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Percutaneous coronary intervention (PCI) is typically performed with image guidance using X-ray an-
giograms in which coronary arteries are opacified with X-ray opaque contrast agents. Interventional car-
diologists typically navigate instruments using non-contrast-enhanced fluoroscopic images, since higher
use of contrast agents increases the risk of kidney failure. When using fluoroscopic images, the inter-
ventional cardiologist needs to rely on a mental anatomical reconstruction. This paper reports on the
development of a novel dynamic coronary roadmapping approach for improving visual feedback and re-
ducing contrast use during PCI. The approach compensates cardiac and respiratory induced vessel motion
by ECG alignment and catheter tip tracking in X-ray fluoroscopy, respectively. In particular, for accurate
and robust tracking of the catheter tip, we proposed a new deep learning based Bayesian filtering method
that integrates the detection outcome of a convolutional neural network and the motion estimation be-
tween frames using a particle filtering framework. The proposed roadmapping and tracking approaches
were validated on clinical X-ray images, achieving accurate performance on both catheter tip tracking and
dynamic coronary roadmapping experiments. In addition, our approach runs in real-time on a computer
with a single GPU and has the potential to be integrated into the clinical workflow of PCI procedures,
providing cardiologists with visual guidance during interventions without the need of extra use of con-

trast agent.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Clinical background

Percutaneous coronary intervention (PCI) is a minimally inva-
sive procedure for treating patients with coronary artery disease.
During these procedures, medical instruments inserted through a
guiding catheter are advanced to treat coronary stenoses. A guid-
ing catheter is firstly positioned into the ostium of the coronary
artery. Through the guiding catheter, a balloon catheter carrying a
stent is introduced over a guidewire to the stenosed location. The
balloon is then inflated and the stent is deployed to prevent the
vessel from collapsing and restenosing.

PCI is typically performed with image-guidance using X-ray an-
giography (XA). Coronary arteries are visualized with X-ray opaque
contrast agent. During the procedure, interventional cardiologists
may repeatedly inject contrast agent to visualize the vessels, as
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the opacification of coronary arteries only lasts for a short pe-
riod. The amount of periprocedural contrast use has been corre-
lated to operator experience, procedural complexity, renal func-
tion and imaging setup (Piayda et al., 2018). Furthermore, the risk
for contrast induced nephropathy has been associated to contrast
volume (Tehrani et al., 2013). Manoeuvring guidewires and mate-
rial, however, typically occurs without continuous contrast injec-
tions. In these situations, the navigation of devices is guided with
“vessel-free” fluoroscopic images. Cardiologists have to mentally
reconstruct the position of vessels and stenosis based on previous
angiograms.

1.2. Dynamic coronary roadmapping

Dynamic coronary roadmapping (DCR) is a promising solution
towards improving visual feedback and reducing usage of contrast
medium during PCI (Elion, 1989; Zhu et al., 2010; Manhart et al.,
2011; Kim et al., 2018). This approach dynamically superimposes
images or models of coronary arteries onto live X-ray fluoroscopic
sequences. The dynamic overlay serves as a roadmap that pro-
vides immediate feedback to cardiologists during the intervention,
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so as to assist in navigating a guidewire into the appropriate coro-
nary branch and proper placement of a stent at the stenotic site
with reduced application of contrast agent. Studies with a phan-
tom setup using research software (Kim et al., 2018) or on first
cases of clinical interventions using commercially available systems
(Dannenberg et al., 2016; Yabe et al., 2018; Takimura et al., 2018)
have investigated the usefulness of DCR in assisting PCI, reporting
that DCR helps to reduce procedure time, radiation dose and con-
trast volume.

To develop a DCR system, it is important but yet a challenge
to accurately overlay a roadmap of coronary arteries onto an X-
ray fluoroscopic image, as limited information of vessels is present
in the target fluoroscopic image for inferring the compensation of
the vessel motion resulting from patient respiration and heartbeat.
The methods that have been proposed on motion compensation for
DCR can be generally grouped into two categories: direct roadmap-
ping and model-based approaches.

Direct roadmapping methods use information from X-ray im-
ages and ECG signals to directly correct the motion caused by res-
piration and heartbeat. The first DCR system (Elion, 1989) used
digital subtraction of a contrast sequence and a mask sequence
to create a full cardiac cycle of coronary roadmaps. The roadmaps
were stored and later synchronized with the live fluoroscopic se-
quence by aligning the R waves of their corresponding ECG sig-
nals. This system compensates the cardiac motion of vessels, yet
does not correct the respiratory motion during interventions. Two
later studies by Zhu et al. (2010) and Manhart et al. (2011) intro-
duced image-based respiratory motion compensation methods for
DCR. Their methods assumed an affine respiratory motion model in
ECG-gated fluoroscopic frames and recovered the respiratory mo-
tion from soft tissues with special handling of static structures.
The limitation of these approaches is that they require relevant
tissue to be sufficiently visible in the field of view for reliable
motion compensation which is not always the case. In addition,
they require to be run on cardiac-gated frames. In a more recent
work by Kim et al. (2018), binary vessel masks were created as
the roadmaps from at least one cardiac cycle of angiographic im-
ages. Temporal alignment of the roadmaps and the fluoroscopic
sequence, which compensated the cardiac motion of vessels, was
performed by registering ECG signals using cross-correlation. Ad-
ditionally, the respiratory motion was corrected by aligning the
guidewire centerline in the fluoroscopy to the contour of vessels in
the angiogram where the roadmaps were created. The system has
been shown useful in a phantom-based study, nevertheless no ac-
curacy evaluation of the spatiotemporal alignment was presented.
Furthermore, the spatial registration relies on robust extraction of
vessels and guidewires which is often challenging for X-ray images.

