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Direction-of-Arrival Estimation
for Constant Modulus Signals

Amir Leshem and Alle-Jan van der Veen

Abstract—In many cases where direction finding is of interest, the
signals impinging on an antenna array are known to be phase modulated
and, hence, to have a constant modulus (CM). This is a strong property;
by itself, it is already sufficient for source separation and can be used
to construct improved direction finding algorithms. We first derive the
relevant Cramér–Rao bounds (CRB’s) for arbitrary array configurations
and specialize to uniform linear arrays. We then propose a simple sub-
optimal direction estimation algorithm in which the signals are separated
using the CM property followed by direction finding on the decoupled
signals. Compared with the ESPRIT algorithm and the CRB for arbitrary
signals, the algorithm shows good results.

Index Terms—Constant modulus, Cramér–Rao bound, DOA estima-
tion.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation of multiple signals imping-
ing on an antenna array is a well-studied problem in signal processing.
“Traditional” methods exploit knowledge of the array manifold or
its structure without using information on the signals. Example
algorithms are MUSIC [1], ESPRIT [2], MLE [3], WSF [4], and
MODE [5]. For signals with known waveforms, an algorithm is
derived in [6]. Other methods exploit properties of the signals such
as nonGaussianity [7] or cyclostationarity [8]. These methods are
more robust to array manifold errors due to the extra information
they use. Although phase-modulated signals are ubiquitous in the
communication field, no detailed study of the exploitation of the
constant modulus property for multiple-source DOA estimation has
been done thus far. As we show here, a large improvement can be
achieved by exploiting this information.

Since the pioneering work of Treichler and Agee [9], it is known
that the constant modulus (CM) property is a strong property that,
by itself, is already sufficient for source separation. After separation
of the signals, the DOA estimation problem is decoupled and can be
done for each source individually. Such a scheme is proposed in [10],
where the CM signals are sequentially separated using the so-called
CM array. Weak points of this and related iterative CM algorithms
are their initialization, the problematic recovery of all signals, and
their unpredictable convergence, which may require several hundred
samples per signal. To counter these problems, Mathuret al. [11]
propose to initialize each stage of the algorithm by a weight vector
found by the MUSIC algorithm. However, it is well known that
sequential DOA estimation yields poor performance for the weak
sources when the stronger sources are not completely removed.

Recently, Van der Veen and Paulraj [12] have found an analytic
solution to the CM source separation problem in which all weight
vectors are found simultaneously and reliably from a small number
of samples and without initialization problems. Thus, this algorithm is
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very attractive for use as a first step in the DOA estimation problem.
Moreover, it is applicable to any array geometry.

Knowing that there is a good algorithm, it becomes interesting to
study the performance bounds for DOA estimation of CM signals.
Here, our aim is to derive such bounds. We also give explicit bounds
for the signal phase estimates. We demonstrate by simulations that the
proposed algorithm almost achieves the CRB for constant modulus
signals, which is below the bound for arbitrary signals. Hence, the
algorithm outperforms any algorithm that does not use the CM
property. We also demonstrate the robustness of the algorithm to
various model errors.

II. DATA MODEL

Consider an array withp sensors receivingq narrowband constant
modulus signals. Under standard assumptions for the array manifold,
we can describe the received signal as an instantaneous linear
combination of the source signals, i.e.,

xxx(t) = AAABBBsss(t) + nnn(t) (1)

where

• xxx(t) = [x1(t); � � � ; xp(t)]
T is ap� 1 vector of received signals

at time t;
• AAA = AAA(���) = [aaa(�1); � � � ; aaa(�q)], whereaaa(�) is the array re-

sponse vector for a signal from direction�, and��� = [�1; � � � ; �q]
is the DOA vector of the sources;

• BBB = diag(���) is the channel gain matrix with parameters
��� = [�1; � � � ; �q]

T , where�i 2 IR+ is the amplitude of the
ith signal as received by the array;

• sss(t) = [s1(t); � � � ; sq(t)]
T is a q � 1 vector of source signals

at time t;
• nnn(t) is thep � 1 additive noise vector, which is assumed spa-

tially and temporally white Gaussian distributed with covariance
matrix �III, where� = �2 is the noise variance.

