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a b s t r a c t 

Percutaneous coronary intervention (PCI) is typically performed with image guidance using X-ray an- 

giograms in which coronary arteries are opacified with X-ray opaque contrast agents. Interventional car- 

diologists typically navigate instruments using non-contrast-enhanced fluoroscopic images, since higher 

use of contrast agents increases the risk of kidney failure. When using fluoroscopic images, the inter- 

ventional cardiologist needs to rely on a mental anatomical reconstruction. This paper reports on the 

development of a novel dynamic coronary roadmapping approach for improving visual feedback and re- 

ducing contrast use during PCI. The approach compensates cardiac and respiratory induced vessel motion 

by ECG alignment and catheter tip tracking in X-ray fluoroscopy, respectively. In particular, for accurate 

and robust tracking of the catheter tip, we proposed a new deep learning based Bayesian filtering method 

that integrates the detection outcome of a convolutional neural network and the motion estimation be- 

tween frames using a particle filtering framework. The proposed roadmapping and tracking approaches 

were validated on clinical X-ray images, achieving accurate performance on both catheter tip tracking and 

dynamic coronary roadmapping experiments. In addition, our approach runs in real-time on a computer 

with a single GPU and has the potential to be integrated into the clinical workflow of PCI procedures, 

providing cardiologists with visual guidance during interventions without the need of extra use of con- 

trast agent. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Clinical background 

Percutaneous coronary intervention (PCI) is a minimally inva-

ive procedure for treating patients with coronary artery disease.

uring these procedures, medical instruments inserted through a

uiding catheter are advanced to treat coronary stenoses. A guid-

ng catheter is firstly positioned into the ostium of the coronary

rtery. Through the guiding catheter, a balloon catheter carrying a

tent is introduced over a guidewire to the stenosed location. The

alloon is then inflated and the stent is deployed to prevent the

essel from collapsing and restenosing. 

PCI is typically performed with image-guidance using X-ray an-

iography (XA). Coronary arteries are visualized with X-ray opaque

ontrast agent. During the procedure, interventional cardiologists

ay repeatedly inject contrast agent to visualize the vessels, as
∗ Corresponding author First. 
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he opacification of coronary arteries only lasts for a short pe-

iod. The amount of periprocedural contrast use has been corre-

ated to operator experience, procedural complexity, renal func-

ion and imaging setup ( Piayda et al., 2018 ). Furthermore, the risk

or contrast induced nephropathy has been associated to contrast

olume ( Tehrani et al., 2013 ). Manoeuvring guidewires and mate-

ial, however, typically occurs without continuous contrast injec-

ions. In these situations, the navigation of devices is guided with

vessel-free” fluoroscopic images. Cardiologists have to mentally 

econstruct the position of vessels and stenosis based on previous

ngiograms. 

.2. Dynamic coronary roadmapping 

Dynamic coronary roadmapping (DCR) is a promising solution

owards improving visual feedback and reducing usage of contrast

edium during PCI ( Elion, 1989; Zhu et al., 2010; Manhart et al.,

011; Kim et al., 2018 ). This approach dynamically superimposes

mages or models of coronary arteries onto live X-ray fluoroscopic

equences. The dynamic overlay serves as a roadmap that pro-

ides immediate feedback to cardiologists during the intervention,

https://doi.org/10.1016/j.media.2020.101634
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101634&domain=pdf
mailto:huama.research@gmail.com
https://doi.org/10.1016/j.media.2020.101634
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so as to assist in navigating a guidewire into the appropriate coro-

nary branch and proper placement of a stent at the stenotic site

with reduced application of contrast agent. Studies with a phan-

tom setup using research software ( Kim et al., 2018 ) or on first

cases of clinical interventions using commercially available systems

( Dannenberg et al., 2016; Yabe et al., 2018; Takimura et al., 2018 )

have investigated the usefulness of DCR in assisting PCI, reporting

that DCR helps to reduce procedure time, radiation dose and con-

trast volume. 

To develop a DCR system, it is important but yet a challenge

to accurately overlay a roadmap of coronary arteries onto an X-

ray fluoroscopic image, as limited information of vessels is present

in the target fluoroscopic image for inferring the compensation of

the vessel motion resulting from patient respiration and heartbeat.

The methods that have been proposed on motion compensation for

DCR can be generally grouped into two categories: direct roadmap-

ping and model-based approaches. 

Direct roadmapping methods use information from X-ray im-

ages and ECG signals to directly correct the motion caused by res-

piration and heartbeat. The first DCR system ( Elion, 1989 ) used

digital subtraction of a contrast sequence and a mask sequence

to create a full cardiac cycle of coronary roadmaps. The roadmaps

were stored and later synchronized with the live fluoroscopic se-

quence by aligning the R waves of their corresponding ECG sig-

nals. This system compensates the cardiac motion of vessels, yet

does not correct the respiratory motion during interventions. Two

later studies by Zhu et al. (2010) and Manhart et al. (2011) intro-

duced image-based respiratory motion compensation methods for

DCR. Their methods assumed an affine respiratory motion model in

ECG-gated fluoroscopic frames and recovered the respiratory mo-

tion from soft tissues with special handling of static structures.

The limitation of these approaches is that they require relevant

tissue to be sufficiently visible in the field of view for reliable

motion compensation which is not always the case. In addition,

they require to be run on cardiac-gated frames. In a more recent

work by Kim et al. (2018) , binary vessel masks were created as

the roadmaps from at least one cardiac cycle of angiographic im-

ages. Temporal alignment of the roadmaps and the fluoroscopic

sequence, which compensated the cardiac motion of vessels, was

performed by registering ECG signals using cross-correlation. Ad-

ditionally, the respiratory motion was corrected by aligning the

guidewire centerline in the fluoroscopy to the contour of vessels in

the angiogram where the roadmaps were created. The system has

been shown useful in a phantom-based study, nevertheless no ac-

curacy evaluation of the spatiotemporal alignment was presented.

Furthermore, the spatial registration relies on robust extraction of

vessels and guidewires which is often challenging for X-ray images.

Unlike direct roadmapping, the model-based approaches build a

model to predict motion in fluoroscopic frames. The motion mod-

els are often functions that relate the motion of roadmaps to sur-

rogate signals derived from images or ECG, so that once the sur-

rogates for fluoroscopic frames are obtained, the motion can be

computed by the model. For cardiac interventions including PCI,

the organ motion is mainly affected by respiratory and cardiac mo-

tion. Many previous works often built a motion model parameter-

ized by a cardiac signal derived from ECG and a respiratory signal

obtained from diaphragm tracking ( Shechter et al., 2005; Timinger

et al., 2005; Faranesh et al., 2013 ) or automatic PCA-based surro-

gate ( Fischer et al., 2018 ). Some other works model only the res-

piratory motion in cardiac-gated images ( Schneider et al., 2010;

King et al., 2009; Peressutti et al., 2013 ). For a complete review

on respiratory motion modeling, we refer readers to the survey ar-

ticle by McClelland et al. (2013) . One limitation of the model-based

approaches is that the motion models are often patient-specific,

which requires training the model every time for a new subject.

Additionally, once the surrogate values during inference are out of
he surrogate range for building the model, e.g. for abnormal mo-

ion, extrapolation is needed, which may hamper accurate motion

ompensation. 

.3. Interventional / surgical tool tracking 

Tracking interventional tools is relevant for motion compensa-

ion ( Schneider et al., 2010; Brost et al., 2010; Ma et al., 2012;

aka et al., 2015; Ambrosini et al., 2017b ). In particular for PCI,

he guiding catheter tip typically remains within the coronary

stium which is in the field of view during the largest part

f the intervention, making it a suitable landmark for tracking.

aka et al. (2015) have shown that catheter tip motion during

CI can be modeled as a combination of cardiac and respira-

ory motion. As using catheter tip displacement can only correct

ranslational motion, Baka et al. (2015) further showed that, com-

ared to a rigid motion model for the respiratory motion, mod-

ling only the translational part of the respiratory motion de-

eriorated the accuracy marginally, which confirms the observa-

ions by Shechter et al. (2004) that the rotational part of respi-

atory motion is small. These findings motivate motion compensa-

ion for DCR through tracking the catheter tip in X-ray fluoroscopic

equences. 

Many works have been proposed to address the problem of

racking interventional or surgical tools in medical images for var-

ous applications. The tracking methods from these works can be

enerally categorized into two kinds of approaches: tracking by de-

ection, and temporal tracking. 

The tracking by detection approaches treat tracking as a detec-

ion problem, which rely on features only from the current im-

ge without using information from previous frames. For exam-

le in electrophysiology procedure, as the catheters present spe-

ific features in shape or intensity, ad hoc methods were pro-

osed based on, e.g. blob detection, shape constrained searching

nd model-/template- based detection ( Ma et al., 2012; Ma et al.,

013 ). Chang et al. (2016) modeled the catheter tracking problem

y optimizing the posterior in a Bayesian framework, in which

he catheter was represented as a B-spline tube model and was

racked by fitting the B-spline to measurements based on gray in-

ensity and vesselness image. Baur et al. (2016) proposed a con-

olutional neural network (CNN) to detect catheter electrodes in

-ray images, which treated catheter detection as a segmentation

roblem. The method used a weighted cross-entropy loss to cope

ith the class imbalancing problem due to the small size of the

arget. Laina et al. (2017) and Du et al. (2018) tracked surgical in-

truments using a deep network having an encoder-decoder archi-

ecture. Their approaches combined instrument segmentation and

etection in a multi-task learning problem to make the tool detec-

ion in a cluttered background more robust. 

Different from tracking by detection, which relies solely on the

urrent image, temporal tracking also uses information from previ-

us frames. The temporal information can reduce the search space

or detection, or put additional constraints in the model, making

he tracking more robust. 

