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Frequency Domain Identification with Generalized
Orthonormal Basis Functions

Douwe K. de Vries and Paul M. J. Van den H&fenior Member, IEEE

Abstract—A method is considered for the identification of enabling us to handle huge amounts of time-domain data
linear parametric models based on a least squares identification with a corresponding reduced variance of the model estimates.
criterion that is formulated in the frequency domain. To this — aqqitionally, the formulation of an identification criterion in
end, use is made of the empirical transfer function estimate . - . .

(ETFE), identified from time-domain data. As a parametric "€ frequency domain can be beneficial, especially in those
model structure use is made of a finite expansion sequence inSituations where the application of the model dictates a per-
terms of recently introduced generalized basis functions, being formance evaluation in terms of frequency domain properties.

generalizations of the classical pulse and Laguerre and Kautz Thjs |ast sjtuation occurs often when the identified models are
types of bases. An asymptotic analysis of the estimated models is d basis f del-based trol desi

provided and conditions for consistency are formulated. Explicit USEd as a basis for mp el-based control design.
and transparent bias and variance expressions are established, ©On the other hand, it should be stressed that any frequency

the latter ones also valid in a situation of undermodeling. domain data is obtained by some data handling/processing
Index Terms—Asymptotic analysis, frequency domain method, mechanism thz_it starts off vyith time-domain dat_a. This is reason
system approximation, system identification, transfer function Not to overestimate the difference between time-domain and
estimation. frequency-domain identification; see, e.g., [18].
The common way of formulating an identification problem
in the frequency domain is by assuming the availability
|. INTRODUCTION of the exact frequency response of the (unknown) linear
system, disturbed by some additive (frequency-domain) noise

.with specific properties, e.g., independence among the several

quency domain data is ‘c.’UbJECt that at.tract's a grQWIﬂ%quencies. For this situation a large number of identification
number of researchers and engineers. Especially in application

areas where experimental data of a process with (part ethods exist, mostly dealing with least squares criteria [14],

unknown dynamics can be taken relatively cheaply, the _d(]a’r£8i]r'1 [[?:)%12]]. glrlszI[rg]un\jv}’?i?;p!tueccl:ifooLfrgsglamiﬁiv(;?g-ble
citation of the process with periodic signals (e.g., sinusoidg} ith di ' d pe 15)5 P 4 1l R i

is an attractive way of extracting accurate information q gonthms are discussed, €.g., in [15] and [1]. Recently
the process dynamics from experiments. Due to the comm F_bspac_e alg.o_rlth.ms also have been analyzed for frequency
cial availability of frequency analyzers that can handle hu main |den;|f|c;atlog _[21]' Man;(; rgoreptefelrenges and tiCh'
amounts of data by special purpose hardware, the experime gpes can be found in [30]_ and [28]. ‘1€ ate approac to
determination of frequency responses of dynamical systemg problem basgd on the discrete Fourier transforms of input
has gained increasing interest in application areas as output data in [18] shows a close resemblance of results

modeling of, e.g., mechanical servo systems and flexible sp¢! the standard time-domain approach. S
structures. In this paper we will formulate and analyze an identifi-
Identification on the basis of frequency domain data c&Rtion problem with an identifigatio_n crjterion formulated- in
have a number of advantages when compared to the “classi¢df frequency domain, for a situation in which we consider
time-domain approach. For a very nice overview of thed#ne-domain data of input and output samples to be avail-
arguments the reader is referred to [28]. Here we would like @€ from measurements. These time-domain signals gener-
limit attention to the fact that dealing with frequency domaidte @ (frequency-domain) empirical transfer function estimate

data allows us to achieve a substantial data reduction, tH&JFE) which represents the data in a least squares identi-
fication criterion. As a parametric model structure we will

use a linear regression form, using a finite series expansion
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excitation and disturbance signals in the time domain. Thisoblem
method will build on the standard identification framework as

developed in [17]. 0= arg mein W ,x, (0) ()
Concerning notation we will denot& as the set of reals |

and Z as the set of integer number®%, is the Hilbert With

space of transfer functions that are analytic [i} > 1 1 X Y (&) ‘ 2 ‘

and square integrable on the unit circle)* will denote Wy v, (6) = —Z 7M — G(e™* . 0)| - |K(e™“*)?

complex conjugate transpose of a complex-valued matrix. The Ny k=1 Un(e™)

remainder of thi r is organiz follows. First, we will ) . .
emainder of this paper is organized as follows. First, we where G(¢"*,6) is the parameterized frequency response

formalize our problem setting. Subsequently, we will analyzef the model. and ranaes over an appropriate parameter
the estimation results for an identification criterion over o ang v bpropriate pa
gpace@ € R"™ while n, < N,. The specific (linear)

finite number of frequencies. Next the situation of an infinit rameterization of the model is considered in the next section
number of frequencies will be considered. Asymptotic bias ari’?" '

: . . . . e S0 (er) is a user-chosen weighting function that allows us to
asymptotic variance expressions will be provided, for infinite . o 4 ]
L : emphasize specific frequency regions more than others; for
and for finite model order (undermodeling). The presented ; . X S
. L . . . . ease of notation (and without loss of generality) the weighting
identification method will be illustrated by way of a simulation : o ,
Is assumed to satisfys (c**)| > 0 for all wy, € Wy, .

example and by application to data taken from a high-precision ote that even with a constant weighting over frequency, in

mechanical servosystem. The proofs of all results are collec %e least squares criterion (5) more attention is paid to those
in the Appendix. This paper is an extended version of [6]; some q P

considerations concerning the multivariable situation are givéﬁguﬁgﬁ?/n r)e/zglons which have a relatively denser frequency
in [26]. Npr oo . .
in [26] The chosen identification criterion was suggested before in
[33]. It closely matches the criterion treated in [18] and [19]
which can be written as

It is assumed that a data generating system, and the mea- N,
surement data that is obtained from this system, allow aj_ .. ‘mini V(6 ) — Qe 0V n (0 )2
description sy Z| (e = Gl )Un(e)F]

