
 
 

Delft University of Technology

Design and verification of a simple 3D dynamic model of speed skating which mimics
observed forces and motions

van der Kruk, E.; Veeger, H. E.J.; van der Helm, F. C.T.; Schwab, A. L.

DOI
10.1016/j.jbiomech.2017.09.004
Publication date
2017
Document Version
Final published version
Published in
Journal of Biomechanics

Citation (APA)
van der Kruk, E., Veeger, H. E. J., van der Helm, F. C. T., & Schwab, A. L. (2017). Design and verification of
a simple 3D dynamic model of speed skating which mimics observed forces and motions. Journal of
Biomechanics, 64, 93-102. https://doi.org/10.1016/j.jbiomech.2017.09.004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jbiomech.2017.09.004
https://doi.org/10.1016/j.jbiomech.2017.09.004


Journal of Biomechanics 64 (2017) 93–102
Contents lists available at ScienceDirect

Journal of Biomechanics
journal homepage: www.elsevier .com/locate / jb iomech

www.JBiomech.com
Design and verification of a simple 3D dynamic model of speed skating
which mimics observed forces and motions
http://dx.doi.org/10.1016/j.jbiomech.2017.09.004
0021-9290/� 2017 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: e.vanderkruk@tudelft.nl (E. van der Kruk).
E. van der Kruk ⇑, H.E.J. Veeger, F.C.T. van der Helm, A.L. Schwab
Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Accepted 4 September 2017

Keywords:
Multibody model
Speed skating
Optimization
Verification
Advice about the optimal coordination pattern for an individual speed skater, could be addressed by sim-
ulation and optimization of a biomechanical speed skating model. But before getting to this optimization
approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of
this study is to present a verified three dimensional inverse skater model with minimal complexity,
which models the speed skating motion on the straights. The model simulates the upper body transverse
translation of the skater together with the forces exerted by the skates on the ice. The input of the model
is the changing distance between the upper body and the skate, referred to as the leg extension
(Euclidean distance in 3 D space). Verification shows that the model mimics the observed forces and
motions well. The model is most accurate for the position and velocity estimation (respectively 1.2%
and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5–
10%). The model can be used to further investigate variables in the skating motion. For this, the input
of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Speed skaters can only push-off laterally to their blade, there-
fore they are restricted to a specific motion pattern. A skating
stroke during speed skating the straights can be divided into three
phases: the glide phase, the push-off phase and the re-position
phase (Fig. 1) (Van Ingen Schenau, 1981). During the glide phase,
the mass of the skater is supported over one leg, whereby the
ankle-hip distance remains more or less constant. The skater then
starts to increase this distance by introducing a leg extension,
thereby moving the center of mass away from the skate, which
indicates the start of the push-off phase. The push-off phase ends
when the leg is at its maximal extension. Since the leg extension
velocity can no longer keep up with the upper body velocity in this
phase, the skate leaves the ice. During the re-positioning phase the
skate is retracted under the body of the skater, until the skater
places the skate again on the ice, whereby the glide phase begins,
which completes the motion cycle. Double support (both skates on
the ice) exists when one leg is at the start of the glide phase while
the other leg is at the end of push-off. This coordination pattern
results in a sinus-wave like transverse trajectory of the upper body
over the ice.
Within the restriction of this motion, still a distinct difference in
coordination patterns among (elite) speed skaters is observed. This
indicates room for individual optimization of the speed skating
motion. Finding this optimal coordination pattern could well be
addressed by simulation and optimization of a biomechanical
model of speed skating. But before getting to this optimization
approach one needs a model that can reasonably match observed
behaviour.

