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Frequency Domain Identification with Generalized
Orthonormal Basis Functions

Douwe K. de Vries and Paul M. J. Van den Hof,Senior Member, IEEE

Abstract—A method is considered for the identification of
linear parametric models based on a least squares identification
criterion that is formulated in the frequency domain. To this
end, use is made of the empirical transfer function estimate
(ETFE), identified from time-domain data. As a parametric
model structure use is made of a finite expansion sequence in
terms of recently introduced generalized basis functions, being
generalizations of the classical pulse and Laguerre and Kautz
types of bases. An asymptotic analysis of the estimated models is
provided and conditions for consistency are formulated. Explicit
and transparent bias and variance expressions are established,
the latter ones also valid in a situation of undermodeling.

Index Terms—Asymptotic analysis, frequency domain method,
system approximation, system identification, transfer function
estimation.

I. INTRODUCTION

T HE IDENTIFICATION of models on the basis of fre-
quency domain data is a subject that attracts a growing

number of researchers and engineers. Especially in application
areas where experimental data of a process with (partly)
unknown dynamics can be taken relatively cheaply, the ex-
citation of the process with periodic signals (e.g., sinusoids)
is an attractive way of extracting accurate information of
the process dynamics from experiments. Due to the commer-
cial availability of frequency analyzers that can handle huge
amounts of data by special purpose hardware, the experimental
determination of frequency responses of dynamical systems
has gained increasing interest in application areas as the
modeling of, e.g., mechanical servo systems and flexible space
structures.

Identification on the basis of frequency domain data can
have a number of advantages when compared to the “classical”
time-domain approach. For a very nice overview of these
arguments the reader is referred to [28]. Here we would like to
limit attention to the fact that dealing with frequency domain
data allows us to achieve a substantial data reduction, thus
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enabling us to handle huge amounts of time-domain data
with a corresponding reduced variance of the model estimates.
Additionally, the formulation of an identification criterion in
the frequency domain can be beneficial, especially in those
situations where the application of the model dictates a per-
formance evaluation in terms of frequency domain properties.
This last situation occurs often when the identified models are
used as a basis for model-based control design.

On the other hand, it should be stressed that any frequency
domain data is obtained by some data handling/processing
mechanism that starts off with time-domain data. This is reason
not to overestimate the difference between time-domain and
frequency-domain identification; see, e.g., [18].

The common way of formulating an identification problem
in the frequency domain is by assuming the availability
of the exact frequency response of the (unknown) linear
system, disturbed by some additive (frequency-domain) noise
with specific properties, e.g., independence among the several
frequencies. For this situation a large number of identification
methods exist, mostly dealing with least squares criteria [14],
[29], [38], [31]. Maximum amplitude criteria are con-
sidered in [32] and [9], while special purpose multivariable
algorithms are discussed, e.g., in [15] and [1]. Recently
subspace algorithms also have been analyzed for frequency
domain identification [21]. Many more references and tech-
niques can be found in [30] and [28]. A related approach to
the problem based on the discrete Fourier transforms of input
and output data in [18] shows a close resemblance of results
with the standard time-domain approach.

In this paper we will formulate and analyze an identifi-
cation problem with an identification criterion formulated in
the frequency domain, for a situation in which we consider
time-domain data of input and output samples to be avail-
able from measurements. These time-domain signals gener-
ate a (frequency-domain) empirical transfer function estimate
(ETFE) which represents the data in a least squares identi-
fication criterion. As a parametric model structure we will
use a linear regression form, using a finite series expansion
of the model transfer function in terms of very flexible
orthonormal basis functions as recently introduced in [12] and
[34]. This model structure is very powerful in accurately de-
scribing system’s transfer functions with only few parameters.
It generalizes the situation of Laguerre functions, for which a
frequency domain identification analysis has been provided in
[3]. The resulting identification scheme will be analyzed and
expressions for bias and variance will be formulated, relating
the identification results to the properties of the original
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excitation and disturbance signals in the time domain. This
method will build on the standard identification framework as
developed in [17].

Concerning notation we will denote as the set of reals
and as the set of integer numbers; is the Hilbert
space of transfer functions that are analytic in
and square integrable on the unit circle; will denote
complex conjugate transpose of a complex-valued matrix. The
remainder of this paper is organized as follows. First, we will
formalize our problem setting. Subsequently, we will analyze
the estimation results for an identification criterion over a
finite number of frequencies. Next the situation of an infinite
number of frequencies will be considered. Asymptotic bias and
asymptotic variance expressions will be provided, for infinite
and for finite model order (undermodeling). The presented
identification method will be illustrated by way of a simulation
example and by application to data taken from a high-precision
mechanical servosystem. The proofs of all results are collected
in the Appendix. This paper is an extended version of [6]; some
considerations concerning the multivariable situation are given
in [26].

