset value (Hinkel et al., 2014). Because
storm surges are caused by strong winds, damage is inflicted both by inundation and strong winds,
which is often difficult to differentiate in highlevel damage reports. Furthermore, saline seawater can
cause stronger damages than freshwater flooding (Wing et al., 2020).

Pluvial flooding
Pluvial flooding concerns floods caused directly by precipitation. This can occur in urban environments
when the wastewater system is not able to discharge all surface water. This will result in inundation
occurring on the streets that can subsequently affect nearby houses. Next to this, also flash floods can
occur when extreme precipitation falls in a short durationIn mountainous areas, the steep gradient and
amount of water can result in large flow velocities and debris, rapidly causing large damages in a matter
of hours. Pluvial flooding generally lasts shorter than other types of flooding, especially if it concerns
small, local evens where the water can disperse easily. As climate change is expected to increase the
size and frequency of extreme precipitation events, the risk of pluvial flooding will increase jointly.

Pluvial flooding differs significantly from river and coastal flooding because it is characterised by more
frequent events that are spatially distributed, and have lower total damage. An event can for instance
cause damage by flooding cellars in a single neighbourhood, which is much lower in comparison to a
dike breach caused by a river flood. Due to these large changes, this research will not focus on pluvial
flooding. However, some contributions from pluvial flooding during river/coastal flooding events cannot
be ruled out in compound events.

Compound events
The simultaneous occurrence of multiple flooding types is called a compound flooding event. Storms
causing coastal floods can simultaneously cause extreme precipitation as well as wind damage. Simi
larly, also fluvial floods can coincide with a storm surge, leading to additional river flooding. The raised
downstream water level will raise river water level through a backwater effect, thereby increasing flood
intensity and duration.

Compound events are characterised by many difficulties. First, disaggregating damages of compound
hazard events is obscure, especially if both hazards affect the same asset component within the same
time frame. Second, additional damage caused by secondary effects such as the backwater effect
increases complexity. Third, the return period for compound events is complicated due to a possible
correlation.
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2.2. Flood risk models
Flood damage is generally calculated as a function of a hazard scenario with a coinciding probability of
occurrence, exposed asset value and vulnerability, as defined in Equation 2.1 by Kron (2005). As dam
age processes can vary significantly between locations, many different flood risk estimation tools have
been developed and calibrated for a specific purpose. Examples for the Netherlands are developed by
Jonkman et al. (2008), The Hoogwater Informatie SysteemSchade en Slachtoffermodule (HISSSM)
by Kok et al. (2005) and the Waterschadeschatter by STOWA (2013). More recent examples are FLO
RES by van Berchum et al. (2020), and a global scale model by Ward et al. (2020).

𝑅𝑖𝑠𝑘 = ∫
𝑝=11

𝑝=0
𝐻𝑎𝑧𝑎𝑟𝑑(𝑝) ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑝) ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝)𝑑𝑝 (2.1)

The Global Flood Risk Tool
The Global Flood Risk Tool, developed by the engineering firm Royal HaskoningDHV (RHDHV), is
used for this study. This application can estimate the flood risk of a study area and subsequently
compare flood protection measures underwritten by a business case. The GFRT calculates the flood
risk as shown in Figure 2.1. The model takes as input a hazard analysis in the form of an inundation
depth raster and return period1, landuse map with exposure data, and vulnerability data in the form of
depthdamage functions2. With this information, damage maps can be created showing the estimated
damage to occur from hazard scenarios with different return periods. Aggregating the results of the
different scenarios in a risk map of the area. This can show the spatial distribution of yearly expected
damage in monetary units. Summing the risk spatially gives the Expected Annual Damage (EAD) for
the region (Bos et al., 2020).

Figure 2.1: Workflow of the Global Flood Risk Tool (GFRT).

1This hazard analysis can be made externally using different approaches
2So only damage is only related to inundation depth in this model. Although other variables such as flow velocity, pollution and
warning time are shown to be relevant, they are not used due to data limitations (Arrighi et al., 2021)
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Input variables
Models structured as in Equation 2.1 have three main input parameters: the hazard analysis, exposed
asset values and related vulnerability of those assets.

The Hazard analysis is used to illustrate different flooding scenarios in the case area. Different types
of floods (pluvial, coastal, riverine) with different return periods can be simulated, resulting in a specific
inundation reach over the region. The inundation raster can be made externally using different ap
proaches, but is generally created using further input data such as the Digital Elevation Model (DEM),
discharge measurements and roughness parameters. Also, model decisions such as the spatial and
temporal scale and hydraulic type of the analysis may influence the used hazard analysis.

Exposure is defined as the assets that are affected by an occurring hazard. The exposure can be
shown through landuse maps with different asset types and their corresponding value. Asset type
classification can differ per region and goal, but generally include:

• Residential: Different classifications can be made to distinguish house types and asset values.

• Industrial: Assets are highly variable and dependent on asset function and therefore generally
more difficult to transfer than damage models for other asset classes (Booysen et al., 1999).

• Infrastructure: These mostly include roads, railways and critical infrastructure facilities such as
power plants and utilities.

• Agriculture: The loss of harvest can result in high damages which is generally cropspecific.

The total exposed value is assetspecific and can be defined in multiple ways. For direct damages,
Merz et al. (2010) concludes preference towards using depreciated values over replacement values,
following general economical theory. However, in practice it is also often found that replacement values
are used instead (Arrighi et al., 2021; Jonkman et al., 2008; MiddelmannFernandes, 2010). Finally,
the exposure itself can be modelled on an object basis or by land use. Generally, data is not detailed
enough to give information on the exact building footprint, which is why land use is preferred. Clarity
on this decision is important, as the choice strongly affects the size of the maximum damage through
the assumed density3 (Huizinga et al., 2017).

Vulnerability is expressed in the damage ratio that an exposed asset will suffer from a hazard, which
is generally explained in depthdamage functions. Depthdamage functions, shown in theFigure 2.1
bottom left4, are a method to show the relation between inundation depth and asset damage.

Two main types of functions exist. First, empirical depthdamage functions are based on past flood
events where the damage is assessed after a specific inundation depth was reached. Second, synthetic
depthdamage functions are created by researchers based purely on theory and assumptions about
a specific asset structure (e.g. from housing surveys) and its economic value. The functions usually
project the normalized damage rate between 0 to 1, where 1 means all exposed economic value of the
asset is lost. Total damage functions in monetary value also exist, but are less flexible (McBean et al.,
1986).

As it is plausible that other factors than merely the inundation depth affect the damage to an asset, new
types of damagemodels with a larger amount of variables are proposed. Amongst others, warning time,
flow velocity, pollution and flood duration (especially for crops) were found to be relevant (Middelmann
Fernandes, 2010; A. K. Pistrika & Jonkman, 2010). In practice, the cost of finding the additional data
is too high, so the industry remains using the classical depthdamage curves. Instead, these variables
are implicitly present in the functions and therefore flood, asset and regionspecific (Davis & Skaggs,
1992; Huizinga et al., 2017). The implicit uncertainty can be found by comparingmultiple depthdamage
curves for similar assets (but in different regions created for different floods). Research by Moel et al.
(2014) and Jongman et al. (2012) found factors 48 and 411 between different functions.

3If the residential density of houses is assumed at 25%, the Landuse maximum damage needs to be reduced to 25% of the
objectbased maximum damage.

4Larger examples of depthdamage functions can be found later in the report, for instance Chapter 5 Figure 5.3
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Spatial scale
Flood risk models are designed for either Macro, Meso or Micro spatial scale5, which can significantly
impact its data requirements and validation options. Hazard analyses are generally easily executable
on a Macro scale (e.g. global), but can become very computationally intensive on a micro scale due
to the increased influence of single objects. Exposure data is usually only available at meso/regional
scale, which is rougher thanmost vulnerability data (Wünsch et al., 2009). Finally, empirical vulnerability
data is generally always objectbased and therefore suited for Micro scale. Upscaling toMeso or Macro
scale has proven difficult due to uncertainty in the number of objects present per 𝑚2 (de Moel et al.,
2015).

Model validation is also scaledependent. At Macro scale, few datasets on complete flood extents are
present, whereas damage estimates are usually done for an entire region or country. On the other
hand at Micro scale, complete flood extents are well documented, whereas individual damage reports
are less common and highly variable (de Moel et al., 2015).

2.3. Root causes of uncertainty in flood risk models
An essential difference between different research papers is that some research quantifies the un
certainty of flood risk, so including the probability of events (Apel et al., 2008; Parodi et al., 2020;
Wagenaar et al., 2016). Other papers instead describe the uncertainty in flood damage, focusing on
the parameters within a specific flood event irrespective of the extreme value statistics that is used for
that flood hazard (Jongman et al., 2012; Merz et al., 2004). This is an important difference due to the
large amount of uncertainty found within the extreme value statistics.

Total flood damage uncertainty
When looking at the overall impact of the three model components for flood damage uncertainty, many
researchers find the vulnerability and hazard components to be the largest contributors, whereas the
exposure parameter is found to be a subsidiary contributor (Merz et al., 2008; Moel et al., 2014; Parodi
et al., 2020; Winter et al., 2017).

For vulnerability, de Moel et al. (2015) found asset value and the shape of the depthdamage curve to
each be responsible for a factor of two, for likely fluctuations. Contrarily, the hazard component required
a difference of more than 1m inundation depth to have the same effect. Also, Parodi et al. (2020) found
a vulnerability contribution with a bandwidth of 0,25  4 times the mean damage, by using different
possible damage curves for a coastal flooding. Similarly, Wagenaar et al. (2016) found uncertainties in
the vulnerability of a factor 2  5 with increasing uncertainty for larger events. The different resolutions
and types of exposure datasets were found to have amuch smaller impact, giving bandwidths of around
10% around the mean estimated damage.

These findings give the model component ranking on uncertainty contribution as presented in Table 2.1.
In the following sections, more indepth descriptions of the causes are presented.
5Macro refers to countrywide studies, Meso scale assesses flood risk at provincial scale whereas micro concerns assessments
on cityscale (de Moel et al., 2015)



2.3. Root causes of uncertainty in flood risk models 12

Table 2.1: Identified sources of uncertainty in flood damage and flood risk assessment. The three main model components are
ranked 13 from most contributing to least, with their major uncertainty contributors in bold. H, M, L & ND denotes High, Medium,
Low and No Data respectively.

Parameter Size Comment Reference

Vulnerability 1

• Curve shape High Depends on expert assump
tions, large natural variability Moel et al. (2014)

• Size of case area Med Estimates for small areas are
highly uncertain de Moel et al. (2015)

• Not included variables Med Winter et al. (2017)

Hazard 2

• Digital elevation model High Main factor in hazard analysis Apel et al. (2008) and
Parodi et al. (2020)

• Hydraulic model and param
eters Low Uncertainty increases with

smaller spatial scale
Romanowicz and
Beven (2003)

• Spatial resolution Low Winter et al. (2017)

Exposure 3

• Value of asset High
Highly dependent on assuming
replacement/ market value and
what objects to include

Messner et al. (2007)

• Object vs landuse based High de Moel et al. (2015)
• Amount of classifications ND
• Age of data ND
• Spatial resolution Low (de Moel et al., 2015)

Risk

• Extreme value statistics High Uncertainty increases with ex
tremity of events Merz et al. (2004)

• Failure of flood defences ND
Large damage uncertainty
around failure probability of flood
defence depending on failure

Wagenaar et al. (2016)

• Continuous lossprobability
function ND Uncertain effect of interpolation Winter et al. (2017)

Uncertainty in hazard analysis
The flood extent and depth were found to be the secondlargest contributorsSection 2.3. Two main
uncertainty sources were found: input data and the hydraulic model.

Regarding the input data, the impact of uncertainty in the DEM is found to be large in multiple papers
(Apel et al., 2008). Parodi et al. (2020) described it as the secondlargest impact after depthdamage
functions, giving a bandwidth of 0,25  2,9 of the mean damage with a DEM bias of 37m. This is
mostly attributed to the vertical accuracy of the DEM, which directly impacts the flood depth, but also
the flood extent and the hydraulic model itself. The impact on the flood extent is dependent on the size
of the vertical error and the present slope. For instance, if a slope of 0.5m vertical to 1m horizontal is
assumed, a vertical error of 5m can result in a 10m horizontal error of the shoreline (Bales & Wagner,
2009). The uncertainty of this effect is dependent on the linearity of the slope, as well as water storage
effects and the duration of the flood. That this effect is larger in low slope areas might be compensated
by findings from Ludwig and Schneider (2006) that indicate that vertical errors tend to be smaller in
those low sloping areas. Furthermore, large errors in the DEM could result in wrong flood dispersion
patterns. A falsely elevated grid cell can for instance work as a dike and protect parts of the floodplain,
or contrarily, an elevation that is uncaptured in the DEM can result in an overestimation of the flood
extent. The effect of probabilities corresponding to the hydrological data is discussed later in Table 2.3.
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Apel et al. (2008) the roughness parameters of the hydraulic model as another main error source.
These parameters can have a significant impact on the flood dispersion, and are difficult to get ‘right’.
For instance, Romanowicz and Beven (2003) showed that multiple values of roughness parameters
can result in coinciding simulated and observed flood extents, and indicated that floods of different
sizes are likely to have different parameters. Especially at the small spatial scale of the GFRT, these
epistemic uncertainties in parameters become significant. At this small scale, more complicated hy
draulic modelling processes such as 2D floodplain modelling coupled with a 1D river channel model
can be required to take into account water storage in the flood plain or polder.

Uncertainty in exposure data
Exposure datasets contain two types of information: Asset value and Asset location. Asset value is
distinguished as an important contributor to uncertainty, together with damage models, whereas asset
location is mostly indicated as a minor contributor.

For asset values, assumptions on which damage types to include and how to estimate these can
give large differences between methods and reports. Different definitions of direct costs, such as the
inclusion of dike repair and cleanup costs or loss of harvest can result in large differences. Finally,
assuming market values (depreciated using economic theory), full replacement values or insurance
payouts can give significant differences6. These assumptions should always be researched thoroughly
and align with the goal of the model study. To indicate the size of the uncertainty: de Moel et al. (2015)
found a factor of two in estimated damage by varying the asset value, which was the most sensitive
parameter together with the depthdamage curves. Also Wagenaar et al. (2016) identified asset value
as one of the main uncertainty parameters. Parodi et al. (2020) incorporated asset value uncertainty in
the depthdamage curves, and found both to be the major contributor, varying the damage by a factor
of four.

Asset location is found to be a minor contributor to overall flood damage uncertainty. Total uncertainty
depends on asset presentation through points, building footprint or landuse maps. The simplest point
representation was reported to underestimate the total damage by 30% (Winter et al., 2017). It can be
imagined that in other cases an equally sized overestimation is also possible. When using landuse
maps, no difference is made between buildings and other areas (e.g. a garden). This can bring further
uncertainties by disaggregating the total value over the house and the garden, and spatial uncertainties
related to the location of the flood depth and extents. These uncertainties are expected to even out
when a large enough research area is taken (assuming the law of large numbers), but can be significant
in small case areas. Finally, de Moel et al. (2015) found the effect of spatial resolution to be subsidiary,
but referred to some cases where large differences did occur. Therefore this depends on the case
event.

Two other relevant factors are the number of classifications in the exposure dataset and dataset age. In
a perfect situation, a specific classification would be available for almost every different house. Unfortu
nately, usually exposure does not go further than differentiating between a small amount of residential
(e.g. low, mid, and highrise) buildings, industry and infrastructure. Subsequently, dataset age may
be relevant to ensuring proper representation of reality in themodel, especially in fastdeveloping areas.

Uncertainty in vulnerability analysis
Vulnerability is found to be the largest contributor to the uncertainty of flood damage estimates(de
Moel et al., 2015; Parodi et al., 2020; Wagenaar et al., 2016; Winter et al., 2017). In some research,
vulnerability analyses incorporate both asset value and depthdamage curve, however in this section
we only focus on the relative depthdamage curve .

An often used exercise in literature is the comparison of multiple depthdamagemodels. The root cause
of these differences is that each model is made using different assumptions and datasets, even when
they are created for similar building types. After synthetic model creation by experts, a fitting procedure
on limited available data can be followed in a validation attempt. Due to the large variability and very
6Highly dependent on the situation, but NAIC (2022) indicates for instance a payout of only 80% of the asset value and depre
ciated values that can be around 1/3th of replacement values.
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limited amount of data, large differences can remain in the curve shapes (Winter et al., 2017).

This variability is present on both the flood side as well as in the modelled assets: for the flood side,
vulnerability models only relate flood depth to the damage, whereas reality is more complex. Flow
velocity and debris can significantly change structural damage ratios, especially in steep areas, which
dD models do not capture explicitly (Parodi et al., 2020). Also factors such as pollution, flood duration
(especially with crops) and flood experience/preparation can have large impacts on flood damage.
Wind et al. (1999) attributed a 35% decrease in reported flood damage between similar Meuse floods
of 1995 and 1993 solely to flood experience and an increase in warning times.

On the asset side, large variability in residential houses regarding geometry, material and spatial loca
tion of valuables inside the houses is present. These models do not capture small but highly important
differences such as sill height, possibly resulting in no inundation at all, presence of cellars, and the
location of valuables on the ground floor, on heightened positions, or the first floor. Other asset types
such as industrial buildings can have an even higher amount of variability due to their natural hetero
geneity (Wagenaar et al., 2016).

Following the law of large numbers, the effect of variability is expected to decrease when a larger
amount of assets is modelled. Downton and Pielke (2005) analysed damage estimates from different
institutions and sizes and confirmed this expectation. For very large floods of more than $500 Million
independent estimates disagreed by less than 40%. On the other hand, estimates of small events were
found to be “extremely inaccurate”. Estimations for events causing less than $50 million in damages
were often off by a factor of four, with over half being off by a factor of 1,5. This shows that the size
of the area or hazard under study can have a significant impact on the uncertainty bandwidth of the
estimation. Whenever possible, a larger study area should be preferred to reduce uncertainty.

Uncertainty in extreme value statistics
After calculating the flood damage corresponding to specific hazards, the flood risk can be defined.
This is done in two stages: first, an exceedance probability is assigned to each hazard scenario, and
second, a continuous lossprobability function is created. The integral of the lossprobability function
gives the total risk or Expected Annual Damage (EAD) for the area.

The uncertainty of the first stage is rooted in the definition of the exceedance probability. Theoretically,
exceedance probabilities are based upon observations that are continuously updated. New large flood
events can significantly change the observed distribution7, whereas the ‘real’ distribution can never
be observed. Furthermore, the high return period events that are of interest for flood risk analyses,
are generally never observed. Their probability of occurrence is defined by the extrapolation of fitted
probabilistic functions. As the size of the event fluctuates with different types of functions and fitted
parameters, also here uncertainty is present (Sayers et al., 2016).

The definition of an event with a return period is inherently problematic, due to different extrapolation as
sumptions and definition ambiguity. Many different definitions are available. For pluvial flooding, return
period definition generally occurs through IntensityDurationFrequency (IDF) curves, which introduces
ambiguity on the simulated spatial distribution8 (Grahn & Nyberg, 2017). For fluvial flooding, two main
methods exist based on measurements of peak river discharges: a spatially uniform discharge with a
related return period can be set over the entire river section, or synthetic flood events can be simulated.
The first approach is most commonly used and works well for smallscale local research. However,
on a larger scale the flood extent will be overestimated as it is not realistic to assume that the event
will occur in every location of the river. Then, modelling techniques incorporating the spatial depen
dence between river reaches and reachspecific return periods may be required (de Moel et al., 2015).
For coastal flooding, options directly using sea water level statistics or indirect simulations using wind
speeddirection statistics can be used.
7For instance, a certain peak discharge of x𝑚3/𝑠 that was measured once in the past 10 years at Lobith, can roughly be defined
as a 1/10 year event. If in the year after this definition the same discharge occurs again, there are suddenly two observations
of this size in the last 11 years, which would significantly change the deemed distribution.

8In models it is often assumed that a 1/x year precipitation occurs spatially uniform over the entire case area, which is unlikely
in reality
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Defining the return period of compound events is evenmore complex because the joint probability distri
bution and dependence need to be defined using advanced statistical modelling techniques (Paprotny,
Vousdoukas, et al., 2018).

Figure 2.2: A continuous lossprobability function is created by
interpolating a discrete set of estimations. The expected an
nual damage (EAD) is the integral of this function. Due to the
unknown damages between the discrete events, extra uncer
tainty is added to the calculated risk.

Figure 2.3: The conceptual change of influence that flood risk
model aspects have on total flood risk uncertainty. The quan
titative ratios between components are casedependent and
generally unknown.

The second stage of creating flood risk includes the creation of a continuous lossprobability function.
After a discrete set of probabilistic hazard events and their corresponding probabilities of occurrence
and expected damage is defined, interpolation is required to acquire the ‘unknown’ part of the function,
as visualised in Figure 2.2. The exact amount of uncertainty is unknown but likely to be significant
(Sayers et al., 2016).

Finally, it should also be noted that all relative uncertainty factors for flood risk are dependent on the
extremity of the event. As visualised in Figure 2.3, Merz et al. (2004) found that the uncertainty of
vulnerability aspect is generally largest at frequent events, whereas the uncertainty contribution of the
hazard component increases with the extremity of the events. This is mostly due to the impact of the
extreme value statistics. As an example: it is much more uncertain to indicate if an event has a 1/1000
or 1/5000 return period than it is to indicate if an event has a 1/25 or 1/125 return period, whereas the
difference in risk is an equal factor five.
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2.4. Flood risk model validation methods
To ensure that flood risk uncertainty is reduced enough for the modelling goal, validation methods are
applied. In this section, literature methods to validate flood risk model components are described. As
in previous chapters, the aspects of flood damage and flood risk are separated. Flood damage is an
’observable’ quantity, and can therefore be verified and validated. ’Risk’ is not a directly observable
quantity and can not be verified accurately with a small number of observations. Through this definition,
we focus on the validation of directly observable quantities concerning flood damage.

Flood damage model validation can be approached in two ways: first, a bottomup approach can at
tempt to validate the data and parameters in each of the model’s components. By ensuring that all
separate model components are valid, it can be inferred that the total estimation is valid. Furthermore,
this method gives insight into where main uncertainties lie and which parameters may require further
calibration. Second, a topdown approach can be used by validating the final estimations of the model.
This directly links the predictions to reallife observations and gives credibility to aggregated estimations
(Sayers et al., 2016).

Using either of the approaches, the most relevant validation tools for this research are:

1. Event based verification can be used to verify model components and total damage estima
tions. By comparing model results with event observations, quantitative error measures can be
created to clearly show a model’s performance (Green & Stephenson, 1986). Two main issues
accompany this method: Lack of enough historic event data, and remaining transfer uncertainty
to new situations. Many validated parameters can change in unknown ways between events of
different sizes meaning extrapolation is often impossible (Romanowicz & Beven, 2003)

2. Sensitivity analysis can be used to assess the effects of uncertain model parameters on the
model outcomes. This can give insight into which parameters validation efforts should be focused
(Moel et al., 2014). Different damage models that may all be considered valid for a case region
can be used as different parameter inputs to show epistemic uncertainty (Arrighi et al., 2021). For
extreme values in the hazard analysis, specific sensitivity methods should be applied as widely
used Sobol indices are found to be unsuitable (Nogal & Nogal, 2021).

3. Modelmodel comparisons are often executed in academia and provide uncertainty bandwidths
(Trigg et al., 2016).

4. Expert judgement are specifically useful for situations where models cannot be used, are very
expensive, or if no clear observations are available. For instance in a case with complex relations
between variables that are difficult to model. Examples are flood extents that can be verified
with local residents or experts with knowledge of the river basin, but also damage curves and
aggregated total damage estimations can be discussed with experts.

Flood hazard
For a hazard analysis, the following aspects can be validated:

1. Extreme river water levels are often a starting point for the hazard analysis, used as input for
hydrodynamic simulations that show the propagation of flood water throughout the basin. For
some locations, studies predicting water level development under specific discharge time series
have been done, which can be compared to model results to discover anomalies9. Furthermore,
water level measurements can be compared to hindcasted models.

2. Maximum flood extents can be compared to theoretical flood maps, aerial observations and
local observations. Theoretical hydraulic flood risk maps with return periods may give indications
of where the flood extent is likely to be, but can locally be far off from reality. Aerial pictures
from a plane or helicopter can give good indications of inundated areas. Satellite images can
show similar extents, however these are historically less useful due to their temporal (and spatial)
resolution. New industry developments enable the quick setting up of realtime flood monitoring
using satellites which may be applicable to future events (ICEYE, 2022; Matgen et al., 2020).

9In Dutch results of these studies are called Betrekkingslijn
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However, it remains unclear if the picture was taken at the peak flood, or if the floods still extended
further. Finally, local residents who experienced can indicate flood extents on a small scale and
thereby validate maps.

3. Maximum inundation depths are the hardest observable quantity to validate. Again, theoretical
maps can be compared, but local observed information about damaged houses and high water
marks is more valuable. When high water marks are created it remains important to closely
document from where height is measured, as mixed measurements from the road, sidewalk or
inside the house could give wrong indications (A. Pistrika et al., 2014)

4. Digital elevation models are of high importance for an accurate hazard analysis. Research by
Ludwig and Schneider (2006) and Pakoksung and Takagi (2015) describes methods to analyse
the validity of DEMs. Generally, DEM products are supplied with information on their accuracy,
in means of vertical and horizontal bias and mean error. Although the size of an acceptable error
is dependent on the modelling resolution, analysing this remains an easy first step to determine
the quality of the DEM. If this information is not present, benchmark comparisons can be made
with globally available virtual reference stations.