Currently, there are two speed skating models describing the
coordination patterns of skaters. First, there is a dynamic model,
consisting of 19 rigid bodies and 160 muscles, which can simulate
the speed skating motion and gives insight in the forces and
motions acting in the joints (Otten, 2003); Second, there is an
inverse dynamic model of a speed skater of Allinger & Bogert
(1997), which is driven by individual strokes and gives insight in
the coordination pattern of the speed skater. To the best knowl-
edge of the authors, both models have not been validated with
actual (force) measurements, nor were the effects of the assump-
tions investigated. Furthermore, the application of the model by
Allinger & Bogert (1997) is limited, since it is driven by a presumed
function in time rather than measured leg extensions and the body
height was assumed constant. Apart from speed skating, there is
one other skating model developed, simulating the skating push-
off force in cross-country skiing (Bruzzo et al., 2016). This is a
multibody model of a two-segment leg (with the upper body mass
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Fig. 1. Phases in the skating motion; the figure is adopted from (van der Kruk et al., 2017). Skating is divided into the four phases: glide phase, push off phase, repositioning
phase and the double stance, where both skates are on the ice. The push-off angle of the leg is the angle the leg makes with the horizontal during the push-off motion in the
frontal plane. The arrows indicate the push-off force in global space, the scale is indicate in the top-right corner. The grey line indicates the CoM motion of the HAT.
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attached to the top of the leg), using the orientation of each leg seg-
ment as input for their simulation. The aim of their model was to
estimate the push-off force rather than a model which could be
used for technique optimization. Thus although (speed) skating
models have been developed, none of them have been shown to
accurately predict the observed coordination pattern.

The objectives of this study are to present a verified three
dimensional dynamic skater model with minimal complexity –
built on previous work in rowing (Cabrera et al. (2006)) and speed
skating (Fintelman et al., 2011; van der Kruk et al., 2015) - mod-
elling the speed skating motion on the straights. The model is dri-
ven by the leg extension - the changing distance between the
upper body and the skate - and the skate steering, which we call
motion coordination. In this paper we present the verification of
this novel model through correlation with observed kinematics
and forces.

2. Methods

2.1. Model description

The skater is considered as a combination of three point masses,
which are situated at the upper body (mass B) and at each skate
Fig. 2. Simple skater model; (a) top view of the skater; (b) rear view of skater. The skater i
at each skate (mass S). The position of mass B was estimated at the CoM of the HAT (h
segment. The generalized coordinates are explained in Table 1.
(mass S) (Fig. 2). Since the double stance phase is rather short, it
is assumed that there exists no double stance phase. Therefore,
only one skate at the time is on the ice, alternating left and right.
The point of alternation is defined as the moment in time where
the forces exerted on both skates are equal. So at any point in time,
only two masses are considered in the model, which we refer to as
the active masses (mass B and one of the skates). The repositioning
phase of the inactive skate in the air is therefore neglected. Each
mass has three degrees of freedom. The set of parameters is
restricted to the position coordinates of mass B (xb; yb; zb), two
translations in the transverse plane of mass S, with the position
coordinates (xs; ys) (because the skate is assumed to be on the
ice, making zs = 0 at all times) and one rotation in the same plane,
the steer angle (hS). This steer angle is of importance for the con-
straint forces acting on the skate, since we assume that the skate
can only glide in the direction of the blade, restricting lateral slip.
All other rotations of the skates and the upper body rotations are
neglected. The bodyweight of the skater is distributed over the
two active masses by a constant mass distribution coefficient
(g). Furthermore, the arm movements are assumed to be of mar-
ginal effect on the overall power and are therefore neglected.

The input of the model is the changing distance between the
point mass position of the upper body and the skate (Euclidean
s considered as two point masses, which are situated at the upper body (mass B) and
ead, arms and trunk). the position of mass S wat positioned at the CoM of the foot



Table 1
Clarification on the generalized coordinates.

q Generalized coordinates
ub Absolute position of mass B in x-direction (global)
vb Absolute position of mass B in y-direction (global)
ws Vertical distance between the mass S and mass B
us Horizontal distance between mass S and mass B in heading direction of

the skate
vs Horizontal distance between mass S and mass B perpendicular to the

heading direction of the skate
hs Heading of the skate (counterclockwise)
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distance in 3D space), which will be indicated as the leg extension
in the remainder of this paper, and the steering angle of the skate;
these are relative measures. The output of the model is the upper
body motion of the skater in global space together with the forces
exerted by the skates on the ice.