Unlike direct roadmapping, the model-based approaches build a
model to predict motion in fluoroscopic frames. The motion mod-
els are often functions that relate the motion of roadmaps to sur-
rogate signals derived from images or ECG, so that once the sur-
rogates for fluoroscopic frames are obtained, the motion can be
computed by the model. For cardiac interventions including PCI,
the organ motion is mainly affected by respiratory and cardiac mo-
tion. Many previous works often built a motion model parameter-
ized by a cardiac signal derived from ECG and a respiratory signal
obtained from diaphragm tracking (Shechter et al., 2005; Timinger
et al.,, 2005; Faranesh et al., 2013) or automatic PCA-based surro-
gate (Fischer et al., 2018). Some other works model only the res-
piratory motion in cardiac-gated images (Schneider et al., 2010;
King et al., 2009; Peressutti et al., 2013). For a complete review
on respiratory motion modeling, we refer readers to the survey ar-
ticle by McClelland et al. (2013). One limitation of the model-based
approaches is that the motion models are often patient-specific,
which requires training the model every time for a new subject.
Additionally, once the surrogate values during inference are out of

the surrogate range for building the model, e.g. for abnormal mo-
tion, extrapolation is needed, which may hamper accurate motion
compensation.

1.3. Interventional / surgical tool tracking

Tracking interventional tools is relevant for motion compensa-
tion (Schneider et al., 2010; Brost et al., 2010; Ma et al., 2012;
Baka et al., 2015; Ambrosini et al., 2017b). In particular for PCI,
the guiding catheter tip typically remains within the coronary
ostium which is in the field of view during the largest part
of the intervention, making it a suitable landmark for tracking.
Baka et al. (2015) have shown that catheter tip motion during
PCI can be modeled as a combination of cardiac and respira-
tory motion. As using catheter tip displacement can only correct
translational motion, Baka et al. (2015) further showed that, com-
pared to a rigid motion model for the respiratory motion, mod-
eling only the translational part of the respiratory motion de-
teriorated the accuracy marginally, which confirms the observa-
tions by Shechter et al. (2004) that the rotational part of respi-
ratory motion is small. These findings motivate motion compensa-
tion for DCR through tracking the catheter tip in X-ray fluoroscopic
sequences.

Many works have been proposed to address the problem of
tracking interventional or surgical tools in medical images for var-
ious applications. The tracking methods from these works can be
generally categorized into two kinds of approaches: tracking by de-
tection, and temporal tracking.

The tracking by detection approaches treat tracking as a detec-
tion problem, which rely on features only from the current im-
age without using information from previous frames. For exam-
ple in electrophysiology procedure, as the catheters present spe-
cific features in shape or intensity, ad hoc methods were pro-
posed based on, e.g. blob detection, shape constrained searching
and model-/template- based detection (Ma et al., 2012; Ma et al.,
2013). Chang et al. (2016) modeled the catheter tracking problem
by optimizing the posterior in a Bayesian framework, in which
the catheter was represented as a B-spline tube model and was
tracked by fitting the B-spline to measurements based on gray in-
tensity and vesselness image. Baur et al. (2016) proposed a con-
volutional neural network (CNN) to detect catheter electrodes in
X-ray images, which treated catheter detection as a segmentation
problem. The method used a weighted cross-entropy loss to cope
with the class imbalancing problem due to the small size of the
target. Laina et al. (2017) and Du et al. (2018) tracked surgical in-
struments using a deep network having an encoder-decoder archi-
tecture. Their approaches combined instrument segmentation and
detection in a multi-task learning problem to make the tool detec-
tion in a cluttered background more robust.

Different from tracking by detection, which relies solely on the
current image, temporal tracking also uses information from previ-
ous frames. The temporal information can reduce the search space
for detection, or put additional constraints in the model, making
the tracking more robust.

Temporal information has been used in various ways. Some
methods mainly relied on a detection model, but incorporate
temporal information in the preprocessing (Brost et al., 2010) or
post-processing (Garcia-Peraza-Herrera et al., 2016) step or in the
input (Rieke et al., 2016; Ambrosini et al., 2017a). Approaches
based on background estimation have been used for catheter
(Yatziv et al., 2012) or guidewire (Petkovic and Loncari¢, 2010)
tracking. In these approaches, the background was recursively up-
dated for every frame, and was used for enhancing the foreground
containing instruments. Apart from those, many works adopted
a Bayesian framework for tracking instruments via a maximum a
posteriori (MAP) formulation. Representations based on key points
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(Wu et al.,, 2015), B-splines (Wang et al., 2009; Pauly et al., 2010;
Honnorat et al., 2011; Heibel et al., 2013), or segment-like fea-
tures (Vandini et al.,, 2017) have been used to model catheters or
guidewires. Markov random field (MRF) was used to model the po-
sition or deformation of the control points in the B-spline (Pauly
et al., 2010; Honnorat et al., 2011; Heibel et al., 2013; Wu et al.,
2015). In the work by Vandini et al. (2017), temporal information
was incorporated in the prior term using Kalman filter. Particularly,
learning-based approaches were used in several works to obtain
the likelihood for a more robust measurement using probabilistic
boosting tree (Wang et al., 2009; Wu et al., 2012) or support vec-
tor regression (Pauly et al., 2010). In addition, temporal tracking
models based on Bayesian filtering were also a popular approach
for instrument tracking. Ambrosini et al. (2017b) used a hidden
Markov model (HMM) to track catheter tip in a 3D vessel tree,
for which the likelihood was obtained based on the 3D-2D regis-
tration outcome. Speidel et al. (2006) used particle filters to track
surgical tools in medical images. They used a likelihood based on
the segmentation of instruments, and a dynamic model that in-
corporates samples from two previous time steps. In a later work,
Speidel et al. (2014) used a multi-object particle filter to track mul-
tiple instrument regions simultaneously, in which a particle is the
concatenation of the states of several objects.

