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Abstract

An Intracranial Aneurysm (IA) is a bulge in the cerebral vasculature. The rupture of an
aneurysm results in a brain bleed. As a consequence, most patients become severely hand-
icapped or may even die. Preventive treatment with endovascular coiling is controversial
due to the high risk of complications. These complications are partly caused by the current
uncontrolled delivery of coils to the aneurysm. While recent developments in microcatheter
design allow for improved positioning, no method has been devised to model and control the
tension applied by the coil on the aneurysm wall throughout a coiling procedure. This thesis
aims to come up with a method to improve the safety of aneurysm treatment.

This thesis presents a new way to dynamically model an endovascular coil and its interac-
tion with a microcatheter and the aneurysm wall throughout a coil deployment procedure.
The main advantage of this model is its low computational complexity allowing real-time
control computation. A control architecture is presented that enables regulation of the con-
tact force between the coil and the aneurysm wall while obeying the constraints imposed by
the equipment and the environment. The presented architecture comprises an augmented
energy-shaping controller working in parallel with a constraint preservation controller.

This thesis shows that this control architecture asymptotically stabilizes the aneurysm wall
tension at the desired value throughout the coil deployment procedure.

This work provides a basis for modelling and control in future experimental validations.
Therefore, this work is a promising first step in the modelling and control of robotic systems
for neurovascular interventions and a step forward in the preventive treatment of intracranial
aneurysms.
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Chapter 1

Introduction

This thesis aims to reduce the risk of complications in intracranial aneurysm treatment by
stabilizing coil deposition of a soft steerable catheter. This chapter starts by giving a clinical
background on intracranial aneurysms. This background, in combination with expert clinical
opinion from the Erasmus University Medical Center (Erasmus MC) and recent advances in
the design of medical devices [1], forms the motivation for this thesis. The thesis objective is
synthesized in Section 1-3 and the main thesis contributions are underlined in Section 1-4.

1-1 Clinical background

This section provides a clinical background on intracranial aneurysms. This entails their pre-
ferred medical procedure, state-of-the-art medical devices and related periprocedural compli-
cations.

1-1-1 Intracranial aneurysms

An Intracranial Aneurysm (IA) is a localized bulge (3-10 mm) in the cerebral vasculature
found in 3% of the worldwide adult population [2, 3]. While the cause is often unclear, high
blood pressure and a weak vessel wall are risk factors for aneurysm formation [2]. In most
cases (90%) the aneurysm resembles a sac-like outpouching in the blood vessel as illustrated
in Figure 1-1b [4]. This outpouching is named the aneurysm dome or sac while the gateway
to the neighbouring vessel is called the aneurysm neck. Aneurysms usually form at the
bifurcation of two arteries where blood pressure on the vessel wall is at its maximum [5, 6].
Depending on size and location, aneurysms can result in neurological symptoms or headaches
[2], however, their presentation is often asymptomatic. In those cases, the aneurysm is either
accidentally found on a brain scan or detected only after rupture.

The rupture of an intracranial aneurysm results in a Subarachnoid Haemorrhage (SAH), i.e.
brain bleed. Although only 0.25% of aneurysms rupture and bleed [2], the consequences of
rupture are severe. It has been reported that 50% of patients do not survive an SAH and 25%
of patients will be severely handicapped. Only a few patients continue life without physical
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2 Introduction

(a) Overview of a cerebral aneurysm
from [7].

(b) Saccular aneurysm at bifurcation, edited from [8].

Figure 1-1: Illustration of an unruptured intracranial aneurysm.

consequences [9, 10]. When the haemorrhage is limited, the aneurysm can close autonomously
due to thrombus formation at the bleeding site. However, this aneurysm is prone to rerupture
within 30 days in 20% of the cases [9, 10]. Hence, medical procedures have been devised to
reduce the risk of aneurysm (re)rupture.

Medical procedures for aneurysm treatment aim to block the blood flow to the aneurysm
in order to induce thrombus formation within the aneurysm sac. Thereafter, fibrous tissue
forms in the aneurysm sac causing the aneurysm to shrink within the months to follow [11, 12].
The two most frequently employed procedures, surgical clipping and endovascular coiling, are
illustrated in Figure 1-2. During surgical clipping, a spring-like clip is permanently placed on
the aneurysm neck through open surgery, while endovascular coiling comprises a minimally
invasive procedure where the aneurysm is approached from more easily accessible blood vessels
[8, 12]. Due to complex vasculature, some aneurysms can only be reached using an open
surgical procedure. However, when endovascular coiling is feasible, the International Study
of Unruptured Intracranial Aneurysms (ISUIA) has favoured coiling over clipping based on a
complication rate of 7% for coiling compared to 21% for clipping [13]. Therefore, this thesis
limits its scope to endovascular coiling procedures for intracranial aneurysm treatment.

(a) Clipped aneurysm (b) Coiled aneurysm

Figure 1-2: Illustration of the medical procedures for intracranial aneurysm treatment.

J.P.T. van der Staaij Master of Science Thesis



1-1 Clinical background 3

1-1-2 Endovascular coiling

Endovascular coiling or endovascular embolization is a minimally invasive procedure where a
microcatheter is used to fill the aneurysm with platinum wires, i.e. coils. The deployment of
multiple coils inside the aneurysm sac reduces the blood flow velocity and induces thrombus
formation. The goal of the coiling procedure is to pack the coil mass densely and evenly into
the aneurysm sac to achieve minimal residual blood flow [5].

Figure 1-3: Illustration of a coiling procedure, edited from [8].

Coiling procedure

This paragraph describes the typical workflow of a coiling procedure. The interventional
neuroradiologist (operator) accesses the patient’s vasculature through the femoral artery in the
groin as illustrated in Figure 1-3. A steerable guidewire, placed inside a microcatheter’s lumen,
is used to endovascularly navigate the microcatheter under X-ray guidance to the treatment
site (Figure 1-4b). The simultaneous injection of contrast dye shows nearby vasculature,
serving as a vascular roadmap, i.e. angiogram, for the operator. Upon reaching the aneurysm,
the guidewire is removed from the microcatheter and replaced by a straightened platinum coil
[10, 12]. As the coils reduce the blood flow in the aneurysm, the coil packing density can be
inferred from the absence of contrast fluid on the angiogram. Hence, successful coiling of the
aneurysm in Figure 1-4 makes it disappear on the post-coiling angiogram in Figure 1-4c [5].

(a) Pre-coiling angiogram of an
unruptured intracranial aneurysm.

(b) Microcatheter navigated un-
der X-ray guidance.

(c) Post-coiling angiogram show-
ing blockage from blood flow to
the aneurysm.

Figure 1-4: Medical imaging at different stages of a coiling procedure, edited from [5].
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4 Introduction

Coils are advanced in the catheter’s inner lumen using a pushing mechanism attached to the
coil. If desired, the operator can pull back the coil before detachment to put it in a better
position [14]. Figure 1-5 shows an electrolytic detachment mechanism to release the coil from
the pusher mechanism into the aneurysm. After deployment, retrieving the coil is nearly
impossible [11].

Figure 1-5: Electrolytic coil detachment mechanism, edited from [15].

Endovascular coils

The endovascular coil, illustrated in Figure 1-6, is composed of three structures. The primary
structure is the platinum wire, i.e. stock wire, which has a diameter between 45-75 µm and
mostly determines the coil’s stiffness. The stock wire is wound around a metal rod into a
second structure with a diameter between 250-380 µm [16]. This is what is called the coil
and determines the diameter of the microcatheter’s lumen. To maximize coil distribution and
clot formation in the aneurysm sac, the coils are manufactured in a tertiary shape. Upon
being deposited in the aneurysm sac, the coil will unravel and reform to its tertiary structure
[16, 17]. Figure 1-7 shows commonly used tertiary coil structures, i.e spherically and helically

Figure 1-6: Endovascular coil structure for a helical coil.

shaped. The coil structure is picked to optimally fill the aneurysm. A larger framing coil
(10-20 cm) is usually selected to support the aneurysm dome and cover the aneurysm neck
to prevent future coils from easily moving out of the aneurysm. Then softer, smaller-sized
filling coils (2-5 cm) are used for packing the internal volume of the aneurysm [5, 17, 18]. By
straightening the coil, elastic potential energy is stored in the coil [17]. The tendency that the
coil wants to return to its original structure is used to optimally fill the aneurysm. However,
when such a coil cannot fully return to its tertiary structure it can apply significant pressure
on the aneurysm wall as a result of its stored elastic energy.

J.P.T. van der Staaij Master of Science Thesis



1-1 Clinical background 5

(a) Spherical coil (b) Helical coil

Figure 1-7: Commonly used tertiary structures for endovascular coils.

State-of-the-art microcatheters

Various microcatheters, with a diameter under 1 mm, have been designed for coiling proce-
dures. The tip of such a microcatheter is steered using a guidewire. This enables navigation
through the brain vasculature. A standard guide wire has a diameter of 0.014 inches (360µm)
and is placed inside the catheter’s lumen. Usually, these guide wires have a preshaped tip
curve and are manually steered by rotating the wire around its longitudinal axis. Recent
research by the Massachusetts Institute of Technology (MIT) [19] has presented the first
telerobotically controlled magnetic guidewire for neurovascular interventions. This roboti-
cally steered guidewire allows for safer and quicker access to hard-to-reach aneurysms in the
brain vasculature. However, this guidewire still needs to be removed from the catheter lumen
to inject endovascular coils. Due to guidewire removal, the microcatheter loses its steerabil-
ity, therefore complicating the accurate administration of coils to the target location [12, 1].
Recent research at the University of California San Diego (UCSD) by Gopesh et al. [1] has
therefore presented the first soft robotic steerable microcatheter, specifically designed for the
endovascular treatment of cerebral aneurysms. The proposed device is manually hydraulically
steered via four saline-filled channels. Pressurizing one of the channels causes deflection of
the tip in the opposite direction. Using this actuation mechanism, the operator can steer the
microcatheter tip to the centre of the aneurysm dome with almost no time delay and can lock
its orientation. An illustration of the steerable microcatheter tip has been depicted in figure
Figure 1-8.

Figure 1-8: Hydraulically steered catheter tip designed at UCSD by Gopesh et al. [1].

Gopesh et al. [20] has mentioned in their research that this steerable device improves the
dexterity of the catheter tip, enabling the operator to make a 180-degree turn from the parent

Master of Science Thesis J.P.T. van der Staaij



6 Introduction

artery into the aneurysm without the catheter ’kicking’ out of the aneurysm. Moreover, it
has been presented that this catheter inhibits the waving catheter tip motion which disturbs
the catheter tip position during coil deployment.

1-1-3 Periprocedural complications

While the treatment of a ruptured intracranial aneurysm is a matter of life and death, pre-
ventive treatment of Unruptured Intracranial Aneurysms (UIA) is controversial. A tradeoff
has to be made between the risk of spontaneous rupture and the risk of procedural complica-
tions [2]. Treating all UIA is not cost-effective, nor clinically the best option [21]. Reducing
intraprocedural complications would enable preventive treatment of UIA and therefore would
reduce SAH incidence. To give an insight into the current challenges of the coiling procedure
for intracranial aneurysm treatment, this section elaborates on periprocedural complications
associated with endovascular coiling. Generally, two types of complications could occur dur-
ing aneurysm treatment; Intraprocedural Aneurysm Rupture (IAR) and a Thromboembolic
Event (TE).

Intraprocedural aneurysm ruptures (IARs)

An intraprocedural aneurysm rupture arises in 1-5% of endovascular procedures and increases
the mortality risk by four times [22]. Endovascular procedures are either performed to pre-
vent unruptured aneurysms from rupturing or to prevent rerupture of a previously ruptured
aneurysm. IARs are more frequent in previously ruptured aneurysms as a result of an already
weakened vessel wall. Perforation can be induced by a guidewire, microcatheter or coil [22].
Park et al. [23] has conducted a meta-analysis of studies over the period 2011-2017 stating
an IAR incidence of 5.52% in treatment for previously ruptured intracranial aneurysms and
1.36% for unruptured aneurysms. Especially a small aneurysm size (<3-5 mm) and a complex
aneurysm location (anterior communicating artery) are risk factors for IAR and would benefit
from improved microcatheter steerability. The following summation states the mechanisms
of rupture as mentioned in the literature:

1. The deposition of coils results in a swinging motion of the micro-catheter tip inside
the aneurysm sac. The tip moving back and forth can damage the aneurysm dome
and induce aneurysm rupture. This mechanism is more evident during the initial coil
positioning as it stabilizes with subsequent coils in place [24].

2. The deployment of a coil in the aneurysm sac creates tension between the coil and
the aneurysm wall. When coils do not have enough space to unravel, the tension on
the aneurysm wall increases. An excessive tension on aneurysm wall induces aneurysm
rupture [24].

3. During the coiling procedure, the microcatheter’s workspace decreases and thus the
catheter is more likely to kick out of the aneurysm sac to the neighbouring artery. The
reinsertion of the catheter creates forward pressure on the aneurysm wall though the
coil mesh. This impulse can induce rupture [22].

J.P.T. van der Staaij Master of Science Thesis



1-1 Clinical background 7

4. To insert coils, the guidewire should first be removed from the microcatheter. This
operation can relieve accumulated elastic energy stored in the catheter’s body causing
a forward jumping motion. This jump can puncture the vessel or aneurysm wall [22].

5. The microcatheter and the coils can direct the blood flow towards weak spots in the
aneurysm dome which can rupture the aneurysm wall [22].

Thromboembolic events (TEs)

A thromboembolic event is defined as a partial or complete occlusion of arteries in the distal
vascular territory of the aneurysm’s parent artery. This blood occlusion induces a cerebral
infarction, i.e. stroke. TEs are associated with a higher morbidity than IARs and occur in
2-15% of procedures [22]. The main mechanisms leading to a TE are stated below:

1. Coils can partly move out of the aneurysm sac. This is called a coil prolapse. Coil
prolapse can be the result of coil misplacement or kick out of the catheter to the neigh-
bouring vessel during the deployment of a coil. Blood clots can form on this coil and
move to distal vasculature possibly inducing a TE [24].

2. Coils can get separated from the aneurysm and migrate to the distal vasculature. This
can be a result of detachment failures, displacement or stretching of coils [24]. Coil
migration has been reported in 4-6% of the procedures and can induce a TE [16].

3. Blood clots possibly form on the coil mesh while the procedure is in progress. In larger
aneurysms, the residual blood is higher and larger blood clots will form. The formed
thrombi can escape the aneurysm sac and induce a TE [22].

4. Due to contact with the catheter and vessel wall, the blood vessel can contract. This
so-called vasospasm deteriorates the blood flow. Slower blood flow induces blood clot
formation on the guidewire or microcatheter [22, 24].

Aneurysm recanalization

Aneurysm recanalization is the process where blood (re)accesses the aneurysm sac after the
coiling procedure. Recanalization is caused by compaction of the coil mesh and is likely to

Figure 1-9: Illustration of aneurysm recanalization due to coil compaction in a coiled aneurysm,
edited from [12].

Master of Science Thesis J.P.T. van der Staaij



8 Introduction

happen when the achieved coil packing is not dense enough (Figure 1-9). While recanalization
is not a peri- but postprocedural event, it is a common complication in endovascular coiling
(20%), and thus worth mentioning. During the coiling procedure, the operator does not know
the actual coil density or the aneurysm wall tension. Based on intuition, the procedure is in-
terrupted to prevent intraprocedural aneurysm rupture [11, 13]. The modelling of the contact
forces between the coil and the aneurysm wall could reduce post-procedural recanalization
while preventing the aneurysm wall from rupturing.

Complication trade-off

Section 1-1-3 has provided an overview of the literature on common complication mechanisms
during endovascular coiling procedures. Thromboembolic events are associated with a higher
morbidity than intraprocedural aneurysm ruptures. To prevent the risk of TEs, anticoag-
ulants, i.e. heparin, are administered before the procedure to inhibit blood clot formation.
However, inhibition of coagulation increases the severity of a brain bleed after aneurysm
rupture (Figure 1-10) [22]. The current challenge is to reduce the risk of intraprocedural
aneurysm rupture during administration of anticoagulants. This could be accomplished by
modelling contact forces between the coil and the aneurysm wall and improving the control
over the catheter tip movement during coil deployment.

Figure 1-10: Trade-off in prevention of thromboembolic events and intraprocedural aneurysm
rupture.

1-2 Thesis motivation

To validate the clinical relevance of this thesis, intraprocedural aneurysm rupture mechanisms
from Section 1-1-3 have been discussed with interventional neuroradiologist Pieter Jan van
Doormaal and neurologist Bob Roozenbeek from the Erasmus MC Rotterdam The Nether-
lands. First, this section elaborates on the most relevant rupture mechanism; coil-induced
aneurysm rupture. Next, the research gap that motivates this thesis is based on expert
clinical opinion from the Erasmus MC combined with the literature research on coil-induced
aneurysm rupture, state-of-the-art microcatheter design, and state-of-the-art modelling and
control for coils and microcatheters.

J.P.T. van der Staaij Master of Science Thesis



1-2 Thesis motivation 9

1-2-1 Coil-induced aneurysm rupture

The deployment of a coil in the aneurysm dome results in tension building up between the coil
and the aneurysm wall. Excessive tension on the aneurysm wall induces aneurysm rupture.
The increase in tension depends on the catheter position in the aneurysm dome. A recent
study by Oishi et al. [25] has presented a realistic hydrogel aneurysm model to evaluate the
effect of the catheter tip placement on the coil contact force and the catheter movement.
It has been shown that a catheter positioned deeply in the aneurysm dome and therefore
close to the aneurysm wall allows little space for the coil to deploy (Figure 1-11a), resulting
in increased wall tension. This study has also presented that the reaction force from the
aneurysm wall is partly transferred to the catheter tip, i.e. the tip’s deflection increases when
coils are deployed closer to the aneurysm wall (Figure 1-11b). When a catheter lies along
the aneurysm wall during coil deployment, its restricted movement leads to an increase in
tension between the catheter and the aneurysm wall. Thus, a catheter tip placed closely to
the aneurysm wall or lying along the aneurysm wall results in an increased tension on the
aneurysm wall. The study by Oishi et al. [25] has concluded that the catheter tip should be
placed at the level of the aneurysm neck to maximize the distance from the aneurysm wall.

(a) Expansion of the coil structure based on the catheter’s position during deployment.

(b) Deviations of the catheter tip based on the catheter’s position in Figure 1-11a, edited from [25].

