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Abstract
In the near future, travelling in vehicles will no longer be in regular
vehicles, but in automated vehicles. The share of automated vehicles
is predicted to increase significantly within 20 years. Passengers in
automated vehicles will engage in non-driving tasks, such as sleeping,
reading, working or just otherwise spending time on their phone. This
will result in motion sickness becoming more prevalent, as passengers
will no longer pay attention to the road. Therefore, there is a need
for research in motion sickness. To further our understanding of mo-
tion sickness and possible mitigation strategies, mathematical models
of motion sickness need to be developed. The temporal dynamics of
motion sickness can be captured in the so called ’Oman model’ [Oman,
1990]. However, most literature use group averaged parameters and
motion sickness incidence to describe motion sickness. These methods
do not capture well enough how individuals respond to sickening stim-
uli, as recent studies showed that individuals have strongly varying
responses to various frequencies. Only, estimating individual motion
sickness parameters is costly thus far, requiring multiple experiments
to estimate the parameters. This study explains an optimal experiment
design, where the input is varied in real-time closed loop manner such
that the information content in the input is maximized for estimation
of parameters, rusulting in the fact that individual motion sickness pa-
rameters could be estimated in a single experiment. Results show that
on average, within the first 63 minutes, most parameter estimations
have converged. The resulting RMSE is 1.06 on the MISC scale, com-
paring to other literature. This shows that the frequency and temporal
dynamics of motion sickness and an individual level can be estimated
at a drastically faster rate than previous methods. To our knowledge
this is the first use of optimal experiment design techniques to asses
the dynamics of human responses to stimuli in general, which is an
important milestone for cybernetics research.

Keywords – Motion Sickness, Modelling, Parameter Estimation, Ex-
periment Design
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1 Introduction

.
Fully automated vehicles will become a reality in the near future. It is expected

that by 2040 the market share of fully automated vehicles of SAE level 3-5 [SAE
International, 2014] will reach 20-40% [Litman, 2022]. These automated vehicles
are designed to improve the safety of passengers and the traffic, as driver error is
the cause of 94% of motor-vehicle crashes [Singh, 2018], and automated vehicles
could prevent 34% of crashes [Mueller et al., 2020]. Additionally, automated vehi-
cles can improve travel comfort with adaptation of control strategies to maximize
comfort. Passengers will be able to do non-driving related tasks during their jour-
neys, but in doing so, their eyes are not focused on the road. When passengers
do not have their eyes on the road ahead, motion sickness will develop both more
frequently and faster [Diels and Bos, 2015], meaning that with the increase of
automation, motion sickness will also be more prevalent among road users [Diels
and Bos, 2015]. This is not the case for the driver as the driver of the vehicle does
not get motion sick. However, the driver will become the passenger as well in
automated vehicles. The development in motion sickness therefore will be a big
hurdle to overcome in the acceptance of automated vehicles, as when passengers
get sick during their travels, they are less likely to adopt the technology.
This is why a good understanding of motion sickness is necessary. The understand-
ing of motion sickness allows us to describe the development of the symptoms and
model the dynamics of motion sickness development. When motion sickness can
be modelled, the designers of automated vehicles are better equipped to address
the problem. The designers could implement novel control strategies in the vehicle
to prevent or reduce motion sickness, and develop methods, which for instance,
warn the passenger of oncoming manoeuvres, allowing passengers to anticipate
movements, and thus reducing motion sickness [Kuiper et al., 2020].
Motion sickness is a complex syndrome, where nausea and vomiting are the main
symptoms, and it affects a wide range of species. Symptoms also include sweating,
headaches, dizziness, drowsiness, stomach awareness, pallor, increased salivation,
hyperventilation and belching [Bertolini and Straumann, 2016]. Around one-third
of the population is highly susceptible [Takov and Tadi, 2019], while most of the
population experiences motion sickness with sufficient inertial-motion cues. Peo-
ple can also experience visually induced motion sickness [Keshavarz et al., 2014].
The motion sickness susceptibility differs a lot between individuals, with ratios
up to 10,000 to 1 [Lackner, 2014], where there are different factors which pre-
dict the susceptibility of motion sickness, with the main predictors being sex and
age [Golding, 2016a]. When the sickening motions sustain for a longer period
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of time, subjects can develop sopite syndrome, which has symptoms including
lethargy and drowsiness [Graybriel and Knepton, 1976]. This has a negative ef-
fect on the cognitive performance when multitasking, meaning passengers could
have a declining performance when performing non-driving related tasks [Smyth
et al., 2018,Matsangas et al., 2014], which is one of the main benefits of automated
vehicles versus non-automated vehicles. Thus, motion sickness could prevent a
large portion of the population from benefitting from the advantages of automa-
tion, and disregarding the technology for cheaper alternatives, such as regular
vehicles.
An important mechanism in the genesis of motion sickness is the vestibular sys-
tem, which provides humans with a sense of balance and spatial orientation. The
information from the vestibular system is used for coordinating movement with
balance. The vestibular system consists of two components: the semicircular
canals and the utricle and saccule. The semicircular canals consist of three canals
in different planes, which can sense angular acceleration and rotation of the head.
The utricle and saccule are sensitive to linear acceleration, gravitational forces
and tilting of the head. The utricle and saccule contain otoliths, which sense the
forces resulting from acceleration. The signals of the vestibular system are essen-
tial to the onset of motion sickness. Subjects who have complete bilateral loss of
labyrinthine function, meaning they have no vestibular sense organs, are immune
to motion induced motion sickness [Golding, 2016b]. Interestingly however, they
are not immune to visually induced motion sickness, it is thought that this could
be due to the remanence of residual vestibular function [Golding, 2016b], or trig-
gering the same mechanisms as regular motion sickness, as visual and physical
acceleration appear to share the a sensory integration process which results in
motion sickness.
This study focuses on the sensory conflict model for motion sickness, as this the-
ory has a mathematical basis needed to model the dynamics of motion sickness.
For example, the postural instability theory does not have models to model the
dynamics of motion sickness [Riccio and Stoffregen, 1991, Stoffregen and Smart,
1998]. The neural mismatch theory, a predecessor of the sensory conflict theory,
was first developed by Reason [Reason, 1978]. The neural mismatch theory states
that all situations which provoke motion sickness are characterized by a condition
of sensory rearrangement in which the motion signals transmitted by the eyes, the
vestibular system and the nonvestibular proprioceptors are at variance with one
another, and hence with what is expected on the basis of previous transactions
with the spatial environment. The theory also adds that, in order for motion sick-
ness to develop, the vestibular system is essential, as is discussed earlier in this
section. This theory was later expanded on and mathematically supported by
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Oman [Oman, 1990], resulting in the sensory conflict theory. This mathematical
model then formed the basis for modelling motion sickness responses of individu-
als and groups in modern research [Irmak et al., 2021,Kotian et al., 2023].
There are multiple studies which try to model the motion sickness development.
Most studies use a measure of motion sickness incidence (MSI), which only cap-
tures the percentage of the subjects that vomit due to the applied accelerations.
This method does not capture the dynamics of motion sickness development, as
it is preferred to keep passengers far below the level of vomiting when travelling
with an automated vehicle. Thus, only a knowledge of the MSI does not suffice
for adaptation of control to prevent motion sickness.
Furthermore, most studies which try to model the motion sickness dynamics, only
average over the group when fitting the models. It is shown that individuals re-
spond differently to motion cues, mainly the frequency where the sickening effect
peaks [Irmak et al., 2021]. To individualize the adaption of an automated vehicle
to a passenger, knowledge about the passenger’s motion sickness dynamics is re-
quired. The goal of this research is thus to capture the individual motion sickness
dynamics using a relatively short experiment. Currently, data collection methods
used are time-consuming and expensive, for example spanning four experiments
of 105 minutes (maximum) [Irmak et al., 2022]. This creates a data bottleneck.
Capturing the individual motion sickness dynamics can be done using optimal
experiment design, which this report explains and implements in an experiment
to estimate individual motion sickness parameters.

