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 A B S T R A C T

Study region: Upper Blue Nile Basin (UBNB), Ethiopia.
Study focus: We explored the potential of using the globally available actual evapotranspiration 
(ETa) dataset in the model calibration processes to enhance hydrological model plausibility for 
the large UBNB. We compared three calibration strategies: conventional single-point calibra-
tion based on streamflow data, spatially explicit ETa-based calibration, and a multi-variable 
approach incorporating both streamflow and ETa data.
New hydrological insights for the region: Our results underscore the limitations of single-variable 
calibration in capturing the heterogeneity of the UBNB, particularly in the estimation of ETa. 
By integrating ETa into the calibration process, multi-variable calibration offers improved 
performance across both streamflow and ETa simulations, providing valuable insights into 
basin dynamics and internal processes. This approach, leveraging ETa as a signature of basin 
heterogeneity in the calibration, demonstrates significant promise for enhancing the plausibility 
of hydrological models in the complex, and large UBNB while maintaining computational 
simplicity. We used SWAT+, which is the most recent version of the most used hydrological 
model in the UBNB, SWAT. Thus, this study provides a benchmark for the employment and 
calibration of the SWAT+ model.

1. Introduction

The Upper Blue Nile Basin (UBNB) is a crucial water source for Ethiopia, Sudan and Egypt. The basin is facing challenges, in 
particular, due to rapid population expansion and uncontrolled land use changes (Pricope et al., 2013). Additionally, as reported 
by Swain (2011) and Hassan et al. (2024), significant tensions have emerged among the countries sharing the Blue Nile River because 
of uncertainty regarding the availability of water resources. These tensions became more significant during the construction and 
filling of the Grand Ethiopian Renaissance Dam (GERD) in the Blue Nile just a few kilometres from the border between Sudan 
and Ethiopia. Furthermore, there is no data-sharing protocol between these countries, making hydrological modelling difficult and 
exacerbating the uncertainty over water availability in downstream countries, i.e., Sudan and Egypt.

Conventionally, hydrological models in the UBNB are calibrated against in-situ observed streamflow data at the outlet point of the 
basin (e.g., Lemann et al., 2016; Tegegne et al., 2017; Tigabu et al., 2020). This conventional calibration technique can, however, fail 
to accurately represent internal watershed processes (Daggupati et al., 2015; Apostel et al., 2021), leading to equifinality. Equifinality 
is a principle by which different parameter sets can generate equally acceptable results when evaluating model performance (Beven 
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and Freer, 2001). Recent studies have aimed to reduce equifinality for various basins by employing a cascade calibration, where 
the model is calibrated to streamflow at the different gauge sites starting from upstream or by employing a simultaneous multi-
site streamflow calibration (e.g., Wi et al., 2015; Xue et al., 2016; Lazin et al., 2020; Song et al., 2021). Although these studies 
have shown improvement in model performance, they necessitate access to multiple streamflow gauge stations. Additionally, these 
techniques entail significant computational resources.

Research also suggests the employment of other variables in the calibration along with streamflow, such as actual evapotran-
spiration, can reduce equifinality (López López et al., 2017; Shah et al., 2021). Dembélé et al. (2020) applied a multi-variable 
calibration for the mesoscale Hydrological Model (mHM) in a basin in West Africa. They incorporated ground observations of 
streamflow with remote sensing-based actual evapotranspiration (GLEAM), soil moisture (ESA CCI), and terrestrial water storage 
change (GRACE). Shah et al. (2021) calibrated a SWAT model to streamflow and remotely sensed actual evapotranspiration (MODIS) 
in a small basin in China. Rane and Jayaraj (2022) improved the performance of a SWAT model of a basin in India by applying 
multi-variable calibration. They calibrated the model to in-situ observed streamflow, remotely sensed actual evapotranspiration, and 
Leaf Area Index (LAI) maps.

Although the UBNB is considered an extensively studied basin Dile et al. (2018), previous hydrological models applied in 
literature have been calibrated solely to streamflow data, as in Gebremicael et al. (2013), Onyutha (2019), Mengistu et al. (2021), 
Abebe et al. (2022); and Ali et al. (2023). This limitation underscores a significant research gap in the study of the hydrology of 
the UBNB, particularly given its extensive area and high seasonality. Considering the constraints posed by limited hydrological data 
to adequately predict the hydrological dynamics of the Upper Blue Nile, this study aims to develop a plausible hydrological model 
leveraging remotely sensed evapotranspiration (ETa) data as well as the only available streamflow data due to the absence of a 
data-sharing protocol.

We assessed and analysed the internal catchment processes, as well as the streamflow at calibrated and non-calibrated points 
when employing different calibration strategies for the hydrological model. As the water balance in the UBNB hydrological system 
is mainly influenced by precipitation, streamflow and evapotranspiration (Abiodun et al., 2018), we used actual evapotranspiration 
and streamflow in the calibration of the model. The selection of the model for this study was based on its performance and its 
common use in previous studies of the study area (Van Griensven et al., 2012; Dash et al., 2021; Ali et al., 2023). Thus, we selected 
the SWAT+ model, the newest Soil and Water Assessment Tool (SWAT) version.

This study underscores the importance of the calibration process in hydrological model development and emphasises how 
calibration decisions directly influence model outcomes. Furthermore, it highlights the societal benefits, including improved water 
availability predictions and more effective water resource planning and allocation across various sectors, which may lead to less 
tension between Blue Nile riparian countries.

