
Introduction 

Discrete choice modelling (DCM) is a 

disaggregate method of analysing consumer 

preference, market share and future demand. It is 

used in a variety of sectors, including 

transportation, where the method was developed 

in the second half of the 20th century. The first 

applications of the model used only a simple logit 

model of binary mode choice, with alternatives 

described by travel time and travel cost (Ben-

Akiva & Lerman, 1994). One of the first notable 

applications was for the Bay Area Rapid Transit 

(BART) system in the San Francisco area 

(McFadden, 2000). Over the years, choice models 

have been advanced and expanded to include 

multiple alternatives, socio-demographic 

characteristics of the respondents, preference 

and taste heterogeneity, use of different decision 

rules, latent classes etc. The applications of DCMs 

were also extended to the fields of 

telecommunications, healthcare, environment, 

energy etc. (McFadden, 2000). 
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 This research combines two relatively new additions to the field of 

discrete choice modelling: sequential best worst discrete choice 

experiments (SBWDCE) and random regret minimisation (RRM) 

modelling, with the hope of developing a more behaviourally realistic 

choice model. SBWDCEs are able to gather a larger number of stated 

choice observations from fewer respondents, while RRM models 

challenge the notion of fully compensatory behaviour implied by the 

traditional RUM model and suggest that consumers choose to 

minimise regret. According to image theory, best and worst choices 

are not made with the same kind of decision rule, so accounting for 

that variability using a RRM model would produce a more realistic 

model with better model fit. Estimating the combined model proves 

that people do in fact use a compensatory decision rule when selecting 

the best alternatives and a semi- to non-compensatory decision rule 

when selecting the worst. The results also show that the way choice 

set size variation is accounted for can greatly impact the scale 

parameters, as these and the choice set size constants are inversely 

related. Although a better model fit was achieved, using best-worst 

tasks is contested and researchers also warn against the lower 

reliability of additional choices in the same choice set. Nevertheless, 

SBWDCEs provide great benefits in fields with small population sizes 

and can potentially help in obtaining higher quality prior parameter 

values for use in efficient experimental design generation. 
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Advancements of the initial first-choice random 

utility maximisation (RUM) multinomial logit 

(MNL) model have been developed as a response 

to the model lacking realistic behavioural 

representation for a certain aspect of user 

behaviour. Multinomial logit was introduced to 

accommodate more than two alternatives 

(Chorus, 2016). Preference and taste 

heterogeneity, modelled with the help of a mixed 

logit model, have allowed researchers to analyse 

how preferences and tastes differ within a sample 

(Chorus, 2016). A different approach of analysing 

variations of taste and preference are latent 

classes, where parameters do not vary. Instead, 

multiple classes with their own parameters are 

estimated and the parameters in each class can 

take up a different value, based on what the 

tastes and preferences of that class’s members 

are (Hess, Ben-Akiva, Gopinath, & Walker, 2008). 

Different decision rules, such as the RRM 

challenge the notion of compensatory behaviour 

of respondents, assumed by the RUM model 

(Chorus, Arentze, & Timmermans, 2008). 

These and many other advancements of DCMs 

make choice modelling more behaviourally 

realistic and provide insight into the decision-

making process of consumers. With the objective 

of developing even more realistic choice models, 

the opportunity is taken to combine two relatively 

new advancements in the choice modelling field: 

sequential best worst discrete choice experiments 

(SBWDCE) and generalised random regret 

minimisation (RRM) modelling. 

SBWDCEs are a more efficient data gathering 

technique, where respondents make multiple 

choices within the same choice set, providing a 

greater number of observations per choice set 

and per respondent. These choices are made by 

alternatingly selecting the best / worst alternative 

until the choice set is exhausted, meaning a single 

alternative remains. Asking respondents to make 

multiple choices within a single choice set can 

lead to successive choices being less reliable and 

taste parameters less intense, so the data should 

not be modelled without an additional scale 

parameter (Ben-Akiva, Morikawa, & Shiroishi, 

1992).  