II. PROBLEM SETTING

It is assumed that a data generating system, and the mea-
surement data that is obtained from this system, allow a
description

(1)

where is a rational transfer function, analytic in
is a realization of a stationary stochastic process with

rational spectral density , satisfying ,
where is a sequence of independent identically distributed
random variables, having zero mean, variance, and bounded
moments of all orders. is a stable proper minimum-
phase transfer function; will be a bounded quasistationary
deterministic signal; is the shift operator .

As further notational convention, let denote the integer
interval . For a signal being defined
on , we will denote

(2)

Specific sets of frequency points that arise are denoted as

(3)

The identification problem that we consider now can be stated
as follows.

Frequency Domain Identification Problem:Given mea-
surements of input and output data ,
taken from the system (1), and given a frequency grid

(4)

such that all frequencies with come in
complex conjugate pairs, then we consider the identification

problem

(5)

with

where is the parameterized frequency response
of the model, and ranges over an appropriate parameter
space while . The specific (linear)
parameterization of the model is considered in the next section.

is a user-chosen weighting function that allows us to
emphasize specific frequency regions more than others; for
ease of notation (and without loss of generality) the weighting
is assumed to satisfy for all .

Note that even with a constant weighting over frequency, in
the least squares criterion (5) more attention is paid to those
frequency regions which have a relatively denser frequency
grid within .

The chosen identification criterion was suggested before in
[33]. It closely matches the criterion treated in [18] and [19]
which can be written as

and that is also employed in [30] in the more general setting
of errors-in-variables models. In our choice of we
focus attention on the role of estimating the input–output
dynamics of the plant, thus restricting to the situation of a
fixed noise model . In this
particular case, we will investigate the effect of a specific
choice of parameterization for , as presented in the next
section; this identification approach can be referred to as an
output-error method, according to the notions used for time-
domain methods [17]. The (time-domain) method is known for
its property that the plant can be estimated consistently,
while its variance will be minimal when the (fixed) noise
model matches the true noise process dynamics. This latter
situation is not treated here.

III. M ODEL PARAMETERIZATION WITH

ORTHONORMAL BASIS FUNCTIONS

In the identification problem (5) we will employ a linear
model parameterization

(6)

that is very flexible, based on a recently introduced generalized
orthonormal basis. The related theory, as presented in [12],
shows that for any scalar stable all-pass transfer function

with balanced realization the sequence of
functions

(7)
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generates an orthonormal basis for the space of stable systems
, with the property that

(8)

As a result there exist unique and such
that

(9)

Note that with the McMillan degree of
(dimension of ), and .

The advantage of this generalized basis is that if an appropri-
ate choice of dynamics (set of poles) is incorporated into,
and thus into the basis functions, then the series expansion
(9) shows an increasing rate of convergence. Consequently,
the accuracy of a finite expansion model will substantially
increase; for more details on the use of these basis functions
see [12], [34], and [25]. Here we limit the discussion by
remarking that for specific choices of all-pass functions, well-
known “classical” basis functions result, as the standard shift

is the result of and the Laguerre
functions induced by a first-order all-pass function

for some .
With respect to our formulated frequency domain identifi-

cation problem, it follows that—for a specifically chosen basis
—the regression vector in (6) is given by

(10)

which is a column vector with length , equal
to the number of parameters. The estimated parameter vector
is denoted by

(11)

IV. PARAMETER ESTIMATE

Building upon (9) for the data generating system, we will
write

(12)

with

and

(13)

Using the system’s equations, similar as in [17], we now can
express the ETFE by

(14)

where

(15)

and where is a term due to the past of the input signal,
. Written in vector notation we can rewrite this into

G G S F

Z S F (16)

with

G

G

S

F

Z

...
...

...
...

(17)

whereZ reflects a term due to undermodeling,S represents
the effect of unknown past inputs, andF reflects a term due
to the noise.