Despite of many existing works on inverventional or surgical
tool tracking in medical images, an automatic approach for track-
ing the tip of guiding catheter in X-ray fluoroscopy for PCI has not
been investigated yet. The challenges of this task are: (1) differ-
ent from the catheters for EP that can be viewed as blobs or a cir-
cle, the guiding catheter for PCI presents a dark tubular appearance
which shows no prominent features; (2) the shape of the guiding
catheter tip segment varies depending on the orientation of the C-
arm, making feature-/model- based detection challenging; (3) the
background may contain structures that have similar appearance
to a catheter tip, such as vertebral structures or residual contrast
agent, which makes robust tracking difficult.

1.4. Contributions

We propose and evaluate a novel approach for dynamic coro-
nary roadmapping. The approach compensates changes in vessel
shapes and cardiac motion by selecting the roadmap of the same
cardiac phase through ECG alignment, and corrects the respiratory
induced motion via tracking the tip of the guiding catheter. Our
contributions are:

1. We develop a new way to perform dynamic coronary roadmap-
ping on free breathing, non-cardiac-gated X-ray fluoroscopic se-
quences. Particularly, the respiratory-induced vessel motion is
robustly compensated via the displacement of catheter tip.

2. We proposed a deep learning based method within a Bayesian
filtering framework for online detection and tracking of guiding
catheter tip in X-ray fluoroscopic images. The method models
the likelihood term of Bayesian filtering with a convolutional
neural network, and integrates it with particle filtering in a
comprehensive manner, leading to more robust tracking.

3. We evaluate the proposed approach visually and quantitatively
on clinical X-ray sequences, achieving low errors on both track-
ing and roadmapping tasks.

4. The proposed DCR method runs in real-time with a modern
GPU, thus can potentially be used during PCI in real clinical set-
tings.

2. Scenario setup and method overview

The proposed method assumes that the scenario of perform-
ing dynamic coronary roadmapping to guide a PCI procedure con-

sists of an offline phase and an online phase. An overview of the
method is shown in Fig. 1.

2.1. Offline phase

This phase (Step O in Fig. 1) is performed off-line before the
actual roadmapping is conducted. In this stage, roadmaps of coro-
nary arteries containing multiple cardiac phases are created from
an X-ray angiography sequence acquired with injection of contrast
agent. A roadmap can be a vessel model in the form of center-
lines, contours, masks, etc. It may also contain information of clin-
ical interest, e.g. stenosis. Since the main focus of this paper is
on accurate overlay of a roadmap, we do not investigate how to
create the most suitable roadmaps, but use the images containing
only vessels and catheters that are created using the layer sepa-
ration method by Ma et al. (2015) as the roadmaps to show the
concept of dynamic coronary roadmapping. Along with the XA se-
quence, ECG signals are also acquired and stored for later selecting
a roadmap that has similar cardiac phase to a given X-ray fluoro-
scopic frame in the online phase (see details in Section 3). Once
the image sequence and ECG signals are acquired, the catheter tip
location in every frame is obtained to serve as a reference point
for roadmap transformation. In this work we manually annotated
the catheter tip in the offline XA sequence. In real clinical scenar-
ios, the annotation work can be done by the clinician or a person
who assists the intervention, such as a technician or a nurse.

2.2. Online phase

This is when the dynamic roadmapping is actually performed.
In this phase, non-contrast X-ray fluoroscopic images with the
same view angles as the roadmaps created during the offline phase
are acquired sequentially. At the same time, ECG signals along with
the roadmapping frames are also obtained and are compared with
the stored ECG to select the most matched roadmap (Step 1 in
Fig. 1; see details in Section 3). This is to compensate the change of
vessel shape and position between frames due to cardiac motion.
Simultaneously, the catheter tip location in the acquired X-ray fluo-
roscopic images is tracked online using the proposed deep learning
based Bayesian filtering method in Section 4 (Step 2 in Fig. 1). The
displacement of catheter tip between the current image and the
selected roadmap image is then obtained and are applied to trans-
form the roadmap. Finally, the transformed roadmap is overlaid on
the current non-contrast frame to guide the procedure (Step 3 in
Fig. 1).

3. ECG matching for Roadmap selection

Roadmap selection in this work is achieved by comparing the
ECG signal associated with the fluoroscopic image and the ECG
of the angiographic sequence, such that the most suitable candi-
date roadmap is selected where the best match of the ECG sig-
nals is found. The selected roadmap has the same (or very simi-
lar) cardiac phase with the X-ray fluoroscopic image, which com-
pensates the difference of vessel shape and pose induced by car-
diac motoin. An approach similar to the ECG matching method by
Kim et al. (2018) is used to accomplish this task.