Exposure data
Exposure data consists of geospatial information regarding the locations of different asset types and
their maximum monetary value. To validate this information, the following aspects can be considered:

1. Asset type

2. Asset location

3. Asset value

4. Total exposed asset size/Area

Assets are classified as different damage classes based on land use or building type. As these asset
types are connected to depthdamage curves, their classification needs to be based on how they ex
perience damage from inundation depth. No literature is available on a proper classification process.
Rather, these decisions are based on the availability of depthdamage curves and data.

Asset location can be indicated by point locations, landuse plans, and building contours. A sensitivity
analysis by de Moel et al. (2015) showed medium sensitivity to point locations, but relatively small
sensitivity to commonly applied landuse features. Furthermore, the age of the exposure data can be
important due to newly built assets in the area.

Asset value inhibits a large amount of variability stemming from assumptions on contents and value
types (Section 2.3). Therefore, all assumptions on what is calculated and which aspects are included
should be validated against the goal of the analysis. The following aspects need to be confirmed:

1. Considered exposure type: Market value versus replacement value versus insurance payout.
2. Landuse assumptions: for instance the density of residential houses.
3. Which building content is included: for instance house inventory and cars.
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Vulnerability analyses
The depthdamage functions of the vulnerability analysis are a vital point of validation as Section 2.3
found it to be the largest contributor to uncertainty. At the core, it should be validated that these functions
represent the average damage development in the corresponding landuse class. This consists of
validating three main points:

1. Initial damage does not have to start at 0 m inundation. First, it can be common to protect houses
locally using sills, completely elevated houses, or other measures. This will result in houses not
being flooded, even though the model indicates a small inundation surrounding the houses. A
second reason can be that buildings are composed in such a way, that no exposed asset value
is located on the ground floor (wetproofing)

2. Damage development differs per asset depending on their characteristics.
3. Maximum damage differs per asset. Some vulnerability curves do not reach a damage ratio of

1,0 because the assumption is made that not all asset value is damaged. Other curves may reach
one, but have a reduced asset exposure. This complicates comparing curves, and points out the
importance of aligning assumptions on maximum damage and maximum damage ratio.

There are three main methods to validate these aspects: comparison with historical observations,
expert estimations, and modelmodel comparisons. When historical observations are available on a
building level, statistical distributions can be made showing average damage factors at a certain inun
dation depth. These averages can then be made for building type classifications, and compared with
used depthdamage curves. When these measurements are not available, expert housing surveys can
be used. Appraisers can execute detailed surveys of housing types, documenting common valuables
and their height above floor level. The aggregated averages can then be compared to the damage
functions to validate their estimations (Smith, 1994).

In the case that the application of historical data and housing surveys is not possible, modelmodel
comparisons can be used. Differences with other, more validated, damage models can be distin
guished and related to regional differences. The main aspects to consider are differences in flood type
characteristics and elements at risk.

Flood events have specific characteristics such as flow velocity, max inundation depth, arrival time, and
pollution which induce differences in the resulting damage. Especially differences between damage
curves for pluvial flood damage with other types can be significant due to different water pathways
and flood duration (Grahn & Nyberg, 2017). Differences in the placement of elements at risk can
also be significant between locations. First, cultural and temporal changes between validation studies
can result in a different placement of inventory inside the houses. Second, differences in construction
materials could alter the damage response from inundation depth. The impact of these changes should
be reflected in the different depthdamage functions.
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Aggregated economic damage estimates
Finally, also the topdown method can be used by validating total aggregated model results. Total direct
economic damage from an event can be compared to the following sources:

1. Historical damage reports in the same region

2. Historical damage reports in similar regions

3. Insurance databases

First, damage amounts from old reports can be transformed to current day values and compared.
However, differences in the reporting protocol, assets and flood need to be taken into account. Damage
reports are created by appraisers who follow a damage report. The type of damage that is reported
through this protocol can change over time, which can make direct comparisons impossible (Downton
& Pielke, 2005).

Next, a different spatial distribution of exposed assets and their inventory can result in different damage
responses for a similar inundation. In a report by Wind et al. (1999), two very similar flood volumes
only two years apart resulted in approximately 80% less flood damage. This was probably caused due
to flood preparation. This shows that even as floods are roughly the same, there can still be large
variability between damage amounts. When flood events differ, even larger differences can occur.
Major changed characteristics can be new flood mitigation measures, seasonal changes, pollution and
a differently exposed asset distribution(Expertise Netwerk Waterveiligheid, 2021).

Second, when damage reports from similar regions are used, the same uncertainties as before apply,
with added uncertainties due to the geographical translation. This is similar to transporting damage
functions as described in the Vulnerability analysis section on the previous page.

Third, insurance databases can be a good information source due to the size of their dataset (Botzen &
Bergh, 2008; Wing et al., 2020). Though insurers generally have very accurate objectbased damage
information, they may be hesitant to share them due to privacy and business interests. This restriction
may be eased by aggregating the damage and then comparing it to modelled damage, by taking into
account relevant factors such as insurance penetration and market share (Patankar & Patwardhan,
2015).
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2.5. Structured Expert Judgement for validation
In the case that no observations as empirical data are available for the validation process, it is common
to depend on the judgement of experts. From the 1990s onwards, a method to systematically use
expert judgement was developed by Cooke and Goossens (2008) as The Classical Model at Delft
University of Technology. More than a hundred studies have been executed since on a wide variety of
topics where observations are limited, such as climate change, natural hazards, aviation and nuclear
safety. More recent crossvalidation indicates in Colson and Cooke (2017) indicates its usefulness and
validity as a method.

The classical model works in the following way. A set of experts is asked to give estimations for the 5th,
50th, and 95th percentile of two types of variables: Calibration variables (Also called Seed variables)
and Target variables. Calibration variables are numbers that cannot be known to the experts at the
moment of the experiment, but are related to their expertise 10 . The answers should be not publicly
known or become available relatively soon, so that experts cannot know the answers beforehand, but
will have to estimate them similarly to the target variables. Target variables are the variables that the
experiment aims to estimate11

Subsequently, the target variable will be estimated through a Decision Maker function (DM), a weighted
combination of expert estimations of the target variable. The weight an expert gets assigned depends
on the Informativeness and Calibration of his Calibration variable estimations. Informativeness relates
to the spread of his estimation, where high informativeness is defined as a narrow estimation (The
expert is very sure of his answer). Calibration relates to the accuracy of the expert. Is the realization
of the Calibration variable captured within the expert’s bandwidth?

Decisionmakers can be created in two ways: performance weighting and manual equal weighting.
With performance weighting, a function maximizes the sum of Informativeness multiplied by Calibration
for all experts, by varying weights to the experts. Performance weighting follows the thought that some
experts are better at estimating the variable and should be given more impact. This can even lead to
the exclusion of some experts’ estimations when their calibration and informativeness are too low.

Equal Weighting can be done, however Colson and Cooke (2017) showed that a performance weighted
DM almost always outperforms an Equal Weighted DM. The DM is then used to create a 5th, 50th and
95th percentile estimation of the target variable.

Findings from Cooke and Goossens (2008) should be taken into account when designing a Structured
Expert Judgement experiment:

• The validity of the target variable estimation depends highly on how closely related the Calibration
variables are.

• The Amount of experts in an expert panel ranges between 4 and 77. As a certain amount of
experts generally gets excluded in the DM, it can be assumed beneficial to have a large (at least
20) amount of experts.

• The number of Calibration variables ranged between 5 and 55. The amount can be related to the
number of target variables.

• Expert panels have assessed between 7 and 17 target variables.

10Examples could be: ”What is the 5th, 50th and 95th percentile of next week’s daily maximum discharge at the Rhine at
Lobith?” ”What is the 5th, 50th and 95th percentile of 2021’s maximum 24h precipitation sum measured at KNMI stations in
the Netherlands.

11A Target question variable could be: ”What will be the 5th, 50th, and 95th percentile of themean sea level rise in the Netherlands
by 2050?”



3
Methodological framework

The goal of this research is the development of a validation framework that floodrisk experts can follow
to validate their flood damage estimations. The proposed framework is described in this section, and
explains the steps that were followed to validate two case studies. The framework itself was shaped
by the case results and created iteratively, by evaluating which approaches led to insightful results.

3.1. Framework development
Validation is the process of increasing confidence that a model outcome is accurate enough for its
goal (Apel et al., 2009; Molinari et al., 2019; Sayers et al., 2016). The proposed validation process is
visualised in Figure 3.1 and broadly consists of four phases to build confidence in the model.

The first phase consists of analysing the situation and clarifying the model’s goals. This defines what
the model should include and at what level of detail. The second phase focuses on the model’s internal
plausibility, by scrutinizing the input data as well as the output. Subsequently, the third phase verifies
the model outcomes using empirical observations. Finally, the fourth phase combines all previous steps
in a conclusion resulting in calibration and considerations for probabilistic flood risk studies.

3.2. Framework steps
The phases in Figure 3.1 are broken down into seven corresponding steps and expected results, which
are thoroughly explained in this section.

Step 1: Situation assessment
The validation process was initiated with a situation assessment, in which the goal of the model and
situational characteristics were clarified. Furthermore, flood damage is highly dependent on local asset
and flooding characteristics (Merz et al., 2010; Wagenaar et al., 2016; Wind et al., 1999). Therefore
an overview of key asset and flood characteristics that may influence flood damage was created.

Step 2: Input data assessment
For phase two, the focus was placed on the model plausibility. In step two, input data were assessed on
two aspects: input data quality and data assumptions. By validating the quality of the input data, found
root sources of uncertainty helped to identify errors later on in the process. For instance with hazard
analyses, an amount of uncertainty frequently remains present in several locations, despite calibration
with local high watermarks (Merz et al., 2004; Moel et al., 2014). Assessing the size of the uncertainty
contributes to the process of building confidence in the model results.

Data assumptions largely involve the vulnerability functions and exposure data. Examples are assump
tions on the house structure, flow velocity, flood duration and water salinity. A table overview of input
data assumptions was made to identify errors between area characteristics and input data assumptions
in step three.
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Figure 3.1: Visualisation of the proposed validation framework across four phases. These are further broken down into seven
steps, with their results indicated at the bottom of the figure.
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Step 3: Error identification
Step three involved identifying errors in the internal workings of the models. These errors could be
caused by two sources: Differences in assumptions with reality and errors caused by schematisation
of the area. Assumption errors were found by comparing area and flood characteristics from step
1, with model assumptions in step 2. Although it was difficult to quantify the exact error, pointing
out the differences was vital to understanding the limitations of the model. Model output errors were
found by analysing the output of the GFRT in Python and GIS. In Python, parameters such as the
inundation depth distribution were analysed, and a comparison was made with economic data and
other damage reports. In GIS, visual inspection of damaged areas was done to check plausibility as
well as comparisons with spatial data sets.

Step 4: Error impact estimation
After the errors were identified, an estimation of the impact of the error on the total damage estimation
was calculated. The preferred outcome of this step is a quantitative estimation in monetary value, when
possible. First, the found errors are classified as one out of four different error types defined below:

1. Overestimation: The characteristic resulted in the overestimation of direct economic damage
for this class.

2. Underestimation: The characteristic resulted in the underestimation of direct economic damage
for this class.

3. Uncertainty: The characteristic may differ significantly from reality, however it is not possible to
conclude if this results in an over or underestimation. For instance when no information on the
inundation depth is available, and a certain depth is assumed.

4. Not applicable: The characteristic could result in an over or underestimation, however in this
specific situation it does not affect the accuracy. An example of this is to scrutinize the flooding
time concerning sowing and harvest time of crops. If the flood occurs after harvest, no croploss
damage will occur, significantly altering agricultural damage estimates. This category explicitly
states the validity of an important variable, and thereby significantly improves confidence in the
model.

Subsequently errors were estimated quantitatively. The estimation methods could be clustered in three
approaches:

1. Comprehensive approach: Aspects that affect the prediction of the entire damage class. For
instance, an inconsistency in the maximum damage value, flood preparation or the occurrence
of a flood after harvest time. The error is estimated by multiplying the initial damage estimation
with a correction factor1.

2. Linear approach: Some features are more suitable to be modelled linearly than in the GFRT’s
raster approach. For instance roads and railways exhibit this behaviour if they are not properly
aligned to the raster orientation and resolution. Here, a submodel that calculates damage per
length unit (/𝑚) was used to estimate road damage more accurately.

3. Individual approach: Some classes were found to have highly heterogeneous damage patterns,
that require individual validation. Examples are elevated highways or unique assets like damaged
sluices or power plants. Due to their heterogeneity, the exact damage to these types of assets
often remained highly uncertain.

By adding the impact of all over and underestimations, new damage estimations were made for each
sector and the total damage estimate. This resulted in a new ‘best estimate’ of the modelled damage.
Furthermore, an uncertainty bandwidth around this best estimate was created using the summed errors
classified as uncertainty. Finally, the main assumptions that substantiated the error quantification and
new damage estimate were distinctly presented. These assumptions play a key role in exhibiting the
alignment of the damage estimation with the model goal. Furthermore, these assumptions require
substantiating proof from observations, which is found in the next step.

1A correction factor for the error. For instance, if the maximum damage is deemed to be 20% less than the input parameter, the
estimate can simply be multiplied by a factor of 0,8.
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Step 5: Analysis of empirical data
After the model plausibility phase, the next step was to substantiate key assumptions and damage
estimates with realworld observations. As these observations are generally lacking in flood damage
studies, the first step was to identify any useful data sources. Subsequently, the found data was pre
pared and transformed to be comparable with the modelled damage. The applied damage sources
and transformation processes are described in Table 3.1

Table 3.1: Applied data sources and their corresponding datatransformation processes. Reference to application

Data type Process Reference
Expert data Creation of a Structured Expert Judgement and elicitat

ing data
Chapter 7

Insurance data Transformation of a single insurer’s residential damage
to total residential damage.

Chapter 6

Governmental
claims data

Regression and pattern analysis of data to analyse the
coverage factor and discover outliers

Chapter 6

Event damage data disaggregation of compound hazard damage and a
transformation on spatial scale.

Chapter 11

Global damage
databases (EMDAT)

GIS analysis to analyse affected population and GDP
with global damage data

Appendix C
Appendix D

Step 6: Estimate verification using observations
After the data was prepared and transformed it could be compared to GFRT estimates. As data avail
ability was the main bottleneck, damage verification for each sector differed significantly. Verification
was done either on an aggregated level, by comparing total damage estimates for a sector, or at an
individual level, by comparing the estimate of average damage for a single asset. For improved val
idation applying both methods was preferred, however this was not always possible. After exploring
differences between GFRT estimates and the observations, a conclusion was presented on possible
under or overestimating factors and the impact this had on the total estimate.

Step 7: Conclusion on model validity
Finally, a total overview of all validated damage quantification, found errors that may be calibrated, and
key assumptions is given. Furthermore, this overview indicates the amount of uncertainty expected to
remain with the eventbased damage estimation.

The conclusion then connects the event validation to the overarching floodrisk study. First, the deci
sion needs to be taken which assets can be calibrated further to improve accuracy, without overfitting
the model to the case event. Second, it can be considered if the remaining uncertainty is small enough
for the model’s purpose, or if further validation should be attempted. Third, major uncertainties and as
sumptions that are important for decisionmakers need to be selected and communicated transparently,
so a suitable floodmitigation strategy can be selected.

Case studies
Models like the Global Flood Risk Tool are applied to various cases, differing in terms of data availability
and quality, socioeconomic circumstances and flooding types. To mirror this, two case studies were
selected to be different in these characteristics. The Limburg river floods of 2021 represent a relatively
datarich environment with European asset characteristics. On the other hand, the Beira case has
much less data and is further complicated by compound event damage of strong winds and pluvial
flooding. The chapters describing the result of each applied framework step are shown in Table 3.2.

Table 3.2: Overview of applied framework steps to report chapters

Phases 1: Initial 2: Model plausibility 3: Estimate verification 4: Conclusion

Chapter Limburg Chapter 4 Chapter 5 Chapter 6, Chapter 7 Chapter 8
Beira Chapter 9 Chapter 10 Chapter 11, Appendix C Chapter 12
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4
Limburg  Case description

The first case study of the report concerns the 2021 river floods in the province of Limburg in the
Netherlands. This chapter describes step 1 of the validation framework, by assessing the relevant
background of the area and characteristics of the flooding event. Third, applied data are summarized.

Limburg background
Limburg is a province in the southeast of the Netherlands, bordering to Belgium and Germany. The
province has a surface area of around 2.200 𝑘𝑚2 with approximately 1,1 million inhabitants.
The main river of interest is the Meuse (Maas), which sources in northern France, runs through Belgium
and enters the Netherlands at Eijsden. Subsequently, the Meuse flows to the North of Limburg past
Maastricht, Roermond and Venlo and exits the province at the head of Limburg. The upstream part
between Eijsden and Maasbracht is often referenced as the border meuse (Grensmaas), whereas
downstream of Maasbracht is called the sandmeuse (Zandmaas). The Meuse has multiple tributaries,
which may contribute to a more extreme water level. The most notable tributaries in the Netherlands
are the Geul and the Roer, which are characterised by a much stronger gradient (Bisschop et al., 2015).

Like most rivers in the Netherlands, the Meuse was heavily trained throughout history. The river has
been straightened and has seven weirs to ease shipping (Barneveld et al., 2021). Furthermore, primary
dikes surround the Meuse and were recently strengthened due to the introduction of new norms in 2017
(Rijkswaterstaat, 2021a). Contrarily, the smaller tributaries exhibit a more natural flow, and only have
secondary or local dike protections. River flooding plays an important role in the history of the region,
with large floods occurring along the Meuse in 1993 and 1995, resulting in 201 and 126 million euro
respectively (2021 adjusted)1 (Wind et al., 1999).

Limburg flooding event
The flooding event was initiated on July 12th with extreme precipitation in the drainage area of the
Meuse lasting for at least a week. The precipitation event was characterised as extremely rare, espe
cially for a summer event, with return periods of precipitation as well as discharge far exceeding 1:100
years (Expertise Netwerk Waterveiligheid, 2021). The runoff resulted in extreme water levels in the
Meuse as well as in tributaries of the Geul, Roer, Gulp and Eyserbeek.

Although all primary dikes along the Meuse resisted the water, thereby minimizing damage, large dam
ages occurred along the tributaries. Especially along the Geul and Roer many settlements were hit,
notably Valkenburg, Schin op Geul and BundeGeulle. An estimated 2.500 houses and 600 companies
were affected directly, with another 50.000 people evacuated preventively. Damage was concluded to
be significantly higher than previous floods in 1993 and 1995, totalling approximately 350600 million
euro of direct damages, including business losses (Expertise Netwerk Waterveiligheid, 2021).

1Damage numbers in 1993 and 1995 are 254 and 165 million guilders, transformed using an average inflation of 2% and con
version of 1 euro = 2,2 guilder
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Limburg main data
Multiple opensource datasets were used to model the fluvial flooding and are shown below in Table 4.1.

Table 4.1: Main Datasets used for the Limburg 2021 case study. The top three datasets were used as input for the GFRT. Other
datasets were used either in GIS analysis or as verification data.

Name Description Resolution Author
Inundation
raster

The inundation map and flood extents
were created to map the event and were
provided by Deltares.

5x5m Expertise Netwerk
Waterveiligheid

(2021)

Land use map A combination of multiple open source
datasets was used: Bag, Top10NL, CBS
soil usage.

Polygon CBS (2015) and
Kadaster (2021a,

2021b)

Vulnerability Internally created damage curves by
RHDHV, similar to HISSSM curves

 De Bruijn et al.
(2015)

Fact finding Report of a task force that mapped the
event and its consequences rapidly after
the occurrence.

 Expertise Netwerk
Waterveiligheid

(2021)

BAG National data on adres location and foot
print.

Polygon Kadaster (2021a)

NWB A national repository on the location of
publicly maintained roads (Nationaal We
gen Bestand).

Polylines Rijkswaterstaat
(2021b)

WTS data Spatial data on governmental damage
support applications for 6 different dam
age categories.

Postal Code 62 RVO (2022)
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Figure 4.1: Overview map of Limburg flooding situation in July 2021
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Limburg  Model plausibility

In this chapter, the results of applying framework phase 2 to the Limburg case study are discussed
(See Chapter 3). For framework step 2, the results of validating the model input data are discussed in
Section 5.1. Step 3 and step 4 are discussed in Section 5.2, where an indepth analysis of errors in
the model output is presented. Finally in Section 5.3, a total conclusion is given.

5.1. Model input validation
Here, input data for the three model components: Hazard, Exposure and Vulnerability was analysed.

Hazard analysis
For the hazard analysis, flood map validation was executed on three aspects: flood extent, inundation
depth and water levels. Most of this validation was reported by Slager (2021), when the inundation
map of the event was created for the Expertise Netwerk Waterveiligheid (2021).

For the flood extent, the area was validated using aerial pictures taken during the event. It was judged
if the pictures were taken at the flood peak or after by analysing surroundings for signs of retreating
water1. However, it was not possible to judge if a picture was taken before the peak, as there were no
signs that could indicate where water would flow next. This may have resulted in an underestimation
of the flood extent. Subsequently, interviews with residents were gathered and compared with flood
extents to validate if water had reached a location, especially at highdamage locations. Particularly
for Valkenburg, an employee had gone around by bike to validate the flood extent.

The depth distribution of the used inundation raster was analysed in ArcGIS, where it was noted that
large areas were set to exactly 0,50m (See Figure 5.1). In an interview with Slager (2021) it was
mentioned that these are areas where the hydraulic model did not predict a flood depth, but flood extent
reports (from residents or aerial pictures) did show inundation. Therefore, it was chosen to manually
insert a relatively low inundation depth of 0,50m into the inundation map. The impact of this decision
was analysed and is significant for the Geul and the Roer area, where approximately 47% and 17% of
the flooded surface area was manually filled. As shown in Figure 5.1, the 0,50m raster alone resulted
in 58 million euro of damage for the Geul area, and 6 million euro around the Roer. The residential
sector around the Geul accounts for more than half the damage. For the Roer, more than half of the
damage was inflicted on agriculture and residential classes combined.

For the water level validation, the inundation map was summed with elevation data to acquire the water
level of the model. This was compared with data fromRijkswaterstaat (2021c) andWaterschap Limburg
(2021). Water levels for the Maas aligned well with maximum observations (Appendix A Figure A.2).
As water level observations for the Geul and Roer were incomplete, no conclusion was drawn2.
1For instance leftbehind debris or toppled trashcans
2Ongoing research at Delft University of Technology  Delta Futures Lab is reconstructing the water levels.
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Table 5.1: Damage caused by the manually insert
0,5m inundation grid cells for the Geul and Roer.

Geul
Class Damage
Residential house 25,44 M€
Communal building 7,68 M€
Residential area 5,79 M€
Agriculture 3,97 M€
Other 15,38 M€
Total 58,33 M€

Roer
Class Damage
Agriculture 1,58 M€
Residential building 1,07 M€
Residential area 0,82 M€
Other 2,53 M€
Total 6,00 M€

Figure 5.1: Visualisation of the manually inserted 0,5m
inundation cells at the middle Geul section. Yellow indi
cates grid cells with 0,5m whereas blue is the underlain
flood extent map.

Exposure dataset
The exposure dataset consists of two aspects: the land use map and the maximum exposed asset
value. For the land use map, three aspects were validated: First, the number of land use classes was
considered to be detailed enough for the modelling purpose, although this remains a subjective deci
sion. A total of 57 land use classes were used on the map. Second, the geometry and placement of the
land use map were compared visually to aerial pictures, and deemed accurate. This step was repeated
after uploading in the GFRT, as small displacements could have occurred due to small differences in
the coordinate systems. Finally the geometry of the classes was compared with each other, which
showed a double counting of overlapping road classes. This was solved by removing one of the road
classes.

After the land use map, the exposed asset value was validated. Each class in the land use map was
connected to an exposed asset value /𝑚2. Before applying this data to the model it was validated
through a modelmodel comparison with HISSSM. This process is visualised in Figure 5.2.

Figure 5.2: Flowchart of validation steps for exposed asset value

As a first result, the differences from the transformed HISSSM values with the GFRT exposed asset
values were analysed (Shown in Figure A.4). Here, two outliers were found: ‘Communal buildings’ and
‘Hotels’ both deviated around 20% from the transformed HISSSM class ‘Low rise’. Furthermore, the
‘Residential Building’ maximum damage was lower than HISSSM. It assumed only housestructure
maximum damage, and excluded the houseinventory aspect.

As a second result, a list of assumed widths used in the unit transformation process of infrastructure
was created. These assumed widths should align with the widths of the damaged roads in the GIS
model to have an equal exposed asset value. These widths were later compared in Section 5.2
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Vulnerability analysis
After the exposure dataset, the used depthdamage curves were validated through a comparison with
HISSSM vulnerability curves, as can be seen in Figure 5.3. As there were more classes and corre
sponding vulnerability curves in the GFRT than in HISSSM, multiple GFRT curves were compared to
a single HISSSM curve.

Figure 5.3: Validation method of vulnerability analysis. The reddashed HISSSM line is compared to multiple GFRT vulnerability
curves. The full analysis can be found in the Appendix A

13 classes coincided with the residential HISSSM class ‘lowrise’As can be seen in Figure 5.3 many
curves deviated slightly, but overall no significant difference was concluded. For ‘companies’ eight
GFRT classes followed two unique depthdamage functions. One function showed a slightly more
vulnerable damage process, and the other a less vulnerable pattern. The final 15 damage classes are
similar to HISSSM ‘agriculture’ or the ‘transport’ vulnerability3.

Although high similarity with the generally applied vulnerability model in the Netherlands may indicate
validity for the area, uncertainty remains on two points: First, HISSSM has never been validated for
this specific region. Second HISSSM was based on data from a largescale flood with high inundation
depths. Therefore, the vulnerability curve may deviate significantly from smaller river floods such as
our case study (Slager & Wagenaar, 2017).