Temporal information has been used in various ways. Some

ethods mainly relied on a detection model, but incorporate

emporal information in the preprocessing ( Brost et al., 2010 ) or

ost-processing ( García-Peraza-Herrera et al., 2016 ) step or in the

nput ( Rieke et al., 2016; Ambrosini et al., 2017a ). Approaches

ased on background estimation have been used for catheter

 Yatziv et al., 2012 ) or guidewire ( Petkovi ́c and Lon ̌cari ́c, 2010 )

racking. In these approaches, the background was recursively up-

ated for every frame, and was used for enhancing the foreground

ontaining instruments. Apart from those, many works adopted

 Bayesian framework for tracking instruments via a maximum a

osteriori (MAP) formulation. Representations based on key points
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 Wu et al., 2015 ), B-splines ( Wang et al., 2009; Pauly et al., 2010;

onnorat et al., 2011; Heibel et al., 2013 ), or segment-like fea-

ures ( Vandini et al., 2017 ) have been used to model catheters or

uidewires. Markov random field (MRF) was used to model the po-

ition or deformation of the control points in the B-spline ( Pauly

t al., 2010; Honnorat et al., 2011; Heibel et al., 2013; Wu et al.,

015 ). In the work by Vandini et al. (2017) , temporal information

as incorporated in the prior term using Kalman filter. Particularly,

earning-based approaches were used in several works to obtain

he likelihood for a more robust measurement using probabilistic

oosting tree ( Wang et al., 2009; Wu et al., 2012 ) or support vec-

or regression ( Pauly et al., 2010 ). In addition, temporal tracking

odels based on Bayesian filtering were also a popular approach

or instrument tracking. Ambrosini et al. (2017b) used a hidden

arkov model (HMM) to track catheter tip in a 3D vessel tree,

or which the likelihood was obtained based on the 3D-2D regis-

ration outcome. Speidel et al. (2006) used particle filters to track

urgical tools in medical images. They used a likelihood based on

he segmentation of instruments, and a dynamic model that in-

orporates samples from two previous time steps. In a later work,

peidel et al. (2014) used a multi-object particle filter to track mul-

iple instrument regions simultaneously, in which a particle is the

oncatenation of the states of several objects. 

Despite of many existing works on inverventional or surgical

ool tracking in medical images, an automatic approach for track-

ng the tip of guiding catheter in X-ray fluoroscopy for PCI has not

een investigated yet. The challenges of this task are: (1) differ-

nt from the catheters for EP that can be viewed as blobs or a cir-

le, the guiding catheter for PCI presents a dark tubular appearance

hich shows no prominent features; (2) the shape of the guiding

atheter tip segment varies depending on the orientation of the C-

rm, making feature-/model- based detection challenging; (3) the

ackground may contain structures that have similar appearance

o a catheter tip, such as vertebral structures or residual contrast

gent, which makes robust tracking difficult. 

.4. Contributions 

We propose and evaluate a novel approach for dynamic coro-

ary roadmapping. The approach compensates changes in vessel

hapes and cardiac motion by selecting the roadmap of the same

ardiac phase through ECG alignment, and corrects the respiratory

nduced motion via tracking the tip of the guiding catheter. Our

ontributions are: 

1. We develop a new way to perform dynamic coronary roadmap-

ping on free breathing, non-cardiac-gated X-ray fluoroscopic se-

quences. Particularly, the respiratory-induced vessel motion is

robustly compensated via the displacement of catheter tip. 

2. We proposed a deep learning based method within a Bayesian

filtering framework for online detection and tracking of guiding

catheter tip in X-ray fluoroscopic images. The method models

the likelihood term of Bayesian filtering with a convolutional

neural network, and integrates it with particle filtering in a

comprehensive manner, leading to more robust tracking. 

3. We evaluate the proposed approach visually and quantitatively

on clinical X-ray sequences, achieving low errors on both track-

ing and roadmapping tasks. 

4. The proposed DCR method runs in real-time with a modern

GPU, thus can potentially be used during PCI in real clinical set-

tings. 

. Scenario setup and method overview 

The proposed method assumes that the scenario of perform-

ng dynamic coronary roadmapping to guide a PCI procedure con-
ists of an offline phase and an online phase. An overview of the

ethod is shown in Fig. 1 . 

.1. Offline phase 

This phase (Step 0 in Fig. 1 ) is performed off-line before the

ctual roadmapping is conducted. In this stage, roadmaps of coro-

ary arteries containing multiple cardiac phases are created from

n X-ray angiography sequence acquired with injection of contrast

gent. A roadmap can be a vessel model in the form of center-

ines, contours, masks, etc. It may also contain information of clin-

cal interest, e.g. stenosis. Since the main focus of this paper is

n accurate overlay of a roadmap, we do not investigate how to

reate the most suitable roadmaps, but use the images containing

nly vessels and catheters that are created using the layer sepa-

ation method by Ma et al. (2015) as the roadmaps to show the

oncept of dynamic coronary roadmapping. Along with the XA se-

uence, ECG signals are also acquired and stored for later selecting

 roadmap that has similar cardiac phase to a given X-ray fluoro-

copic frame in the online phase (see details in Section 3 ). Once

he image sequence and ECG signals are acquired, the catheter tip

ocation in every frame is obtained to serve as a reference point

or roadmap transformation. In this work we manually annotated

he catheter tip in the offline XA sequence. In real clinical scenar-

os, the annotation work can be done by the clinician or a person

ho assists the intervention, such as a technician or a nurse. 

.2. Online phase 

This is when the dynamic roadmapping is actually performed.

n this phase, non-contrast X-ray fluoroscopic images with the

ame view angles as the roadmaps created during the offline phase

re acquired sequentially. At the same time, ECG signals along with

he roadmapping frames are also obtained and are compared with

he stored ECG to select the most matched roadmap (Step 1 in

ig. 1 ; see details in Section 3 ). This is to compensate the change of

essel shape and position between frames due to cardiac motion.

imultaneously, the catheter tip location in the acquired X-ray fluo-

oscopic images is tracked online using the proposed deep learning

ased Bayesian filtering method in Section 4 (Step 2 in Fig. 1 ). The

isplacement of catheter tip between the current image and the

elected roadmap image is then obtained and are applied to trans-

orm the roadmap. Finally, the transformed roadmap is overlaid on

he current non-contrast frame to guide the procedure (Step 3 in

ig. 1 ). 

. ECG matching for Roadmap selection 

Roadmap selection in this work is achieved by comparing the

CG signal associated with the fluoroscopic image and the ECG

f the angiographic sequence, such that the most suitable candi-

ate roadmap is selected where the best match of the ECG sig-

als is found. The selected roadmap has the same (or very simi-

ar) cardiac phase with the X-ray fluoroscopic image, which com-

ensates the difference of vessel shape and pose induced by car-

iac motoin. An approach similar to the ECG matching method by

im et al. (2018) is used to accomplish this task. 

To select roadmaps images based on ECG, a temporal mapping

etween X-ray images and ECG signal points needs to be built first.

e assume that ECG signals and X-ray images are well synchro-

ized during acqusition. In the offline phase, the beginning and

he end of the image sequence are aligned with the start and end

CG signal points; the XA frames in between are then evenly dis-

ributed on the timeline of ECG. This way, a mapping between the

tored sequence images and its ECG signal can be set up: for each

mage, the closest ECG signal point to the location of the image
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Fig. 1. The overview of the proposed dynamic coronary roadmapping method. The colored blocks with a dash line border denote objects acquired in the online phase; the 

colored blocks with a solid line border are objects originated from the offline phase. 
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on the timeline can be found; for each ECG point, an image that

is closest to this point on the timeline can be similarly located.

Once the mapping is available, all images with good vessel con-

trast filling and the ECG points that are associated to these images

are selected from the XA sequence for the pool of roadmaps. In

this process, at least one heartbeat of frames should be acquired,

which is generally the case in our data. In the online phase, similar

to the approach of Kim et al. (2018) , for acquisition of each image,

a block of N ECG latest ECG signal points is constantly stored and

updated in the history buffer. This is considered as the ECG signal

corresponding to the fluoroscopic frame. 

To compare the ECG signals associated with the angiographic

sequence and the online fluoroscopic image, a temporal reg-

istration of the two signals using cross-correlation is applied

( Kim et al., 2018 ). The two ECG signals are first cross-correlated

for every possible position on the signals, resulting in a 1D vec-

tor of correlation scores. The candidate frame for dynamic overlay

is then selected as the one associated with the point on the ECG

of the angiographic sequence that is corresponding to the highest

correlation score. 

4. Bayesian filtering for catheter tip tracking 

Bayesian filtering is a state-space approach aiming at estimating

the true state of a system that changes over time from a sequence

of noisy measurement made on the system ( Arulampalam et al.,

2002 ). One popular application area of this approach is tracking

objects in a series of images. 

4.1. Theory of Bayesian filtering 

Bayesian filtering typically includes the following components:

hidden system states, a state transition model, observations and a

observation model. Let x k ∈ R 

2 (k = { 0 , 1 , 2 , ... } ) denote the state,

the location of guiding catheter tip in the k th frame, a 2D vector

representing the coordinates in the X-ray image space. The tran-

sition of the system from one state to the next state is given by

the state transition model x k = f k ( x k −1 , v k −1 ) , where v k −1 ∈ R 

2 is

an independent and identically distributed (i.i.d.) process noise,

f k : R 

2 × R 

2 → R 

2 is a possibly nonlinear function that maps the

previous state x k −1 to the current state x k with noise v k −1 . The
bservation z k in this work is defined as the k -th X-ray image of

 sequence, so that z k ∈ R 

w ×h , where w and h are the width and

eight of an X-ray image. We further define the observation model

s z k = h k ( x k , n k ) , where n k ∈ R 

n k is an i.i.d measurement noise

 n k is the dimension of n k ), h k : R 

2 × R 

n k → R 

w ×h is a highly non-

inear function that generates the observation z k from the state x k 
ith noise n k . The state transition model f k and the observation

odel h k , respectively, can also be equivalently represented using

robabilistic forms, i.e. the state transition prior p( x k | x k −1 ) and the

ikelihood p( z k | x k ) from which x k and z k can be obtained by sam-

ling. 