To select roadmaps images based on ECG, a temporal mapping
between X-ray images and ECG signal points needs to be built first.
We assume that ECG signals and X-ray images are well synchro-
nized during acqusition. In the offline phase, the beginning and
the end of the image sequence are aligned with the start and end
ECG signal points; the XA frames in between are then evenly dis-
tributed on the timeline of ECG. This way, a mapping between the
stored sequence images and its ECG signal can be set up: for each
image, the closest ECG signal point to the location of the image
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Fig. 1. The overview of the proposed dynamic coronary roadmapping method. The colored blocks with a dash line border denote objects acquired in the online phase; the

colored blocks with a solid line border are objects originated from the offline phase.

on the timeline can be found; for each ECG point, an image that
is closest to this point on the timeline can be similarly located.
Once the mapping is available, all images with good vessel con-
trast filling and the ECG points that are associated to these images
are selected from the XA sequence for the pool of roadmaps. In
this process, at least one heartbeat of frames should be acquired,
which is generally the case in our data. In the online phase, similar
to the approach of Kim et al. (2018), for acquisition of each image,
a block of Ngcg latest ECG signal points is constantly stored and
updated in the history buffer. This is considered as the ECG signal
corresponding to the fluoroscopic frame.

To compare the ECG signals associated with the angiographic
sequence and the online fluoroscopic image, a temporal reg-
istration of the two signals using cross-correlation is applied
(Kim et al., 2018). The two ECG signals are first cross-correlated
for every possible position on the signals, resulting in a 1D vec-
tor of correlation scores. The candidate frame for dynamic overlay
is then selected as the one associated with the point on the ECG
of the angiographic sequence that is corresponding to the highest
correlation score.

4. Bayesian filtering for catheter tip tracking

Bayesian filtering is a state-space approach aiming at estimating
the true state of a system that changes over time from a sequence
of noisy measurement made on the system (Arulampalam et al.,
2002). One popular application area of this approach is tracking
objects in a series of images.

4.1. Theory of Bayesian filtering

Bayesian filtering typically includes the following components:
hidden system states, a state transition model, observations and a
observation model. Let x, € R? (k={0,1,2,...}) denote the state,
the location of guiding catheter tip in the kth frame, a 2D vector
representing the coordinates in the X-ray image space. The tran-
sition of the system from one state to the next state is given by
the state transition model X, = fi (X¢_1, Vx_1), Where v;_; € R? is
an independent and identically distributed (i.i.d.) process noise,
fi : R x R2 > R? is a possibly nonlinear function that maps the
previous state X,_; to the current state x, with noise v,_;. The

observation z, in this work is defined as the k-th X-ray image of
a sequence, so that z;, ¢ R"*", where w and h are the width and
height of an X-ray image. We further define the observation model
as zj, = hy (X, n,), where n, € R% is an iid measurement noise
(ny is the dimension of my), hy : R2 x R™ — RW*" is a highly non-
linear function that generates the observation z, from the state x,
with noise nj. The state transition model f;, and the observation
model h,, respectively, can also be equivalently represented using
probabilistic forms, i.e. the state transition prior p(x;|X;_;) and the
likelihood p(z|x,) from which x; and z, can be obtained by sam-
pling.

With these definitions and p(Xg), the inital belief of xg,
Bayesian filtering seeks an estimation of x, (k > 1) based on the
set of all available observations zy., = {z;,i=0,....,k} up to time
k via recursively computing the posterior probability p(x;|zg.,) as
Eq. (1) (Arulampalam et al., 2002):

P(Xy|Zop) p(zk|xk)fp(xk|xk—l)p(xk—1|ZO:k—l)dxk—1~ (M

P(XelZok—1)

Assuming the initial probability p(Xg|zg) = p(Xg) is known, based
on Eq. (1), Bayesian filtering runs in cycles of two steps: pre-
diction and update. In the prediction step, the prior probability
p(X|Zg.k_1), the initial belief of x; given previous observations, is
estimated by computing the integral in Eq. (1). In the update step,
the prior probability is corrected by the current likelihood p(z;|x;)
to obtain the posterior p(xy|zg.i)-

In Section 4.2, we will firstly introduce how to model the like-
lihood. Then in Section 4.3, a way to represent and efficiently ap-
proximate the posterior will be discussed. Finally in Section 4.4,
a summary of the complete catheter tip tracking method will be
given.

4.2. A Deep Learning based likelihood

Directly modeling the likelihood p(z|x;) is challenging due to
(1) the complexity of the generation process hj, and (2) the com-
putational complexity of p(z,|x,) for every value x; € R%. In this
work, we simplify the problem by only computing the likelihood
p(z|x,) in the image pixel space, i.e. the integer pixel coordinate.
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(b) (c)

Fig. 2. Input and ground truth labels for the deep neural network: (a) an input
X-ray fluoroscopic image, (b) the binary catheter mask of (a) for catheter segmen-
tation, (c) a 2D Gaussian PDF (o = 4 px) for likelihood estimation for (a).

For a subpixel x;, the value of p(z,|x;) can possibly be approx-
imated by interpolation. To this end, we propose to use a deep
neural network D to approximate p(z;|x;) for integer pixel loca-
tions. The network takes an image z, as input and outputs a prob-
ability of observing the input z, for every pixel location X;. There-
fore, the approximated likelihood is a function of x;, denoted as
Dy, (Xi). Since x;, is defined within the scope of the image pixel
space, Dy, (X;) is essentially a probability map having the same di-
mension and size with the input image z,, in which the entry at
each location xi (j=1,2,..., wh) in the map represents the prob-

ability of observing z, given x{;. It is worth mentioning that the
deep neural network is used for approximation of p(z|x,), which
should be clearly distinguished from the generation model h; that
maps an X, to z;. The existence of hy, is merely for the convenience
of definition, its explicit form, however, is not required in the con-
text of this work.