Figure 1-11: Showing the relation between the insertion depth of the catheter and the deviation
of it’s tip upon deployment of a coil in the aneurysm dome.
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1-2-2 Research gap

Although the study by Oishi et al. [25] has concluded that the catheter tip should be placed
at the level of the aneurysm neck, clinical experts offer another perspective in this discus-
sion. The interventional neuroradiologist Pieter Jan van Doormaal of the Erasmus MC has
indicated that the catheter tip is often positioned deeper in the aneurysm dome to prevent
the catheter from kicking out of the aneurysm. Kick-out requires reinsertion in the aneurysm
sac. When the aneurysm is already partly filled, reinsertion is a complex manoeuvre that
can induce aneurysm rupture (Section 1-1-3). Pieter Jan van Doormaal has pointed out that,
to prevent intraprocedural aneurysm rupture, operators make use of the fact that the soft
microcatheter moves in the same direction as the coil-wall reaction force, and thus relieves
pressure from the aneurysm wall. This causes a waving motion, i.e. paint-brushing. During
coil deployment, the operator slowly retracts the microcatheter. While this solution prevents
the aneurysm from rupturing, its result is an uncontrolled way of coil deployment where kick-
out of the catheter tip from the aneurysm sac can still occur. This problem asks for a new
controlled and safe way to deploy coils in the aneurysm.

As discussed in Section 1-1-2, the first and only steerable microcatheter for intracranial
aneurysm treatment, developed at UCSD by Gopesh et al. [1] (Figure 1-8), enables improved
positioning of the catheter tip within the aneurysm dome. As of now, this microcatheter tip
can only be manually positioned in the middle of the aneurysm dome and locked in its move-
ment. Locking the catheter movement without knowledge of contact forces is dangerous, as
the catheter loses its soft characteristics which would normally prevent rapid tension increase
and rupture of the aneurysm wall. The presented tip by Gopesh et al. [1] would benefit from
the modelling of these contact forces and control strategies for coil deployment procedures.

State-of-the-art literature on modelling of endovascular coils has mostly focused on the pre-
diction of the coil’s deployment trajectory in the aneurysm sac [17, 26, 27]. These methods
either predict the trajectory of the coil in real time using geometric modelling, which does
not take applied forces into account [17, 27], or employ exact finite element modelling, which
is computationally expensive and requires offline computation [26]. As of now, no model
exists that allows for the real-time modelling and control of the coil’s contact forces with the
aneurysm wall and the steerable catheter tip.

The controllable element connected to this endovascular coil model is the steerable catheter
tip. The tip’s motion should be controlled to stabilize the output of the system, i.e. the
contact force between the coil and the aneurysm wall. Literature describes a catheter as
a soft robot which can exactly be represented as a continuum robot, i.e. having an infinite
dimensional space [28]. State-of-the-art literature on modelling of continuum robots has shown
that through discretization of these structures, one can reveal the similarity between rigid and
soft robots [28, 29]. Therefore, control structures developed for rigid robots have been adapted
for the control of soft robots [29]. Since the motion of the soft robot is dominated by elastic
effects, control efforts have focused on trying to shape the soft robot’s potential energy using
passivity-based control to achieve the desired robot configuration [29, 30, 31]. Passivity-based
control should be adapted to the specific case where the controlled object, i.e. the catheter,
is connected to another soft object, i.e. the endovascular coil. This endovascular coil has
time-varying properties as it grows in the aneurysm and is placed between the catheter tip
and the aneurysm wall. Moreover, the control strategy should be extended such that it allows
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1-3 Thesis objective 11

for the preservation of constraints which ensure the safety and the feasibility of the coiling
procedure.

In conclusion, as of now, the field of robotic systems for neurovascular interventions is new
and not a single system has been FDA-approved [19]. To the best of our knowledge, no
research has been done in real-time modelling and control of the aneurysm wall tension in
endovascular coil deployment procedures. This research would allow for a computer-controller
steerable microcatheter tip that regulates the tension between a coil and the aneurysm wall
while preventing the catheter from kicking out of the aneurysm. This robotic system would
improve safety of coiling procedures and enable wider preventive treatment of intracranial
aneurysms.

1-2-3 Research questions

Given the conclusion of the previous section, several research questions can be formulated:

Q1: What model can describe the motion of an endovascular coil and its forces applied on
the aneurysm wall and a steerable microcatheter tip?

Q2: How can the growth of a coil throughout a coiling procedure be incorporated in the
model of (Q1)?

Q3: What control architecture enables regulation of the contact force between the aneurysm
wall and an endovascular coil?

Q4: How can the control architecture in (Q3) be extended to maintain the desired contact
force throughout a coiling procedure while obeying the constraints imposed by the
equipment and the environment?

1-3 Thesis objective

This thesis proposes how to adapt theory on modelling and control of soft robots to reduce the
risk of coil-induced aneurysm rupture during intracranial aneurysm treatment. Qualitatively
stated, this thesis aims to control a microcatheter system such that the contact forces between
the endovascular coil and the aneurysm wall stay below the yielding threshold of the aneurysm
wall while the steerable catheter tip position is maintained within the aneurysm sac and away
from the aneurysm walls. When this objective is achieved, one would prevent coil-induced
aneurysm rupture and catheter kick-out from the aneurysm sac. Mathematically stated and
illustrated in Figure 1-12, the thesis objective is to regulate the aggregated contact force f
between the coil and the aneurysm wall to the desired force f⋆, i.e.

lim
t→∞

f − f⋆ = 0. (1-1)

This regulation problem is subject to constraints, i.e.

f ≤ fmax,
(xt, yt) ∈ Xwall,
(xt, yt) ∈ Xcatheter,

(1-2)
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where fmax is the yielding strength of the aneurysm wall, (xt, yt) is the tip position of the
microcatheter, Xwall is the area or volume that evades catheter wall-collision and catheter
kick-out and Xcatheter depicts the constraints imposed by the catheter’s movement.

Figure 1-12: Illustration of the thesis objective.

By achieving the objective in Eqs. (1-1) and (1-2), this thesis has been the first attempt to
dynamically model and control coil deployment in a real-time setting. The main contributions
of this thesis are stated below and closely related to the research questions in Section 1-2-3:

1. A new way to dynamically model an endovascular coil and its interaction with the
aneurysm wall and a steerable microcatheter tip (Q1).

2. A new way to dynamically model a coil deployment procedure through estimation and
incorporation of coil growth parameters (Q2).

3. A proposed control architecture which enables indirect regulation of the contact force
between the aneurysm wall and an endovascular coil. This entails the design of an
augmented energy-shaping joint controller (Q3).

4. A proposed control architecture which enables asymptotic stabilization of the contact
force between the coil and the aneurysm wall throughout a coil deployment procedure
while obeying the constraints imposed by the equipment and the environment. This
entails the design of a constraint preservation controller that maintains the desired
catheter tip position on a derived constraint surface, and thus preserves the feasibility
of the presented force-regulating energy-shaping controller (Q4).

1-4 Thesis outline

The thesis is structured as follows. Chapter 2 presents the modelling coil deployment pro-
cedure through modelling and interconnection of soft catheter dynamics, soft coil dynamics
and coil growth dynamics. Chapter 3 presents a control architecture to achieve the force

J.P.T. van der Staaij Master of Science Thesis



1-4 Thesis outline 13

control objective in Eq. (1-1) in a setting where no extra coil material is added to the system.
Chapter 4 presents a control architecture such that the objective in Eq. (1-1) is achieved
throughout a coil deployment procedure while adhering to the constraints stated in Eq. (1-2).
Chapter 5 concludes this thesis and discusses future research directions.
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Chapter 2

Modelling coil deployment dynamics

This chapter presents a new way to dynamically model an endovascular coil and its interaction
with a microcatheter and the aneurysm wall throughout a coil deployment procedure. The
main advantage of this model is its low computational complexity allowing real-time control
computation. Section 2-1 presents a dynamic microcatheter model based on state-of-the-art
research. Section 2-2 proposes a new dynamic endovascular coil model by exploiting the coil’s
basic mechanic properties. Section 2-3 interconnects these systems and presents a new way
to incorporate coil growth during the coil deployment procedure. Section 2-4 discusses the
modelling assumptions and their limitations.

2-1 Catheter model

This section presents a dynamic model for a steerable intracranial microcatheter and dis-
cusses how to sense its configuration. A catheter is an inherently flexible structure that does
not contain any rigid links or joints. This allows for smaller construction, increased range
of motion and more softness than their rigid counterparts [32]. A continuum robot is an
equivalent modelling representation where the number of virtual joints approaches infinity,
resulting in continuous tangents along the catheter length [33]. While the degree of freedom
is large, the number of kinematic inputs to control the catheter shape is typically small. A
medical catheter is thus considered to be a hyperredundant continuum robot [32].

2-1-1 Actuation mechanism

To allow for optimal catheter control with minimal actuation, the catheter tip section is con-
trolled while the larger proximal catheter body is assumed to passively follow the vascular
trajectory. Actuation mechanisms for microcatheters should be extrinsic, which means that
the actual driving force is placed at the catheter base outside of the patient. This allows
for improved miniaturization over intrinsic actuation, e.g. micromotors. Multiple extrinsic
actuation mechanisms have been proposed to steer continuum robots such as tendons, bel-
lows, memory alloys, magnets and concentric tubes [28, 34, 35]. Tendon-driven actuation
and pneumatic actuation are the most suitable choices for intracranial microcatheter control.
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16 Modelling coil deployment dynamics

Figure 2-1: Steerable microcatheter tip, edited from [1]. Tendon-driven: tip bends to the channel
of the strained tendon. Pressure-driven: tip bends to the opposite side of the inflated channel.

These designs allow for an inner lumen to guide endovascular coils, fast actuation, and span a
large workspace which is useful in a partially unknown environment [1, 33]. A typical single-
section, pneumatically or tendon-driven catheter is illustrated in Figure 2-1. The steerable
microcatheter design by the University of California San Diego (UCSD), as introduced in
Section 1-1-2, uses pneumatic actuation. However, this thesis limits its scope to the mod-
elling and control of tendon-driven continuum robots. Tendon-driven robots have been used
in multiple catheter designs and their actuation mechanism can be intuitively modelled [28].
By increasing the number of tendons, the steerable tip section can be separated into mul-
tiple steerable segments, however, this poses a trade-off between increased dexterity and an
increased catheter diameter. While tendon-driven catheters have not yet been miniaturized
down to 1 mm, i.e. the required diameter to move through intracranial vasculature, this is
expected to be accomplished in the near future.

2-1-2 Modelling frameworks

Catheters have often been modelled in a quasi-static fashion [33]. This is due to 1) the low
mass of the surgical continuum manipulator resulting in modal frequencies that are far higher
than the frequency of relevant surgical motions, and 2) the actuator forces that are usually
dominated by elastic energy storage and friction rather than inertial effects. Thus, kinematic
and static models have often thought to be suitable alternatives [33]. However, this thesis

(a) Variable curvature (b) Constant curvature (c) Pseudo-rigid body

Figure 2-2: Continuum robot kinematics representations, edited from [28].
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2-1 Catheter model 17

aims to capture and control the dynamic relationship between the catheter and coil. This
motion is faster than the conventional surgical motion [20], and thus this thesis discards static
models and focuses on dynamic modelling approaches.

In the modelling of continuum manipulators, a distinction can be made between lumped and
distributed backbone parameterization. In distributed parameterization (Figure 2-2a) the
manipulator’s curve is represented by a rotational frame R(s) and position p(s) which are
continuous functions of the distance s along the curve length ℓ [28]. These functions develop
along ℓ according to a set of differential equations, i.e.

dR(s)
ds

= R(s)û(s),

dp(s)
ds

= R(s)v(s),
(2-1)

where the strain vectors, u(s) and v(s), are analogous to angular and linear velocity but
are expressed in the spatial domain instead of the time domain. A classical distributed
parameter model, i.e. the Cosserat model, requires solving six spatial partial differential
equations at each time step. This limits its real-time applicability. It has been argued that
the improvement in accuracy attained by such a complex model is not significant enough
considering the required computational cost [36]. A more suitable alternative is lumped
parameterization, where the backbone pose is represented by a finite set of parameters. The
order of discretization determines both the accuracy and computational complexity of the
model. While the constant curvature model (Figure 2-2b) describes a manipulator with a
single curvature, the pseudo-rigid body representation (Figure 2-2c) is a more versatile and
popular discretization strategy that will be further discussed in the following section.

2-1-3 Pseudo-rigid body model

It has been shown that a low-order discretized model can still provide a good approximation
of elastic structures [33]. The Pseudo-rigid Body (PRB) model is a subclass that describes a
flexible structure as rigid body structures coupled by elastic elements. More specifically, the
PRB nR models represent an initially straight cantilever beam as n + 1 rigid links in series
connected by n revolute joints [37]. These joints are accompanied by three rotational springs
to account for the beam’s flexibility. Figure 2-3 shows a three-dimensional view of the PRB
3R representation by Su et al. [37]. This representation is a popular choice as it combines
low-order discretization with high accuracy on the end coordinates, i.e. the tip position, of
the catheter. The following sections derive the equations of motion for the general PRB nR
robot representation. The steerable catheter tip is assumed to undergo minimal torsion, and
thus bends in a single plane [38]. The dynamical model is therefore described in 2D.

Rigid body dynamics

A general two-dimensional PRB nR structure has been illustrated in Figure 2-4. Its corre-
sponding variables have been depicted in Table 2-1. Hamiltonian or Lagrangian mechanics
are commonly used to represent the equations of motion for PRB nR robots. This thesis
follows the Lagrangian approach. More specifically, it adapts a vector representation of the

Master of Science Thesis J.P.T. van der Staaij



18 Modelling coil deployment dynamics

Figure 2-3: Three-dimensional illustration of a pseudo-rigid body 3R robot.

Lagrange equations of motion by Vallery and Schwab [39]. In this method, the principle of
virtual work is used to directly relate Newton’s laws to the equations of motion without the
need for deriving energy equations. The derivation starts with the virtual power expression
for an unconstrained system consisting of n rigid bodies, that is

δP = δξ̇i(Fi −Miiξ̈i), i = 1...n, (2-2)

where ξi = (xi, yi, ϕi) are the coordinates of the Centre of Mass (CoM) of the ith rigid body,
Fi = (Fx, Fy,M) are the applied forces on this CoM and Mii = diag(µi, µi, Ii) is the diagonal
mass matrix of the ith body with mass µi and inertia Ii.

Figure 2-4: Two-dimensional illustration of a pseudo-rigid body nR robot.

A system is in dynamic equilibrium if δP = 0 is true for all virtual velocities δẋ that comply
with the kinematic body constraints. These kinematic constraints can be incorporated by
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2-1 Catheter model 19

writing the CoM coordinates of the rigid bodies in a set of generalized, i.e. the minimum
number of, coordinates q ∈ Rn using mapping ξ = T (q). In the case of the PRB nR system,
this mapping can be found by multiplication of homogeneous transformation matrices, i.e.

ξ1
ξ2
...
ξn


︸ ︷︷ ︸
ξ

=


G1H0
G2H1H0

...
Gn...H1H0


0

0
1


︸ ︷︷ ︸

T (q)

, (2-3)

with,

Hi =

cos ∆qi − sin ∆qi ℓi cos ∆qi
sin ∆qi cos ∆qi ℓi sin ∆qi

0 0 1

 , Gi =

cos ∆qi − sin ∆qi ℓi/2 cos ∆qi
sin ∆qi cos ∆qi ℓi/2 sin ∆qi

0 0 qi

 , (2-4)

where ∆qi = qi − qi−1 is the relative joint angle between the (i− 1)th and ith rigid body and
qi is the joint angle of the ith rigid body defined counterclockwise with respect to the global
x-axis. The catheter base angle q0 is assumed constant and uncontrollable. The discussion in
Section 2-4 elaborates on this modelling choice. Note that, in a coiling procedure, the operator
can push and pull the catheter along direction q0. This adds an extra degree of freedom to
the system which will be introduced in Chapter 4. Given the mapping T (q) in Eq. (2-3), the
velocities ξ̇ and accelerations ξ̈ of the rigid body CoM coordinates can be written in terms
of generalized coordinates q and its derivatives q̇ and q̈) by taking the first and second time
derivative of T (q), i.e.

ξ̇ = ∂T (q)
∂q︸ ︷︷ ︸
Tq

q̇ and ξ̈i = ∂T (q)
∂q

q̈ + ∂2T (q)
∂q2︸ ︷︷ ︸
Tqq

q̇q̇. (2-5)

By combining Eq. (2-2), Eq. (2-3) and Eq. (2-5), one can formulate the dynamic equilibrium
for a kinematically constrained rigid body system expressed in generalized coordinates, that
is

F −Mξ̈ = T Tq [F −M(Tq q̈ + Tqq q̇q̇)] +Q(u) = 0, (2-6)

where Q(u) is a projection of the input tendon torques u on the generalized coordinates, i.e.
joint angles. When the catheter is wired such that each joint can individually be actuated by
a tendon, these so-called generalized torques are equivalent to the input of the system, i.e.
Q(u) = Inu where In is a n× n identity matrix.

Pseud-rigid body dynamics

The next step is to transform the rigid body system in Eq. (2-6) into a pseudo-rigid body
system. Flexibility is introduced by placing passive elements, i.e. torsional springs between
the rigid body structures. These springs are commonly assumed to bend according to Euler-
Bernoulli law [38, 40], which means that the applied torque τi is linearly related to bending
angle ∆qi through stiffness ki, i.e.

τi = ki∆qi, (2-7)
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where ∆qi := (qi − qi−1) is the relative bending angle and ki is the beam stiffness defined as

ki = κi
EI

L
, (2-8)

where E, I, L are respectively the Young’s modulus, the moment of inertia and the length
of the steerable catheter tip. The characteristic stiffness κ is a constant vector that can be
chosen based on the number of links in the PRB system and has been optimized for various
PRB systems [37]. According to Schwab and Vallery [39], these passive elements generate the
following generalized spring force,

Kq + c =
(
∂∆q
∂q

)T
diag(k1, ..., kn)∆q, (2-9)

where K is symmetric positive definite and c is a constant. To simulate the natural behaviour
of the elastic body subject to viscous friction, a damping term is commonly added parallel to
the joint springs. By replacing ∆q in Eq. (2-9) by ∆q̇, this results in the classical Rayleigh

Variable Description Function
State parameters
q Joint angles q
q̇ Joint velocities q̇
y State vector [qT , q̇T ]T
ẏ State derivative [q̇T , q̈T ]T
q0 Angle of catheter base q0
ξi Centre of mass vector [x1, y1, φ1]T
[xt, yt]T Tip coordinates, Eq. (2-4) h(q) := Hn...H1H0

PRB model parameters
γ Characteristic length

∑n
i=0 γi = 1

κ Characteristic stiffness
∑n
i=0

1
κi

= 1

Catheter properties
L Length L
ℓi Link length γiL
m Mass m
µi Link mass γim
E Young’s modulus E
I Moment of inertia mL2/12
Ii Link moment of inertia µiℓ

2
i /12

ki Joint stiffness κiEI/L
di Spring damping coefficient di

Other parameters
g Gravitational acceleration g

Table 2-1: Required variables to describe the pseudo-rigid body model in Eq. (2-13).
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dissipation function stated by Lord Rayleigh in 1873, i.e.