The parameter estimate can be constructed from matrix
operations according to

G (18)

where

(19)

with

and provided is nonsingular. Given (16), (18), and (19)
it follows that the least squares parameter estimate (5) can be
expressed as

Z S F

For the bias and covariance of the estimated parameters (5)
it can simply be verified that

Z S (20)

FF (21)

The transfer function estimate of the identified model will
be given by

(22)

Invertability of the matrix in (19) is guaranteed if
a sufficient number of different frequencies is selected in the
frequency grid, formalized in the following lemma.1

1The authors are indebted to P. Heuberger for his contribution to the
construction of the proof of this lemma.
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Lemma 4.1: If , then has full column rank, and
so (19) is well defined.

As a result of this lemma, the parameter estimate (5), (18)
will be unique, provided that a sufficient number of sinusoids
is present in the input signal. This situation is similar to the
corresponding time-domain least squares problem. Note that in
the case considered here, the regression vectoris composed
of basis functions only.

In order to relate the parameter estimate to the dynamic
properties of the underlying system, we have to impose
additional conditions on the input signal. To this end the
following assumption is formulated.

Assumption 4.2:The input signal is periodic, having
periods of length , with , such that

is bounded and bounded away from zero for all
, while for the situation it is assumed that

there exists a bounded function such that

(23)

where is continuous, except for at most
a finite number of points, and bounded.

It has to be noted that for , the notation
is used for the spectrum of one period of the signal. This is
different from the spectrum of the periodic signal, since it can
be verified that

(24)

Further, the number of frequencies will necessarily
satisfy the inequality .

For analyzing the statistical properties of the estimate de-
fined in this section, use will be made of the following classical
result for ETFE estimates.

Lemma 4.3:Let the input signal satisfy Assumption 4.2.
Then

1) (Brillinger [2]) for finite and the stochastic
variable F tends to a normal distribution

F

with

...
...

...

2)

FF (25)

where the rate of convergence is elementwise, and
there exists a constant such that

FF (26)

The result of Brillinger shows that in order for to obtain a
covariance that tends to zero for increasing, the input signal
needs to be periodic with . This follows by observing
that is a bounded function.

V. ASYMPTOTIC ANALYSIS OF PARAMETER ESTIMATE

A. Analysis for Finite Number of Frequencies

We will first restrict the analysis of the identified model
to the situation where the number of frequencies in the
criterion is finite and the input signal is periodic with finite
period .

Using Lemma 4.3 we can state the following result for the
estimated parameters in the asymptotic case when .

Proposition 5.1: Consider Assumption 4.2 and the expres-
sions (20) and (21) of the estimated parameters(5), while

. Then

1) , where Z;
2) for , the stochastic variable tends

to a normal distribution: , where
the asymptotic covariance matrix is determined by its
scalar elements

(27)

Additionally

Part 1) of the proposition shows that in case there is no
undermodeling, i.e.,Z , the parameter estimate is (weakly)
consistent. A similar consistency result will hold for the
estimated frequency response of the model.

Proposition 5.1 provides an asymptotic expression for the
covariance of the estimated parameters. However, (27) does
not provide much insight in the underlying mechanisms.
Structurally more simple expressions can be obtained when
we let the number of frequencies tend to infinity also.
This will be discussed in the following sections.

B. Analysis for Infinite Number of Frequencies

We will derive expressions for the bias and variance in the
parameter estimate (5), for the asymptotic situation that the
identification criterion is calculated over an infinite number

of frequencies. To this end we will consider the situation
of a periodic input signal with periods of length . In these
asymptotic results we restrict the choice of frequency grid in
such a way that the frequency points are equidistantly spaced.

Assumption 5.2:The frequency grid (4), (3)
satisfies

with , and the frequency domain weighting
is fixed to one for all .

This assumption is made to facilitate the analysis of the
asymptotic case and to fully employ the orthonormality prop-
erty of the basis functions used. The possibility of loosening
these conditions will be discussed later.
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We start the asymptotic bias analysis by evaluating the
properties of the matrix .

Lemma 5.3:Consider Assumption 5.2. Then

as

where the rate of convergence is elementwise.
Additionally, there exists a constant such that

This lemma shows that the parameter estimate is numeri-
cally very well conditioned in the asymptotic case.

The next lemma is also instrumental in the analysis of the
estimated models.

Lemma 5.4:Consider Assumption 5.2. Then there exists a
such that

as (28)

This lemma shows that in the considered limiting situation
the pseudoinverse of the matrix can simply be obtained by
taking . This of course greatly facilitates both calculation
and analysis of the asymptotic least squares estimates.

The following theorem addresses the asymptotic properties
of the estimated parameters.