2. Data and methods

2.1. Study area

The Upper Blue Nile River flows 940 kilometres from Lake Tana to El Diem, the river discharge station on the Ethiopian-Sudanese 
border. The river basin area is approximately 176,000 km2, comprising 17% of the area of Ethiopia (Conway, 1997). The basin 
topography is highly varied, ranging from lowlands to mountain ranges (Tesemma et al., 2010). As shown in Fig.  1, the majority of 
the basin altitude is above 2000 m.a.s.l. Towards the border with Sudan, the topography is almost flat with a minimum altitude of 
494 m.a.s.l. This varied topography has a considerable impact on the spatial rainfall pattern, as most of the precipitation falls in the 
mountainous areas in the eastern part of the basin (Taye et al., 2015). Mean annual precipitation ranges from 800 to 2200 mm/year, 
while the mean annual temperature is 18.5 ◦C, with mean daily maximum and minimum temperatures of 25.5 ◦C and 10.8 ◦C, 
respectively (Legesse Gebre, 2015). The potential evaporation according to Steenhuis et al. (2009) in the UBNB is 3.5 mm/day 
during the long rainy season (June to September) and 5 mm/day during the rest of the year. Reflecting the seasonality of rainfall, 
streamflow is highly seasonal, with high flows concentrated between July and October (Taye et al., 2015). The average streamflow 
at the UBNB outlet in August (≈ 5950 m3/s), when it is at its maximum, some 22 times the minimum flow in March (≈ 270 m3/s).

The geology of the basin is primarily composed of basement and basaltic rocks, with the latter found in more than 50% 
of the basin area located in the Ethiopian highlands. The UBNB lowlands are composed of basement rocks and metamorphic 
rocks (e.g., gneisses and marbles). In addition, there are small areas of unconsolidated sediments, sandstones, and pyroclastic 
ashes (ENTRO, 2007). Groundwater recharge is rapid through fractured basalts, resulting in varied aquifer productivity and 
storage (Kebede et al., 2005). The major soil types in the UBNB are Leptosols, Nitisols, Vertisols, and Luvisols (ENTRO, 2007). 
Nitisols, which cover almost half of the basin, have good retention and high permeability, while Leptosols, found on steep slopes 
in the eastern basin, have low water retention and are prone to erosion. Luvisols around Lake Tana have moderate to good water 
retention and permeability (Getahun and Selassie, 2017). According to the Food and Agriculture Organisation (FAO) classification 
system, the basin land cover is dominated by croplands, complemented by forests and shrublands.
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Fig. 1. Upper Blue Nile Basin and its 29 sub-basins, where the three sub-basins used for ETa calibration and analysis are coloured and indicated by pink for 
Forest, green for Cropland, and orange for Shrubland (a), topography (b) and land use/cover (LULC) classes (c).  (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

2.2. Datasets

2.2.1. Model input data
High-quality and representative rainfall data are essential in hydrological modelling. In this study, we did not have access 

to in-situ rainfall data. Several studies evaluated the performance of globally available remotely sensed rainfall data over the 
UBNB, finding that the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) v2.0 outperformed several other 
products (Bayissa et al., 2017; Ayehu et al., 2018; Ali et al., 2023). The CHIRPS dataset is an integration of infrared satellite 
data, which offers a comprehensive overview of cloud activity, with ground-based station observations, which provide precise 
and localised rainfall measurements. For the UBNB, CHIRPS uses more than 40 gauge station datasets, with varied availability. 
The CHIRPS dataset covers the period from 1981 to the present, with a spatial resolution of 0.05◦ (Funk et al., 2014). The fifth-
generation reanalysis product of the European Centre for Medium-Range Weather Forecasts (ERA5-Land) was used to derive other 
climatic data, i.e., temperature, relative humidity, and solar radiation. These datasets have hourly timestep and spatial resolution 
of 0.1◦, spanning from 1950 to the present (Hersbach et al., 2019). The combination of CHIRPS and ERA5-Land data sources was 
chosen to ensure a robust dataset for hydrological modelling, considering the strengths and characteristics of each. These datasets 
were aggregated to form one virtual station per sub-basin with daily temporal resolution.

In addition to the dynamic meteorological datasets, three static maps were employed in the model. The Digital Elevation Model 
(DEM) from the Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 90 m (Farr et al., 2007) was used to calculate 
the catchment characteristics (e.g., flow direction, slope, and river network). For the soil map, the Harmonised World Soil Database 
(HWSD), developed by FAO and IIASA (Fischer et al., 2008), was used to extract soil information specific to the study area. For 
land cover, the dataset for the year 2019 with a resolution of 100 metres developed by the Copernicus Global Land Service was 
used (Tsendbazar et al., 2021).

2.2.2. Model calibration and validation data
Model calibration and validation were done using daily streamflow and monthly ETa. Streamflow data was obtained from the 

El Diem station, which is located at the basin outlet on the Ethiopian-Sudanese border. The Sudanese Ministry of Irrigation and 
Water Resources provided streamflow data at El Diem from 2000 to 2019. Streamflow data for El Diem station from 1997 to 1999 
were unavailable, while the filling of the GERD started in 2020, limiting our analysis to the years 2000–2019. For the ETa, there is 
no in-situ data, but there are several global products available. The extended triple collocation approach (Stoffelen, 1998; McColl 
et al., 2014) was used to select the product that is best suited to represent the ETa for the basin. GLEAM v3.8a (Martens et al., 
2017) dataset was found to be better representing the ETa in comparison with SSEBop and WaPOR (the methodology followed and 
results are in the supplementary material). GLEAM is an advanced land surface model from the Global Land Evaporation Amsterdam 
Model with a monthly temporal resolution and 0.25◦ spatial resolution. It uses satellite-derived measurements such as soil moisture 
and vegetation optical depth. Reanalysis of solar radiation, rainfall, and temperature datasets are used as forcing data. This product 
has been evaluated in different areas across the globe and has been previously applied in the Nile basin (Abera et al., 2017; Nooni 
et al., 2019; Lazin et al., 2020).
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2.3. SWAT+ hydrological model

The SWAT model (Arnold et al., 1998) is a continuous time, process-based, semi-distributed hydrological model. Since its 
development, the model has been continuously updated to improve its accuracy and effectiveness (Neitsch et al., 2011). SWAT+ 
v2.3 (Dile et al., 2023) was used for this study. SWAT+ is an upgraded version of SWAT, which is more flexible and easier in terms 
of development and maintenance (Bieger et al., 2017). Inputs to the model include DEM, land cover, soil, and climatic data. Soil 
characteristics from the FAO database were verified to ensure they were within the appropriate ranges presented by Salter and 
Williams (1967), Mohr et al. (2000), Saxton and Rawls (2006); and Zeri et al. (2018). In SWAT, the watershed is partitioned into 
multiple sub-basins, which are further divided into hydrologic response units (HRUs) representing unique combinations of land use, 
soil, and slope characteristics. The simulation of the hydrological variables is done at the HRU level and subsequently aggregated 
to the basin scale. As it is possible to generate thousands of these combinations, a filter was implemented to reduce the number of 
HRUs to typically used values (Chawanda et al., 2020).