Dq̇ =
(
∂∆q̇
∂q̇

)T
diag(d1, ..., dn)∆q̇, (2-10)

where di is the ith joint damping coefficient. By adding Eq. (2-9) and Eq. (2-10) to the set of
equations in Eq. (2-6), the equations of motion for the PRB nR model follow as

M(q)q̈ + C(q, q̇)q̇ +Kq + c+Dq̇ + g(q) = Q(u), (2-11)

where the system matrices are defined as

M(q) := T Tq MTq, C(q, q̇) := T Tq MTq q̇, g(q) := Tqq
TF. (2-12)

Joint angles and velocities can be computed through explicit numeric integration by writing

f(y) = d

dt

[
q
q̇

]
=
[

q̇
M(q)−1 [Q(u) − C(q, q̇)q̇ −Kq − c−Dq̇ − g(q)]

]
, with y =

[
q
q̇

]
, (2-13)

and adapting a higher order, e.g. fourth order, Runge-Kutta integration scheme to ensure
numerical stability, i.e.

k1 = f(y),
k2 = f(y + k1

∆t
2 ),

k3 = f(y + k2
∆t
2 ),

k4 = f(y + k3∆t),
y = y + 1

6(k1 + 2k2 + 2k3 + k4)∆t,

(2-14)

where ∆t is the time step for integration.

Model properties

The Euler Lagrange system in Eq. (2-11) contains various useful properties. These properties
will be exploited in the following chapters to design a contact force controller and prove its
stability.

Property 2.1 The matrix M(q) is positive definite and symmetric [39].

Property 2.2 The matrix C(q, q̇) is defined such that [41]

Ṁ(q) = C(q, q̇) + CT (q, q̇). (2-15)

Property 2.3 There exists a positive constant kg such that the Jacobian of the generalized
gravity torque g(q) is bounded by

kg ≥
∣∣∣∣∣∣∣∣∂g(q)∂q

∣∣∣∣∣∣∣∣ ∀q ∈ Rn, (2-16)

which is always true for a robot which solely consists of rotational joints [41, 31]. It can be
verified that this upper bound can be found by evaluating the gravitational Hessian,

kg = n

(
max
i,j,q

∂gi(q)
∂qj

)
= n

(
max
i,j

∂gi(π2 )
∂qj

)
. (2-17)

Master of Science Thesis J.P.T. van der Staaij



22 Modelling coil deployment dynamics

Property 2.4 If the system in Eq. (2-11) is fully actuated, i.e. Q(u) = Inu, then the system
defines a passive map u 7→ q̇ [31]. A notion of passivity is given in Appendix B-2.

2-2 Endovascular coil model

This section aims to model the coil’s behaviour when subjected to forces from the micro-
catheter and the aneurysm wall. First, a research gap is formulated in the literature on coil
modelling techniques. Thereafter, a new real-time feasible dynamic model for an endovascular
coil is proposed by exploiting the coil’s basic mechanic properties.

It has been discussed in Section 1-1-2 that endovascular coils are manufactured in a tertiary
shape, e.g. helical or spherical, based on the aneurysm’s geometry. By straightening these
coils, i.e. to be guided through the microcatheter’s lumen, elastic potential energy is stored
in the coil [17]. When a coil cannot fully return to its tertiary structure during deployment,
tension increases between the coil and the aneurysm wall as a result of the coil’s stored elas-
tic energy. To regulate this tension with a steerable microcatheter, a dynamic coil model
is desired. In contrast to the vast body of literature on the dynamic modelling of medical
catheters, little research has been done on the dynamic modelling of coil deployment. Finite
element modelling (FEM) has been used to accurately model the physical properties of the
coil and the full mechanics of the coil deployment procedure [26]. However, FEM carries a
computational burden prohibiting itself from being used in a clinical workflow [17, 27]. This
is why pure geometric algorithms are often used for simulating coil packing, omitting me-
chanics modelling [27]. Recently, Patel et al. [27] has developed an algorithm to guess a coil’s
trajectory after collision with the aneurysm wall or other coils. While geometric modelling is
a possibility, it disregards the effect of coil deployment on wall tension and catheter tip move-
ment. This is why this thesis takes a simplified modelling approach based on the prominent
mechanical property of the coil; its elasticity. Sarayi et al. [17] has presented a simplified
way to model the secondary structure of a coil by considering the coil as a series of equal-
length linear stretching springs. These linear springs are connected with nodes functioning as
torsional springs to allow for coil bending. Figure 2-5a illustrates this discretization strategy

(a) Helical endovascular coil represented as a series of
linear springs connected by rotational springs, accord-
ing to [17].

(b) Projection Figure 2-5a on XY plane, showcasing
the spring structure in longitudinal direction.

Figure 2-5: Mechanics representation of endovascular coil.
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applied on a helical-shaped coil. While the approach by Sarayi et al. [17] is an efficient way
to describe coil mechanics, the system still contains many degrees of freedom and contact
points with the environment. The computation of a control strategy for Figure 2-5a to reduce
contact forces is a hard problem, especially in real time. Moreover, the model by Sarayi et
al. [17] assumes a static catheter tip position while this thesis aims to model its dynamic
interaction with the endovascular coil. To perform real-time control on coil-aneurysm reaction
forces, a simpler low-order dynamic coil model is required.

2-2-1 Mass-spring-damper model

This section presents a new way to dynamically model an endovascular coil and its interaction
with a static microcatheter and the aneurysm wall. Figure 2-5b shows the projection of the
tertiary helical structure in Figure 2-5a on the XY plane. It can be observed that this
projection resembles a spring that can be compressed or elongated along its length. Given
this observation, this thesis proposes to lump the individual coil components in Figure 2-5b
together in a single point mass, i.e. mc, that interacts through springs and dampers with
the aneurysm wall and catheter body (Figure 2-6). The aneurysm’s stiffness and damping
constants are defined by ke and de respectively. The stiffness and damping constants of the
coil with respect to the catheter are defined by kc and dc. In this section, the catheter is
represented with a constant force F working on the coil system. First, the coil’s equations of
motion are derived with respect to the catheter tip. Thereafter, this system is extended with
a compliant contact model to reflect the interaction with the coil and the aneurysm wall.

Figure 2-6: Endovascular coil structure in Figure 2-5b lumped together in a point mass (mc)
connected by springs (k) and dampers (d) to the aneurysm wall and the steerable catheter tip.

Coil-catheter interaction

Figure 2-7 shows the coordinates and measures corresponding to Figure 2-6. Three points
of interest are the contact point in the environment (xe, ye), the CoM of the coil’s helical
structure (xc, yc) and the end position of the steerable catheter tip (xt, yt). When the coil can
move freely through space, its degrees of freedom are represented by its position, i.e. (xc, yc).
However, the assumption is made that the coil’s mass is constrained to move on the line
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Figure 2-7: Coordinates and distance vectors corresponding to Figure 2-6.

between the catheter tip and the contact plane, and thus transferring catheter tip forces to
the contact point and vice versa. It has already been discussed in Section 1-2 and Section 2-2
that this modelling assumption reflects reality. The constrained coil position is expressed as

[
xc
yc

]
=
[
xt
yt

]
+ qc

[
xe
ye

]
−
[
xt
yt

]
∣∣∣∣∣
∣∣∣∣∣
[
xe
ye

]
−
[
xt
yt

]∣∣∣∣∣
∣∣∣∣∣
, (2-18)

where qc is a generalized coordinate constrained to move on the line between the catheter tip
position (xt, yt) and the known contact point (xe, ye). The catheter tip position (xt, yt) can
be computed through forward kinematics of the PRB model as described in Table 2-1. With
the assumption that the spring interconnection between the catheter and the coil is linear,
its spring energy Ec,s(qc) is defined as

Ec,s(qc) = 1
2kc

(
qc − tc

2︸ ︷︷ ︸
∆ℓ

)2
, (2-19)

where kc,∆ℓ, tc are respectively the coil’s stiffness coefficient, the spring elongation, i.e. the
distance between the catheter tip and the spring attachment point on the coil, and the coil’s
helix length, serving as a coil growth parameter during coil deployment. Note that, by the
definition in Eq. (2-19), the spring in Figure 2-5 is in elongated state. A compressive force on
the coil implies a negative value for ∆ℓ, i.e. the catheter tip is placed partly inside the coil
structure (Figure 2-8). For visualization purposes, one can add an offset ∆ℓ0 to elongation
∆ℓ. This does not change system dynamics. Also note that, by increasing tc and keeping
(xt, yt) fixed, ∆ℓ increases, and thus results in a larger compressive force on the aneurysm
wall. The incorporation of coil growth with tc is described in more detail in Section 2-3-1. The
generalized coil-catheter spring force Fc,s(qc) can be derived from the spring energy defined
in Eq. (2-19), i.e.

Fc,s(qc) = ∂Ec,s(qc)
∂qc

= kc

(
qc − tc

2

)
. (2-20)
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2-2 Endovascular coil model 25

The generalized coil-catheter damping force Fc,d(q̇c) is defined according to a Rayleigh dissi-
pation function representing viscous friction, that is

Fc,d(q̇c) = dcq̇c, (2-21)

where dc is the coil’s damping coefficient. Given that a static catheter tip exerts force F on
point (xt, yt), the dynamics of the coil system can be derived following the same Langrangian
vector approach as for the steerable catheter tip in Section 2-1-3, i.e.

M(qc)q̈c + kc(qc − tc
2 ) + dcq̇c = F, (2-22)

where the system matrices are defined as

Tqc =
∂

([
xc
yc

])
∂qc

=

[
xe
ye

]
−
[
xt
yt

]
∣∣∣∣∣
∣∣∣∣∣
[
xe
ye

]
−
[
xt
yt

]∣∣∣∣∣
∣∣∣∣∣

and M(qc) := T Tqc
mcTqc . (2-23)

The coil’s gravitational forces are assumed negligible, hence are omitted for simplicity.

Coil-wall interaction

The previous section has proposed an interconnection between the coil and the catheter tip.
The next step is to introduce contact between the coil and the aneurysm wall. The literature
describes two types of contact models; rigid contact models and compliant contact models
[42]. Rigid or non-smooth contact models assume an instantaneous contact process. The
bodies in contact are considered to be rigid solids, i.e. experience negligible deformations.
This is not the case for a coil interacting with the aneurysm wall, as both bodies are not
infinitely stiff and contact is maintained for an indefinite timespan. In contrast to rigid
contact models, penalty or compliant methods have been proposed. Most compliant models
consist of an elastic component, i.e. the spring, and an energy dissipation component, i.e. the
damper [42]. In this thesis, the use of a damper between the coil and the aneurysm wall is
omitted, as it simplifies the derivation of the generalized contact force. Dissipation of energy
still takes place through the damper between the catheter and the coil. It is then proposed
to use Hooke’s contact model to model contact force Fe(δ), that is

Fe(δ) =
{
keδ δ ≤ 0
0 δ > 0

, (2-24)

where ke and δ are the aneurysm wall stiffness and the relative indentation between the
wall and the coil. When the distance between the two bodies is positive, no contact occurs,
whereas a negative value of δ indicates contact between the bodies. A coil in contact with
the aneurysm wall has been illustrated in Figure 2-8. The aneurysm wall is portrayed as a
soft structure allowing indentation. The wall’s indentation δ is defined as

δ =
∣∣∣∣∣
∣∣∣∣∣
[
xe
ye

]
−
[
xt
yt

]∣∣∣∣∣
∣∣∣∣∣− δmax − qc − tc

2 , (2-25)
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26 Modelling coil deployment dynamics

Figure 2-8: Illustration of an endovascular coil in contact with the aneurysm wall. The relative
indentation between these two bodies is indicated with δ.

where δmax := Fe,max/ke is the indentation depth that would yield the aneurysm wall. The
yield stress Fe,max of the aneurysm has been estimated by Cebral et al. [43], presenting
ultimate stress values between 0.63-2.16 MPa for eight resected intracranial aneurysms. It
has been shown that tissue stiffness ke of structures similar to intracranial aneurysms can
be found with Magnetic Resonance Elastography [44]. Note that (xe, ye) is a point located
inside the aneurysm wall. Appendix B-3 discusses how this point can be determined from
a 3D aneurysm reconstruction generated prior to treatment. Given a stiff catheter exerting
force F , the dynamics of the coil system in Eq. (2-22) can be extended with the generalized
contact force in Eq. (2-24), that is

M(qc)q̈c + kc

(
qc − tc

2

)
+ dcq̇c + keδ = F. (2-26)

The next step is to combine the equations of motion for a steerable microcatheter tip, as
defined in Eq. (2-11), with the coil dynamics derived in this section.

2-3 Coil deployment model

Section 2-1 has presented the Euler Lagrange equations of motion for a steerable microcatheter
tip modelled according to the PRB framework. Section 2-2 has presented a new way to
dynamically model an endovascular coil and its interaction with a static microcatheter and
the aneurysm wall. This section presents how to interconnect these two models and proposes
how to model a coil deployment procedure by introducing quasi-static coil growth parameters.

2-3-1 System model without coil growth

This section states a system of equations that interconnects the derived catheter and coil
models. This system considers constant coil properties, i.e. no coil growth takes place. To

J.P.T. van der Staaij Master of Science Thesis



2-3 Coil deployment model 27

derive the interconnected system, a single transformation matrix T (ψ) should be defined, that
is,

T (ψ) =
[
T (q)T xc yc

]T
, with ψ :=

[
qT qc

]
, (2-27)

where T (q) and (xc, yc) have been respectively defined in Eqs. (2-3) and (2-18) and ψ is the
extended generalized coordinate vector joining the catheter angles q and the coil displacement
qc. By following the Lagrangian vector approach once more, the resulting system dynamic
equations interconnect Eq. (2-11) and Eq. (2-26) as

M(ψ)
[
q̈
q̈c

]
+C(ψ, ψ̇)

[
q̇
q̇c

]
+
[

Kq
kc(qc − tc

2 )

]
+keδ

[
∂δ/∂q

1

]
+
[
Dq̇
dcq̇c

]
+
[
g(q)

0

]
=
[
Q(u)

0

]
, (2-28)

where the new system matrices are defined as

M(ψ) := T Tψ

[
M 0
0 mc

]
Tψ, C(ψ, ψ̇) := T Tψ

[
M 0
0 mc

]
Tψψψ̇, (2-29)

and where the Jacobian and Hessian of the transformation matrix T (ψ) are defined as

Tψ := ∂T (ψ)
∂ψ

ψ̇, Tψψ := ∂2T (ψ)
∂ψ2 . (2-30)

The resulting set of equations in Eq. (2-28) can be written in explicit form as

f(ψ, ψ̇) = d

dt


q
qc
q̇
q̇c

 =


q̇
q̇c

M(ψ)−1
[[
Q(u)

0

]
− C(ψ, ψ̇)

[
q̇
q̇c

]
−
[
Kq +Dq̇ + g(q)
kc(qc − tc

2 ) + dcq̇c

]
− keδ

[
∂δ/∂q

1

]]
 .

(2-31)
where ψ := [qT qc] and ψ̇ := [q̇T q̇c] are the state vector defined in Eq. (2-27) and its time
derivative. Note that, when no contact takes place between the coil and the aneurysm wall,
the indentation δ is positive and the term keδ[(∂δ/∂q)T 1]T does not appear in Eq. (2-31).
Also note that the model properties for Euler Lagrange systems, as stated in Section 2-1-3, are
still preserved for the new system in Eq. (2-31). The described set of equations in Eq. (2-31)
has modelled a case where no coil growth takes place. The next section proposes to extend
the system in Eq. (2-28) to the real case where coil deployment takes place, and thus coil
growth dynamics should be incorporated.

2-3-2 Coil growth model

This section presents the system dynamics for an endovascular coil with variable properties,
i.e. coil growth or deployment takes place. It can be reasoned that coil deployment entails the
increase of the coil’s mass (mc) and size (tc) over time. A larger coil would change the static
equilibrium of the system while a heavier coil would change its inertial properties. Note that
the growth parameter tc has already been used in the definition of the coil’s elastic energy in
Eq. (2-19). Figure 2-9 illustrates that the growth of parameter tc results in both the deflection
of the catheter’s tip position (xt, yt) as well as an increase of the indentation (δ) between the
coil and the aneurysm wall. This indentation causes an increase of the aneurysm wall tension
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(a) No indentation & contact force. (b) Low indentation & contact force. (c) High indentation & contact force.

Figure 2-9: Illustration of three coil deployment stages. Growth of the coil’s size (tc) results in
an increased deflection of the catheter tip position (xt, yt) and increased indentation (δ) between
the aneurysm wall and the coil.

until the aneurysm wall yields. This growth of the coil in can be dynamically captured by
the following set of equations, that is

d

dt


 ymc

tc


 =

f(y,mc, tc)
rm
rt

 , with yT := [ψT ψ̇T ], (2-32)

where f(y) denotes the coil-catheter-wall dynamics as defined in Eq. (2-31) and rm and rt
respectively denote the rate of change of the coil’s mass (mc) and the rate of change of
the coil’s size (tc). This thesis makes the assumption that the growth rates rm and rt are
sufficiently slow such that the dynamic effect of mc and rt on system f(y) is negligible. By
the concept of perturbation theory, one can introduce a small parameter ϵ such that

dt := ϵdv, (2-33)

where dv is a sufficiently slower time scale than dt such that the variables [mc rt] can be
considered in quasi-steady state with respect to y [45]. Following this strategy, the system in
Eq. (2-32) can be decoupled in two dynamic subsystems, that are

d

dt
y = f(y, m̄c, t̄c),

ϵ
d

dv

([
mc

tc

])
=
[
rm
rt

]
,

(2-34)

where the quasi-steady states [m̄c t̄c] emerge from the slower growth dynamics and are
considered to be constant in faster developing system f(y) without affecting its dynamics.

The growth rates rt and rm can be derived given the properties of the coil and the geometry
of the aneurysm. The rate of change rm for the coil mass mc follows from

rm = ρcτin, (2-35)

where ρc and τin are the coil’s mass density per unit length and the coil’s injection velocity
through the catheter lumen. The growth rate rt of the coil’s size tc can not directly be related
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to the coil’s injection velocity (τin) but also depends on the geometry of the aneurysm. To
derive the growth rate rt, this thesis proposes to adapt a geometric coil deployment algorithm
from literature, as touched upon in Section 2-2 [27]. While this geometric algorithm does
not provide any information on contact forces, it can give a solid estimate of the trajectory
of a deployed coil. The adapted geometric coil algorithm is described in Algorithm 2 in
Appendix A-1. This algorithm predicts the trajectory of an endovascular coil with a helical
tertiary shape by resolving collisions with the aneurysm wall and itself. The resulting pre-
dicted trajectory in a saccular, i.e. convex, aneurysm geometry, is illustrated in Figure 2-10.
Given this predicted trajectory, the rate of change (rt) of the coil’s size (tc) can be described
along the length of the aneurysm sac. Figure 2-11 shows the growth rate (rt) for the injection
velocity τin = 5 mm/s. It can be observed from this figure that the coil growth rate along
the length of the aneurysm sac increases when the aneurysm’s diameter decreases. Given the
geometry of the aneurysm, which can be extracted before the procedure through 3D recon-
struction angiography, the presented coil deployment algorithm provides a map between coil
injection rate τin and growth rate rt.

Figure 2-10: 3D illustration of a coiled intracranial aneurysm using the geometric coil modelling
approach described in Appendix A-1.