Theorem 5.5:Consider Assumptions 4.2 and 5.2 and the
estimated parameters (5). Then:

1) , with ;

2) , where the bounded matrix
is given by

(29)

with as defined in (25).

This theorem shows that asymptotically the parameterized
part of the model can be estimated unbiasedly, despite the
possible presence of undermodeling. If additionally the input
signal is periodic with the number of periods tending to infinity
also, the estimate becomes (weakly) consistent, as in that case
the variance of the estimated parameters tends to zero.

Note that the consistency of the parameter estimate is
quite remarkable, as we do accept the presence of unmodeled
dynamics. For time-domain identification using an FIR model
structure, a similar result of consistent parameter estimates
holds also in the case of unmodeled dynamics, but in that case
the input signal is restricted to be white noise; see [24]. In the
considered situation here, it is the orthonormality property of
the basis functions that actually provides this property.

For the bias result 1) of the theorem it is not required that
the input signal be periodic, i.e., also is allowed. The
condition on the input signal is that it contains different
frequency components unequal to zero, while , and
thus also the situation is allowed. The condition

in part 2) of the theorem is a technical condition that
is used in the proof. It is conjectured that in future work this
condition can be shown to be superfluous.

In order to get further insight into the specific properties of
the asymptotic covariance of the parameters, (29) is further
analyzed in the next corollary.

Corollary 5.6: Consider the situation of Theorem 5.5-2).
Then

(30)

(31)

and

(32)

It can be observed from this corollary that the estimated pa-
rameters become uncorrelated when is constant
over frequency. In order to verify this, use has to be made
of the property that the inner product between two distinct
(orthonormal) basis functions will be zero. The situation that

refers to the case where the input signal
over one period of has the same spectral density as the
noise and so does not imply that the noise signal is assumed
to be periodic.

Note that the asymptotic covariance of the estimated param-
eters does not depend on the number of periodsin the input
signal. Also, the asymptotic covariance does not depend on
the number of estimated parameters .

Remark 5.7:While in this section the analysis of the pa-
rameter estimate is performed for the system configuration (1)
with output noise taken from a stationary stochastic process,
it has to be noted that the results as formulated in Lemmas
5.3 and 5.4 can also be used to analyze the parameter estimate
for different noise paradigms, e.g., the situation of bounded
additive noise on the frequency response as considered in [11],
[8], [27], and bounded additive errors on the output data as
handled in [23], [37], and [10].

Remark 5.8: In recent work [19], [22] a slightly stronger
result for the asymptotic parameter estimate is formulated as

with probability one, with

with a weighting function accounting for both frequency
weighting and a nonequidistant frequency grid. This
result does not require the conditions of Assumption 5.2.
We consider here the more restrictive case in order to fully
exploit the orthonormality property of the basis functions when
analyzing the covariance of the estimate. In this respect the
more general situation would require basis functions that are
orthogonal with respect to an inner product that accounts for
the weighting .
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VI. A SYMPTOTIC ANALYSIS OF

TRANSFER FUNCTION ESTIMATE

A. Finite-Order Case

Building on the results for the parameter estimates in
the previous section, we will now take a closer look at
the consequences for the estimated transfer function, i.e., its
frequency response.

For the asymptotic bias we have the following result.
Corollary 6.1: Consider the situation of Theorem 5.5-1).

Then for all

Proof: This result is direct from Theorem 5.5-1).
Additionally, it can be shown that the amplitude of this

asymptotic bias term can be bounded by an expression

(33)

with and , while becomes smaller
when the poles that are present in the all-pass function
approach the poles of the actual system. More specifically,
as analyzed in [34], can be chosen any value , with

where are the poles of and are the poles of .
If the two sets of poles approach each other, thenwill
tend to zero, and the series expansion (9) will have a high
rate of convergence. In that situation the asymptotic bias in
Corollary 6.1 will be accordingly small. For more details on
this bound see [34].

It appears that the asymptotic model can be
constructed from in a very special and explicit way by
applying a frequency windowing operation to the system’s
frequency response. This mechanism which is introduced for
the Laguerre case in [3], is formulated in the following
proposition.

Proposition 6.2: Consider the situation of Theorem 5.5-
1). Then the asymptotic transfer function model
satisfies

(34)

with

(35)
Interpreting this proposition, one can observe that the fre-

quency domain identification approach as handled in this paper
comes down to smoothing the frequency response of the plant
by applying a frequency window that is explicitly given and
that is dependent on the choice of basis functions and the
choice of model order .