With these definitions and p( x 0 ) , the inital belief of x 0 ,

ayesian filtering seeks an estimation of x k (k ≥ 1) based on the

et of all available observations z 0: k = { z i , i = 0 , ..., k } up to time

 via recursively computing the posterior probability p( x k | z 0: k ) as

q. (1) ( Arulampalam et al., 2002 ): 

p( x k | z 0: k ) ∝ p( z k | x k ) 

∫ 
p( x k | x k −1 ) p( x k −1 | z 0: k −1 )d x k −1 ︸ ︷︷ ︸ 

p( x k | z 0: k −1 ) 

. (1)

ssuming the initial probability p( x 0 | z 0 ) = p( x 0 ) is known, based

n Eq. (1) , Bayesian filtering runs in cycles of two steps: pre-

iction and update. In the prediction step, the prior probability

p( x k | z 0: k −1 ) , the initial belief of x k given previous observations, is

stimated by computing the integral in Eq. (1) . In the update step,

he prior probability is corrected by the current likelihood p( z k | x k )
o obtain the posterior p( x k | z 0: k ) . 

In Section 4.2 , we will firstly introduce how to model the like-

ihood. Then in Section 4.3 , a way to represent and efficiently ap-

roximate the posterior will be discussed. Finally in Section 4.4 ,

 summary of the complete catheter tip tracking method will be

iven. 

.2. A Deep Learning based likelihood 

Directly modeling the likelihood p( z k | x k ) is challenging due to

1) the complexity of the generation process h k and (2) the com-

utational complexity of p( z k | x k ) for every value x k ∈ R 

2 . In this

ork, we simplify the problem by only computing the likelihood

p( z | x ) in the image pixel space, i.e. the integer pixel coordinate.
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Fig. 2. Input and ground truth labels for the deep neural network: (a) an input 

X-ray fluoroscopic image, (b) the binary catheter mask of (a) for catheter segmen- 

tation, (c) a 2D Gaussian PDF ( σ = 4 px) for likelihood estimation for (a). 
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or a subpixel x k , the value of p( z k | x k ) can possibly be approx-

mated by interpolation. To this end, we propose to use a deep

eural network D to approximate p( z k | x k ) for integer pixel loca-

ions. The network takes an image z k as input and outputs a prob-

bility of observing the input z k for every pixel location x k . There-

ore, the approximated likelihood is a function of x k , denoted as

 z k 
( x k ) . Since x k is defined within the scope of the image pixel

pace, D z k 
( x k ) is essentially a probability map having the same di-

ension and size with the input image z k , in which the entry at

ach location x 
j 

k 
( j = 1 , 2 , . . . , wh ) in the map represents the prob-

bility of observing z k given x 
j 

k 
. It is worth mentioning that the

eep neural network is used for approximation of p( z k | x k ) , which

hould be clearly distinguished from the generation model h k that

aps an x k to z k . The existence of h k is merely for the convenience

f definition, its explicit form, however, is not required in the con-

ext of this work. 

To obtain the training labels, we assume that there exists a

apping h k , such that the training label can be defined as a

istance-based probability map, i.e. the farther away x k is from

he ground truth tip location in the image z k , the less possible it

s to observe z k given x k through the process h k . This definition

atches the intuition that from a location x k that is far from the

round truth tip location, the probability of observing a z k with

he catheter tip being located at the ground truth position should

e low. For simplicity, a 2D Gaussian probability density function

PDF) N ( x k ; x ′ 
k 
, σ 2 I) centered at the ground truth tip location x ′ 

k 

ith variance σ 2 I in the image space is used as the label to train

he network ( Fig. 2 (c)). Note that this training label makes the es-

imation of p( z k | x k ) equivalent to a catheter tip detection problem

uch that the deep neural network learns features of catheter tip

nd outputs high probability at locations where the features are

resent. Due to this reason, we also call p( z k | x k ) “detection out-

ut” or “detection probability” and call the estimation of p( z k | x k )
catheter tip detection” in the context of this paper. 

The network that we use follows a encoder-decoder architec-

ure with skip connections similar to U-net ( Ronneberger et al.,

015 ). Additionally, similar to the work by Milletari et al. (2016) ,

esidual blocks ( He et al., 2016 ) are adopted at each resolution

evel in the encoder and decoder to ease gradient propagation in

 deep network. The encoder consists of 4 down blocks in which

 residual block followed by a stride-2 convolution is used for ex-

raction and down-scaling of feature maps. The number of feature

aps is doubled in each downsampling step. The decoder has 4 up

locks where a transposed convolution of stride-2 is used for up-

ampling of the input feature maps. Dropout is used in the residual

nit of the up block for regularization of the network. Between the

ncoder and the decoder, another residual block is used to process

he feature maps extracted by the encoder. The detailed network

rchitecture is shown in Fig. 3 . 

Due to similar appearance between a guiding catheter tip

nd corners of a background structure, such as vertebral bones,
ung tissue, stitches or guidewires, ambiguity may exist when the

etwork is expected to output only one blob in the probabil-

ty map. To alleviate the issue, we adopt a similar strategy as

aina et al. (2017) , using a catheter mask ( Fig. 2 (b)) as an addi-

ional label to jointly train the network to output both the catheter

egmentation heatmap and the likelihood probability map. The

egmentation heatmap is obtained by applying a 1 × 1 convolution

ith ReLU activation on the feature maps of the last up block. To

ompute the likelihood probability map, a residual block is firstly

pplied on the feature maps of the last up block. The output fea-

ure maps are then concatenated with the segmentation heatmap

s one additional channel, followed by a 1 × 1 convolution. Fi-

ally, to ensure the network detection output fits the definition of

 probability map on image locations, following the 1 × 1 convo-

ution, a spatial softmax layer is computed as Eq. (2) : 

 k,l = 

e A k,l ∑ 

i, j e 
A i, j 

, (2) 

here A is the output feature map of the 1 × 1 convolution, A i,j 

enotes the value of A at location ( i, j ), D is the final output of the

etection network, a 2D probability map representing p( z k | x k ) . The

etails are shown in Fig. 3 . 

The training loss is defined as a combination of the segmenta-

ion loss and the detection loss. The segmentation loss L s in this

ork is a Dice loss defined by Eq. (3) : 

 s = 1 − 2 

∑ 

i, j M i, j S i, j ∑ 

i, j M 

2 
i, j 

+ 

∑ 

i, j S 
2 
i, j 

(3) 

here M denotes the ground truth binary catheter masks, S is the

egmentation heatmap. The loss function for detection L d is mean

quare error (MSE) given by Eq. (4) : 

 d = 

1 

w × h 

∑ 

i ≤w, j≤h 

| T i, j − D i, j | 2 (4)

here T denotes the ground truth PDF, w and h are the width and

eight of an image. The total training loss L is defined as Eq. (5) : 

 = L s + λL d (5) 

here λ is a weight to balance L s and L d . 

.3. Approximation of the posterior with particle filter 

Once the deep neural network in Section 4.2 is trained, its

eights are fixed during inference for computing the posterior

p( x k | z 0: k ) for new data. Idealy, the network detection output

p( z k | x k ) should be a Gaussian PDF during inference, as it is trained

ith labels of Gaussian PDFs. However, due to similar appearance

f background structures or contrast residual, the detection out-

ut is unlikely to be a perfect Gaussian (possibly non-Gaussian or

aving multiple modes), which prevents the posterior p( x k | z 0: k )

n Eq. (1) being solved with an analytical method. In practice,

he posterior can be approximated using a particle filter method

 Arulampalam et al., 2002 ). 

Particle filter methods approximate the posterior PDF by a

et of N s random samples with associated weights { x i 
k 
, w 

i 
k 
} N s 

i =1 
 Arulampalam et al., 2002 ). As N s becomes very large, this dis-

rete representation approaches the true posterior. According to

rulampalam et al. (2002) , the approximation of the posterior

p( x k | z 0: k ) is given by Eq. (6) : 

p( x k | z 0: k ) ≈
N s ∑ 

i =1 

w 

i 
k δ( x k − x 

i 
k ) (6)

here δ( · ) is the Dirac delta function. The weight w 

i 
k 

can be

omputed in a recursive manner as Eq. (7) once w 

i 
k −1 

is known
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Fig. 3. A joint segmentation and detection network for catheter tip detection. This figure shows an example network with 4 levels of depth (the number of down or up 

blocks). Meaning of abbreviations: Conv , 2D convolution; Bn , batch normalization; Relu , ReLU activation; Dp , dropout; Concat , concatenation; Ch , number of channels; S , 

segmentation output; D , detection output. The number above an image or feature maps indicates the number of channels; the number of channels in the residual network 

in a block is shown above the block; c is the basic number of channels, the channel number in the first down block. The number next to a rectangle denotes the size of the 

image or feature maps. Red arrows indicate a change of number of channels. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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( Arulampalam et al., 2002 ): 

w 

i 
k ∝ w 

i 
k −1 

p( z k | x 

i 
k 
) p( x 

i 
k 
| x 

i 
k −1 

) 

q ( x 

i 
k 
| x 

i 
k −1 

, z k ) 
(7)

where q ( x k | x i k −1 
, z k ) is an importance density from which it should

be possible to sample x i 
k 

easily. For simplicity, a good and con-

venient choice of the importance density is the prior p( x k | x i k −1 
)

( Arulampalam et al., 2002 ), so that the weight update rule (7) be-

comes w 

i 
k 

∝ w 

i 
k −1 

p( z k | x i k ) . 
A sample can be drawn from p( x k | x i k −1 

) in the following way.

First, a process noise sample v i 
k −1 

is sampled from p v ( v k −1 ) , the

PDF of v k −1 ; then x i 
k 

is generated from x i 
k −1 

via the state transi-

tion model x i 
k 

= f k ( x 
i 
k −1 

, v i 
k −1 

) . In this work, p v ( v k −1 ) is set to be

a Gaussian N ( 0 , σ 2 
v I) . The choice of motion model for f k is impor-

tant for an accurate representation of the true state transition prior

p( x k | x k −1 ) . A random motion cannot characterize well the motion

of catheter tip in XA frames. In this work, we estimated the mo-

tion from adjacent frames using an optical flow method, as this

approach takes into account of the observation z k , which results

in a better guess of the catheter tip motion, and enables estima-

tion of a dense motion field where the motion of a sample x i 
k 

can

be efficiently obtained. Therefore, f k is defined as Eq. (8) : 

x k = x k −1 + u k −1 ( x k −1 ) + v k −1 (8)

where u k −1 (·) is the motion from frame k −1 to frame k esti-

mated with optical flow using the method by Farnebäck (2003) ,

u k −1 ( x k −1 ) is the motion from state x k −1 . 