There is reason to believe that best and worst 

choices are not made using the same decision 

rule. Image theory postulates that people use a 

two-step approach when making a choice: first 

evaluating the alternatives on their compatibility 

(removing all the alternatives performing below a 

certain threshold) and then maximising one’s 

own profitability (selecting the best alternative 

from those remaining). While compatibility is a 

non-compensatory decision-making process, 

profitability is compensatory (Beach & Mitchell, 

1987) (Meloy & Russo, 2004). In the case of best-

worst choice tasks, best choices may be made in 

line with profitability and worst choices with 

compatibility. 

By estimating SBWDCE data with a generalised 

RRM model, the hypothesis of different decision 

rules can be tested. Estimating the decision rule 

can be done with the help of the RRM model 

(van Cranenburgh, Guevara, & Chorus, 2015), 

which includes a scale parameter that represent 

the rate of compensatory behaviour, where a 

value close to zero implies non-compensatory 

behaviour and a value above ten indicates fully 

compensatory decision-making. 

The next section provides a further, more detailed 

analysis of both SBWDCEs and RRM modelling. 

The third section shows the exact models that are 

estimated and compared in this research. A 

description of the dataset and the experimental 

design generation are also given. Section four 

looks at the outcomes of the model estimations 

and compares the different models with various 

statistical tests. Finally, the conclusion provides a 

discussion of the results, the implications and 

limitations of the developed models and 

recommendations for future research. 

Research methods 

Sequential best worst discrete choice 

experiments and random regret minimisation 

modelling are two advancements of DCMs that 

have been introduced to the scientific community 

and have been a topic of further research in the 

last decade. 

SBWDCEs are an efficient stated choice gathering 

technique that captures additional preference 

information, allowing a model with significant 
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estimates to be obtained from a lower number of 

respondents (Louviere et al., 2008). The method 

was successfully applied on a larger scale in the 

healthcare domain for the treatment of cardiac 

arrest in public spaces (Lancsar, Louviere, 

Donaldson, Currie, & Burgess, 2013). How 

SBWDCEs work is they ask the respondents to not 

only select the alternative they prefer (like first-

choice DCE), but to keep making choices, 

selecting best, then worst, then best and so on, 

until the choice set is exhausted, meaning a single 

alternative remains. In a choice set of five 

alternatives for example, this gives researchers 

four times as many observations from a single 

choice set. Asking respondents to make choices 

within the same choice set is also less 

burdensome than providing them with new 

choice sets, as they are already familiar with the 

choice set and need less cognitive effort to make 

a subsequent decision (Lancsar et al., 2013). 

The gathered SBWDCE data is then analysed 

using either a rank ordered logit (ROL) which 

takes the implied rank of the alternatives (based 

on the choices made) or preferably a sequential 

best worst MNL (SBWMNL), which models the 

data in a way that is more similar to how the 

choices were made (Lancsar et al., 2013). 

Modelling worst choices is done the same as for 

best choices, but using negative utilities in the 

logit function, meaning that the alternative with 

the highest disutility is the most likely to be 

selected as the worst alternative. 

Random regret modelling is a data analysis 

technique that contests the belief that people 

make choices in a fully compensatory manner 

(Chorus et al., 2008). Compensatory behaviour 

implies that decision-makers are willing to 

overlook an alternative performing poorly on one 

attribute, if the performance on another is 

superior to the same extent. Non-compensatory 

behaviour on the other hand, states that 

performing well on an attribute adds no value to 

the alternative, whereas performing badly on 

another reduces its attractiveness. Unlike RUM 

models, where alternatives are evaluated solely 

on their own performance, RRM models make 

binary comparisons among alternatives. The 

regret (analogous to utility) of each alternative is 

a summation of individual regrets when said 

alternative is compared to all other alternatives. A 

logit model is then used in the same way as in 

RUM models, with the negative value of regret 

being used in the calculation (Chorus et al., 2008). 