Fig. 1. Bode amplitude plot ofPn(!1; !) as a function of! for a basis
induced by four poles:0:9� 0:3i; 0:7� 0:2i, with n = 3 and evaluated at
three values of!1; !1 = 0:32175 rad/s (solid),!1 = 1 rad/s (dash-dot),
and !1 = 0:05 rad/s (dashed).

A related, and actually similar interpretation, is given by the
observation that in the asymptotic situation considered in the
previous section, i.e., , the estimated frequency re-
sponse converges in probability to a smoothed ETFE
of the plant, where the smoothing operation is determined by
the window given above

(36)

Note that in contrast with the (real-valued) windows that
are normally used in spectral analysis, the window
used here is complex valued, and moreover it is localized in
frequency, i.e., it does not reflect a simple convolution in the
frequency domain; the window is essentially dependent on
and not only on .

By using the specific properties of the basis functions,
with being a stable all-pass

function, and using the summation rule for finite power series,
it follows that for

(37)

while

(38)

This frequency window is illustrated in two figures, where
an example has been chosen of an orthonormal basis induced
by a scalar fourth-order all-pass function having poles

and . In Fig. 1 the amplitude of
is given as a function of for and for three different
values of . The first value is the frequency
of the resonant mode determined by the first-mentioned pole-
pair. Fig. 2 shows the amplitude of for fixed to

and for .
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Fig. 2. Bode amplitude plot ofPn(!1; !) as a function of! for the same
basis as in Fig. 1,!1 = 0:32175 rad/s, and evaluated forn = 3 (solid) and
n = 20 (dash-dot).

From Fig. 1 one can clearly observe the-dependence
of the frequency window leading to a smoothing operation
that is nonfixed over the frequency axis. Fig. 2 illustrates the
effect that for increasing the window will become more
concentrated around , finally tending toward a dirac-
function as .

The smoothing operation in the frequency domain that is
actually performed by the considered identification setup can
now also be used in order to tune the dynamics to be chosen in
the basis functions, i.e., the poles in the all-pass function.
These dynamics will determine the character of the smoothing
operation for a given number of parametersto be estimated.
However, explicit design rules in view of this phenomenon
have not been formulated yet.

For the covariance of the frequency response estimate we
have the following result.

Proposition 6.3: Consider Assumptions 4.2 and 5.2 and the
estimated transfer function (22). Let . Then

(39)

with as defined in (35).
Before discussing this result, we will first present the

following corollary.
Corollary 6.4: Consider the situation of Theorem 6.3 and

in addition let for all . Then

(40)

Theorem 6.3 provides an expression for the covariance of
the estimated transfer function for the situation of a finite
model order. At first sight (39) may seem a bit complicated;
however, one has to realize that when given a basis generating
system and a model order , the window (35) can be
calculated directly. The fact that an accessible expression is

provided for the variance, which also holds for finite model
orders and in a situation of undermodeling, is opposed to the
situation for time-domain prediction error methods; see, e.g.,
[16], [20], [17], and [36]. However, in order to be able to
establish these expressions, we need a periodic input signal
instead of a quasistationary one, which is required in the
time domain identification case. Note that (39) shows that the
asymptotic covariance of the transfer function estimate does
not depend on the number of periodsin the input signal
and that the asymptotic covariance between transfer function
estimates at different frequencies is nonzero for finite model
orders.

Corollary 6.4 shows that the variance of the transfer function
estimate will be relatively large where is large
(provided that is not relatively small for those
frequencies). Thus, in general the variance will be relatively
large near the poles of the basis generating system and hence
near the poles of the system itself for a properly chosen basis
generating system (see [12] and [34]). Additionally, noise at
frequencies not situated near the poles of the basis generating
system (e.g., high-frequency noise) usually will be relatively
harmless.

The frequency region (with regard toand a fixed ) where
is relatively large becomes more concentrated around

when the model order increases. If
is relatively small, then an increase of the model order can
very well lead to a reduction of the variance in this frequency
region. It follows that, up to a certain model order, variance
considerations do not necessarily conflict with bias consid-
erations for those frequency regions where is
relatively small. This is a somewhat surprising and (to the
authors’ best knowledge) new result. The existing literature
only addresses the situation where the model ordergoes to
infinity also. In that case the variance always increases with
the model order; see, e.g., [17] and Theorem 6.8 below.

Remark 6.5:The results obtained in this and the previous
section are in accordance with and actually are further gen-
eralizations of the results obtained in [3], where a similar
identification problem is analyzed for an integral identification
criterion and Laguerre basis functions, where no
undermodeling is considered. In [3] the frequency smoothing
by orthogonal basis functions modeling is introduced.