Il. PROBLEM SETTING

P =1

£) = Golq)u(t) + v(t 1 R S
y(t) = Go(gu(t) + (1) (1) B
whereG,(z) is a rational transfer function, analytic im| > 1, ) , , .
u(t) is a realization of a stationary stochastic process wififd that is also employed in [30] in the more general setfing
rational spectral densitg, (w), satisfyingu(t) = H,(¢)e(?), of errors-m-yanables models. In our chqlce WN,NP (8) we
wherec(t) is a sequence of independent identically distributd@cus attention on the role of estimating the input-output
random variables, having zero mean, variangeand bounded dynamics of the plant, thus restricting to the situation of a
moments of all ordersH, is a stable proper minimum- fiXed noise modelH(c**) = Un(e™*)/K(c™*). In this
phase transfer functiom;(¢) will be a bounded quasistationarypart_ICUIar case, we ywllllnvestlgate the effect Pf a specific
deterministic signaly is the shift operatogu(t) = u(t + 1). choice of parameterization fofr, as presented in the next

As further notational convention, &Y denote the integer section; this identification approach can be referred to as an

interval 7% := Zn [0, N — 1]. For a signake(¢) being defined output-error method, according to the notions used for time-
on TV we will den:)te domain methods [17]. The (time-domain) method is known for

its property that the planZ, can be estimated consistently,
i 1 = it while its variance will be minimal when the (fixed) noise
An(e™) = N Z w(t)e™™" wr € v. (D) model matches the true noise process dynamics. This latter
=0 situation is not treated here.
Specific sets of frequency points that arise are denoted as

ok N IIl. M ODEL PARAMETERIZATION WITH
Oy = N’ kel 3) ORTHONORMAL BASIS FUNCTIONS
Q% = {wk € Qn | [Un(e™)| > ()}_ In the identification problem (5) we will employ a linear

. s . model parameterization
The identification problem that we consider now can be stated

as follows. G(e™k,0) = ¢T (™) (6)
Frequency Domain Identification ProblenGiven  mea- ) ) _ )
surements of input and output dafa(t),y(t)}, t € TV, thatis very flexible, based on a recently introduced generalized
taken from the system (1), and given a frequency yhig orthonormal basis. The related theory, as presented in [12],

?  shows that for any scalar stable all-pass transfer function
Wy, ={wi, -+ wn, } C QY (4) G, with balanced realizatiof A, B, C, D) the sequence of

e , _ functions
such that all frequencies’* with w, € W§ come in

complex conjugate pairs, then we consider the identification Vi(2) = (21 — A)7IB - Gy(2)F (7
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generates an orthonormal basis for the space of stable systemdwhereS(c™* ) is a term due to the past of the input signal,

the accuracy of a finite expansion model will substantially

R'H,, with the property that {u(t) }1<o. Written in vector notation we can rewrite this into
o [ ViV ) o = {é J;f (8) G=G,+S+F
T TR —®0,+Z+S+F (16)
As a result there exist uniquB, and {L}x=0,....coc SUCh
that with
Go(z) = Do+ Y LEVA(2). ©) oo [Yle™) o Ya(e)]t
k=0 Un(e*n) Un(e*™r)
w1 W, T
Note thatVy.(z) € RH5**! with n, the McMillan degree of G, = [Go(e™) -+ Go(e ’“)]
Gy, (dimension ofA), and L;, € R™*!. S = [S(e) (eNv)
The advantage of this generalized basis is that if an appropri- i ion (17)
ate choice of dynamics (set of poles) is incorporated @&fo F=[F(e) ( ’”)]
and thus into the basis function, then the series expansion 7 = [Z(@iwl) Z(ewp)]T
(9) shows an increasing rate of convergence. Consequently, 1 VI(er) ... VT (e*)

increase; for more details on the use of these basis functions : . .
see [12], [34], and [25]. Here we limit the discussion by 1 Vi(e ““NP) s VI ()

remarking that for specific choices of all-pass functions, well-

known “classical” basis functions result, as the standard shifpereZ reflects a term due to undermodeliry,represents

Vi(z) = 2~ is the result ofGy(z) = »~! and the Laguerre the effect of unknown past inputs, afidreflects a term due
functions induced by a first-order aII -pass functiGp(z) = [0 the noise. _ _
(1 - az)/(z — a) for some|a| < 1. The parameter estimate can be constructed from matrix

With respect to our formulated frequency domain identifRPerations according to
cation problem, it follows that—for a specifically chosen basis

Vi (z)—the regression vecta” (™) in (6) is given by §=1VG (18)
ple=)=[1 VI - VI (™))" (10) where
which is a column vector with length,, = n,n + 1, equal U= (0*AD)1d*A (29)
to the number of parameters. The estimated parameter vector
is denoted by with
6=[D L - LE]". (11) A = diag(|K ()2 .- |K (%))
V. PARAMETER ESTIMATE and providedd* A® is nonsingular. Given (16), (18), and (19)

follows that the least squares parameter estimate (5) can be

Building upon (9) for the data generating system, we W'”xpressed as

write
Go( zu.k) (/)T( zu.k)e +Z( zu.k) (12) 0=0,+VZ+ VS + VF,
with For the bias and covariance of the estimated parameters (5)
‘ 00 ‘ it can simply be verified that
Z(e ) = 37 LEVi(e ) :
k=n E[0] =6, +¥Z+ ¢S (20)
and cov[f] = UIE[FF*|U*, (21)
bo=[D L§ - Lf_l]T- (13)  The transfer function estimate of the identified model will
Using the system’s equations, similar as in [17], we now can be given by
express the ETFE by G(e™) = G(, 8) = ¢T (). (22)
YN(eiwk) Wy 1wy 1wy . . . . .
Unloon) — Go(e™*) + S(e"™*) + F(e"*)  (14)  Invertability of the matrix®*A® in (19) is guaranteed if
‘ a sufficient number of different frequencies is selected in the
where frequency grid, formalized in the following lemma.
. . Wk
F(e™*) = M (15) 1The authors are indebted to P. Heuberger for his contribution to the

UN(CW"') construction of the proof of this lemma.
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Lemma 4.1:If N}, > n,p, thend® has full column rank, and V. ASYMPTOTIC ANALYSIS OF PARAMETER ESTIMATE
so ¥ (19) is well defined.
As a result of this lemma, the parameter estimate (5), (18) Analysis for Finite Numben,, of Frequencies
will be unique, provided that a sufficient number of sinusoids \ye || first restrict the analysis of the identified model

is present in the input signal. This situation is similar to thg) ha situation where the number of frequenciés in the
corresponding time-domain least squares problem. Note thatiyerion is finite and the input signal is periodic with finite
the case considered here, the regression vectsrcomposed period N, > N,

o Z P

of basis functions only. , _ Using Lemma 4.3 we can state the following result for the
In order to relate the parameter estimate to the dynamigiimated parameters in the asymptotic case when cc.
properties of the underlying system, we have to impose pyqnqsition 5.1: Consider Assumption 4.2 and the expres-

additiqnal conditiqns on the input signal. To this end thgg,g (20) and (21) of the estimated parameﬁe(§), while
following assumption is formulated. n, < N, < N, < oo. Then