The modelling of the temporal dynamics of motion sickness at an individual
level will grant more insight in the concept. When understanding the differences
in motion sickness dynamics of the individual, more measures can be researched
in preventing or minimizing motion sickness. This will lead to more comfort in
travel, as the knowledge about the temporal dynamics of motion sickness can
be applied to more modes of transport, granted there is research in the differ-
ent motion cues and how it affects motion sickness. This could lead to a more
practical implementation in automated vehicles, where the vehicle could estimate
the sickness parameters of the passengers inside, and subsequently adapt its con-
trol strategy to improve the travel comfort of the passengers. Furthermore, this
experiment is done in a driving simulator. This affects how motion sickness devel-
ops [Talsma et al., 2023]. However, together with the research on the difference
in simulator sickness versus motion sickness, this research will have a meaningful
impact in the understanding of the temporal dynamics of motion sickness for the
individual.
To summarize, the goal of this research is to design a method to estimate the mo-
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tion sickness parameters of individuals using optimal experiment design. Based
on literature and successful simulation, the effectiveness of the method is tested
using human participants. Using the literature and simulations, it is hypothesized
that:

• The estimation method estimates the parameters within one session of a
maximum of 1.5 hours.

• The model using the estimated parameters will predict the MISC rating of
individuals with an accuracy of 0.5 on the MISC scale, as from simulations
the RMSE was lower than 0.5 on average.

• Not all parameters need to converge, as not all the parameters are as impor-
tant for a good fit. This means convergence of the model does not necessarily
result in convergence of all the model parameters.

In the subsequent sections, the estimation method is explained, followed by
the detailing of the experiment method. Then, the results of the experiment are
shown and consequently discussed. Last, conclusions are taken from the results.
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2 Estimation Method

This section details the method used to estimate the individual sickness parame-
ters. First, the Oman model used to predict motion sickness is presented. Then,
the method of estimating the parameters of the model using optimal experiment
design is explained.
The estimation method is based on Optimal Experiment Design, where an input
is selected based on the information content it contains with respect to the param-
eters of the model. This uses the Fisher information matrix, where the differential
equations of the model are differentiated with respect to the parameters of the
model, as seen in [Jauberthie et al., 2005]. Then, the parameters of the model are
updated with the fmincon algorithm from MATLAB using the input and output
data. These updated parameters provide an updated information matrix and thus
a new input is selected.

2.1 The Oman Sickness Model

First, there are two main groups of models describing motion sickness. These are
functional models and descriptive models [Kufver and Förstberg, 1999]. Func-
tional models are based on the sensory conflict theory, described in Section 1.
They describe the genesis of the conflict signal which then results in motion sick-
ness. Descriptive models make use of mathematical models to fit experimental
data and therewith describe motion sickness.
Oman first made a functional model, described in Section 1. This model explained
the genesis of the conflict signal based on the CNS comparing sensed motion with
predicted motion. This created a mathematical framework for a model which can
use equations to model motion sickness. For the modelling of motion sickness dy-
namics, Oman created a model which has the sensory conflict signal as input and
the nausea magnitude as output, as seen in Figure 1. This model is a descriptive
model, as it can adapt its parameters to data gathered from experiments.
The model has a slow path and a fast path, where the fast path models the faster
onset of motion sickness due to neuronal responses, and the slow path models the
slower hormonal response. The fast and slow path are both described by second
order transfer functions 1 (where the top transfer function is the fast path and the
bottom transfer function is the slow path). This structure can capture temporal
dynamics of motion sickness as well as the phenomenon of hypersensitivity [Oman,
1990]. This describes hypersensitivity, which is the fact that individuals have a
heightened sensitivity to motion cues after earlier exposure to sickening motion.
Thus far, this is the only model which adequately captures hypersensitivity.
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Figure 1: The descriptive Oman model [Oman, 1990]

Then for this experiment, the descriptive Oman model is adapted to model
the frequency sensitivity in individuals. The frequency sensitivity is modeled as a
band pass filter on the input acceleration signal. This acts to map the accelerations
to a value proportional to the sensory conflict which we cannot measure. The band
pass filter has a peak at the frequency the human is most sensitive to. The band
pass filter can be seen in Formula 1.