Once samples are drawn and their weights are updated, the so-

called “resampling” of the samples should be performed to prevent
he degenaracy problem, where all but one sample will have negli-

ible weight after a few iterations ( Arulampalam et al., 2002 ). The

esampling step resamples the existing samples according to their

pdated weights and then resets all sample weights to be 1/ N s ,

o the number of effective samples which have actual contribu-

ion to approximate p( x k | z 0: k ) is maximized ( Arulampalam et al.,

002 ). If the resampling is applied at every time step, the particle

lter becomes a sampling importance resampling (SIR) filter, and

he weight update rule follows Eq. (9) . 

 

i 
k ∝ p( z k | x 

i 
k ) (9)

he final decision on catheter tip location in frame k can then be

omputed as the expectation of x k , ˆ x k = 

∫ 
x k p( x k | z 0: k ) d x k , which

s in this case, the weighted sum of all samples: 

ˆ  k = 

N s ∑ 

i =1 

w 

i 
k x 

i 
k . (10)

.4. Summary 

The overall catheter tip tracking using a deep learning based

ayesian filtering method is summarized in Algorithm 1 . 

. Experimental setup 

.1. Data 

Anonymized clinical imaging data were used for our experi-

ents. The data were acquired with standard clinical protocol us-

ng Siemens AXIOM-Artis system, and are from 55 patients who

nderwent a PCI procedure at the Department of Cardiology at
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Algorithm 1 Deep learning based Bayesian filtering for online 

tracking of catheter tip in X-ray fluoroscopy 

Require: { z 0 , . . . , z T } (sequentially observed frames), D (A trained 

network from Section 4.2), p( x 0 ) (the initial PDF), σ 2 
v (the vari- 

ance of v k −1 , k = 1 , . . . , T ), T (number of frames for tracking), 

N s (number of samples) 

1: Draw x i 
0 

∼ p( x 0 ) , set w 

i 
0 

= 1 /N s , ∀ i = 1 , . . . , N s 

2: for k = 1 to T do 

3: Compute u k −1 from z k −1 to z k using the optical flow method 

of Farnebäck (2003) 

4: for i = 1 to N s do 

5: Draw v i 
k −1 

∼ N ( 0 , σ 2 
v I ) 

6: Compute the motion of x i 
k −1 

: u 

i 
k −1 

= u k −1 (x i 
k −1 

) 

7: Draw x i 
k 

∼ p( x k | x i k −1 
) : x i 

k 
= x i 

k −1 
+ u 

i 
k −1 

+ v i 
k −1 

8: Update weight w 

i 
k 

= p(z k | x i k ) = D z k 
(x i 

k 
) 

9: end for 

10: Normalize w 

i 
k 

← w 

i 
k 
/ 
∑ N s 

i =1 
w 

i 
k 
, ∀ i = 1 , . . . , N s 

11: Prediciton in frame k : ˆ x k = 

∑ N s 
i =1 

w 

i 
k 
x i 

k 

12: Resample { x i 
k 
, w 

i 
k 
} N s 

i =1 
using the method of Arulampalam et 

al. (2002) (so all w 

i 
k 

are set to 1 /N s again) 

13: end for 

Table 1 

Basic information of the acquired X-ray image data for our 

experiments. The number in the parenthesis next to the 

pixel size indicates the possible image size. 

Data Development Evaluation 

No. patients 37 18 

No. sequences 354 34 

Frame rate (fps) 15 15 

Image size (px) 512 × 512 512 × 512 

600 × 600 600 × 600 

776 × 776 776 × 776 

960 × 960 1024 × 1024 

1024 × 1024 

Pixel size (mm) 0.108 (1024) 0.139 (1024) 

0.139 (1024) 0.184 (600) 

0.184 (600) 0.184 (776) 

0.184 (776) 0.184 (1024) 

0.184 (960) 0.216 (512) 

0.184 (1024) 0.279 (512) 

0.216 (512) 
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Table 2 

Dataset of training, validation and test for detection and tracking of catheter tip 

in X-ray fluoroscopic frames. 

Training Validation Validation Test 

(detection) (detection) (tracking) (tracking) 

No. patients 25 12 12 18 

No. sequences 260 94 88 34 

No. frames 1086 404 1583 1355 

Continous frames? No No Yes Yes 
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rasmus MC in Rotterdam, Netherlands. Out of these data, we se-

ected data from 37 patients which were acquired since the year

014 to develop our method, and used the data from the other 18

atients acquired before the year 2013 for evaluation. The detailed

nformation about the data is listed in Table 1 . 

In order to evaluate the proposed roadmapping method, for

hich an off-line angiographic sequence is required for roadmap

reparation and an online fluoroscopic sequence taken from the

ame C-arm position is needed for performing the actual roadmap-

ing (see Section 2 ), we selected the contrast frames from a real

linical sequence to simulate the off-line sequence, and chose the

on-contrast frames from the same clinical sequence to simulate

he online sequence. The selected contrast sequence were ensured

ufficiently long to cover at least one complete cardiac cycle. 

.2. Data split for catheter tip detection and tracking 

To develop the catheter tip tracking method, 1086 X-ray fluo-

oscopic images selected from 260 non-contrast sequences of 25

atients from the development set were used for training the net-

ork from Fig. 3 ; 404 images from 94 non-contrast sequences of

nother 12 patients from the development set were used as val-

dation set for the network model and hyperparameter selection.
n the training and validation sets, 4-5 frames were randomly se-

ected from each sequence, which are not necessarily continuous.

o tune the parameters for tracking, 1583 images from 88 se-

uences out of the 94 from the same 12 patients of the valida-

ion set were used (6 sequences were not selected for this task

ue to very short sequence length not more than 5 frames). Fi-

ally, to evaluate catheter tip tracking accuracy, 1355 images from

4 non-contrast sequences of 18 patients from the evaluation set

ere used for testing. The frames selected for tracking from each

equence must be continuous; the number of selected frames for

racking might vary, depending on the number of the non-contrast

rames in the sequences. Details of the datasets for training, vali-

ation and test are listed in Table 2 . 

.3. Experimental settings for training the deep network 

This section describes the basic experimental settings for train-

ng the deep neural network. Details of the training setup can be

ound in Appendix A . 

.3.1. Preprocessing 

As the image data have different size ranging from 512 × 512

o 1024 × 1024, all images were resampled to a grid of 256 × 256

efore being processed by the neural network. In addition, the im-

ge intensities were rescaled to the range from 0 to 1. 

.3.2. Training label 

The standard deviation σ of the Gaussian PDF for the training

abel of the detection network was set to 4 pixels in the resampled

mage space (256 × 256). This choice corresponds to the estima-

ion of the maximal possible catheter tip radius. An example of the

aussian PDF is shown in Fig. 2 (c). 

.3.3. Evaluation metric 

To select hyperparameters and model weights in training, an

valuation metric is required. As the deep network is essentially

 catheter tip detector, accurate detection of the tip location is

esired. Therefore, we chose the location with the highest value

n the detection output, and computed the Euclidean distance be-

ween the chosen location and the ground truth tip coordinate as

he evaluation metric to tune the deep network. 

.4. Setup for evaluating dynamic coronary roadmapping 

It is in general a challenge to evaluate the roadmapping accu-

acy, as the structure of interest, e.g. coronary arteries in our case,

s not directly visible in the target image. One possible choice in-

roduced by Zhu et al. (2010) is to use the guidewire as a surrogate

f the target vessel centerline in non-contrast images, as guidewire

s always inside vessels and commonly present in image sequences

uring interventions. In this work, we follow a similar strategy to

valuate the accuracy of dynamic coronary roadmapping. 
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Fig. 4. Correspondence between the labelled guidewire (green) and the trans- 

formed vessel centerline (red). The yellow lines connecting the two point sets il- 

lustrate the correspondence between red and green points. (For interpretation of 

the references to color in this figure, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Validation errors (mm) for different hyperparameter settings. Red cells 

show the settings with the 10 smallest validation errors. bold number 

indicates the setting with the lowest error. 
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The first step is to select frames for roadmapping evalua-

tion. From each non-contrast sequence in the test set for track-

ing in Section 5.2 , we uniformly select 8-20 frames to anno-

tate guidewire. The number of the selected frames from each se-

quence depends on the sequence length, the frame interval size

and guidewire visibility. For some rare cases in our data where no

guidewire is present in the image, we discarded that non-contrast

frame, and chose those frames with little vessel contrast from the

same sequence and annotated the vessel centerline. The selection

results in 409 frames from 34 sequences in total. Once the tar-

get non-contrast frames for evaluating roadmapping are chosen,

their corresponding angiographic frames were found using the ECG

matching method in Section 3 . We then annotated the centerline

of the vessel corresponding to the guidewire in the non-contrast

frames. 

The next step is performing the transformation of the labelled

vessel centerline from the angiographic frame to its corresponding

target non-contrast frame via displacement of catheter tip in the

two frames. This step simulates the roadmapping transformation

in the last step in Fig. 1 . 

Finally, the distance between the guidewire annotation in the

target frame and the transformed vessel centerline is reported as

the roadmapping accuracy. In order to compute the distance be-

tween two point sets of annotations (e.g. Fig. 4 (a)), point-point cor-

respondence between the two sets is required ( Fig. 4 (b)). The point

sets were firstly resampled with the point interval being 1 mm.

We then followed the approach of van Walsum et al. (2008) to

find such correspondences which minimizes the sum of the Eu-

clidean distance of all valid point-point correspondence paths. This

way guarantees no cross-over connection and each point in one

set is connected to at least one point in the other set. As the anno-

tated point sets may have different size, the point correspondences

to endpoints are excluded such that we only focused on the dis-

tance between corresponding sections, not the entire centerlines

( Fig. 4 (c)). Once the point-point correspondence is available, the

distance between the two points in a pair can be used for evaluat-

ing the accuracy of DCR. 