2.2. Generalized coordinates

The global coordinates describing the position of upper body B
and skate S are,

x ¼ xb yb zb xs ys /s½ � ð1Þ
We want to express the coordination of the skater in terms of

leg extension. Instead of describing the position and orientation
of the body together with the constraints imposed by the joints
on these coordinates x we use a minimum set of coordinates q,

q ¼ ub vb ws us v s hs½ � ð2Þ
Where (ws;us;v s; hs) describe the leg extension that is actively

controlled by the skater and therefore serve as the input coordi-
nates to the model (Fig. 2). The remaining coordinates (ub;vb) are
the generalized coordinates of the upper body, which will be a
result of the system dynamics. The global coordinates x can be
expressed in terms of the generalized coordinates

x ¼ TðqÞ ð3Þ

xb
yb
zb
xs
ys
/s

2
666666664

3
777777775
¼

ub

vb

ws

ub � kk � cosðhsÞ � v s þ kk � sinðhsÞ � us

vb � sinðhsÞ � v s � cosðhsÞ � us

kk � hs

2
666666664

3
777777775

ð4Þ

Where kk is the parameter introduced to distinct the alternating
left active skate (kk ¼ 1) and the right active skate (kk ¼ �1). A
derivation of these relations lead to a Jacobian matrix T, which
maps global velocities onto generalized velocities.

_x ¼ @T
@q

_q ¼ T _q ð5Þ

The matrix T can also be used to transform the global mass and
force matrix into mass and force matrices that act on the general-
ized coordinates (local frame).

2.3. Unconstrained equations of motion

We first determine the unconstrained equations of motion and
then add a non-holonomic constraint to the skate to restrict any
lateral slip in the next section. The unconstrained equations of
motion in terms of generalized coordinates according to Newton’s
law are then described by

�M � €q ¼ �F ð6Þ
Where €q is the second derivative of q with respect to time. �M
and �F are respectively the mass and the force matrix acting on
the generalized coordinates. �M is found by

M ¼ TTMT ð7Þ

M ¼

mb 0 0 0 0 0
0 mb 0 0 0 0
0 0 mb 0 0 0
0 0 0 ms 0 0
0 0 0 0 ms 0
0 0 0 0 0 Is

2
666666664

3
777777775

ð8Þ

where mb is the mass of B, ms the mass of S and Is the mass moment
of inertia of S. The second reduced matrix, is the reduced force
matrix F which is defined as

F ¼ TTðf �M � hconÞ þ Q ð9Þ
where Q are the forces exerted on the local frame and hcon are the
convective acceleration terms of x,

€x ¼ T€qþ hcon ð10Þ
With

hcon ¼ @T
@q � @q _q � _q ð11Þ

The forces f consist of gravitational and friction forces acting on x.
The external forces f are described by:

f ¼

sinðhbÞ � Fb;f

�cosðhbÞ � Fb;f

�mb � g
Kk � sinðhsÞ � Fs;f

�cosðhsÞ � Fs;f

kk �Ms

2
666666664

3
777777775

ð12Þ

Fb;f represents the air friction working on the skater. We described
the air friction forces based on the study of van Ingen Schenau
(1982):

Fb;f ¼ 1
2
ACdqv2

xyz ¼ k1v2
xyz ð13Þ

where Cd represents the drag coefficient, A the frontal projected
area of the skater, q the air density and vxyz the velocity of the air
with respect to the skater. Fs;f is the ice friction working on the
skate, which is described using Coulomb’s law of friction (De
Koning et al., 1992):

Fs;f ¼ lFN ð14Þ
where l is the friction coefficient and FN is the normal force of the
skate on the ice. Since the normal force is one of the outcomes of the
model and l is small, the normal force is approximated by FN � mg
in which m the mass of the skater and g the earth gravity.

2.4. Constrained equations of motion

The acting external forces are the air frictional forces acting on
the body (located at mass B) and the ice frictional forces acting on
the skate. The undetermined external force acting on the skate is
the constraint force perpendicular to the skate blade in the trans-
verse plane, restraining any lateral slip of the skate. This was
implemented in the model by means of a non-holonomic con-
straint acting in the lateral direction of the skate.

Cs ¼ �sinðhsÞ � _ys � kk � cosðhsÞ � _xs ¼ 0 ð15Þ



96 E. van der Kruk et al. / Journal of Biomechanics 64 (2017) 93–102
Expressing Cs into the generalized coordinates and differentiat-
ing ones, leaves us with the equation

C€qþ Ccon ¼ 0 ð16Þ
In which C is the Jacobian of the constraints and Ccon are the

convective acceleration terms of the constraints. Adding these con-
straints to the total equation of motion, Eq. (5) results in:

M CT

C 0

" #
€q
k

� �
¼ F

�Ccon

" #
ð17Þ

where k is the constraint force (Lagrange multiplier) acting in the
lateral direction of the skate.