B. Infinite-Order Case

Similar to the situation for the time-domain identification of
finite expansion models, we can arrive at simple expressions
for the asymptotic variance of the estimated parameters and
transfer function in the situation that the model ordergoes
to infinity also.

In order to formulate this result we will build upon (30),
and we will show that an asymptotic-in-order result can
be formulated in a simple way, utilizing an orthonormal
transformation that is induced by the basis functions that are
applied. This transformation is presented in [34] and further
elaborated in [13].

Definition 6.6 (Hambo Transform [34]):Let be a ra-
tional spectral density function with stable spectral factor



DE VRIES AND VAN DEN HOF: FREQUENCY DOMAIN IDENTIFICATION 663

Fig. 3. Bodeplot ofG0 (solid) and estimates using orthogonal basis func-
tions for different realizations of the noise (dashed); number of parameters
(np) is five.

, and let be a scalar stable all-pass function with
balanced realization that induces an orthonormal
basis for . Then the Hambo transformed spectrum

is defined by

with

and

When applying this orthonormal transformation to the result
(30), an analysis similar to the one applied in the time-
domain case [34] leads to a formulation for the spectral density
function that generates the asymptotic covariance matrix
(29), composed of block-elements given by (30).

Lemma 6.7:Consider the covariance matrix being com-
posed of block elements with

, as given in (30).
Then , with , the (matrix)

covariance function related to the spectral density
function .

Note that the matrix is obtained from by discarding the
first row and column. In this way a block-symmetric matrix
is obtained, limiting attention to the vector-valued parameters

and not addressing the scalar direct feedthrough.
The representation of the asymptotic covariance matrix in

this spectral form enables the formulation of the asymptotic-
in-order result for the asymptotic variance of the estimated
transfer function, as formulated next. This result is similar to
the related time-domain identification result in [34].

Theorem 6.8:Consider Assumptions 4.2 and 5.2 and the
estimated transfer function (22). Let . Then
we have

for
for

The asymptotic-in-order result shows a very simple ex-
pression for the asymptotic variance of the estimated transfer
function, where the asymptotic variance at a specific frequency
is equal to a frequency-weighted noise-to-signal ratio at that
frequency. The frequency weighting is completely determined
by the basis functions that are used in our model structure.
This result exactly matches the equivalent form that has been
derived for time-domain identification [34]. However, in the
current situation a periodic input signal is required instead of
a general quasistationary signal.

VII. A PPLICATION

In order to illustrate the presented approach, the resulting
identification algorithm will be applied to data from a simu-
lation example and to data that is taken from the mechanical
servosystem in a Compact Disc drive.

Simulation Example:The fifth-order system is simulated in
(41), as shown at the bottom of the page, having pole locations:

and . The input
signal is periodic with a period length of 256 points, where
the input over one period is white noise. There is 50% (in
standard deviation) colored noise on the
output, where the noise filter is given by

(42)

and is normally distributed white noise.
The identification procedure presented in this paper is

applied to data from this system. Basis functions are chosen
to be generated by the pole locations .
The estimates are made over five datasets with different noise
realizations, while each dataset consists of 2048 datapoints.
No particular frequency weighting is considered.

In Fig. 3 the results are shown for estimated models with
five parameters and in Fig. 4 for .

As a reference, Fig. 5 shows the results that are obtained
when applying a fifth-order output error (OE) time-domain
identification procedure, having a correct model structure to
model the plant exactly (ten parameters).

It is observed that for a choice of basis poles that can hardly
be considered to be very accurate, the identification results for
the orthogonal basis functions method are good; they improve
from the five-parameter situation to the 13-parameter situation

(41)
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Fig. 4. Bodeplot ofG0 (solid) and estimates using orthogonal basis func-
tions for different realizations of the noise (dashed); number of parameters
(np) is 13.

Fig. 5. Bodeplot ofG0 (solid) and estimates using a fifth-order OE model
for different realizations of the noise (dashed); number of parameters is ten.

and are at least as good as the results of a standard OE method.
Moreover, the orthogonal basis functions method relies only
on a linear regression type of algorithm, while the OE estimate
requires a nonlinear optimization procedure.