Figure 2-11: Growth rate in longitudinal direction of the coil’s helical structure depicted Figure 2-
10 in millimeters per second for a constant injection rate τin = 5 mm/s.
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2-4 Discussion

To summarize, this chapter has presented a new dynamic coil deployment model for in-
tracranial aneurysm treatment. The main advantage of this model is its low computational
complexity allowing real-time control computation. Section 2-1 has derived the Lagrangian
equations of motion for a tendon-driven steerable catheter tip based on the PRB nR represen-
tation. It has been explained in Section 2-2 that endovascular coil models from literature are
either highly computationally expensive or do not take applied forces into account. Section 2-
2 has therefore presented a new way to dynamically model an endovascular coil by exploiting
the coil’s structure and elasticity and deriving its interaction with a microcatheter and the
aneurysm wall. Section 2-3 has combined the catheter and coil model and has proposed to
extend this system with the coil’s mass (mc) and size (tc) as quasi-static growth parameters.
This has yielded two decoupled systems in Eq. (2-34) that resemble a coil deployment pro-
cedure. The computation of the coil’s helix growth rate rt has been presented by adapting a
geometric deployment algorithm from literature [27]. Various simplifying assumptions have
been made throughout this chapter. In the following paragraphs, these modelling choices are
disucssed in more detail.

To start with, the assumption has been made that the steerable microcatheter tip bends in a
single plane, and thus modelling in two dimensions is sufficient. This is a viable assumption
for structures with a large length-to-diameter ratio. In this case, bending moments, that work
on the catheter tip, are so much larger than torsional effects that the latter can be neglected
[38, 28]. To minimize torsional effects, it is required that the contact force vector from the
aneurysm wall lies along the bending plane of the microcatheter tip. Before starting the
coil deployment procedure, the operator can manually adjust the catheter’s roll around the
constant angle q0, and thus can control the bending plane angle (φ) illustrated in Figure 2-
3. The catheter’s bending plane can then be aligned with the orthogonal vector pointing
from the contact point (xe, ye) to achieve in-plane bending. It should be noted that (out-of-
plane) disturbances have been neglected in the derived system model. While viscous friction
has been incorporated in the catheter and coil models, detailed blood flow effects have been
omitted. It can be assumed that blood flow disturbance is minimal inside the aneurysm
sac [18]. Furthermore, the reaction force of the coil leaving the tip of the catheter could
have effects on the catheter’s motion. The effect of this force is unknown and has not been
considered in this thesis.

Throughout this thesis, it is assumed that the direction q0 of the base of the steerable mi-
crocatheter tip (Figure 2-4) is constant. The interventional neuroradiologist navigates the
catheter through the brain vasculature. Upon reaching the aneurysm, the catheter’s base
orientation (q0) is determined by the geometry of the neighbouring vessel [18]. The angle q0
cannot actively be controlled by the operator. Moreover, it is assumed that the deviations of
q0, due to applied forces on the catheter tip, are negligible in comparison to the changes in
the joint angles (q1:n) of the steerable microcatheter tip.

Regarding the modelling of the coil, it should also be noted that the presented coil deployment
model applies to helically shaped coils. This only slightly limits applicability, as most saccular
aneurysms can be filled with helically shaped coils [18]. It should also be noted that the coil’s
stiffness kc is assumed not to change over time. This excludes the possibility that the blood
will already clot during the procedure, hence stiffening the coil structure. Lastly, it should be
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noted that this thesis focuses on the contact forces working along the length of the helical coil
structure and neglects radial forces exerted on the walls of the aneurysm. When appropriately
sized coils are chosen, these forces are not supposed to yield the aneurysm wall.

At the end of this chapter, it has been proposed to estimate the growth rate (rt) of the coil
size (tc) by exploiting the aneurysm’s geometry. Throughout this thesis, a constant growth
rate (rt) is taken to make sure that coil deployment simulations are unambiguous. However,
Section 2-3-2 serves as a proof of concept that a variable growth rate can easily be computed
and incorporated.

In the remainder of this thesis, a control architecture is presented that enables regulation of
the contact force between the coil and the aneurysm wall. Chapter 3 discusses the controller
design for the case where no new coil is injected into the aneurysm. Chapter 4 extends
this design to the actual situation where coil deployment takes place and where constraints
imposed by the equipment and the environment should be obeyed.
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Chapter 3

Contact force control

This chapter aims to regulate the contact force between an endovascular coil and the aneurysm
wall. Key assumptions in this chapter are that no coil growth takes place and that the base
position and orientation of the catheter are fixed in space. Based on the derived model in
Chapter 2, Section 3-1 describes the system equations for a fully actuated catheter with two
degrees of freedom. Section 3-2 presents this chapter’s control objective for which a control
architecture, comprising an augmented energy-shaping controller, is proposed in Section 3-3.
Numeric proof is presented through simulations in Section 3-4. Methodology and results are
discussed in Section 3-5.

3-1 Model description

This section presents the dynamic model for the system setting illustrated in Figure 3-1.
The environment is modelled as a conically shaped aneurysm for which a helically shaped
filling coil is the obvious choice. The steerable microcatheter is modelled as a Pseudo-rigid
Body (PRB) 2R robot model based on Section 2-1-3. This model choice, consisting of three
rigid links connected by two revolute joints and two rotational springs, allows for inverse
calculation from the tip position (xt, yt) to the joints angles q := (q1, q2). This property is
shown to be useful in Section 3-2. The system is described by the generalized coordinate
vector ψ := (q1, q2, qc), where qc is the distance from the point (xt, yt) to the coil’s centre of
mass (xc, yc) along the line to the wall contact point (xe, ye). According to Eq. (2-27), the
system’s centres of mass ξ can be fully described with the generalized coordinate vector ψ,
that is

ξ = T (ψ) =



x0 + cos q0ℓ+ cos q1
ℓ
2

y0 + sin q0ℓ+ sin q1
ℓ
2

q1
x0 + (cos q0 + cos q1)ℓ+ cos q2

ℓ
2

y0 + (sin q0 + sin q1)ℓ+ sin q2
ℓ
2

q2
xt + qc(xe − xt)/ ||(xe, ye) − (xt, yt)||
yt + qc(ye − yt)/ ||(xe, ye) − (xt, yt)||


, with ξ =



x1
y1
φ1
x2
y2
φ2
xc
yc


, (3-1)
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where identical link lengths ℓ and masses m are chosen to compactly represent the derived
equations and system matrices. The base position (x0, y0) and direction q0 of the steerable
microcatheter tip are considered constant in this chapter. As discussed in Appendix B-3,
their values can be measured using X-ray segmentation at the start of the procedure. Lastly,
the coil’s centre of mass (xc, yc) has been derived in Eq. (2-18), and the catheter’s tip position
(xt, yt) is described with the map h(q) as[

xt
yt

]
= h(q) =

[
x0 + (cos q0 + cos q1 + cos q2)ℓ
y0 + (sin q0 + sin q1 + sin q2)ℓ

]
. (3-2)

Figure 3-1: Catheter-coil-aneurysm system with constant (x0, y0), q0 and tc.

This chapter assumes that the steerable catheter tip consists of two tendon-driven bending
sections whose bending torques can be independently actuated at their virtual joints, i.e.
Q = [τ1 τ2]T . The discussion in Section 3-5 elaborates on this modelling choice. The
equations of motion, corresponding to Figure 3-1, follow from Eq. (2-28), that is

M(ψ)
[
q̈
q̈c

]
+C(ψ, ψ̇)

[
q̇
q̇c

]
+
[
K∆ 0
0 kc

] [
q

qc − tc
2

]
+keδ

[
∂δ/∂q

1

]
+
[
D∆ 0
0 dc

] [
q̇
q̇c

]
+
[
g(q)

0

]
=
[
Q
0

]
,

(3-3)
where the system matrices are defined as

M(ψ) :=
(
∂Tψ(ψ)
∂ψ

)T
M
∂Tψ(ψ)
∂ψ

, C(ψ, ψ̇) :=
(
∂Tψ(ψ)
∂ψ

)T
M
∂2Tψ(ψ)
∂ψ2 ψ̇, (3-4)

M =
[
I2m 0

0 mc

]
, K∆ =

[
2k −k
k −k

]
, β(q0) =

[
−kq0

0

]
, D∆ =

[
2d −d
d −d

]
, (3-5)

where K∆ and D∆ are stiffness and damping matrices for the rotational catheter springs, kc
and dc are the stiffness and damping coefficient of the coil with respect to the catheter, ke is
the stiffness of the aneurysm wall and δ is the indentation depth of the coil in the aneurysm
wall as defined in Eq. (2-25).
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3-2 Control objective

This section defines the chapter’s force regulation objective and shows equivalence and unique-
ness of control objectives for the catheter’s tip position (xt, yt) and the catheter’s joint angles
(q1, q2).

3-2-1 Contact force objective

The goal is to regulate the states ψ = (q1, q2, qc)T of the dynamic system in Eq. (3-3) such
that the contact force (Fe) between the coil and the aneurysm wall, i.e.

Fe =
{
keδ δ ≤ 0
0 δ > 0

, (3-6)

asymptotically converges to a predefined desired contact force (F ⋆e ), where δ and ke are
respectively the indentation between the coil and the aneurysm wall, as defined in Eq. (2-25),
and the stiffness of the aneurysm wall. As discussed in Section 2-2-1, an estimate can be found
for the maximum force (Fe,max) and its related indentation depth (δmax) that would yield the
aneurysm wall. The reference force (F ⋆e ) is chosen by the operator with a safe margin below
Fe,max. The regulatory control problem for Fe is then denoted as

lim
t→∞

F̃e = 0, with F̃e := F ⋆e − Fe. (3-7)

It is impossible to measure the tension on the aneurysm wall. While force sensors have been
designed for medical equipment, these sensors are too bulky and would block the coil from
being deployed in the aneurysm [46]. Therefore, this thesis derives control objectives that are
unique and equivalent to the force regulation objective in Eq. (3-7). This derivation is based
on the the contact illustration in Figure 3-2.

3-2-2 Tip position objective

First, it can be noted from Figure 3-2 that the two coil-attached springs are loaded in the same
direction, and thus can be considered as a single spring with a compression ∆L := δ + ∆ℓ.
The desired reference force (F ⋆e ) can then uniquely be defined by the desired compression, i.e.

∆L⋆ = F ⋆e

( 1
ke

+ 1
kc

)
with ∆L⋆ = δ⋆ + ∆ℓ⋆, (3-8)

where kc and ke are the coil’s and aneurysm’s stiffness coefficients. Given that the contact
force Fe is controlled orthogonal to the contact plane (Figure 3-2), the desired compression
∆L⋆ can uniquely be described by the desired catheter tip position (x⋆t , y⋆t ), that is[

x⋆t
yt
⋆

]
=
[
xe
ye

]
− (∆L⋆ + tc + ∆ℓ0 + δmax)n⊥, with n⊥ =

[
0 −1
1 0

]
n, (3-9)

where n⊥ is a unit vector perpendicular to the contact plane vector n [47] and can be
determined prior to the treatment using a 3D reconstruction angiogram (Figure B-1). The

Master of Science Thesis J.P.T. van der Staaij



36 Contact force control

Figure 3-2: Illustration of contact force propagation from aneurysm wall to catheter tip.

parameter ∆ℓ0 is the base length of the spring between the coil and the catheter and is
introduced for ease of illustration. Parameter δmax is the depth of contact point (xe, ye) in
the aneurysm wall and corresponds to the maximum allowable force (Fe,max). Parameter tc
is the size of the helical coil structure and is considered to be constant in this chapter as coil
growth is assumed not to take place. Given Eq. (3-9), the control objective in Eq. (3-7) is
equivalent to

lim
t→∞

x̃ = 0, with x̃ :=
[
xt
⋆

yt
⋆

]
−
[
xt
yt

]
. (3-10)

3-2-3 Joint objective

It is then noted that, given that there exists a unique inverse mapping h−1(x) from (xt, yt)
to (q1, q2), the desired joints angles (q⋆1, q⋆2) can be uniquely defined by (x⋆t , y⋆t ). This yields
the following objective,

lim
t→∞

q̃ = 0, with q̃ := h−1
([
xt
⋆

yt
⋆

])
−
[
q1
q2

]
, (3-11)

which is equivalent to the objectives in Eq. (3-10) and Eq. (3-7). It can be verified that the
mapping h−1(x) is the unique inverse of mapping h(q) in Eq. (3-2) by using basic geometry
[48], i.e.

h−1
([
xt
yt

])
=
[

q1
q1 + ∆q

]
(3-12)

where the angles q1 and ∆q are defined as

∆q = sign(d)
∣∣∣∣∣arccos

(
∆x2

t + ∆y2
t

2ℓ2 − 1
)∣∣∣∣∣ ,

q1 = arctan
(∆y

∆x

)
− arctan

( sin ∆q
1 + cos ∆q

)
sign(d),
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and the auxiliary variables ∆x,∆y and d defined as

∆x = x⋆t − cos q0 − x0,

∆y = y⋆t − sin q0 − y0,

d = x⋆t sin q0 − y⋆t cos q0,

where the variable d constrains the catheter to have a single bend and is defined to assure
uniqueness of the mapping h−1(x). When q2 ≥ q1, the catheter tip bends counterclockwise
and with q2 ≤ q1, the catheter tip makes a clockwise turn. The discussion in Section 3-5
elaborates on this modelling choice. To summarize, the control objectives are related as

lim
t→∞

q̃ = 0 =⇒ lim
t→∞

(x̃t, ỹt) = 0 =⇒ lim
t→∞

F̃e = 0. (3-13)

Note that generalized coordinate qc does not appear in these control objectives. According
to the definition of ∆ℓ in Eq. (2-19) and of ∆L in Eq. (3-8), the steady-state value qc⋆ is
uniquely defined as

q⋆c = ke
ke + kc

∆L⋆ + tc
2 . (3-14)

Based on Eq. (3-13), a control architecture can be defined to regulate the contact force (Fe)
between the coil and the aneurysm wall through regulation of the joint angles (q1, q2).

3-3 Controller design

This section presents a control architecture (Figure 3-3) that drives the contact force (Fe)
between the coil and the aneurysm wall to the desired reference state (F ⋆e ) through regulation
of joint angles (q1, q2) to (q⋆1, q⋆2). This entails the design of an augmented energy shaping
controller which closes the system loop by generating tendon torques (τ1, τ2). On the left of
Figure 3-3, computations are depicted that are executed prior to treatment and stored in a
local data store. This entails computation of (x⋆t , y⋆t ) as in Eq. (3-9), computation of (q⋆1, q⋆2)
as in Eq. (3-12) and measurement of q0. The right side of Figure 3-3 represents the closed-loop
system. Joint angles (q1, q2) are feedback signals measured using Fibre Bragg Grating (FBG)
sensors. The wall contact force (Fe) is the output of the system. The following sections
discuss the design of the augmented energy shaping controller and show that this controller
asymptotically stabilizes the system at the desired equilibrium.

Figure 3-3: Control architecture for a non-developing coil system.
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3-3-1 Free space joint control

This section discusses a controller that steers the catheter tip joint angles (q1, q2) to their
desired setpoint (q⋆1, q⋆2) given that the system is unforced, i.e. no contact takes place be-
tween the coil and the aneurysm wall. Exploiting the theory on passivity-based control in
Appendix B-2, this can be achieved by placing the system equilibrium (q̄1, q̄2) of Eq. (3-3) at
the desired angles (q⋆1, q⋆2). For a fully-actuated steerable microcatheter tip, this boils down
to shaping the potential energy of the system, i.e. the catheter’s elastic and gravitational
energy [31]. Given the dynamics in Eq. (3-3) a movement in free space, the control input
Qfree should take the following form, i.e.

Qfree = K∆q
⋆ + β(q0) + g(q⋆), (3-15)

which is similar to a classical Proportional (P) controller with gravity pre-compensation [41].
The first two terms place the elastic energy of the catheter’s rotational joints at the desired
equilibrium (q⋆1, q⋆2) while the term g(q⋆) compensates for the gravitational energy of the
system. Note that the gravitational energy is dominated with g(q⋆) instead of cancelled with
g(q) to avoid robustness problems due to unmodelled dynamics or uncertainties [31, 45]. Note
that, given a constant catheter base angle q0 and position (x0, y0), Qfree is a feed-forward
control gain that does not require online computation.

3-3-2 Contact joint control

The energy shaping controller in Eq. (3-15) considers the system to be unforced. This is not
the case when contact is made between the coil and the environment. It is proposed in this
thesis to design a control action such that a system in contact appears to be unforced. This
is done by the computation and cancellation of the force vector exerted by the coil on the
catheter tip. By combining Eq. (3-2) and Eq. (3-9), this force vector takes the following form,[

fx
fy

]
= ∆L

(∆L+ tc + ∆ℓ0 + δmax)( 1
ke + 1

kc)

([
xe
ye

]
− h(q)

)
. (3-16)

This force vector can be projected on the microcatheter joints (q1, q2) using the system Jaco-
bian J(q), that is

QF = J(q)T
[
fx
fy

]
, J(q) := ∂h(q)

∂q
, (3-17)

with h(q) defined in Eq. (3-2). It should be noted that one can safely reject these tip forces
as it has been verified in Eq. (3-13) that joint positions (q⋆1, q⋆2) will yield the desired contact
force F ⋆e between the coil and the aneurysm wall. While direct cancellation of terms should
be avoided [31], this method seems to be a viable option when good estimates on the coil and
aneurysm properties are available. The resulting control action, i.e.

Q = QF +Qfree = K∆q
⋆ + β(q0) + g(q⋆) + J(q)T

[
fx
fy

]
, (3-18)

is a combined feedback and feed-forwardward controller. This controller is denoted in block
diagram form in Figure 3-4 and corresponds to the joint control block in the control architec-
ture (Figure 3-3). By combing the feedback action in Eq. (3-18) and the open loop system in
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Eq. (2-31), the closed-loop dynamics take the following explicit form,

˙̃ψ = − ψ̇,

ψ̈ = −M(ψ)−1

C(ψ, ψ̇)ψ̇ +
[
−K∆ 0 0

0 kc −ke

] q̃∆̃ℓ
δ̃

+
[
D∆ 0
0 dc

] [
q̇
q̇c

]
+
[
g(q) − g(q⋆)

0

] ,
(3-19)

with ψ̃ and sort-like variables denoting error signals with respect to the reference values ψ⋆.
The following section will show that (ψ̃, ψ̇) = (0, 0) is an asymptotically stable equilibrium of
the closed-loop system in Eq. (3-19), i.e. the contact force between the coil and the aneurysm
wall will asymptotically reach its desired value.

Figure 3-4: Joint control block diagram based on Eq. (3-18) and corresponding to Figure 3-3.
The catheter base angle q0, contact point (xe, ye) and the coil’s helix length tc are computed
prior to treatment and stored in a local database.