2.5. Finding the solution

The model is solved in two steps. First, since the parameters
(ws;us;v s; hs) are considered as inputs and the air frictional forces
acting on the upper body are assumed to be known, Eq. (14) can
be reorganized in terms of known (qo) and unknown (qd)
coordinates:

Mdd Mdo CdT

Mod Moo CoT

Cd Co 0

2
64

3
75

€qd

€qo

k

2
64

3
75 ¼

Fd

Fo

�Ccon

2
64

3
75 ð18Þ

the constraint force k and the transverse position of the upper body
(ub; vb) can be determined by solving

€qd

k

" #
¼ Mdd CdT

Cd 0

" #�1

� Fd �Mdo � €qo

�Ccon � Co � €qo

" #
ð19Þ

The algebraic differential equations Eq. (19) cannot be solved
analytically. The equations are integrated using the classical fourth
order Runge Kutta method. The integration time tn has been cho-
sen the sample time of the measurements (tn = 0.01). The con-
straints are fulfilled for each integration step by a coordinate
projection method (Eich-Soellner and Fnhrer (1998)). Hereby a
minimization problem was formulated, concerning the distance
from the predicted solution to the solution which is on the con-
straint surface.

With above steps, the complete set of generalized coordinates q
can be determined, with which the global coordinates x can be
Table 2
Trials and results; In total the data of four participants were used for the verification of the
trial. This was subject to the capturing volume and the accuracy of the motion capture sy

P W g k1 l T S velocity Residuals

Rxb Ryb Rd

(kg) (m/s) (m) (m) (m
A F 70 0 0.19 0.006 1 2 9.8 0.03 0.19 0.

2 3 10.0 0.02 0.10 0.
B F 65 0 0.18 0.006 1 2 8.7 0.02 0.09 0.

2 3 9.5 0.01 0.05 0.
3 2 9.9 0.04 0.33 0.
4 2 9.9 0.04 0.32 0.

C M 76 0 0.14 0.006 1 2 10.3 0.03 0.16 0.
2 2 11.1 0.03 0.15 0.
3 2 11.2 0.03 0.09 0.
4 2 11.2 0.02 0.09 0.
5 2 11.8 0.03 0.13 0.
6 3 12.4 0.02 0.13 0.
7 2 12.8 0.02 0.15 0.

D M 81 0 0.14 0.006 1 2 10.5 0.03 0.27 0.
2 2 10.7 0.04 0.39 0.
3 2 10.8 0.04 0.32 0.
4 2 11.1 0.03 0.24 0.
5 2 12.3 0.02 0.21 0.
determined analytically via the kinematic relations in (Eq. (4)).
Finally, with the determined €q and k, the forces acting on the skate
Fo can be determined analytically so that a complete two-body
dynamic model of the skater has been established:

Fo ¼ Fws Fus Fvs Mhs½ � ð20Þ
Fo ¼ Mod Moo Co
� � �

€qd

€qo

k

2
64

3
75 ð21Þ

Summarized the known generalized coordinates qo, which we
define as the leg extension were used as input. This was utilized
to solve Eq. (19) to obtain the unknown coordinates qd, defined
as the upper body translation. The motion strategy was then used
to find the forces applied on the skate, applying Eq. (21).
2.6. Data collection

To verify the model, data were collected on the indoor ice rink
of Thialf, Heerenveen (the Netherlands) in 2015. Four Dutch elite
speed skater were equipped with two instrumented skates, on
which their individual skating shoes and blades were positioned
(in full detail described in: van der Kruk et al. (2016)). The data
were logged on a SD-card, with the data logger which is integrated
into the instrumented skates. The skates measured the force acting
in the normal and lateral direction of the local skate frame
(100 Hz). The ice-frictional forces (in longitudinal direction of the
skates), were expected to be smaller than the cross-talk of the force
sensors and therefore estimated (Eq. (14)) (van der Kruk et al.,
2016). The 3D kinetic data collection is fully described in van der
Kruk et al. (2017). The skater was equipped with 23 passive mark-
ers, which were captured by twenty motion capture cameras
(300 Hz) on fifty meter of the straight part of the rink. Synchroni-
sation between the instrumented skates and the motion capture
system was done via a digital start-and-end-pulse.