B =

ω0

Q s

s2 + ω0

Q s+ ω2
0

(1)

Where Q is the quality factor, determining the width of the peak of the filter,
which is set to 0.3 to model the ’peakyness’ of the filter. This value ensured that
the frequency where the individual is most sensitive to evokes a response of a
higher magnitude, while also still being sensitive to the other frequencies in the
band. Fixing the value of Q means there is one less parameter to identify, and also
requiring less computational power needed to differentiate the system equations
to Q as well, ensuring that the algorithm can operate closed loop in real time. The
parameter Q can also be identified after the experiment if possible, identifying if
individuals are sensitive specific to a frequency or sensitive to all frequencies in the
band where motion sickness occurs. The parameter which needs to be identified is
ω0, which is the frequency the human is most sensitive to. Then, as seen in Figure
1, the model has a fast and slow path, seen in Formula 2 and 3 respectively.

F =
K

(β1s+ 1)2
(2)

S =
1

(β2s+ 1)2
(3)

β1, β2 and K are the parameters which have to be identified in the fast and
slow path. The final model will have a structure as seen in Figure 2
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Figure 2: The final Oman model

In the model, it can be seen that the model is simplified without power law to
simplify the estimation process. In the code, the input is rectified.

2.2 Optimal Experiment Design

[Qian et al., 2016] provides an experiment design based on economic model pre-
dictive contorl (EMPC). Traditional model predictive control (MPC) is a widely
used strategy to track a set point for large multivariable systems subject to con-
straints [Rawlings et al., 2012]. In contrast, EMPC can follow the economic
performance of a system rather than a set point better suited for systems which
have dynamic economic performance, thus changing demands of the performance
of the system. [Ellis et al., 2014] validated the stability and performance of EMPC,
but noted the high computational cost of EMPC. This is not important for this
case, as the computational cost is not very high for the relatively simple Oman
model (Figure 2) combined with large sampling times of 30 seconds, this will later
be explained in the final design of the experiment.
The EMPC algorithm has a cost function with two parts: the sensitivity criterion
and the stability criterion. The sensitivity criterion is to optimize the richness
of information in the inputs to accurately estimate parameters, whereas the sta-
bility criterion ensures the stability of the system. The stability criterion could
model the divergent sickness responses of subjects, where the MISC rating would
increase very fast in subjects (seen in [Bock and Oman, 1982] and [Irmak et al.,
2020]).
However, the stability criterion of this method required an observer design which
could not be made using the Oman model, as the parameters appear non-linearly
in the state equations, which prevented designing the system matrices. Therefore,
the input selection is based on the sensitivity criterion of the method.
To estimate the parameters, a prediction model is used for predicting the out-
put. This prediction is based on the differential equations of the system. These
differential equations of the prediction model are differentiated with respect to
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the parameters to obtain the sensitivities. After normalizing the sensitivities, the
sensitivity matrix is created. To construct the sensitivity criterion cost function,
the minimal and maximal eigenvalue of the sensitivity matrix are used, seen in
Formula 4.

Jθ(l) =

∣∣∣∣λmin(M(l))

λmax(M(l))

∣∣∣∣ (4)

M(l) = ||ȳθ(l)||2 , l ∈ [k k +Np] (5)

ȳθ(l) =


ȳ1θ1 ȳ1θ2 . . . ȳ1θq
ȳ2θ1

. . . ...
... . . . ...

ȳpθ1 . . . . . . ȳpθq

 (6)

Where ȳθ(l) is the sensitivity matrix at timestep k, and future timestep l over the
prediction horizon Np. In the sensitivity matrix, the p outputs of ȳ are derived
with respect to q parameters.
The sensitivity matrix is calculated differentiating the differential equations with
respect to the parameters. To be able to differentiate the model with respect to
the parameters, the transfer functions of the Oman model have to be transformed
to the time domain using the inverse Laplace transform. The transformation will
be split up into the slow path, the fast path and the band pass filter.

Ob =
uω0

Q s

s2 + ω0

Q s+ ω2
0

(7)

Os =
u

(β2s+ 1)2
(8)

Of =
uOsK

(β1s+ 1)2
(9)

Which then result in the following differential equations:

Öb =
ω0

Q
Ȯb + ω2

0Ob (10)

β2
2Ös = −2β2Ȯs −Os + u (11)

β2
1Öf = −2β1Ȯf −Of + uOsK (12)
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To calculate the sensitivity matrix from the differential equations, the differ-
ential equations have to be differentiated with respect to the parameters. The
output of the system is in the form of Of +Os from equations 12 and 11, as seen
in Figure 2. The input in the differential equations is Ob from equation 10. The
equation then results in:

y = KOb(Ob − β2
2Ös − 2β2Ȯs)− β2

1Öf − 2β1Ȯf +Ob − β2
2Ös − 2β2Ȯs (13)

With Ob from equation 10. Then, the partial derivatives of y with respect to ω0,
β1, β2 and K are taken to compose the sensitivity matrix as seen in equation 6.

∂y

∂β1
= −2β1Öf − 2Ȯf (14)

∂y

∂β2
= −2β2ÖsOb − 2KȮsOb − 2β2Ös − 2Ȯs (15)

∂y

∂K
= O2

b − β2
2ÖsOb − 2β2ȮsOb (16)

∂Ob

∂ω0
= − u̇

ω2
0

+
2Öb

ω3
0

+
Ȯb

Qω2
0

(17)

∂y

∂ω0
= 2KOb

∂Ob

∂ω0
−Kβ2

2Ös
∂Ob

∂ω0
− 2Kβ2Ȯs

∂Ob

∂ω0
− ∂Ob

∂ω0
(18)

After the sensitivity matrix is calculated, the input is selected from a range
of frequencies between 0.05 and 0.55 Hz with intervals of 0.0611 Hz (10 frequen-
cies in the band), as in this band subjects are susceptible to the sickening mo-
tion [O’Hanlon and McCauley, 1974].
Thereafter, the parameters of the model are estimated using the fmincon algo-
rithm from MATLAB. The amplitude of the input is scaled in relation to the
estimated gain of the model to ensure a response from individuals who are less
sensitive to motion cues, and to prevent sensitive individuals to get motion sickn
too fast.