Identification of the Radial Servosystem in a Compact-Disc
Drive: The introduced procedure has also been applied to
measured data from the radial servo system in the optical
device of a Compact-Disc player. This system is operating in
closed loop with a stabilizing controller, and for this example
the identification of the sensitivity function of this loop will
be considered. To this end a reference signal consisting of a
Schroeder-phased multisine has been applied with
eight periods of 1024 samples each, with a frequency grid from
100 Hz until 10 kHz. The sampling frequency is 25 kHz.

The poles of the basis functions have been chosen on the
basis of a curve-fit of the frequency response measured by a
frequency-analyzer [35]. Both eighth- and tenth-order basis

Fig. 6. Upper figures: Amplitude Bode plot of estimated model (solid)
and result of frequency analyzer (dotted) fornp = 40, tenth-order basis
(left) and eighth-order basis (right). Lower figures: estimated coefficients�̂i;

i = 1; � � � 40, for tenth-order basis (left) and eighth-order basis (right).

functions have been applied.2 Fig. 6 shows the results of
identified models with .

The estimated coefficients show that the convergence of
the sequence is dependent on the basis chosen. In the given
example the eighth-order basis leads to a convergence that
is faster than the tenth-order basis. Both estimated models
provide good results; however, the model with the eighth order
basis is preferable as it uses less parameters—not more than
20 parameters contribute essentially to the model dynamics.
The less accurate fit in the low-frequency region (100–250
Hz) is caused by a considerable noise power that occurs in
this frequency region.

VIII. C ONCLUSION

We have obtained asymptotic bias and variance expressions
for the estimated parameters and transfer function in an
identification problem that is based on time-domain data and
an identification criterion that is formulated in the frequency
domain. First the situation is considered of infinite time-
domain data and a criterion over a finite number of frequencies.
Additionally, the number of frequencies is taken to tend to
infinity also. As a model structure, a linear parameterization
in terms of recently introduced generalized basis functions is
employed, being a generalization of the classical pulse and
Laguerre- and Kautz-type bases.

For the infinite-frequency criterion, it is shown that the
parameterized part of the model can be estimated consistently,
despite of the presence of neglected dynamics (undermod-
eling). The approximate model is shown to be equivalent
to a model obtained by frequency-smoothing the system’s
frequency response by a frequency-localized window. Variance
expressions are derived for situations of finite and infinite order
models.

2The authors are indebted to E. van Donkelaar for performing the appro-
priate experiments.
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The identification procedure presented here matches the
identification setup that is used in [4] and [5] for identification
of model uncertainty. The results presented here can therefore
be used to guide the crucial design choices to be made in order
to achieve minimal uncertainty bounds.

APPENDIX

Lemma 8.1:Let be a complex function that is differen-
tiable on the unit circle. Then for

(A.1)

where .
Proof: First we decompose into its real and

imaginary part, , and we will
bound the expression on the left-hand side of (A.1) for
and separately

As a similar result holds for , the combination of
bounding the real and imaginary parts separately leads to the
result of the Lemma.

Proof of Lemma 4.1:First we will consider the case
. In this situation we evaluate under which conditions the

matrix

(A.2)

has full row rank. Now consider a real-valued vector
with and , and consider the dynamical
system being defined by the state-space realization

. Then it can simply be verified using the struc-
ture of that the equation

(A.3)

is equivalent to for . Since has
McMillan degree smaller than or equal to, it can maximally
have finite zeros. If , it follows that (A.3) implies

which proves the full row rank property of .

The situation can simply be handled by employing
[12, Proposition 5.4], which shows that for any
there exists an input-balanced pair of matrices with

such that

...
(A.4)

This implies that we can apply the same analysis as for
the case , now using zeros of the system
with realization with , which has
McMillan degree smaller than or equal to .

Since is a diagonal matrix with positive elements, the full
row rank property of is sufficient to guarantee that
is nonsingular.

Proof of Lemma 4.3:Part 1) is a direct result of [2, Th.
4.4.1].

For part 2) results in [17, eqs. (6.30), (6.31)] can be utilized
to show that

and

for

With (24) the result follows directly. The norm bound fol-
lows by noting that the induced two-norm of a matrix is
overbounded by its Frobenius norm.

Proof of Proposition 5.1:From (20) it can be verified
that for Z. This is caused by
the fact that for S , as the effect of initial
conditions can be written as ,
while decays as ; see, e.g., [17].

Asymptotic normality of the parameter estimate follows
from the fact that for the Discrete Fourier Transform

becomes normally distributed (see [2] and [4, Th.
5.3.2.]) and so does .

The asymptotic covariance matrix follows as a direct result
of Lemma 4.3 and (21). Since the asymptotic parameter
covariance is bounded, converges to in mean
square sense and thus also in probability.