3-3-3 Stability analysis

This section shows through stability analysis that the proposed controller in Eq. (3-18) asymp-
totically drives the joint angles (q1, q2) to their desired value (q⋆1, q⋆2), given that no coil growth
takes place. It has been shown in Section 3-2 that this objective is equivalent to guiding the
contact force force (Fe) to its desired value (F ⋆e ). This section uses notions of Lyapunov
stability and LaSalle’s invariance principle as defined in Appendix B-1.

Theorem 3.1 Consider the system in Eq. (3-3), with the controller in Eq. (3-18). The
catheter joint error in Eq. (3-11), the tip position error in Eq. (3-10) and the force error in
Eq. (3-7) are globally asymptotically stable, that is

(||q̃|| → 0 ∧ |q̃c| → 0) =⇒ ||x̃|| → 0 =⇒ |F̃e| → 0, as t → ∞, (3-20)

provided that
λm{K∆} ≥ kg and d, dc > 0 (3-21)

hold, where λm{.} denotes the eigenvalue operator and kg is defined in Property 3.4.
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Proof 3.1 Take the following Lyapunov candidate, i.e.

V (q̃, q̇, q̃c, q̇c) = 1
2 ψ̇

TM(q)ψ̇︸ ︷︷ ︸
A

+ 1
2 q̃

TK∆q̃ +G(q) −G(q⋆) + g(q⋆)T q̃︸ ︷︷ ︸
B

+ 1
2kc∆̃ℓ

2 + 1
2keδ̃

2︸ ︷︷ ︸
C

(3-22)

which should be proven to be continuously differentiable, radially unbounded, positive definite
for all nonzero (ψ, ψ̇) and equal to zero for (ψ, ψ̇) = (0, 0). These properties are reviewed
separately for underlined terms A, B and C.

A. This quadratic term is continuously differentiable and zero for (ψ, ψ̇) = (0, 0). According
to Property 3.4, M(q) is positive definite, hence term A is positive definite for (ψ̃, ψ̇) ̸= 0
and radially unbounded.

B. In this term, G(q) denotes the gravitational energy and g(q) denotes its partial deriva-
tive with respect to q. Both g(q) and G(q) are constructed from sinusoids, hence are
continuously differentiable. It can be verified that B equals zero for (q̃, q̇) = (0, 0). To
show positive definiteness, one needs to show that its Hessian, i.e.

∂2B(q̃)
∂q2 = K∆ + ∂g(q)

∂q
, (3-23)

is positive definite [41]. With the assumption that K∆ is positive definite, i.e. k > 0,
one has the following condition,

λm{K∆} >
∣∣∣∣∣∣∣∣∂g(q)∂q

∣∣∣∣∣∣∣∣ , (3-24)

which is satisfied, according to Property 3.4, when λm{K∆} > kg. This physically
means that the catheter should be stiff enough to carry its own weight.

C. These quadratic terms are clearly radially unbounded. It can be verified that term C is
zero at qc = qc

⋆ with qc denoted as in Eq. (3-14). The terms in C are non-negative for
ψ ̸= 0. Note that the term δ̃2 is not continuously differentiable at δ = 0, i.e. continuous
differentiability is only assured when contact is sustained during the control action.

The time derivative of V (q̃, q̇, q̃c, q̇c) takes the following form, i.e.

V̇ (q̃, q̇, q̃c, q̇c) = 1
2 ψ̈

TM(q)ψ̇ + 1
2 ψ̇

T Ṁ(q)ψ̇ + 1
2 ψ̇

TM(q)ψ̈ + −q̇TK∆q̃ + q̇T g(q) − q̇T g(q⋆)

+q̇cT
[
kc∆̃ℓ(qc) − keδ̃(q⋆, qc)

]
= 1

2 ψ̇
T (Ṁ − CT − C)ψ̇ − ψ̇T

([
−K∆q̃

kc∆̃ℓ− keδ̃

]
+
[
D∆q̇
dckc

]
+
[
g(q) − g(q⋆)

0

])
−q̇TK∆q̃ + q̇T g(q) − q̇T g(q⋆) + q̇c

T
[
kc∆̃ℓ(qc) − keδ̃(q⋆, qc)

]
= −ψ̇

[
D∆ 0
0 dc

]
ψ̇,

(3-25)
where Property 3.4 is employed to cancel term M − C − CT . The function V̇ (q̃, q̇, q̃c, q̇c) is
negative semidefinite when D∆ > 0 and dc > 0. Note from Eq. (3-4) that D∆ > 0 is satisfied
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for all d > 0. By invoking Lyapunov’s direct method, one can conclude that the origin of the
state space, i.e. (ψ̃, ψ̇) = (0, 0), is a stable equilibrium of the closed-loop system denoted in
Eq. (3-19). One can then exploit LaSalle’s invariance principle to show that the set,

Ω = {
[
ψ̃T ψ̇T

]T
∈ R2n : V̇ (ψ̃, ψ̇) = 0}, (3-26)

consists only of the origin of the state space, i.e. (ψ̃T ψ̇T ) = (0, 0). Hence, it is concluded
that the origin is a globally asymptotically stable equilibrium of the closed-loop system in
Eq. (3-19) [41].

3-4 Simulations

To validate the theoretic proof in Section 3-3-3, this section shows through numeric simulation
that the joint control objective in Eq. (3-13) is achieved. This implies that the contact force
Fe between an endovascular coil and the aneurysm wall is regulated at the desired value F ⋆e
given that no coil growth takes place, i.e. the coil has constant properties.

The environment has been simulated according to Figure 4-1 and control has been imple-
mented according to the control architecture in Figure 3-3. The chosen system parameters
are summarized in Table 3-1. The catheter parameters have been chosen based on simu-
lation without a coil and aneurysm. Subsequently, the coil and aneurysm parameters have
been chosen relative to these catheter parameters. Note from Table 3-1 that the condi-
tion k > kg is preserved to ensure the asymptotic stability of Theorem 3.1. The desired
contact force between the coil and the aneurysm is chosen as half the maximum force, i.e.
F ⋆e := 0.5Fe,max = −0.1N, with Fe,max chosen based on the order of magnitude of the other
system parameters in Table 3-1.

The relevant system outputs have been presented in Figures 3-5 to 3-7. It can be observed
from Figure 3-5 that the contact force Fe has successfully been stabilized at its desired value
F ⋆e . It can also be noted from Figures 3-6 and 3-7 that the relationship in Eq. (3-13) has
been verified as auxiliary output variables (xt, yt) and (q1, q2) achieve their desired values.
During stabilization, Fe does not reach its maximal force threshold Fe,max = −0.2N . Hence,
the aneurysm wall did not yield.
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42 Contact force control

Figure 3-5: Contact force regulation in non-deployment case.

Figure 3-6: Catheter tip position regulation in non-deployment case.

Figure 3-7: Catheter joint angle regulation in non-deployment case.
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3-4 Simulations 43

Variable Description Value Unit
State parameters
q(0) Joint angles at t = 0 ( π

3.5 ,
π
3 ) rad

q̇(0) Joint velocities at t = 0 (0, 0) rad/s
qc(0) Relative coil position at t = 0 ∆ℓ0 + tc

2 m
q̇c(0) Coil velocity at t = 0 0 m/s
q0 Catheter base angle π

4 rad
(x0, y0) Catheter base pose 0 m

Catheter properties
γ Characteristic lengths (1

3 ,
1
3 ,

1
3) -

κ Characteristic stiffness (2, 2) -
L Length 0.3 meter
m Mass 0.04 kg
E Young’s modulus 50 kg/ms2

k Joint stiffness κELm
12 (= 0.1) kg m/s2

kg Supremum gravity Hessian 0.0981 -
d Damping coefficient (4, 4) × 10−3 kg

Coil properties
mc Mass 0.08 kg
tc Coil’s helix length 0.05 meter
kc Catheter-coil stiffness 6 kg/s2

dc Coil damping coefficient 0.2 kg/s
∆ℓ0 Catheter-coil rest length 0.025 m
δmax Maximal wall indentation 0.025 m

Aneurysm properties
ke Wall stiffness 9 kg/s2

(xe, ye) Contact point (0.127, 0.331) m
n Contact plane (0.981, 0.195) -

Other parameters
g Gravitational acceleration 9.81 m/s2

h Integration time step 0.001 s
T Simulation time 5 s
F ⋆e Desired contact force 0.1 N

Table 3-1: Choice of parameters for regulation of the contact force between on a non-developing
coil and the aneurysm wall.
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3-5 Discussion

To conclude, this chapter has presented a control architecture (Figure 3-3) to guide the
contact force (Fe) between a coil and the aneurysm wall to its desired equilibrium (F ⋆e ) given
that no coil growth takes place. It has been shown in Section 3-2 that the objective to
guide the joint angles (q1, q2) to (q⋆1, q⋆2) is unique and equivalent to guiding the contact force
(Fe) to F ⋆e . Subsequently, an augmented energy-shaping joint controller has been designed
in Section 3-3. It has been shown through stability analysis (Section 3-3-3) and numeric
simulations (Section 3-4) that the proposed controller asymptotically stabilizes the aneurysm
wall tension at the desired value. Throughout this chapter, various simplifying assumptions
have been made. In the following paragraphs, these modelling choices are discussed in more
detail.

To start with, it has been assumed in this chapter that part of the helical coil has already
been deployed in the aneurysm, i.e. tc > α, where α is some positive number and tc is the
size of the coil. The reason for this is that a coil with a small length is presumably hard to
control along a single direction. After multiple helical coil loops have been deployed, control
can take place along the arising spring-like coil structure visualized in Figure 2-5. The first
few coil loops should be manually deployed by the interventional neuroradiologist and are
assumed not to apply excessive tension on the aneurysm wall. The operator can then activate
the contact force stabilizer as described throughout this chapter.

To assure the uniqueness of the joint control objective in Eq. (3-11), it has been assumed
that the catheter only makes a single bend, i.e. the relative joint angles share the same sign.
Tendon-driven robots with multiple bending sections have been designed by attaching tendon
ends at different fixation points along the length of the steerable section. Combined parallel
and diagonal tendon wiring has been used to decouple the actuation between sections. It
has, however, been shown that a single-bend catheter suffers less from section coupling [49].
Constraining the catheter to make a single bend, assures the necessary condition that the
tendon torques τ1 and τ2 can be independently actuated.

Another discussion point is that the wall tension (Fe) in the chosen contact point (xe, ye)
has been considered to be representable for all pressure points in the aneurysm. While this
assumption can only be verified in an experiment, it is a legitimate assumption given the
spring-like structure of the coil.

It should also be noted that it has been assumed that perfect sensor measurement are available
for the base position (x0, y0) and direction q0 using X-ray segmentation. Moreover, perfect
measurements have been assumed for the joint angles (q1, q2) based on fibre Bragg grating
sensing. Especially errors in measurements of (q1, q2) could deteriorate controller performance
given that control action QF in Eq. (3-17) is based on the direct cancellation of terms. It is
thus required that the system includes high-quality sensors and accurate processing software.
It should be noted that small deviations in feedback signals would not necessarily result in
rupture of the aneurysm wall given the safe margin between F ⋆e and Fe,max.

Another point worth mentioning is that simulation parameters have mostly been chosen
relative to each other, hence do not necessarily represent reality. Due to many necessary
assumptions on catheter material, coil properties and patient variability, this thesis serves as
a proof of concept instead of a perfect representation of reality.
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Regarding the simulation, it can be noted that the contact force Fe in Figure 3-5 overshoots
its target position F ⋆e during stabilization. Overshoot can be limited by imposing constraints
on catheter joint velocities.

Lastly, it has been assumed that the target tip position (x⋆t , y⋆t ) was a feasible target for a
catheter with a fixed base position (x0, y0) and orientation q0. The next chapter introduces
constraints imposed by the aneurysm and the microcatheter. Moreover, the assumptions on
constant coil parameters and a fixed base position (x0, y0) are relaxed. A control architecture
is proposed to preserve the feasibility of the proposed contact force controller during coil
deployment.
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Chapter 4

Controlled coil deployment

This chapter aims to regulate of the contact force (Fe) between an endovascular coil and the
aneurysm wall throughout a coil deployment procedure. In contrast to Chapter 3, coil growth
takes place and the catheter’s base can move freely along the constant direction q0. This adds
an extra degree of freedom to the system which requires recalculation of the reference positions
(x⋆t , y⋆t ) and joint angles (q⋆1, q⋆2) to sustain the desired contact force (F ⋆e ). To guarantee the
procedure’s safety and feasibility, the catheter and environmental constraints are defined in
Section 4-2. A control objective is defined in Section 4-3 for which a control architecture is
presented in Section 4-4. This comprises the design of an auxiliary controller which exploits
the system’s extra degree of freedom to preserve the feasibility of the contact force regulation
objective in Chapter 3. Numeric proof is presented through simulations in Section 4-5. The
methodology and results are discussed in Section 4-6.

4-1 Model description

This section presents the system model which is an extension of the system dynamics in Eq. (3-
3). In the actual procedure, the operator can push and pull the catheter’s body through the
vasculature. It is assumed that the resulting tip movement is constrained to the constant
direction q0 (Figure 4-1). The discussion in Section 2-4 elaborates on this modelling choice.
The pushing and pulling manoeuvre adds one degree of freedom, i.e. the displacement of the
base of the steerable catheter tip (w) along the direction q0 and with respect to the initial
point (x0, y0). The system’s centres of mass ξ are described with the map T (ψ), that is

ξ = T (ψ) =



x0 + cos q0(ℓ+ w) + cos q1
ℓ
2

y0 + sin q0(ℓ+ w) + sin q1
ℓ
2

q1
x0 + cos q0(ℓ+ w) + cos q1)ℓ+ cos q2

ℓ
2

y0 + sin q0(ℓ+ w) + sin q1)ℓ+ sin q2
ℓ
2

q2
xt + qc(xe − xt)/ ||(xe, ye) − (xt, yt)||
yt + qc(ye − yt)/ ||(xe, ye) − (xt, yt)||


, with



x1
y1
φ1
x2
y2
φ2
xc
yc


, (4-1)
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48 Controlled coil deployment

Figure 4-1: Extension of the catheter-coil-aneurysm system in Figure 3-1 with variable coil size
tc(t) and the base displacement w defined with respect to [x0(0), y0(0)].

where ψ := (q1, q2, qc)T is the generalized coordinate vector and other parameters have been
denoted in Table 3-1. Note that, unlike the joint angles (q1, q2) and the coil state (qc), the
base displacement (w) is not considered to be a generalized coordinate. It is assumed that its
motion is slow and not greatly affected by the forces working on the tip of the microcatheter,
i.e. its motion is considered static with respect to the fast motions of the catheter and coil.
It is reasoned in Section 4-6 that slow catheter base velocities are actually desired. This
modeling choice implies that system dynamics are equivalent to Chapter 3, that is

f(ψ, ψ̇) = d

dt


q
qc
q̇
q̇c

 =


q̇
q̇c

M(ψ)−1
[[
Q
0

]
− C(ψ, ψ̇)

[
q̇
q̇c

]
−
[
K∆q +D∆q̇ + g(q)
kc(qc − tc

2 ) + dcq̇c

]
− keδ

[
∂δ/∂q

1

]]
 ,

(4-2)
where the system matrices have been defined in Eqs. (3-4) and (3-5) but use the new system
transform T (ψ) in Eq. (4-1). The catheter’s base displacement (w) is then introduced as
a quasi-static variable which motion is considered to be solely affected by the pushing and
pulling manoeuvre of the operator. This adds a new control input to the system, i.e. the force
(τw) to push or pull the catheter. Note that the mapping from τw to some base velocity ẇ is
actuator specific. Therefore, this thesis assumes to have direct control over the catheter’s base
velocity (ẇ). By incorporating the quasi-static variable w in the coil growth model described
in Eq. (2-34), the decoupled coil deployment dynamics follows as

d

dt
y = f(y, m̄c, t̄c, w̄),

ϵ
d

dv


mc

tc
w


 =

rmrt
ẇ

 , (4-3)
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where ϵ is small such that the coil-catheter-wall dynamics, i.e. f(y) with y := (ψ, ψ̇), develop
on a faster time scale (dt := ϵdv) than the slow coil growth dynamics, and therefore can be
decoupled. This implies that the coil’s mass (mc), the coil’s size (tc) and the catheter’s base
displacement (w) are considered to be quasi-static with respect to y. By brief inspection of
Figure 4-1, it appears obvious that velocity (ẇ) should be appointed a negative value, when
the coil’s width grows with a positive rate (rt), to sustain the contact force at its desired value
(F ⋆e ). However, it is non-trivial how ẇ should be chosen to maintain the feasibility of desired
tip position (x⋆t , y⋆t ) that corresponds to this value F ⋆e and moves through space throughout
the deployment procedure. To determine a control strategy for ẇ, it is firstly important to
take a closer look at the constraints imposed by the aneurysm walls and the microcatheter’s
motion.

4-2 Constraint formulation

This section defines the constraints imposed by the aneurysm wall and the microcatheter. A
method is proposed to efficiently compute the intersection of these polygons in task space, i.e.
x and y coordinates. The resulting constraint polygon is used to assess the feasibility of the
desired catheter tip position (x⋆t , y⋆t ), and thus the feasibility of desired contact force (F ⋆e ).

4-2-1 Catheter motion constraints

Every steerable catheter is constrained by a maximum bending angle (qmax) per steerable
section. For the system in Figure 4-1, this implies |q1,max| := |qmax + q0| and |q2,max| :=
|qmax + q1|. It has also been discussed in Chapter 3 that the catheter’s configuration should
maintain a single bend to assure uniqueness of the desired joint angles (q⋆1, q⋆2) and independent
control over the joint torques (τ1, τ2). This constrains ∆q1 := q1 − q0 and ∆q2 := q2 − q1 to
have the same sign. These constraints are combined as{

0 ≤ ∆qi ≤ qmax d ≤ 0
−qmax ≤ ∆qi ≤ 0 d > 0

, for i ∈ {1, 2}, (4-4)

where d is an auxiliary variable that indicates whether the steerable microcatheter tip makes
a clockwise (d > 0) or counterclockwise (d ≤ 0) bend with respect to q0 and is defined as,

d = xt sin q0 − yt cos q0, (4-5)

where (xt, yt) is the catheter tip position as defined in Eq. (3-2). While the catheter constraints
have been defined in joint space, the constraints imposed by the aneurysm wall are defined
in task space. Therefore, the constraints in Eq. (4-4) are transformed into task space. For a
counterclockwise bend, i.e. d ≤ 0, this results in a non-convex constraint polygon Cccw with
a lower bound defined by Cccw,min and an upper bound defined by Cccw,max, that is

Cccw,min :=

cs
([

0 q1 q1 + qmax
])
γL

cs
([

0 0 q2
])
γL

0 ≤ q1 < qmax, q2 = qmax

q1 = qmax, 0 ≤ q2 < qmax
,

Cccw,max :=

cs
([

0 q1 q1
])
γL

cs
([

0 qmax q2 + qmax
])
γL

0 ≤ q1 < qmax, q2 = 0
q1 = qmax, 0 ≤ q2 < qmax

,

(4-6)
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Figure 4-2: Constraints on the catheter’s motion projected onto task space. The region Ccc

indicates the constrained movement for a clockwise bend and Cccw for a counterclockwise bend.

with function cs(α) ≜ [cosα, sinα]T and unitless lengths γ := [1
3 ,

1
3 ,

1
3 ]T . This polygon is

then rotated over the constant base direction (q0) and translated with base displacement (w).
The constraint space Ccw for a clockwise turn, i.e. d > 0, is defined by using cs⊥(α) ≜
[cosα,− sinα]T instead of cs(α) in Eq. (4-6). The polygons Ccw and Cccw are visualized in
Figure 4-2 for a maximum bending angle of qmax = π

3 for both steerable sections. It can
be observed from Figure 4-2 that, while some points are feasible from the catheter’s motion
perspective, not all points can be reached given the geometry of the aneurysm.