In our problem, the array is assumed to be calibrated so that the
array response vectoraaa(�) is a known function. As usual, we require
that the array manifold satisfies the uniqueness condition, i.e., every
collection ofp vectors on the manifold are linearly independent [13].

We further assume that all sources have constant modulus. This
is represented by the assumption that for allt; jsi(t)j = 1 (i =
1; � � � ; q): Unequal source powers are absorbed in the gain matrix
BBB: Phase offsets of the sources after demodulation are part of thesi:
Thus, we can writesi(t) = ej� (t), where�i(t) is the unknown phase
modulation for sourcei, and we define���(t) = [�1(t); � � � ; �q(t)]

T

as the phase vector for all sources at timet:
Finally, we assume thatN samples[xxx(1); � � � ; xxx(N)] are available.

III. CRAMÉR–RAO BOUNDS

The Craḿer–Rao bound (CRB) provides a lower bound on pa-
rameter estimation variance for any unbiased estimator. We present
CRB’s for DOA and signal phase estimation of multiple CM signals,
postponing the derivations to the Appendix.

The likelihood function is given by

L(xxxjsss; ���; ���; �) =
1

(2�)N
�

2

pN
� exp �

1

�

N

k=1

(xxx(k)

� AAABBBsss(k))�(xxx(k)�AAABBBsss(k)) :

Let L(xxxjsss; ���; �) = logL(xxxjsss; ���; ���; �): After omitting constants, we
obtain

L(xxxjsss; ���; ���; �) =�pN log � �
1

�

N

k=1

(xxx(k)

�AAABBBsss(k))�(xxx(k)�AAABBBsss(k)):

Following [14], the estimation of the noise variance is decoupled
from all other parameters, and its bound can be computed separately
as CRBN (�) = (�2=pN): The remaining parameters are collected in
the vector[���(1)T ; � � � ; ���(N)T ; ���T ; ���T ]T : Define

SSSk = diag(sss(k)) and DDD =
daaa

d�
(�1); � � � ;

daaa

d�
(�q) :

The Fisher information matrix associated with the estimation of the
parameter vector can be derived as (see the Appendix)

FIMN =

HHH1 0 ���T
1 EEET

1

. . .
...

...
0 HHHN ���T

N EEET
N

���1 � � � ���N ��� ���T

EEE1 � � � EEEN ��� ���

(2)

where

HHHk :=E
@L

@���(k)

@L

@���(k)

T

=
2

�
Re(SSS�

kBBB
�AAA�AAABBBSSSk)

���k :=E
@L

@���

@L

@���(k)

T

= �
2

�
Im (SSS�

kBBB
�DDD�AAABBBSSSk)

EEEk :=E
@L
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@L

@���(k)

T

= �
2

�
Im(SSS�

kAAA
�AAABBBSSSk)
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@L

@���

@L

@���

T

=
2

�

N
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Re(SSS�

kBBB
�DDD�DDDBBBSSSk)
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�
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Re(SSS�

kAAA
�DDDBBBSSSk)

��� :=E
@L

@���

@L

@���

T

=
2

�

N

k=1

Re(SSS�

kAAA
�AAASSSk): (3)

HHH�1
k would be the CRB on the estimation of the unknown source

phases at timek in the case where the DOA’s and amplitudes are
known. Similarly,����1 and����1 provide bounds on the estimation
of the DOA’s and amplitudes, respectively, when other parameters
are known. The matrices���k; EEEk; and ��� represent the couplings
between the parameters.

The bounds on the individual parameters are obtained after in-
version of the Fisher information matrix. This can be carried out in
block-partitioned form (using Schur complement formulas and the
Woodbury identity), which leads to more explicit expressions. Thus,
assuming that theHHHk are invertible (an assumption that follows
from the independence condition on the array manifold and the
independence of the sources), let

���11 ���12

���21 ���22
=

N

k=1

���kHHH
�1
k ���T

k

N

k=1

���kHHH
�1
k EEET

k

N

k=1

EEEkHHH
�1
k ���T

k

N

k=1

EEEkHHH
�1
k EEET

k

and define theq � q matrix

			 =
��� ���T

��� ���
�

���11 ���12

���21 ���22
:
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Using the Schur complement formula twice, the CRB for DOA’s and
amplitudes can be written more explicitly as

CRBN(���) = (			�1)11 = diag [(��� ����11)