5.5. Implementation 

The proposed method was developed in Python. The frame-

work used for developing the deep learning approach for like-

lihood approximation is PyTorch. The major experiments of dy-

namic coronary roadmapping were performed on a computer with

an Intel Xeon E5-2620 v3 2.40 GHz CPU and 16 GB RAM run-

ning Ubuntu 16.04. The deep neural network and the optical flow

method were running on an NVIDIA GeForce GTX 1080 GPU. The

approach for evaluating dynamic coronary roadmapping was devel-

oped and running in MeVisLab on a computer with an Intel Core

i7-4800MQ 2.70 GHz CPU and 16 GB RAM running Windows 7. 
. Experiments and results 

The following experiments are performed to assess the meth-

ds. First, In Section 6.1 , the training of the deep neural network is

escribed. Then in Section 6.2 , the accuracy of catheter tip tracking

sing the optimized trained network and the tuned particle filter

s presented. Section 6.5 describes the accuracy evaluation of dy-

amic coronary roadmapping via the proposed catheter tip track-

ng method. Finally, in Section 6.6 , we measure the processing time

f the proposed DCR approach. 

.1. Training the deep neural network 

The purpose of this experiment is to train the deep neural net-

ork to output reasonable likelihood probability map. The net-

ork hyperparameters were tuned to optimize the detection per-

ormance. 

The training and validation data for detection mentioned in

ection 5.2 were used for training the deep neural network. The

valuation metric mentioned in Section 5.3 , the mean Euclidean

istance between the ground truth and the predicted tip location

veraged over all validation frames, was used as the validation cri-

eria for selecting the optimal training epoch and the network hy-

erparameters. When we evaluated hyperparameter settings, we

rstly selected the training epoch with the lowest mean valida-

ion error for each setting, then the settings were compared using

he model weights (trainable network parameters) of their chosen

pochs. 

The network hyperparameters we investigated in the experi-

ents include (1) the basic channel number, i.e. the number of

hannels or feature maps in the first down block, (2) the network

epth level, the number of down or up blocks, and (3) the dropout

robability. 

The validation errors for different hyperparameter settings us-

ng the experimental settings in Section 5.3 are shown in Table 3 .

he table shows that the hyperparameter setting with the lowest

ean error, which has 4 level in depth and 64 channels in the first

own block, achieves a validation error of about 2 mm. The table

lso shows other good choices of network architecture that have

 small validation error (shown in red in Table 3 ): 32 channels in

he first down block with 4 or 5 levels in depth, or 64 channels

ith 3 or 4 depth levels. The dropout regularization improves the

ccuracy of the model, compared to the ones without dropout. 

The learning curves of the training process with the cho-

en hyperparameter setting are illustrated in Fig. 5 . The curves
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Fig. 5. Learning curves for the chosen hyperparameter setting. 

Table 4 

The chosen (hyper-)parameters for different building 

blocks of the catheter tip tracking algorithm. The pa- 

rameters of the optical flow method can be found in 

Appendix B.1 . 

Building block (hyper-)parameters value 

Deep learning Basic channel number 64 

Depth 4 

Dropout 0.2 

Particle filter σ v (px) 5 

N s 1000 
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Fig. 6. Tracking errors for the 4 methods on all test images. 

i  

m  

u  

n  

f  

a  

u  

t  

c  

d  

s  

A  

“  

f  

e  

m

 

w  

d  

t  

T  

l  

q  

e  

T  

l  

c  

1  

e  

c

 

m  

a  

e  

c  

i  

(

 

o  

s  

p  

d  

t  

b  

d  

p  

o  

e

 

t  

(  
ndicate that both segmentation and detection reach convergence

fter training 100 epochs. 

We did not investigate a model with more than 64 channels or

 depth levels, because (1) it will further increase the processing

ime which makes online applications less feasible; (2) the results

n Table 3 show that such a setting (64 channels, 5 depth levels)

tarts increasing the validation error compared to those less com-

lex models. 

The subsequent experiments will be based on the network

rained with the chosen hyperparameter setting indicated in

able 3 (64 channels, 4 depth levels, dropout 0.2, also see Table 4 ).

.2. Catheter tip tracking 

The purpose of this experiment is to assess the accuracy of

atheter tip tracking with the proposed method in Section 4 .

uiding catheter tip is tracked in X-ray fluoroscopy using

lgorithm 1 based on a trained network with the optimal hy-

erparameter setting from Section 6.1 . First, the parameters of

he optical flow method used in Algorithm 1 and particle filter

ere tuned on the validation data for tracking in Section 5.2 (see

ppendix B for details). Then in Section 6.3 , we evaluated the

racking accuracy with the tuned optimal parameter setting (see

able 4 ) on the test dataset, and compared the proposed track-

ng method with alternative approaches using only the detec-

ion network in Section 4.2 or using only optical flow. Finally, in

ection 6.4 , we investigated tracking accuracy with different ways

f tip initialization in the first frame. 

.2.1. Tracking methods evaluation 

In this experiment, the proposed tracking method in

lgorithm 1 uses the ground truth tip probability map of the

rst frame as the initial PDF p( x ) to draw samples. This method
0 
s referred to as “Tracking”. In addition, we compared the proposed

ethod with three alternatives. The first one tracks catheter tip

sing only the detection network in Section 4.2 with the chosen

etwork architecture and trained parameters in Section 6.1 , there-

ore, no temporal information is used. This method is referred to

s “Detection (Net)”. The other two methods in this experiment

se only optical flow to track catheter tip starting from the ground

ruth tip position in the first frame. The motion field towards the

urrent frame, estimated by the two methods, was based on the

eformation from the previous frame or the first frame in the

equence, respectively. The same implementation setting as in

ppendix B.1 was used for these two methods. They are called

Optical Flow (previous)” and “Optical Flow (first)”, or in short

orm, “OF (pre)” and “OF (1st)”. Additionally, we refer the inter-

sted readers to Appendix C.1 where the influence of catheter seg-

entation on the detection and tracking approaches is reported. 

The tracking accuracies of all methods reported in this section

ere obtained on the test set from Table 2 . The mean, the me-

ian and the maximal tracking error between the predicted and

he ground truth tip position of all test images are reported in

able 5 . In addition, as the sequences in the test set have different

engths, we also computed the mean and the median error per se-

uence, and report the average of the sequence mean and median

rrors, so that each sequence contributes equally in these metrics.

able 5 shows that the results from the detection network have

arge average errors which are caused by some completely failed

ases. The proposed tracking method has median errors of about

 mm and mean errors of about 1.3 mm. It achieves the lowest

rrors compared to the other 3 methods on all listed evaluation

riteria. 

Fig. 6 illustrates the boxplots of tracking errors made by the 4

ethods on all test images. It shows that the proposed tracking

pproach outperforms the detection method by avoiding making

xtremely large errors ( Fig. 6 (a)); meanwhile, it maintains as ac-

urate as the detection method for cases with small errors, and

s more accurate than the methods based solely on optical flow

 Fig. 6 (b)). 

Fig. 7 shows longitudinal views of tracking errors of the 4 meth-

ds on 4 example sequences. Although the optical flow methods

how high accuracy when the target is on the track (row 4), they

resent periodic error patterns in two sequences due to large car-

iac motion. The detection method shows peaks of large errors,

his is because temporal relation between frames is not modeled

y the approach, thus the detection on different frames is indepen-

ent of each other. The proposed tracking method overcomes the

roblems that other methods have and presents accurate detection

n these 4 sequences. The tracking results of the 4 methods on

xample frames from the 4 sequences are illustrated in Fig. 8 . 

Fig. 9 illustrates how the proposed tracking method works on

he same 4 frames in Fig. 8 . It shows that the prior hypotheses

samples) assists to focus on the correct target location and results
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Table 5 

Catheter tip tracking errors (mm) of the 4 methods on the test (tracking) dataset. † indicates that the differ- 

ence between that method and the “Tracking” method are statistically highly significant with the two-sided 

Wilcoxon signed-rank test ( p < 0.001). 

Evaluation Metrics Optical Flow † Optical Flow † Detection Net † Tracking 

(previous) (first) ( Section 4.2 ) 

Maximal error of all images 29.16 20.83 108.20 17.72 

Median error of all images 1.78 1.22 0.96 0.96 

Mean error of all images 3.74 ± 4.93 3.05 ± 4.05 5.62 ± 15.91 1.29 ± 1.76 

Average of sequence median error 2.35 ± 2.52 2.64 ± 3.52 6.26 ± 17.11 1.03 ± 0.49 

Average of sequence mean error 2.59 ± 2.69 3.31 ± 2.81 6.83 ± 13.88 1.29 ± 0.94 

Fig. 7. Longitudinal view of tracking errors made by the 4 methods on 4 test sequences (one sequence per row). The x -axis denotes the time steps of a sequence, the y -axis 

is the tracking error (mm). 
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in reliable posterior estimation, especially when the detection pro-

duces ambiguity in cases of multiple catheters or contrast residual

presented in images. 

6.2.2. Catheter tip initialization 

In this experiment, the initial PDF p( x 0 ) from which samples

are drawn in the proposed tracking is investigated ( Algorithm 1 ).

In particular, we explored and evaluated the tracking accuracy

with an automatic initialization using the probability map obtained

from the trained detection network in Section 4.2 with the chosen

setting in Section 6.1 . 

Fig. 10 shows the boxplot of tracking errors on all test im-

ages with automatic initialization (Auto) and manual initialization

(Manual) for which the ground truth tip probability map of the

first frame was used. The tracking with automatic initialization

presents an accuracy similar to the one with manual initialization

for small tracking errors, but has more large tracking errors which
nfluence the mean error over all test images ( Table 6 ). We, there-

ore, defined the tracking errors on the right side of the gap in the

oxplot ( > 40 mm) as outliers, and explored the statistics with-

ut those outliers. 