Assumption 4.2:The input signak(t) is periodic, having N
7 periods of length¥,, with N = r - N,, » > 1, such that
|Un,, (c™*)|? is bounded and bounded away from zero for all
wk € erp, while for the situationV, — oo it is assumed that
there exists a bounded functidn,(w) such that

Jdim [, (e“))? = @u(wr) Vi € Wi (23)

1) plimy_ .0 = 6*, where¢* = 6, + UZ;

2) for N — oo, the stochastic variabl¢/N - (6 — 6*) tends
to a normal distributions/ NV -(A—6*) € N'(0, P), where
the asymptotic covariance matrik is determined by its
scalar elements

N
- * (I)'U(wé)
where @1 (w), w € [0,2) is continuous, except for at most Pr=N,) Vil g ;
ey - 2 1N )

a finite number of points, and bounded. =

It has to be noted that faN, — oo, the notationd,,(w;) Gh=1,-np (27)

is used for the spectrum of one period of the signal. This is -
different from the spectrum of the periodic signal, since it can  Additionally
be verified that

‘ N ‘ A}iln N -cov(f) = P.
Un(e) =/ 3 U, (6%). (24) =

Further. th b £ iy will i Part 1) of the proposition shows that in case there is no
t_ur tehr, the nulr_? er 2 Nrequenu p WIlnecessanly undermodeling, i.eZ = 0, the parameter estimate is (weakly)
safisfy the inequalityV, < No. consistent. A similar consistency result will hold for the

For analyzing the statistical properties of the estimate dgétimated frequency response of the model

fined in this section, use will be made of the following classical Proposition 5.1 provides an asymptotic expression for the

reiult for E-;FE (;:s:[tr:me}tes.t . | satisfy A tion 4 2covariance of the estimated parameters. However, (27) does
emma 4.5.Let the input sighal salisty ASSUMPHON 2.2y provide much insight in the underlying mechanisms.

Then . o _Structurally more simple expressions can be obtained when
1) (Brillinger [2]) for finite No and N — oo the stochastic \ye |et the numberV, of frequencies tend to infinity also.

variable/r F tends to a normal distribution This will be discussed in the following sections.
r F e N(0, . - .
vr (0.Q) B. Analysis for Infinite Numbelv, of Frequencies
with We will derive expressions for the bias and variance in the
% 0 parameter estimate (5), for the asymptotic situation that the
_ e X ] ) identification criterion is calculated over an infinite number
@= 1 - > (3‘ N,, of frequencies. To this end we will consider the situation
0 o elew) f iodic input signal witl periods of lengthV,,. In th
U (e N )2 of a periodic input signal with periods of lengthV,,. In these
asymptotic results we restrict the choice of frequency grid in
2) such a way that the frequency points are equidistantly spaced.
lim rE[FF]=Q (25) Asgumption 5.2:The frequency gridVy C QR (4), (3)
N—oo satisfies
where the rate of convergencelisNV elementwise, and o — 27n(k - 1) VN, >0
there exists a constamt € R such that k= N, P
|lr E[FF*] - Q|2 < % (26) Wwith N, = N,, and the frequency domain weightinlg (¢ )|

is fixed to one for allw, € Wy .

The result of Brillinger shows that in order féf to obtaina  This assumption is made to facilitate the analysis of the
covariance that tends to zero for increasigthe input signal asymptotic case and to fully employ the orthonormality prop-
needs to be periodic with — ~c. This follows by observing erty of the basis functions used. The possibility of loosening
that |Uy, (¢™*)|? is a bounded function. these conditions will be discussed later.
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We start the asymptotic bias analysis by evaluating theln order to get further insight into the specific properties of

properties of the matrixp*®. the asymptotic covariance of the parameters, (29) is further
Lemma 5.3: Consider Assumption 5.2. Then analyzed in the next corollary.
1 n Corollary 5.6: Consider the situation of Theorem 5.5-2).
—¢*¢ -1 as — — 0 Then
NP NP
where the rate of convergencesigN, elementwise. oim N cov[Ly, Ly]
Additionally, there exists a constant € R such that o 1 ‘ ‘ e D)
_ W EN 5] J—Ry _ww v
HNL(I)*‘P =I| < C4M, P - Vole)Wo ()6 e )(I)u(w) do - (30)
p 2 p
This lemma shows that the parameter estimate is numeri- L 1 /7 i i1 oo Pu(@)
cally very well conditioned in the asymptotic case. yalm Ncov[Ly, D] = %/ Vo(e™) Gy (™) 5 @) dw
The next lemma is also instrumental in the analysis of thé *’ o ¢ (31)
estimated models.
Lemma 5.4: Consider Assumption 5.2. Then there exists a
and
c; € R such that
. A 1 [ &,(w
qu - ot <o as ZZ 0. (29) wim  NvarlD] = o /_77 <I>uEw; dw. (32
P 2 Np P

This lemma shows that in the considered limiting situation It can be observed from this corollary that the estimated pa-
the pseudoinverse of the matrix can simply be obtained by "ameters become uncorrelated whigr(w)/®.(w) is constant
taking s-@*. This of course greatly facilitates both calculatiof?Ver frequency. In order to verify this, use has to be made
and anaplysis of the asymptotic least squares estimates. of the property that the inner product between two distinct

The following theorem addresses the asymptotic propertiggthonormal) basis functions will be zero. The situation that
of the estimated parameters. ¢, (w)/P(w) = 1 refers to the case where the input signal

Theorem 5.5:Consider Assumptions 4.2 and 5.2 and th@ver one period ofu has the same spectral density as the
estimated parameters (5). Then: noise and so does not imply that the noise signal is assumed

. A ok o e p to be periodic.
1) plimy, v, o8 =6 ’AWIth 0% = bo; Note that the asymptotic covariance of the estimated param-

2) limy, N, ,r—o0 N cov(#) = R, where the bounded matriX g5 goes not depend on the number of perioitsthe input

R is given by signal. Also, the asymptotic covariance does not depend on
L 1 ., the number of estimated parametess= n,n + 1.
R= N}}Eloo qu) Qe (29) " Remark 5.7:While in this section the analysis of the pa-

) ) ) rameter estimate is performed for the system configuration (1)
with @ as defined in (25). with output noise taken from a stationary stochastic process,

This theorem shows that asymptotically the parameterizgthas to be noted that the results as formulated in Lemmas
part of the model can be estimated unbiasedly, despite 18 and 5.4 can also be used to analyze the parameter estimate
possible presence of undermodeling. If additionally the inpegr different noise paradigms, e.g., the situation of bounded
signal is periodic with the number of periods tending to infinitgdditive noise on the frequency response as considered in [11],
also, the estimate becomes (weakly) consistent, as in that c@ge[27], and bounded additive errors on the output data as
the variance of the estimated parameters tends to zero.  handled in [23], [37], and [10].