2.3 Error Metrics

To estimate the parameters using the fmincon algorithm, an error metric needs
to be used to determine the goodness of the fit to compare different estimations.
To see how different parameters affect the distinction between errors within error
metrics, a simple script was created to simulate the Oman model multiple times
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using different sets of parameters. These simulations using different sets of pa-
rameters were compared to a simulation using one control set of parameters to see
what the error distribution is over all the sets of parameters. This is to see how
the magnitude of errors differ when comparing the set of parameters equal to the
control set of parameters, to the other sets of parameters not equal to the control
set of parameters. The band-pass frequency and the slow-pass time constant were
varied and the gain and the fast-pass time constant were kept constant to see
the difference in errors. The varied frequencies and time constants can be seen in
equations 19 and 20.

ω0 = 2 ∗ π ∗ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6] (19)

β2 = [300, 400, 500, 600] (20)

Thereafter, two error metrics were compared. The symmetric mean abso-
lute percentage error (SMAPE) and the root mean squared error (RMSE). The
SMAPE is used earlier in motion sickness error estimation [Irmak et al., 2020].
The RMSE is a commonly used absolute error metric, which could be more dis-
tinctive because it is not a percentage error. The formulas for the SMAPE and
RMSE can be found in equations 21 and 22.

SMAPE = Σ

∣∣∣∣ObservedMISC − PredictedMISC

ObservedMISC + PredictedMISC

∣∣∣∣ (21)

RMSE =

√
1

n
Σn

i=1

(
PredictedMISC −ObservedMISC

)2

(22)

The parameters used for the observed MISC are [0.4 ∗ 2 ∗ π, 4, 40, 400]. As
discussed earlier, the gain and the fast-pass time constant are kept constant for
the predicted MISC (thus at 4 and 40). The heatmaps of the errors are created
and can be seen in Figure 3 and 4.
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Figure 3: The heatmap of the errors using SMAPE

Figure 4: The heatmap of the errors using RMSE

In the heatmaps it can be seen that the SMAPE errors are very small, which
slows down the algorithm due to the fact that fmincon has to iterate many times
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before there is an appreciable change in the error metric. Furthermore, when
selecting an objective limit which is not too small, most of the parameters selected
will have an error small enough to be below the objective limit. This causes the
fmincon algorithm to choose between multiple sets of parameters, most of which
are not correct. RMSE however, does have a more clear distinction between the
correct and wrong parameter values. Therefore, the RMSE is chosen as the error
metric which is minimized in the fmincon algorithm of MATLAB.

2.4 Performance of the Simulation

The estimation method explained in this section was simulated using MATLAB.
A fictional human was simulated using the Oman model with a set of parameters
generating a MISC value using an acceleration input. This output was used to
estimate the set of parameters of the fictional human. The predicted MISC and
the MISC of the fictional human were plotted, together with the parameters of
the human against the estimated parameters to show convergence. This was done
multiple times using parameters estimated from previous literature [Irmak et al.,
2021]. The following plots are from a single run of the simulation.
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(a) The comparison between the true and esti-
mated parameters in the Oman model for the
input used in the estimation

(b) The Bode plot of the estimated and true
band pass frequency

(c) The plot of the estimated and true band
pass frequency (d) The plot of the estimated and true gain

(e) The plot of the estimated and true fast
path time constant

(f) The plot of the estimated and true slow
path time constant

Figure 5: The results of the first simulation run
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3 Methodology

We used the estimation method developed in section 2 to subject participants to
vertical accelerations of varying amplitude and frequency. There were two experi-
mental sessions, each of 1.5 hours in duration, separated over two weeks (to reduce
habituation). The repetition allowed us to quantity test-retest repeatability and
the validity of the estimation method. As discussed, the aim of the experiment
was to estimate individual motion sickness parameters of the expanded Oman
mode (Figure 2).

3.1 Ethics Statement

All participants provided written informed consent prior to participation. The
experimental protocol was approved by the ethical committee of the Human Re-
search Ethics Committee of TU Delft, The Netherlands, under application number
2772.

3.2 Participants

The experiment was condicuted on 16 participants (10 male and 6 female). The
participants were between 22-78 years old (µ = 39.4,σ = 21.8). Participants
received a AC10 for their participation.

3.3 Apparatus

The experiment was conducted using the DAVSi simulator (e.g. used in [Jain
et al., 2023]) [Technologies, 2021] at the 3mE faculty of TU Delft (Figure 6 and
7). This is a 6 DOF motion platform. The specifications of the simulator can be
found in Figure 8. Participants were seated in the simulator, facing forwards with
their eyes blinded using blackened glasses, but were asked to keep their eyes open.
They were restrained to the seat using a regular seat belt and asked to sit still,
without instruction regarding the hands, but the observation was that the hands
rested on the legs of the participants in almost every experiment (participant 13
rested their arm in the open window). The seat back was reclined by 32 degrees
(the lowest reclination of the car seat) resulting in a relaxed posture with the trunk
being supported and stabilized by the back rest. The participants were asked to
keep their head still against the headrest. This reduce head movements which
induce coupled motions, which are more sickening. Furthermore, headphones
were used reduce the perception of motion through the noise of the actuators of
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(a) (b)

Figure 6: The participant in the simulator

the simulator, as well as give the signal to communicate their MISC rating. The
MISC ratings were communicated orally.