Conclusions and limitations for input validation
From the input validation, a better understanding of the model’s components was achieved, thereby
reducing the ‘blackbox’ application and removing errors. This is a key step in improving the confidence
of model results (Sayers et al., 2016). The following conclusions and limitations were found:

1. The inundation depth is mostly unknown and set to 0,5m around the Geul (47% surface area),
and to a lesser extent at the Roer (17%). Furthermore, a minimum amount of uncertainty remains
in the flood extent as this is validated well with local and aerial observations.

2. Exposed asset value coincides with HISSSM values for most land use classes. Special attention
should be given to communal buildings, hotels, and residential houses as these deviate from HIS
SSM. Furthermore the actual width of infrastructure elements can be checked against the width
assumed in the maximum damage estimation.

3. The depthdamage curves are mostly similar to vulnerability curves of the generally applied HIS
SSM. However, uncertainty remains as the performance of the vulnerability curves for this specific
area (and flood) has never been shown.

3The comparison can be seen in Figure A.3
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5.2. Model output validation
The total damage for the flood event in the Netherlands was estimated at 526,2 million euro by the
GFRT. As shown in Figure 5.4, the main damage driving land use classes are agriculture, residential,
minor roads and public area.

Figure 5.4: Overview of estimated damage in the Limburg case studies. Only classifications where damage is estimated are
shown.

From a comparison with a damage estimation of the Expertise Netwerk Waterveiligheid (2021) the
following initial conclusions were taken:

1. The GFRT total damage estimation is 96 to 101 M€ higher than the fact finding estimation, espe
cially along the Meuse (Appendix A Figure A.5).

2. The GFRT agricultural damage is more than 135 M€ higher than the fact finding’s estimate (Ap
pendix A Figure A.8).

3. The GFRT estimate for road infrastructure is 40 M€ higher along the Meuse, but 20 M€ and 2 M€
lower alongside the Geul and Roer respectively (Appendix A Figure A.9).

4. The GFRT residential damage is higher for all areas. For the Geul and Roer, this may be caused
due to the inclusion of residential area (approximately 23 M€ in total), whereas for the Meuse,
residential housing is already 7,5 M€ higher than the fact finding (Appendix A Figure A.10).

Following the initial analysis, the estimations for different sectors were scrutinized in order of magnitude.
The sectors were analysed in the following steps: First, an overview of the total estimated damage, the
observed assets in the landuse class, and the expected damage processes is given. Subsequently,
multiple factors leading to an estimation error are described based on their assumptions and effects.
Finally, a conclusion on the overall validity of the estimated damage for this sector is given.
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Agriculture
Agricultural damage can be classified as damage to crops or damage to fields (Pivot & Martin, 2002).
Crop damage is dependent on the type of crops, inundation duration and time4, whereas field damage
depends on erosion, pollution and cleanup costs (Messner et al., 2007; Winteraeken & Spaan, 2010).
Furthermore, livestock casualties and evacuation costs can be relevant (Brémond & Grelot, 2013).

The calculated damage for the agriculture classification amounted to 174million euro. Visual inspection
of the classified agricultural surface showed diverse natural areas such as crop fields, flood plains and
grass fields. Indicated in Table 5.2, four significant factors were identified.

Table 5.2: Errors in the GFRT estimation of the agriculture landuse class

Overestimating factors Impact
1: 60% of registered affected agriculture contains grass for which
damage is unlikely.

90M€ overestimation

2: 14% of damaged classified surface is unregistered in the BRP. 24M€ overestimation

Uncertain factors Impact
1: Maximum damage per 𝑚2 seems overestimated depending on
the amount of agricultural pollution.

0 – 45M€ uncertainty

Nonaffecting factors Impact
1: Temporal effect of flood occurrence 

Overestimation 1: Registered cropland
Two reasons led to the hypothesis that GFRTestimated agricultural damage was overestimated. First,
a comparison with flood reports of 1993, 1995 and the Expertise Netwerk Waterveiligheid (2021) in
dicated agricultural damages in the range of 20 million euros (Wind et al., 1999). Second, a visual
inspection in ArcGIS revealed large areas where agricultural damage seemed questionable.

To analyse this hypothesis, a plotlevel crop dataset (BRP) was used RVO (2021a). Analysis of the
BRP dataset indicated that on average 60% of the damaged area was classified as grassland, with up
to 77% for the Geul. As these areas were inundated for less than a week limited damage and loss of
production for the grassland is plausible5.

Table 5.3: Spatial analysis of BRP plots present in
the damaged area

Crop type Area Damage
Grass 60% No
Mais 15% Yes
Potatoes 5% Yes
Sugarbeets 5% Yes
Other 15% Yes
Total damaged 40%

86% of agricultural land is BRP registered:
174𝑀€ ∗ 0.86 = 150𝑀€

Of which 60% is undamaged grassland:
174𝑀€ ∗ 0.86 ∗ 0.6 = 90𝑀€

(5.1)

Under the assumption that no financial damage is caused by the flooding of grassland, 60% of the esti
mated damage in the registered BRP parcels is not incurred. 86% of all agricultural land is registered,
which leads to a 90 million euro overestimation (Equation 5.1). This considers that no financial loss
is incurred from the flooding of these areas due to cleanup of pollution, buying replacement feed for
cattle, evacuation or loss of cattle that were grazing in the area at the time of inundation (Hess & Morris,
1988).
4concerning harvest and seeding moments
5The floods started around the 14th of July and water retreated around the 20th. Most pasture grasses can survive for 1 or 2
weeks (Undersander, 2016)
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Overestimation 2: Unregistered cropland
Next to the large amount of grassland classified as damaged, 14% of the inundated Agricultural land
was not registered in the crop dataset (RVO, 2021a). These areas have no registered economical
contribution to the agricultural sector. Therefore, it is plausible that also for this area no financial damage
occurred, resulting in another 14% damage overestimation (Equation 5.2.

Unregistered agricultural classified land: 174𝑀€ ∗ 0.14 = 24𝑀€ (5.2)

Underestimation 1: Overestimated maximum damage
Besides the magnified surface area with economic value, it is also argued that the maximum exposed
asset value is overestimated. In the GFRT an amount of 2,15 €/𝑚2 was used as the maximum incurred
damage, which includes crop loss and pollution. However, a comparison with data on agricultural crop
revenue6 indicates a much lower value of 0,55 €/𝑚2 (CBS, 2021).
If crop loss is only priced at 0,55 €/𝑚2 the remaining 1,60 €/𝑚2 should be attributed to the cleanup
of the fields. However, no significant pollution was reported by the authorities7, and Hess and Morris
(1988) estimated cleanup costs to be significantly less than financial crop loss. Due to both arguments,
it can be inferred that limited cleanup costs should be present.

A more conservative assumption was taken that total cleanup costs lie somewhere between 0 and 1,60
€/𝑚2. Relative to the 0,55 €/𝑚2 certain crop loss, the remainder of agricultural damage is overesti
mated by 0 to 75%.

Remaining damage is 0% 75% overestimated 60𝑀€ ∗ [0 − 75%] = 0𝑀€ − 45𝑀€ (5.3)

NonAffecting 1: Temporal effect of flood occurrence
Finally, the moment of the flood was validated, as crop loss is highly dependent on the flood moment
(Brémond & Grelot, 2013; Förster et al., 2008; Hess &Morris, 1988; Pivot & Martin, 2002). When floods
occur after the harvest time, only damage to the field can still result in financial damage. However,
predicting the total impact of this effect is complex, as the exact harvesting time is difficult to estimate.
The moment a farmer will harvest its crop depends on the moment the crop was planted, the type of
crop, and the yearly variations of the climate it has been growing in Brémond and Grelot (2013).

With a large temporal bandwidth, it was found that the affected crops were supposed to be harvested
between August  November. As the flood occurred in July, it could be safely assumed that in this case
damage to crops occurred.

6Revenue per 𝑚2 of cropland. Because the total amount of crop loss depends heavily on the type of crop planted, crop types
were analysed with the BRP dataset in Table 5.3. The three most common crops in the inundated zone are Mais, Potatoes and
Sugarbeets, which is largely consistent with the used CBS data.

7The current advice on sludge removal was to wait until it is washed out by rain, for which it has ample time before the major
part of next year’s crops is planted (RVO, 2021c)
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Infrastructure
Infrastructure damage from inundation is complex tomodel, with literature giving widely varying damage
functions and methods (Habermann & Hedel, 2018). Exact damage processes depend on the type of
inundation, but are sensitive to high flow velocity and the erosion it causes (Merz et al., 2010).

Calculated damage for the transport sector is the second biggest contributor, amounting to a total of
107 million euro. Two errors resulted in an overestimation of 39,8 million euro. First, false damage
calculated at elevated portions of major roads resulted in an 11,3 million euro overestimation. Second,
a linear approach to calculating the three most minor road types showed a summed overestimation of
28,5 million euro. Finally, two nonaffecting factors were validated, and are described in Appendix A.

Table 5.4: Errors in GFRT estimation of infrastructure

Overestimating factors Impact
1: Calculated damage at elevated, noninundated primary roads,
highways and railroads is damage in only 10% of the cases

12 M€ overestimation

2: Classification errors in ‘Other road’, ‘Tertiary road’ and ‘Sec
ondary road’

30 M€ & 3,5 M€ overestima
tion 5 M€ underestimation

Nonaffecting factors Impact
1: Surface area error due to gridcell approach 8 
2: Sensitivity to specific inundation depth 

Overestimation 1: Calculated damage at elevated locations in main roadlinks
Major transport links such as railroads and highways are considered as critical infrastructure links
(Habermann & Hedel, 2018). To protect them from hazards and ensure fast and safe crossing with
minor roads and waterways, they are often placed at an elevated position using berms and/or bridges.

Through visual inspection two main erroneous situations were discovered that are caused by this ele
vation: The first situation occurs at bridges. When roads are located on a bridge they are not often inun
dated, whereas lowerplaced floodplains can be. Thus the model flood extent can be drawn completely
over the highway, or an overlap could occur on the side due to the rasterization. Both characteristics
result in the GFRT modelling (partof) the highway as damaged, whereas the water does not reach the
road.

The second situation occurs at berms, where the flood extent can be drawn up to the side of the berm
but does not overtop it. Gridcells can overlap the berm of the road, and can be identified as inundated
due to the steep slope present. This will also result in a damaged road whereas the water does not
reach. Visualizations of these situations can be seen in Appendix A Figure A.12.

These situations result in an overestimation that can quickly lead up to multiple millions due to the
high economic value of major infrastructure classes. Analysis of 15 zones in the classes ‘Primary
road’, ‘Railroad’, and ‘Highway’ revealed only 2 situations where the damage occurred, which was
around 10% of the damage. Therefore the conclusion was drawn that for this flood event, the estimated
damage for these infrastructure classes was overestimated with 11,3 million euro.

90% of ‘Primary road’, ‘Railroad’, and ‘Highway’: 0, 9 ∗ (8, 0 + 2, 6 + 2, 0) 𝑀€ = 11, 3 𝑀€ (5.4)

8Both Nonaffecting factor 1 and 2 are further described in Appendix A
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Overestimation 2: Classification errors in ‘Other road’ and ‘Tertiary Road’
In the case area, a wide variety of road types ranging from highways to dirt tracks was present, for
which three errors were found.

The first error regards road classification and exposure. A total of 6 transport land use classes were
used, shown in Figure 5.5. The classes were connected to similar depthDamage (vulnerability) curves,
but used different maximum damage (exposure) values. The main variable driving the maximum dam
age is the quality level of the road. However, when validating the model, roadquality inconsistencies
were found inside the minor road classes. Visually, the ‘Other road’ class consisted both of asphalted
roads as well as dirt tracks and bike lanes. Besides, ‘Tertiary road’ exhibited a higher consistency but
also included a smaller amount of dirt tracks.

Second, the GFRT maximum road damage in €/𝑚2 was transformed from HISSSM’s road damage
in €/𝑚, using an assumed road width. However, the ‘Other road’ polygon width showed a lower mean
of 4m width versus the assumed width of 7,5m9. For ‘Secondary road’ this difference was even larger
with a polygon average width of 6m versus an assumed width of 12,5m. Theoretically, this would have
resulted in a model underestimation, as the maximum damage /𝑚2 would have been higher when the
proper width was assumed.

Third, when looking at the representation of roads in the GFRT, it was noticed that the gridcellbased
approach has enormous difficulties representing smaller and thinner roads. Large parts of the road
are not classified as damaged roads and simultaneously large berm areas are classified as damaged
roads. This misrepresentation creates inaccuracies in the inundation depth, the total surface area of
damaged road, and the maximum damage per surface area.

Due to these errors, it was concluded that the gridcell approach leads to large inaccuracies in both the
hazard and exposure component of road damage modelling. Therefore, a linear modelling approach
is suggested.

Table 5.5: Land use classes and their maximum damage per 𝑚2 in
the transport sector

Classification Exposure /𝑚2 Exposure /𝑚
Other road 42,84 € 353,96 €
Tertiary road 42,84 € 353,96 €
Secundary road 96,39 € 1298,92 €
Primary road 107,10 € 1915,90 €
Highway 107,10 € 1915,90 €
Railroad 584,81 € 5845,13 €

Figure 5.5: Comparison of lengthbased road damage es
timation with GFRT estimated damage.

Linear approach
To eliminate the found issues, a different method to calculate total road damage was used, based on
two parts: First, the method calculates the total length of the damaged road instead of the total surface
area. Second, a dataset with all governmentmaintained roads10 was used, to erase all dirt roads
and bike lanesfrom the estimated damage (Rijkswaterstaat, 2021b). The approach is described and
visualised in Appendix A Figure A.13.
9Found in Section 5.1
10The nationaal wegenbestand, NWB. This dataset contains all streets in the Netherlands that have a street name or road number
and are maintained by a governmental body (The state, Provinces, Municipalities, Waterboards).
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Results of this approach are compared with the GFRT in Figure 5.5. We find that compared to this
approach, the GFRT overestimates the ‘Other road’ class by 30 million euro. As mentioned earlier,
this is likely due to the removal of dirt tracks and other paved areas. For ‘Tertiary roads’, a smaller
overestimation of 3,5 million euro was found, which aligns with the fact that fewer dirt roads were
present in this class. It may be hypothesized that the underestimation caused by lower road width and
the overestimation by the inclusion of (a smaller number than in ‘Other road’) cancelled each other. For
the secondary road we find an opposite result of a 5 million underestimation by the GFRT. This could
be explained by the earlier mentioned difference between the GIS road width and assumed road width,
which was used in the maximum damage /𝑚2.

Infrastructure conclusion
Combining the differences, a GFRT overestimation of 28,5 million euro was found using the linear
approach. Furthermore, an 10,3 million overestimation due to the elevation of major roads leads to
a GFRT overestimation of 39,8 million euro. This is based on two main assumptions: First, 90%
of damage to primary roads, highways and railroads does not occur. Second, the linear approach
using HISSSM’s maximum damage values /𝑚 of road length is valid. This assumption can be further
validated using damage data or reconstruction costs.

Residential
The damage process in residential houses is very uncertain, as houses are highly heterogeneous and
private response to floods is difficult to predict. The damage can already be significant on low inundation
levels and is generally split up into two main parts: house structure and house inventory (McBean et al.,
1986; Merz et al., 2010; A. Pistrika et al., 2014; Smith, 1994). Major parameters driving the damage
are flood warning time, flood experience and pollution (Merz et al., 2004; Wind et al., 1999).

The calculated damage for the residential sector amounts to 95,5 million euro. This sector consists of
two landuse classes: residential houses and residential area. Residential houses represent the exact
surface area of residential structures (Kadaster, 2021a). Residential area delineates the surrounding
public area, including sidewalks and gardens in the neighbourhood. Shown in Table 5.6, two errors
and one main uncertainty were found.

Table 5.6: Errors in GFRT estimation of residential

Overestimating factors Impact
1: Flooded dike berms 6 M€ overestimation

Underestimating factors Impact
1: Absence of house content in exposure 23,7 M€ underestimation

Uncertain factors Impact
1: Manually inserted inundation depth of 0,5m {32,6 M€ ; +38,8 M€} uncertainty

Overestimation 1: Flooded dike berms
Alongside the Maas and the Roer, many inundation sites occur in neighbourhoods classified as ‘resi
dential area’. Large zones of this inundated area contain gardens, sidewalks and small streets. Here,
the damage is assumed to occur due to loss of property and cleanup costs. Around 75% of damage
occurs in these large areas, where damage is validated.

However, for the other 25% of the damage, the validity of the estimation is doubted due to two reasons:
first, visual inspection shows that many zones are at the edge of the river bed, where the water covers
(part of) the berm. As this is a natural area consisting of grass or rocks, financial damage here is unlikely.
Second, damage at small inundated zones can also be doubted, because these polygons seem to be
located at the edges of the residential area, where no valuable assets are present. Therefore, it is
concluded that around 25% of the total damage, adding up to 6 million euro, may not occur.
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Underestimation 1: Absence of house content in exposure
Next to the damaged surfaces, also the maximum exposed asset value was scrutinized, using a model
model comparison. When validating the maximum asset damage used for residential houses in Sec
tion 5.1, it was noted that only value for the house structure was used. Generally, also inventory is
added to the exposed asset value due to its significance (Messner et al., 2007; Molinari et al., 2020;
Slager & Wagenaar, 2017).

When calculating damage to house inventory, also an inventoryspecific vulnerability curve could be
used to link inundation depth to a damage ratio. In this case however, it was assumed that the vulner
ability process of house content was equal to that of the house structure. Therefore, a simple scaling
factor for the change in maximum exposed asset value could be used.

Slager andWagenaar (2017) proposed the content value of houses to be at 70.000 euro per object. The
additional exposed asset value /𝑚2 by including content can be calculated from this in two steps. First,
by using the average surface area of residential houses located within the flood extent, and second
by calculating the present value for 2021. Using Equation 5.5, this gave a total of 354,07 €/𝑚2. If it
is assumed that house content should be included in the analysis, then the total damage estimate for
residential houses should be increased by 32,7%, leading to an additional 23,7 million euro of damages.

𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 [€/𝑜𝑏𝑗𝑒𝑐𝑡]
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑢𝑠𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 [𝑚2] ∗ Inflation = 70.000

214 ∗ 1, 08 = 354, 07 €/𝑚2

𝑁𝑒𝑤 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 [€/𝑚2]
𝑂𝑙𝑑 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 [€/𝑚2] ∗ Initial damage = 1082, 43 + 354, 07

1082, 43 ∗ 72, 4 𝑀€ = 23, 7 𝑀€
(5.5)

Uncertainty 1: Manually inserted inundation depth of 0,5m
As mentioned in Section 5.1, the inundation depth was unknown for large areas around the Geul, and
to a lesser amount around the Roer. In the total area the damage estimates for residential houses
and residential area were affected by this uncertainty to an amount of 25,8 million and 6,8 million euro
respectively. Looking at the surface area alone, 51% of the damaged residential housing area consists
of these uncertain grid cells.

To assess the total sensitivity, a whatif analysis is performed. An upper estimate was created by
assessing the total damage if all the grid cells would be affected by 1m inundation depth instead of
the set 0,5m, so an increase of +0,5m. Subsequently, a lower bandwidth was created by assessing
the damage reduction if the grid cells indeed had no damage at all, as the hydraulic model initially
suggested. For the upper bandwidth, the damage ratios change from 0,18 to 0,40 (residential houses)
and from 0,29 to 0,60 (residential area), leading to an additional 38,3 M€ damage as in Equation 5.6.

Residential house scaling factor:
0, 40 − 0, 18

0, 18 = 1, 22

Residential area scaling factor:
0, 60 − 0, 29

0, 29 = 1, 07

Damage increase residential house: 25, 8 𝑀€ ∗ 1, 2 = 31, 0 𝑀€
Damage increase residential area: 6, 8 𝑀€ ∗ 1, 07 = 7, 3 𝑀€
Total upper bandwidth: 31, 0𝑀€ + 7, 3 𝑀€ = +38, 3 𝑀€

(5.6)

For the lower bandwidth, a decrease of 0,5m would mean that no inundation depth and damage is
present at uncertain locations. The damage reduction would be 32,6 million euro as in Equation 5.7.

Lower bandwidth: − 25, 8 𝑀€ − 6, 8 𝑀€ = −32, 6 𝑀€ (5.7)
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Other
The final category contains threemajor classes. These classes were characterised by a strong diversity
of asset types within their landuse class, requiring an individual validation approach. The land use
classes ‘Recreational  Day’, ‘Communal building’ and ‘Public area’ were validated11.

Table 5.7: ‘Other’ land use class GFRT damage estimation error sources

Overestimating factors Impact
Recreational  Day: Boat damage in Meuse Marinas 10 M€ overestimation
Public area: No damage at gas power plant and riverside location 7 M€ overestimation

Nonaffecting factors Impact
Communal building: Special needs school

Recreational  Day
The largest damage zones of ‘Recreational  Day’ consist of 6 Marinas along the Meuse, with a total
estimated damage of 17,7 million euro (Table 5.8). This calculation is based on the amount of inun
dated surface surrounding the marinas that is classified as ‘Recreational  Day’. However, as that area
consists mostly of grass and trees, it is plausible that most of the financial damage in this area will stem
from private boats. Therefore a surfacebased damage estimation seems wrong.

Damage is concluded as overestimated due to two reasons. First, the goal of the GFRT is to analyse
flood mitigation measures. As it is plausible that boats will still be damaged despite flood mitigation
measures such as dikes, this damage may be irrelevant to consider. Second, as no reports of damage
to boats were found and no storm with heavy winds was present at the time of the flood, it is assumed
that few boats were damaged. Therefore, an overestimation of 10 million euro is concluded.

Table 5.8: Damaged marinas for ‘Recreational  Day’.

Location Impact M€
Roermond North 6,6
Roermond South 3,5
Oost maarland 2,7
Zuid maastricht 2,6
Ohé en laak 1,2
Stevensweert 1,1

Total 17,7 M€

Table 5.9: Damage areas of ‘Public area’ land use class.

Location Impact M€ Damage
Gas power plant 4,9 No
Riverside 2,2 No
Sluice 2,0 Yes
Water treatment plant 1,9 Yes
Sluice 1,6 Yes
Other 2,1 Yes
Total 14,7 M€

Public area
In ‘Public area’, four different types of assets were distinguished: A gas power plant (The Clauscen
trale), Sluices, water purifying plants, and parking lots. Direct damage to these industrial sites is difficult
to predict and cannot be done on a simple landuse basis, as its vulnerability changes spatially. Further
more, this class contains critical infrastructure, which requires special attention in the damage analysis
due to additional indirect damage when it fails (De Bruijn et al., 2016).

An analysis of the damage zones in Table 5.9 showed that the main damage contributor was the Claus
centrale, at 4,9 million euro. This was followed by an industrial riverside location estimated at 2,2 million
euro, two sluices and a water purifying plant for another combined 7,6 million euro.

Currently, a conclusion was drawn on the gas power plant and the riverside. The gas power plant is one
of the largest in the Netherlands and is protected by a dike (Bisschop et al., 2015). As no flood damage
news from the gas power plant was found, it was assumed that no damage occurred. Subsequently, it
is also plausible that the empty riverside damage of 2,2 million euro is overestimated 12. Therefore, a
total overestimation of 7,1 million euro was concluded.
11In dutch: Dagrecreatieve voorziening, Bijeenkomstfunctie, and Openbare voorziening
12Most of this area looks like unused river berms next to an industrial area, meaning little damage would be expected.
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Communal building
The communal building class includes sports halls, casinos and meeting halls. The exposure is higher
than residential housing at 1374,09 €/𝑚2, and the GFRT total estimated damage equals 20 M€. As it
seemed unsuitable to conclude the estimate of such a heterogeneous set, the focus was brought to the
largest contributor. A total damage estimate of 7 million euro is attributed to a special education school
in the Municipality of Valkenburg aan de Geul. This area was indeed inundated with an average depth
of 0.75m, so estimating damage for this location seems valid, however the total amount is difficult to
validate due to the uncommon land use.

To grasp the exposed asset value involved in school buildings, governmental data from Municipality
Utrecht (2021) was used. It was calculated that a new school building for special education with a
similar surface area of 11,550 𝑚2 would cost around 29 million euro. Therefore the estimated damage
of 7 million euro would be approximately 25% of the total damage, which seems to be in the right order
of magnitude. For specific conclusions if this is an over or underestimation, the site would need to be
inspected with a loss adjuster. Other locations were smaller contributors and consisted of more similar
assets like sports halls. Here, it is assumed that on average the damage is valid.

5.3. Conclusion
Summarizing all the found factors in Table 5.10, a total overestimation of 153,1 million euro was found.
This led to a GFRT best estimate of 373,1 million euro for the direct flood damage in Limburg, visu
alised in Figure 5.6. Besides in Figure 5.7, the errors are attributed to their root parameter. The largest
error was found in the exposure land use of agriculture exposure. The secondlargest overestimation
was found in the infrastructure classes, based on the lengthbased model. Confidence in this approach
can still be improved with damage observations. This error was attributed to the vulnerability param
eter, but was caused by a rasterization error. Finally, a smaller underestimation in residential and an
overestimation in three individual classes were found, with a total sum of approximately zero.

Figure 5.6: GFRT estimated damage after model output valida
tion

Figure 5.7: GFRT estimated damage after model
output validation

Besides the summed error, an uncertainty bandwidth of +77,6 and 38,8 M€ was presented in the
hazard parameter for the residential class, and themaximum damage parameter for agriculture. Adding
this range to the new best estimate gave a total uncertainty bandwidth of 295,5 M€ to 411,9 M€.