Note that the consistency of the parameter estimate isRemark 5.8:In recent work [19], [22] a slightly stronger
quite remarkable, as we do accept the presence of unmodelgslilt for the asymptotic parameter estimate is formulated as
dynamics. For time-domain identification using an FIR mod@l —, ¢+ with probability one, with
structure, a similar result of consistent parameter estimates
holds also in the case of unmodeled dynamics, but in that case
the input signal is restricted to be white noise; see [24]. In the
considered situation here, it is the orthonormality property of
the basis functions that actually provides this property. with W a weighting function accounting for both frequency

For the bias result 1) of the theorem it is not required thateighting K (¢*) and a nonequidistant frequency grid. This
the input signal be periodic, i.er,= 1 also is allowed. The result does not require the conditions of Assumption 5.2.
condition on the input signal is that it containg, different We consider here the more restrictive case in order to fully
frequency components unequal to zero, whilg — oo, and  exploit the orthonormality property of the basis functions when
thus also the situatio®v, = N is allowed. The condition analyzing the covariance of the estimate. In this respect the
r — oo in part 2) of the theorem is a technical condition thahore general situation would require basis functions that are
is used in the proof. It is conjectured that in future work thisrthogonal with respect to an inner product that accounts for
condition can be shown to be superfluous. the weightingW'.

Q
_ argmini/ IGo(c) — G(e™, 8)2 - |W () dw
6 27 —-Q
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VI. ASYMPTOTIC ANALYSIS OF 10°
TRANSFER FUNCTION ESTIMATE

A. Finite-Order Case 102

Building on the results for the parameter estimates in
the previous section, we will now take a closer look at
the consequences for the estimated transfer function, i.e., i
frequency response.

For the asymptotic bias we have the following result.

Corollary 6.1: Consider the situation of Theorem 5.5-1).%
Then for allw € [0,27)

Go(e) — G(e™,6%) = Z LIV (™).

k=n

10

Proof: This result is direct from Theorem 5.5-1). O = ~ - - ‘
Additionally, it can be shown that the amplitude of this ™ 10 i 10

asymptotic bias term can be bounded by an expression  Fig. 1. Bode amplitude plot 0P, (w;.w) as a function ofo for a basis
induced by four polesd.9 £+ 0.3z, 0.7 & 0.2z, with » = 3 and evaluated at

i T i n" three values ofvy, wy = 0.32175 rad/s (solid)wi = 1 rad/s (dash-dot),

> LiVi(e™)

k=n

< KT Vo(e)) - (33) andw; = 0.05 rad/s (dashed).

with £ € R™*! and1 > n € R, while  becomes smaller A related, and actually similar interpretation, is given by the
when the poles that are present in the all-pass funaign observation that in the asymptotic situation considered in the
approach the poles of the actual systén More specifically, previous section, i.eN, — oo, the estimated frequency re-
as analyzed in [34]y can be chosen any valug> A, with  sponsez(¢“, §) converges in probability to a smoothed ETFE
of the plant, where the smoothing operation is determined by

b .
A=max [ |—— Pi the window given above
4 . 1- Oézpj
j=1 .
iw g " Yy (e™)
where «; are the poles of7, and p; are the poles of5}. G, 0) = 5 - P"(C’W)UN(GZ‘C) d¢.  (36)

If the two sets of poles approach each other, themvill
tend to zero, and the series expansion (9) will have a highNote that in contrast with the (real-valued) windows that
rate of convergence. In that situation the asymptotic bias aie normally used in spectral analysis, the windBy(w, ¢)
Corollary 6.1 will be accordingly small. For more details omised here is complex valued, and moreover it is localized in
this bound see [34]. frequency, i.e., it does not reflect a simple convolution in the
It appears that the asymptotic modélc’~,#*) can be frequency domain; the window is essentially dependenton
constructed fromG in a very special and explicit way by and not only onw — ¢.
applying a frequency windowing operation to the system’s By using the specific properties of the basis functions,
frequency response. This mechanism which is introduced fge(c™) = Vo(e™)GE(e™) with G, being a stable all-pass
the Laguerre case in [3], is formulated in the followingunction, and using the summation rule for finite power series,
proposition. it follows that for w # ¢
Proposition 6.2: Consider the situation of Theorem 5.5-

: : i Gy () \"
1). Then the asymptotic transfer function mod&{e*, 6*) i i \G(ey ) T 1
sat|sf|es P’n(w7 C) =1 + Vg(@ )VO(G C)(Gfb— (ezw 2> (37)
o Gb(eiq) -
G(e"™,0%) = o . Prn(w,)Gole C) dg¢ (34) while
with Palw,w) = 1+ n|Vo(e™)|3. (38)
n_l . . . . . .
Pow, ) = T (¢ —ily =1 4 VT (@YY, (=iCY. This frequency window is illustrated in two figures, where
(0, Q) = g7 (@)e(e™™) kz=o k(e an example has been chosen of an orthonormal basis induced