To obtain the training labels, we assume that there exists a
mapping hy, such that the training label can be defined as a
distance-based probability map, i.e. the farther away x; is from
the ground truth tip location in the image z;, the less possible it
is to observe z, given X, through the process hy. This definition
matches the intuition that from a location x, that is far from the
ground truth tip location, the probability of observing a z, with
the catheter tip being located at the ground truth position should
be low. For simplicity, a 2D Gaussian probability density function
(PDF) N/ (xk;x;(,azl) centered at the ground truth tip location x;<
with variance 021 in the image space is used as the label to train
the network (Fig. 2(c)). Note that this training label makes the es-
timation of p(z;|x;) equivalent to a catheter tip detection problem
such that the deep neural network learns features of catheter tip
and outputs high probability at locations where the features are
present. Due to this reason, we also call p(z;|x;) “detection out-
put” or “detection probability” and call the estimation of p(z|x;)
“catheter tip detection” in the context of this paper.

The network that we use follows a encoder-decoder architec-
ture with skip connections similar to U-net (Ronneberger et al.,
2015). Additionally, similar to the work by Milletari et al. (2016),
residual blocks (He et al., 2016) are adopted at each resolution
level in the encoder and decoder to ease gradient propagation in
a deep network. The encoder consists of 4 down blocks in which
a residual block followed by a stride-2 convolution is used for ex-
traction and down-scaling of feature maps. The number of feature
maps is doubled in each downsampling step. The decoder has 4 up
blocks where a transposed convolution of stride-2 is used for up-
sampling of the input feature maps. Dropout is used in the residual
unit of the up block for regularization of the network. Between the
encoder and the decoder, another residual block is used to process
the feature maps extracted by the encoder. The detailed network
architecture is shown in Fig. 3.

Due to similar appearance between a guiding catheter tip
and corners of a background structure, such as vertebral bones,

lung tissue, stitches or guidewires, ambiguity may exist when the
network is expected to output only one blob in the probabil-
ity map. To alleviate the issue, we adopt a similar strategy as
Laina et al. (2017), using a catheter mask (Fig. 2(b)) as an addi-
tional label to jointly train the network to output both the catheter
segmentation heatmap and the likelihood probability map. The
segmentation heatmap is obtained by applying a 1 x 1 convolution
with ReLU activation on the feature maps of the last up block. To
compute the likelihood probability map, a residual block is firstly
applied on the feature maps of the last up block. The output fea-
ture maps are then concatenated with the segmentation heatmap
as one additional channel, followed by a 1 x 1 convolution. Fi-
nally, to ensure the network detection output fits the definition of
a probability map on image locations, following the 1 x 1 convo-
lution, a spatial softmax layer is computed as Eq. (2):
eAk_l

Dyj= ——, 2

k.l > (2)
where A is the output feature map of the 1 x 1 convolution, A;;
denotes the value of A at location (i, j), D is the final output of the
detection network, a 2D probability map representing p(z;|x;). The
details are shown in Fig. 3.

The training loss is defined as a combination of the segmenta-

tion loss and the detection loss. The segmentation loss Ls in this
work is a Dice loss defined by Eq. (3):

2 Zi,j Mi,jsi,j
Xig M+ X5
where M denotes the ground truth binary catheter masks, S is the

segmentation heatmap. The loss function for detection L; is mean
square error (MSE) given by Eq. (4):

LS i5,-pp (4)

T wxh &
i<w,j<h

Li=1- 3)

Ly

where T denotes the ground truth PDF, w and h are the width and
height of an image. The total training loss L is defined as Eq. (5):

L=Li+ ALy (5)

where A is a weight to balance Ls and L.
4.3. Approximation of the posterior with particle filter

Once the deep neural network in Section 4.2 is trained, its
weights are fixed during inference for computing the posterior
p(Xk|zg.) for new data. Idealy, the network detection output
p(z;|x,) should be a Gaussian PDF during inference, as it is trained
with labels of Gaussian PDFs. However, due to similar appearance
of background structures or contrast residual, the detection out-
put is unlikely to be a perfect Gaussian (possibly non-Gaussian or
having multiple modes), which prevents the posterior p(x|zg.;)
in Eq. (1) being solved with an analytical method. In practice,
the posterior can be approximated using a particle filter method
(Arulampalam et al., 2002).

Particle filter methods approximate the posterior PDF by a
set of Ns random samples with associated weights {xi,w}{}fﬁl
(Arulampalam et al,, 2002). As Ns becomes very large, this dis-
crete representation approaches the true posterior. According to
Arulampalam et al. (2002), the approximation of the posterior

p(Xk|zo.x) is given by Eq. (6):

Ns

P(XilZox) ~ > WS (X — X)) (6)
i=1

where &( - ) is the Dirac delta function. The weight w}’< can be

computed in a recursive manner as Eq. (7) once w;'H is known
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Fig. 3. A joint segmentation and detection network for catheter tip detection. This figure shows an example network with 4 levels of depth (the number of down or up
blocks). Meaning of abbreviations: Conv, 2D convolution; Bn, batch normalization; Relu, ReLU activation; Dp, dropout; Concat, concatenation; Ch, number of channels; S,
segmentation output; D, detection output. The number above an image or feature maps indicates the number of channels; the number of channels in the residual network
in a block is shown above the block; c is the basic number of channels, the channel number in the first down block. The number next to a rectangle denotes the size of the
image or feature maps. Red arrows indicate a change of number of channels. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

(Arulampalam et al., 2002):
Pz |X) p(X} |x}_;)
q(xi|x_;. z)

i i
W, X W4

(7)

where q(xk|x§<_1 ,Z) is an importance density from which it should
be possible to sample x; easily. For simplicity, a good and con-
venient choice of the importance density is the prior p(x|x; ;)
(Arulampalam et al,, 2002), so that the weight update rule (7) be-
comes wj oc W p(Zi[X}).