This bandwidth stems from two uncertainties: agricultural pollution and residential inundation depth.
Based on governmental reports, it may be that agricultural pollution is low, thereby reducing the best
estimate by another 45 million euro (RVO, 2021c). Therefore, it is plausible that the real damage may
be low in the bandwidth, between 295,5 and 373,1 million euro. For further reliability, the assumptions
in Table 5.10 that underwrite this validation can be further investigated with local authorities.
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Table 5.10: Overview of found GFRT errors for the Limburg case study. Error size is indicated in million euro and a positive (+)
error indicates an overestimation by the GFRT. At the bottom of the table, the errors are summed and compared to the original
GFRT estimate.

Sector
GFRT estimate Error type Impact

M€ Assumptions

Agriculture
174 M€ Overestimation + 114,0 • Inundated grassland does not create financial loss.

Lower uncertainty 45,0 • Uncertainty surrounding amount of pollution re
quiring cleanup.

Infrastructure
107 M€

Overestimation + 39,8 • Only 10% of calculated rail, highway and primary
road damage occurs due to their elevation which is
modelled incorrectly.
• Secondary, Tertiary and Other road damage is
highly variable and is instead found using a length
based model.

Residential
95,5 M€

Underestimation  17,7 • Small inundated areas in neighbourhoods and
river berms do not result in damage (+6 M€).
• Inclusion of house content in the maximum dam
age values (23,7 M€).

Lower Uncertainty 32,6 • Uncertainty caused by unknown inundation depth
that is set manually to 0,5m.Higher uncertainty 38,8

Other
17,7 +
14,7 +
20,0 =
52,4 M€

Overestimation + 17,0 • Most private boats in marinas were moved prior to
the highwater and have suffered not much damage.
10M€ out of 17,7M€ damage estimated for Marinas
was taken as an overestimation.
• Damage at a school is accurate with 7 M€
• The gas power plant ‘Clauscentrale’ did not suffer
4,9M€ flood damage, and an unused riverside area
has a 2,2 M€ overestimation.
• 7,7 M€ estimated damage at Communal buildings
using manually inserted 0,5m depth is correct.

GFRT original estimate: 526,2 M€
Total overestimation:  170,8 Agriculture, Infrastructure, Other.

Total underestimation: + 17,7 Residential.
GFRT adjusted estimate: 373,1 M€

Total higher uncertainty: + 38,8 Residential. Damage could be this amount higher.
Total lower uncertainty:  77,6 Agriculture, Residential. Damage could be this

amount lower.
GFRT adjusted range: 295,5  411,9 M€
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Limburg  Verification using empirical

data

Besides the plausibility assessment, verification was applied with multiple external data sources by
applying phase 3, step 5 and step 6 of the framework (Elaborated in Chapter 3).

6.1. Residential insurance data
Insurance databases can be a valuable information source in flood damage modelling (Botzen & Bergh,
2008; Wing et al., 2020). As housing and inventory insurance penetration rates in the Netherlands are
high, multiple large insurers were involved and had employees locally present during the flood event.

Damage estimation using insurance data
One insurer, Achmea, communicated their registered total residential damage (Achmea, 2022). This
amount was used to estimate the total residential damage using Equation 6.1.

Total damage = 𝐷𝑎𝑚𝐴𝑐ℎ𝑚𝑒𝑎 ∗ 𝐹𝑀𝑎𝑟𝑘𝑒𝑡𝑠ℎ𝑎𝑟𝑒 ∗ 𝐹𝐼𝑛𝑠.𝑃𝑒𝑛 ∗ 𝐹𝑀𝑖𝑛𝑜𝑟𝑑𝑎𝑚𝑎𝑔𝑒 (6.1)

The formula takes that the total residential damage can be estimated by multiplying the damage re
ported by Achmea with three factors. First, Achmea is not the only insurer present in this market.
Therefore a factor based on Achmea’s market share is used to estimate the damage at other insurers.
Second, not all houses in the area are insured1, for which a factor based on the insurance penetration
is used. Finally, it was explained that the damage in Achmea’s database only concerns large damage
events, for which a damage expert was required 2. To correct for this, a factor 𝐹𝑀𝑖𝑛𝑜𝑟𝑑𝑎𝑚𝑎𝑔𝑒 is used.

Reference data was found to estimate the factors from the Dutch Central Bank (DNB, 2021) and the
Verbond van Verzekeraars (VvV, 2016), presented in Table 6.1. Looking at the assumed factors, the
calculation is especially sensitive to insurance penetration and minor damage assumptions. It may be
inferred that insurance penetration is likely on the higher end, due to the old reference age, as insur
ance rates generally increase over time. 𝐹𝑀𝑖𝑛𝑜𝑟𝑑𝑎𝑚𝑎𝑔𝑒 has no reference data available. Instead, the
reference is based upon the fact that when fluvial flood damage occurs, it is generally large. Therefore
the notclaimed damage is likely small compared to the events registered in the database. Less sen
sitivity is concluded for 𝐹𝑀𝑎𝑟𝑘𝑒𝑡𝑠ℎ𝑎𝑟𝑒. As the case area of Limburg is large, a small regional difference
between the region and the entire Netherlands is plausible. Finally, the 10 M€ reported by Achmea
is deterministic, as the data quality is assumed high due to its application for underwriting insurance
payouts. Because insurance penetration and market share are likely on the higher end, the conclusion
is drawn that the real damage is likely between the lower and median estimate.
1Uninsured damage is either incurred by residents themselves or claimed at the WTS.
2Smaller damages are not present in the database because they were either unreported, or were handled by the front desk
without a damage expert.

42
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Table 6.1: Assumed values used to quantify formula Equation 6.1. The Low Medium and High factors were estimated using
plausible values in the found reference data.

Parameter Explanation Data Reference Assumed factor
Low Med High

𝐷𝑎𝑚𝐴𝑐ℎ𝑚𝑒𝑎
Valued house and inven
tory damage in database. Achmea (2022) 10 M€

𝐹𝑀𝑎𝑟𝑘𝑒𝑡𝑠ℎ𝑎𝑟𝑒 Achmea market share. 25  29%3 DNB (2021) and
VvV (2016) 3,03 3,45 4,00

𝐹𝐼𝑛𝑠.𝑃𝑒𝑛 Insurance penetration. 56  97%4 VvV (2016) 1,04 1,67 1,77
𝐹𝑀𝑖𝑛𝑜𝑟𝑑𝑎𝑚𝑎𝑔𝑒 Damage not in database. 1,1 1,25 1,5

Total damage M€: 31,6 71,8 107,1

Verification & conclusion
Residential house damage estimates are visualised in Figure 6.1. The insurance estimation is con
cluded at 71,8M€. Furthermore, an uncertainty range of 31,6  107,1M€ was set, with a high probability
that the real damage is between the low and middle estimates. In Chapter 6 GFRT residential house
damage5 was adjusted to 96,1 M€, with a range of 63,5M€  134,9M€. Comparing both estimates it is
concluded that the bandwidths overlap, but that the insurance estimate may indicate an overestimation,
especially because the insurance estimate is expected at the lower end of the bandwidth.

In the previous chapter, the GFRT estimate was increased by 23,7 M€ based on a modelmodel com
parison (see Chapter 5). However, the insurance data does not support this adjustment due to two
reasons: First, the most likely insurance estimate is much lower than the adjusted range. Second, the
insurance best estimate of 71,8 million euro aligns better with the original model estimate. Therefore,
the added 23,7 M€ overestimation is removed, resulting in a final residential house damage estimate
of 72.4 M€. Nevertheless, the significant amount of uncertainty should be acknowledged here. As the
insurance estimate is so uninformative, a verdict may also be that too little information is available to
conclude the validity.

Figure 6.1: Insurance and GFRT residential house damage.

Total residential damage
Range: {39, 8; 72, 4; 111, 2} 𝑀€
+ 17, 1 𝑀€
= {56, 9; 89, 5; 128, 3} 𝑀€

GFRT total damage
Range: {295, 5; 373, 1; 411, 9} 𝑀€
− 23, 7 𝑀€
= {271, 8; 349, 4; 388, 2} 𝑀€

(6.2)

The final estimates are shown in Equation 6.2, with the final house damage estimate shown at the
top. Combining this with the remaining 17.1 M€ residential area damage, the total residential damage
estimate range is found. Finally, the GFRT total damage estimate and range for the event are adjusted
by the same 23,7 M€.

3Market share for The Netherlands. The 2021 source quotes a three year stable 29%. The earlier 2016 source quotes 25%
4For the whole Netherlands. Inventory insurance rates are much higher (97%) than housing structure rates (56%). Verbal
sources quote both rates during the event to be above 95%.

5Note that this concerns damage to houses, not including damage to residential area.
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6.2. Governmental claim data (WTS)
As the floods in Limburg were classified as a disaster, the national government set up a fund to accom
modate (part of) the damage suffered by residents, the WTS. In this section, claim data of this fund is
used to spatially verify model predictions.

Data description
Damaged parties6 and residents were able to claim uninsurable damage at the fund. Claim data of
valued damage (Thus the actual damage valued by lossadjusters, not the smaller payout) was shared
in a spatially aggregated form on postal code 6 (PC6) level for privacy reasons. Furthermore, the
number of applications per area was shared. This provides information on the coverage factor, which
is defined as the percentage of the total occurred damage that the WTS covers (RVO, 2021b).

An overview of the valued damage of all 11 categories can be seen in Table 6.2. The largest part was
claimed by businesses7, around 30 million euro, with another 4 million euros being claimed by private
residents. The final 3 million euro are public rescue and cleaning costs8.

Table 6.2: Overview of data in the WTS dataset. The top table rows show the damage and number of applications for 5 damage
categories for the business sector. The bottom row indicates this for private residents and general costs made by either residents
or organisations. Further explanation is given by RVO (2021b)

Business costs

Crop loss Fixed
assets

Current
assets

Startup
costs

Company
damage

Damage
[M€] 10,34 18,61 1,90 5,2e3 0,051

𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 276 277 113 3 10

Residential General
Structure Inventory Cars Rescue Evacuation Cleaning

Damage
[M€] 2,93 0,99 0,14 1,03 0,45 1,80

𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 207 190 41 224 133 328

Bias in the data
Although the damage numbers represent valued damage, significant bias was found in the data that
indicates they do not resemble the full truth. The following points were found:

1. The damage to many personal cars was valued at exactly 3.000 euros. As the maximum payment
is 2.750 euro, lossadjusters may have simply valued damage at 3.000 euro to indicate that the
damage is higher than the maximum payout.

2. PC6 area 6229AN was found to have approximately 150.000 euro of fixed and current asset
claims 9, whereas the GFRT calculated very little damage. The area concerned a camping place
with a marina, indicating the damage was likely boats or caravans. As boat damage is not calcu
lated by the GFRT it cannot be used for verification. The impact of this effect on fixed and current
asset claim data in other areas is unknown.

3. Large differences were found in the areas around Valkenburg. Communication with the data
owner indicated that in this area, practically all damage was insurable, and therefore could not
be covered by the WTS. However, some exceptions were made. Therefore, this area differs from
the rest of the dataset, but the exact effect on the coverage ratio is unknown (RVO, 2021b).

6Companies, NGOs as sports clubs, religious organisations, municipalities
7Businesses had lower insurance coverage and therefore went more to the WTS (VvV, 2016)
8The data also contained a minor amount of infrastructure damage, which was not used because the claims were not finished.
9Relatively large, and 𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 was 25, the largest of all PC6 areas
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Goal and method
The goal of comparing GFRT predictions to the WTS data is twofold. First, it was attempted to show
pattern validation in the region for crop loss, business damage and residential damage. If the aggre
gated GFRT predictions correlate well with theWTS data, it is plausible that the model performs equally
well for the entirety of Limburg. Subsequently, areas that deviate from the regression may be modelled
less accurately by the GFRT. This could indicate errors in the vulnerability or the inundation model. As
relative damage is compared, exposure values cannot be validated through this approach.

Pearson’s correlation was calculated for multiple spatial scales: PC6, PC5 and PC4 level, whereby PC4
has the largest spatial scale10. This was done because the data showed significant variability on PC6
level, possibly due to a varying coverage factor. Pearson’s correlation was preferred over Spearman’s
rank correlation, as a linear relationship between the GFRT and the WTS data is expected11.

As a second goal, it was attempted to approach the absolute amount of residential damage in the area
using a coverage ratio correction factor 𝐶𝑜𝑣. By estimating the coverage factor for each area, the total
damage in that area can be estimated and subsequently used to verify the GFRT’s estimation.

Results  Agriculture
In Section 5.2, it was concluded that agriculture was highly overestimated due to the inclusion of un
damaged areas such as floodplains and pastures. Hence, these areas were removed from the damage
prediction, to allow a more exact comparison. Subsequently, the predicted agriculture damage was ag
gregated for each PC6 area, to allow the comparison between observations and data.

The comparison for the PC6 area and further aggregated PC5 and PC4 areas are shown in Figure 6.2.
On the left two graphs, significant Pearson’s correlation coefficients of 0,51 and 0,52 were found. How
ever on the smaller PC6 scale, no significant correlation was found between the WTS observations
and the GFRT estimates.

Figure 6.2: Scatterplots of GFRT agricultural damage (xaxes) versus WTS crop loss damage (yaxes). Spatial scale decreases
towards the right from PC4 to PC6 level.

This discrepancy can be rooted in the WTS data, or the GFRT. The WTS data may also include pluvial
flood damage to crops, leading to a relatively higher WTS damage in some areas. Furthermore, crop
loss damage is registered in the PC6 area of the claiming farm, whereas the inundated field could
be located in another PC6 area. On the GFRT side, unmodelled variation in crop type value and 
vulnerability could explain the large scatter. The GFRT only applies a single vulnerability curve and
maximum damage, whereas in reality this is highly crop dependent. Furthermore, the exclusion of
other flood parameters such as pollution, flow velocity and inundation time could cause the unexplained
variability.
10PC6 areas have a mean surface area of 85.000 𝑚2, PC5 of 300.000𝑚2 and PC4 of 750.000𝑚2 (Appendix A Figure A.14)
11Assuming that the coverage factor is constant (at least at larger spatial scales), it is assumed that theWTS has a fixed proportion
of the total damage that the GFRT estimates.
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Results  Residential
For residential damage, correlations were hypothesized with both residential, as well as the general
categories indicated in Table 6.2. Pearson’s correlations are analysed in Figure 6.3. For PC4, it was
found that five out of six damage categories correlate strongly and significantly with the GFRT’s res
idential damage 12. Subsequently, all correlations diminish at PC5 and PC6 scales, with the cars
category performing best. Due to the explained major bias in the car data, this category is not further
used. Instead, it was attempted to improve the PC6 correlation between the predictions and the WTS
residential observations, by correcting the latter for the varying coverage factor.

Figure 6.3: The left plot shows the correlation of GFRT residential damage with six WTS damage categories on the y axis, for
three different spatial scales on the xaxis. The right plot indicates the corresponding significance probabilities.

Results  Residential coverage factor estimation
The coverage ratio can be estimated through two approaches: an overall order of magnitude estimate
and a GIS analysis. First, the order of magnitude estimate. As illustrated in Figure 6.4, the WTS
data will only represent part of the total damage, as other damage is claimed at insurance or incurred
self. This distribution is sectorspecific, as both insurance rates as well as WTS requirements differ
per sector. For residential, it is known that insurance rates lie at 90  95% for Limburg (VvV, 2016).
Assuming that this rate is equal in the affected area, around 5  10% of damages should be distributed
over the WTS and residents themselves. Assuming an upper limit split of 5050 between WTS and
residents, the WTS coverage ratio may be assumed to be below 5%.

Figure 6.4: Illustration of damage distribution over three areas. Some of the
affected people will be insured, bringing costs there. Subsequently if no in
surance policy was taken, people may get reimbursed by the WTS. Finally, if
the damage is not eligible for the WTS and not insured (or claimed), damage
can be incurred by the damaged party self.

𝐶𝑜𝑣 = 𝑁𝑊𝑇𝑆
𝑁𝐺𝐼𝑆

𝐷𝑎𝑚𝑡𝑜𝑡𝑎𝑙 =
𝐷𝑎𝑚𝑊𝑇𝑆
𝐶𝑜𝑣

(6.3)

12PC4 Evacuation costs have a low correlation but an insignifcant Pvalue due to a sample size of five.
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The second method of estimating the coverage factor applies 𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 and relates this to the num
ber of affected houses, found with GIS analysis and BAG data. This was done in the following method:
First, building surfaces were intersected with the flood extent to find all affected buildings. Second, the
number of addresses in each affected house was aggregated over the postal code 6 area, to find the
total amount of affected houses in the area13. Third, the coverage factor was estimated by dividing
the amount of WTS applications over the amount of GISestimated affected houses as shown in Equa
tion 6.3. However, the GISfound average coverage factor was 37%14, which is much higher than the
expected 05%. This is likely caused due to the following four modelling errors and uncertainties:

1. TheWTS coverage factor for private residents and businesses is significantly different, but cannot
be disaggregated because 𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 indicates no further differentiation. Also the BAG data
does not indicate exactly which addresses are private or businessrelated. Therefore, 𝐶𝑜𝑣 is
likely too high for residential damage, and too low for business damage.

2. The amount of WTS claims does not align with the GISfound affected addresses. An example
of this is the boat example elaborated on in the previous bias section.

3. Currently all addresses are used, whereas especially in Valkenburg, many higher buildings with
unaffected apartments are present. Contrarily, these houses may have affected cellars, but the
exact distribution is unknown.

4. With the current method, all addresses in affected buildings are counted as affected. However,
large buildings on the border of the flood extent will also have unaffected apartments on the not
flooded side of the building.

These reasons indicate why the coverage error will deviate significantly from reality. Unfortunately, the
current data capabilities did not allow an increase in accuracy using GIS. Therefore, two further steps
were taken in Equation 6.4 to improve the factor.

Removal: 𝐶𝑜𝑣 = 𝐶𝑂𝑉 < 0, 5 Linear transformation: 𝐶𝑜𝑣 = 𝐶𝑜𝑣
12,97 (6.4)

First, all areas where 𝐶𝑜𝑣 was larger than 0,5 were removed, under the assumption that the indicated
errors were too large to allow verification. Subsequently, the assumption was made that the distribution
of the coverage factor in the other areas is correct, but that a linear transformation is required to reach
the correct order of magnitude (estimated using Figure 6.4). A regression analysis indicated that for
residential damage, a further division of 12,97 was required to minimize the RMSE (elaborated below
in Figure 6.5. Finally at the bottom of Equation 6.3, the found 𝐶𝑜𝑣 was used to transform the residential
WTS data (structure + inventory) to total residential damage in each PC6 area.

Results  Residential coverage factor correction
Results are shown in four graphs in Figure 6.5, with WTS data on the yaxes and GFRT data on the x
axes. Starting with the top left figure, the entire dataset is shown, without coverage correction and poor
correlation (as found earlier). Subsequently moving to the leftbelow graph, the coverage correction
is applied to each data point, with a mean Coverage ratio of 1,77%. In this graph, it was noticed that
most outliers (far away from the diagonal) are from the PC4 areas 6301 (brown) and 6243 (green).
13It may be plausible that only groundlevel apartments were affected, especially in Valkenburg. However, both methods were
tested and applying the total amount gave more plausible results.

14Histograms are shown in Appendix A Figure A.15
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Figure 6.5: All plots show GFRT modelled damage on the xaxis vs WTS structure + inventory damage on the yaxis. The left
top indicates the base data. The left bottom figure indicates the base data corrected for each coverage factor. The dashed line
indicates the 11 line that would indicate r=1 The right top figure indicates the base data without removing outliers. The right
bottom figure indicates data without removed outliers that are also corrected for the coverage factor.

When analysing the outlier areas, it was concluded that both WTS data errors and modelling errors
could cause the deviations. The 6301 area concerns the Valkenburg area, where it was earlier con
cluded that highly irregular coverage factors are present. It may be that the applied coverage correction
is unsuitable for this area. On the other hand, it may also indicate the larger uncertainty of the model,
as large amounts of unknown inundation grid cells with a depth of 0,5m 15 were found here.

The 6243 area concerns the municipality of Brommelen, where the entire flood extent was set to 0,5m.
The large discrepancy between the data and the model, may be caused by the occurred spatial variabil
ity of the inundation depth, which was not inserted into themodel. Three areas with lowerWTS damage,
and one with much higher WTS damage were found (Appendix A Figure A.17). It is not exactly clear
why one area has much higher damage, as this area has a higher average elevation16 Examination of
the area through google street view gave the impression that houses in the lessdamaged areas had
higher sills than buildings in the more damaged area. This could have limited the water from entering
the houses. Further, local research is required to draw any final conclusions.
15Elaborated in Section 5.1, 0,5m inundation was set where the inundation depth was unknown
16Analysed AHN Digital Terrain Model (DTM) with a resolution of 0,5m.



6.2. Governmental claim data (WTS) 49

Because of these irregularities, the outliers were removed from the plots on the right. The bottom
right plot has both a coverage correction as well as the removed outliers, which results in a significant
Pearson’s correlation of 0,86. This indicates that the model shows a similar pattern with the remaining
six PC4 locations throughout the area.

The earlier mentioned regression analysis was executed on the data in the right bottom plot, to minimize
the RMSE. The resulting mean coverage factor of 1,79% is plausible taking into account the analysis
presented in Figure 6.4. By dividing all WTS residential damage over this coverage factor, a total
residential damage estimate of 25,6million euro is found. Nevertheless, large uncertainty remains here,
as we do not know the exact value of the coverage factor. A varying coverage factor between 3,59%
and 0,90%, which are also plausible, creates estimates of 12,80 and 51,19 million euro respectively
(See Appendix A. The uncertainty seems too large to draw a definite conclusion on the quantitative
estimation, but as the bandwidth is lower than the model’s estimated mean value, it may indicate a
model overestimation.

Results  Companies
A similar analysis was executed by verifying fixed, current and total assets17 with GFRT company esti
mated damage18. Results are shown in Figure 6.6, indicating a similar pattern to residential correlation.
On PC6 level, total assets correlate best, with a correlation value of 0,47 and a significance of 0,009.
Further variability may be caused by the earlier shown ambiguity in the WTS data or modelling errors.

Figure 6.6: The left plot shows the correlation of GFRT  business damage (the classes Industry, Office, Store, Hotel, Company
terrain) with WTS damage categories fixed, current and total assets (fixed + current) on the y axis, for three different spatial
scales on the xaxis. The right plot indicates the corresponding significance probabilities.

It is counterintuitive that current assets (Machines, stock) exhibits a much higher correlation than fixed
assets (buildings) on PC4 and PC5 levels. North of Meerssen, PC6 6241ND was identified as a major
outlier when analysing the scatterplots (shown in Appendix A Figure A.16). Here, the GFRT estimated
damage 5x as large as the next largest P6 areas, however WTS damage showed no further improve
ment. GIS analysis indicated that this was again an unknown inundation depth area of 0,5m. Therefore,
it is plausible that many buildings here did not flood.

It was not attempted to improve correlations further due to expected difficulties with the data quality and
the coverage factor, as shown with residential assets. In any case the comparison shows that large
variability can be expected on a smaller spatial scale, but that on a large scale the model captures
damage patterns for businesses.
17Total assets is calculated as fixed + current assets
18There are many business damage classes in the GFRT. For the comparison, an aggregation of Industry, Office, Store, Hotel,
and Company terrain was used.
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Conclusion
This chapter found strong and significant Pearson’s correlations between governmental claim data
and GFRT estimations. For business and residential damage, Pearson’s correlations decreased from
approximately 0,90 on the large spatial scale (PC4) down to approximately 0,40 on the smaller PC6
scale, due to variability in the data and the data coverage factor.

The comparison provided two insights. First, regions where the model deviated significantly from the
data were indicated in both residential and business sectors. This is likely caused by a difference
between the occurred inundation and the assumed 0,5m inundation map. Furthermore for residential
assets, it was partly possible to correct for the varying coverage factor. This allowed a data trans
formation which indicated pattern validation of the estimations as well as remaining uncertainty. The
mean coverage factor found through regression analysis seems plausible, which further supports the
accuracy of the residential damage estimate (as concluded in Equation 6.2). Second, for agricultural
damage, a comparison on a small spatial scale was hindered by the fact that damages are reported in
a different location than where they occurred. Large variability in the data remains unexplained by the
model, likely due to varying crop types and flood parameters.

This analysis pointed out that the model can capture part of the variability seen in the data, as well as
indicate error locations for this flood event. However, as many errors seem attributable to the applied
hazard map, it remains difficult to transfer this knowledge to other flood scenarios. Therefore, the
analysis does not provide additional information on the validity of the model for risk studies.
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Limburg  Structured Expert Judgement

During phase 3  step 5 of the validation process, it is possible that limited observations are available.
Then, it is possible to create new verification data using expert judgement as is done in this chapter for
Limburg. Subsequently in step 6, the data is used to verify model components and outcomes.

7.1. Method
Although experts are frequently used in flood risk modelling and validation, applied methodologies vary
significantly (Budiyono et al., 2015; Chen et al., 2011; Sayers et al., 2016). The currently appliedmethod
is based upon the classical model, developed by Cooke and Goossens (2008) (See Section 2.5).

Goals
Expert elicitation was applied to the Limburg 2021 floods case study with three particular goals:

1. The verification of GFRT predictions

2. The verification of GFRT input data

3. Evaluating the effectiveness of structured expert judgement as a validation methodology.

(1) Verification of GFRT predictions requires damage observations, that are generally not fully available
for flood events. It was hypothesised that experts are able to combine the available fragmented infor
mation such as partial damage numbers from an insurer, governmental claims and historical damage
reports. The expert elicitation method is especially proficient at combining this information with expert
experience, to create comprehensive observations usable for verification.