The semi-distributed SWAT+ model was selected for this study due to its widespread use in the UBNB as well as its balance 
between computational efficiency and hydrological detail. Although fully distributed models may be better suited for spatial 
calibration, these require extensive input data and present parameterisation challenges. In contrast, SWAT+ effectively represents 
basin heterogeneity while maintaining practical applicability.

In SWAT+ Editor, weather data were imported as one virtual station per sub-basin and the calculation methods were specified. 
Surface runoff was computed using the Soil Conservation Service Curve Number method, which calculates runoff based on the 
partitioning of precipitation between soil infiltration and surface runoff (Neitsch et al., 2011). There are three methods to calculate 
the potential evapotranspiration (ETp) in SWAT, namely the Penman–Monteith, Priestley–Taylor, and Hargreaves methods. Potential 
evapotranspiration can also be directly provided as input data. The Priestley–Taylor method (Priestley and Taylor, 1972) was 
used to calculate ETp so that a compatible simulation with GLEAM can be achieved. Actual evapotranspiration was determined 
as evaporation from canopy interception and soil and transpiration from plants.

SWAT+ Editor provides two calibration routines, soft and hard calibration (SWAT, 2023). Soft calibration requires data as 
information on specific water balance processes, such as the mean annual runoff coefficient and mean annual depth of the 
unsaturated zone (Nkwasa et al., 2022), while hard calibration data are time series at specific points, such as streamflow and 
ETa (SWAT, 2023). Additionally, a number of calibration tools have been developed or adapted for use with SWAT+, including 
IPEAT+ (Yen et al., 2019) and RSWAT (Nguyen et al., 2022).

2.4. Calibration strategies

Calibration is the process that limits the range of possible parameter values to determine the most suitable values that adequately 
represent the physical processes in a basin (Rajib et al., 2018). The data splitting for calibration and validation was determined based 
on data analysis (Dahmen and Hall, 1990; Venneker, 2011), ensuring the two datasets are statistically similar. The calibration period 
was from 2002 to 2014 and the validation period was from 2016 to 2019. The measurements for the year 2015 seemed to be 
unreliable, showing unusual flow, and were therefore omitted. The years 2000 and 2001 were used as a warm-up period.

We followed a systematic approach to analyse the model parameters and calibrate them. A local sensitivity analysis for SWAT+ 
parameters was performed to identify those most sensitive to streamflow and ETa. The advantage of this local analysis, where 
each parameter was changed individually, is that it allows for an in-depth understanding of the impact a parameter variation has 
on the model output. Particular attention was paid to the highly sensitive parameters reported by Sultana et al. (2019), Mengistu 
et al. (2021); and Takele et al. (2021) in their studies of the UBNB, as shown in Table  1. In addition to the local analysis, a global 
sensitivity analysis was conducted with 300 simulations, following the uniform Latin Hypercube Sampling approach (LHS). The 
uniform LHS is a global search method. It divides each parameter’s range into equal intervals and randomly samples within these 
intervals, ensuring that the entire space is explored uniformly.

After identifying the most sensitive parameters, their values were fitted to streamflow and ETa using three calibration strategies, 
detailed below. The first of these strategies (calibration I) was based on the conventional calibration method followed in the 
literature, calibrating the model to streamflow at the basin outlet at El Diem (Fig.  1). A second strategy (calibration II) followed was 
by calibration of the model to monthly ETa of three sub-basins, while the third strategy (calibration III) was based on calibrating 
the model to both daily streamflow and monthly ETa, i.e., multi-variable calibration. These calibration processes were performed 
sequentially: calibration II was performed on the model already calibrated by calibration I and calibration III was conducted on the 
model post-calibration II. The calibration of ETa was performed using globally available GLEAM datasets, while the streamflow was 
based on the in-situ streamflow data of El Diem.

SWAT+ was first calibrated automatically using the RSWAT tool (Nguyen et al., 2022), constraining the model parameters with 
the prior ranges shown in Table  1. After identifying the best parameter set from RSWAT, the model was critically fine-tuned by 
manual calibration using the hard calibration routine in SWAT+ Editor to ensure that parameter values were realistic and resulted 
in acceptable simulation based on the literature and our understanding of the catchment. Additionally, for ETa calibration in the 
second and third strategies, biophysical parameters, shown in Table  2, were fitted manually as they are not available in the automatic 
calibration tool. The values of these parameters, e.g., biomass and leaf area index, were adjusted following the ranges identified 
by Dile et al. (2020).

Two types of change were applied to the model parameters: relative and replace. The relative change, or percentage change, was 
applied to parameters related to geographical attributes such as soil type, land use class, and/or slope band. In this change type, the 
value of each parameter is multiplied by a factor. This is essential for maintaining the spatial variability of basin characteristics. In 
contrast, a replacement change was applied for the parameters that exhibit uniformity across the study area. The parameter value 
changed to a new value in each simulation. This includes parameters such as channel hydraulic conductivity.
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Table 1
Ranges of sensitive parameter in SWAT+ model, the fitted value ranges reported in the literature for the UBNB and the ranges used in this study for
calibration.
 Parameter Description Change type Parameter range Reported range Calibration range 
 cn2 Initial SCS runoff CN for moisture condition II Relative 35–95 −0.15–0.11 −0.25–0.25  
 alpha_bfa Baseflow alpha factor (days) Replace 0–1 0.19–0.35 0.03a  
 revap_co Groundwater ‘‘revap’’ coefficient Replace 0.02–0.2 0.12–0.17 0.02–0.2  
 esco Soil evaporation compensation factor Replace 0–1 0.68–0.95 0.1– 1  
 revap_min Threshold depth of water in the shallow aquifer to 