A generalisation of the RRM model is the RRM 

model, which includes a scale parameter () that 

is freely estimated in the model, along with the 

taste parameters (van Cranenburgh, Guevara, et 

al., 2015). This scale parameter should not be 

mistaken for the scale parameter present in the 

variance of the error term in traditional RUM 

models, which is often associated with choice 

consistency (and fixed to one) (Train, 2009).  

Based on the value the scale parameter takes up, 

a decision rule can be inferred. If the scale 

parameter approaches zero, the behaviour is 

non-compensatory. A value around one infers 

semi-compensatory behaviour, as in the regular 

RRM model (Chorus, 2010). For all values above 

ten (towards infinity), the decision rule can be 

assumed to be fully compensatory or RUM. 

Model specification 

The experimental design used in the survey was a 

Bayesian efficient design due to a level of 

uncertainty regarding the prior parameter values 

(Walker, Wang, Thorhauge, & Ben-Akiva, 2018). 

The experimental design was also constructed in 

a way that makes it more robust towards the 

underlying decision rule. By applying a novel 

technique, D-errors were calculated for both 

RUM and P-RRM decision rules and the design 

with the lowest composite D-error was selected 

for the survey (van Cranenburgh, Rose, & Chorus, 

2018). The presented data gathering technique 

was used to obtain 108 responses on a topic of 

park-and-ride facility choice. 

Each choice set contained five alternatives, 

described by five attributes with either three or 

two levels (Table 1). 

Table 1. Attribute specification 

Attribute Var. Levels 

Travel time by car Car 5, 15, 25 [min] 

Travel time by public transport PT 10, 20, 30 [min] 

Trip cost Cost 1, 5, 9 [€] 

PT service headway Head 5, 15, 30 [min] 

Public transport mode Mode bus, train 
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The data was then estimated using a variety of 

models that were developed, along with three 

already proven DCMs: first-choice RUM model, 

first-choice RRM model and the SBWMNL RUM. 

A total of five models were developed, with 

different numbers of scale parameters and 

different ways of accounting for choice set size 

variation. Because the choice set size decreases in 

successive choices in the same choice set, this 

needs to be accounted for, since in RRM models, 

the number of alternatives in a choice set 

influences the overall regret of alternatives. One 

way of accounting for this is to add to all but one 

of the choice set sizes an additional regret 

correction factor. The second option is very 

similar, except that it uses a single regret 

correction constant that is then adjusted with the 

choice set size (van Cranenburgh, Prato, & 

Chorus, 2015). While the former is less restrictive, 

the latter is more flexible with respect to 

applications in choice set sizes not modelled in 

the estimation process. 

The three existing models are labelled as E.1, E.2 

and E.3, with the five models developed in this 

research labelled from E.4 to E.8. The specification 

of each model is shown in Table 2. Models with 

two scale parameters model the best and worst 

choices separately, while the models with four 

scale parameters model each individual choice. 

Model E.4 with a single scale parameter, tests 

which decision rule is best if applied across all the 

choices. 

Table 2. Specification of the developed models 

 _E.4_ _E.5_ _E.6_ _E.7_ _E.8_ 

# of  1 2 4 2 4 

# of  3 3 3 1 1 

In addition, model E.5 is also estimated with the 

scale parameters fixed to represent either a RUM 

(=10) or a P-RRM decision rule (=0,1). All four 

combinations are shown in Error! Not a valid 

bookmark self-reference.. 