Table 6 indicates that, the mean and median error of the track-

ng with automatic initialization excluding the outliers are only

lightly higher than the tracking with manual initialization and the

etection method. While the tracking with automatic initialization

as 100 outliers in total from 6 sequences, the detection method

hat has 10 sequences containing 106 outliers. 

Unlike the detection method for which the outliers are mainly

resented as the peaks in the longitudinal views ( Fig. 7 ), the out-

iers for the tracking with automatic initialization are more con-

istent over time. Fig. 11 shows the temporal change of tracking

rrors for the 6 sequences with outliers using the tracking with

utomatic initialization. For the 3 sequences on the top row, the

racking with automatic initialization makes large errors at the be-

inning, but becomes accurate very fast in a few frames; for the 3
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Fig. 8. Tracking results on example frames from the same 4 sequences in Fig. 7 . The blue point indicates the predicted catheter tip location; the red point shows the ground 

truth location. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Table 6 

Catheter tip tracking errors (mm) of detection and tracking with manual and automatic 

initialization. 

Detection Tracking 

Manual init. Automatic init. 

Maximal error 108.20 17.23 98.58 

Median error 0.96 0.96 0.96 

Mean error 5.62 ± 15.91 1.29 ± 1.76 5.16 ± 13.91 

No. of outliers ( > 40 mm) 106 0 100 

No. of sequences with outliers 10 0 6 

Maximal error of inliers 31.06 17.23 28.28 

Median error of inliers 0.96 0.96 0.96 

Mean error of inliers 1.17 ± 1.78 1.29 ± 1.76 1.34 ± 2.15 
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equences on the bottom row, however, the tracking errors remain

arge till the end of the sequences. 

Fig. 12 shows example frames to give an insight of the track-

ng with automatic initialization on the 6 sequences in Fig. 11 . For

he 3 sequences on the top row ( Fig. 12 (a)), although the initial-

zation on the first frame (frame 0) is overall not correct, the true

ip positions are still covered by some samples; once the detection

n subsequent frames is correct, the tracker can still converge to

he right target. For the 3 sequence on the bottom row ( Fig. 12 (b)),

he initializations of samples are ambiguous in frame 0; the de-

ection in subsequent frames focuses on a wrong area also given

y the initial samples due to residual of contrast agent or multiple

atheters, the tracker then tends to find the wrong target. 
.3. Dynamic coronary roadmapping 

In this experiment, the accuracy of dynamic coronary roadmap-

ing using the proposed method with manual tip initialization was

valuated. For roadmap selection with ECG matching ( Section 3 ),

he number of online ECG signal points N ECG was manually deter-

ined so that the ECG signal stored in the buffer corresponding

o 12 X-ray frames (0.8 s in acquisition time). Following the setup

n Section 5.7 , we used the distance between the two points in

ach point pair as the evaluation metric for DCR (the length of

 yellow line segment in Fig. 4 ). As each frame may have differ-

nt numbers of point pairs, depending on the length of the tar-

et guidewire, the average point pair distance per frame was also
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Fig. 9. Workflow of the proposed tracking method on the same 4 frames in Fig. 8 . The high probability is shown with bright color in the detection map. Samples or particles 

are presented as green dots. The blue point indicates the predicted catheter tip location; the red point shows the ground truth location. (For interpretation of the references 

to color in this figure, the reader is referred to the web version of this article.) 

Fig. 10. Catheter tip tracking errors (mm) with manual and automatic initialization. 

Fig. 11. Longitudinal views of tracking errors (mm) for the 6 sequences with out- 

liers using automatic initialization. 
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computed for evaluation. These distances were evaluated on 409

selected frames with manual annotation of guidewires and vessel

centerlines ( Section 5.7 ). 

In the experiment, we compared the DCR with the proposed

tracking method to those with manual tip tracking and without
racking. All three approaches were based on the same ECG match-

ng method ( Section 3 ) for selecting roadmaps. The accuracy of

he DCR without tracking in Table 7 shows that the mean dis-

ances are reduced to less than 3 mm by compensating only car-

iac motion via roadmap selection with ECG matching. Table 7 also

hows that the DCR with the proposed method achieves me-

ian distances of about 1.4 mm and mean distances of about

 mm. The boxplots of the distances of all point pairs and the

rame mean point distances of all 409 evaluation frames are il-

ustrated in Fig. 13 . The comparison of the three DCR approaches

rom Table 7 and Fig. 13 indicates that the accuracy of the pro-

osed DCR method has shown improvement over the DCR with-

ut tracking, and is only slightly less than the DCR with manual

ip tracking (although the difference is statistically significant). Ad-

itionally, interested readers are referred to Appendix C.2 where

he influence of catheter segmentation on the accuracy of DCR is

nvestigated. 

Table 8 shows how the frame mean point distances of the

09 evaluation frames are distributed. The DCR with the proposed

ethod has similar error distribution as the one with manual tip

racking: they both have about 1/3 of the distances less than 1

m and 1/3 of the distances between 1 and 2 mm. The proposed

ethod has slightly more distances larger than 5 mm than manual

ip tracking. Both methods are more accurate than the DCR with-

ut tracking on intervals of small errors ( < 2 mm). 

Fig. 14 shows overlays of selected roadmaps on example frames

f 4 sequences with the three DCR approaches. The DCR with-

ut tracking presents mismatch of catheters, guidewires or residual

f contrast agent in the images, whereas the other methods im-

rove the alignment and show good match between the structures

n the original X-ray image and the roadmaps. Compared to the
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Table 7 

The statistics of DCR accuracy (mm) with three different tracking scenarios. With the two-sided Wilcoxon 

signed-rank test: † denotes that the difference between the DCR without tracking and that with the pro- 

posed tracking method is statistically highly significant ( p < 0.001); ∗ indicates a statistically significantly 

difference between the DCR using manual tip tracking and that with the proposed tracking approach 

( p < 0.05). 

Without Tracking † Proposed Tracking Method Manual Tip Tracking ∗

All point pairs 

Maximal distance 27.19 20.24 13.12 

Median distance 1.97 1.43 1.35 

Mean distance 2.94 ± 2.83 2.07 ± 2.08 1.85 ± 1.72 

Frame mean distance 

Median distance 2.11 1.42 1.38 

Average distance 2.76 ± 2.08 1.91 ± 1.52 1.75 ± 1.30 

Fig. 12. Examples frames from the 6 sequences in Fig. 11 . The high probability 

in the detection heatmap is highlighted as bright color. Particles are presented as 

green dots. The red dots in the last column indicate the ground truth tip location. 

(For interpretation of the references to color in this figure, the reader is referred to 

the web version of this article.) 

D  

v  

a  

s

Table 8 

Distribution of frame mean point distances of the 409 evaluation frames. 

Tracking Methods of DCR Error Intervals (mm) 

< 1 1-2 2-3 3-4 4-5 ≥ 5 

Without tracking 81 115 69 47 31 66 

Proposed tracking method 131 145 61 32 17 23 

Manual tip tracking 139 144 61 35 20 10 

Table 9 

Statistics of the runtime of catheter tip tracking (ms / frame) on the test 

(tracking) dataset. 

Deep Learning Particle Filtering Total Tracking Time 

Mean 31.5 ± 10.3 23.0 ± 8.7 54.5 ± 12.3 

Median 35.1 22.8 57.7 

Fig. 13. Accuracy (mm) of DCR with three different tracking scenarios. 
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CR with manual tip tracking, the proposed method show similar

isual alignment of the roadmaps to the original X-ray images. For

 dynamic view of a roadmapping example, we refer readers to the

upplemental material. 
.4. Processing time 

The processing time of all steps in the proposed DCR

ethod was measured with the hardware and software setup in

ection 5.8 . The ECG matching method for roadmap selection was

unning in Python on the CPU of the Linux machine; the deep

eural network and the optical flow component of the tracking

ethod were running on the GPU. 

In the experiments, the runtimes for roadmap selection (step

) and roadmap transformation (step 3) in Fig. 1 were negligible

 < 1 ms / frame). The runtime of the proposed catheter tip track-

ng method is shown in Table 9 and Fig. 15 . The average time to

ompute the likelihood with the deep learning setup (DL) is 31.5

s / frame. The particle filtering (PF) step, which consists of the

ptical flow estimation, sample propagation, sample weight update
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Fig. 14. Examples of superimposition of selected roadmaps (red) on X-ray fluoro- 

scopic frames. (For interpretation of the references to color in this figure, the reader 

is referred to the web version of this article.) 

Fig. 15. Runtime of catheter tip tracking (ms / frame) on all test frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Catheter tip tracking errors (mm) on the validation (tracking) dataset of 

different parameter settings for particle filter. The tracked tip point was 

rounded to the pixel center. The error of all images (mean ± std / me- 

dian) are presented. Red cells show the good choices of parameters; bold 

number indicates the chosen setting. 
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and normalization, prediction and resampling, takes on average 23

ms / frame. Therefore, the average tracking time in total is 54.5

ms / frame. The total average time of the proposed DCR includ-

ing roadmap selection, catheter tip tracking and roadmap transfor-

mation is still less than the acquisition time of our data (66.7 ms

/ frame, 15 fps), indicating that the proposed DCR method would

run in real-time with our setup. 

7. Discussion 

We have presented a new approach to perform online dynamic

coronary roadmapping on X-ray fluoroscopic sequences for PCI

procedures. The approach compensates the cardiac-induced vessel

motion via selecting offline-stored roadmaps with appropriate car-

diac phase using ECG matching, and corrects the respiratory mo-

tion of vessels by online tracking of guiding catheter tip in X-ray

fluoroscopy using a proposed deep learning based Bayesian filter-

ing. The proposed tracking method represents and tracks the pos-

terior of catheter tip via a particle filter, for which a likelihood

probability map is computed for updating the particle weights us-

ing a convolutional neural network. In the experiments, the pro-

posed DCR approach has been trained and evaluated on clinical X-

ray sequences for both tracking and roadmapping tasks. 