4-2-2 Aneurysm boundary constraints

The aneurysm walls impose tighter constraints on the feasible motion of the steerable catheter
tip. A saccular aneurysm is considered to be convex and can be described with the polygon
Cwall. This constraint space can be found by generating a 3D reconstruction angiogram prior
to treatment (Appendix B-3). Note from Figure 4-2 that, given a constant base direction
q0, the catheter can only make a counterclockwise turn into the aneurysm. This thesis omits
clockwise turns and restricts the catheter’s constraint space to counterclockwise turns. This
is a reasonable assumption given that the operator can manually control the roll, i.e. bending
plane, of the catheter around the vector pointing in the direction of q0. By turning the
catheter’s bending plane 180◦, a clockwise turn becomes a counterclockwise turn. Therefore,
the catheter’s constraint space is redefined as Ccat ≜ Cccw. This thesis proposes to find the
intersection between Ccat and Cwall by iteratively joining the vertices Ccat := {xp,yp} with
an edge E := {(x1, y1), (x2, y2)} of Cwall. The shortest, i.e. orthogonal, distance from any
point in Ccat is computed with respect to wall edge E , that is

d = (x2 − x1)(y1 − yp) − (x1 − xp)(y2 − y1)√
(x2 − x1)2 + (y2 − y1)y

. (4-7)
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The indices (id) are selected for which the vector d changes sign. One can then compute the
intersection points Pd with the aneurysm wall, i.e.

Pd = d(id) ⊙ nc +
[
xp

T yp
T
]T
id
, (4-8)

where d,nc, id and ⊙ are respectively the distance vector in Eq. (4-7), the orthogonal unit vec-
tor to edge E , an index vector being either empty or containing two indices of intersection and
the Hadamar product. The polygon {xp,yp} can then be joined with edge {(x1, y1), (x2, y2)}
according to

Cjoin =


[
Pd,1

[
xp

T ,yp
T
]T

id,1:id,2
Pd,2 Pd,1

]
sign (d(id,1) < 0[[

xp
T ,yp

T
]T

1:id,1
Pd,1

[
xp

T ,yp
T
]T

id,2:end

]
sign (d(id,1) ≥ 0

, (4-9)

where Cjoin is the intersected constraint polygon and sign (d(id,1)) indicates whether the first
point of {xp,yp} is located outside or within the aneurysm wall. This proposed strategy can
be followed to iteratively update Cjoin for all wall edges defined by Cwall. The full routine
has been described in Appendix A-2. For simplicity, this thesis assumes that Cwall can be
fully described by a left side edge, defined by the vertices {(xl1, yl1), (xl2, yl2)}, and a right side
edge, defined by the vertices {(xr1, yr1), (xr2, yr2)}, as has been illustrated in Figure 4-3. Note
however, that the presented method is valid for any convex, i.e. saccular, aneurysm geometry.

Figure 4-3: Joined catheter and aneurysm constraints.

Based on this section, several observations can be made. Firstly, note that a reference tip
position (x⋆t , y⋆t ) outside of Cjoin implies that the contact force (Fe) between the coil and
the aneurysm wall cannot be controlled to the corresponding reference force (F ⋆e ). Secondly,
note that (x⋆t , y⋆t ) cannot be controlled by the operator. Then, note that the constraint space
(Cjoin) moves with a base displacement (w) along the catheter base direction (q0). Lastly,
note that ẇ is a control parameter. To conclude, Cjoin should be controlled with velocity (ẇ)
to preserve the feasibility of F ⋆e .
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4-3 Control objective

To sensibly shape the catheter base velocity (ẇ) for the first order system in Eq. (4-3), a clear
control objective needs to be defined. This objective is derived based on the illustration in
Figure 4-4. It can be argued that the chance of feasibility for the reference position (x⋆t , y⋆t )
is maximized when the distance from the (x⋆t , y⋆t ) to the boundaries of the constraint polygon
(Cjoin) is maximal. This leads to the proposal that the centre line, i.e. C̄join(x,w), of Cjoin
should contain (x⋆t , y⋆t ) to maximize the target’s distance from the boundaries of Cjoin. The
centre line C̄join(x,w) has been approximated with a 4th-order polynomial by employing
Matlab’s fit(x,y,’poly4’) function on a set of points in the middle of the polygon Cjoin.
This line can be computed before the procedure, i.e. for w(0) = 0, and updated every time
step based on w which moves along the constant direction q0. The polynomial centre line is
then defined as

C̄join(x,w) = a0(x− wx)4 + a1(x− wx)3 + a2(x− wx)2 + a3(x− wx) + a4 + wy, (4-10)

with wx := w cos (q0) and wy := w sin (q0). Correspondingly, the optimal centre line is defined
as C̄⋆join(x,w − ∆w) where the error (∆w) is defined as the distance along q0 between the
centre line C̄join(x,w) and the point (x⋆t , y⋆t ) lying on optimal centre line C̄⋆join(x,w − ∆w).
Accordingly, a control objective can be defined, i.e.

lim
t→∞

∆w = 0, with ∆w = w − w⋆, (4-11)

where w⋆ is the desired global catheter displacement. Note that, due to coil growth, the tip
reference position (x⋆t , y⋆t ) is not a constant point in space but moves with velocity (x⋆t , y⋆t )

′

defined as,
(x⋆t , y⋆t )

′ = rtn⊥, (4-12)

where rt is the coil’s helix growth rate and n⊥ is the unit vector orthogonal to the contact
plane. The coil’s growth rate rt can be derived from the coil injection rate (τin) and the
aneurysm geometry (Appendix A-1), and is considered to be constant in this chapter. The
vector n⊥ can be determined prior to treatment using 3D reconstruction angiography as

Figure 4-4: Augmented view of the constraint polygon Cjoin in Figure 4-3 and its 4th-order
polynomial centre line C̄join(x,w). The optimal centre line C̄⋆

join(x,w − ∆w) contains the
position (x⋆

t , y
⋆
t ) which moves through space with its velocity (x⋆

t , y
⋆
t )′ defined in Eq. (4-12).
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presented in Appendix B-3. It should be noted that it is a non-trivial task to directly relate
the velocity vector (x⋆t , y⋆t )

′ to the desired reference velocity ẇ⋆. As depicted in Figure 4-5,
the nonlinear form of C̄⋆join(x,w) yields a recursive problem to find ∆w such that an exact
solution is hard to find. It is thus proposed to place an upper bound on ẇ⋆ according to

|ẇ⋆| < 1
cos (q0) max

t

[
(x⋆t (t), y⋆t (t))

′
y

]
, (4-13)

where (x⋆t (t), y⋆t (t))
′
y is the maximum y-component of (x⋆t , y⋆t ) over time. This component

is then projected on the sliding direction of w, i.e. q0. Due to the estimation of ẇ⋆, exact
target tracking is not possible. However, due to low values of ẇ, one can state an alternative
regulation control objective, that is

lim
t→∞

∆w ∈ [−ϵ, ϵ], with ∆w = w − w⋆, (4-14)

where ϵ denotes a small margin around C̄join(x,w). Approximate tracking of C̄⋆join(x,w⋆) is
not necessarily a problem as closeness to ∆w = 0 also implies membership of the polygon
Cjoin. Just as velocity ẇ⋆, the error signal ∆w cannot simply be derived. However, this signal
is essential for control. Therefore, a method is proposed in the following section to efficiently
approximate its value.

Figure 4-5: Trajectory (x⋆
t , y

⋆
t ) with respect to the optimal curve C̄⋆

join(x,w⋆) at the time points
t1 and t2. Due to the nonlinear nature of C̄⋆

join(x,w), vertical adjustment with ∆(x⋆
t , y

⋆
t ) is not

sufficient. This yields a recursive problem that can hardly be solved exactly.

4-3-1 Optimization of ∆w

As has been discussed in the previous section, the error signal ∆w in Figure 4-4 is zero
when centre line C̄join(x,w) contains the tip reference position (x⋆t , y⋆t ). It has also been
discussed that the error signal ∆w cannot simple be derived, and thus should be approximated
throughout the deployment procedure. The proposed optimization strategy for ∆w has been
illustrated in Figure 4-6. The optimization objective is to find a point (xw, yw) that is the
intersection point of the current centreline C̄join(x,w) with a vector pointing in the direction
q0 and intersecting (x⋆t , y⋆t ). This objective function is then stated as

ey := |yw − Cjoin(xw, w)| , (4-15)
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Figure 4-6: Illustration of the optimization strategy to find the error signal ∆w in Figure 4-4.
The objective is to find a gain α such that the vector α∆w0 spans from (x⋆

t , y
⋆
t ) to its end point

(xw, yw) such that (xw, yw) lies on the polynomial centreline C̄join(x,w).

where ey is the vertical distance from (xw, yw) to the current constraint centre line C̄join(x,w).
A first guess on (xw, yw) can be made by computation of the following vector,

∆w0 = R(q0)∆y0 =
[
cos q0 − sin q0
sin q0 cos q0

] [
0

C̄join(x⋆t , w) − yt
⋆

]
(4-16)

where R(q0), ∆y0 and ∆w0 are respectively a rotation matrix, the known vertical distance
vector from (x⋆t , y⋆t ) to polynomial centre line Cjoin(x,w) and a vector pointing from (x⋆t , y⋆t )
in the direction of (xw, yw). The first guess of (xw, yw) is then defined as

(xw, yw) = (x⋆t , y⋆t ) − ∆w0. (4-17)

It is then proposed to minimize the error ey in Eq. (4-15) by multiplying ∆w0 with a gain α
that is updated according to a learning rule, i.e.

α = 1 +
nmax∑
n=1

(1
2

)n
sign(∆w0ey), (4-18)

where nmax and sign(.) are the maximum number of iterations and the vector sign function
defined as

sign (v) =


1

[
cos q0 sin q0

]
v > 0

0
[
cos q0 sin q0

]
v = 0

−1
[
cos q0 sin q0

]
v < 0

, (4-19)

where vector v is positive when it points in the positive direction over q0 and negative
otherwise. The optimization routine is repeated until ey < ϵ with ϵ sufficiently small. The
error signal ∆w can then be determined according to

∆w = sign (∆w0)
∣∣∣∣∣
∣∣∣∣∣
[
x⋆t
y⋆t

]
−
[
xw
yw

]∣∣∣∣∣
∣∣∣∣∣ ≜ α sign (∆w0) ||∆w0|| , (4-20)

where α and ∆w0 are the optimized gain and the initial distance vector defined in Eq. (4-
16). The full optimization routine to find ∆w at each integration step has been described in
Appendix A-3.
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4-4 Control architecture

This section presents a control architecture (Figure 4-7) that drives the contact force (Fe)
between the coil and the aneurysm wall to the desired reference state (F ⋆e ) throughout a coil
deployment procedure. This entails the design of a constraint preservation controller that
maintains the desired catheter tip position (x⋆t , y⋆t ) on a derived constraint surface, and thus
preserves the feasibility of the contact force regulation objective.

The right top of the control architecture shows computations that are executed prior to
treatment and stored in a local data store. This entails the measurement of q0 and the
reconstruction of a polynomial centre line C̄join(x,w) from the constraint polygon Cjoin as
described in Section 4-2. The coil’s injection velocity (τin) and the force reference (F ⋆e )
are defined by the operator. The system output of interest is the contact force (Fe). The
measured feedback signals are the catheter’s joint angles (q1, q2) and its base displacement
(w). The tendon torques (τ1, τ2) are the inputs generated by the joint controller described in
Chapter 3 to guide (q1, q2) to (q⋆1, q⋆2), implying convergence of Fe to F ⋆e . The base velocity
(ẇ) is computed such that the constraint space Cjoin(x,w) moves to C̄⋆join(x,w⋆), and thus
feasibility for the F ⋆e is preserved. A step-by-step system routine has been described in
Appendix A that corresponds to the architecture in Figure 4-7.

Figure 4-7: Control architecture for tension control during coil deployment in a constrained
environment.

4-4-1 Controller design

Based on the objective and the error signal (∆w) defined in Section 4-3, a controller can be
designed. First, the simplified case is considered where no coil deployment takes place, i.e.
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rt = 0, implying that the tip reference position (x⋆t , y⋆t ) is static. For this static case, it is
sufficient to use the following control law,

ẇ = −β sign (∆w) , (4-21)

where β is a non-negative constant. Given instant control over ẇ, it is shown in Section 4-
4-2 that this control law achieves the objective in Eq. (4-11), i.e. ∆w → 0. The physical
interpretation of this controller is that target (x⋆t , y⋆t ) attracts curve C̄join(x,w). A higher
value of β indicates a more aggressive control action. This case can now be extended to the
case where coil deployment takes place, i.e. rt > 0 and tip reference position (x⋆t , y⋆t ) is moving
through space according to Eq. (4-12). Since ẇ⋆ is not exactly known, chattering behaviour
around ∆w = 0 should be prevented. Therefore a smooth control action around ∆w = 0 is
considered [50], that is

ẇ = −β tanh
(4
ϵ

∆w
)
, (4-22)

where ϵ is the small margin defined in Eq. (4-14) and the factor 4 has been chosen to shape
the hyperbolic tangent such that |ẇ| ≈ β at |∆w| = ϵ. The resulting closed-loop system, i.e.

d

dt
(w) = −β tanh

(4
ϵ

∆w
)
, (4-23)

has been illustrated as a block diagram in Figure 4-8. It is shown through stability analysis in
Section 4-4-2 that this controller achieves the regulation objective in Eq. (4-11) given a lower
bound on control gain β. Moreover, it should be noted that w is considered a quasi-static
variable, i.e. its velocity ẇ should remain small.

Figure 4-8: Block diagram of the first order closed-loop dynamics for the base displacement (w)
as denoted in Eq. (4-23).

When β is chosen inadequately or when position (x⋆t , y⋆t ) collides with the aneurysm wall, the
controller should be augmented with safety measures. For this, one can evaluate Matlab’s
function inpolygon(x⋆t , y⋆t , Cjoin) to check whether (x⋆t , y⋆t ) is a feasible target and interrupt
the treatment when this property is no longer satisfied, i.e.ẇ = −β tanh

(
4
ϵ∆w

)
(x⋆t , y⋆t ) ∈ Cjoin

break (x⋆t , y⋆t ) /∈ Cjoin
. (4-24)
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4-4-2 Stability analysis

This section shows through stability analysis that the proposed controller in Eq. (4-24) moves
the polynomial centre line C̄join(x,w) such that it approximately contains (x⋆t , y⋆t ). This
implies that the contact force (Fe) between the coil and the aneurysm wall can be asymptot-
ically driven to its desired value (F ⋆e ). The following theorem states that given ∆w converges
to within the set [−ϵ, ϵ], asymptotic stabilization of the contact force (Fe) between the coil
and the aneurysm wall at desired force (F ⋆e ) follows. This section uses notions of Lyapunov
stability and LaSalle’s invariance principle as defined in Appendix B-1.

Theorem 4.1 Consider the systems in Eq. (4-3) with the controllers in Eq. (3-18) and in
Eq. (4-22). The error of (x⋆t , y⋆t ) to the centre line of the constraint space (∆w) defined in
Eq. (4-15) and the force error (F̃e) define in Eq. (3-7) are globally asymptotically stable, that
is

|∆w| → [−ϵ, ϵ] =⇒ |F̃e| → 0 as t → ∞, (4-25)

provided that

(x⋆t (0), y⋆t (0)) ∈ Cjoin, (4-26)
(x⋆t (t), y⋆t (t)) ∈ Cwall ∀t ∈ [0, tf ], (4-27)

β ≥ max
t

[rt(t)] n⊥
y

1
cos q0

, (4-28)

λm{K∆} ≥ kg and (4-29)
d, dc > 0, (4-30)

hold, where [−ϵ, ϵ] is a small desired set, Cjoin is the constraint polygon for tip reference
position (x⋆t , y⋆t ), Cwall denotes the constraints imposed by the aneurysm wall, tf is the time
required to deploy a single helical coil, β is a control parameter, q0 is the catheter’s constant
base direction, n⊥

y is the y-component of the vector orthogonal to the aneurysm wall in
contact, rt is the coil’s helix growth rate, λm{K∆} denotes the eigenvalues of catheter stiffness
matrix K∆, kg is defined in Property 4.4 and d and dc are the damping coefficients for
respectively the catheter and the coil.

Proof 4.1 Take the following Lyapunov candidate, i.e.

V (∆w) = 1
2∆w2 (4-31)

with ∆w = w−w⋆, which is a valid candidate as this function is clearly continuously differen-
tiable, radially unbounded, positive definite for all nonzero ∆w and equal to zero for ∆w = 0.
The time derivative of V (∆w) takes the following form, i.e.

V̇ (∆w) = ∂V (∆w)
∂∆w (ẇ − ẇ⋆) = ∆w

[
−β tanh

(4
ϵ

∆w
)

− ẇ⋆
]
, (4-32)

using the expression for ẇ in Eq. (4-22). When the coil does not grow, i.e. reference velocity
ẇ⋆ is zero, it can be shown that V̇ (∆w) is seminegative definite for any β > 0 by noting that
the function x tanh (x) always has a positive sign. By invoking Lyapunov’s direct method, it
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is concluded that the origin is a globally asymptotically stable equilibrium of the closed-loop
system in Eq. (4-23).