� (���T ����12)(��� ����22)
�1(�������21)]

�1

CRBN(���) = (			�1)22 = diag [(��� ����22)

� (�������21)(��� ����11)
�1(���T ����12)]

�1: (4)

Similarly, using the Woodbury identity, the bound on the estimation
variance of the signal phases follows as

CRBN(���(k))

= diag HHH�1
k III + [���T

k EEET
k ]			

�1 ���k

EEEk
HHH�1

k : (5)

Note that the number of samples and the quality of DOA estimation
affects the bound only through the matrix			�1:

Single CM Source

To obtain more insight into the CRB’s, we consider the case of
DOA estimation of a single CM source. We omit all derivation due
to space limitations. The CRB on the DOA is, in this case, given by

CRBN(�) =
1

2N SNRkPPP?aaa(�)ddd(�)k
2

whereddd(�) = (daaa(�)=d�); PPP?aaa = I � aaa(aaa�aaa)�1aaa�, and SNR=
�2=�: This conforms with the results of [6], which obtain an identical
asymptotic expression for the case of a known signal with unknown
amplitude and initial phase. We can also obtain that the phase
estimation variance is given by

CRBN(�(k)) =
1

2 SNRkaaa(�)k2
1 +

1

N
c(�)

where

c(�) =
(Im (ddd(�)�aaa(�)))2

kaaa(�)k2kPPP?aaa(�)ddd(�)k
2
:

c(�) represents the effect of channel estimation error on the signal
phase estimation.

Further simplification of the above bounds is possible if we assume
that the antenna array is a uniform linear array (ULA) with antennas
spaced byd wavelengths. In this case

CRBN(�) =
6

p(p2 � 1)N SNR(2�d)2 cos2(�)

CRBN(�(k)) =
1

2p SNR
1 +

3

N

p� 1

p+ 1
: (6)

Note that the estimation quality of the signal phases is independent of
the antenna spacing and the DOA and quickly becomes independent
of the number of samplesN:

IV. CM-DOA ESTIMATION ALGORITHM

A suboptimal but simple algorithm to estimate the DOA’s using
the CM property is to do the following.

1) Blindly estimate a matrixÂAA = [aaa1; � � � ; âaaq] using the CM
assumption.

2) For each column̂aaai of ÂAA, estimate the direction̂�i that fits best.

A closed-form solution for the first step is provided by the ACMA
algorithm. It is described in detail in [12] and will not be discussed
here. The second step is known to be a one-dimensional (1-D)

projection of eacĥaaai onto the array manifold given by

�̂i = arg max
�

jâaa�iaaa(�)j

kaaa(�)k
: (7)

Finally, when the ESPRIT method is applicable, a similar trick can be
used to reduce the computational complexity by eliminating the 1-D
searches. Let̂aaa1;i andâaa2;i be the two parts of the estimate of the array
manifold of theith source, which are phase shifted. We can write

âaa1;i = ej(2�d=�) sin � âaa2;i (8)

whered is the distance between the two parts of the array. Hence, by
performing LS fitting using the estimated array manifold, we obtain

�̂i = sin�1 �

2�d
tan�1 Im (âaaH1;iâaa2;i)

Re(âaaH1;iâaa2;i)
: (9)

The advantage of this CM-DOA algorithm is that it is applicable
to arbitrary array configurations, unlike other fast methods such
as ESPRIT, which exploits a specific array structure and breaks
down with multipath propagation. Although suboptimal, its estimates
are usually quite close to the CRB. In the next section, we also
demonstrate the robustness of the algorithm to model errors.

V. SIMULATION RESULTS

It is interesting to compare the DOA CRB’s for CM signals
versus the usual case of arbitrary signals [14] and versus the case
of known signals with unknown amplitudes (including initial phases)
[6]. Because of the complex nature of the expressions, this is practical
only graphically for specific examples. We also compare the CM-
DOA algorithm to ESPRIT by means of simulations. We have used
the method based on (7), which is more robust than the ESPRIT-type
estimation.

We have used ap = 8 element ULA with spacingd = 1
2

wavelength andq = 2 equipowered random phase CM signals. If
not specified otherwise, we took

• N = 50 samples;
• SNR = 20 dB;
• first source located at 0� (boresight);
• second at 5�.