One prerequisite of accurate tracking with the proposed ap-

proach is to obtain a reasonably good likelihood estimation, which
equires to train the deep neural network to detect catheter tip

ell. In this work, we have investigated the influence of three net-

ork hyperparameters on the performance of the detection net-

ork ( Section 6.1 ): the basic channel number and network depth

evel are model capacity parameters, the dropout adds regulariza-

ion to the model. The experiment showed that the detection ac-

uracy improves when the basic channel number and the network

epth level increase ( Table 3 ). This observation matches the expec-

ation that a more complex model has higher capacity to model

he variation in the data, hence results in better accuracy. When

he complexity reaches a certain level, e.g. 64 basic channels and

 level of depth, the network performance does not increase much

ompared to those with simpler settings, implying that the model

tarts overfitting on our dataset. 

In addition to the deep neural network, the other important

omponent of the proposed tracking approach is the sampling in

he particle filter that yields the samples for representing the prior

nd the posterior of catheter tip position. First, a sufficient number

f samples in the whole sample space are required to well char-

cterize the probability distributions (see Appendix B.2 ). Second,

he sample dynamics plays an important role in tracking, in par-

icular, as indicated by Eq. (8) , the process noise and the sample

otion. The process noise influences the tracking accuracy, accord-

ng to Table 10 in Appendix B.2 . Additionally, sample motion is an-

ther key aspect of sample dynamics. Motion estimation has pre-

iouly been incorporated in a motion-based particle filter, such as

daptive block matching ( Bouaynaya and Schonfeld, 2009 ). In our

ork, optical flow was chosen for motion estimation, as its non-

arametric nature allows to characterize the complexity of motion

n X-ray fluoroscopy well. In addition, the advantage of such ap-

roach from a theoretical point of view is that it takes into ac-

ount of the current observation, leading to a more optimal im-

ortance density ( Arulampalam et al., 2002 ) compared to random

otion. 

The tracking results in Section 6.3 show that the proposed

racking approach is able to track the catheter tip in X-ray fluo-

oscopy accurately with an average tracking error of about 1.3 mm.

t also shows advantages over methods based only on optical flow

r the detection network. The OF (pre) method relies heavily on

racking in the previous frame, hence the error could accumulate.

he OF (first) method may suffer from large motion from the first

rame to the current frame. The detection method uses informa-

ion only from the current frame, no temporal relation between

rames is utilized; therefore, it results in spikes in the longitudi-

al view, as shown in Fig. 7 . The proposed tracking method has

 CNN to provide an accurate observation on the current frame

hich improves the accuracy of optical flow tracking within the

ramework of Bayesian filtering. In the meantime, the optical flow



H. Ma, I. Smal and J. Daemen et al. / Medical Image Analysis 61 (2020) 101634 15 

b  

f  

t  

t  

t  

a

 

I  

t  

r  

t  

S  

m  

t  

t  

p  

s  

s  

s  

l  

t  

a  

c  

w  

m  

i  

w  

p  

b

 

c  

f  

t  

w  

t  

r  

o  

a  

e  

b  

c  

s  

m  

s  

t  

w

 

i  

a  

m  

c  

u  

r  

t  

c  

c  

d  

i  

f  

i  

d  

S  

s  

v  

a  

e

 

t  

t  

t  

o  

o  

i  

t  

c  

c  

i

 

p  

o  

n  

n  

S  

i  

c  

D  

f  

i  

l  

t  

e  

o  

b  

t  

e

 

h  

o  

f  

o  

C  

i  

p  

B  

i  

m  

u  

t  

o  

S  

w  

P  

w  

e  

d  

m  

t  

t  

2  

t  

t  

m

 

c  

p  

s  

g  

t  

s  

m  

a  

r  
ased particle filter maintains and propagates the prior knowledge

rom the initial tip position to provide a constraint on searching for

he potentially correct positions, which is useful especially when

he CNN detector fails to find the correct target area. The associa-

ion of knowledge from two sources together improves the tracking

ccuracy compared to each single source. 

The initial state is a also key component of tracking approaches.

n the context of Bayesian filtering, the initial state provides

he prior knowledge of the tracking target. Most tracking algo-

ithms assume a known initial state from which the target is

racked, e.g. our proposed method with manual initialization in

ection 6.4 . In this case, the prior knowledge is provided by hu-

an. In Section 6.4 , we also investigated a scenario where the ini-

ial state is given by the detection network, so that the complete

racking process is fully automated. The results indicate that, the

roposed tracking method with automatic initialization works rea-

onably well on most sequences even when the initialization is

ometimes incorrect ( Fig. 12 (a)). This is because (1) the true po-

ition is covered by a few samples, and (2) the correct detection in

ater frames corrects the initial mistake in the first frame. The au-

omatic initialization fails when (1) a wrong position is covered by

 few samples and (2) the wrong detection in subsequent frames

onfirms the mistake in the initial frame ( Fig. 12 (b)). This happens

hen there is contrast agent remaining in the image or there are

ultiple catheters, which are the major sources causing ambiguity

n detection. In practice, the automatic initialization would work

ell when contrast agent is washed out and only one catheter is

resent in the field of view, otherwise manual initialization would

e needed which requires only one click to initiate tracking. 

Dynamic coronary roadmapping is the direct application of the

atheter tip tracking results. In our experiments, the DCR was per-

ormed with manual tip initialization to show the potential of

he proposed tracking method, and was compared with the DCR

ithout tracking and with manual tracking. The results indicate

hat using catheter tip tracking can improve DCR accuracy, as the

espiratory-induced vessel motion is corrected by the displacement

f catheter tip in addtion to cardiac motion correction. The results

lso show that the proposed DCR reaches a good accuracy (mean

rror is about 2 mm) and performs only slightly worse than its

est case, the DCR with manual tip tracking which is not appli-

able for intraoperative use. Additionally, according to a previous

tudy by Dodge et al. (1992) , the average lumen diameters of hu-

an coronary arteries are between 1.9 mm (distal left anterior de-

cending artery) and 4.5 mm (left main artery). This means that

he accuracy achieved with the proposed approach is comparable

ith the size of coronary arteries. 

Apart from catheter tip tracking, several other possible factors

n different steps of the experiments may influence the final DCR

ccuracy. First, in the offline phase, the signal of contrast agent

ay become too strong and completely cover the catheter tip,

omplicating the tip visibility in some cases. In this situation, the

ncertainty in the manual tip annotation may result in errors in

oadmap transformation. Second, in the roadmap selection step,

he offline-stored roadmaps are only discrete samples of complete

ardiac cycles which might not fully characterize every possible

hange in the cardiac motion. This problem could possibly be ad-

ressed in the future by interpolating frames between the exist-

ng frames in the data. Additionally, variation exists between dif-

erent cardiac cycles ( McClelland et al., 2013 ), therefore, choos-

ng a roadmap from another cycle may cause inaccuracy for car-

iac motion compensation. Finally, the way of DCR evaluation in

ection 5.7 might also introduce inaccuracies in the error mea-

urement. Since guidewires often attach to the inner curves of a

essel to take the shortest path, the small difference between the

nnotation of guidewire and vessel centerlines was ignored in the

valuation. 
In addition to accuracy, processing speed is also critical for in-

raoperative applications. The results in Section 6.6 indicate that

he total processing time of the proposed DCR approach is less

han the image acquisition time, meaning that it runs in real-time

n our setup. To build a real-time system for PCI in practice, the

verall latency of the complete system needs to be considered. It

s also worth noticing that the DL and PF steps of the proposed

racking method are independent from each other. In practice, in

ase more than one GPU are available, the proposed DCR approach

an be further accelerated by paralleling the DL and PF steps, mak-

ng them running on different GPUs. 

Compared to the previous works on DCR, the proposed ap-

roach in this paper shows advancement in several aspects. First,

ur systems works on non-cardiac-gated sequences which does

ot require additional setups for cardiac motion gating that were

eeded for some methods ( Zhu et al., 2010; Manhart et al., 2011 ).

econd, our approach compensates both respiratory- and cardiac-

nduced vessel motion, which is more accurate than systems that

orrect only cardiac motion ( Elion, 1989 ). In addition, the proposed

CR approach follows a data-driven paradigm that learns target

eature from sequences acquired from different patients and var-

ous view angles, making it more robust than the method that re-

ies on traditional vesselness filtering ( Kim et al., 2018 ) or methods

hat require specific tissue being present ( Zhu et al., 2010; Manhart

t al., 2011 ). These are the major advantages of the proposed DCR

ver the existing direct roadmapping systems. Compared to model-

ased motion compensation, our approach does not require the ex-

raction of motion surrogate signals and train a motion model for

ach new patient, but can be directly run with a trained model. 

The proposed deep learning based Bayesian filtering method

as several advantages over the existing instrument tracking meth-

ds. First, the deep learning component enables a more general

ramework to detect instruments in medical images than meth-

ds tailored for specific tools ( Ma et al., 2012; Ma et al., 2013 ).

ompared to the existing detection methods based on deep learn-

ng ( Baur et al., 2016; Laina et al., 2017; Du et al., 2018 ), our ap-

roach takes into account of the information between frames; the

ayesian filtering framework allows interaction between temporal

nformation and the detection of a convolutional neural network,

aking the tracking more robust. Bayesian frameworks have been

sed in many previous temporal instrument tracking methods. Par-

icularly, the likelihood term in some works was designed based

n registration or segmentation outcomes ( Ambrosini et al., 2017b;

peidel et al., 2006 ) or traditional machine learning approaches

ith handcrafted features ( Wang et al., 2009; Wu et al., 2012;

auly et al., 2010 ). In our method, we approximated the likelihood

ith a deep neural network learned from the clinical data which

xempts the need of feature engineering but yet possesses more

iscriminative power; the network directly outputs the probability

ap, making it more straightforward to use. Finally, compared to

he existing instrument tracking approaches based on Bayesian fil-

ering ( Ambrosini et al., 2017b; Speidel et al., 2006; Speidel et al.,

014 ), the state transition in our method was based on the mo-

ion estimated from two adjacent frames, which is more reliable

han totally random motion or artificially-designed state transition

odels. 