A sample can be drawn from p(xi|x; ;) in the following way.
First, a process noise sample v} . is sampled from p,(v,_;), the

k-1
PDF of v_;; then x| is generated from x;_, via the state transi-

tion model xi = fy(xi_,.vi ). In this work, py(v,_1) is set to be
a Gaussian A(0, o2I). The choice of motion model for f; is impor-
tant for an accurate representation of the true state transition prior
p(Xy|Xg_1). A random motion cannot characterize well the motion
of catheter tip in XA frames. In this work, we estimated the mo-
tion from adjacent frames using an optical flow method, as this
approach takes into account of the observation z;,, which results
in a better guess of the catheter tip motion, and enables estima-
tion of a dense motion field where the motion of a sample x;< can
be efficiently obtained. Therefore, f; is defined as Eq. (8):

(8)

where u;_;(-) is the motion from frame k—1 to frame k esti-
mated with optical flow using the method by Farnebick (2003),
u,_;(X¢_1) is the motion from state x;_;.

Once samples are drawn and their weights are updated, the so-
called “resampling” of the samples should be performed to prevent

Xie = Xp_1 + W1 (Xg_1) + Vi1

the degenaracy problem, where all but one sample will have negli-
gible weight after a few iterations (Arulampalam et al., 2002). The
resampling step resamples the existing samples according to their
updated weights and then resets all sample weights to be 1/Ns,
so the number of effective samples which have actual contribu-
tion to approximate p(Xy|zg.,) is maximized (Arulampalam et al.,
2002). If the resampling is applied at every time step, the particle
filter becomes a sampling importance resampling (SIR) filter, and
the weight update rule follows Eq. (9).

wh o p(z¢[x)) (9)

The final decision on catheter tip location in frame k can then be
computed as the expectation of X, X, = [ X, p(X|Zp.r)dX,, which
is in this case, the weighted sum of all samples:

Ns
K= WiX. (10)
iz

4.4, Summary

The overall catheter tip tracking using a deep learning based
Bayesian filtering method is summarized in Algorithm 1.

5. Experimental setup
5.1. Data

Anonymized clinical imaging data were used for our experi-
ments. The data were acquired with standard clinical protocol us-

ing Siemens AXIOM-Artis system, and are from 55 patients who
underwent a PCI procedure at the Department of Cardiology at
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Algorithm 1 Deep learning based Bayesian filtering for online
tracking of catheter tip in X-ray fluoroscopy

Require: {zg, ..., z7} (sequentially observed frames), D (A trained
network from Section 4.2), p(xg) (the initial PDF), o (the vari-
ance of vi_;,k=1,...,T), T (number of frames for tracking),
Ns (number of samples)

1: Draw X ~ p(Xo), set wi = 1/Ns, Vi=1,....Ns

2: fork=1to T do

3:  Compute u,_; from z,_; to z; using the optical flow method
of Farnebdck (2003)

4: fori=1toN; do
5: Draw Vi, ~ N (0. o7)
. ; R i
6: Compute the mot}on of X1} Weq =W (’fkq)
X i i P B | i i
7 Draw Xj ~ p(Xi[X)_;)? X = Xj_q + W_y + Vi 4
8: Update weight wj, = p(z|x}) = Dy, ()
9: end for
. i i i 5 Ns i Vi
10:  Normalize w), < wj /3" wk,[\‘]v’l = 1j A
. 1c1 1 P 1yl
11:  Prediciton in frame k: X, = "5, wix;

12: Resample {x{,wi}' using the method of Arulampalam et

al. (2002) (so all w;'< are set to 1/Ns again)
13: end for

Table 1

Basic information of the acquired X-ray image data for our
experiments. The number in the parenthesis next to the
pixel size indicates the possible image size.

Data Development Evaluation

No. patients 37 18

No. sequences 354 34

Frame rate (fps) 15 15

Image size (px) 512 x 512 512 x 512
600 x 600 600 x 600
776 x 776 776 x 776
960 x 960 1024 x 1024
1024 x 1024

Pixel size (mm) 0.108 (1024) 0.139 (1024)
0.139 (1024) 0.184 (600)
0.184 (600) 0.184 (776)
0.184 (776) 0.184 (1024)
0.184 (960) 0.216 (512)
0.184 (1024) 0.279 (512)
0.216 (512)

Erasmus MC in Rotterdam, Netherlands. Out of these data, we se-
lected data from 37 patients which were acquired since the year
2014 to develop our method, and used the data from the other 18
patients acquired before the year 2013 for evaluation. The detailed
information about the data is listed in Table 1.

In order to evaluate the proposed roadmapping method, for
which an off-line angiographic sequence is required for roadmap
preparation and an online fluoroscopic sequence taken from the
same C-arm position is needed for performing the actual roadmap-
ping (see Section 2), we selected the contrast frames from a real
clinical sequence to simulate the off-line sequence, and chose the
non-contrast frames from the same clinical sequence to simulate
the online sequence. The selected contrast sequence were ensured
sufficiently long to cover at least one complete cardiac cycle.