Figure 7: The DAVSi-simulator [Technologies, 2021]
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Figure 8: The specifications of the DAVSi-simulator

3.4 Briefing

To ensure participants knew what the experiment entailed and were adequately
prepared for the experiment, every participant went through a briefing where
necessary details were explained.
The participants first needed to be familiar with how they should indicate their
level of sickness using the MISC scale [Bos et al., 2005], seen in Appendix B. It
is key that the participants know what sickness level corresponds to what MISC
rating, as otherwise the estimated level of sickness will have a systematic error.
This causes the comfort when for instance adapting a route in an automated
vehicle is optimized for a lower/higher sickness.
Then, the MSSQ-short form is explained and determined [Golding, 2006]. This
is to see how susceptible the participants are to motion sickness and thus the
representativeness with respect to population averages can be tested.
Thereafter, the participants are walked through the experiment itself, without
indicating the hypotheses to prevent behaviour changes. First, the participants
are made familiar with the simulator and how they are supposed to take place
within, using the blinding goggles and the headphones. Then the participants are
made familiar with the intercom system, where they are attended to the fact they
could always stop the experiment when they feel too sick or unsafe. Last, the
method of variable inputs is explained to the participants so they know what to
expect from the motion stimuli.

3.5 Experiment

3.5.1 Sickness Metrics

Motion sickness susceptibility is difficult to measure. The first attempts to quan-
tify motion sickness susceptibility were to predict the motion sickness suscepti-
bility of subjects with a questionnaire. [Reason and Brand, 1975] introduced the
commonly used motion sickness susceptibility questionnaire (MSSQ), which was,
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apart from one, the only questionnaire that was rigorously validated. This ques-
tionnaire was later revised to the MSSQ-Long [Golding, 1998]. Here, Golding
simplified the scoring system, produced new reference norms for adults and in-
vestigated non-motion causes of nausea. Golding later adapted the MSSQ-Long
to the MSSQ-Short [Golding, 2006], which eliminated specific questions on vom-
iting and excluding visual/optokinetic items due to low sickness prevalence, and
they did not add significant information regarding prediction of motion sickness
susceptibility. The MSSQ-Short can be seen in figure 12 in appendix A.
To determine how motion sickness develops within subjects during motion, a sub-
jective rating scale is commonly used. This quantifies motion sickness itself, rather
than motion sickness susceptibility which was just discussed. An early example is
the Pensacola Motion Sickness Questionnaire (PMSQ), which links symptoms to
a three-point scale to indicate the severity [Graybiel et al., 1964]. Later, the Well
Being Scale (WBS) was created to have an 11-point scale [Reason and Graybiel,
1969]. This had the potential to capture the progression of the motion sickness
symptoms of subjects as the symptoms increase in severity from a score of 0-10.
This scale however was still vague in the indication of symptoms associated with
the scores. To improve the ratings associated with the scale, Bos et al. created the
MIsery SCale (MISC) [Bos et al., 2005], based on the MISC which was used and
validated by Wertheim et al. [Wertheim et al., 1998], where Bos et al. pooled the
symptoms below nausea and gave ratings to the severity of nausea. This scale is
also a 11-point scale (0-10), where 0 is zero symptoms and 10 is vomiting (see Ap-
pendix B). This scale allowed subjects to refer to the scale with their symptoms
because the scale is less vague, thus increasing repeatability for subjects when
they are familiarized with the scale. This scale was made by giving participants a
list of symptoms associated with nausea, and were then asked to indicate which
symptoms they experienced and in which order. This further supports the use
of MISC for the modelling of motion sickness, as the progression is well captured
with this scale. [Reuten et al., 2021] found that the MISC is more suitable than
general unpleasantness ratings, as people generally rate a MISC score of 5 as more
unpleasant than an MISC score of 6, while a MISC score of 6 means the motion
sickness is further developed. However [de Winkel et al., 2022] found the opposite
to be true, thus this statement does not support the claim that the MISC rating
is better than subjective discomfort.

3.5.2 Procedure

Each participant was subjected twice (with a week interval) to fore-aft motions
ranging between 0.05 and 0.55 Hz. This is the band of frequencies where motion
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sickness occurs [O’Hanlon and McCauley, 1974]. The amplitude varied according
to the formula KA2 +A = 6, where K is the estimated gain of the Oman model.
This is to ensure a response from participants who may not have a high suscepti-
bility, and to prevent the MISC from getting to high for participants with a high
susceptibility. The amplitude has a maximum of 0.25 meters as to not exceed
the limits of the simulator. This limit was set by trial and error when setting
up the experiment. The second experiment was done to test repeatability of the
experiment. Participants who did not get sick at all in the first experiment were
not asked to do the second experiment
In both experiments, the sickening motion stimuli lasted for a maximum of 1.5
hours, or until the participant reached a MISC rating of 6, indicating some nausea
(see Appendix B). The acceleration amplitude and frequency are determined in
intervals of 30 seconds. The participants are asked to give their MISC rating each
30 seconds via the intercom system, indicated by a beep. The indicated MISC
rating is then used to estimate the new parameters of the Oman model. With the
new parameters, a new input is selected. Each interval the motion fades out while
the new input parameters are input in the simulator, and thereafter the motion
fades in again.

3.6 Data Analysis

3.6.1 Convergence

This study aims to test the proposed estimation algorithm, thus to see if the
estimated parameters converge, each estimation iteration is shown in a plot to
see if the estimation shows a convergence. In both experiments, the estimation
algorithm had an end value, which are then averaged to have an average end
estimation value of each parameter. This averaged end value is used to test the
convergence of the algorithm. The average end estimation is subtracted from the
array of estimation iterations of both experiments. The resulting arrays show
the difference between each estimation iteration and the average end parameter
for both experiments. Both arrays are then plotted to see how the estimation
converges in both experiments.
The end values of the estimation are also compared in scatter plots to see what
the difference is between the two experiments for the participants. On the x-axis,
the end value of the estimation for the first experiment is represented, the second
experiment is represented on the y-axis. This is also done for the RMSE of the
experiments to see the difference in the model fit for both experiments.
In addition, the RMSE is shown for each iteration of the estimated parameters.
Each set of parameters is used to predict the MISC from the input used in the
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experiment for each participant. Then, the RMSE of the response MISC and
the predicted MISC is taken to see the progress of the estimation algorithm in
reducing the RMSE.