Table 4. Models with implied decision rules 

 _  I.1  _ _  I.2  _ _  I.3  _ _  I.4  _ 

Best 

choices 
RUM P-RRM RUM P-RRM 

Worst 

choices 
RUM P-RRM P-RRM RUM 

Results 

Analysing the models with implied decision rules 

(Table 4), the models with a RUM decision rule for 

best choices (I.1 and I.3) perform better than the 

other two models, with a log-likelihood that is 45 

points higher. A Ben-Akiva and Swait test (Ben-

Akiva & Swait, 1986) also proves this, as models 

E.2 and E.4 have a near zero probability of being 

the true models of the population. Comparing 

the better fitting models I.1 and I.3, the one 

assuming a RUM decision rule for worst choices 

(I.1) performed slightly better, with a log-

likelihood that is only 0,08 points higher. Even the 

Ben-Akiva and Swait test showed that model I.3 

has a 34% probability of being the true 

population model. This may indicate that the 

utilised decision rule is between fully and non-

compensatory behaviour. 

In the models with estimated decision rules, 

shown in Table 5 and Table 6, the highest model 

fit was achieved by both first-choice only models, 

significantly outperforming all the SBW models 

with a rho-squared almost two times higher. 

In SBW models, several values needed to be fixed 

for the model to converge. For best choices, the 

scale parameter was often fixed to ten as the 

estimate was initially much higher and since there 

is virtually no difference between a scale 

parameter value of ten or higher, the model 

cannot converge. For models E.6 and E.8, the 

Worst 2 was fixed to an arbitrary value of one, 

as only two alternatives are present, so the RRM 

Table 3. Model outcomes of models with inferred decision rules 

 _         I.1         _ _         I.2         _ _         I.3         _ _         I.4         _ 

Best 10 0,1 10 0,1 

Worst 10 0,1 0,1 10 

Null LL -6204,59 -6204,59 -6204,59 -6204,59 

Final LL -5346,00 -5391,87 -5346,08 -5396,12 

Rho-squared 0,1384 0,1310 0,1384 0,1303 
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model reduces to a RUM model and all scale 

parameter values yield the same result. The p-

values of the choice set size constants () are 

calculated with respect to their difference from 

one, as that would be the value if no choice set 

size constant is present.  

All the developed models outperformed the 

SBWMNL RUM model. The best fit was achieved 

by model E.6, which also has the highest number 

of parameters. It is closely followed by model E.5, 

which uses two instead of four scale parameters. 

Using the likelihood ration test (LRT) to compare 

E.5 and E.6, the probability of E.6 achieving a 

better fit due to sample peculiarities is 0,05. This 

comes mostly from the second-best choice being 

made with semi- to non-compensatory 

behaviour instead of fully compensatory as 

implied in E.5. 

If a single scale parameter is inferred across all 

choices, fully compensatory behaviour seems to 

Table 5. Model outcomes of models E.1, E.2, E.3 and E.4 

 E.1                          _ E.2                          _ E.3                          _ E.4                          _ 

 Estimate p-val Estimate p-val Estimate p-val Estimate p-val 

Car -0,0874 0,00 -0,0350 0,00 -0,0581 0,00 -0,0371 0,00 

PT -0,0601 0,00 -0,0241 0,00 -0,0453 0,00 -0,0282 0,00 

Cost -0,2918 0,00 -0,1168 0,00 -0,2274 0,00 -0,1412 0,00 

Head. -0,0643 0,00 -0,0257 0,00 -0,0383 0,00 -0,0260 0,00 

Mode 0,1875 0,00 0,0770 0,00 0,1864 0,00 0,1004 0,00 

   53,50 0,00   2 10,00  

 5       2 0,86  

 4        0,61 1 0,00 

 3       1,00 1 0,95 

Null LL -2085,83  -2085,83  -6204,59  -6204,59  

Final LL -1549,08  -1548,82  -5397,20  -5346,00  

Rho-sq. 0,2573  0,2575  0,1301  0,1384  
1 p-value calculated for difference from 1, instead of 0 
2 value fixed based on prior estimation, which did not converge 

Table 6. Model outcomes of models E.5, E.6, E.7 and E.8 

 E.5                          _ E.6                          _ E.7                          _ E.8                          _ 