For the first goal, estimations on two different system scales were elicited: Average residential scale
and total damage scale. First, experts were asked to estimate average residential damage to houses
and inventory in a small urban area. Second, a large scale estimation of total direct flood damage
along a river stream was attempted. Experts were asked to consider direct physical damage to houses,
agriculture, companies and infrastructure for three locations: the Meuse, the Geul and the Roer. Their
total estimate for this damage was compared to the model’s estimate. This separation was executed
under the hypothesis that some experts may have knowledge especially about residential houses,
whereas others could be more adept at estimating damage across different sectors.

(2) Besides verification of model predictions, the second goal was to verify the used input data. A
potentially large error was found in the modelled exposure of residential assets (Section 5.1). It was
hypothesised that the exposure was underestimated by around 32,7%, possible leading to an additional
23,7 million euro of damage. To test this hypothesis, experts were asked to give their estimate of the
maximum damage that could have occurred to an average house in Limburg, due to the 2021 floods.

(3) The third goal was achieved through postelicitation interviews where experts gave feedback on the
process, and through a reflection on the results.
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Structure
It is plausible that good estimations for residential damage and exposure require a different expertise
than good estimations for total damage to multiple sectors. Therefore, the experiment was separated
into two parts as seen in Table 7.1. Besides the topic, number of calibration and seed questions, and
the number of experts is shown.

Table 7.1: Overview of the two parts the expert elicitation session was split into. 𝑁𝐶𝑄,𝑁𝑇𝑄,𝑁𝐸𝑥𝑝. relate to the number of calibration
questions, target questions and experts respectively, that was used in the study.

Part Topic NCQ NTQ Nexp
Average residential Average damage and exposure of residential

houses.
7 4 10

Total direct damage Total direct damage to residential, infrastructure,
companies and agriculture assets

5 3 9

For the residential part, experts were calibrated using seven calibration questions. For two questions,
WTS data was used (RVO, 2022). For the other five questions, calibration was initially planned using
actual damage data of the Limburg 2021 flooding event. Unfortunately this data was not available on
time. Therefore, two calibration scenarios where created using damage functions from literature:

• Scenario 1  Benchmark: Benchmark damage data was created out of four damage curves: 1)
Dutch: SSM single family house, 2) American: HAZUS 3) British: MCM 4) German: Flemops.
These curves were combined with the maximum damage of SSM single family house

• Scenario 2  SSM: A Dutch damage curve for 24 story low rise buildings was used. This curve
closely represents the function used in the GFRT (De Bruijn et al., 2015).

The following 7 calibration questions were used:

1. How do you estimate the average valuated amount per application for damage to residential
houses (structure), that is applied for at the WTS for the Limburg floods 2021?

2. How do you estimate the average valuated amount per application for damage to residential
inventory, that is applied for at the WTS for the Limburg floods 2021?

3. How do you estimate the average residential damage to a single house in the area, with a maxi
mum water depth from the house sill of 10cm.

4. How do you estimate the average residential damage to a single house in the area, with a maxi
mum water depth from the house sill of 35cm.

5. How do you estimate the average residential damage to a single house in the area, with a maxi
mum water depth from the house sill of 75cm.

6. How do you estimate the average residential damage to a single house in the area, with a maxi
mum water depth from the house sill of 150cm.

7. How do you estimate the average residential damage to a single house in the area, with a maxi
mum water depth from the house sill of 250cm.

For the total damage section, five calibration questions were created. Three questions asked about
historical flood events in the Meuse, and two concerned events in the UK and Germany. The expert
answers were validated with historical data from Jongman et al. (2012) and Wind et al. (1999)

1. How do you estimate the total valuated damage around the Meuse that was applied for at the
WTS for the flood in January 2011?

2. How do you estimate the total valuated damage around the Meuse that was applied for at the
WTS for the flood in January 1995?

3. How do you estimate the total valuated damage around the Meuse that was applied for at the
WTS for the flood in December 1993?
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4. How do you estimate the total valuated damage in Eilenburg (Germany), due to the flood in August
2002?

5. How do you estimate the total valuated damage in Carlisle (UK), due to the flood in August 2005?

Experts
To answer the questions, a group consisting of 10 experts was gathered in multiple online sessions.
Experts were selected based on flood damage expertise and can be divided roughly into two groups,
based on their background: Model experts and damage experts.

Four participants were classified as model experts. The model experts had a scientific background
and gained experience by working on flood risk studies at academic research institutions and/or gov
ernmental bodies. Some were also involved in Limburg floods, both the 2021 event as well as earlier
large events in 1993 and 1995. These experts were selected because it was suspected they had a
holistic view of the damage situation, across multiple sectors. However, these experts could be biased
towards model thinking, and therefore unsuitable for validation purposes.

Subsequently, four experts were classified as damage experts. Damage experts have ‘real’ flood dam
age experience from the field, where they have gained expertise by determining the financial amount
of damage to an asset for insurance companies or independent valuation institutions. All participat
ing damage experts were highly involved in the 2021 floods and saw the effects that the flood had on
people’s direct life and property. These experts were particularly experienced in residential damage,
and had less knowledge on other sectors such as infrastructure and company damage. Some had
also experienced the large floods in 1993 and 1995. The two final experts were not classified as either
Damage Expert or Model expert, but had broader flood experience1.

The expert estimations were elicited in online sessions of approximately 2,5 hours. The context of the
study, probabilistic training and sample questions were discussed at the start of the session. Subse
quently the experts were elicited using an online form. Relevant information was provided together with
the questions, and in an attached document.

Decision makers
For this experiment, 5 different Decision Makers2 (DM) were created.One equalweighted average of
all experts, two optimized DMs based on the previously mentioned calibration scenarios, and two DMs
based on expert background.

1. DMeq: The equal weights DM gives equal weights to all experts, irrespective of their calibration
or information scores on the calibration questions.

2. DMbench.: This is an optimized3 decision maker using calibration scenario one: a benchmark
of damage models4 as calibration data.

3. DMSSM: This is an optimized decisionmaker using the damagemodel SSM  single family house
as calibration data.

4. DMmodel: This is a selfdefined DM that assigns equal weights to all four experts with a mod
elling background.

5. DMde: The damage expert DM is another selfdefined DM, with equal weights to all four experts
with a damage expert background.

1Expertise was more focused on macroeconomical factors, indirect damage and overseeing of damage claims.
2Linear combinations of expert estimations, see Section 2.5
3The experts are combined in such a way that the statistical accuracy of the Decision Maker (in terms of calibration and infor
mativeness) is maximised.

4The average of SSM single family house, MCM, HAZUS and Flemops was used, together with exposure value of SSM single
family house
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7.2. Results  Average residential
This section discusses the results of the average residential section. Here, experts were asked to give
their estimate for average damage to a single building, for three locations, and for their estimate of the
maximum damage that could occur to a building.

Calibration
Calibration5 was done using two scenarios, the resulting expert scores can be seen in Table 7.2. The
benchmark scenario includes expert 4 and expert 10, with a dominant weight for expert 10 due to a
higher information score. The SSM scenario only includes expert 4, as expert 10 has a much lower
calibration score in this scenario. All other experts are excluded in the optimized decision makers due
to too low calibration scores.

Table 7.2: Expert scores and weights for estimating average residential damage, depending on the two calibration scenarios:
Calibrating with benchmarked European damage functions and calibrating with the SSM damage function for Lowrise buildings.
Experts are sorted on benchmark calibration score. Higher calibration score indicates better calibration. Higher information
score indicates more informative experts.

Experts Expertise Cal score Info score Weight

Benchmark SSM Benchmark SSM Benchmark SSM
Exp. 4 Model 0,0903 0,0903 0,4410 0,4410 0,295 1,0
Exp. 10 Damage 0,0903 0,0124 1,0241 1,0241 0,705
Exp. 8 Damage 0,0016 3,20E05 1,4825 1,4825
Exp. 3 Model 4,30E04 2,31E05 1,0163 1,0163
Exp. 5 Other 2,31E05 4,30E04 0,9560 0,9560
Exp. 2 Model 7,87E06 7,87E06 1,4819 1,4819
Exp. 7 Damage 7,87E06 7,87E06 2,6373 2,6373
Exp. 9 Damage 7,87E06 7,87E06 1,4516 1,4516
Exp. 1 Model 2,45E07 2,45E07 2,2274 2,2274
Exp. 6 Other 2,45E07 2,45E07 2,1851 2,1851

The calibration results give doubt to the robustness of the experiment due to three reasons. First,
calibration scores rapidly decline after expert 4 and expert 10. This indicates that if accidentally these
experts had not participated in the research, completely different results would have come out of the op
timized decision makers. A robustness analysis supports this, with calibration scores dropping rapidly
in both scenarios6. Second, the optimized decision makers have very large uncertainty bandwidths,
making their applicability low. Third, the calibration is executed with data from literature. Although these
functions are based on real flood events, their transferability to the Limburg region remains question
able. To increase robustness of the outcomes, we focus the conclusions of the experiment on DMde
and DMmodel. These may be more reliable due to the inclusion of more expert estimations.

5Plots of calibration questions can be found in Appendix B Figure B.2 and Figure B.3
6Plots can be found in Appendix B Figure B.4



7.2. Results  Average residential 55

Average building estimates
The experts were asked to estimate average residential at three areas7 with different damage charac
teristics. First Valkenburg, as it was a heavily damaged area with many affected houses. Second, Schin
op Geul was selected as an upstream location with lower water depth. Third, an area in the municipality
of Meerssen was selected. This third area has higher uncertainty due to an unkown waterdepth8

For each of the locations, the number of affected (ground level) houses was estimated in GIS using
BAG data 9. It was found that the area in Valkenburg consisted of 749 affected houses, Meerssen of
159, and Schin op Geul had 166 affected houses. The total residential damage calculated in the GFRT
was divided by these numbers respectively.

A large spread is seen between individual expert estimations in Figure 7.1. Especially model experts
indicate a large upper uncertainty. Contrarily, damage experts are more informative and give consis
tently lower Q50 estimates.

Looking at decision makers, estimations of DMde align closely with the GFRT’s estimate for Schin
op Geul and Meerssen, but larger error of twice the mean for Valkenburg. DMmodel estimations
correspond less well to the GFRT’s estimate, but exhibit a similar pattern.

When comparing DMde estimates between the three locations, it is found that the Q50 estimate does
not change significantly. Despite the communicated difference in inundation depth, experts do not
expect significant damage differences. This may be explained by a difference in house surface area,
as was indicated in the evaluation10.

Moreover, all GFRT realizations are placed within the 90% confidence interval of both DMde and DM
model which theoretically indicates their support of the model’s validity. Nevertheless, these uncertainty
bandwidths are 23 times as large as the estimated mean, which is much larger than the concluded
uncertainty in Section 5.2, and the range suggested by Huizinga et al. (2017). This may have two
conclusions. First, it may doubt the added value of the SEJ results as a means to reduce uncertainty.
Second, it could indicate that total uncertainty is much larger than suggested in these earlier studies.
7Delineated using CBS defined neighbourhoods (buurten).
8The GFRT calculated with 0,5m depth, however this was manually inserted into the flood map.
9Exact procedure can be found in Appendix B
10Schin op Geul and Meerssen were larger, with average surface areas of 175 and 210𝑚2, vs 100𝑚2 in Valkenburg. Respective
inundation depths where indicated as 0,5  0,75 and 1,0m



7.2. Results  Average residential 56

20 40 60 80 100 120 140 160

Exp. 1
Exp. 2
Exp. 3
Exp. 4
Exp. 5
Exp. 6
Exp. 7
Exp. 8
Exp. 9

Exp. 10
DM-eq

DM-bench.
DM-SSM.
DM-model

DM-dam exp.
GFRT Estimate

E
xp

er
ts

 &
 D

M

Meerssen

20 40 60 80 100 120 140 160

Exp. 1
Exp. 2
Exp. 3
Exp. 4
Exp. 5
Exp. 6
Exp. 7
Exp. 8
Exp. 9

Exp. 10
DM-eq

DM-bench.
DM-SSM.
DM-model

DM-dam exp.
GFRT Estimate

E
xp

er
ts

 &
 D

M

Schin op Geul

20 40 60 80 100 120

Exp. 1
Exp. 2
Exp. 3
Exp. 4
Exp. 5
Exp. 6
Exp. 7
Exp. 8
Exp. 9

Exp. 10
DM-eq

DM-bench.
DM-SSM.
DM-model

DM-dam exp.
GFRT Estimate

E
xp

er
ts

 &
 D

M

Valkenburg

Average Residential Damage Estimates

Figure 7.1: Results for the target questions on average residential damage for three locations. The GFRT estimate is shown on
top, and compared with 5 DMs and the 10 single expert estimations.
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Depth damage curves
Besides average damage, experts were asked to estimate damage at a specific water depth. Five
questions asked about average residential damage at 10cm, 35cm, 75cm, 150cm and 250cm of in
undation depth, measured from the door sill. Their answers are compared to the GFRT’s vulnerability
function in Figure 7.2.

Figure 7.2: Depth Damage curves according to the 10 experts. On the left, damage experts are noted with a dashed red line (
), whereas model experts are annotated with a blue extended line. On the right, decision makers consisting out of only model
experts or only damage experts are indicated in the same method.

Looking at the left graph showing all individual expert estimations, the following three conclusions are
drawn:

1. At inundation depths below 0,75m, half of the experts believe damage to be less than the used
vulnerability, whereas the other half believes it to be more. At higher inundations, eight out of 10
experts believe the damage to be considerably less than modelled with the vulnerability curve.
This is also confirmed through the right plot showing the equal weights decision maker.

2. It is seen that 3/4th of modellers believe that damage does not increase further after 1,5m inunda
tion depth, whereas all other experts still indicate a significant increase between 1,5m and 2,5m
inundation depth.

3. Estimates amongst damage experts are highly variable. One damage expert substantiated his
deviating estimation by considering cellars. In his view, a large part of the residential damage in
affected houses was attributable to rooms below ground level. 10 cm of water in the living room
would mean large inundation depths on the lower levels, resulting in tens of thousands of euros in
damages. Other damage experts did not indicate subterrain areas in their estimations, despite
having seem the same affected location.

From these insights, we draw the conclusion that experts agree with the used vulnerability model for low
depths up to 0,75m. Afterwards, experts believe considerably less damage will occur to houses than
themodel predicts. The right graph with DMs further supports this conclusion. However, the uncertainty
of this conclusion should be acknowledged, given the strongly diverging individual estimations.
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Maximum damage
In Section 5.1, it was found that the used exposure value for residential houses was uncertain. To
validate the used data, experts were asked to estimate this exposed asset value. The value was
defined as the damage that would occur in a totalloss situation11. Expert estimations for the exposure
value of an average house in the area can be seen in Appendix B Figure B.1. Here, the exposure used
in the GFRT is also shown at the top of the plot12

Looking at the results, it is found that both modellers as well as damage experts on average expect a
higher exposure value. This coincides with the earlier found result that the exposure was underesti
mated by excluding inventory (Section 5.1). However, an underestimated exposure would also indicate
an underestimated damage estimation. This contradicts the earlier conclusion where experts pointed
at a model overestimation, in the absolute depthdamage curves.

In the evaluation, experts pointed out that this totalloss situation rarely occurred in the 2021 floods.
Therefore, the used exposure value has not lead to an underestimaton. In the case that more extreme
floods are modelled in future floodrisk studies, the exposure value could be altered. Correspondingly,
the relative depthdamage function would require adjusting.

11For instance if a flood damage so large had occurred that the entire home would need to be rebuild and the entire inventory
replaced.

12GFRT average house exposure was calculated using the same average house surface area of 100𝑚2 that experts were told
to assume. This resulted in a total exposed asset value of 1071 * 100 = 107.100 euro.
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7.3. Results  Total damage
In the second section, experts were queried on total direct damage estimates. This included residential
damage, infrastructure damage, direct business damage and agricultural damage.

Calibration
The resulting calibration scores, information scores and expert weights are shown in Table 7.3. Here,
we see that expert 1 and 8 perform the best, being the only two experts in the optimized decision maker.
For the global weights decision maker, Experts 3, 4 and 6 are also included for an additional weight of
11,7%. The other experts have a near zero weight based on their calibration and information scores.

Table 7.3: Expert weights for part 2: estimating total direct flood damage. Ranked on calibration score.

Experts Expertise Cal score Info
score Weight

Global Opt.
Exp. 1 Model 1,40E02 1,305 0,304 0,348
Exp. 8 Damage 1,40E02 2,302 0,571 0,652
Exp. 3 Model 1,81E03 1,213 0,047
Exp. 4 Model 1,81E03 0,864 0,026
Exp. 6 Damage 1,10E03 2,112 0,043
Exp. 5 Other 1,30E04 2,748 0,006
Exp. 2 Model 3,62E05 1,405 0,001
Exp. 7 Damage 1,58E05 2,465 0,001
Exp. 9 Damage 1,58E05 2,226 0,001

For the individual calibration questions13, the two large floods in 1993 and 1995 were captured in the
uncertainty of all decision makers. However, the much smaller Meuse flood in 2011 is not estimated
accurately. Furthermore, also the estimates for Eilenburg (Germany) and Carlisle (UK) are far off.
Despite their experience, no expert predicted the correct scale of these international floods. Most
experts even estimated the damage to be lower than the Limburg floods of 1993 and 1995.

These results indicate that experts are not able to give reliable estimates for total direct damage. Al
though decent estimates are given for the known floods of 1993 and 1995, it can be concluded that
estimates cannot be extrapolated to lower or higher extremes.

Total damage estimates
Due to the unsatisfactory calibration, the optimized and global decision maker were not used to draw
conclusions. Instead, focus was placed on analysing the damage expert (DMde) and model expert
(DMmodel) decision makers.

The target questions are presented in Figure 7.3. Looking at the damage experts, we see that the best
estimates are 3 to 4 times lower than the GFRT realization for the Meuse and Geul. Contrarily, the
Q50 estimate for the Roer corresponds well. Moving on to the model experts, a larger uncertainty and
slightly higher Q50 estimations are seen.Both model experts as well as damage experts capture the
GFRT realization within their uncertainty. However, the lower Q50 estimates, for the Meuse, and to
lesser amount the Geul indicates the expert’s opinion that the GFRT currently overestimates damage
for these areas.

Based on the gathered data, it may be concluded that experts agree with the model’s prediction for total
direct damage. However, as overall uncertainty bandwidths remain too large, this conclusion can only
be of added value during initial stage validation. Furthermore, as the calibration questions indicated
poor performance for unknown flood events, the method is likely unapplicable in unfamiliar terrain.
13Individual results are shown in Appendix B Figure B.5
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Figure 7.3: Expert estimations for total damage along the three main rivers in Limburg: Meuse, Geul and Roer. The GFRT
estimate is shown on top, and compared with 5 DMs and the 10 single expert estimations.
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7.4. Method evaluation
After the elicitation, experts were personally asked to evaluate the elicitation process. This explained
some of the data, and may give guidance to future expert judgement experiments.

Expert feedback
Themain difficulty for the residential damage section, was that experts were aware of the highly variable
nature of damage to residential houses. Therefore, they found it difficult to estimate an average value.

Furthermore, experts indicated the significant influence of many uncertain variables as sillheight, flood
preparation and flow velocity. Especially modelexperts emphasised that these factors led them to give
broad estimates. Also ambiguity in the type of house remained, with some damage experts underlin
ing the huge difference cellars could make in an affected house. Some experts inferred that a 10cm
inundation had a high probability that a cellar was completely flooded, leading to high damages.

The questions on total damage were evaluated as difficult, and experts indicated that these estimation
scales were too large. Experts approached the problem by breaking down estimations in multiple
sectors, and transforming the given residential damages. Here, the model experts communicated the
use of theoretical approaches, by also including if the area had flood experience, and where it was likely
located in the watershed. On the other hand, damage experts gave more importance to the economical
factors by using GDP data and used impressions of the city The historical events were estimated as if
the area would be flooded by that event today. As the damage pattern may have changed significantly
due to different inventory, this may induce errors.

As the results indicate that damage experts may have higher informativeness and calibration, these
experts seem to be more suitable for elicitation.

Opportunities and drawbacks of SEJ as a validation tool
On the positive side, this method of expert judgement can generate academicquality data. By querying
the experts on their opinion, without first sharing the model’s result, an opinion with minimum bias
can be created (O’Hagan, 2019). Furthermore, the application of the results are separated from the
elicitation process itself, which also helps to minimize sources of ambiguity (Cooke & Goossens, 2000).
Additionally, the personal evaluations with experts may give new insights into the damage behaviour
of assets in that specific region (e.g. the previously mentioned cellars). This can highlight important
differences that are difficult to identify from a theoretical perspective.

The evaluation also showed drawbacks of the applied method. The first problem that emerged was the
high cost of time, both in the preparation from the researcher as well as during the elicitation from the
experts. Especially the calibration questions add to the large workload of this research type. Second,
the results of part two show that actual local expertise is highly important to elicit good estimations from
the experts. However, the damage experts used in this case work for large insurance companies. If the
insurance industry is not mature at the location of a flood damage study, then local damage experts will
also not be available. It is plausible that this is the case especially in lessdeveloped and datasparse
areas of the world. Therefore, no suitable experts may be available in datasparse regions, where this
study type is especially relevant. A final potential improvement point could be the inclusion of outof
sample validation. When more resources are available, outofsample validation of optimized decision
makers could strongly improve the reliability of the expert results, which could increase validity of the
flood damage model.

The drawbacks and unsatisfactory results outweigh the positive points. The evaluations hint that repeat
ing the experiment with better trained experts is unlikely to give improved results, as experts disagree
inherently on the Q50 estimations, include many other uncertain factors, and do not see the method
connect well with reality. Therefore, the application of another type of expert elicitation method may be
more suitable. The classical Delphi method could give higher consensus between expert estimations,
however this may result in a biased answer that is not closer to reality (Hallowell & Gambatese, 2010).
Furthermore, other estimation methods as without iteration rounds and calibration requirements, for
instance staticized groups, could also minimize bias and reduce costs (Erffmeyer & Lane, 1984).
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7.5. Conclusion & discussion
In this section, a conclusion on the SEJ results for the case study is given, followed by a conclusion on
the applied SEJ method as a validation tool.

Case study conclusion
From the analysis of calibration and target questions, three conclusions were drawn for average resi
dential damage.

First, the Q50 estimations indicate that experts may agree with residential GFRT estimations for in
undation depths below 0.75m. At higher inundation depths, the experts believe that the model could
overestimate residential damage. Second, experts believe that the GFRT asset exposure is in itself
underestimated by approximately 500 €/𝑚2. However, this parameter has not led to erroneous dam
age predictions, as experts indicated that totalloss situations occurred rarely in the 2021 flood. When
more extreme flood scenarios are included in a flood risk analysis, it may be preferred to increase the
exposure value. Correspondingly, the relative depthdamage curve will then need to be adjusted ac
cordingly. Third, it was seen that expert uncertainty is too large for general applicability, and strongly
questions the first two conclusions based on the Q50 estimates. As SEJ uncertainty is larger than that
of general literature, it brings up doubst on the added value of SEJ as a validation method (Huizinga
et al., 2017).

For the section on total damage estimates, it was concluded that experts are not able to reliably esti
mate aggregated damage numbers. Although two acquainted flood events were estimated adequately,
estimates were far off for three unknown floods with strongly deviating damage numbers.

SEJ as a validation method
From these results, it is concluded that Structured Expert Judgement is likely not useful for general val
idation procedures of flood damage estimations. As the overall uncertainty was found to be too large to
increase confidence in themodel, the q50 estimations alone are of limited use. Furthermore, the evalu
ations indicate that experts are unlikely to improve their calibration and informativeness when repeating
the experiment. Other drawbacks as the high cost, the requirement of scarcely available calibration
data and lack of suitable experts (especially in datascarce areas), further reduce the applicability of
this method.

Two main benefits were found: first, the increased confidence in the model by acquiring expert estima
tions with minimum bias. Second, the qualitative insights on accurateness of model parameters and
characteristics on the flooded area. However, these benefits can also be achieved through other, less
costly, forms of expert judgement.
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Limburg  Conclusion

The goal of this analysis was to validate the initial Global Flood Risk Tool (GFRT) estimation of 526,2
M€, for direct damage caused by the 2021 river floods in Limburg. By applying the proposed frame
work, a best estimate of 349,4 M€ was found, indicating an initial overestimation of 34%. Besides, an
uncertainty range of 271,8 M€ (23%) to 388,2 M€ (+11%) was concluded.

This was assessed using plausible assumptions and damage observations. Initial plausible errors
were found with public spatial datasets for cropland and infrastructure, financial information and model
model comparisons with HISSSM. Subsequently, damage data from the WTS, damage experts and
the insurance industry were used to verify the adjusted estimates.

First, plausible errors in agriculture and infrastructure sections indicated an overestimation by themodel
of at least 170,8 M€. A large number of floodplains and grassland were incorrectly classified as dam
aged agricultural land, and linear infrastructure was modelled poorly due to elevation and rasterization.

Second, estimations for residential houses were found to be highly uncertain between 62,9 to 134,3
M€. The main uncertainty source was the inundation depth, which was unknown for 51% of the affected
residential flood extent. Furthermore, the exposure values and vulnerability function were not validated
for this region. However, this uncertainty was not quantified due to lacking information. Total uncertainty
may be reduced through the application of detailed damage data, for instance present in insurance
databases. Besides the uncertainty, phase 2 assessed a plausible exposure in residential houses.
Through a modelmodel comparison with HISSSM it appeared damage to inventory was excluded
from the maximum damage value, leading to an underestimation of 23.7 M€. However in phase 3, no
underwriting evidence of this error was found in highlevel insurance data and WTS data. Therefore, it
was concluded that the initial exposure value was accurate after all.

Third, damage to highly specific assets such as sluices, power and water treatment plants was anal
ysed. For these locations, it was concluded that the surfacebased approach is too uncertain to draw
any conclusions. Instead, the number of affected assets should be reported and the damage validated
individually.