3.6.2 Statistical Analysis

To test if the two experiments are similar, the mean MISC of the participants
is taken and tested using non-parametric tests to see if the set of means is from
the same distribution. Non-parametric tests are used because the distribution is
not normal when looking at the mean MISC values of the participants. To see
if the distributions are different, first a box plot is made before doing the non-
parametric tests.
The non-parametric tests used in this study are the Mann-Whitney U test to see
if the medians of the mean MISC values are equal, and the Kruskal Wallis to see
if the mean MISC values come from the same distribution.
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4 Results

4.1 Course of the Experiment

Not all participants completed two sessions of the experiment. This was due to
the participants not having a sickness response to the motion cues. Therefore,
the second experiment was not of value for those participants who did not get
sick. The MSSQ score was not part of the screening of the participants. All the
participants who did not get sick had a MSSQ score of 0, except for one who had
a MSSQ score of 4. However, two participants who did get sick had a MSSQ score
3 while another two who did get sick had a MSSQ score of 2.

For the participants who completed the two sessions, a rest period of at least
one week (µ = 7.5 days,σ = 0.99 days) was implemented as to combat habitua-
tion effects.

A point to note was that some participants got more sick in the first experiment
than in the second experiment. One participant in particular reached a MISC
score of 4, while in the second experiment the highest MISC was 2 and zero
for a large portion of the experiment. The participant noted that in the first
experiment, the motion cues were new to them and therefore they got more sick,
while later in the experiment the MISC score was lower again. More participants
noted that the first experiment was more sickening due to the novelty of the
sickening motion for the participants. Furthermore, some participants said after
the experiment that in the low frequencies, the acceleration was not noticeable,
but due to the vibrations and noise of the simulator, they did get the feeling they
should move, which was sickening to them.

4.2 Statistical Analysis

As for some participants the two experiments differed greatly, for example par-
ticipant 4 and 10, the mean MISC of the participants were compared to see if
they are from the same distribution. First, a box plot was made to see how the
distributions compared, seen in Figure 9.

22



Figure 9: The box-plot of the mean MISC of both experiments

Then, two statistical tests were done on the mean of the MISC values to see
if they come from the same distribution. The Mann-Whitney U test and the
Kruskal Wallis test were used. The Mann-Whitney U test resulted in a p-value
of 0.67 indicating the medians of the MISC values are equal at the standard 5%
significance level. The Kruskal Wallis test resulted in a p-value of 0.65, indicating
that the samples of the mean MISC values come from the same distribution at
a 1% significance level. These tests were to see if the novelty of the sickening
stimuli did not affect the response of the participants too greatly.

4.3 Duration of Estimation

To reduce the amount of hours invested by participants in such experiments, an
analysis is made on how long it takes for the algorithm to converge to the param-
eters. In the analysis, time segments are analysed by how many runs converged
in that time period. Segments of 10% are chosen to analyse.
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Segment Accumulated number of converged runs
10% 0
20% 4
30% 7
40% 14
50% 15
60% 17
70% 20
80% 20
90% 20
100% 20

Table 1: The convergence in the time segments

In Table 1 it can be seen that most experiments converge within 70% of the
experiment. This results in an experiment time of 63 minutes. However, not
all runs converged within the 90 minutes of the experiment, as it can be seen in
experiment 2 of participant 15 for example, that the Estimation of the parameters
jump in the last iterations of the experiment. This did not result in a big decrease
in the RMSE.

4.4 Estimation of Parameters

To test the ability of the algorithm to estimate the parameters of the partici-
pants, the difference in estimation is analysed to see if the estimated parameters
are precise. For each estimated parameter, the mean and standard deviation of
the difference between the estimations of the first and second experiment are cal-
culated. The plots showing the convergence of the estimated parameters of each
individual can be found in Appendix C. In this section, a scatter plot of the last
estimation of each parameter and the RMSE is shown. This is to see if the exper-
iment is repeatable for the participants. A large difference in convergence in the
convergence plots in the appendix can be related to the scatter plot point being
off the diagonal.
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(a) (b)

(c) (d)

(e)

Figure 10: Scatter plot of the end values of the estimated parameters

Furthermore, in the next section the estimated parameters are compared to
previous literature, to show the similarities or differences in the estimated param-
eters.
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Parameter ω K β1 β2 RMSE
Mean 0.124 3.423 5.167 35.85 1.063

Standard Deviation 0.099 4.283 7.063 38.14 0.7911

Table 2: The mean and standard deviation of the difference of the estimated parameters

The mean differences in the estimated parameters are around 20% of the range
of values for the bandpass filter frequency and gain, and 10% and 5% for the fast
path time constant and slow path time constant respectively. The higher difference
in the bandpass frequency and gain are partly due to a few outliers which increase
the mean of the values, as the median values are much lower: 0.094 and 1.423
for the bandpass frequency and gain respectively. The participants who were
the outliers in that regard had a much higher response in the first experiment
compared to the second experiment. That is why the standard deviation is also
high. Furthermore, the average RMSE has a high standard deviation and mean.
When the outliers are removed for example, the mean and standard deviation are
0.752 and 0.389 respectively. Which is higher than the hypothesized RMSE of
0.5.
A small note to add is that the scores for the individual scores of the MSSQ did
not visibly correlate with the estimated parameters. Most participants scored
on the car aspect of the MSSQ-short A. But where participants had scores other
than the cars, the estimated parameters did not correlate. For example, where four
participants indicated they did get sick on playgrounds, the estimated parameters
were not the same. One thing to note is that participant 1, 7, 15 and 16, who
were the most sensitive, scored at least a 1 on the score for boats or ships.
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5 Discussion

This study investigated whether an estimation method using optimal experiment
design could estimate individual motion sickness parameters with only one exper-
iment of 1.5 hours, significantly decreasing the time needed to model individual
motion sickness resulting from sickening stimuli. The MISC ratings of participants
were collected during various amplitudes and frequencies of vertical sinusoidal mo-
tion. This resulted in a predicted MISC rating for the sickening motion which the
participants underwent.