(35) by a scalar fourth-order all-pass functi@gr, having poles
Interpreting this proposition, one can observe that the fr@:9 4+ 0.3¢ and0.7 £ 0.2:. In Fig. 1 the amplitude oP,, (w1, w)
guency domain identification approach as handled in this pafemgiven as a function of for n = 3 and for three different
comes down to smoothing the frequency response of the plaatues ofw;. The first valuew; = 0.32175 is the frequency
by applying a frequency window that is explicitly given anaf the resonant mode determined by the first-mentioned pole-
that is dependent on the choice of basis functions and thair. Fig. 2 shows the amplitude &%,(w;,w) for w; fixed to
choice of model order. w1 = 0.32175 and forn = 3,20.
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s ‘ ' provided for the variance, which also holds for finite model
orders and in a situation of undermodeling, is opposed to the
! situation for time-domain prediction error methods; see, e.g.,
[16], [20], [17], and [36]. However, in order to be able to
establish these expressions, we need a periodic input signal
instead of a quasistationary one, which is required in the
time domain identification case. Note that (39) shows that the
asymptotic covariance of the transfer function estimate does
not depend on the number of periodsin the input signal
4 and that the asymptotic covariance between transfer function
estimates at different frequencies is nonzero for finite model
orders.
| Corollary 6.4 shows that the variance of the transfer function
‘ estimate will be relatively large wherfVy(c™)||3 is large
(provided that®,,(¢)/®,(¢) is not relatively small for those
107 : - ‘ frequencies). Thus, in general the variance will be relatively
10 107 10 " large near the poles of the basis generating system and hence
Fig. 2. Bode amplitude plot 0P, (w1, w) as a function ofo for the same near the poles of the system itself for a properly chosen basis
basis as in Fig. 1p; = 0.32175 rad/s, and evaluated for = 3 (solid) and generating system (see [12] and [34]). Additionally, noise at
n = 20 (dash-doy). frequencies not situated near the poles of the basis generating
system (e.g., high-frequency noise) usually will be relatively
From Fig. 1 one can clearly observe the-dependence harmless.
of the frequency window leading to a smoothing operation The frequency region (with regard {oand a fixedv) where
that is nonfixed over the frequency axis. Fig. 2 illustrates th@, (w, () is relatively large becomes more concentrated around
effect that for increasing: the window will become more ¢ = w when the model orden increases. I, (w)/®.(w)
concentrated aroung = wy, finally tending toward a dirac- is relatively small, then an increase of the model order can
function asn — oc. very well lead to a reduction of the variance in this frequency
The smoothing operation in the frequency domain that iegion. It follows that, up to a certain model order, variance
actually performed by the considered identification setup cannsiderations do not necessarily conflict with bias consid-
now also be used in order to tune the dynamics to be choseriations for those frequency regions wherg(¢)/®,(¢) is
the basis functions, i.e., the poles in the all-pass funafign relatively small. This is a somewhat surprising and (to the
These dynamics will determine the character of the smoothiagthors’ best knowledge) new result. The existing literature
operation for a given number of parametefsto be estimated. only addresses the situation where the model ordgoes to
However, explicit design rules in view of this phenomenoinfinity also. In that case the variance always increases with

have not been formulated yet. the model order; see, e.g., [17] and Theorem 6.8 below.
For the covariance of the frequency response estimate weékemark 6.5: The results obtained in this and the previous
have the following result. section are in accordance with and actually are further gen-

Proposition 6.3: Consider Assumptions 4.2 and 5.2 and theralizations of the results obtained in [3], where a similar
estimated transfer function (22). Let,w, € [0,27). Then identification problem is analyzed for an integral identification
_ N o criterion (IV, — oo) and Laguerre basis functions, where no
g cov]Ge™), Ge"™)] undermodeling is considered. In [3] the frequency smoothing

o p by orthogonal basis functions modeling is introduced.

171 P,(¢)
= — — Py (w1, Pr(ws, d 39
with P,.(w, ¢) as defined in (35). B. Infinite-Order Case
Before discussing this result, we will first present the Similar to the situation for the time-domain identification of
following corollary. finite expansion models, we can arrive at simple expressions

Corollary 6.4: Consider the situation of Theorem 6.3 andor the asymptotic variance of the estimated parameters and
in addition let®,(¢)/®.(¢) =1 for all { € [0,27). Then transfer function in the situation that the model ordegoes
N o o 1 to infinity also.

N Nlilll_)oo n—cov[G(ewl),G(eWZ)] = n—Pn(wl,CUQ). (40) In order to formulate this result we will build upon (30),
e p p and we will show that an asymptotic-in-order result can
Theorem 6.3 provides an expression for the covariance lwé formulated in a simple way, utilizing an orthonormal

the estimated transfer function for the situation of a finiteansformation that is induced by the basis functions that are
model order. At first sight (39) may seem a bit complicate@dpplied. This transformation is presented in [34] and further
however, one has to realize that when given a basis generatfagporated in [13].

system, and a model order, the window (35) can be Definition 6.6 (Hambo Transform [34])Let ®(w) be a ra-
calculated directly. The fact that an accessible expressiontitnal spectral density function with stable spectral factor
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‘ Bodeplot Theorem 6.8:Consider Assumptions 4.2 and 5.2 and the
10 ‘ ' estimated transfer function (22). Let,w» € [0,27). Then
we have

N N Y ~
lim — cov[G(e"“") = D,G(e"?) = D]
N,Np,r,n—oo Ny

npn
20
Np

magnitude

. 0, for G, (6iw1)7£Gb(6iw2)
10 o %%T(ezwl)%(e_wl)J—zgz(‘:b , for wy=w,.
5 , ‘ The asymptotic-in-order result shows a very simple ex-

pression for the asymptotic variance of the estimated transfer
; function, where the asymptotic variance at a specific frequency

§ or - I 1 is equal to a frequency-weighted noise-to-signal ratio at that
° - = i frequency. The frequency weighting is completely determined
' by the basis functions that are used in our model structure.

g = = " This result exactly matches the equivalent form that has been

derived for time-domain identification [34]. However, in the

Fig. 3f E;Of?ep'c’t OfGIU (solid) 6}”?] eS“mate(z “Sri]”%)ortmgg”a' fbaSiS funceurrent situation a periodic input signal is required instead of
tions for different realizations of the noise (dashed); number of parameters : : :
(np) is five. d°general quasistationary signal.

H(e™), and letG, be a scalar stable all-pass function with VIl APPLICATION

balanced realizatiof4, B, C, D) that induces an orthonormal In order to illustrate the presented approach, the resulting
baSiSVk(Z) for Ho. Then the Hambo transformed Spectrurﬂjentlflcatlon algorlthm will be applled to data from a simu-

d(w) is defined by lation example and to data that is taken from the mechanical
servosystem in a Compact Disc drive.
&)(w) — ﬁ]T(e—iw)ﬁ](eiw) Simulation Example:The fifth-order system is simulated in
with (41), as shown at the bottom of the page, having pole locations:
. 0.9509 + 0.1982¢, 0.8497 £ 0.09644, and0.5490. The input
H(A) = H(2)|.-1=n(n) signal is periodic with a period length of 256 points, where
and the input over one period is white noise. There is 50% (in
N(\) :=A+B(M\-D)"C. standard deviation) colored noisét) = H,(g)e(t) on the
output, where the noise filter is given by
When applying this orthonormal transformation to the result 1—1.382-1 +0.402~2
(30), an analysis similar to the one applied in the time- H,(z) = — — 42)

- _ —1 -2
domain case [34] leads to a formulation for the spectral density 1-1.9027" + 091z

function that generates the asymptotic covariance marix and ¢(¢) is normally distributed white noise.