These results can be used as a validation base when applying the model to a probabilistic analysis.
First, the modelled agriculture and infrastructure damage classes can be calibrated to reduce errors for
the analysed event. Furthermore, the found uncertainty in residential assets can guide engineers in the
uncertainty bandwidth they should expect for flood scenarios with different return periods. Finally, the
identified assets where a surfacebased damage calculation was deemed unsuitable can be assessed
on a casebycase basis, with additional focus on the indirect damage impacts.
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Beira  Case description

The second case study of this report is focused on the 2019 coastal flooding in Beira  Mozambique
caused by hurricane Idai, illustrated in Figure 9.1. Similar to the previous case event, this chapter
describes step 1 of the validation framework. The relevant background of the area is described, together
with flood event characteristics. Finally, the applied data are summarized here.

Case background
Mozambique, is an eastAfrican country with a total surface area of around 800.000 𝑘𝑚2 Today more
than 40% of the population is living under the poverty threshold (Santos & Salvucci, 2016). Next to this,
food insecurity and malnutrition is a major problem for the area, especially in the Northern and rural
parts.

The country has a population of approximately 31 million people, and is characterised as very young
and rapidly growing. 45% of the population is younger than 15 years old (CIA, 2021), and an annual
growth rate of 2.8% per year is expected. Currently, more than 30% of the population is estimated to
live in urban areas, which is expected to increase to 50% around 2040 (UNHabitat, 2018). This means
that all of Mozambique’s cities will continue to undergo rapid growth in the near future, with an estimated
total of 80.000 new households annually in urban areas. Already, around 80% of all urban households
reside in an informal settlement. These settlements are characterised by inadequate infrastructure, no
formal land registration and poor sanitation (UNHabitat, 2018).

Three large urban areas are present in Mozambique: Nearby the capital Maputo in the South, around
Beira in the middle of the country, and around Nampula in the North (CIA, 2021). Like these areas,
most cities in Mozambique are located near rivers or the coastline, resulting in an estimated 60% of
the population living in floodprone areas (UNHabitat, 2018). At the same time, the country is also
frequently hit by other natural hazards. Tropical storms have hit the country every year on average for
the past 25 years, and droughts are a common cause of widespread food insecurity and malnutrition.

Focusing on the case area, Beira is the capital of the Sofala province, and has around 500.000 inhab
itants. The city has a major trade position due to the importance of its port, with a total throughput of
9.5 M tonnes of cargo (2016 estimate), including Petroleum products, containers and grain (GFDRR,
2019). Southwest of Beira, the river Buzi and Pungwe flow into the Indian ocean, cumulatively draining
an area of approximately 60.000 𝑘𝑚2 (1/3 of the Rhine drainage basin).
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Beira flooding event
On the night of 1415 March, hurricane Idai made landfall at Beira city with winds of up to 200 km/hour.
Thewind itself inflictedmajor damage across the city andmoved further into the land, causing widespread
damage across Sofala province, and tomuch lesser effect damage in the neighbouringManica province.
After changing course and weakening, the storm reemerged over Zambezia province. For the entire
province of Sofala, initial impact estimates included 600 fatalities, 1600 injuries and 400.000 displaced
people. Around 300.000 𝑘𝑚2 of land was flooded, including 750.000 hectares of cropland.In Beira city,
the cyclone was reported to have damaged as much as 65% of the city’s housing and infrastructure
(Reach, 2019).

The second case study of this report, is focused on the coastal flooding in Beira caused by hurricane
Idai, illustrated in the bottom figure of Figure 9.1. Due to a storm surge from the strong winds, multiple
residential areas and commercial assets in Praia Nova, as well as the port in the northeast of the city
were flooded by coastal water. Areas remained inundated for up to two weeks, increasing further risk
to the population through disease and bad sanitation. One month later, on the 25th of April, the north
of Mozambique was hit by a second cyclone Kenneth, worsening the situation in the country (GFDRR,
2019).

Main datasets
To model the coastal flood caused by hurricane Idai, datasets shown in Table 9.1 were used.

Table 9.1: Main Datasets used for the Beira 2019 case study. The top four datasets were used in GIS analysis and the GFRT.
The bottom two datasets are external reports and used for validation.

Name Description Resolution Author
Inundation map Idai coastal flood inundation map created

for validation of a risk analysis study. Val
idated using local highwater marks and
aerial imagery.

10x10m RHDHV (2019)

Land use map A land use map with 20 different classes,
including four residential zones differenti
ated on income, created in collaboration
with local governments.

Polygon RHDHV (2019)

Vulnerability curves Combination of vulnerability curves and
maximum damage data from Englhardt
et al. (2019), Huizinga et al. (2017), and
van den Berg et al. (2000).

 RHDHV (2019)

Building footprint Indicates geometric representation of
buildings based on satellite imagery.

Polygon Ecopia and
DigitalGlobe

(2017)
Mozambique PDNA A postdisaster needs assessment for

Mozambique executed in May 2019.
 GFDRR (2019)

Beira PDNA A PDNA executed only for the Beira ur
ban area.

 Municipality of
Beira (2019)
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Figure 9.1: Overview of hurricane idai induced coastal flooding situation in Beira, Mozambique.



10
Beira  Model plausibility

This chapter applies steps two to four to the case study of Beira, as described in Chapter 3.

10.1. Input assessment
In this chapter the input data used for the damage modelling is considered. First, the different sources
used for the input data are described. Second, the characteristics of the area are compared against
the assumptions of the input data.

Hazard data
The used hazard data is sourced from an earlier project of RHDHV (2019) and was created by Deltares.
Validation of the map was done internally using highwater marks and local reports. Inspection of the
data itself shows an average inundation value of 0,45m, with a maximum depth of approximately 2m1.
This indicates the section of the vulnerability curves that the damage estimation is especially sensitive
to.

For this research it was also attempted to compare the map with any available public data, mainly satel
lite imagery and aerial pictures. Provincewide satellitederived flood extent maps were available for
multiple days during and after the flood event (Maxar, 2019; UNOSAT, 2019). These maps indicated
large flood extents in Sofala, especially in the eastern Delta of the rivers Buzi and Pungwe. However,
a very low agreement was seen between the applied coastal flooding map and the satellitederived
maps. These maps indicated that systematic underestimation of flood extents near dense vegetation,
river sides and urban areas was likely. Therefore this validation step unfortunately did not give fur
ther information. Further validation was attempted with online aerial pictures taken during the event.
Unfortunately only the locations of the images were set online, not the pictures themselves (INGC,
2019).

These attempts show the difficulty in validating the hazard aspect of flood modelling in datascarce
areas. As such, no further conclusion could be drawn on the uncertainty present in the hazard aspect.

1The histogram can be seen in Appendix C Figure C.1
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Exposure and vulnerability
The exposure data consists of a landuse map with 17 different classes with an asset value larger than
zero. Corresponding vulnerability functions can be seen in Figure 10.1.

Figure 10.1: Beira vulnerability curves for the infrastructure sector (left) and general buildings (right).

Three out of four residential classes have the same vulnerability function, but differentiating exposure
value. It is noted that the maximum damage ratio equals 0,72 for very high inundation depths, meaning
not all asset value is lost. The fourth residential class represents informal housing, and has an exposure
of approximately 20% less than the cheapest formal housing. Furthermore, amuch steeper vulnerability
curve is applied, and a maximum damage ratio of 0,9 from 1 meter inundation depth.

These curves are sourced from Englhardt et al. (2019) who created damage functions for an Ethiopian
study based on (similar) structural properties (Rudari et al., 2017). For this application, weighted aver
ages were taken to be aligned with the area’s building properties. For the exposure value, an accurate
building density factor is of major importance. Densities for Residential one to three were estimated at
010%, 1020% and 2030% respectively (RHDHV, 2019). The fourth (informal) residential class has
no reported density.

Three asset classes represent the transport sector: Primary road, Road and Rail. Although exposure
values vary significantly, all three assets have the same vulnerability function and are sourced from
Huizinga et al. (2017). For linear infrastructure, the assumed width is important, which was found to
be 20, 10 and 10 meters respectively. A single asset class corresponds to agricultural damages, with
a freshwater vulnerability curve from Huizinga et al. (2017). It is likely that these crops2 were highly
vulnerable when the cyclone hit (FAO, 2021). Finally, commercial and multiple industrial land use
classes are created from the same source. Only the port asset class was created from van den Berg
et al. (2000).

2For the entirety of Mozambique Maize, Sorghum, Sesame and Rice are reported to be of major importance for the agricultural
sector (GFDRR, 2019). When the cyclone hit, these crops were in the middle of their growth stage, and therefore highly
vulnerable (FAO, 2021).



10.2. Model output validation 70

From these observations, three conclusions were drawn:

1. Source uncertainty: although the data from Huizinga et al. (2017) is published for global ap
plicability, large uncertainties are expected because the functions are not created specifically for
this situation. Smaller uncertainty is expected in the functions of Englhardt et al. (2019) because
they are validated in a similar environment, and adjusted to structural properties.

2. Land use uncertainty: Due to high informality in building and land use, a higher uncertainty may
be expected in the landuse map.

3. Vulnerability: Damage ratio’s of residential 1, 2 and 3 are capped at 0,72. This assumption of the
nondestructible part should be aligned with the assumption for maximum damage. Furthermore,
the damage ratio of the agricultural class does not assume saline water explicitly.

10.2. Model output validation
After assessing the model plausibility, this section applies steps three and four of the framework,
analysing the output of the GFRT. Shown in Figure 10.2, total damage was estimated at 4,46 M$
for five damage classes. First, these classes are analysed using four sectors. Second, an analysis is
done of the remaining classes, to check for underestimation.

Figure 10.2: The outcome of applying the GFRT to the case area. Other consists of road, agriculture, drainage and residential
1 & 3.

Residential
Residential housing is the most damaged sector from the coastal flood, with impacts estimated at
around 2,56 M$. The area is visualised in Figure 10.3. The sector is subdivided into two housing
classes: Residential 2 (1,97 M$) and residential 4(0,59MM$). Residential 2 describes concrete struc
tures with masonry filling and average exposure value, and will be referred to as formal housing. Res
idential 4 describes informal housing and will be referred to as such.

The formal housing is affected by an average inundation depth of 0,7m, with a maximum of approxi
mately 1,5m. This corresponds to damage ratios of 0,42 and 0,62 respectively. Analysis of the affected
buildings using a building footprint dataset indicated a total of 98 affected buildings, with an average of
167 𝑚2 of building surface area. Visual inspection indicated this included mediumrise building com
plexes, not only singlefamily houses. Using this data, a building density of 25% was found, which is
slightly higher than the assumed 1020% described in Section 10.1. Transforming the total damage re
sulted in 20.102 $/building or 120 $/𝑚2 of building. This is 14% higher than the building based damages
of Huizinga et al. (2017)3. but falls within the general uncertainty bandwidth of 28% to + 53%.

32010 value of 134$𝑚2 transformed with inflation factor of 1,82 to exposure of 245 $/𝑚2, then multiplied with the average
damage ratio of 0,42.
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Figure 10.3: Overview map of main flooded areas in Praia Nova  Beira.

The informal housing is affected by a lower average inundation depth of 0,4m, with most houses being
affected by 0  1m of depth. A small number of the area is affected by depths up to 2 meters. This
corresponds to damage ratios of 0,41, 0,90 and 1,0 respectively. Using the building footprint dataset,
a total of 310 affected houses were identified with an average surface area of 49,5 𝑚2. This resulted
in a damage of 1806,45 $/building or 36,49 $/𝑚2. Building density was found to be 39%, but can not
be used for validation, as no assumed building density was reported.

The damaged informal housing area is located next to the beach. Satellite imagery shows the presence
of manymoored fishing boats under normal circumstances. These boats are excluded from the damage
calculation, but may be largely connected to the residential housing present here. Despite the exclusion
of the model, large damages were likely incurred here, as the fishery sector was heavily damaged by
the event and of major importance for Mozambique (GFDRR, 2019).

Commercial
Commercial is the secondhighest damaged sector, with an estimated total of 1.45M$ in damages.
Shown in Figure 10.3, the damaged area is located between the formal and informal residential areas.

The modelled average inundation depth was 0,8m, with a maximum of 1,6m. This corresponds to
damage ratios of 0,42 and 0,65. The building footprint data indicates a total of 93 affected buildings,
with largely varying surface areas. Around 70 buildings have an area of less than 100𝑚2, whereas the
largest building has an area of 1041 𝑚2. From this data and visual inspection, it is assumed that the
damaged area consists mostly of smaller stores and offices, and a few larger commercial stores.

Aerial pictures were takenmost recently two years before and one year after the event, and can be seen
in Appendix C Figure C.4. From these images, it was concluded that the land use of part of the area
is uncertain. Shown in Figure C.4, the location below the road is classified as commercial, however
visually this looks similar to the informal housing on the left of it. The commercial class has an exposure
value of three times the informal housing exposure value. However, the informal housing damage ratio
is twice as high as the more resilient commercial structures in this location. As the overestimating effect
of the higher exposure is larger than the underestimating effect of the vulnerability, this may have led to
an overestimation of damages. However, the area further south of that location is classified as derelict,
whereas visual inspection shows more informal housing. The exclusion of these houses may lead to
an underestimation, which may cancel out the previous overestimation.

No certain conclusion can be drawn from this data, except that the southern commercial area is highly
uncertain and requires further investigation.
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Industrial
The following section describes the third most damaged class: Industry. On the western coast of Beira,
North of Praia Nova, flooding of two areas resulted in a modelled damage of approximately 330.000
$. A total area of 7.050 𝑚2 including a shipbuilding drydock and an area adjacent to a river outlet was
flooded4. Due to the dry dock’s low placement very high inundation depths of up to 8m were modelled,
with maximum damage ratios of 1.

This estimation is likely incorrect due to two reasons: First, the used global depth damage function
based from Huizinga et al. (2017), assumes many different buildings (e.g. warehouses) to be in the
industrial class, whereas currently a very specific area is flooded related to shipbuilding. Second, the
flooded area is of such small scale and specifically affects areas designed for inundation, that a surface
areabased calculation seems unsuitable. The actual amount of damage is highly uncertain and largely
dependent on the current state of the area at the time of inundation relating to flood preparedness.

More significant was the modelling decision to exclude the port and quay area. Although debatable
if damage to these assets is created by wind or water damage, high asset value and damage are
expected to the fishing industry and their boats. A storm surge can heavily damage boats through high
waves and strong mooring forces, resulting in collisions (AIR Worldwide, 2012). Furthermore, multiple
container cranes, warehouses and buildings are spotted to be (partly) excluded from the land use map.
Excluding these assets from the model can be valid, but should be communicated clearly as damage to
the fishing industry was reported to be of major importance for Mozambique’s economy and this event
(GFDRR, 2019)

Port
The port section concerns a large area on the NorthWest side of Beira. Exposed assets are container
terminals along the coast, silos and warehousing near the city, and a large petrochemical area on the
northern side. Modelled damage totals around 100.000 $ due to two inundated areas.

The first area is close to the coast, where an elongated tongue of water has flown into the port where
silos and containers are located. Damage is calculated only at part of the area, because the vulnerability
curves assume that damage starts at inundation depths larger than 20 cm. The second area is located
north of the petrochemical area. Using satellite pictures was found that port areas here were still under
development. Two satellite images were available, from April 2017 and January 2020. As the area was
not yet finished in the 2020 image, it was inferred that the area was under construction during the flood
event. From this information, no quantitative conclusion was drawn. However again the uncertainty of
the situation related to land use uncertainty was pointed out.

Roads and Agriculture
Roads and agriculture can be heavily impacted by flooding (Jongman et al., 2012), however in the
current model they appear to be affected minimally. Roads account for approximately 14.000$ in the
modelled damage, being affected in the Praia Nova area. An average inundation depth of 0,5m resulted
in a damage ratio of 0,23. Images of the area indicate that this concerns lowspeed paved roads.
However, no further conclusions can be made on the accuracy of this estimation, and require further
empirical data insights.

Agriculture accounts for even less damage of approximately 3.000 $. A large area to the north of Beira5
was flooded with a low inundation depth of approximately 0,25m. However, due to the vulnerability
function, damage is calculated only above 0,20m inundation depth. This results in only part of the area
beingmodelled as damaged. An important error here is found in the assumptions, as the flood concerns
saline water, whereas the vulnerability curve does not explicitly include this. This may result in an
underestimation of the damages (Brémond & Grelot, 2013). However, even with a higher vulnerability,
the total amount is likely negligent compared to the other damage sectors. An increase of 10 times
would still result in total damages of only 30.000 $, which is much less than the other sectors.

4The area is visualised in Appendix C Figure C.2.
5Shown in Appendix C Figure C.3
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10.3. Conclusion
The concluded errors and largest uncertainty sources are summarised in Table 10.1. Uncertain com
ponents are indicated with ↔, GFRT overestimations are indicated with ↑, and GFRT underestimations
are indicated with ↓. For each class, a qualitative conclusion is drawn in the right column, considering
all indicated uncertainty components.

For the three most affected damage classes, no conclusion could be drawn on over or underestimation
due to large uncertainties in applied vulnerability curves, maximum asset value and land use. For
Residential 2, a minor underestimating error in surface density was found, however this is expected
to be of minor importance compared to overall uncertainty. On the border between Commercial and
Residential 4 assets, landuse uncertainty was found. Furthermore, the exclusion of fishery boats in
the damage calculation was highlighted as an important assumption.

For the industrial area, an underestimation was concluded due to more expensive assets being in
undated than assumed in the vulnerability curve. However, high uncertainty depending on the flood
preparedness of the area remains a much larger, and unknown issue. Also damage around the port
area is uncertain, mostly due to found differences between the area and the modelled vulnerability and
exposure models.

Finally, agriculture damage is likely underestimated by the occurrence of a saltwater flood, to which
crops are more vulnerable. It was validated that the flood occurred during the growing season and will
therefore inflict heavy damage. Even when considering this, the class is insignificant for the modelled
area. Besides the mentioned error roots, an unknown amount of uncertainty in the hazard analysis
remains present.

Although this chapter gives important insights into uncertainty factors and errors, it remains a qualitative
conclusion due to the lack of data. In the next chapter, a PDNA damage report is connected to the GFRT
estimates to verify modelled damage and quantify possible errors.

Table 10.1: Overview of major error/uncertainty roots for each damage class. Symbols are used in the following definition:
↔Uncertain component. ↑The error results in an GFRT overestimation. ↓The error results in an GFRT underestimation. A
qualitative conclusion on underestimation or overestimation of the damage class is presented in the final column, together with
important assumptions. DR Denotes damage ratio.

Class Vulnerability Exposure Conclusion and AssumptionsTemporal DR 𝐷𝑎𝑚𝑀𝑎𝑥 Assets

Residential 2 ↔ ↔ ↓ Uncertain Dam. ratio and Max. Dam. outweigh minor
asset density underestimation.

Commercial ↔ ↔ Uncertain: global vulnerability curves and uncertain S
southern land use area.

Residential 4 ↔ ↓ Uncertain: Dam. Ratio and Max. Dam. outweigh
extra assets in derelict area.
• Fishery boats are excluded.

Industrial ↔ ↑ ↓ ↓
Underestimation: Higher Max. Dam. expected due to
machines and assets. Uncertainty depending on flood
preparation
• Fishery boats in the port are excluded

Port ↔ ↔ Uncertain: Model assumes breakbulk terminal while the
flood affects petroleum assets under construction.

Roads     

Agriculture During
growth ↓ Underestimation: Model assumes freshwater whereas

a saltwater flood occurs.
• Flood occurs during growth season
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Beira  Verification using damage

observations

This chapter applies steps five and six of the proposed framework to the Beira case: Empirical data
analysis and verification (Figure 3.1). Here, empirical data is transformed to enable a comparison
between the model’s outcomes and realworld observations.

11.1. Analysis approach
After hurricane Idai made landfall in 2019, a team led by the government of Mozambique started as
sessing all damages through a Post Disaster Needs Assessment PDNA methodology (GFDRR, 2008,
2019). Members of central, provincial, district and municipal levels were trained in this methodology to
estimate damages of the hazard, which aims at reducing bias. Furthermore, quality control is assumed
as the report forms the basis of international financial aid and lending.

The PDNA estimated the total damage of the hurricane to be over $ 1,4 Billion. This amount is divided
over several sectors, the largest one being the transport sector with an estimated $ 442 M of damages.
The second most damaged sector is housing, with $411 M. Subsequently, industry & commerce was
affected with $ 140 M in damages. Other damages were inflicted in the energy, environmental and
agriculture sectors1.

The report was created by the Mozambique government, and supported by theWorld Bank, The United
Nations and the European Union. The report indicates damages per sector for the provinces of Zam
bezia, Tete Manica, Sofala, and Inhambane. The exact damage reporting format differs per sector and
province. For Sofala, generally the number of affected assets (houses, km of road) was mentioned, to
gether with a qualitative description of the damaged components. This damage is attributable to strong
winds, pluvial, fluvial and coastal flooding.

As only damage by coastal flooding is modelled, the damage numbers were transformed using two
approaches. First, a comparison between Sofalawide damages and damage in Beira was enabled
by transforming the total amounts to $/damaged asset. Second, a consideration was made on how
the reported damage would relate to the modelled flood damage. This was done either by comparing
wind and flood fragility curves or by using the qualitative descriptions in the report. Constructioncost
data could be compared to modelled damages for some sectors. As these data were generally older, a
price transformation was required using GDPdeflatorbased inflation data from the World Bank (2022).
Currency conversions were executed using an exchange rate of 1:64 $ to MZN (Mozambique Meticais)
(GFDRR, 2019). To exchange euro to US Dollar, exchange rates of Macrotrends (2022) were used.

1Besides damages, another $1,39 Billion in losses was reported, mainly in the agricultural and industry & commerce sectors ($513
M and $470 M respectively). As this research focuses only on direct damages, only numbers from the damage categories were
used for the analysis.
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11.2. Residential damage
This section will describe the analysis of the housing sector in Beira. First, PDNA damage data reports
actual damages to the housing sector. Second, this damage data is disaggregated to acquire flood
damage for informal houses. This is done in three steps: 1) Comparing wind and flood vulnerability
curves, 2) applying a scenario analysis for hurricane idai, and 3) disaggregating the final data. Third
construction data is used to verify Residential 2 assets. Fourth, a synthesis of these analyses resulted
in the creation of two uncertainty bandwidths, shown in Table 11.3.

PDNA damage data
In the top two rows of Table 11.1 reported PDNA damage is shown, besides modelled GFRT damage
in the bottom two rows. The two PDNA reports indicate total damages of 410 M$ for the whole Sofala
province, and 184,4 M$ in the Beira area (GFDRR, 2019; Municipality of Beira, 2019). This translates
to average damages of 1.708 and 2.111 $/house respectively.

Although the raw compound damage data in the PDNA report is not similar enough to our case study
to draw any conclusions, an initial comparison is made. The informal class Residential 4 compares
closely to the PDNA data. On a damage/unit basis the modelled 1806 $ differs +5% and 17% from the
reported numbers of for Sofala and Beira. Differences become larger on a damage/ house surface area
basis, with the model giving a +20% and + 35% higher estimation. Contrarily, the modelled damage of
formal housing classified as Residential 2 seems strongly overestimated, with modelled damage being
four times higher than the reported damage2.

Table 11.1: Overview of found damage data by hurricane Idai and modelled numbers by the GFRT. 𝐷𝑎𝑚𝑢𝑛𝑖𝑡 is calculated as
𝑑𝑎𝑚𝑡𝑜𝑡𝑎𝑙 divided by the number of assets. Surface damage refers to the damage per 𝑚2 of house.

Source Asset DamTotal Assets DamUnit AreaUnit DamSurface
M$  $ 𝑚2 $/𝑚2

PDNA Sofala3 410 240.000 1.708 72,54 23,6
Beira5 184,4 87.339 2.111 72,5 29,12

GFRT Residential 2 1,97 98 20.102,04 170 120,39
Residential 4 0,56 310 1.806,452 50 36,49

Comparing vulnerability curves
To analyse the relative contribution of wind and flood damage to the reported damage numbers, fragility
curves made by RHDHV and Celsius Pro (2020), were compared for the case situation in Figure 11.1.
Both curves calculate damage as a fraction of total building value, meaning object exposure is equal
for flood and storm damage.

Figure 11.1: Fragility curves for flood and storm hazards, made by RHDHV and Celsius Pro (2020).

2On a damage per surface area basis. The difference on a building level is even higher, but this comparison is illogical as the
GIS model showed these numbers concern highrise building complexes, not individual houses.

3Source: GFDRR (2019)
4Found by using a weighted average of 98 Residential 2 buildings and 310 Residential 4 buildings
5Source: Municipality of Beira (2019)
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Looking at informal housing on the left of Figure 11.1, both wind and flood damage curves can reach the
maximum damage ratio of 1,0,In this case, complete building value is lost and both hazards damage
the same components. Therefore it is argued that 𝐷𝑅𝐹𝑙𝑜𝑜𝑑 and 𝐷𝑅𝑊𝑖𝑛𝑑 can be related to each other
and are additive with a maximum of 1,0, as shown in Equation 11.1.

Informal housing
Independent flood damage = 𝐷𝑅𝐹𝑙𝑜𝑜𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑂𝑏𝑗𝑒𝑐𝑡
Independent storm damage = 𝐷𝑅𝑊𝑖𝑛𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑂𝑏𝑗𝑒𝑐𝑡
Compound damage = 𝑀𝑖𝑛(𝐷𝑅𝐹𝑙𝑜𝑜𝑑 + 𝐷𝑅𝑊𝑖𝑛𝑑; 1) ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑂𝑏𝑗𝑒𝑐𝑡

(11.1)

Describing formal housing compound damage requires three assumptions: First, the maximum dam
age ratio will always be lower than 1. The asset class consists of reinforced components, that are as
sumed to be indestructible. Second, a compound event will have a higher maximum damage ratio than
a separate hazard. As strong winds generally damage the top of the structure whereas floods damage
the bottom, it can be inferred that both hazards affect different building components (Baradaranshoraka
et al., 2017). Third, the combined maximum damage ratio depends on the correlation between the ex
posed building components, as elements can not be destroyed twice.