5.1 Performance of the Algorithm

The plots in the previous section and the appendix (Section 4.4 and Appendix
C) show varying results. This depends on the difference in response over the two
experiments between the same participant. When a participant shows a different
response between the two experiments, the estimation of the parameters differ, for
example with participant 9 and 12. Due to the nature of motion sickness, individ-
uals can respond differently to sickening stimuli. Motion sickness can depend on
various factors, such as stress or for example medication. For future research, the
mood of the participants could be better monitored to try to have participants
respond similarly to sickening stimuli if the research requires it, as this algorithm
suffers from the different responses of the participants. Furthermore, a more ro-
bust algorithm could be designed to account for the variability in responses of
participants.
The algorithm does show convergence in the RMSE, however it tries to lower the
RMSE further, sometimes resulting in changes in estimated parameters after the
parameters did converge. The algorithm could be adapted with a higher RMSE
threshold, accounting for a higher RMSE than initially modelled, as the response
of the participants could differ from the modelled response used in the simulations.
This could also be due to the fact that at the lower frequencies, the acceleration
was not noticeable by the participants. This was a result of the limits of the
actuation of the simulator. At the lower frequencies the accelerations could not
be significant as to not exceed the displacement limit. Due to the low accelera-
tions, the algorithm predicted the MISC lower than the participants responded,
resulting a higher RMSE than expected from the simulations. This could also be
due to the fact that participants did find the noise and vibrations of the simulator
to induce vection.
Another result of the acceleration being too low was that the algorithm cannot ac-
curately predict the sickness response of the participants at that frequency range
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(0.05 Hz to 0.15 Hz). This means that the true frequency sensitivity of the par-
ticipants could lie in that bandwidth, while it could not be estimated. [O’Hanlon
and McCauley, 1974] showed in the paper that the peak sensitivity of population
average lies around 0.16 Hz, which means that the algorithm used in this study
overestimates the peak sensitivity frequency of the participants. Future studies
should use simulators, or vehicles, which can provide adequate sickening stimuli
to ensure the whole bandwidth of sickening frequencies could be explored.
Lastly, the algorithm performed differently depending on how sensitive the partic-
ipant was. When the participant was not sensitive, the response was zero MISC
throughout the whole experiment. This meant that the response of the partici-
pants who all had zero MISC was the same, which meant the parameters could
not accurately be estimated. For very sensitive participants, the algorithm did
not have enough data points to estimate properly and the RMSE values were very
large. This also meant the algorithm did not perform very well. For future exper-
iments it is recommended to start the experiment with a lower amplitude (thus
the initial gain estimate) to ensure participants do not get sick too quickly. The
algorithm performed better for participants who did get sick, but not too quickly
so the algorithm had enough data points to converge the estimated parameters.

5.2 Limitations

5.2.1 Q Parameter

To not make the differential equations bigger and simplify the estimation, the
parameter Q (10) was assumed constant. However, in practice participants may
show that they are equally sensitive to all frequencies (low Q value), or be extra
sensitive to one frequency (high Q value). To test this assumption, parameters
were estimated again from the input signal which was applied to the simulator
and MISC response of the participants, using an extra estimation parameter in
the fmincon algorithm of MATLAB. For the estimation after the experiment the
Q could be implemented as it does not have to be differentiated for the input
selection, as it had to be for the algorithm used in the experiment. This test
was only the fmincon algorithm estimating the parameters to quickly check the
validity of the assumption of the Q value.
The difference in the fmincon algorithm for the estimation of the Q parameter
with respect to the algorithm used in the experiment was that the maximum
number of iterations and function evaluations was larger for the estimation of the
Q parameter. This was due to the fact that the algorithm had to estimate the
parameters within 30 seconds in the experiment for it to give an input for the
next 30 seconds. For the estimation of the Q parameter, the fmincon algorithm
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also had a longer maximum allowed run time. This ensured the algorithm had a
long enough run time to be able to converge better, as when the algorithm had
low run time and low iterations and function evaluations, the estimation of the Q
parameter was between -0.01 and 0.01 of the initial estimation.
The estimated Q parameter had a mean of 2.84, a standard deviation of 5.39 and
a median of 0.17 (Figure 11). Interesting to note is that for participants who did
not show a high MISC value in their response, the Q parameter was high. This is
probably due to the fact that the predicted response is lower with a high Q value
due to the band pass filter resulting in a low value in different frequencies.

Figure 11: Boxplot of the estimated Q parameters

5.2.2 Processing Power

In the algorithm, the estimation of the parameters, the selection of a new in-
put and the setting of the new inputs in the simulator have to be done within
30 seconds. This means that the fmincon algorithm has limited iterations and
function evaluations to estimate the parameters. Therefore, a limited amount of
sets of parameters can be tested, where this amount is limited by the process-
ing power of the computer where the algorithm runs. Increasing the processing
power, or the structure of estimation could improve the accuracy of the estimation
of the parameters in the experiment. This also caused the algorithm to sometimes
drastically differ in the estimation of the parameters when the algorithm did not
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improve on the RMSE after a long time, meaning the convergence did not always
nicely show, and the RMSE did not improve either (e.g. the band pass frequency
estimation in experiment 2 of particpant 16).