To estimate the COM positions of the separate segments, we
used a global optimization inverse kinematics method, employing
an eight rigid body model with a revolute joint in the knee, while
keeping the other joints spherical (described and verified in van
der Kruk et al. (2017)). The position of the mass S was estimated
at the CoM of the foot; the position of mass B was estimated at
model. The number of trials per participant differs, even as the number of strokes per
stem. P = participant, W = weight, T = trial, S = number of strokes in trial.

Error

xb Rdyb RFtot Exb Eyb Edxb Edyb EFtot Jmin

/s) (m/s) (N) *e-3 *e-3 *e-3 *e-3 *e-3
04 0.20 111 0.726 0.125 0.631 0.495 0.011 0.065
02 0.12 130 0.531 0.013 0.291 0.219 0.019 0.065
02 0.13 83 0.307 0.026 0.192 0.316 0.011 0.046
02 0.14 94 0.196 0.004 0.203 0.361 0.01 0.034
04 0.24 88 0.679 0.238 0.468 0.803 0.011 0.052
04 0.29 121 1.158 0.28 0.585 1.172 0.017 0.094
03 0.15 54 0.418 0.054 0.303 0.303 0.006 0.029
03 0.16 47 0.339 0.039 0.199 0.288 0.005 0.024
03 0.15 62 0.33 0.017 0.293 0.23 0.007 0.032
02 0.12 65 0.258 0.014 0.199 0.165 0.008 0.036
03 0.18 72 0.756 0.046 0.495 0.332 0.008 0.051
03 0.14 80 0.247 0.02 0.354 0.179 0.008 0.034
03 0.19 83 0.6 0.056 0.477 0.278 0.009 0.055
03 0.21 72 0.294 0.097 0.302 0.515 0.007 0.027
05 0.31 82 0.508 0.222 0.653 0.926 0.007 0.034
04 0.25 135 0.556 0.17 0.444 0.673 0.017 0.073
03 0.22 132 0.432 0.106 0.389 0.513 0.014 0.066
04 0.23 128 0.471 0.115 0.43 0.408 0.011 0.067



Fig. 3. Typical example of the (filtered) measured leg extension of a speed skater. The text indicates which skate is active (on the ice). The double stance phase – where both
skates are on the ice – is indicated by the vertical lines and the dark grey area.
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the CoM of HAT (which is head, arms and trunk). Since mass B is
much larger than the point masses at the skates, we initially set
the mass distribution coefficient (g) to zero for the verification
of the model, so that all bodyweight is located at mass B (Garcia,
Chatterjee, Ruina, & Coleman, 1998). Since the skate can only glide
in line with the blade, the steer angle was determined by the veloc-
ity vectors of the skates.

Skaters familiarized themselves with the equipment before the
start of the test. The test was divided into three parts, each at a dif-
ferent velocity, which each consisted of skating three laps at a con-
stant velocity. Skaters were asked to skate at a self-chosen velocity,
corresponding to the low (70%), medium (80%), and high (90%)
intensity, something they are familiar with in training. Due to
the complexity of the measurements – foremost the large size of
the capturing volume – not all datasets were applicable for verifi-
cation. In total 28 trials of the four participants were recorded, of
which 18 data sets consisting each of one straight part with several
strokes (in total 39 strokes) at speeds varying from 8.5-12.3 m/s
were complete and used for the verification of the model (Table 2).
Of participant A, only data at low intensity was applicable for
verification. In the remainder of this paper we refer to the trials
by the participant character and trial number, e.g. C2 is participant
C, trial 2.
2.7. Model verification

The purpose of the model verification is to quantify the error
between the simulated data and the measured forces and posi-
tions. Analysis of the model error is performed similar to the
method of Cabrera et al. (2006). This method constructs two mea-
sures, first the residuals, defined as

RðyjÞ ¼
1
N

XN
i¼1

j~yij � yijj ð22Þ

in which ~yij is the simulated value of a variable, yij the measured
value of a variable and N is the number of samples. Second, a mea-
surement error Jmin independent of scales and units:

EðyjÞ ¼
1
N

XN
i¼1

ð~yij � yijÞ2
�y2j

ð23Þ

Jmin ¼
PM

j¼1EðyjÞ
N

ð24Þ

In which �yj is the characteristic value of the variable, N is the
number of samples and M is the number of residuals. The errors
of the upper body positions (xb, yb), the upper body velocity