The results have been averaged over 400 Monte Carlo runs.
We have carried out four simulation cases:

1) Varying source separation, from2� to 20�: As seen in Fig. 1,
the CM-DOA algorithm is very close to its CRB and, hence,
outperforms any DOA estimation that does not use the CM
information.

2) Varying SNR: See Fig. 2. We see that the CM-DOA estimator
almost achieves the CRB.

3) Varying array model mismatch: We have corrupted the entries
of the array response vectors by white gaussian noise with
variance�50 dB to 0 dB relative to the array manifold. The
DOA estimation variance for the first source is presented in
Fig. 3. The CM-DOA methods give uniformly better perfor-
mance relative to ESPRIT. The CRB’s are not tight anymore
because they do not take model error into account, but it is
interesting to see that up to�20 dB model error, the CM-DOA
algorithm performs better than the bound for arbitrary signals.

4) Varying CM signal model mismatch: We have added a white
Gaussian noise signal to each of the CM signals. As seen in
Fig. 4, at up to 15 dB perturbation, the CM-DOA algorithm
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Fig. 1. DOA estimation accuracy for CM-DOA and ESPRIT. Varying source
separation.

Fig. 2. DOA estimation accuracy for CM-DOA and ESPRIT. Varying SNR.

still estimates the DOA better than ESPRIT. This shows that a
limited robustness to the CM assumption exists.

Finally, we have tested the performance for correlated signals in
the extreme case of a small array and an angular separation of 2�: The
array was a four-element ULA with half-wavelength spacings. The
correlation coefficient between the signals was varied from 0.05–1.
As seen in Fig. 5, the CM-DOA algorithm does not achieve the CRB
in this case, but we still improve on the CRB for arbitrary signals
up to correlations of 0.5.

VI. CONCLUSIONS

We have computed the Cram´er–Rao bound for direction finding
of constant modulus signals. The comparison to the bound for
arbitrary signals shows the importance of using the constant modulus
information whenever it is available. We then devised a simple
two-step algorithm for the DOA estimation of CM signals using
the ACMA algorithm. The algorithm is shown to outperform any
algorithm that does not use signal structure over a wide range of
parameters.

Fig. 3. DOA estimation accuracy for CM-DOA and ESPRIT. Varying array
model mismatch.

Fig. 4. DOA estimation accuracy for CM-DOA and ESPRIT. Varying signal
model mismatch.

APPENDIX

DERIVATION OF THE INFORMATION MATRIX

In this Appendix, we derive the Fisher information matrix for the
DOA estimation of multiple constant modulus signals. The derivation
is along the lines of [14].

Define

eee(k) = xxx(k)�AAABBBsss(k):

The partial derivative ofL to � is

@L

@�
= �

pN

�
+

1

�2

N

k=1

eee
�(k)eee(k):

To compute the partial derivative to���(k), we use

@L

@���(k)
=

@sss(k)

@���(k)

@L

@sss(k)
+

@~sss(k)

@���(k)

@L

@~sss(k)
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Fig. 5. DOA estimation accuracy for CM-DOA and ESPRIT for varying
signal correlation.

where sss(k) = Re sss(k) = cos(���(k)), and ~sss(k) = Im sss(k) =
sin(���(k)): Following [14], we obtain

@L

@sss(k)
=

2

�
Re(BBB�

AAA
�

eee(k))

@L

@~sss(k)
=

2

�
Im (BBB�

AAA
�

eee(k)):

In addition

@sss(k)

@���(k)
= diagf� sin(���(k))g =: �Im (SSSk)

@~sss(k)

@���(k)
= diagfcos(���(k))g =: Re(SSSk)

where SSSk = diag (sss(k)): Hence, we obtain after some easy
manipulations

@L

@���(k)
=

2

�
Im (SSS�

kBBB
�

AAA
�

eee(k)):

In addition, from [14], we obtain

@L

@���
=

2

�

N

k=1

Re(SSS�

kBBB
�

DDD
�

eee(k))

and similarly

@L

@���
=

2

�

N

k=1

Re(SSS�

kAAA
�

eee(k)):

Now, we are in position to compute the entries of the Fisher
information matrix. Straightforward computation yields (3). Note that
the variance is decoupled from all other variables so that its bound
can be computed separately. The FIM of the remaining parameters
then follows as (2).
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