(29), composed of block-elements given by (30). The identification procedure presented in this paper is
Lemma 6.7: Consider the covariance matrR being com- applied to data from this system. Basis functions are chosen

posed of block elementf; 1 x11 = Ncov[ﬁj,ﬁk] with to be generated by the pole locatiof®, 0.8 £ 0.24, 0.7.

4k =0,---n—1, as given in (30). The estimates are made over five datasets with different noise
ThenR; 1 141 = F(j—k), with F(7), 7 € Z, the (matrix) realizations, while each dataset consists of 2048 datapoints.

covariance function related to the, x n, spectral density No particular frequency weighting is considered.

function ¢, (w)®,(w) L. In Fig. 3 the results are shown for estimated models with
Note that the matrix? is obtained fromR by discarding the five parametergn, = 5) and in Fig. 4 forn, = 13.

first row and column. In this way a block-symmetric matrix As a reference, Fig. 5 shows the results that are obtained

is obtained, limiting attention to the vector-valued parametenghen applying a fifth-order output error (OE) time-domain

ﬁj and not addressing the scalar direct feedthroigh identification procedure, having a correct model structure to
The representation of the asymptotic covariance matrix imodel the plant7, exactly (ten parameters).

this spectral form enables the formulation of the asymptotic- It is observed that for a choice of basis poles that can hardly

in-order result for the asymptotic variance of the estimatdi considered to be very accurate, the identification results for

transfer function, as formulated next. This result is similar tihe orthogonal basis functions method are good; they improve

the related time-domain identification result in [34]. from the five-parameter situation to the 13-parameter situation

_0.2530271 — 09724272 4 14283273 — 0.94932* + 0.24102 7
T 1— 4150027 + 6.8831272 — 5.687123 + 2.33332~* — 03787275

Go(z) (41)
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Fig. 4. Bodeplot ofGy (solid) and estimates using orthogonal basis func'-:igd' 6. llJtpp;arf figures: Ampllitude (Ij?)c;?ed prOt of e_f(}i":atiﬁ mocl)delb (solid)
tions for different realizations of the noise (dashed): number of parametdfid result of frequency analyzer (dotted) foj = 40, tenth-order basis
(nyp) is 13. (left) and eighth-order basis (right). Lower figures: estimated coefficients

i = 1,---40, for tenth-order basis (left) and eighth-order basis (right).

Bodeplot

functions have been appliédFig. 6 shows the results of
identified models withn,, = 40.

The estimated coefficients show that the convergence of
the sequence is dependent on the basis chosen. In the given
example the eighth-order basis leads to a convergence that
is faster than the tenth-order basis. Both estimated models
*»  provide good results; however, the model with the eighth order
basis is preferable as it uses less parameters—not more than
5 i ] 20 parameters contribute essentially to the model dynamics.
The less accurate fit in the low-frequency region (100-250
Hz) is caused by a considerable noise power that occurs in
this frequency region.

magnitude

phase
(=]
7
%

VIIl. CONCLUSION

10 10 10° 10’ We have obtained asymptotic bias and variance expressions
Fig. 5. Bodeplot ofGy (solid) and estimates using a fifth-order OE modefor the e_StlmatEd paramgters and tra.nSfer fun(_;tlon In-an
for different realizations of the noise (dashed); number of parameters is té@lentification problem that is based on time-domain data and
an identification criterion that is formulated in the frequency

d t least dasth Its of a standard OE met oa;ain. First the situation is considered of infinite time-

and are atleast as good as tne resufts ot a standard Ot MG, iy qata and a criterion over a finite number of frequencies.

Moreqver, the orth_ogonal basis fu_ncuons T“eth"d rehes_ on dditionally, the number of frequencies is taken to tend to

on a_Ilnear regrlt_assmn tytpe _Of ?Igorlthm, (\;Vh'le the OF eSt'maﬁ%inity also. As a model structure, a linear parameterization

requires a noniinear optimization proceaure. .in terms of recently introduced generalized basis functions is
Identification of the Radial Servosystem in a Compact-Di

: . X (fnployed, being a generalization of the classical pulse and
Drive: The introduced procedure has also been applledE guerre- and Kautz-type bases.

measured data from the radial servo system in the Opt'C.aFor the infinite-frequency criterion, it is shown that the

device of a Compact-Disc player. This system is operating gérameterized part of the model can be estimated consistently,
e

closed loop with a stabilizing controller, and for this exampl spite of the presence of neglected dynamics (undermod-
the identification of the sensitivity function of this loop will ling). The approximate model is shown to be equivalent

be considered. To this end a reference signal consisting %22 model obtained by frequency-smoothing the system’s
Schroeder-phased multisiqg/,, = 397)

has been applied with frequency response by a frequency-localized window. Variance

eight periods of 1024 samples each, with a frequency grid froQ o ssions are derived for situations of finite and infinite order
100 Hz until 10 kHz. The sampling frequency is 25 kHz. models.

The poles of the basis functions have been chosen on the

basis of a curve-fit of the frequency response measured bY_ Brhe authors are indebted to E. van Donkelaar for performing the appro-
frequency-analyzer [35]. Both eighth- and tenth-order bagigate experiments.
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The identification procedure presented here matches théhe situationn > 1 can simply be handled by employing
identification setup that is used in [4] and [5] for identificatiofil2, Proposition 5.4], which shows that for any > 1
of model uncertainty. The results presented here can thereftrere exists an input-balanced pair of matricgs, B,, with
be used to guide the crucial design choices to be made in ordfg(z) := (2I — A,)~'B, such that

to achieve minimal uncertainty bounds. Vo(2)
~ Vl(z)
APPENDIX Vo(z) = : . (A.4)
Lemma 8.1:Let X be a complex function that is differen- Voo1(2)

tiable on the unit circle. Then fa, — o This implies that we can apply the same analysis as for

the casen = 1, now using zeros of the systerfl,,(z)

Z X(e / X () duw with realization (A, B,,,+7,8) with 4 € R"", which has
Ny - McMillan degree smaller than or equal tgn.
N ‘ SinceA is a diagonal matrix with positive elements, the full
< -max | X'(e")] (A.1) row rank property of? is sufficient to guarantee thét’ A®
po¥ is nonsingular. O
where X'(¢i) = dX(c™)/dw. Proof of Lemma 4.3:Part 1) is a direct result of [2, Th.
Proof: First we decomposeX(¢™) into its real and 4.4.1].

imaginary part.X () = X,(¢) + i X (™), and we will For part 2) results in [17, egs. (6.30), (6.31)] can be utilized
bound the expression on the left-hand side of (A.1) fgr t© Show that

and X, separately |]E[|VN(GM)|2] — <1>,U(wk)| < c_]\17
N 4 ‘ and
i Z 21 / X, (") dw o ok Cl
Ny e~ [ [E[Vi (™) V()| < N for wy # we.