return to the root zone (m)
Replace 0–50 0.07–0.228 0–1.5  

 perco Percolation coefficient; adjusts soil moisture for 
percolation to occur

Replace 0–1 0.28 0–1  

 chn Manning’s ‘n’ value for the main channel Replace −0.01–0.3 0.084–0.15 0.01–0.15  
 awc Available water capacity (mmH2O∕mm𝑠𝑜𝑖𝑙) Relative 0.01–1 0–0.5 −0.25–0.25  
 k Saturated soil hydraulic conductivity (mm∕h) Relative 0–2000 −0.43–0.15 −0.25–0.25  
 chk Channel effective hydraulic conductivity (mm∕h) Replace −0.01–500 75–134 50–200  
 canmx Maximum canopy storage ( mm) Replace 0–100 3–4.9 0–15  
 epco Plant uptake compensation factor Replace 0–1 – 0–1  
 surlag Surface runoff lag coefficient (days) Replace 0.05–24 – 0.05–24  
 evlai Leaf area index at which no evaporation occurs 

from the water surface
Relative 0–10 – −0.25 –0.25  

 ovn Manning’s factor ‘n’ for overland flow Relative 0.01–0.3 – −0.25–0.25  
 bd Soil bulk density (g∕cm3) Relative 0.9–2.5 – −0.25–0.25  
 alb Soil albedo when soil is moist Relative 0–2.5 – −0.25–0.25  
a alpha_bf was calculated from the observed hydrograph using the equation (ln

(

𝑄N
𝑄0

)

∕𝑁), N is the number of time steps after the recession began (Neitsch 
et al., 2011).

2.5. Model performance evaluation

The streamflow simulated from each calibration strategy was evaluated using Nash–Sutcliffe Efficiency (NSE), Kling Gupta 
Efficiency (KGE), and Percent Bias (PBias). The use of these metrics provides broad insights into model performance. NSE (Nash and 
Sutcliffe, 1970) is a commonly used metric, examining both the mean and variability compared to the observed data. However, NSE 
is sensitive to extreme flows and biases (Gupta et al., 2009). To overcome these drawbacks, KGE was also used. KGE (Gupta et al., 
2009) is a comprehensive metric that considers bias, correlation, and variability, providing a more holistic assessment of the model’s 
ability to recreate various aspects of hydrological behaviour. On the other hand, the performance evaluation of simulated ETa was 
through the Ratio of Root Mean Square Error to Standard Deviation (RSR) and Percent Bias (PBias). These metrics were chosen 
differently for ETa simulations compared to streamflow based on their suitability for assessing the adequacy of ETa simulations 
in capturing the variability and bias. KGE and NSE, on the other hand, reflect their effectiveness in assessing flow dynamics and 
overall performance in streamflow simulations. The performance ratings of these metrics were based on the classification proposed 
by Moriasi et al. (2007) and Rogelis et al. (2016).

During the calibration process, the monthly ETa was evaluated for three sub-basins (see analysed sub-basins in Fig.  1a), each 
characterised by its unique land use of forest, cropland, and shrubland. The forest and cropland sub-basins were mostly covered by 
their respective land uses, with over 80% of the area occupied by forests or crops. However, the shrubland sub-basin had only 35% 
of its area covered by shrubland. Although it is not dominated by shrubland, it has the highest percentage of shrubland cover among 
all the 29 sub-basins generated by SWAT+. The selection of these sub-basins was made to ensure that the model could effectively 
capture the variability in ETa associated with diverse land use patterns.

2.6. Model comparison

The results from the three calibration strategies were compared and analysed at various spatio-temporal scales. In the study, 
ETa was chosen as the internal catchment process due to its significance in the basin’s water balance dynamics accounting for more 
than 40% of the UBNB water balance (Abera et al., 2017; Abebe et al., 2022). In addition to evaluating overall model performance, 
the results were analysed in quantile domains (duration curves) to assess the model’s ability to simulate low and high values of 
streamflow and ETa (Tegegne et al., 2017). Furthermore, we investigated the relationship between the simulated ETa performance 
of the 29 sub-basins and the sub-basin elevation and land cover types to understand how these factors influence ETa performance 
across the basin.

3. Results and analysis

3.1. Fitting the model parameters

Starting with a sensitivity analysis, our result revealed that the parameter sensitivity is dependent on the calibration strategy. 
The analysis results indicated that the curve number (cn2) is the parameter that the streamflow is most sensitive to, while ETa 
5 
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Table 2
Fitted parameters for the three calibration strategies and their performances during the validation period (2016–2019).
 Parameter Change type Fitted value
 Calibration I Calibration II Calibration III 
 cn2 Relative −0.12 −0.12 –  
 awc Relative −0.1 −0.1 −0.18  
 perco Replace 0.4 0.4 0.4  
 epco Replace 0.95 0.95 0.95  
 esco Replace 0.9 0.9 0.9  
 chk Replace 150 150 150  
 chn Replace 0.011 0.011 0.011  
 bd Relative 0.1 0.1 0.1  
 k Relative −0.03 −0.03 −0.03  
 alpha_bf Replace 0.03 0.03 0.03  
 revap_min Replace 0.6 0.6 0.6  
 revap_co Replace 0.18 0.18 0.18  
 Forest: Initial biomass (kg∕ha) Replace – 1000 1000  
 Forest: Initial residue cover (kg∕ha) Replace – 1000 1000  
 Forest: Initial leaf area index (m2/m2) Replace – 5 5  
 Forest: Biomass energy ratio ((kg∕ha)/(MJ∕m2)) Replace – 10 10  
 Forest: Maximum leaf area index (m2/m2) Replace – 7 7  
 Shrubland: Initial biomass (kg∕ha) Replace – 1000 1000  
 Shrubland: Biomass energy ratio ((kg∕ha)/(MJ∕m2)) Replace – 40 40  
 Performance metrics
 NSE 0.83 0.20 0.61  
 KGE 0.69 0.44 0.66  
 PBias 21.6% 62.7% 42.7%  