The resulting compound damage ratio is described in Equation 11.2, but is uncertain due to the unknown
correlation. The damage ratio likely ranges between the maximum of each single event damage ratio
and either the sum of both separate damage ratios, or a ratio lower than 1,0.

Formal housing
Compound DR = 𝐷𝑅𝐹𝑙𝑜𝑜𝑑 + 𝐷𝑅𝑊𝑖𝑛𝑑

− 𝐷𝑅𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝐹𝑙𝑜𝑜𝑑,𝑊𝑖𝑛𝑑) − 𝐷𝑅𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑎𝑏𝑙𝑒
Lower bandwidth DR = 𝑀𝑎𝑥(𝐷𝑅𝐹𝑙𝑜𝑜𝑑; 𝐷𝑅𝑊𝑖𝑛𝑑)
Upper bandwidth DR = 𝑀𝑖𝑛(𝐷𝑅𝐹𝑙𝑜𝑜𝑑 + 𝐷𝑅𝑊𝑖𝑛𝑑; < 1)

(11.2)

Flood & wind scenario analysis
By using Equation 11.1 and Equation 11.2, the compound event damage ratio for the damaged areas
is estimated in Table 11.2. This is done by fixing the occurred inundation depth and wind speed in a
scenario. Average inundation depths of 0,4m and 0,7m were extracted from the GIS model. Reported
wind speeds are uncertain, with sources indicating values from ”Larger than 120 km/h” to 180200 𝑘𝑚/ℎ
(Probst & Annunziato, 2019; RHDHV, 2019). Based on this, an average wind speed of 160 𝑘𝑚/ℎ was
assumed. The corresponding damage ratios were extracted from fragility curves in Figure 11.1.

Table 11.2: Comparison of wind and flood damage to formal and informal housing classes using the scenario analysis. Residential
1 and 3 only experienced pluvial flooding and wind damage. DR denotes Damage Ratio.

Class Wind
velocity

Inundation
depth DRWind DRFlood DRCompound Destroyed

𝑘𝑚/ℎ m    
Informal housing 160 0,4 1,0 0,41 1,0 Partially
Formal housing 0,7 0,1 0,41 0,41  0,51 Completely
Residential 1 & 3 160 Pluvial 0,1  > 0,1 Partially

For formal housing, the maximum damage ratio of 1 is already reached at wind speeds of 100 km/h,
and is therefore insensitive to wind speed uncertainty. At the assumed inundation depth, the flood
damage ratio is 0,41. Therefore, it is concluded that all buildings are completely destroyed, and that
wind damage has a higher impact than flood damage for informal structures. Contrarily, formal houses
are only partially destroyed by wind and flood hazards due to their stronger structure. Furthermore,
flood damages are more impactful than strong winds in the case area, as the theoretical 𝐷𝑅𝑤𝑖𝑛𝑑 is
lower than 𝐷𝑅𝑓𝑙𝑜𝑜𝑑. Other formal housing classes (Residential 1 and Residential 3) share the same
vulnerability function as Residential 2, and are therefore also classified as partly destroyed.
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Disaggregating flood & wind damage
Subsequently, the found state of informal and formal housing assets is used to disaggregate the dam
age data. The PDNA made by the Municipality of Beira (2019), estimates that 23.833 houses are
completely destroyed and 63.506 are partly damaged in the Beira area, resulting in 184,4 M$ of dam
ages. The damage is disaggregated in Equation 11.3, Equation 11.4, and Equation 11.5. First, the total
damage is split up into damage for completely destroyed buildings, and damage for partially damaged
buildings.

Total PDNA damage = Damage completely destroyed
+Damage partially damaged

Total PDNA damage = 𝑁𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 ∗ 𝐷𝑅𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑
+ 𝑁𝐷𝑎𝑚𝑎𝑔𝑒𝑑 ∗ 𝐷𝑅𝐷𝑎𝑚𝑎𝑔𝑒𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑎𝑚𝑎𝑔𝑒𝑑

(11.3)

Assumptions made to fill in this formula are given in Equation 11.4. First, completely destroyed houses
are assumed to be informal houses (indicated with subscript 𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑), thereby equalling informal
exposure values. Second, the assumption is made that partially damaged houses are formal houses
(indicated with the subscript 𝐷𝑎𝑚𝑎𝑔𝑒𝑑). Third, The objectbased exposure of informal and formal houses
differs by a factor 6,66. Fourth, the uncertain damage ratio of the partially destroyed buildings is varied
as a sensitivity analysis, within the likely 𝐷𝑅𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 range found in Table 11.2 .

Assumption: 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙
Assumption: 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑎𝑚𝑎𝑔𝑒𝑑 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐹𝑜𝑟𝑚𝑎𝑙
Assumption: 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 ∗ 6, 6 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐷𝑎𝑚𝑎𝑔𝑒𝑑
Sensitivity: 𝐷𝑅𝐷𝑎𝑚𝑎𝑔𝑒𝑑 = [0, 10; 0, 25; 0, 50]

(11.4)

Subsequently the assumptions and sensitivity parameters were filled into Equation 11.5, and subse
quently solved for the exposure value of informal housing. This resulted in disaggregated exposure
values extracted from the PDNA. The found exposure value in $/house is transformed to an exposure
value in $/m2 of LU area, using average building surface area and density found in Section 10.1.

184, 4𝑀$ = 23.833 ∗ 1, 0 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙
+ 63.506 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙 ∗ 2.5 ∗ 𝐷𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙

ExposureInformal = [2.809; 1.444; 792]$/𝐻𝑜𝑢𝑠𝑒
= [56, 75; 29, 02; 16, 00]$/𝑚2𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

Building density = 39%
ExposureInformal − LU = [22, 13; 11, 32; 6, 24]$/𝑚2

(11.5)

When comparing the disaggregated exposure values to the model exposure value of 26,29, it is found
that the assumption is outside of the upper bandwidth acquired from the PDNA report. This indicates
that the model may have overestimated informal housing damage. The lower bandwidth is 63% lower
than the used input data and is therefore used as the lower limit. These values are used to create a
new damage estimation in Table 11.3.

6Land use exposure values of residential 13 and residential 4 differ a factor 2.5 (Englhardt et al., 2019; RHDHV, 2019). Com
bining this with found object densities of 15% and 39% indicates 2,5 * 0,39/0,15 = 6,6
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Residential construction data
Construction data is used for the formal housing class, as a large uncertainty remains around its dam
age estimation. CAHF (2019) reported a minimum house construction price of $ 55.000 from official
contracting companies. When multiplying this value with the same damage ratio of 0,41, and dividing
over the reported house surface area of 65𝑚2, damage of 347 $/𝑚2 is found. This is much higher than
the reported damage of 120,30 $/m2. However, this is likely an overestimation as the structure has an
undamageable part, and is a depreciated asset instead of a new construction (Huizinga et al., 2017).
Therefore, it is used as a suitable upper bandwidth. The average PDNA reported housing damage of
29,12 $/𝑚2 is used as a lower bandwidth.

Total damage estimates are created for both classes by scaling initial damage, summarized in Ta
ble 11.3. Formal housing is scaled using the found damage/building surface number, whereas informal
housing is scaled using exposure values. A lower and upper bandwidth was created for formal hous
ing, whereas for informal housing, a decrease in damage is suggested.

Table 11.3: Uncertainty bandwidths for modelled damage of formal and informal housing

Class Estimation Dam 7 Exposure Difference Damtotal Comment
 $/𝑚2 $/𝑚2  𝑀$ 

Formal housing
Original 120,30  1,97
Lower 29,12 76% 0,48 Beira average PDNA
Higher 347,00 +282% 5,56 Official contracting cost.

Informal housing
Original 26,29  0,56
Lower 6,24 76% 0,13 Disaggregated PDNA
Higher 22,13 16% 0,47 Disaggregated PDNA

11.3. Commercial damage
The PDNA indicates data of 311 damaged businesses disaggregated over 10 subsectors. For each
subsector the number of businesses, number of affected employees and total estimated damage are
reported. The largest part of the reported damage was attributable to wind, with damages to roofs of
warehouses and offices, with only the industry sector reporting flooded materials and machinery.

Table 11.4: PDNA reported damage for ten subsectors in Sofala. Ranked on damage per business.

Subsector Nbusiness Nemployees Damage Employees
Business

Damage
Business

Damage
Employee

  k $  k $ k $
Agro business 17 735 28.493 43 1.676 38,8
Industry 28 2.745 31.249 98 1.116 11,4
Fishery 6 2.314 6.311 386 1.052 2,7
Transport 35 2.560 14.291 73 408 5,6
Commerce 53 2.397 17.166 45 324 7,2
Construction 36 1.590 6.337 44 176 4,0
Hospitality 29 589 4622 20 159 7,8
Services 64 2.152 9.885 34 154 4,6
Poultry 35 143 803 4 23 5,6
Planing8 8 292 147 37 18 0,5
Total average 311 15.517 119.304 50 384 7,7

The extracted data can be seen in Table 11.4. The first conclusion from the data is the large spread of
damage across the subsectors. The least damaged companies in the Planing industry report average
damages of 20.000 $, whereas the most damaged companies in the Industry and Agro sectors report
average damages of 11,1 and 16,8 M $. A factor of 93 difference between the minimum and maximum.
7Damage per building surface area
8Woodworking industry, e.g. Sawmills
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It is expected that the flooded companies in the modelled area are most comparable to the services
sector (GFDRR, 2019). There are two main differences between the data and the modelled assets.
First, the PDNA services data concerns mostly wind damage, which is expected to be lower than flood
damage as it was seen in Figure 11.1 that wind damage is expected to be lower than flood damage for
formal buildings.

Second, as the companies hire an average of 50 employees, it was concluded that this sample only
contains medium to large companies. Contrarily, it is expected that the flooded companies are much
smaller, due to their central location. Therefore, a damage comparison on a unit basis is unsuitable.
Instead, a methodology based on the estimated number of employees was applied. This is done more
frequently in flood damage assessments, for instance by Arrighi et al. (2013) and Tezuka et al. (2014)
and for economic lossassessment by Herath et al. (2003).

The companies in the GFRT were analysed using GIS and a building footprint dataset (Ecopia & Digi
talGlobe, 2017). From this analysis, it was found that 93 different buildings were affected, with surface
areas of 10 to 1000𝑚2. An estimated number of employees was assigned to each feature, based on its
surface area9, which resulted in an estimated range of 478 to 1003 affected employees. Subsequently
in Equation 11.6, these numbers were multiplied by the average damage per employee reported in the
services sector, giving an estimated commercial damage between 2,2 and 4,61 M$.

𝐷𝑎𝑚𝑎𝑔𝑒𝑇𝑜𝑡𝑎𝑙 = 𝑁𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 ∗
𝐷𝑎𝑚𝑎𝑔𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

Lower bandwidth = 478 ∗ 4600 = 2, 20𝑀$
Upper bandwidth = 1003 ∗ 4600 = 4, 61𝑀$

(11.6)

This bandwidth exceeds the GFRT estimate by 52% to 220%, which could be due to multiple reasons:

1. Estimated number of employees:The largest assumption in this calculation is the estimated
amount of employees. The calculated damage scales linearly with this assumption, and therefore
has high sensitivity. Unfortunately, it was not possible to get local data on this estimate for further
validation.

2. Reported number of employees: No background information on the definition of the reported
number of employees in the PDNA is given. Therefore it is uncertain which criteria were chosen
to determine this number, which could significantly affect the average damage per employee.

3. Average damage per employee: The average damage per employee for the large reported busi
ness is now applied immediately to the modelled businesses. It is plausible that larger compa
nies have more advanced (and valuable) assets and materials, than smaller companies (GFDRR,
2019). Therefore, the amount of damage per employee could be lower for smaller enterprises,
explaining the difference.

9Buildings were divided into 4 classes based on their surface area. Buildings with less than 25 𝑚2 were assigned 1 employee,
buildings with less than 50 𝑚2 were assigned 5, less than 250 𝑚2 received 10, and more than 250 𝑚2 were assigned 25.
Assuming an average of 10  20 𝑚2 per employee resulted in a bandwidth of 478  1003 employees, supported by industry
standards in US (Matheney, 2022; van Ramshorst, 2019)
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11.4. Other damage classes
Industrial
Reported industrial damages can be seen in Table 11.4. The sector is indicated as one of the most
severely impacted, with an average damage of 1,1 M$ per business. According to the report, this
damage is mostly attributable to flooded machinery and work equipment and therefore comparable to
the modelled case.

In the GFRT, an industrial port area north of Praia Nova was flooded. It was concluded that the situation
was highly uncertain due to the specific flooding of a dry dock. A total flooded area of 7050𝑚2 resulted
in a calculated damage of 330.000 $. Aerial pictures indicate that the flood affects a single large
company that operates the drydock10.

Although many uncertainties remain on the flood preparation and exposed assets of this specific situa
tion, the data points out that damage is likely underestimated. The average reported industrial damage
number of 1,1 M$ is 3,3 times as large as the modelled number.

Port
Total damage of 12.1 M $ is reported due to damages in the coal terminal fuel terminal and four quays.
Further moderate damage was sustained to lightning towers and warehouses, alongside operational
facilities and dredgers. From the description, this damage seems mostly attributable to wind damage
(GFDRR, 2019).

In the GFRT port damage was the fourth largest damage contributor, with areas located to the north
of Beira. Here damage of 120.000 $ was calculated on a flooded petroleum site. As a complication,
aerial pictures showed this site was under construction at the moment of flooding (Section 10.1).

The PDNA reported damage is difficult to disaggregate and mostly attributable to wind damage. Nev
ertheless, the reported damages are significantly larger than the modelled damage. Even if only 10%
of the PDNA reported damage was caused by flooding, the data would still point out a factor ten un
derestimation. Therefore, it is concluded that the GFRT likely underestimates this situation.

Road infrastructure
Modelled damage to roads is minimal, whereas the PDNA reports it as a main damage sector. The
applied verification consists of three parts. First, total damage reported in the PDNA is disaggregated
to find road damage per lane length. Second, this damage is compared to the damage found in the
GFRT. Third, benchmark construction cost data from African roadbuilding projects are compared to
exposure values.

Damage to the transport sector is estimated at 442 M$. Of this amount, 310 M$ describes damages to
the road network. Damage to the road network is subsequently divided into four infrastructure types:
1962 km of national roads, 90 culverts, 15 bridges and 24 drifts. Shown at the top of Table 11.5,
multiple assumptions on the percentage of damage that is attributable to the 1962 km of roads were
tested. Subsequently, these amounts were transformed to obtain damage in $ per m of road11 Lower in
the table, the two road classes modelled in the GFRT are shown. All damaged sections are classified
as ‘road’, whereas a single ’main road’ section exists in the city but was unaffected by the flood.
10Shown in Appendix C Figure C.2.
11In this analysis, it is assumed that roads are not susceptible to wind damage, and that therefore all damage is attributable to
flooding.
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Table 11.5: Analysis of reported PDNA road damage, GFRT road damage and benchmarked African road construction costs.

Reference Total dam. Assumption Road dam. Dam. / m
M$ M$ M$ $ / m

PDNA Damage
(GFDRR, 2019) 310

10% 31,01 15,80
25% 77,51 39,50
50% 155,03 79,00
75% 232,54 118,50

Reference Class Exposure Dam. ratio Dam. / m
 $ / m  $ / m

GFRT Road 21,20 0,2312 4,90
Main road 227,80  NA

Construction Cost
(AfdB, 2014)

Rehabilitation 169,0

0,23

38,90
362,10 83,28

Construction 295,70 68,00
458,70 105,50

(Africon, 2008) Rehabilitation 603,0013 138,80

Comparing the PDNA damage with GFRT damage shows that reported damages are much higher than
the modelled road damage. Depending on the assumption, reported damages per m length are 3 to
23 times as large as the modelled damage. It could be hypothesized that the PDNAreported roads
may be of higher quality than the damaged road sections, possibly explaining the difference. However,
the PDNA mentions that 75% of the national road network is unpaved. Visual inspection of images
indicated that all affected roads in Beira were paved. Therefore it is concluded that the Beira roads are
not of significantly lower quality than the reported PDNA roads and are therefore comparable with each
other. This indicates that the model strongly underestimates road damages.

Besides, large damages to the road network are described qualitatively (Beira city government, 2019;
GFDRR, 2019). Contrarily, low damage ratios of 0,23 were found in the model (Section 10.1). This
may also indicate that the vulnerability curves are underestimated.

Construction cost data is presented at the bottom of Table 11.5. Benchmark data was created through
the analysis of different roadbuilding projects in Africa. The data indicate large variability between
projects, but also depending on the size and quality of the project. Nevertheless, also here the data
indicates an underestimation of the model, as the benchmarked construction costs are significantly
higher than assumed exposure values.

To quantify the underestimation, the ‘conservative’ assumption is taken that the percentage of total
PDNA damage that is attributable to road damage lies between 10% and 50%. This indicates that
damage numbers lie between 15,80 and 79,00 $ / m damaged road, versus the modelled 4,90$ per m
damaged road. This increases the initial estimate of 13.841 $ by a factor of 3,2 and 16,2.

Lower bandwidth: 13841 ∗ 3, 2 = 44.291$
Higher bandwidth: 13841 ∗ 16, 2 = 224.224$

12With a corresponding inundation depth of 0,5m, extracted from GIS.
13Values from 2006 were transformed using inflation factor of 2,01



11.5. Conclusion 82

11.5. Conclusion
The resulting sectorbased conclusions and new quantitative damage estimations are given in Ta
ble 11.6. Overall, the original estimate is concluded as an underestimation, with the new best estimate
quantified as 8,1 M$. An best estimate uncertainty range between 5,2 and 13,2 M$ is given.

This conclusion was taken due to underestimations in commercial and road assets, where the analysis
indicated modelling errors with high reliability. These sectors may require calibration in future flood risk
studies. The causes for underestimations in industrial and port assets are less clear, making calibration
difficult. Finally, formal housing was concluded as accurate but highly uncertain.

Contrarily, damage estimates for informal housing were considered overestimated. The remaining
damage estimates for agriculture and other housing classes were considered of insignificant impact to
be included specifically in this estimation. Nevertheless, indicated uncertainties may be relevant for
flood risk studies including larger return periods.

Table 11.6: Conclusion of Beira estimate accuracy using empirical data. All values are indicated in k $. When only a lower and
upper bound estimate was given, the new best estimate is taken as the average of the lower and upper bound, and indicated
with ↔

Asset Original
estimate Conclusion Lower

bound
New

estimate
Upper
bound

New
Original

Residential 2 1.970 Uncertain 480 1.970 5.560 
Commercial 1.440 Underestimation 2.200 3.405 ↔ 4.610 +140%
Residential 4 585 Overestimation 130 300↔ 470 46%
Industrial 328 Underestimation 1.116 +240%
Port 120 Underestimation 1.210 +908%
Road 14 Underestimation 44 134 ↔ 224 +857%
Other 6    
Total [k $] 4.460 5.180 8.135 13.190 +82%
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Beira  Conclusion

The goal of this study was to validate the estimated 4,46 M$ coastal flood damage caused by hurricane
Beira in March 2019. A new best estimate of 8,1 M$ is proposed, indicating a model underestimation
of 82%. Furthermore, an uncertainty range of 5,2 M$ (36%) to 13,2 M$ (+62%) was concluded.

This conclusion was quantified using disaggregated compound damage data and construction cost
data, applied in phase 3 of the framework. Large underestimations were found in infrastructure, indus
trial and commercial assets, together with an overestimation for informal residential assets. Due to a
lack of data informativeness, no conclusion on the root cause of these errors could be made. Less
information was acquired from phase 2  model plausibility assessment. Only two underestimations in
industrial, and agricultural damage classes were expected from phase 2. For the industrial asset, both
errors on the vulnerability and exposure parameters were expected. Contrarily, agriculture was under
estimated solely through the vulnerability function due to the excluded salinity effect of the inundation.

The quantified uncertainty stems mostly from formal housing and commercial assets. Furthermore, too
little information was available to quantify direct damage uncertainty for critical infrastructure (industrial
and port assets). Informal housing, road, commercial and agricultural assets are expected to also be
underestimated when modelling other return period hazards. Therefore accuracy may be increased
through a calibration process. However, the damage observations are not informative enough for each
class to indicate which parameter should be altered, and how. Furthermore, Industrial, port, and (to a
lesser extent) formal housing assets have high uncertainty, that cannot be reduced further through the
framework. These areas can be highlighted and the uncertainty in their risk reduction should be taken
explicitly into account by decisionmakers. The validated event estimates and assumptions can then
be used as a basis for a probabilistic flood risk analysis.
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Discussion

In this chapter, the research relevance, reflection on case study results, framework limitations and
recommendations are discussed.

Relevance
Current flood risk literature calls for more and better flood risk validation, particularly by collecting more
and better flood event damage data (Jongman et al., 2012; Molinari et al., 2019; Sayers et al., 2016).
Furthermore, the importance of assumption sharing and uncertainty communication is emphasized
(Merz et al., 2008; Sayers et al., 2016). The proposed framework integrates these requirements, struc
tures the validation process and highlights the main uncertainty sources.

For both case studies, verification with observational data led to a significantly altered damage estimate,
demonstrating the necessity of validation. New data transformation procedures were required due
to data heterogeneity, involving employee numbers, comparing vulnerability curves and construction
costs. These newmethods allowed amore precise comparison of estimated damagewith observations,
thereby enabling error and uncertainty quantification of specific damage categories. This has increased
benefits compared to general literature, where often only modelmodel comparisons or aggregated
observational comparisons are made (Herath et al., 2003; Jongman et al., 2012).

Case study reflection
Reflecting on the case studies, the analysis results depended on the availability of two information
types: The availability of damage data and the availability of general information. Shown on the xaxis
in Figure 13.1, the damage data availability is rated from having no data at all to having highdetail
data that indicates a spatial or assetwise damage distribution (such as WTS or Post Disaster Needs
Assessment (PDNA) data). On the yaxis, general information availability can range from only having
satellite imagery, to having high amounts of information such as economic asset value estimates, spatial
land use information, and construction data.

The Limburg and Beira case studies are characterised by their data availability in Figure 13.1 A. For Lim
burg, both a detailed amount of damage data (Fact finding report, WTS, insurance data) was available,
as well as many information sources. For the Beira case study, the PDNA damage supplied damage
information, but limited general information was available, resulting in a lower yaxis placement.
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Figure 13.1: A) Characterisation of validation events on damage data availability and information availability (such as economical
data, construction cost data, spatial data on land use). B) Overview of applied analyses characterised by 1) how much they
support quantitative accuracy estimates and 2) underwrite the plausibility that the model simulates the damage processes well
under multiple return periods.

Figure 13.1 B subsequently characterises the methods used in the case studies on two similar axes:
On the xaxis, the amount a method aids the creation of a quantitative accuracy estimate, and on the
yaxis, the amount a method aids the plausibility of model application under different return periods.
Methods are ranked on having a low or high impact for the two axes. The graphs are similar because it
was noted that many general information sources had a strong contribution to model plausibility, but a
low contribution to accuracy estimates. Correspondingly, damage data sources were found to be very
useful for a quantitative accuracy estimate, but aided little to model plausibility for other return periods.
Finally, construction cost data and damage reports were found to be effective for both metrics.

Both analyses were initiated in quadrant 1. Here, lowimpact methods such as assumption scrutinizing
gave insights into where possible errors in the estimate may have occurred. Although these meth
ods were loweffort to execute (except for expert judgement), their overall informativeness was low
in comparison with later methods. Subsequently for the Limburg case, general information sources
strongly increased the plausibility of the model’s exposure parameter. This indicated that the model’s
internal workings were likely plausible, but a quantitative difference between estimates and damage
observations was unknown. Finally, the application of insurance and WTS data allowed further error
quantification (mostly applied to the residential sector). Therefore the case study was moved into quad
rant 4, where both the plausibility of model performance as well as a quantitative accuracy estimate
was reached. This allows confident model application for risk studies.

Contrarily for the Beira case study, little general information was available. This resulted in only a
marginal model plausibility. After the lowimpact methods, the PDNA report was extremely useful to
quantify the event accuracy. Construction cost data aided both the accuracy estimation as well as
model plausibility for the exposure parameter. However, as information lacked for many asset types,
the overall plausibility was deemed significantly lower than in the Limburg case study. This quadrant
only allowed a conclusion on the estimate accuracy for the simulated event, thus themodel’s application
to other hazard events remains questionable. This results in much higher uncertainty when applying
the model to risk studies, which needs to be communicated and mitigated in the floodrisk reduction
investment case.
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Limitations
Limitations of the research are rooted in the information sources information, the subjectivity of validity
and uncertainty.

First, it was found that information sources limit the validation process through availability, their level of
detail and reliability. In Figure 13.1, it was noticed that nondamage data aided most to the plausibility
of the exposure parameter. However, little focus was placed on the validation of the hazard parameter,
as no additional data was available for the process. The framework gives limited recommendations
on how to validate this parameter, despite recognizing it as a large uncertainty source (Ward et al.,
2013). To reduce this, additional sensitivity analyses may be considered in the validation approach.
Furthermore, validation of the vulnerability parameter could only be done by damage data, but was
severely restricted by the level of detail. For depthdamage curve validation, objectbased damage
data is required (Hasanzadeh Nafari et al., 2016; Kellermann et al., 2020), which is still barely made
accessible by insurance institutes.