Moo /4 T ‘ With (24) the result follows directly. The norm bound fol-
=3 <FXT(6Z )= | Xr(ew)dw> lows by noting that the induced two-norm of a matrix is
NN (R bounded by its Frobeni O

overbounded by its Frobenius norm.
1 Np . ‘ Proof of Proposition 5.1:From (20) it can be verified
<N max | X, (") = X, ()| that for N — oo, IE[f] = 6, + ¥ Z. This is caused by
P =1 =(2e- 1>/Np<§(<w<24+1>/wp the fact that foriv — oo ¥S = 0, as the effect of initial
A conditions can be written a$(e’“*) = Ry(e™r)/Un(e™*),
< S T max | X/ (%) while Ry(c™+) decays ad/v/'N; see, e.g., [17].
Np (=1 Np r(BEm1)/ Ny < e <n(3E41)/ Ny Asymptotic normality of the parameter estimate follows

from the fact that forNV — oo the Discrete Fourier Transform
Vn(e**) becomes normally distributed (see [2] and [4, Th.
‘ 5.3.2.]) and so doe#'(c'*).

As a similar result holds foX;,(¢*), the combination of  The asymptotic covariance matrix follows as a direct result
bounding the real and imaginary parts separately leads to #feLemma 4.3 and (21). Since the asymptotic parameter

< Nlp 1n3X|X,’,(ei‘“')| < Nlp1n3X|X’(ei“)|.

result of the Lemma. O covarianceN cov(f) is boundedf converges t@#* in mean
Proof of Lemma 4.1:First we will consider the case = square sense and thus a|so in probability O
1. In this situation we evaluate under which conditions the d = ]\1
matrix Eé:l e )T (e ZM). It follows stralghtforwardly
ol — 1 1 1 (A.2) from the orthonormality of the basis functions that
Vo(e™1) Vo(e«z) -+ Vo(e'™r) ' = [T ¢l )¢t (¢e) = 1. The result can now be

) proven by applying Lemma 8.1 to all the scalar elements of
has full row rank. Now consider a real-valued veciry?] tne matrix (e~ )¢ (i), To this end, we write

with v € R™ and 6 € R, and consider the dynamical

system H(z) being defined by the state-space realization ple ) pT (™) = {1 I *}
(A, B,+T,6). Then it can simply be verified using the struc- fr
ture of V), that the equation with f = VT (emr) .. VT (e=™)]T, and then, x ny

block elementP,, of P defined by
Pys = Vy(eT VI ("),

6 +Ter =0 (A.3)

is equivalent toH (e“*) = 0 for k = 1,---, N,. SinceH has

McMillan degree smaller than or equal#g, it can maximally Since for allg <
haven, finite zeros. IfN, > n,, it follows that (A.3) implies 1,.--,n, are uniformly bounded, this shows that Lemma 8.1
[6 +T] = 0 which proves the full row rank property @’ can be successfully applied to the first row and colum@cp.

Vo(e™)i
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)
1 NpN
< \/N,, <1+ cq ]@p) (A.8)

|Gb(eiw)|5—(1 Combining (A.8) with (A.7) now proves the result. O
Proof of Theorem 5.5—Part 1)Referring to the Proof of
+ |[V0(e—iw)yg(eiw)]ij| s —q| - |Gple™)PTet Proposition 5.1 it follows thatV'S = 0 as n,n/N — 0.
d Thus we have to show tha¥Z — 0 for nyn/N, — O.
e This proof will be made in two steps. First we will show
+@*Z, and in the second step we will prove that
Since the elements dfy as well asG, are inRH>, and this latter expressmn tends to zero in the matrix two-norm.
|Gy(e)| = 1, all terms in this inequality are uniformly  For analyzingZ we find from (33) and resulting from [12]
bounded, except fofs — ¢|. However, as|s — q| < n —1 and [34] that
for n > 1 it follows that for all elements of the matrix
ple e )pl(eiwe) there exists a constamt € R such that o0 "
max,, | X’(¢")| < c-n. Application of Lemma 8.1 then proves Il < g (A.9)
the result. o= K
The second part of the lemma follows from the element-
wise convergence, together with the fact that the matrix ha8€ two-norm of the vectoZ now can be bounded as
finite dimensiom,, and that the induced two-norm of a matrix

For the scalafi, j)-elements inF;; it follows that 1 1

< \ac (Mt |1 o
i[
dw

d —iw T/ iw S—q/ tw

= | o Dl VS ()] Gy ()

Vi(e T WVE ()]s

< oDV @)

Gb(eiw) .

satisfies Np | oo 2
1Zll2 = | | D LEVi(ei)
Al < D0 1Al O =1 |k=n
ik N, 2
. . . . . < ICT Y iwp n
Proof of Lemma 5.4:From simple manipulations it fol- = Z [Vo(e )|—1 _7
lows that £=1
1 1 ! < VN KTVl (A.10)
U— —0%| =||I- < <I>*<I>) — P 1-mn
Np oy Np Np

1 with V., € R™>*L the vector of H.,-norms of the scalar
I- <N ) (A.5) elements inY,, and where it should be noted thigte R™*1
and thatn; is assumed to be fixed and finite. This result,
Next we will analyze the two separate components in thiggether with Lemma 5.4, shows that
expression.