On the other hand, when (x⋆t , y⋆t ) is moving through space, i.e. (ẇ⋆ ̸= 0), it can be verified
that negative definiteness for V̇ (∆w) does not hold for all values of ∆w. This yields a lower
bound on the control action ẇ, that is∣∣∣∣tanh

(4
ϵ

∆w
)∣∣∣∣β ≥ |ẇ⋆| , (4-33)

where the absolute upper bound of ẇ⋆ has been defined in Eq. (4-13), that is

β⋆ := |ẇ⋆| = max
t

[rt(t)] n⊥
y

1
cos q0

, (4-34)

where n⊥
y rt and q0 are respectively the vertical velocity of (x⋆t , y⋆t )

′ and the direction along
which ẇ is controlled. Note that tanh (x) converges to zero for small values of x. Therefore,
no choice of β exists to satisfy the expression in Eq. (4-33) for an arbitrary small value of
∆w. However, note that the constraint in Eq. (4-33) reduces to

β ≥ β⋆ (4-35)

for any |∆w| greater than ϵ. By choosing β = β⋆, it can be verified that V̇ (∆w) is negative
definite for all values ∆w /∈ [−ϵ, ϵ], and thus ∆w at least converges to within the desired set
[−ϵ, ϵ]. Given that β⋆ is an overestimation of the upper bound of |ẇ⋆|, LaSalle’s invariance
principle can be invoked to show that the set,

Ω = {∆w ∈ R2n ∩ ∆w /∈ [0, α] : V̇ (∆w) = 0}, (4-36)

consists of the points {0, α} where α is positive unknown value within the desired set [−ϵ, ϵ].
Hence, all trajectories starting outside of the level set [0, α] will converge to its boundary and
any trajectory for ∆w starting within [0, α] will remain within [0, α]. Note that ∆w = 0 is
an unstable equilibrium, hence the trajectories converging to ∆w = 0 will move within the
set [0, α]. Given that the level set [0, α] lies within the desired set [−ϵ, ϵ], the trajectories
of ∆w converge to within the desired set [−ϵ, ϵ], hence the reference position (x⋆t , y⋆t ) is a
feasible target for the joint controller defined in Eq. (3-18). Given that the point (x⋆t , y⋆t ) is a
feasible target, Theorem 4.1 can be evoked to show that Fe is asymptotically stabilized at
the desired reference F ⋆e . It should be noted that, at t = 0, (x⋆t , y⋆t ) should be a member of
Cjoin, i.e.

(x⋆t (0), y⋆t (0)) ∈ Cjoin, (4-37)

and the coil is of an appropriate size such that (x⋆t , y⋆t ) does not collide with the aneurysm
walls Cwall during deployment time tf , i.e.

(x⋆t (t), y⋆t (t)) ∈ Cwall ∀t ∈ [0, tf ]. (4-38)
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4-5 Simulations

To validate the theoretic proof in Section 4-4-2, this section shows through numeric simu-
lation that the control objectives in respectively Eqs. (3-13) and (4-14) are achieved. This
implies that the imposed constraints are obeyed and that the contact force (Fe) between an
endovascular coil and the aneurysm wall is regulated at the desired value (F ⋆e ) during the
deployment of an endovascular coil in the aneurysm dome.

This environment has been simulated according to Figure 4-1 and control has been imple-
mented according to the architecture depicted in Figure 4-7. The parameter settings are
equivalent to Table 3-1 and new parameter settings are stated in Table 4-1. Note that the
desired coil-wall tension has again been chosen as F ⋆e := 0.5Fe,max = −0.1N. For clarity, the
coil growth rate (rt) is chosen to be constant and grows at 17% with respect to the coil’s
initial size tc(0). The control parameter β has been chosen equal to the lower bound defined
in Eq. (4-34), that is β⋆ = 0.116.

The simulation activates the force-regulating joint controller at t = 0 seconds. Subsequently,
the deployment of new coil material starts at t = 5 seconds. Given the growth rate (rt),
the coil is assumed to be fully deployed at t = 20. According to Eq. (4-24), the procedure is
interrupted when (x⋆t , y⋆t ) leaves the derived constraint polygon Cjoin. Four simulation images
of a successful coil deployment procedure have been visualized in Figure 4-15. The algorithm
in Appendix A-2, i.e. to create Cjoin from Ccat and Cwall, has been applied to map the coil
structure within the aneurysm walls.

The system outputs, relevant to evaluate the force control objective in Eq. (3-13), are pre-
sented in Figures 4-9 to 4-11. It can be observed from Figure 4-9 that the proposed joint
controller has succeeded to stabilize contact force Fe at its F ⋆e throughout the coil deployment
procedure. Figure 4-10 shows that (x⋆t , y⋆t ) moves with a constant rate (rt) through space as
described in Eq. (4-12). Moreover, Figure 4-11 shows that reference joint angles (q⋆1, q⋆2) are
adjusted accordingly and tracked appropriately by the joint controller.

The system outputs, relevant to evaluate the constraint space tracking objective in Eq. (4-11),
are depicted in Figures 4-12 and 4-13. It can be observed from Figure 4-13 that the control
action (ẇ) is smooth over the coil deployment interval t ∈ [5, 20]. Subsequently, it can be noted
from Figure 4-12 that error signal ∆w converges to some small value α < ϵ. This implies that
the distance from (x⋆t , y⋆t ) to the constraint boundaries has been approximately maximized.
The simulation captures in Figure 4-15 show that the procedure has been completed, i.e. Cjoin
has been translated with displacement (w) such that (x⋆t , y⋆t ) remained a feasible target. To
verify that the value of β has been chosen appropriately, simulations have been conducted for
varying values of β, i.e. β := {1

2β
⋆, β⋆, 2β⋆}. The resulting errors (∆w) have been aggregated

in Figure 4-14. It can be observed that an inadequate choice of β, i.e. β = 1
2β

⋆, results in
(x⋆t , y⋆t ) moving out of the constraint polygon Cjoin, and thus requiring interruption of the
procedure at t = 9 seconds. A more aggressive choice of β, i.e. β = 2β⋆ shows a slightly faster
stabilization of ∆w around zero. It is discussed in Section 4-6 that it is desired to choose β
as small as possible.
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Figure 4-9: Contact force regulation between a coil and the aneurysm wall
in the coil deployment case.

Figure 4-10: Catheter tip position regulation in the coil deployment case.

Figure 4-11: Catheter joint angle regulation in the coil deployment case.
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Figure 4-12: Regulation of the catheter’s base displacement (w) with the error (∆w) such that
the polynomially fitted centre line, i.e. C̄join(x,w), moves to (x⋆

t , y
⋆
t ). Control starts at t = 5

seconds.

Figure 4-13: The controlled catheter’s base velocity (ẇ) for the regulation of displacement (w)
with error (∆w) in Figure 4-12. Control starts at t = 5.

Figure 4-14: Regulation of the catheter’s base displacement (w) for different choices of the
control gain β, i.e. β := { 1

2β
⋆, β⋆, 2β⋆}.
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Figure 4-15: Stages of coil deployment at t = 0 (left top, start force control), t = 5 (right
top, start deployment), t = 12 (left bottom, mid-deployment), t = 20 (right bottom, end of
deployment).

4-6 Discussion

In conclusion, this chapter has presented a control architecture that enables regulation of
the contact force (Fe) between the coil and the aneurysm wall while obeying the constraints
imposed by the equipment and the environment. The presented architecture comprises an
auxiliary velocity controller for the catheter’s base that maximizes the feasibility of the aug-
mented energy-shaping joint controller presented in Chapter 3. It has been shown through
stability analysis and numeric simulations that the presented architecture asymptotically
guides the contact force (Fe) towards its desired equilibrium F ⋆e throughout the deployment
procedure.

In detail, this chapter has proposed to decouple the fast joint control motions from the slow
base velocities of the catheter’s base, allowing for a separate controller design. The auxiliary
velocity controller moves a polynomial fitted centre line, i.e. C̄join(x,w), of the constraint
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space (Cjoin) such that it approximately contains the reference tip position (x⋆t , y⋆t ). This
method maximizes the distance of (x⋆t , y⋆t ) with respect to constraint boundaries, and thus
preserves the feasibility of the force control objective in Eq. (3-13). Throughout this chapter,
various assumptions have been made. In the following paragraphs, these modelling choices
and simulation results are discussed in more detail.

To start with, it should be underlined that the control action (ẇ) serves as an auxiliary
control input to the tendon torques (τ1, τ2) provided by the joint controller. Alternatively
said, the system cannot fully rely on the base velocity (ẇ) for precise control. Ideally, the
catheter would move according to one-to-one movement, i.e. the catheter’s steerable tip moves
forward 1 mm when the proximal base is pushed forward 1 mm. This is often not the case,
as the catheter’s body shifts from the lesser curves to the greater curves in the blood vessel,
i.e. resulting in a slack catheter. A slack catheter stores more elastic energy. The excessive
load in the system leads to the loss of fine microcatheter control. Moreover, the system can
experience a sudden release of elastic energy. This causes a forward-jumping motion of the
microcatheter which can induce aneurysm rupture (Section 1-1-3). The excessive load can
be relieved by slowly retracting the catheter, resulting in shifts from the greater to the lesser
vessel curves until one-to-one movement is restored [18]. This mechanism is the reason why
ẇ is not used in conjunction with a single degree of freedom catheter, i.e. q := q1, to facilitate
force control. It is argued that a slow enough retraction rate of ẇ is the only safe way to
control the catheter’s base movement. This enables the use of decoupled system dynamics
but also restricts the magnitude of control parameter β in Eq. (4-24). It should be noted that
small deviations from (∆w = 0) do not necessarily pose a problem as closeness to (∆w = 0)
also implies membership of the polygon Cjoin, and thus enables stabilization of the contact
force (Fe) at F ⋆e . Therefore, it is advised to place β at its lower bound β⋆ as defined in
Eq. (4-34).

It should also be mentioned that it has been assumed, in this thesis, that the procedure
can be interrupted at any time. In this case, the control action in Eq. (4-24) guarantees
the procedure’s safety. However, when the microcatheter’s lumen still contains part of the
coil, the coil cannot be simply cut in half, and thus some action has to be taken. The most
obvious action is to stop the controlled deployment procedure and let the operator take back
command over the procedure. The operator can then choose to withdraw the coil, manually
deploy the coil or change the catheter’s bending plane.

Another assumption throughout this chapter is that catheter base movement is constrained
to move along q0. It has been discussed in Section 2-4 that the direction (q0) is mostly
determined by the shape of the vessel adjacent to the aneurysm. However, this chapter has
described the retraction of the microcatheter along the vessel wall. It can be argued that the
catheter’s retraction would not change the base direction q0 until the base position (x0, y0)
has reached the closest vessel bend. It is assumed that the distance to the closest bend is
sufficiently large such that the catheter can be pulled out of the aneurysm along a constant
direction (q0).

Lastly, it is important to discuss the real-time feasibility of the presented control architecture,
i.e. computation of the control actions should be implemented fast enough for them to be
useful. The presented control architecture has a run time of 15 seconds for a simulation time
of 25 seconds. This is an indication that the presented architecture is real-time feasible. To
improve the architecture’s run time, one could inspect the efficiency of the separate system
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components, for example, the gain update rule used in Eq. (4-18). This function iterates
until the objective |∆w| := |C̄join − C̄⋆join| < ε has been achieved. It has been visualized in
Figure 4-16 that the error used in simulation, i.e. ε = 1e-4, only requires a single iteration
per integration time step while a lower desired error, i.e. ε = 1e-5, requires at maximum five
iterations per time step. Note that coil deployment starts at t = 5 seconds. When a lower
error ε is desired, other possibly more efficient learning algorithms exist, e.g. golden section
search [51].

Figure 4-16: Iterations per integration step required to optimize error signal ∆w with the learning
rule in Eq. (4-18) until the desired error has been reached, i.e. |∆w| := |C̄join − C̄⋆

join| < ε.

Variable Description Value Unit
State parameters
w(0) Catheter displacement along q0 at t = 0 0 m
tc(0) Length of coil helix at t = 0 0.05 m
mc(0) Coil mass at t = 0 0.08 kg

Coil properties
rt Coil size growth rate 1

6 tc(0) m/s
rm Coil mass growth rate 1

6mc(0) kg/s
β Base control parameter 0.0116 -
ϵ Convergence bound around C̄join(x,w) 1e-3 m
tgrow Start time of coil growth 5 s
tstop End time of coil growth 20 s

Other parameters
h Integration time step 0.001 s
T Simulation time 25 s
F ⋆e Desired contact force 0.1 N

Table 4-1: Parameter choices for the coil deployment simulation. Parameters introduced in
Chapter 3 have been stated Table 3-1.
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Chapter 5

Concluding remarks

5-1 Conclusion

Preventive treatment for intracranial aneurysms with endovascular coiling is controversial
due to the high risk of complications. These complications are partly caused by the current
uncontrolled delivery of coils to the aneurysm. While recent developments in microcatheter
design allow for improved positioning, no method has been devised to model and control the
tension applied by the coil on the aneurysm wall during a coiling procedure. This thesis has
aimed to come up with such a method to improve the safety of aneurysm treatment.

In Chapter 2, a new way has been presented to dynamically model an endovascular coil and
its interaction with a microcatheter and the aneurysm wall throughout a coil deployment
procedure. The main advantage of this model is its low computational complexity allowing
real-time control computation. In Chapter 3 a control architecture has been presented that
enables indirect regulation of the contact force between a coil and the aneurysm wall when
no extra coil material is added to the system. This control architecture has been extended in
Chapter 4 to enable regulation of the contact force between the coil and the aneurysm wall
throughout a coil deployment procedure while obeying the constraints imposed by the equip-
ment and the environment. A velocity controller for the catheter’s base has been designed
that maintains the desired catheter tip position (x⋆t , y⋆t ) on a derived constraint surface, and
thus preserves the feasibility of the contact force regulation objective.

Theoretic proof and numeric simulations have shown that the resulting energy-shaping joint
controller asymptotically stabilizes the contact force at the desired reference. This thesis
provides a basis for modelling and control in future experimental validations. Therefore, this
work is a promising first step in the modelling and control of robotic systems for neurovascular
interventions and a step forward in the preventive treatment of intracranial aneurysms.
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5-2 Recommendations

While this thesis is a promising first step in the safe treatment of intracranial aneurysms,
there is still work to be done to translate the simulations to clinical application. The following
paragraphs highlight the main recommendations and topics still to be addressed.
To start with, this thesis has focused its work on the control of tendon-driven steerable
microcatheters. The advantage of tendon-driven actuation is its intuitive modelling and con-
trol and the fact that a higher bending degree of freedom can be achieved at small scale
by separating the tip section into multiple steerable segments [28]. However, up till now,
it has been a daunting task to accurately control a tendon-driven manipulator with an in-
credibly high length-to-diameter ratio, i.e. exceeding 1000:1 [1]. The reason for this is that
slack and frictional effects aggregate along the length of the catheter. Alternative actua-
tion mechanisms have been proposed which minimally suffer from said effects. First of two
is the pneumatically-driven microcatheter tip developed by the University of California San
Diego (UCSD) [1], introduced in the introduction of this thesis. While this actuation mecha-
nism can be easily miniaturized, it will always restrict the steerable microcatheter tip to have
a single in-plane bending degree of freedom. As has been shown in this thesis, two degrees of
freedom are required to enable accurate in-plane force control. Alternatively, magnetic actu-
ation mechanisms have been proposed by the Massachusetts Institute of Technology (MIT)
and the Swiss the Institute of Technology Zürich (ETHZ). The advantage of magnetic steer-
ing is that no internal wiring is required, and thus no friction takes place. The design of
ETHZ can achieve two-dimensional movement, however does not allow for congruent steering
of both tip sections. As has been shown in this thesis, congruent control is required to enable
accurate in-plane force control. To conclude, due to the current limitation of other actuation
mechanisms, tendon-driven microcatheters remain the most viable option to achieve exact
contact force control in intracranial aneurysms. Hence, future research should focus on the
design of even smaller tendon-driven catheters which enable decoupled control of two bending
sections.
Secondly, this thesis has considered direct control over the tendon torques (τ1, τ2) and the base
velocity ẇ. It has been discussed in Section 4-6 that this is a viable assumption for control
input ẇ. However, to actuate tendons, one needs to control the tendon lengths (ℓ1, ℓ2) that
correspond to the tendon torques (τ1, τ2). This map has been omitted in this thesis for the
reason that every catheter has different mechanical properties, hence would yield different
torques based on tendon displacements. Many studies have focused on finding an accurate
map between catheter lengths and tendon torques, e.g. [52], and can easily be incorporated
in the presented model.
Regarding coil deployment, this thesis has considered an aneurysm shape that can be perfectly
framed with a single helical coil. However, a single coil is never sufficient to fill an aneurysm.
The question arises whether the presented strategy would need to be adjusted to enable the
deployment of multiple coils. This is not necessarily the case. By adding a helical coil with
a smaller diameter within the already deployed helical coil structure, the aneurysm would
be filled appropriately. This so-called ’matryoshka’ strategy has been adapted in coiling
procedures [18]. The most pressing question is how to assure that a coil stays at its desired
position after deployment. A theory is that, due to blood clot formation, this coil sticks to the
surrounding aneurysm walls and other deployed coils. However, future experiments should
verify this statement.
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Another note is that this research has considered planar control of a catheter tip to enable
contact force control between the coil and the aneurysm wall. This is a valid assumption
given that the catheter 1) undergoes minimal torsion, 2) is not subjected to out-of-plane
disturbances and 3) its bending plane is equivalent to the plane that contains the vector
orthogonal to the wall (n⊥) and containing the contact point (xe, ye). It has been discussed
in Section 2-4 that the bending plane, i.e. the roll of the catheter around vector q0, can
be manually adjusted by the operator to contain the force vector (n⊥). This enables in-
plane force control. This thesis has deliberately chosen to omit catheter roll in the control
architecture as it seemingly would not improve the performance of coil deployment. However,
when out-of-plane disturbances are present, additional control over the roll of the catheter
could be used to reject these disturbances, and could therefore be part of future work.

While the previous recommendations concern the improvement of the simulation, the most
important question is what should be done to validate the proposed control architecture,
and thus enable integration in the clinical workflow. For this, future research should focus
on devising reliable setups to validate this work. Many works have focused on the robotic
actuation of tendon-driven continuum robots [53]. Other works have focused on phantoms for
aneurysms [25] or phantoms for blood vessels [54]. Future work should focus on interconnect-
ing these systems and attaining reliable force measurements to verify the mappings proposed
in Section 3-2 and the control architecture proposed in Chapter 4. After experiments have
verified the model and control architecture presented in this thesis, the road is open for the
first clinical implementation of a robotic system for neurovascular interventions.
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Appendix A

Algorithms

This appendix presents a pseudo-code routine (Algorithm 1) to control the contact force
between an endovascular coil and the aneurysm wall during coil deployment. This routine is
based on the control architecture depicted in Figure A-1, as presented in Chapter 4. Operator
inputs are the desired force reference F ⋆e , the coil deployment time tdeploy in seconds and the
coil injection rate τin in m/s. The acquirement of feedback signals by X-ray segmentation
and Fibre Bragg Grating sensors is discussed in Appendix B-3.