The level of detail in the data further limits the calibration process, as the current detail does not indi
cate the root inaccurate parameter value. Therefore, calibration decisions on parameter alteration, can
not be supported by data. This effect can be seen in literature. Mediero et al. (2021) calibrated cou
pled vulnerability and exposure parameters using a single event. Subsequently, the calibrated model
overestimated all the smaller events. It is plausible that this was caused by the calibration of coupled
variables, whereas a specific calibration to a single parameter could have improved model accuracy
across all events. Contrarily, Amadio et al. (2016) calibrated only the exposure parameter, whereas the
vulnerability parameter was assumed accurate. This resulted in increased estimate accuracy for the
calibration event, however, the question may be posed how well this translates to other flood events.

Finally, the reliability of the information limits its application. The case studies found significant biases in
the data, such as the PDNA business damage that only included large companies, and WTS valuations
biased by payout limits. Bias cannot be avoided, but many studies apply data without analysing bias
effects, which can be a severe limitation to the concluded model accuracy (Kron et al., 2012; Molinari et
al., 2019).Therefore, additional emphasis on finding bias effects before data usage should be placed..
The reliability may be further decreased by the application of new methods to each dataset, due to
their heterogeneity. Although these methods may be plausible, their new untested application adds
additional uncertainty.

The second limitation of the framework (and general validation studies) remains the subjective definition
of validity (Apel et al., 2009). The framework and Figure 13.1 argue that additional data can increase
the level of validity. However, no generally applicable quantitative measure that defines when validity
is reached can be made. Therefore, this will in practice remain up to engineering judgement and be
guided by time and data constraints. An example of this can be found in the case study validation of the
hazard parameter. As no additional data sources were found to compare the applied hazard analysis
with, the uncertainty was mentioned but not further elaborated on.

The third limitation of the framework is the large remaining uncertainty. For residential assets, the
found hazard and exposure parameter uncertainty was larger than generally reported in other literature
(Huizinga et al., 2017; Wagenaar et al., 2016). This could mean a severe restriction on the use of these
‘globally’ applicable vulnerability curves from literature, as it is shown they are not widely applicable.
For critical infrastructure the limitation was more severe, as the available PDNA damage data provided
insufficient information to quantify the amount of direct damage uncertainty. This shows that additional
damage data exclusively is not always able to solve the validation problem, where the main literature
advice lies (Molinari et al., 2019). Furthermore, it questions a standard ‘engineering’ approach of calcu
lating indirect damage as a factor of direct damage, as done in (Aerts et al., 2014; de Ruig et al., 2019).
If direct damages are already highly uncertain, a multiplication will result in even higher uncertainty
for indirect damage estimates (Jongman et al., 2012). For these critical assets, the direct damage
estimate may simply be of inferior importance for flood mitigation strategies, as indirect effects can be
much higher (De Bruijn et al., 2016; Habermann & Hedel, 2018). Therefore an improvement can be an
increased focus on other methods, such as economic inputoutput models, to estimate indirect damage
for these critical assets (Koks et al., 2015).
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Recommendations
Recommendations are given on the topics of validation procedures and additional data gathering.

For future validation studies, Figure 13.1 indicates recommended methods, as well as the conclusions
that may be drawn depending on the available amount of information. First, it is recommended to start
the validation process with highimpact methods such as damage reports and construction costs, as
these were deemed most effective for the case studies. Second, the validation status of the event
can be placed in Figure 13.1 to analyse what further information is required to move the case towards
quadrant 4. For instance for Beira, engineers could focus on finding additional nondamage data to
increase the plausibility of the model.

Regarding future data gathering, three recommendations are made. First, it is advised to gather future
damage data in a more transparent way to minimize bias and ambiguity, as was found in both the PDNA
and WTS data. Second, to increase the amount of objectbased damage collection. It is understand
able that not the entire disaster area can be reported in an objectbased manner, but a small amount
of representative data could already give strong indications for the calibration process. It is estimated
that around 20 damage valuations each, for a low, medium and high inundation depth area could
already significantly increase support of hazard and vulnerability parameters. Added benefits may be
gained, for instance, by combining damage reporting with high watermarks, which could immediately
aid validation of the hazard parameter which remains a troublesome task. Third, the analysis using
WTS data was severely limited due to an unknown coverage factor. Estimations of this factor resulted
in strong Pearson’s correlations similar to other literature (Amadio et al., 2016), which indicates the po
tential of the dataset. Further insights on the total direct incurred can be acquired on a (very valuable)
high spatial level, if this factor was known. Therefore the importance of gathering lossdata coverage
information is emphasized, next to the request for additional detail.

Future research
Other limitations of the proposed framework may be reduced by additional research on four subjects:
expert judgement, additional data usage, compound damage disaggregation, and calibration proce
dures.

First, the study attempted to create scientific data by expert elicitation, but concluded unsatisfactory
results. General application of expert judgement in flood risk model validation includes consensus and
open discussions, which may lead to large biases. Instead, the applied elicitation method was able to
create results with minimum bias. However, this also resulted in too large uncertainty to be useful in
the validation process. For further research regarding expert judgement, a focus on balance between
increasing expert informativeness while minimizing bias is advised.

Second, the application of global damage databases was tested in Appendix D, for a hypothetical case
where no local damage data was available. Despite inadequate results of the analysis, this situation
still occurs frequently in flood risk modelling. Further research on applying these global datasets can
support researchers by enabling quick highlevel damage numbers, but should put considerable effort
into ensuring data reliability. This may be especially interesting as earlier research byWard et al. (2013)
did manage to acquire suitable results.

Third, the research indicated a novel way to disaggregate compound wind and flood damage as part of
data transformation procedures. High dependency on structural characteristics and inundation depth
was shown, which agrees with earlier case study research by Baradaranshoraka et al. (2017). Con
trarily, other databased research using the NatCatSERVICE simply concluded a 5050 split between
wind and flood damages (Kron et al., 2012). Applying this detailed disaggregation method to hindcast
compound damage data may give additional insights into compound damage processes.

Fourth, no calibration procedure is defined in the proposed validation framework. As calibration can be
done by altering multiple parameters, most notably the exposure data and the vulnerability curves, a
suitable method can further guide experts to increase model accuracy. Here, the risk of overfitting on
a single flood event (as discussed in the limitations section with a study of Mediero et al. (2021) should
be balanced with the calibration possibilities that the data availability enables.
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Conclusion

During this research, a validation framework was developed that floodrisk experts can use to validate
their models. The proposed framework applies four steps to an eventbased damage estimation: 1)
initial situation assessment, 2) model plausibility assessment, 3) verification using empirical data, and 4)
concluding on the next steps. The first two steps were found to be important to gain insight into the main
model uncertainties and increase confidence in the local applicability of assumptions. Subsequently
applying empirical data was required to quantify these uncertainties and the difference between the
model and observations, and to support assumptions.

Application of the framework to the Limburg river flood (2021, The Netherlands) and the Beira coastal
flood (2019, Mozambique) resulted in a new damage estimate of 34% and +82% respectively. In both
cases, large errors were found in the modelling of linear infrastructure, due to rasterization and param
eter errors. Damage estimates of the major residential classes were concluded accurate but highly
uncertain. For agricultural assets, a lacking crop differentiation between resilient grass and vulnerable
crops was a major error source as well as disregarding the salinity of a coastal flood. Finally, large
uncertainties were found in critical infrastructure, for which an areabased direct damage calculation
may be unsuitable. Instead, it is advised to focus on the effects of indirect damage.

For Limburg, the largest found errors and uncertainties were attributed to the exposure parameter, fol
lowed by the hazard and the vulnerability parameter. This conclusion may be biased due to lacking
objectbased damage data, which limited further insight into the uncertainty of the vulnerability param
eter. For Beira, it was not possible to indicate root parameters of errors due to limited information. The
damage report merely allowed to indicate the difference with model estimates.

The results indicate four conclusions. First, properly verifying flood damage model results requires
a damageclassbased comparison. In this way, both under and overestimating errors, as well as
uncertainty for each asset type can be shown. The case studies revealed that data bias may be a
significant factor to consider. Second, data transformation assumptions such as ‘crop damage is not
plausible at inundated grassland’ and estimate uncertainties remain in the validation process. There
fore, transparency and assumption communication is concluded as an essential value. This still lacks
in (flood) modelling (Beven et al., 2016; Tennøy et al., 2012). Third, although differences between ob
servations and estimations were shown, insights for calibration were limited due to data detail. To aid
calibration, future data reporting may increase their depthdamage or spatial information. Fourth, risk
based accuracy should be increased by calibrating exposure and vulnerability parameters to approach
the assessed event estimation, in such a way that the parameter alterations are plausible across all
hazard scenarios. If this is not possible, the remaining uncertainties should be clearly communicated to
decisionmakers. Otherwise, altering parameters only to align estimations with a single event’s damage
observations may result in decreased accuracy for nonassessed scenarios.

Through these steps, the framework for eventbased validation can increase the validity of probabilistic
flood risk models. Nevertheless, insights remain limited by the availability of local information.
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A
Appendix A: Limburg analysis

A.1. Model input plausibility

Figure A.1: Depth distribution analysed in GIS, an increased amount of half meter pixels can be seen in the distribution.

Figure A.2: Waterlevel of the Maas: Measured vs used as input in the inundation analysis.

Figure A.3: Modelmodel comparison of other vulnerability classes. The reddashed HISSSM line is compared to multiple GFRT
vulnerability curves.
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Figure A.4: Modelmodel comparison between HISSSM maxdamage values and the GFRT input maxdamage values. The
left of the table shows HISSSM values, the second column indicates 2019 GFRT values. The GFRT values are subsequently
adjusted for inflation and adjusted for units/assumptions. These assumptions and conclusions (on the bottom) are scrutinized in
GIS. Lines without comparison either have no asset value or no comparable HISSSM category.
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A.2. Geographic damage distribution: GFRT initial estimate and
fact finding low and high

Figure A.5: Geographic damage distribution of the GFRT estimate prior to validation phase 2.

Figure A.6: Geographical damage estimate from the fact find
ing report including physical damages and company losses 
high estimate (Expertise Netwerk Waterveiligheid, 2021).

Figure A.7: Geographical damage estimate from the fact find
ing report including physical damages and company losses 
low estimate (Expertise Netwerk Waterveiligheid, 2021).
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A.3. GFRT initial and fact finding damage estimate comparison for
the Meuse, Geul and Roer

Figure A.8: Comparison of initial GFRT estimate and fact finding estimate for agriculture (Expertise Netwerk Waterveiligheid,
2021).

Figure A.9: Comparison of initial GFRT estimate and fact finding estimate for infrastructure (Expertise Netwerk Waterveiligheid,
2021).
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Figure A.10: Comparison of initial GFRT estimate and fact finding estimate for residential (Expertise Netwerk Waterveiligheid,
2021).

Figure A.11: Comparison of initial GFRT estimate and fact finding estimate for recreational (Expertise Netwerk Waterveiligheid,
2021).
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A.4. Limburg model output validation supporting section

Figure A.12: Calculated Railroad damage at an elevated bridge and elevated berms at a river crossing.

linear road approach
To validate the minor road sections, the damaged road sections were represented by a line instead
of gridcells. This line was created by clipping the NWB dataset with the damaged gridcells from the
GFRT. Subsequently, along every meter of the line, the inundation depth was extracted from the inun
dation raster. This dataset was then exported to python, where a length based damage calculation was
performed. Each water depth was transformed to a damage ratio using the same vulnerability curve,
and subsequently multiplied with a maximum damage value /𝑚 of road section taken from HISSSM
in Figure 5.5 (Slager & Wagenaar, 2017)
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Figure A.13: Visualisation of GFRT and linear approach. Two new datasets used for the linear approach are shown in dark blue.

N1: Rasterization caused surface area error
The spatial resolution of gridcells can result in an erroneous geometrical representation of assets,
especially for long thin assets like roads and railroads. de Moel et al. (2015) analysed the impact of
different spatial scales and concluded that the error size depends on situational characteristics such
as grid resolution and orientation, asset geometry and flood characteristics. To validate this aspect,
the difference in surface area between the polygons and gridcells was compared for three minor road
classes. The results can be seen in Table A.1. As the surface area ratios are near 1, it was concluded
that in this particular case the gridcell based approach is valid and that no further uncertainty was
caused by the spatial resolution.

N2: Analyse sensitivity to specific inundation depth
To check the sensitivity of a land use class to a specific waterdepth and corresponding damage ratio,
a histogram of occurring waterdepths was analysed.

For instance for the infrastructure sector, the hypothesis could be that many roads are only slightly
inundated and that therefore a large amount of predicted damage was from a small inundation. The
depthDamage curve can then be validated locally, by reevaluating how much damage this low inun
dation actually caused to a road.

Results from the histogram in ?? indicate that there is no increased sensitivity for low inundation events.
However, a small peak around the 0.5m mark can be seen. This indicates the effect of uncertainty in
the hazard analysis mentioned in Section 5.1.

Table A.1: Results of surface area comparison between road representation by polygons and gridcells.

Total floodextent Geul floodextent

Class Polygon
area 𝑚2

Gridcell
area 𝑚2

Polygon
Grid

Polygon
area 𝑚2

Gridcell
area 𝑚2

Polygon
Grid

Other road 2276500 2293128 0.992 176625 177553 0.994
Tertiary road 1313600 1317257 0.997 85625 86108 0.994
Secondary road 198975 201018 0.989 26450 26273 1.007
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A.5. WTS analysis

Figure A.14: Distribution of postal code areas for PC4, PC5 AND PC6.

Figure A.15: Histograms of coverage factor during data transformation steps

Figure A.16: This business area has much lower reported dam
ages than was reported on average in comparison with the
GFRT. This indicates that very little flooding may have actually
occurred here.

Figure A.17: Residential outliers in the municipality of Brom
melen. The red area has much higher reported damage than
on average in comparison with the GFRT, whereas the green
areas have lower damages.
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Figure A.18: Total damage estimates with three different mean coverage factors.

Figure A.19: Spearman correlations between WTS reported crop loss claims and GFRT agriculture estimates
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Figure A.20: Spearman correlations between WTS reported residential damage and GFRT residential house estimates

Figure A.21: Spearman correlations between WTS reported company claims and GFRT business estimates
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Table A.2: Extended overview of case study methods from the discussion

Quadrant Method Limburg application Beira application
1 Experts SEJ experiment was highcost

and resulted in some qualititative
insights and uninformative quan
titative estimates

ND

Modelmodel Comparison with HISSSM or
linearbased model (for roads)
indicated small differences. This
provided insight, but is not as
concrete as verification with
damage data.

comparison with Global depth
damage functions of Huizinga in
creased plausibility but large un
certainty remained.

Assumption
scrutinizing

Comparison of road width and
residential inventory inclusion in
exposure value indicated plausi
ble errors

Not including salinity in agri
culture depthdamage functions
may lead to underestimation, but
unclear how large the effect is

Damage zone
inspection

False damage zones could
be identified and their im
pact summed aiding damage
quantification

Zones with uncertain damage
estimation could be pointed out,
but no definitive conclusions or
parameter insights could be ob
tained

2 Spatial data BRP data indicated were agricul
ture damage was plausible

Housing footprint data allowed
further insight in the type of
buildings, in density assump
tions and to compare dam
age values per surface area of
house.

Economic data Average revenue for crop
land and public school costs
increased exposure value
plausibility.

ND

3 Insurance 1) Allowed quantitative estimate
of total residential damage 2)
insurance payouts and recon
struction costs could be com
pared to maximum damage val
ues

ND

WTS 1) Allowed a quantitative esti
mate of total damage, but the un
known coverage factor resulted
in large uncertainty. 2)Spatial
data allowed to indicate deviat
ing areas and possible errors in
the hazard or vulnerability pa
rameter

ND

PDNA ND Very useful for verification data
as information on various asset
types was available. Disaggre
gation was plausible but possibly
added uncertainty

4 Construction
cost

Public school construction
cost increased exposure value
slightly.

Some residential construction
costs were available, but too
large uncertainty was present to
give confident estimations

ND Qualitative
damage reports

Qualitative damage descriptions
in the PDNA hinted at a wrong
vulnerability curve for road in
frastructure. Quantification was
not possible.
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Appendix B: Structured Expert

Judgement figures

Figure B.1: Residential maximum damage estimations (Target question 1) of experts and their corresponding decision makers.
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Figure B.2: Calibration questions 1 and 2 for residential damage
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Figure B.3: Calibration questions 2 to 7 for residential damage
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Figure B.4: Robustness plots of removed calibration questions for each calibration scenario. The green dashed horizontal line
indicates the initial value before removing items. The magenta star indicates the geometric mean of the variations. The red line
and plus markers indicate the median and outliers of the boxplot.
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Appendix C: Beira supporting figures

Figure C.1: Distribution of inundation depth at Beira.

Figure C.2: Flooded industrial area north of Praia Nova
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Figure C.4: Aerial pictures of the damaged commercial area in Beira

Figure C.3: Flooded agricultural areas to the North of Beira



D
Global damage database approach

D.1. Problem statement
For both case studies, damage data was present in some form. However, the situation can occur, when
no suitable historical damage data is present for a case area. This means no verification process is
possible with local damage data. However, global damage databases exist, which may be able to fill
this gap. These databases track the impacts of multiple hazard types on a global scale. Examples
are EMDAT (2022), NatCatService (Munich Re, 2022) or Desinventar (2022). These databases give
highlevel event impact data, such as: damage, losses, affected people and casualties.

In this section, it was attempted to use these data to acquire insights into historical flood impacts. These
insights may then be used for verification in the case that no local damage data is available. The section
consists of two goals: First, it was attempted to gain insights by statistically describing the impact data.
Second, spatial data on floodextents, affected landuse and affected socioeconomic data was used to
find relationships between affected and reported data.

D.2. Methodology
For this approach the data summarized in Table D.1 was used. The main damage data was taken
from EMDAT (2022). The size and global applicability of the dataset make it a valuable database.
For this research, Flood events on the african continent between 1985 and 2020 were used, resulting
in up to 2871 floods. However, after further investigation, drawbacks became present. The first main
drawback is the reliability of the data, as it is unclear what the exact procedure is. Most data is taken
from nonacademic sources such as various forms of news reporting. Other data may be estimated
by models. The second drawback is the fact that not all events report the same amount of data, with
many events missing the total damage, insured damages or number of casualties. Only events where
flood damage was reported were taken, which left 118 flood events.

Floodextents are taken from Tellman et al. (2021), who recently mapped 913 flood extents accurately
using sattelite imagery. Unfortunately, the intersection between the Emdat events that reported damage
and the floodextents resulted in only six useful flood events. For landuse, a 20m resolution global
dataset was taken from ESA (2017). Socioeconomic data on GDP and population was taken from

109
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Table D.1: Data overview used for the global damage data base analysis

Name Description Resolution Period Reference
Emdat Global hazard impact database.

Used events are African hazards
between 19852010

 19852010 EMDAT
(2022)

Floodextents Sattelite derived floodextent maps
between 2000 to 2018

250m 2000  2018 Tellman
et al. (2021)

Corine LCL Global landuse data 20m 2016 ESA (2017)
Socio
economic Shared Socioeconomic Pathways

(SSP) base level data. Global grids
with estimated GDP and population

30 Arcsec 2010 O’Neill et al.
(2017)

To find the affected GDP and Population for each floodextent, the workflow visualised in Figure D.1
was used. The used data is shown in the left box 1, which was elaborated on earlier in Table D.1.
The socio economic data was presented in a grid with nonconstant gridcell size1. To create constant
gridcells, they were fixed locally for each floodextent. To enable the creation of snapped rasters later
in the process, a fishnet was created for each locally fixed raster file.

To work with the Landuse data, the assumption was made that all economic activity and population
was centered in the landuse type Urban. This was used in step 2: extraction to create two files per
flood (So 12 files in total). In the first file, all urban raster cells were extracted for each floodextent. For
the second file, all flooded urban raster cells were extracted.

Subsequently in step 3 two raster files were created for each floodextent. The first raster contains the
total urban surface area per gridcell, whereas the second file contains the total flooded urban surface
area. These files were created by first clipping the extracted rasters from step 2 with a fishnet. Second,
the surface area was calculated for each singlepart polygon. Third, the features were transformed
to points to enable accurate summation2. Fourth, the points were transformed to a raster, that was
snapped to the fishnet file. Therefore, this step results in two raster files with the same orientation and
resolution as the socioeconomic raster per floodextent.

In step 4, the affected GDP and Population was calculated for each floodextent. This was done by first
calculating the affected fraction by dividing the affected urban surface area over the total urban surface
area for each gridcell. Sbusequently, this fraction was multiplied with the total GDP or Population
present in that gridcell to acquire the affected GDP or Population. Finally, all gridcells in a floodextent
were summed to find the total amount of affected GDP and affected population per flood.
1The data had a constant size in Arcseconds, which varies with distance from the equator
2Summing polygons gave inaccurate results due to overlap of features.
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Figure D.1: GIS workflow with data sources to find affected GDP and Population per floodextent

D.3. Results  descriptive statistics
The initial analysis focused on the statistical description of the Emdat database, shown in Figure D.2. A
total of 118 events reported flood damages between 1985 and 2010, with most reports being filed after
1995. The distribution of adjusted damages is subsequently shown on the right. The mean damage is
92.4 M USD, adjusted to 2022 price levels. The maximum of 1,8 Billion USD contains a SouthAfrican
river flood from 1987. Although this was indeed a major flood, large price adjustment due to the age
of the flood also played a major role in reaching this maximum3. Besides this maximum, other major
flood events reach amounts of 750  1.000 M USD.

Figure D.2: Statistical overview of EMDAT reported floods for Africa 19852010

Besides the total numbers in the dataset, also the Pearson’s correlation between reported damage
and three variables were analysed across Africa in Table D.2. It was found that reported damage
has a significant positive correlation in East, Southern and Western Africa. Much lower correlations
were found in Northern Africa, which may be due to the different arid climate. Contrarily, a strong
positive correlation was only found in Eastern and Western Africa, but not in Southern Africa. Finally,
no relationship was found between damages and GDP/capita, as two areas report positive correlations
of 0,20, whereas Eastern and Northern Africa report negative correlations of 0,09 and 0,11.

Looking at flooding types at the bottom of Table D.2, it was found that these relationships only stem
from riverine floods, as flash floods report no correlations. As only two coastal floods were reported,
not enough data was available to describe correlations4.
3The 1987 estimate was 765 M USD
4another group of events existed where the flooding type was unknown
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Table D.2: Emdat correlation between adjusted reported damages and one of the three variables Deaths, Affected or GDP/Capita.
The correlation is presented for the four sections Southern, Northern, Eastern and Western Africa. Middle africa had only five
events, which was too few to reliably calculate correlation. N indicates the total amount of flood events in the area.

Region Southern Africa N = 20 Northern Africa N = 18
Variable Deaths Affected GDP/Capita Deaths Affected GDP/Capita
Correlation 0,87 0,02 0,20 0,16 0,20 0,11

Region Eastern Africa N = 49 Western Africa N = 26
Variable Deaths Affected GDP/Capita Deaths Affected GDP/Capita
Correlation 0,54 0,66 0,09 0,77 0,91 0,20

Flood type Flash flood N = 22 Riverine flood N = 68
Variable Deaths Affected GDP/Capita Deaths Affected GDP/Capita
Correlation 0,02 0,01 0,21 0,49 0,28 0,27

D.4. Results  Analysed flood events
The intersection of the flood event database (Tellman et al., 2021) and EMDAT (2022) events with
reported damages resulted in six flood events, shown in Table D.3. The left section indicates flood
details regarding the Darthmouth Flood Observatory identifier, the main affected country and the year
of occurrence. Subsequently, the GISfound affected GDP, population and area are shown. On the
right, the affected population, casualties and reported damage in the emdat database is shown.

Subsequently in Figure D.3, the GIS estimated values are plotted on the xaxis, against the reported
values on the y axis. Unfortunately, with three out of the four analysis, no significant correlations were
found. On the right top, affected area versus affected population has a significant Pearson’s correlation
of 0,83. This may be caused by the fact that the reported affected population was also estimated using
a spatial model. As GISestimated population versus EMDAT population has a lower correlation, the
problem may be caused by the spatial resolution of our SSP population dataset.

Table D.3: Data of the six analysed events that intersected between EMDAT (With reported damage) and Tellman et al. (2021).

Event details GIS affected estimate Emdat reported data

ID5 Country Year Population GDP
[k$]

Area
[𝑘𝑚2] Population Casualties Damage

[k$]6

2345 Nigeria 2003 2.310 4.041 0,53 210.000 16 3.786
2649 Ethiopia 2005 21.422 24.763 0,34 235.418 156 6.938
2825 South Africa 2006 835 9.067 0,12 4.160 6 95.435
3170 Uganda 2007 9.477 9.397 7,4 71.8045 29 93
4023 Mozambique 2013 47814 349.041 0,49 240.000 119 34.895
4219 Malawi 2015 4.068 3.136 3,3 638.645 278 445.868

5Darthmouth Flood Observatory identifier
6Adjusted to 2022
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Figure D.3: Results of comparing EMDAT data with GIS analysis. As shown, no significant Pearson’s correlation was found.

D.5. Discussion
The descriptive statistics presented in the previous section may be beneficial to acquire an initial
overview of flood damages in Africa. However, the method is limited by various points. First and
foremost the source of the data and its reliability should be considered. The exact source in EMDAT
(2022) differs per entry, but the major part is based upon sources such as newspapers and articles, of
which the reliability can be strongly questioned. Second, these databases may be biased, as they are
not comprehensive on all ocurring hazards. For instance, research by Moriyama et al. (2018) andWard
et al. (2013) indicated large geographical differences in coverage between multiple hazard databases.
Finally, also the complex modelling process is prone to errors due to the handling of large datasets,
the relatively large spatial resolution, and complex coordinate transformations.
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