5.2. Data split for catheter tip detection and tracking

To develop the catheter tip tracking method, 1086 X-ray fluo-
roscopic images selected from 260 non-contrast sequences of 25
patients from the development set were used for training the net-
work from Fig. 3; 404 images from 94 non-contrast sequences of
another 12 patients from the development set were used as val-
idation set for the network model and hyperparameter selection.

Table 2
Dataset of training, validation and test for detection and tracking of catheter tip
in X-ray fluoroscopic frames.

Training Validation Validation  Test
(detection)  (detection)  (tracking) (tracking)
No. patients 25 12 12 18
No. sequences 260 94 88 34
No. frames 1086 404 1583 1355
Continous frames?  No No Yes Yes

In the training and validation sets, 4-5 frames were randomly se-
lected from each sequence, which are not necessarily continuous.
To tune the parameters for tracking, 1583 images from 88 se-
quences out of the 94 from the same 12 patients of the valida-
tion set were used (6 sequences were not selected for this task
due to very short sequence length not more than 5 frames). Fi-
nally, to evaluate catheter tip tracking accuracy, 1355 images from
34 non-contrast sequences of 18 patients from the evaluation set
were used for testing. The frames selected for tracking from each
sequence must be continuous; the number of selected frames for
tracking might vary, depending on the number of the non-contrast
frames in the sequences. Details of the datasets for training, vali-
dation and test are listed in Table 2.

5.3. Experimental settings for training the deep network

This section describes the basic experimental settings for train-
ing the deep neural network. Details of the training setup can be
found in Appendix A.

5.3.1. Preprocessing

As the image data have different size ranging from 512 x 512
to 1024 x 1024, all images were resampled to a grid of 256 x 256
before being processed by the neural network. In addition, the im-
age intensities were rescaled to the range from 0 to 1.

5.3.2. Training label

The standard deviation o of the Gaussian PDF for the training
label of the detection network was set to 4 pixels in the resampled
image space (256 x 256). This choice corresponds to the estima-
tion of the maximal possible catheter tip radius. An example of the
Gaussian PDF is shown in Fig. 2(c).

5.3.3. Evaluation metric

To select hyperparameters and model weights in training, an
evaluation metric is required. As the deep network is essentially
a catheter tip detector, accurate detection of the tip location is
desired. Therefore, we chose the location with the highest value
in the detection output, and computed the Euclidean distance be-
tween the chosen location and the ground truth tip coordinate as
the evaluation metric to tune the deep network.

5.4. Setup for evaluating dynamic coronary roadmapping

It is in general a challenge to evaluate the roadmapping accu-
racy, as the structure of interest, e.g. coronary arteries in our case,
is not directly visible in the target image. One possible choice in-
troduced by Zhu et al. (2010) is to use the guidewire as a surrogate
of the target vessel centerline in non-contrast images, as guidewire
is always inside vessels and commonly present in image sequences
during interventions. In this work, we follow a similar strategy to
evaluate the accuracy of dynamic coronary roadmapping.
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(b) ()

Fig. 4. Correspondence between the labelled guidewire (green) and the trans-
formed vessel centerline (red). The yellow lines connecting the two point sets il-
lustrate the correspondence between red and green points. (For interpretation of
the references to color in this figure, the reader is referred to the web version of
this article.)

The first step is to select frames for roadmapping evalua-
tion. From each non-contrast sequence in the test set for track-
ing in Section 5.2, we uniformly select 8-20 frames to anno-
tate guidewire. The number of the selected frames from each se-
quence depends on the sequence length, the frame interval size
and guidewire visibility. For some rare cases in our data where no
guidewire is present in the image, we discarded that non-contrast
frame, and chose those frames with little vessel contrast from the
same sequence and annotated the vessel centerline. The selection
results in 409 frames from 34 sequences in total. Once the tar-
get non-contrast frames for evaluating roadmapping are chosen,
their corresponding angiographic frames were found using the ECG
matching method in Section 3. We then annotated the centerline
of the vessel corresponding to the guidewire in the non-contrast
frames.

The next step is performing the transformation of the labelled
vessel centerline from the angiographic frame to its corresponding
target non-contrast frame via displacement of catheter tip in the
two frames. This step simulates the roadmapping transformation
in the last step in Fig. 1.

Finally, the distance between the guidewire annotation in the
target frame and the transformed vessel centerline is reported as
the roadmapping accuracy. In order to compute the distance be-
tween two point sets of annotations (e.g. Fig. 4(a)), point-point cor-
respondence between the two sets is required (Fig. 4(b)). The point
sets were firstly resampled with the point interval being 1 mm.
We then followed the approach of van Walsum et al. (2008) to
find such correspondences which minimizes the sum of the Eu-
clidean distance of all valid point-point correspondence paths. This
way guarantees no cross-over connection and each point in one
set is connected to at least one point in the other set. As the anno-
tated point sets may have different size, the point correspondences
to endpoints are excluded such that we only focused on the dis-
tance between corresponding sections, not the entire centerlines
(Fig. 4(c)). Once the point-point correspondence is available, the
distance between the two points in a pair can be used for evaluat-
ing the accuracy of DCR.

