

Delft University of Technology

Analyzing $\text{PaO}_2/\text{FiO}_2$? mind the interaction with PEEP!

Smit, J. M.; Krijthe, J. H.; Van Bommel, J.; Van Genderen, M. E.; Reinders, M. J.T.; Jonkman, A. H.

DOI

[10.1007/s00134-025-07825-0](https://doi.org/10.1007/s00134-025-07825-0)

Publication date

2025

Document Version

Final published version

Published in

Intensive Care Medicine

Citation (APA)

Smit, J. M., Krijthe, J. H., Van Bommel, J., Van Genderen, M. E., Reinders, M. J. T., & Jonkman, A. H. (2025). Analyzing $\text{PaO}_2/\text{FiO}_2$? mind the interaction with PEEP! *Intensive Care Medicine*, 51(4), 798-799. <https://doi.org/10.1007/s00134-025-07825-0>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

<https://www.openaccess.nl/en/you-share-we-take-care>

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

CORRESPONDENCE

Analyzing $\text{PaO}_2/\text{FiO}_2$? mind the interaction with PEEP!

J. M. Smit^{1,2*} , J. H. Krijthe², J. Van Bommel¹, M. E. Van Genderen¹, M. J. T. Reinders² and A. H. Jonkman¹

© 2025 Springer-Verlag GmbH Germany, part of Springer Nature

We read with great interest the recent study by Catozzi et al. [1]. They present an important and thought-provoking perspective on the limitations of classifying Acute Respiratory Distress Syndrome (ARDS) severity based solely on $\text{PaO}_2/\text{FiO}_2$. Their findings highlight how severity based on oxygenation impairment does not align with determinants of ventilator-induced lung injury (VILI), such as mechanical power ratio (MPR) and driving pressure (DP), thereby questioning the usefulness of tailoring respiratory support based on $\text{PaO}_2/\text{FiO}_2$ thresholds. We strongly support their stance on re-evaluating the pivotal role of oxygenation impairment in ARDS management, particularly the centrality of $\text{PaO}_2/\text{FiO}_2$.

As we reflect on these findings, we wish to highlight a key limitation: the study's analysis included $\text{PaO}_2/\text{FiO}_2$ that was obtained at various ventilation settings, which was used to stratify ARDS severity-groups. However, it is well-known that the positive end-expiratory pressure (PEEP) level could directly influence the oxygenation response and thus PaO_2 . While the authors extensively discuss that VILI determinants arise from the interplay between several factors, we argue that classification by $\text{PaO}_2/\text{FiO}_2$ without considering its interaction with PEEP is incomplete. In the study by Catozzi et al. [1], baseline PEEP levels during $\text{PaO}_2/\text{FiO}_2$ measurements ranged widely from 5 to 20 cmH₂O (as displayed in Figure S29). This variability raises concerns about the findings' reliability as the authors combined all $\text{PaO}_2/\text{FiO}_2$

measurements in the analysis regardless of the corresponding PEEP level.

PEEP could affect lung recruitment and oxygenation. Thus, $\text{PaO}_2/\text{FiO}_2$ reflects not only the patient's underlying lung pathology but also depends on the applied ventilatory strategy. Palanidurai et al. [2] have proposed 'normalizing' $\text{PaO}_2/\text{FiO}_2$ by dividing it by PEEP. A more straightforward approach might be to stratify patients by the PEEP level at which PaO_2 was measured, ensuring comparisons are made within comparable conditions.

We highlight the importance of such stratification with our preliminary findings, recently shared as a preprint on medRxiv [3]. In our study on the heterogeneity of treatment effects of high PEEP strategies, we revisited earlier work by Briel et al. [4], who reported greater survival benefits from high PEEP in patients with baseline $\text{PaO}_2/\text{FiO}_2 \leq 200$ mmHg. By grouping patients based on baseline PEEP, we found that this relationship was evident *only* when $\text{PaO}_2/\text{FiO}_2$ was measured during low PEEP settings, disappearing at higher PEEP levels. Without stratification, these findings—critical for PEEP management—would have been misleading.

Applying this reasoning to the study under discussion, we posit that stratifying patients based on baseline PEEP could uncover stronger associations between oxygenation impairment and respiratory mechanics, including MPR and DP. Beyond this specific study, we advocate for a broader call to action in intensive care medicine research to stratify $\text{PaO}_2/\text{FiO}_2$ by PEEP level. Furthermore, it may be time to reconsider how we currently define ARDS and its severity classifications, which presently place central importance on $\text{PaO}_2/\text{FiO}_2$ regardless of the PEEP level at which it is measured [5].

Finally, we wish to take a moment to acknowledge the unfortunate recent passing away of Professor Gattinoni, whose transformative and inspiring work profoundly shaped our understanding of ARDS and mechanical

*Correspondence: j.smit@erasmusmc.nl

¹ Department of Intensive Care, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
Full author information is available at the end of the article

This comment refers to the article available online at <https://doi.org/10.1007/s00134-024-07712-0>.

ventilation. This study stands as a testament to his enduring legacy. We extend our heartfelt condolences to his colleagues and loved ones.

Author details

¹ Department of Intensive Care, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands. ² Pattern Recognition and Bioinformatics Group, Delft University of Technology, Delft, The Netherlands.

Declarations

Conflicts of interest

A. H. Jonkman declares research funding paid to her institution, for studying new esophageal pressure sensor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accepted: 29 January 2025

Published online: 17 February 2025

References

1. Catozzi G, Pozzi T, Nocera D et al (2024) Rethinking ARDS classification: oxygenation impairment fails to predict VILI risk. *Intensive Care Med.* <https://doi.org/10.1007/s00134-024-07712-0>
2. Palanidurai S, Phua J, Chan YH, Mukhopadhyay A (2021) P/FP ratio: incorporation of PEEP into the $\text{PaO}_2/\text{FiO}_2$ ratio for prognostication and classification of acute respiratory distress syndrome. *Ann Intensive Care.* <https://doi.org/10.1186/s13613-021-00908-3>
3. Smit JM, Krijthe JH, van Bommel J et al (2025) The heterogeneous effect of high PEEP strategies on survival in acute respiratory distress syndrome: preliminary results of a data-driven analysis of randomized trials. *medRxiv.* <https://doi.org/10.1101/2025.01.23.25320649>
4. Briel M, Meade M, Mercat A (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury. *JAMA J Am Med Assoc* 303:865–873
5. Matthay MA, Arabi Y, Arroliga AC et al (2024) A new global definition of acute respiratory distress syndrome. *Am J Respir Crit Care Med* 209:37–47