Note: The changes presented in this table show deviations from the default values rather than sequential modifications between calibrations. For example, CN2 
was adjusted by 12% relative to its default value in both Calibration I and Calibration II and remained at its default value in Calibration III.

is most sensitive to the soil evaporation compensation factor (esco). The soil bulk density (bd) was found to be sensitive for both 
calibration variables, i.e., streamflow and ETa. Although these parameters were identified as the most sensitive, adjusting each has 
implications for the physical representation of the watershed. For instance, the curve number is influenced by soil type and land 
use, which were incorporated into the model using globally available data and subsequently validated with Google Earth imagery 
and literature. Adjusting these parameters entails altering the physical characteristics of the study area, highlighting the importance 
of careful calibration. Given the lack of field data, calibration remains the optimal approach for adequate model performance.

After identifying all the sensitive parameters, they were fitted to streamflow and ETa following calibration I, calibration II, and 
calibration III strategies. In calibration I, changes were made to the model parameters to improve the daily streamflow simulation at 
El Diem, the basin outlet point. Generally, the results show that the model has the potential to capture the dynamics and variability 
of streamflow. However, as depicted by the high positive bias percentage shown in Table  2, the model significantly underestimates 
streamflow during the validation period from 2016 to 2019. Calibration II was based on considering calibration I as a baseline 
model, and changes were made to the biophysical parameters only. The biophysical parameters were adjusted following the ranges 
specified by Dile et al. (2020) for Ethiopia. The focus on ETa performance led to the degradation of the streamflow performance, 
although the streamflow sensitive parameters were kept constant as reflected in Table  2. This second model was then used as a 
baseline for the multi-variable calibration III strategy. For this strategy, it was found that keeping all the parameters as they were 
in calibration II, while only removing the -12% from the curve number (cn2), i.e., keeping it as model default, and reducing the 
available water capacity (awc) parameter by -18% produced the best simulations of streamflow and ETa (see Table  2). Hydrographs 
for all simulations are provided in the supplementary material, Fig. S4.

The model performance for simulating daily streamflow in the three strategies during the validation period is shown in Table 
2. These metrics indicate that the model performs better in representing the daily streamflow at El Diem when calibrated solely 
to streamflow, while it exhibits the poorest performance when streamflow is not taken into consideration in calibration, even 
though the parameters streamflow is sensitive to were not changed. However, balanced performances for streamflow and ETa were 
achieved when both calibration variables were considered during calibration. The high PBias for the three strategies are due to 
the significant underestimation of streamflow in the model, resulting from a drawback in the SWAT model, where infiltrated water 
fails to contribute to the aquifer and instead disappears from the system (Van Griensven et al., 2012). Some improvements have 
been made in SWAT+ to address this issue, as discussed by Sánchez-Gómez et al. (2024). However, despite the careful calibration 
conducted in this study, water losses persist, indicating that some limitations remain within SWAT+.

3.2. Exploring the ETa simulation from different land uses

Similar to the changes observed in the daily streamflow simulation depending on the calibration strategy, the simulation results 
of ETa also vary. The performance of ETa simulation was explored in three sub-basins, which are shown in Fig.  1a, and compared 
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Fig. 2. Monthly ETa of GLEAM (blue lines) and SWAT+ simulations (red lines) calibrated to streamflow (first row), GLEAM ETa (second row), and streamflow 
and ETa (third row). The simulations of the cropland sub-basin are shown in the first column on the left, the forest sub-basin in the middle, and the shrubland 
sub-basin in the third column.

to GLEAM monthly ETa. Although the model subjected to calibration I yielded the best performance for streamflow, it provided 
inaccurate estimations for monthly ETa, especially in forested areas, as illustrated in Fig.  2. The ETa simulation for the forest basin 
exhibited an unrealistic pattern. However, after adjusting the biophysical parameters in calibration II, the ETa simulation for the 
forest sub-basin significantly improved. Similarly, the calibration II model produced better simulations for ETa in the shrubland 
basin. Comparison between calibration II and calibration III indicates a slight decline in ETa simulation performances in the three 
sub-basins, compensating for the higher performance in streamflow values (see Table  2).

Fig.  3 presents the flow duration curves at El Diem and ETa at the three sub-basins for the three calibration strategies. It is 
evident from Fig.  3(a) that all calibration strategies resulted in an underestimation of the El Diem flow compared to the observed 
data (black line) across all flow conditions. The degree of underestimation decreased with decreasing streamflow; in other words, the 
most significant underestimation occurred during high-flow conditions (0—10%), while the least underestimation occurred during 
dry conditions (90—100%). On the other hand, a slight overestimation of ETa in the three sub-basins was observed, especially during 
the high ETa period from August to October, except for calibration I, which showed unusual performance in the forest sub-basin and 
underestimation in shrubland. Furthermore, the results demonstrate that calibration III notably enhances streamflow simulation at 
El Diem compared to calibration II, although a very slight deterioration in ETa simulation was observed. This implies that calibration 
II improved the performance of ETa at the expense of streamflow.

3.3. Spatial variation in ETa simulation performance

Analysing the monthly ETa simulation results across all the 29 sub-basins of the UBNB simultaneously, Fig.  4 highlights that 
in calibration I, all sub-basins exhibit higher PBias compared to calibrations II and III. Additionally, approximately 45% of the 
sub-basins show slightly lower RSR. Moreover, it is apparent that calibrations II and III yield similar ETa performance in terms of 
PBias and RSR. Specifically, Fig.  4(a) indicates that approximately 30% of sub-basins in calibration I overestimate ETa, while around 
90% do so in calibrations II and III.
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Fig. 3. Duration curves of SWAT+ simulation results and observed data using the three calibration strategies. (c) ETa in the forest sub-basin, and (d) ETa in 
the shrubland sub-basin. The black line in (a) represents El Diem observed streamflow, while in (b), (c), and (d), it represents GLEAM ETa data.