Proof of Lemma 5.3:We can write

. It follows straightforwardly
from the orthonormality of the basis functions that

. The result can now be
proven by applying Lemma 8.1 to all the scalar elements of
the matrix . To this end, we write

with , and the
block element of defined by

Since for all the scalar elements
are uniformly bounded, this shows that Lemma 8.1

can be successfully applied to the first row and column of .
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For the scalar -elements in it follows that

Since the elements of as well as are in , and
, all terms in this inequality are uniformly

bounded, except for . However, as
for it follows that for all elements of the matrix

there exists a constant such that
. Application of Lemma 8.1 then proves

the result.
The second part of the lemma follows from the element-

wise convergence, together with the fact that the matrix has
finite dimension and that the induced two-norm of a matrix
satisfies

Proof of Lemma 5.4:From simple manipulations it fol-
lows that

(A.5)

Next we will analyze the two separate components in this
expression.

For a matrix satisfying it holds (see, e.g.,
[7, p. 59]) that

Using Lemma 5.3 it follows that for

(A.6)

For this reduces to

(A.7)

For the second term in (A.5) we write

(A.8)

Combining (A.8) with (A.7) now proves the result.
Proof of Theorem 5.5—Part 1):Referring to the Proof of

Proposition 5.1 it follows that S as .
Thus we have to show that Z for .
This proof will be made in two steps. First we will show
that Z Z, and in the second step we will prove that
this latter expression tends to zero in the matrix two-norm.

For analyzingZ we find from (33) and resulting from [12]
and [34] that

(A.9)

The two-norm of the vectorZ now can be bounded as

Z

(A.10)

with the vector of -norms of the scalar
elements in , and where it should be noted that
and that is assumed to be fixed and finite. This result,
together with Lemma 5.4, shows that

Z Z

(A.11)

Next we have to analyze

Z

...

...

As in the above summations, is not bounded away from
, and the conditions for applying Lemma 8.1 are not
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satisfied. To this end we split the above expression by way
of introducingZ Z Z with

Z

Z

where, for ease of notation, we have assumed that is
an integer. If this is not the case should be rounded to
the nearest integer.

From the proof of Lemma 5.3 it follows that there exist
constants and such that

for

for

Since there exists a real-valued , and
such that for , it can be

shown that

Z (A.12)

For analyzing Z , we write

Z

...

Using the fact that
, and denoting to be the vector of -

norms of the scalar entries in , and employing (A.9) shows
that

Z ...
(A.13)

For the two-norm of this vector it follows that there exists
a such that

Z (A.14)

As Z Z Z , the result of Part 1) of
the theorem now follows by combining (A.12) and (A.14).

Part 2): We will prove the correctness of the covariance
matrix by showing that in the limit situation, as formulated in
this part of the theorem, it follows that

(A.15)

Using (21) we find

FF

FF

(A.16)

Straightforward elaboration of (A.16), using (26), (A.7), and
(A.8) now gives (A.15).

Additionally

which together with (A.8) shows that converges
to a finite value.

Proof of Corollary 5.6: The result follows directly from
Theorem 5.5 and Lemma 8.1.

Proof of Proposition 6.2:Because of the orthonormality
of the basis functions, it follows that

As

substitution of the previous equations delivers

which proves the result.
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Proof of Proposition 6.3:Using the results of
Theorem 5.5-2) it follows that in the considered limit

(A.17)

This can be verified by using the fact that there exists a
such that . Expression (A.17) equals

By applying Lemma 8.1, in the limit this
expression will be equal to

(A.18)
which proves the result.

Proof of Corollary 6.4: Substituting
in (A.18), and using the orthonormality of the basis functions,
i.e.,

it follows that (A.18) simplifies to , which
proves the result.

Proof of Lemma 6.7:Let the spectral densities and
have stable minimum phase spectral factors, respectively,
and , and denote . Then it follows

from Parsseval’s relation that we can write the right-hand side
expression of (30) as

where , with the unit pulse
signal, or equivalently , with

. Note that are -dimensional
-signals. It is proven in [34] that by applying the appropriate

Hambo transformation, it follows that

and since , this proves
the result.

Proof of Theorem 6.8:For the frequency response
of the estimated model we can write

, while the asymptotic covariance
matrix of is the block-Toeplitz matrix induced by the
spectral density function . This situation is
identical to the situation for the time domain identification
method described and analyzed in [34] leading to the
corresponding result of the theorem.
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