Fig. 5. Position of the skates relatively to the center of mass throughout the speed skating stroke. Focus is on the left (blue) skate. The arrows indicate the force applied on the
skate. When the skate does not have an arrow, there is no force on the skate, meaning that it is lifted from the ice (repositioning). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Typical example of the (filtered) measured normal (Fn) and lateral (Fl) forces of a speed skater. The text indicates which skate is active (on the ice). The double stance
phase – where both skates are on the ice – is indicated by the vertical lines and the dark grey area.
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Fig. 6. Results on the measured and model data of the best fit of the model (C2).
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( _xb, _yb) and the magnitude of the force (Ftot) are taken into account.
The peak to peak values of the upper body positions, average value
of the body velocity in forward direction, peak value of the velocity
in sideward direction and the maximum local measured normal
peak force are used as the characteristic values of the parameters.
3. Results

3.1. Measured data

An example of the measured leg extensions of both left and
right strokes are shown in Fig. 3. The motion pattern is similar
for the left and the right stroke. For better comprehension of the
movement, Fig. 5 shows a motion plot of the skater. At the start
of the stroke (the glide phase), the skate is positioned on the lateral
opposite side of mass B, indicated by the negative vs, and almost
under mass B in the longitudinal direction, indicated by a close-
to-zero us (Fig. 3a,b, Fig. 5a). The skate is then moved sideways
(the push off phase) whereby v s increases up to about 0.7 m
(Fig. 3b, Fig. 5b-e). Only in the last part of the push-off (Fig. 5d,
e), the skate is moved backward from the upper body mass, indi-
cated by the increase of us (Fig. 3a). In the repositioning phase
the skate is retracted to the upper body, thereby first moving the
skate sideward (Fig. 5f,g) and then forward (Fig. 5h,i). The vertical
distance between the skate and the upper body increases and
decreases within the stroke, describing a sine wave like trajectory
in the transverse plane, during speed skating the straights (Fig. 3c).
The measured normal and lateral forces were similar to previously
published skating data (van der Kruk et al., 2016) (Fig. 4).

3.2. Model data

The simple skater model mimics the skaters observed motion
and forces well as can be concluded from the results presented
in Table 2, where the residuals and the Jmin values are shown in
column 9–25. We selected the best fit (C2, Jmin = 0.024) and the
worst fit (B4, Jmin = 0.094) to present in Fig. 6 and Fig. 7. The model
errors found in the verification process proofed to be unrelated to
the velocity in the trial or the participant (mass and technique).



Fig. 7. Results on the measured and model data of the worst fit of the model (B4).

100 E. van der Kruk et al. / Journal of Biomechanics 64 (2017) 93–102
The model performs best for the simulation of position and
velocity of mass B with a maximal residual of 0.04 m in x- and
0.39 m in y-position (distance covered is 33 m) and 0.05 m/s for
x-velocity (D2). Maximum residual in y-velocity is 0.31 m/s; the
model simulates the average y-velocity over a stroke correctly,
but lacks to simulate the occurring fluctuations within a stroke;
We will elaborate on this in the discussion.

Force data have the least accurate fit and were underestimated
in each test. The minimum force residual found is 47 N (C2), the
maximum residual found is 135 N (D3) (peak forces here are
1000 N and 1250 N respectively). The success of the simulation is
independent of subject and unrelated to the velocity of the skater
and the number of strokes within a trial.

4. Discussion

The simplified model of a skater proved to mimic the observed
forces and motions of a speed skater well. The model can therefore
be used to further investigate variables in the skating motion. For
this, the input of the model, the leg extension, can be optimized
to obtain a maximal forward velocity of the upper body. The leg
extension is an indirect measure of the knee flexion-extension,
the ankle eversion, the lean angle of the skate, hip abduction and
the steering of the skate. Anatomic restrictions and maximum leg
extension velocity would be part of the constraints in such an opti-
mization procedure.

The model errors found in the verification process proofed to be
unrelated to the velocity in the trial or the participant (mass and
technique). The differences found between trials are therefore
related to the accuracy of the measured data, and the correctness
of the estimated data, e.g. air friction; this is further discussed in
section 4.2. The model does have two general limitations; first
the forward velocity, where the model showed to be incapable of
simulating the within-stroke fluctuations, and second the underes-
timation of the forces. Since both limitations also provide insight
into the skating mechanics, they are discussed next.