From a practical point of view, the proposed DCR approach

ould potentially fit into the clinical workflow of PCI. The offline

hase of the method can be done efficiently by a person who as-

ists the procedures: selecting and creating roadmaps from an an-

iography acquisition, annotating the catheter tip (one point) in

he images. This phase is typically done before a fluoroscopy acqui-

ition during which the guidewire advancement and stent place-

ent are performed. In the online phase, when a fluoroscopic im-

ge is acquired, the proposed system selects the most suitable

oadmap, tracks the catheter tip and transforms the roadmap to
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1 https://docs.opencv.org/2.4/modules/video/doc/motion _ analysis _ and _ object _ 

tracking.html? 
prospectively show a vessel overlay on the fluorosocpic image.

The online updated coronary roadmap can provide real-time visual

guidance to cardiologists to manipulate interventional tools dur-

ing the procedure without the need of administering extra contrast

agent. 

In the future, it may be worth investigating the following direc-

tions related to this work. As the data used in this study was ac-

quired from one hospital using a machine from a single vendor, it

would be interesting to evaluate the proposed approach on multi-

center data acquired with machines from different vendors. Next,

since the ECG signals of our data appear to be regular, it may be

necessary in a future study to acquire data with irregular ECG that

could be obtained in practice, and validate the proposed approach

on those data. Besides, it would be also interesting to validate our

approach during PCI procedures in an environment simulating the

real clinical settings. Additionally, from a methodological point of

view, although the proposed tracking method is invariant under

different view angles, the whole DCR approach works only when

the offline and online phase have the same view angle, i.e. it is a

2D roadmapping system. Therefore, one future direction would be

to develop a 3D DCR system that would work with various view

angles in the online phase. 

8. Conclusion 

We have developed and validated a novel approach to perform

dynamic coronary roadmapping for PCI image guidance. The ap-

proach compensates cardiac motion through ECG alignment and

respiratory motion by guiding catheter tip tracking during fluo-

roscopy with a deep learning based Bayesian filtering method. The

proposed tracking and roadmapping approaches were trained and

evaluated on clinical X-ray image datasets and were proved to per-

form accurately on both catheter tip tracking and dynamic coro-

nary roadmapping tasks. Our approach also runs in real-time on

a setup with a modern GPU and thus has the potential to be in-

tegrated into routine PCI procedures, assisting the operator with

real-time visual image guidance. 
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Appendix A. Details of the training setup 

A1. Data augmentation 

To increase the number of training samples and their diversity,

data augmentation was used. The augmentation includes geomet-

ric transformation such as flipping (left-right, up-down), rotation

of multiple of 90 º, random affine transformation (translation -10

to 10 px, scaling 0.9 to 1.1, rotation -5 to 5 º, shear -5 to 5 px), ran-

dom elastic deformation (deformation range -4 to 4 px, grid size of

control points 64 px). A training sample has 0.5 probability of be-

ing processed with one of the transformations. The probability for

applying each transformation is: flipping left-right (1/24), flipping

up-down (1/24), rotation of multiple of 90 º (1/12), affine transfor-

mation (1/6), elastic deformation (1/6), no transformation (1/2). To

make the trained model robust to noise, in addition to the geomet-

ric transformations, we also augmented data by adding Gaussian

noise to the pixel value with a zero mean and a standard devia-

tion between 0.01 and 0.03. The probability of adding the noise is

0.5. 
2. Training settings 

The λ value in the training loss Eq. (5) was set to 10 to make

he scale of the two terms similar. Adam optimizer was used to

inimize the loss function with a learning rate 0.0 0 01. The num-

er of training samples in a batch is 4. The network was trained

ith 100 epochs to ensure convergence. 

ppendix B. Parameter tuning for catheter tip tracking 

This section describes the details of tuning the parameters of

ptical flow and particle filter for catheter tip tracking. 

1. Tuning optical flow parameters 

The approach of Farnebäck (2003) was used as the optical flow

mplementation in Algorithm 1 . A grid search to find the optimal

arameter setting was done on the following parameters of the

ethod: (1) the image scale to build the pyramids, (2) the num-

er pyramid levels, (3) the averaging window size, (4) the number

f iterations, (5) the size of the pixel neighborhood used to find

olynomial expansion in each pixel, and finally (6) the standard

eviation of the Gaussian that is used to smooth derivatives used

s a basis for the polynomial expansion. 

The above parameters were tuned independently of the deep

eural network, as optical flow directly estimates the catheter tip

otion between two frames. To tune the parameters, we tracked

he catheter tip in X-ray fluoroscopy starting from the ground truth

ip position in the first frame using the motion field between two

djacent frames estimated with optical flow. The average and me-

ian distance between the tracked tip position and the ground

ruth were used as the evaluation criteria for the tuning. 

The method of Farnebäck (2003) was implemented by using

he OpenCV function calcOpticalFlowFarneback . With con-

ideration of the suggested parameter values from the documen-

ation, the parameter setting chosen for optical flow from the grid

earch is pyr_scale = 0 . 5 , levels = 3 , winsize = 10 , iterations =
0 , poly_n = 5 , poly_sigma = 1 . 1 . Details of the parameters can be

ound on the function documentation page 1 . 

2. Tuning particle filter parameters 

The parameters to tune for the particle filter are the number

f samples N s and the variance of process noise σ 2 
v . When tun-

ng them, we fixed the parameters of the trained network and

he optical flow method, and used their optimal parameter set-

ings during this experiment. Following Algorithm 1 , we tracked

he catheter tip from the ground truth position (probability map)

n the first frame, and used the mean and median distance be-

ween the tracked and the true position as the validation metric. 

The tracking results on the validation (tracking) set are shown

n Table 10 . The table shows that 100 samples are suboptimal,

hile 10 0 0 samples seem sufficient, as 10,0 0 0 samples result in

racking accuracies similar to 10 0 0 samples. It also shows that the

ptimal choices of the standard deviation of the process noise are

 or 5 px for the downsampled images. One possible reason for

uch choices may be that they are similar to the size of guiding

atheters. In general, good choices for N s are 10 0 0 and 10.0 0 0, for

v are 4 and 5. By considering the mean, the standard deviation

nd the median of tracking errors, the parameter setting σv = 5 ,

 s = 10 0 0 was chosen. 

https://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html?
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Table 11 

Catheter tip tracking errors (mm) with and without catheter segmentation on the test (tracking) dataset. † indi- 

cates that the difference between the detection with and without segmentation is statistically highly significant 

with the two-sided Wilcoxon signed-rank test ( p < 0.001). No statistically significantly difference is observed 

between the tracking with and without segmentation using the two-sided Wilcoxon signed-rank test ( p = 0 . 06 ). 

Evaluation Metrics With Segmentation Without Segmentation 

Detection † Tracking Detection Tracking 

Maximal error of all images 108.20 17.72 133.94 23.2 

Median error of all images 0.96 0.96 0.96 0.96 

Mean error of all images 5.62 ± 15.91 1.29 ± 1.76 9.32 ± 19.73 1.75 ± 3.17 

Average of sequence median error 6.26 ± 17.11 1.03 ± 0.49 9.34 ± 18.64 1.42 ± 2.14 

Average of sequence mean error 6.83 ± 13.88 1.29 ± 0.94 10.41 ± 15.94 1.69 ± 1.97 
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Table 12 

The statistics of DCR accuracy (mm) via catheter tip tracking with and with- 

out catheter segmentation. With the two-sided Wilcoxon signed-rank test, 

no statistically significantly difference is observed between the DCR with and 

without segmentation ( p = 0 . 43 ). 

With Segmentation Without Segmentation 

All point pairs 

Maximal distance 20.24 25.20 

Median distance 1.43 1.43 

Mean distance 2.07 ± 2.08 2.44 ± 3.15 

Frame mean distance 

Median distance 1.42 1.40 

Average distance 1.91 ± 1.52 2.23 ± 2.59 

Fig. 17. Accuracy (mm) of DCR via catheter tip tracking with and without catheter 

segmentation. 

t  

p  

p  

w  

p

ppendix C. Detection, tracking and roadmapping without 

atheter segmentation 

Training of the network in Fig. 3 requires catheter labels for

etection and segmentation. As the segmentation labels are often

ore expensive to acquire than the detection label in practice, we

lso investigated the performance of catheter tip detection, track-

ng and dynamic coronary roadmapping without segmenting the

atheter. To this end, we used a similar encoder-decoder network

rchitecture as Fig. 3 which computes only the detection output

irectly after the last up block of the decoder with a 1 × 1 con-

olution followed by a spatial softmax layer, instead of having two

utputs. We then followed the same way as the approach using the

etwork with segmentation to search for (hyper-)parameters for

he approach without segmentation. The following parameter set-

ing was chosen for the experiments in this section: for deep learn-

ng, the basic channel number is 64, the depth is 5, the dropout

ate is zero; for particle filtering, σv = 3 , N s = 10 , 0 0 0 . With this

etup, we compared the performance of the approach without

atheter segmentation to the proposed approach with segmenta-

ion on catheter tip detection and tracking ( Appendix C.1 ) and dy-

amic coronary roadmapping ( Appendix C.2 ) on the test set from

able 2 . 

1. Catheter tip detection and tracking 

The same metrics in Table 5 are used to report the accuracy

f catheter tip detection and tracking without catheter segmen-

ation. Table 11 and Fig. 16 both manifest that the segmentation

ub-task improves the accuracy of catheter tip detection and track-

ng. Although the improvement on the tracking task is marginal

nd not statistically significant ( p = 0 . 06 ), the segmentation helps

o reduce the magnitude and amount of outliers (large errors). 

2. Dynamic coronary roadmapping 

In this experiment, the same setup in Section 6.5 was used to

ssess the accuracy of DCR using catheter tip tracking without seg-

enting the catheter. Table 12 indicate that tracking the catheter
ig. 16. Tracking errors on all test images with and without catheter segmentation. 

S

 

f

R

A  

 

 

A  

 

 

ip with catheter segmentation improves the DCR accuracy com-

ared to that without catheter segmentation. Although the im-

rovement is not statistically significant ( p = 0 . 43 ), the approach

ith segmentation is more robust by making less large roadmap-

ing errors ( Fig. 17 ). 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.media.2020.101634 . 
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