In analysing the simulations concerning the sub-basin characteristics, Fig.  5(a) indicates that most of the underestimation in 
calibration I occurs in forest-dominated sub-basins, as well as those dominated by cropland & forest. This tendency may be attributed 
to the high sensitivity of forest areas to ETa. The analysis included a total of 7 sub-basins dominated by forest, 14 by cropland, 1 
8 
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Fig. 3. (continued).

by a mix of cropland & shrubland, and 7 by cropland & forest. The best performance in calibration I, as depicted in Figs.  5(a) and
5(b), is observed in cropland sub-basins. The land use management routine in SWAT, where existing crops are integrated into the 
model, enables better simulation of cropland sub-basins even with little or no calibration. Analysing the correlation between average 
sub-basin elevation and ETa performance, calibration I exhibits better simulations for higher elevations, as illustrated in Figs.  5(a)
9 
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Fig. 4. Distribution of ETa simulation performances for the three calibration strategies across the 29 sub-basins of the UBNB. The x-axis represents the percentage 
of sub-basins out of all the 29 sub-basins. (a) Performance distribution using PBias, and (b) performance distribution using RSR. Calibration I is illustrated in red 
in the two plots, calibration II in blue, and calibration III in green.  (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

and 5(b). However, this link cannot be solely attributed to elevation, given that nearly all forest sub-basins are located in lower 
elevation bands. In contrast, calibrations II and III show no clear relation or pattern between ETa performance and the elevation 
band. The spatial distribution map of the model performance concerning elevation and land use type averaged per sub-basin is 
provided in the supplementary materials, Fig. S6.

4. Discussions

4.1. Application to large and heterogeneous basins

Simulating water flows in large and spatially heterogeneous basins, such as the UBNB, presents significant challenges due to the 
complex nature of basin processes. Previous studies have demonstrated improvements in hydrological simulations when additional 
variables are included in the model calibration (Dembélé et al., 2020; Shah et al., 2021; Rane and Jayaraj, 2022). However, these 
studies were primarily conducted in relatively small basins, whereas the internal watershed processes in large and heterogeneous 
basins are more significant (Daggupati et al., 2015). In our study, the SWAT+ model successfully captured streamflow during 
calibration I, but significant disparities were detected in the simulation of ETa, indicating limitations in representing internal 
catchment processes. This finding aligns with those of Gao et al. (2018) and Ávila et al. (2022), who emphasised the difficulties 
in accounting for all catchment processes in large heterogeneous basins. For example, Ávila et al. (2022) conducted a review of 
landscape-based hydrological models, highlighting how landscape heterogeneity affects water balance components and underscoring 
the importance of considering this complexity when applying hydrological models. Additionally, Srivastava et al. (2020) presented 
an improved approach to address the challenge of representing land use heterogeneity in hydrological models. Their method involved 
incorporating both uniform and heterogeneous agricultural land use to analyse its impact on hydrological responses, leading to more 
realistic simulations that better reflect the impact of land use variations.

In our study, integrating ETa in the calibration process as a signature of land use heterogeneity proved effective in improving 
model performance. This approach is supported by Shah et al. (2021), who proposed incorporating remotely sensed ETa data into 
model calibration to capture crucial land surface processes, thereby constraining model parameters and achieving more accurate 
representations of catchment processes. One advantage of using ETa as a signature is its feasibility within a lumped modelling 
framework, where land use is simplified. Furthermore, as Mei et al. (2023) discussed, the inclusion of ETa in the calibration reflects 
the relationship between soil moisture and ETa and enhances soil moisture simulation, thereby improving the overall performance 
of the model. The Gravity Recovery and Climate Experiment (GRACE) can be utilised to provide key parameters for terrestrial 
water storage estimation, thereby reducing biases in hydrological models. GRACE data (Rodell and Famiglietti, 2001) is particularly 
powerful for tracking changes in total water storage, including surface water, soil moisture, and groundwater (Abera et al., 2017). 
However, while we acknowledge the potential of GRACE, it was beyond the scope of our research, which focused on improving the 
model performance at the sub-basin level. A study by Chavarría et al. (2022) found that the performance of GRACE diminishes as 
the catchment area decreases. The average area of the UBNB sub-basins is approximately 10,000 km2, significantly smaller than the 
threshold of around 70,000 km2, below which GRACE’s performance notably declines.
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Fig. 5. The correlation between ETa simulation performance and sub-basin characteristics, where (a) is the dominant land use per sub-basin and PBias, (b) is 
the dominant land use per sub-basin and RSR, (c) is the sub-basin average elevation with PBias, and (d) is the sub-basin average elevation with RSR. The four 
plots illustrate calibration I in red, calibration II in blue, and calibration III in green.  (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

4.2. Hydrological model plausibility

In further analysis, we assessed the simulation of streamflow at the Kessie Bridge gauge station (see Fig.  1). Due to the 
unavailability of streamflow data from this station for this study, we referenced observed flow graphs presented by Takele et al. 
(2021) and Abebe et al. (2022). Our results from the three calibration strategies revealed a significant underestimation of flow 
at this location by the model (see Fig. S5 in the supplementary materials). The assessment revealed that while the calibration II 
strategy significantly underestimated streamflow at El Diem compared to calibration I, there was only a small difference between 
them in simulating the streamflow at Kessie Bridge. This is because parameter adjustments in calibration II primarily focused on 
the forested area downstream of Kessie Bridge, with minor adjustments to shrubland parameters (upstream area; see Fig.  1c).