 Estimate p-val Estimate p-val Estimate p-val Estimate p-val 

Car -0,0367 0,00 -0,0366 0,00 -0,0368 0,00 -0,0369 0,00 

PT -0,0282 0,00 -0,0282 0,00 -0,0280 0,00 -0,0281 0,00 

Cost -0,1399 0,00 -0,1392 0,00 -0,1367 0,00 -0,1371 0,00 

Head. -0,0264 0,00 -0,0265 0,00 -0,0267 0,00 -0,0268 0,00 

Mode 0,1023 0,00 0,1037 0,00 0,0954 0,00 0,0957 0,00 

Best (1) 2 10,00  2 10,00  2 10,00  2 10,00  

Worst (1) 0,43 0,01 0,43 0,01 0,36 0,00 0,36 0,00 

Best 2   0,50 0,05   12,31 0,55 

Worst 2   3 1,00    3 1,00  

     5,23 0,00 5,25 0,00 

 5 0,87 1 0,24 0,88 1 0,27     

 4 0,70 1 0,00 0,71 1 0,00     

 3 1,00 1 0,99 1,11 1 0,48     

Null LL -6204,59  -6204,59  -6204,59  -6204,59  

Final LL -5340,49  -5337,51  -5372,99  -5372,95  

Rho-sq. 0,1393  0,1397  0,1340  0,1340  
1 p-value calculated for difference from 1, instead of 0 
2 value fixed based on prior estimation, which did not converge 
3 value fixed because in a choice set with 2 alternatives, RRM reduces to a RUM model  
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be most accurate, as the scale parameter had to 

be fixed to ten after achieving a higher initial 

value in a non-convergent model. Interestingly, 

model E.4 outperformed even models E.7 and E.8, 

despite only using a single scale parameter. 

Models E.7 and E.8 performed almost the same, 

with a difference of only 0,04 log-likelihood 

points. This is echoed in the LRT which states that 

E.8 achieving a better fit is almost entire due to 

sample peculiarities, with a p-value of 0,96. 

Comparing these models to E.4, E.5 and E.6, using 

a single  produces a worse model fit, regardless 

of the number of scale parameters. The multiple 

choice set size constants in models E.4, E.5 and 

E.6 do not follow a linear relationship, so forcing 

one onto the model resulted in lower model fit. 

As the scale parameters and choice set size 

constants are rooted in each other, restricting the 

constant to a single choice-set-size-adjusted 

value results in the model performance declining 

and it also influences the scale parameter, as the 

Best 2 changes from 0,5 in E.6 to 12,31 in E.8.  

It was observed that differences in model fit were 

smaller when switching between decision rules 

for each additional choice: switching between 

RUM and P-RRM made a big difference for the 

first-best choice (over 50 LL points) and less for 

the first-worst (5-10 LL points) and second-best 

(2-10 LL points). This explains why Best 2 

changed from RRM to RUM with a different 

specification for choice set size. It is also why in 

model E.4, where a single scale parameter value 

was used, converged to a RUM decision rule 

across all choices made. 

Investigating the relationship between the scale 

parameter and choice set size constant reveals it 

is inverse: when one increases in value, the other 

will decrease. That is why Best 2 changed so 

much, as the individual constant for a choice set 

size three was 1,11 in E.6, while in E.8 when 

adjusted for choice set size, it only had a value of 

0,57. To compensate for this change, the scale 

parameter needed to increase in value. 

The individual estimates and two inverse 

relationship curves are plotted in Figure 1, where 

the relationship can clearly be distinguished. Two 

different curves were plotted with the 

relationship either allowed to limit at an 

estimated value (f(x)=a/x + b) or limiting towards 

zero (g(x)=a/x). Function f(x) can be justified 

because the values of the scale parameter above 

ten can increase towards infinity with minimal 

change to the model outcome. Function f(x) 

achieved a very good fit of R2=95,45%, while g(x) 

achieved R2=61,73%. 