5.2.3 Simulator Limits

As discussed before, the physical limits of the simulator resulted in a very low ac-
celeration for the low frequencies that were given as input in the algorithm. When
the accelerations were low, most participants quickly reached a MISC value of zero
again. The prediction of the algorithm then made the amplitude higher as to in-
duce a response in the participants. This mostly meant that the participants had
either a quick response when the frequency was higher, or a very slow response
when the frequency was lower. The result was that the predicted MISC value usu-
ally was below the MISC response of the participants, as the algorithm tried to
minimize the RMSE, going between the very low response and high response due
to the low frequencies and higher frequencies respectively. The response therefore
differed strongly from the response modelled in the simulation runs 2.4, where the
MISC response increased gradually during the experiment as the low frequencies
also had an adequate acceleration. Naturally this falls under the assumption that
the modelled response of the participants represents the real response of the par-
ticipants in an experiment.
The limits of the simulator also make that the estimated band pass frequency was
not estimated in the range where the accelerations were low. Only for participants
who did not get sick did the algorithm estimate a low frequency, as then the mag-
nitude of the response was lower for all frequencies, ensuring a predicted response
which was as low as possible, meaning the RMSE was lower. As the algorithm
tries to minimize the RMSE, this was the reason that for the participants who
did not get a MISC response higher than 0 (or 1 as seen in participant 10) the
estimated band pass frequency was 0.05 Hz. Thus, for future experiment, the
researcher needs to make sure that adequate sickening stimuli can be provided
by the simulator, or test vehicle, such that the whole band of frequencies can be
properly represented. Providing an adequate acceleration for each frequency is
also to ensure that the participants do not get sick from vection. This is because
some participants did get sick at the low frequencies, as they experienced vec-
tion through the vibrations and noise of the simulator. As the experiment solely
focuses on the genesis of motion sickness through accelerations, vection could in-
troduce an unwanted variable which needs to be accounted for.
Lastly, in section 4.2, the mean MISC values of the participants show that the
resulting sickness from the sickening stimuli was low. This means that the result-
ing response is hardly sufficient to measure relevant data from the experiment.
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Therefore, the results of this study mainly showcase the ability of the proposed
algorithm to show convergence in the estimation of the sickness parameters of
the individuals who participated in the experiment. However, the parameters
themselves are not necessarily correct for the participants, as the acceleration was
too low in the lower frequencies, resulting in inaccuracies in the estimation of
the band pass filter frequency as discussed earlier in this section. Furthermore,
the low resulting MISC means that the rest of the estimated parameters are not
necessarily correctly estimated by the algorithm.

5.3 Previous Literature

[Kotian et al., 2023] also models the individual parameters of the Oman model,
albeit not with the frequency sensitivity of an individual modelled with a band
pass filter. In the study, the range of gain values are much higher, whereas in this
study the range was chosen to be smaller from the results of the literature study
results. In future research, a broader range of gain values could be introduced to
better model the response of participants in reality as opposed to simulation runs.
Furthermore, [Kotian et al., 2023] found that the response of participants could
be modelled using only two parameters in the Oman model, relating the fast path
and slow path time constants to reduce computational requirements. The RMSE
in the study, average of 1.1, coincide with the results seen in 2 in section 4.4. For
the experiment design in this study, this would result in only 3 parameters which
need to be estimated. This reduction in parameters will improve the model, as
in Section 5.2.2 the limitation of the processing power is explained. It could also
result in that the Q parameter could be added to the equations, resulting in a
more accurate representation of the frequency sensitivity.
The relation between the gain and fast path time constant (and therefore the
slow path time constant) of [Kotian et al., 2023] is also prevalent in the estimated
parameters in this study. Where the gain is higher, the time constants are lower
in general. However, the time constants of the fast path and the slow path do not
seem to greatly affect the fit of the model.
The strength of the method used in this study is that the estimation of the
parameters only needs one experiment, where the methodology of [Kotian et al.,
2023] needed two datasets of experiments to estimate the sickness parameters of
individuals. While the methodology in this study was using two experiments, the
second experiment functioned as a control to see if the estimation of parameters
was consistent over two experiments.
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6 Conclusion

A new experiment was designed to estimate individual motion sickness parame-
ters in a single experiment instead of multiple experiments, saving many hours
of experimentation. The individual frequency sensitivity was modelled using a
bandpass filter, and the sickness generation was modelled using the Oman model.
The input for the model, and thus for the participants of the experiment, were
sinusoidal acceleration inputs. The frequency of the sinusoidal acceleration was
chosen using Fisher information, meaning the input contains the most information
for the estimation of the parameters of the model. The designed experiment was
able to estimate the parameters within 70% of the experiment duration, relating
to 63 minutes. The average RMSE of the fit of the model was 1.06 on the MISC
scale. Estimating parameters on an individual level is better to predict motion
sickness in individuals than group averaged parameters. The estimated parame-
ters were verified using a second experiment for the participants, which showed
varying results depending on how similar the response was between the first and
second experiment for participants.
This experiment design, with improvements, could aid in faster estimating indi-
vidual motion sickness parameters, which can be used in control strategies for
automated vehicles, improving the motion comfort of passengers. Furthermore,
the parameters could be used in research for control strategies/motion cueing
algorithms, reducing the dropout rate in experiments for example, or further re-
search on motion sickness. The experiment design will drastically lower the time
needed for experimentation for individual motion sickness parameters.
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Appendix

A MSSQ

Figure 12: The MSSQ-Short from [Golding, 2006]
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B MISC

Figure 13: The Misery Scale (MISC) [Bos et al., 2005]
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C Convergence of Parameters
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(a) (b)

(c) (d)

(e) (f)

Figure 14: The results of participant 1
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(a) (b)

(c) (d)

(e) (f)

Figure 15: The results of participant 2
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(a) (b)
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(e) (f)

Figure 16: The results of participant 6
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Figure 17: The results of participant 7
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(a) (b)
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Figure 18: The results of participant 8
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(c) (d)

(e) (f)

Figure 19: The results of participant 9
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(a) (b)

(c) (d)

(e) (f)

Figure 20: The results of participant 10
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(e) (f)

Figure 21: The results of participant 11
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(a) (b)

(c) (d)

(e) (f)

Figure 22: The results of participant 12
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(a) (b)
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(e) (f)

Figure 23: The results of participant 15
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(e) (f)

Figure 24: The results of participant 16
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