IN

el

For a matrixX satisfying||Z — X||» < 1 it holds (see, e.g., {\P _ i@*}z <llg— Lo . 1zl < o™
[7, p. 59)]) that N, 5 N, 9 - N,
||I—X_1||2 < HI_XH? . (A-11)
T 1[I =Xz

Next we have to analyze
Using Lemma 5.3 it follows that for, 2™~ < 1
P

1
—1 npn — 7
1 C45y
I- <F‘I’*‘I’> < 1% (A.6) Np ] . 4
P 2 AN, ~ 22 Ezozn Lka(ezw) ‘
For n,n/N, — 0 this reduces to _ 1| R Volem ) R, L Vi(e)
1 -1 n,n N
- (yoe) | s @ 00 Vacs (o) S, La(e)

p 2 p Ek nLT Eé 1Vk( zu,l)

For the second term in (A.5) we write

%

> hen (Eé:l Vole™ ) Vi (e M)>Lk

[ (20 Vama(em )V () ) L

As in the above summations, is not bounded away from
2 N,, and the conditions for applying Lemma 8.1 are not

I— L geg
%)
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satisfied. To this end we split the above expression by way Part 2): We will prove the correctness of the covariance

of introducingZ = Z; + Z, with

Np
Zy(e) = Y LIV (™)
k=n
ZQ(Giw[) = Z L{Vk(euq)
k=+/Np+1

where, for ease of notation, we have assumed {f&f, is

an integer. If this is not the casg/lV,, should be rounded to

the nearest integer.

From the proof of Lemma 5.3 it follows that there exist P

constants’; € R™*! andC, € R™*™ such that

ZV )| < for se N, s < /N,

pél

Cy

g

ZV —jwy VT zu.()

Ny (=1
Ch
=N,
Since there exists a real-valuegd 0 < n < 1, and

Cs € R™*! such that fork > n, |Ly| < Csn™, it can be
shown that

forr,s € N, r <5 </ Np.

1 n"
—@*Z|| <. /np——cy (A.12)
e R

For analyzmg <I>*ZQ, we write
—d*Z
N, 7
o0 Ny Wy
Z:}gz1 /Np-l-l Zé:l szk(e l)
oo Np —twy Wy
Ek:1 /Np+1 Eé:l Vole 4)]}1?(6 )Ly,

1

Np .
o0 Ny ' —iwg twe

2 /N1 2ty Va1 (e OV () L

Using the fact that|Vi(e™)| = [Vo(e™)||GF(e™)| =
[Vo(e*)], and denoting/., € R™*! to be the vector of.-

norms of the scalar entries ¥, and employing (A.9) shows

that
KTV
1 Ve | Vg VTIC
‘F‘I’ 22‘_ = (A.13)
p
Vi VIK

For the two-norm of this vector it follows that there exists

a c12 € R such that

(A.14)

1
—9*Z
‘NP 2

< agnV Mrep.
2

As ||®*Z||s < ||®*Z1]]2 + ||®*Z2]|2, the result of Part 1) of
the theorem now follows by combining (A.12) and (A.14).

matrix by showing that in the limit situation, as formulated in
this part of the theorem, it follows that

L srga

A (A.15)

— 0.

HNCOV[QA] -
2

Using (21) we find

‘Ncov[é] - Nié*cyb
b

2

= |[N(®*®)1o* IE[FF*]((9* ) ~1d*)* — Nié*cyb

2

ol (e )
< (0= (o- 5 EFF 1)) |
(-G

Straightforward elaboration of (A.16), using (26), (A.7), and
(A.8) now gives (A.15).
Additionally

1
- —o*Qd
N, @

2
(A.16)

D, (w)
¢, (w)

which together with (A.8) shows th#its-&*Q®||» converges
to a finite value. ’ O
Proof of Corollary 5.6: The result follows directly from
Theorem 5.5 and Lemma 8.1. |
Proof of Proposition 6.2:Because of the orthonormality
of the basis functions, it follows that

1Qll2 = H

‘ oo

pu— 1 "

2 J_,

D:i/
2 J_,

Vi(e7)Go(e™) dw
Go(e™) dw.
As
. n 1 .
G(d™,6,) =D+ > Vi(e™)Ly,
k=0

substitution of the previous equations delivers

G(e™.8,)
n—1
1 ‘
z( T zu, ¢
=5 Gole +’;)V Wi(e™™)Go(e) | d¢
1

e / 87 () NGole) ¢

which proves the result. O
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Proof of Proposition 6.3:Using the results of
Theorem 5.5-2) it follows that in the considered limit ]
N o .
— cov][G(e™r), G(e™?
o VG, Ge )] 2
1 i i
— U] * WU 3
nprd) (e“)D*QPp(e™*?). (A.l7) [
[4]
This can be verified by using the fact that there exists ?5]
¢ € R such that|¢(c™)]|2 < c,/n,. Expression (A.17) equals
Nyp 6]
1 . o (I)'u(wé) T/ e o
d)T ezu.l d) e Wy d) 614«.4 d) e tWo .
A D DU F i LGRS I g
1 (71
By applying Lemma 8.1, in the limitV, — oo this [8]
expression will be equal to
(9]
11 N T/ twi —iw (I)’U(w) T/ tw —iwso
e | T e
(A.18) [10]
which proves the result. Uy

Proof of Corollary 6.4: Substituting®.,(w)/®,(w) = 1
in (A.18), and using the orthonormality of the basis functionflz]
ie.,
1

() do "

I,
2 J_, ?
it follows that (A.18) simplifies tol- 7 (™1 )p(e~**2), which  [14]
proves the result. ’ |

Proof of Lemma 6.7:Let the spectral densitie$, and
®,, have stable minimum phase spectral factors, respective%
H, and H,, and denoteH = H,(H,)~!. Then it follows (16]
from Parsseval’s relation that we can write the right-hand side

[15]

expression of (30) as [17]
00 [18]
PEACGEAG
t=0 [19]
where z;(t) = Gi(q)Vo(q)H(q)8(t), with & the unit pulse
signal, or equivalentlyz;(t) = G}(¢@)H(q)vo(t), with |20

Yo ouo(t)z™ =Vo(2). Note thatz;, z; aren,-dimensional
£>-signals. It is proven in [34] that by applying the appropriatﬁl]
Hambo transformation, it follows that

o> T 1 T
> a0ef) =3, |
and sinceHT (¢=“)H(c™)
the result.

Proof of Theorem 6.8:FFor the frequency response[24]
of the estimated model we can writ€/(c*) — D
VI () ... VT_ (¢*)]0,, while the asymptotic covariance [25]
matrix of 6, is the block-Toeplitz matrix induced by the
spectral density functior®,,(w)®,, (w)~!. This situation is
identical to the situation for the time domain identification?!
method described and analyzed in [34] leading to the
corresponding result of the theorem. O

U0 T (=) H (™) dw [22]

P, (w)d,(w)~L, this proves 23]
O
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