Figure A-1: Control architecture for coil deployment corresponding to Algorithm 1.
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Algorithm 1 Controlled coil deployment
1: function deploy_coil(Ccat, tdeploy, τin)
2: Input: F ⋆e Desired contact force reference in Newton
3: : τin → Coil injection rate in m/s
4: : tdeploy → Coil deployment duration in seconds
5: Measure catheter base angle q0 and displacement w through angiography
6: Measure aneurysm geometry Cwall through 3D reconstruction angiography
7: Determine contact point (xe, ye) from Cwall
8: Compute catheter task space constraints Ccat from q0 ▷ Eq. (4-6)
9: Join catheter constraints Ccat with wall constraints Cwall ▷ Algorithm 3

10: Assert (x⋆t , y⋆t ) ∈ Cjoin ▷ Eq. (4-24)
11: Compute centre line C̄join(x,w) of Cjoin ▷ Eq. (4-10)
12: Compute growth rate of coil’s helix length based on τin ▷ Algorithm 2
13: while t < tdeploy do
14: Measure w through real-time fluoroscopy
15: Measure (q1, q2) through fibre Bragg gratings
16: Integrate tc from rt ▷ Eq. (4-3)
17: Compute (x⋆t , y⋆t ) from F ⋆e ▷ Eq. (3-9)
18: Compute (q⋆1, q⋆2) from (x⋆t , y⋆t ) ▷ Eq. (3-12)
19: Update Ccat with w
20: Update Cjoin from Ccat and Cwall ▷ Algorithm 3
21: Assert (x⋆t , y⋆t ) ∈ Cjoin ▷ Eq. (4-24)
22: Approximate displacement error ∆w ▷ Algorithm 4
23: Compute tendon torques τ from {(q⋆1, q⋆2), (q1, q2)} ▷ Eq. (3-18)
24: Compute catheter base velocity ẇ from ∆w ▷ Eq. (4-22)
25: Compute Fe from (q1, q2) ▷ Eqs. (3-2) and (3-16)
26: Output: Fe
27: end while
28: end function

The presented workflow applies several algorithms which have been designed throughout
this thesis. Appendix A-1 presents the pseudo-code for the predict_coil_trajectory(.)
algorithm. This algorithm adapts a geometric coil deployment algorithm from literature to
estimate the growth rate (rt) of the coil’s helix length (tc) based on the coil injection rate
(τin). Appendix A-2 presents the join_constraints(.) algorithm which has been proposed
in Chapter 4 to efficiently join an arbitrary constraint polygon with a convex constraint
polygon to a single constraint space Cjoin. Lastly, Appendix A-3 presents the pseudo-code
for the optimize_deltaw(.) algorithm which has been shown in Chapter 4 to appriximate the
distance ∆w between the current centre line of the constraint polygon Cjoin, i.e. C̄join(x,w)
and the desired centre line C̄⋆join(x,w⋆) and is used for control of the catheter base.
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A-1 Geometric coil deployment modelling

This appendix presents an adjusted version of the geometric coil deployment algorithm pro-
posed by Patel et al. [27]. This algorithm represents an endovascular coil with a number of
ncoil virtual segments. At each iteration, a new head segment hi rotates with an angle ∆θ
according to the preshape of the coil. When a collision with the aneurysm wall is detected,
the head segment rotates until a feasible path has been found. Wall vertices V and their
corresponding wall faces F , described as Fi,j(x, y, z) = ai,jx + bi,jy + ci,jz − di,j = 0, can
be determined through 3D reconstruction angiography prior to the procedure. To efficiently
determine collisions, firstly vertices in V are detected that lie within a potential colliding
distance wcol of the coil head segment hi, that is,

Vf = {v ∈ V| ||hi − v|| < wcol}, (A-1)

with Vf the filtered set of vertices. Wall faces F are selected corresponding to the filtered
vertices in Vf . Then the orthogonal plane distances are computed with respect to the coil’s
head hi, that is

dF =
[
hi 1

]
Fi,j . (A-2)

If any collision is detected for the real collision distance dcol < wcol, the segment should
rotate with ∆θ. This thesis proposes to adjust Patel’s algorithm for helical coil deployment
in a saccular aneurysm with a non-constant diameter. The angle φ, i.e. the winding ratio of
the coil, is related to the average rate of change of angle θ over the last nprev coil segments,
i.e.

φ = α
1

nprev

nprev∑
k=i−nprev

∆θk, if i > nprev, (A-3)

with ∆θi := θi − θi−1, α some factor and nprev the number of iterations to average over. At
each iteration, the head coil segments then rotates according to,

hi = hi−1 +R(φ)R(θ)−→v , with v =
[
∆ℓ 0 0

]
, (A-4)

with R(.) a counterclockwise rotation matrix and −→v the coil’s direction vector pointing in
the positive x-direction with ∆ℓ the length of a single virtual coil segment. This strategy
enables realistic geometric modelling of helical endovascular coils in saccular aneurysms. The
routine predict_coil_trajectory(.) has been depicted in pseudo-code in Algorithm 2. By
computation of vector φ, one can derive the growth rate rt of the coil’s helix length through,

rt(ti) = sin (φi)τin, with τin = ncoil∆ℓ
tdeploy

, (A-5)

with τin the coil injection rate in m/s, rt(ti) the growth rate of the helical endovascular coil
at time ti in m/s, tdeploy the time taken to deploy the coil, ∆ℓ the length of a virtual coil
segment. Growth rate rt is the input to the coil deployment model in Eq. (4-3).
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Algorithm 2 Geometric coil deployment algorithm
1: function predict_coil_trajectory(∆θ, h0,∆ℓ, ncoil,F ,V, dcol, wcol, imax)
2: Input : ∆θ → Coil’s helix preshape
3: : h0 → Start point of coil deployment
4: : ncoil Number of virtual coil segments in coil
5: : ∆ℓ → Virtual coil length
6: : V → Aneurysm wall vertices
7: : F → Aneurysm wall faces to vertex
8: : dcol → Collision distance
9: : wcol → Potential collision distance

10: : imax → Maximum number of path search iterations
11: Initialize coil direction vector as −→v = [∆ℓ 0 0]
12: Initialize coil structure with h = [h0 h0 + −→v ]
13: for i = 2 to the number of virtual coil segments ncoil do
14: Set collision Boolean Ccol to True
15: Initialize iterator k=1
16: while Boolean Ccol is True or iterator k is less than imax do
17: Increase k with 1
18: Compute distance vector dV between coil head hi and wall vertices V
19: Extract filtered vector Vf from V based on dV < wcol ▷ Eq. (A-1)
20: if Vf is empty then
21: Set collision Boolean Ccol =False
22: end if
23: for Vertex v in Vf do
24: Compute distance vector dF from hi to faces around v ▷ Eq. (A-2)
25: if Any dF is smaller than collision distance dcol then
26: Rotate θ with ∆θ
27: Update coil head orientation with θ ▷ Eq. (A-4)
28: Set collision Boolean Ccol to True
29: Break the loop
30: else
31: Set collision Boolean Ccol to False
32: end if
33: end for
34: end while
35: if Iterator k exceeds imax then
36: Stop deployment simulation as the coil is stuck
37: end if
38: Rotate θ with ∆θ
39: if i is greater than nprev then
40: Rotate φ based on the average the last nprev values for θ ▷ Eq. (A-3)
41: end if
42: Append new head segment to coil structure ▷ Eq. (A-4)
43: end for
44: Compute the growth rate vector rt along the coil’s helix length ▷ Eq. (A-5)
45: return rt
46: end function
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A-2 Constraint joining

This appendix presents the routine join_constraints(.) to efficiently join an arbitrary
constraint polygon with a convex constraint polygon. The routine iteratively computes the
intersection of the non-convex constraint polygon with an edge from the convex polygon. The
joining routine with a single edge has been described in Section 4-2-2. The full routine has
been depicted in pseudo-code in Algorithm 3. In this thesis, this routine is used to compute the
intersection Cjoin of the aneurysm wall Cwall, i.e. a convex polygon consisting of the vertices
of a saccular, i.e. sac-like shaped, aneurysm, with the non-convex catheter constraints Ccat.
The joined space Cjoin is used to evaluate whether (x⋆t , y⋆t ) is a feasible target for the joint
controller presented in Chapter 3. The routine join_constraints(.) has also been used in
simulation to map the 2D helical coil structure within the aneurysm walls.

Algorithm 3 Joining algorithm convex and non-convex polygon
1: function join_constraints(Cconvex, Cin)
2: Input : Cconvex → Vertices of convex constraint polygon
3: : Cin → Vertices of arbitrary constraint polygon
4: Extract vertices {xp,yp} from Cin
5: for Edge E in Cconvex do
6: Extract coordinates {x1, x2, y1, y2} from edge E
7: Compute the unit vector n orthogonal to edge E
8: Compute the distance vector d from {xp,yp} to edge E ▷ Eq. (4-7)
9: Extract indices id for which vector d changes sign

10: if id is empty then ▷ id is either empty or R2

11: return Cin
12: else
13: Compute intersection points pc with edge E ▷ Eq. (4-8)
14: Update Cin with pc ▷ Eq. (4-9)
15: return Cin
16: end if
17: end for
18: end function
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A-3 Optimization of ∆w

This appendix presents the routine optimize_deltaw(.) to efficiently compute the offset
between the current centre line C̄join(x,w) of the constraint polygon Cjoin and the desired
centre line C̄⋆join(x,w⋆ that contains the desired tip reference position (x⋆t , y⋆t ). It has been
argued in Section 4-3 that bringing ∆w close to zero maximizes the feasibility of (x⋆t , y⋆t ). The
single approximation of ∆w has been described throughout Section 4-3-1. The optimization
objective is to find a gain α such that ∆w = α∆w0 with ∆w0 and initial guess on vector
∆w. The routine for a single approximation has been depicted in pseudo-code in Algorithm 4.
This approximation is updated according to Algorithm 1.

Algorithm 4 Offset computation from C̄join to C̄⋆join
1: function optimize_deltaw(C̄join(x,w), (x⋆t , y⋆t ), q0, w)
2: Input : (x⋆t , y⋆t ) → Reference position for catheter tip
3: : q0 → Constant direction of catheter base
4: : w Displacement of catheter base along q0
5: : C̄join(x,w) → Centre line of constraint space Cjoin computed for w = w(0)
6: Make initial guess of vector pointing from (x⋆t , y⋆t ) to C̄join(x,w) along q0 ▷ Eq. (4-16)
7: Make initial guess of the point (xw, yw) on C̄join(x,w) ▷ Eq. (4-17)
8: Compute the error ey from (xw, yw) to C̄join(x,w) ▷ Eq. (4-15)
9: Initialize iterator i at 1

10: Initialize gain α0 at 1
11: Initialize update factor for α at 1

2
12: while Error |ey| > ε and iterator i < imax do
13: Update gain αi = αi−1 + sign (ey∆w0) δ ▷ Eqs. (4-18) and (4-19)
14: Increase iterator i with 1
15: Divide factor δ with 2
16: Update guess on (xw, yw) = α∆w0 + (x⋆t , y⋆t ) ▷ Eq. (4-16)
17: Update error ey based on (xw, yw) ▷ Eq. (4-15)
18: end while
19: Compute ∆w from (xw, yw) and (x⋆t , y⋆t ) ▷ Eq. (4-20)
20: return ∆w
21: end function
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Complementary material

The appendix provides complementary material. Appendix B-1 provides the notions of Lya-
punov stability and LaSalle’s invariance principle which are used in the stability analysis of
the designed controllers in Chapters 3 and 4. Appendix B-2 gives an introduction in pas-
sivity and passivity based control for controller design in Chapter 3. Appendix B-3 gives
an overview of sensing methods to retrieve feedback signals for the control architectures in
Figures 3-3 and 4-7.

B-1 Stability

This appendix follows the work by Khalil et al. [55] to provide notions of Lyapunov stability
and LaSalle’s invariance principle. Consider the autonomous system

ẋ = f(x), (B-1)

where f is a locally Lipschitz function defined over a domain D ⊂ Rn. Suppose f(x̄) to be
an equilibrium point of f(x), i.e. f(x̄) = 0. This equilibrium points is assumed to be placed
at the origin, i.e. x̄ = 0. This is without loss of generality because any equilibrium point can
be shifted to the origin via a change of variables, i.e. y = x− x̄, such that

ẏ = ẋ = f(y + x̄) = g(y), with g(0) = 0. (B-2)

An equilibrium point is stable if all solutions starting at nearby points stay nearby. Otherwise
it is unstable. It is asymptotically stable if all solutions starting at nearby points not only
stay nearby but also tend to the equilibrium point as time approaches infinity.

B-1-1 Lyapunov stability

Lyapunov showed that certain functions, named Lyapunov functions, could be used to de-
termine the stability of an equilibrium. Let such a function, i.e. V (x), be a continuously
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differentiable real-valued function defined in a domain D ⊂ Rn that contains the origin. The
derivative of V (x) along the trajectories of ẋ = f(x) is given given by

∂V (x)
∂x

f(x). (B-3)

If V̇ (x) is negative, V (x) will decrease along the solution of ẋ = f(x). This observation leads
to Lyapunovs stability theorem:

Theorem B.1 Consider the locally Lipchitz function in Eq. (B-1) defined over a domain
D ⊂ Rn which contains the origin and f(0) = 0. If a continuous differentiable function can
be defined such that

V (0) = 0 V (x) > 0 for x ̸= 0 and x ∈ D,

V̇ (x) ≤ 0 for all x ∈ D,
(B-4)

then the system f(x) is stable around the origin. If V̇ (x) is only zero for x = 0 we have
asymptotic stability. If the function V (x) is radially unbounded, i.e.

|x| → ∞ =⇒ V (x) → ∞, (B-5)

and D = Rn, we have global asymptotic stability of the origin.

There is no systematic method for finding Lyapunov functions, however, in mechanical sys-
tems Lyapunov candidates may resemble energy functions. A classic radially unbounded
Lyapunov function is

V (x) = xTPx, with P > 0. (B-6)

B-1-2 LaSalle’s invariance principle

In some cases, a Lyapunov function is chosen whose derivative V̇ (x) along the trajectories of
the system is negative semidefinite, i.e. V̇ (x). If it can be established that no trajectory can
stay identically at points where V̇ (x) =0, except at the origin, then the origin is asymptotically
stable. This idea follows from LaSalle’s invariance principle:

Theorem B.2 Consider the locally Lipchitz function f(x) in Eq. (B-1) defined over a domain
D ⊂ Rn which contains the origin and f(0) = 0. Let V (x) be a continuously differentiable
positive definite function defined over D such that V̇ (x) ≤ 0 in D. Let S = {x ∈ D|V̇ (x) = 0}
and suppose that no solution can stay identically in S, other than the trivial solution x(t) = 0.
Then the origin is an asymptotically stable equilibrium point of ẋ = f(x). Finally, if D = Rn
and V (x) is radially unbounded, then the origin is globally asymptotically stable.

Note that a set a set M is positively invariant when a solution belongs to M at some time
instant, then it belongs to M for all future time. Both equilibrium points and limit sets are
invariant sets.
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B-2 Passivity-based control

This appendix gives a short introduction of the notions of passivity and passivity-based con-
trol, following the work of Ortega et al. [31]. In passive systems the rate at which the energy
flows into the system is not less than the increase in storage. In other words, a passive system
cannot store more energy than is supplied to it from the outside, with the difference being
the dissipated energy, i.e.

H(t)︸ ︷︷ ︸
available

= H(0)︸ ︷︷ ︸
initial

+
∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸
supplied

−
∫ t

0
F (q̇(τ))dτ︸ ︷︷ ︸
dissipated

, (B-7)

where H := V + T is the total energy or storage function of the system, uy is the power
delivered from an external source and F (q̇) is a dissipative function. Euler Lagrange systems
define passive maps with a storage function defined as their total energy. In recent years
passivity, and more specifically feedback passivation, has been used to reformulate the fun-
damental problem of feedback stabilization of nonlinear systems. A specific passivity-based
control action is energy-shaping plus damping injection technique introduced to solve state-
feedback set point regulation problems in fully actuated robotic systems by Takegaki and
Arimoto [41]. The design comprises an energy shaping stage where the potential energy of
the system is modified in such a way that the "new" potential energy function has a global
and unique minimum in the desired equilibrium and a damping injection stage where the dis-
sipation function is modified to ensure asymptotic stability. This follows from the following
theorem:

Theorem B.3 Consider an n-degrees of freedom fully-actuated EL system with no internal
damping nor external forces described by

D(q)q̈ + C(q, q̇)q̇ + g(q) = Mu, (B-8)

where q ∈ Rn is the state vector and u ∈ Rm the vector of control inputs, D(q) the inertial
matrix, C(q, q̇) denoting the Coriolis forces of the system and g(q) denoting the gravity of the
system. Let the state-feedback law be given as

u = ∂Vc
∂q

(q) − ∂Fc
∂q̇

(q̇), (B-9)

where the function Vc(q) is such that the potential energy of the closed-loop system.

Vd(q) := V (q) + Vc(q), (B-10)

has a unique global minimum at q = q̄ and is radially unbounded, as defined in Eq. (B-5),
with respect to q̃ := q − q̄. The dissipation function Fc(q̇) satisfies

∂Fc
∂q̇

(0) = 0 and q̇T ∂Fc
∂q̇

(q̇) > 0, ∀q̇ ̸= 0. (B-11)

Under these conditions, the equilibrium (q, q̇)T is globally asymptotically stable.
Note that when the system is already full internally damped, we do not necessarily need a
derivative action. However, an additional damper can be useful to reduce the overshoot of
the system.
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B-3 Sensing methods

The steerable microcatheter tip model, as derived in Section 2-1, requires feedback on the
catheter’s configuration and the environment’s geometry to reliably employ a control strategy.
Reconstruction of the aneurysm geometry is commonly done prior to treatment using rota-
tional angiography [43]. This 3D angiogram, shown in Figure B-1a, serves as the workspace
for the catheter and gives information on coil selection [18]. As has been discussed in Sec-
tion 1-1-2, the steerable catheter tip can be visualized using X-ray guidance (Figure B-1c).
The disadvantage of this imaging technique is that the catheter tip becomes harder to vi-
sualize when the procedure advances as it cannot be distinguished from the radio-opaque
coils. The base of the steerable tip, however, often remains outside of the aneurysm sac, and
thus can be sensed throughout the procedure. This thesis proposes to integrate Fibre Bragg
Grating (FBG) sensors in the shaft of the steerable catheter tip to reconstruct the shape of
the catheter when invisible on X-ray. A fibre Bragg grating, illustrated in Figure B-1b, expe-
riences strain when the catheter is bent. Reflected light signals, originating from a periodic
pattern of external laser light, combine coherently into one large reflection at a particular
wavelength. This wavelength is used to determine the strain or curvature of the FBG. The
FBG sensors are a viable choice because they are highly sensitive to strain, can easily be
miniaturized to a diameter of 0.15mm and have previously been used in medical equipment
[32, 56, 57]. Placing an FBG sensor at every virtual joint of the pseudo-rigid body model is
sufficient to retrieve the shape, hence tip position, of the steerable catheter tip.

(a) 3D reconstruction of in-
tracranial aneurysm [43].

(b) Fibre Bragg grating sensor [56]. (c) Catheter visible on X-ray
guidance [5].

Figure B-1: Medical sensing methods of the catheter and intracranial aneurysm shape.
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List of Acronyms

SAH Subarachnoid Haemorrhage
IA Intracranial Aneurysm
UIA Unruptured Intracranial Aneurysms
IAR Intraprocedural Aneurysm Rupture
TE Thromboembolic Event
PRB Pseudo-rigid Body
CoM Centre of Mass
FBG Fibre Bragg Grating
UCSD University of California San Diego
Erasmus MC Erasmus University Medical Center
MIT Massachusetts Institute of Technology
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