Calibration III, however, produced improved monthly streamflow results at Kessie Bridge. This shows that the incorporation of 
ETa into the calibration process for El Diem had a cascading positive effect on streamflow representation in additional locations. This 
improvement can be understood by examining the compensatory effects in the other two calibration strategies. In calibration I, the 
model achieved better streamflow results at the basin outlet by compensating for poor ETa performances, effectively redistributing 
water in a way that masked underlying inaccuracies. In calibration II, while the focus on ETa improved its representation across 
the catchment, it did so at the expense of streamflow, as the calibration did not fully resolve the compensatory mechanisms at play. 
Calibration III, with its multi-variable approach, reduced the model’s reliance on such compensations. By adjusting key parameters 
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of curve number (cn2) and available water capacity (awc), calibration III achieved a more accurate and balanced water distribution 
across the catchment, leading to plausible simulations of both ETa and streamflow at El Diem and other locations. In agreement 
with Yang et al. (2018) and Haas et al. (2022, 2024), our findings emphasise that a sole focus on streamflow, as often seen in 
hydrological modelling practice, can lead to significant misrepresentation of internal catchment processes, particularly regarding 
ETa from forested areas.

The erroneous simulation of ETa in forest basins is a problem previously noted in the literature. Yang and Zhang (2016) 
have highlighted that the default settings of SWAT often include unrealistic radiation use efficiency and leaf-to-biomass fraction, 
leading to inadequate estimations of ETa. Alemayehu et al. (2017) reported that the model’s simplistic representation of canopy 
processes and inadequate parameterisation of the soil-plant-atmosphere continuum further contribute to these inaccuracies. By 
incorporating spatially distributed ETa data alongside streamflow data into the calibration process, we significantly improved the 
model’s performance. This adjustment allowed for a more realistic representation of forest ETa and better alignment with GLEAM 
ETa values, effectively addressing the previously noted discrepancies. In future revisions of the SWAT+, the representation of canopy 
processes, as well as the default settings used could well be improved.

Our comprehensive analysis of basin hydrological processes, compared with real-world hydrology, challenges the efficacy of the 
widely used calibration strategy focusing solely on streamflow at the UBNB outlet (calibration I) using SWAT+. Despite yielding 
the best performance in terms of the NSE metric, the calibration I strategy is critiqued for its implausibility. Incorporating spatially 
distributed ETa data alongside streamflow into the calibration process allowed for a better simulation of vertical and horizontal 
water fluxes and balanced energy exchange between the canopy and ground. Moreover, highlighting that calibration I achieved 
the highest performance scores agrees with the notion that ‘‘the best is the enemy of the good’’, as argued also by Beven (2006) 
and Cinkus et al. (2023).

Although the use of remotely sensed ETa served to improve the plausibility of the calibrated model, the reliance on GLEAM as an 
observational dataset introduces a layer of uncertainty. While a comparison of three ETa products through triple collocation favoured 
GLEAM for the UBNB, it is important to recognise that no dataset is entirely error-free (Weerasinghe et al., 2020). Assumptions of 
error-free data may overlook biases stemming from indirect estimation methods, retrieval algorithm limitations, or inaccuracies in 
meteorological inputs. Moreover, the spatial resolution of the data and the use of monthly, rather than daily, ETa measurements 
may restrict the strategy’s efficacy. This may overlook rapid fluctuations in evapotranspiration, potentially affecting model accuracy 
under dynamic environmental conditions (Zhang et al., 2021). Similarly, the use of CHIRPS for rainfall as an observational input also 
introduces uncertainty. CHIRPS has demonstrated strong performance in the UBNB through correcting satellite rainfall estimation 
with the available data from the limited number of rainfall stations in the basin Ayehu et al. (2018), Ali et al. (2023) and Lemma 
et al. (2019). Despite this, its limitations must be acknowledged, as CHIRPS tends to underrepresent high-intensity rainfall events. 
One reason for this is the data assimilation approach, which is not dynamically nudging-based (Funk et al., 2014), but rather applies 
more spatially generalised corrections. This may result in extremes being underrepresented when compared to those observed at 
individual rainfall stations.

4.3. Which calibration strategy to follow?

Calibrating hydrological models is pivotal for adequate water resource management and policy formulation. However, choosing 
the appropriate calibration strategy remains a subject of debate within the hydrological modelling community. Effective calibration 
of hydrological models necessitates the integration of both horizontal and vertical flux components, along with an understanding 
of the interconnectedness of model parameters. In this study, we combined a spatial (GLEAM ETa) with a single-point (El Diem 
streamflow) calibration. This hybrid approach was identified as the most effective in producing adequate hydrological simulations, 
as discussed by Rajib et al. (2018). Additionally, researchers such as López López et al. (2017) and Herman et al. (2018) emphasise 
the importance of incorporating both horizontal (e.g., streamflow) and vertical (e.g., ETa) flux components in the calibration process. 
Neglecting either component can lead to incomplete representations of watershed processes. This was apparent in calibrations I and 
II, as well as in attempts to calibrate the model to ETa from scratch, without using calibration I as a baseline, which produced 
unrealistic streamflow simulations (see Fig. S4 in the supplementary materials). Furthermore, Zhang et al. (2021) caution against 
relying solely on single variable calibration, as it may result in simulations that are only acceptable for the calibrated variable, 
failing to capture the complexities of the entire system as outlined in our results. These findings highlight the interconnected nature 
of hydrological systems and the importance of considering multiple variables in calibration.

In a more in-depth analysis, we applied the sequential calibration concept but started with ETa, followed by streamflow, and 
then multi-variable calibration. This analysis revealed that calibrating the model to ETa first generated adequate ETa simulations 
(NSE𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.81) but erroneous streamflow simulations (NSE = −8.7) with substantial spikes, as expected. However, subsequent 
calibration to streamflow significantly improved streamflow simulation (NSE = 0.81) and kept the very good performance of ETa 
(NSE𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.76). This performance can be attributed to the sensitivity of model parameters to these variables. Streamflow is 
highly sensitive to parameters that also influence ETa. For example, soil bulk density affects both variables differently: the t-stat, 
a ratio of a parameter value to its error (Abbaspour, 2015) offering a measure of the degree of sensitivity, is 12.64 for streamflow 
and −1.76 for ETa. This difference in sensitivity significance led to better performance in the second sequential calibration, even 
though ETa was not (directly) included in the calibration process. These results suggest that starting the calibration with a variable 
that represents catchment heterogeneity, rather than one that represents a lumped response, can be a more effective approach.