 

Figure 1. Relationship between the scale parameter and 

choice set size constant 

Conclusions and recommendations 

This research has shown that different decision 

rules are indeed utilised in best-worst choice 

tasks, with the decision rules for the most part 

being in line with image theory: best choices 

made using fully compensatory behaviour and 

worst choices using (mostly) non-compensatory 

behaviour. Because of this, models accounting for 

such variation performed better in terms of 

model fit and validation. 

While image theory (Beach & Mitchell, 1987) may 

explain best / worst choice decision rules, it does 

not explain why the second-best choices were 

once compensatory and once not. This may be 

due to successive decisions being less reliable 

compared and the fact that taste parameters are 

liable to be less intense (Ben-Akiva et al., 1992) 

(Dyachenko, Reczek, & Allenby, 2014) and as 

these were the same across all choices, the scale 

parameter had to compensate for this. The 

inaction effect (Zeelenberg, van den Bos, van Dijk, 

& Pieters, 2002) may have also played a role in 

this, stating that when choosing not to act (which 

can be assumed when selecting worst or even 
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second-best), respondents are more likely to 

experience regret and thus decide with 

anticipated regret in mind. 

The use of best-worst style surveys is contentious, 

as although it offers far more observations from 

a lower number of respondents, it is criticised for 

being an unnatural way of decision-making 

(Dyachenko et al., 2014). Even some respondents 

of the survey commented on this issue. Each 

individual field of application may also be more 

or less suitable for best-worst tasks, with 

transport possibly falling under the less suitable. 

Best-worst tasks are widely applicable in 

healthcare (Flynn, Louviere, Peters, & Coast, 2007) 

(Zhang, Reed Johnson, Mohamed, & Hauber, 

2015) and SBWDCE prove very useful in cases of 

very small populations to which certain surveys 

are relevant (a small group of patients suffering 

from a rare medical condition for example). An 

interesting potential for SBWDCEs is obtaining 

prior parameter values from a pilot survey. For 

efficient experimental designs, researchers need 

prior parameter values, which often cannot be 

obtained from literature. Surveys for obtaining 

priors are often much more limited compared to 

the main stated choice surveys. Using SBWDCE 

would therefore allow researchers to obtain 

significant prior parameter estimates from a small 

number of respondents. 

Although providing more behaviourally realistic 

model outcomes, the developed models also 

have limitations. Introducing additional 

parameters results in models becoming more 

complex and the time needed to estimate results 

increases. Of the developed models, flexibility for 

application was also found to be an issue, as 

because the scale parameter and choice set size 

constant are linked, only one pair of the 

parameters can be used for each choice set size. 

This can be remedied to a certain extent by using 

a single choice set size constant, but this area of 

modelling requires further research. Another 

reoccurring issue is RRM models not being 

applicable for project appraisal in the same way 

as RUM models, due to their inability to 

determine the net welfare effect (the value of the 

whole choice set), although researchers have 

made progress in this field as well (Dekker, 2014) 

(Dekker & Chorus, 2018).  

This research adds to the understanding of 

respondent behaviour in stated preference 

situations and in the field of SBWDCEs, showing 

that respondents do indeed utilise different 

decision rules, as is postulated in image theory. It 

also opens many new possibilities to be 

investigated. Given the specific nature of 

SBWDCEs, efficient experimental designs 

specifically for best-worst tasks should be 

analysed and a new / different D-error that 

incorporates all possible choices (not only the 

first-best) could be determined. Examining 

whether random errors are choice set specific, 

alternative specific or a combination of both 

would greatly improve the understanding of 

consumer behaviour and researches using 

synthetic data to evaluate models would benefit 

from it as well. The uncovered relationship 

between the scale parameter and choice set size 

constant also warrants further attention in the 

scientific community to better understand how 

models such as the ones used in this research 

should be carried out. As with many newly 

developed models, the RRM SBWMNL model 

would benefit from further applications in a 

variety of fields. Making conclusions based on a 

single sample is not accurate and by applying it 

in a variety of different fields could help in either 

proving or rejecting the findings reported here. 
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