4.1. Swing leg error

The fluctuation – or dip – in the measured forward velocity of
mass B is probably caused by the swinging leg in repositioning,
which was neglected in our simplified model. To get a rough idea
on the magnitude of the necessary acceleration of the swinging
leg to cause the deceleration and acceleration of the mass B, we
simplified the system again in two masses; assume this time that
mass 1 (m1) is the swinging leg and mass 2 (m2) is the remaining
body and the sum of the forces is zero. Then, with the momentum
conservation principle, we know that:
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m1€x1 þm2€x2 ¼ 0 ð25Þ
From Dumas et al. (2007) we know that the mass of one foot,

one shank and one thigh is 0.161 times the body mass. So the ratio
for the acceleration of the swinging leg and the rest of the body
should be around 0.192; In the data the acceleration of the mass
B is around �2 m/s2, which requires a 10 m/s2 acceleration of the
swinging leg. This swinging leg reaches accelerations of 12 m/s2

and could therefore well explain the fluctuation in velocity within
the skating stroke. This is an interesting fact, while the swinging
leg was, up to now, always neglected in speed skating analyses.

Other simplifications that influence the forward velocity esti-
mation are the negligence of arm movements, body-segment rota-
tions, and change in frontal area (air friction). However their
influence is not as large as the one inflicted by the swinging leg.
For the arm-movements this was determined in a simple post
hoc analysis, by comparing the model fit of the skaters performing
an arm swing (skaters A, B, C) to the skater which kept his arms on
his back (skater D) (based on video analysis). Table 2 shows us that
the model fit of skater D is not better compared to the others, so
the HAT segment assumption cannot be of large influence on the
model fit.

For the underestimation of the measured force, the cause is less
straightforward, while we expect that it is a conjunction of simpli-
fications. The model assumes that all force is directed at mass B,
the HAT segment. However, in reality the push-off of the skater
is not that utter efficient; ankle eversion and damping in the leg
cause that not all the force we measured at the skate is directly
addressed to mass B. Some of this is lost to segment rotations or
friction, both of which were not accounted for in the model.
Furthermore, we neglected the double stance phase, in which both
skates are on the ice. The neglected skate – which starts in the glide
phase – does not add much force, but will increase the ice friction
(although small), and, when placed incorrectly, can cause a force
detrimental to the forward velocity (van der Kruk et al., 2016).
4.2. Sensitivity analysis

In the model, three inputs were kept constant: the mass distri-
bution, the ice friction coefficient and the air friction coefficient
(k1). The sensitivity of the model to these mechanical constants
can be determined by changing one of them while keeping the
remaining constants fixed. The results of this sensitivity analysis
for again B4 and C2 are shown in Fig. 8. The ice friction coefficient
has least impact on the fit, indicating that ice friction has relatively
little impact on the skating velocity. The mass distribution coeffi-
cient has more impact, but was zero in our verification process
and thus close to optimal.

The model is most sensitive to the air friction coefficient (k1),
which was expected; after all there are power models purely based
on this air friction (de Koning et al., 2005). For the verification pro-
cess, k1 was kept at a constant value based on previous literature
(van Ingen Schenau, 1982). We could, however, also determine
the air friction coefficient via optimization of the model, fitting
the model to the measured data. The sensitivity analysis shows
that the k1 used in C2 (our best fit) is close to optimal (0.14), while
the k1 used in B4 - our worst fit - could be improved by increasing
the coefficient from 0.18 to 0.25. Adjusting k1 in B4, benefits the
estimated y-position and velocity most, while their residuals are
respectively reduced from 0.32 m to 0.23 m and 0.29 m/s to
0.23 m/s (a 27% and 21% improvement). The model could therefore
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benefit from an improved estimation, or measurement, of air fric-
tional forces (Terra et al., 2017).

5. Conclusion

Wemodelled a speed skater as two point masses, one at the foot
and one at the upper body, and used the leg extension (the chang-
ing distance between these two masses) and the steering of the
skate as input for the model. Verification shows that the model
mimics the observed forces and motions well. The model is most
accurate for the position and velocity estimation (respectively
1.2% and 2.9% maximum residuals). It is least accurate for the force
estimations which, due to simplifications, are underestimated with
4.5–10%. The model can be used to further investigate variables in
the skating motion. For this, the input of the model, the leg exten-
sion, can be optimized to obtain a maximal forward velocity of the
upper body.
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