In the UBNB, our review reveals a predominant focus on calibrating hydrological models solely on streamflow data. For example, 
studies by Gebremicael et al. (2013) and Mekonnen et al. (2018) investigated the impacts of land use and land cover changes 
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on streamflow using the SWAT model, calibrated to El Diem streamflow data. While their models achieved good performance in 
simulating streamflow at the basin outlet point, it would be important to assess how well the basin heterogeneity is represented. Thus, 
to ensure more plausible simulations and address the complexity of the UBNB, we suggest the adoption of a multi-variable calibration 
strategy in such studies. Similarly, Lazin et al. (2020) and Takele et al. (2021) analysed water cycle components in the basin using 
SWAT and the distributed CREST model, respectively. Although all these studies achieved high-performance ratings for streamflow 
in terms of NSE, according to the criteria established by Moriasi et al. (2007), relying solely on streamflow performance may not 
fully capture the intricacies of the hydrological system within the UBNB. Yet, some experts argue that for studies focusing solely on 
streamflow, multi-variable calibration may not be necessary. The applicability of such models should be considered carefully.

In this study, we primarily focused on time-series evaluation metrics (e.g., NSE). However, some recent studies incorporate 
pattern performance metrics for calibrating gridded data, such as ETa. These metrics complement temporal-based metrics (e.g., NSE) 
for streamflow, providing additional insights into model performance. A commonly used measure is the SPAtial EFficiency metric 
(SPAEF), developed by Koch et al. (2018), which evaluates spatial pattern agreement. Since these metrics focus on spatial variability, 
they are mostly applied to fully distributed models (e.g., Demirel et al. (2024, 2018)). Future research could explore the impact of 
calibrating ETa using spatial metrics (Eini et al., 2023) at the HRU and sub-basin levels, comparing their effectiveness to traditional 
temporal-based approaches. This could enhance SWAT+ model performance by improving spatial pattern representation.

While acknowledging computational costs associated with multi-variable calibration strategies, it is evident from our results that 
such an approach is required for achieving plausible hydrological simulations. The findings underscore the necessity of investing 
computational resources to ensure the accuracy of model outputs. Given the common single-variable calibration routines in existing 
models, we suggest that model developers incorporate multi-variable calibration capabilities in their modelling software, which 
may simplify the calibration process for researchers and hydrological modellers, thereby enhancing the accuracy and robustness of 
hydrological predictions.

5. Conclusions

This study investigated the plausibility of the Soil and Water Assessment Tool Plus (SWAT+) model in the large and heterogeneous 
Upper Blue Nile Basin (UBNB), addressing the challenges posed by the limited presence of ground gauge stations and the lack of 
data-sharing protocols between the Blue Nile riparian countries. Globally available remote sensing and reanalysis datasets were 
used as inputs for SWAT+. CHIRPS, which integrates satellite precipitation estimates with ground-based stations, was used as 
precipitation forcing. The reanalysis ERA5-Land datasets were used for temperature, solar radiation, and relative humidity. Based 
on statistical data analysis, the model was developed for a period of 20 years: a two-year warmup (2000–2001), thirteen years 
for calibration (2002–2014), and four years for validation (2016–2019). Three calibration strategies were designed to assess and 
analyse the plausibility of the hydrological model, with streamflow and actual evapotranspiration (ETa) as calibration variables. 
Actual evapotranspiration was selected as a signature of internal catchment processes due to its representation of more than 40% 
of the water budget in the UBNB. The Global Land Evaporation Amsterdam Model (GLEAM) ETa dataset was chosen for this study 
due to its good performance over the UBNB. The internal catchment process analysis was conducted across various sub-basins with 
different characteristics to capture the heterogeneity of the region effectively, along with El Diem streamflow at the basin outlet 
point.

Through sensitivity analysis, we identified the most sensitive parameters to be used for calibrating the model. Subsequent model 
parameter fitting, employing three calibration strategies, provided an in-depth insight into the internal hydrological dynamic of the 
basin. The first strategy (Calibration I), focusing solely on the observed streamflow at El Diem, excelled in capturing daily streamflow 
but failed to adequately simulate monthly ETa. In contrast, Calibration II, using GLEAM ETa, showed improved ETa simulations after 
adjustment of the biophysical parameters. Calibration III, which included both streamflow and ETa in calibration, proved to be the 
most viable strategy, producing satisfactory results for both daily streamflow and monthly ETa.

Our findings underscore the limitations of conventional calibration strategies focusing solely on streamflow or ETa. This study 
aligns with previous research, highlighting the interconnected nature of hydrological processes and advocating for incorporating 
both point (e.g., streamflow) and spatial (e.g., ETa) variables in calibration. This approach ensures more plausible simulations while 
effectively resolving the complexities of basin heterogeneity. Furthermore, our analysis reveals critical insights into hydrological 
model plausibility in the UBNB, highlighting the significance of calibration strategies in enhancing model realism. By adopting a 
multi-variable calibration approach with SWAT+, our study offers valuable benchmarks for future research endeavours in the UBNB 
and basins with similar characteristics. From these results, it can also be suggested that the third calibration strategy can be applied 
in lumped models where land use characteristics are significantly simplified, to improve model plausibility and performance.

Given the findings of this study, it is recommended that model developers incorporate capabilities for multi-variable calibration in 
hydrological models. This would simplify the calibration process for researchers and hydrological modellers, enhancing the accuracy 
and robustness of hydrological predictions. Furthermore, enhancements to the model, such as better representation of canopy 
processes and adjustments to default settings, could address the known issues with ETa simulation, particularly in forest areas. 
It is suggested that future research focuses on refining calibration strategies, incorporating other variables beyond streamflow and 
ETa, such as GRACE data, to further investigate model accuracy and address the complexity of calibration of hydrological models in 
large and heterogeneous basins such as the UBNB, where data is also scarce. and data scarcity. By adopting multi-variable calibration 
approaches and leveraging advancements in observational datasets and modelling techniques, we can deepen our understanding of 
basin hydrology and inform more robust water resource management strategies.
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