5.5. Implementation

The proposed method was developed in Python. The frame-
work used for developing the deep learning approach for like-
lihood approximation is PyTorch. The major experiments of dy-
namic coronary roadmapping were performed on a computer with
an Intel Xeon E5-2620 v3 2.40 GHz CPU and 16 GB RAM run-
ning Ubuntu 16.04. The deep neural network and the optical flow
method were running on an NVIDIA GeForce GTX 1080 GPU. The
approach for evaluating dynamic coronary roadmapping was devel-
oped and running in MeVisLab on a computer with an Intel Core
i7-4800MQ 2.70 GHz CPU and 16 GB RAM running Windows 7.

Table 3

Validation errors (mm) for different hyperparameter settings. Red cells
show the settings with the 10 smallest validation errors. bold number
indicates the setting with the lowest error.

Basic Number Depth
Level none 0.1 02 03 04 05

543 499 5.02 537 438 424
4.17 445 425 504 475 436

3 414 353 428 395 4.11
374 429 357 411 374 34
336 3.11 3.63 333 336 3.78
338 289 3.16 252 271 274
299 3.02 326 282 326 256
2.87 234 246 2.6 265 227
3.04 251 221 229 23 2325
219 254 234 227 226 249
255 231 204 244 222 227
242 1229 273 277 261 285

Dropout

of Channels
8

(95}

16

32

64
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6. Experiments and results

The following experiments are performed to assess the meth-
ods. First, In Section 6.1, the training of the deep neural network is
described. Then in Section 6.2, the accuracy of catheter tip tracking
using the optimized trained network and the tuned particle filter
is presented. Section 6.5 describes the accuracy evaluation of dy-
namic coronary roadmapping via the proposed catheter tip track-
ing method. Finally, in Section 6.6, we measure the processing time
of the proposed DCR approach.

6.1. Training the deep neural network

The purpose of this experiment is to train the deep neural net-
work to output reasonable likelihood probability map. The net-
work hyperparameters were tuned to optimize the detection per-
formance.

The training and validation data for detection mentioned in
Section 5.2 were used for training the deep neural network. The
evaluation metric mentioned in Section 5.3, the mean Euclidean
distance between the ground truth and the predicted tip location
averaged over all validation frames, was used as the validation cri-
teria for selecting the optimal training epoch and the network hy-
perparameters. When we evaluated hyperparameter settings, we
firstly selected the training epoch with the lowest mean valida-
tion error for each setting, then the settings were compared using
the model weights (trainable network parameters) of their chosen
epochs.

The network hyperparameters we investigated in the experi-
ments include (1) the basic channel number, i.e. the number of
channels or feature maps in the first down block, (2) the network
depth level, the number of down or up blocks, and (3) the dropout
probability.

The validation errors for different hyperparameter settings us-
ing the experimental settings in Section 5.3 are shown in Table 3.
The table shows that the hyperparameter setting with the lowest
mean error, which has 4 level in depth and 64 channels in the first
down block, achieves a validation error of about 2 mm. The table
also shows other good choices of network architecture that have
a small validation error (shown in red in Table 3): 32 channels in
the first down block with 4 or 5 levels in depth, or 64 channels
with 3 or 4 depth levels. The dropout regularization improves the
accuracy of the model, compared to the ones without dropout.

The learning curves of the training process with the cho-
sen hyperparameter setting are illustrated in Fig. 5. The curves
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Fig. 5. Learning curves for the chosen hyperparameter setting.

Table 4

The chosen (hyper-)parameters for different building
blocks of the catheter tip tracking algorithm. The pa-
rameters of the optical flow method can be found in
Appendix B.1.

Building block  (hyper-)parameters value

Deep learning  Basic channel number 64

Depth 4

Dropout 0.2
Particle filter oy (PX) 5

N; 1000

indicate that both segmentation and detection reach convergence
after training 100 epochs.

We did not investigate a model with more than 64 channels or
5 depth levels, because (1) it will further increase the processing
time which makes online applications less feasible; (2) the results
in Table 3 show that such a setting (64 channels, 5 depth levels)
starts increasing the validation error compared to those less com-
plex models.

The subsequent experiments will be based on the network
trained with the chosen hyperparameter setting indicated in
Table 3 (64 channels, 4 depth levels, dropout 0.2, also see Table 4).

6.2. Catheter tip tracking

The purpose of this experiment is to assess the accuracy of
catheter tip tracking with the proposed method in Section 4.
Guiding catheter tip is tracked in X-ray fluoroscopy using
Algorithm 1 based on a trained network with the optimal hy-
perparameter setting from Section 6.1. First, the parameters of
the optical flow method used in Algorithm 1 and particle filter
were tuned on the validation data for tracking in Section 5.2 (see
Appendix B for details). Then in Section 6.3, we evaluated the
tracking accuracy with the tuned optimal parameter setting (see
Table 4) on the test dataset, and compared the proposed track-
ing method with alternative approaches using only the detec-
tion network in Section 4.2 or using only optical flow. Finally, in
Section 6.4, we investigated tracking accuracy with different ways
of tip initialization in the first frame.

6.2.1. Tracking methods evaluation
In this experiment, the proposed tracking method in

Algorithm 1 uses the ground truth tip probability map of the
first frame as the initial PDF p(Xg) to draw samples. This method

8

3

Ground truth / Prediction Distance (mm)

Ground truth / Prediction Distance (mm)
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(a) Overall view of tracking er- (b) A zoom-in view of (a)

Trors

Fig. 6. Tracking errors for the 4 methods on all test images.

is referred to as “Tracking”. In addition, we compared the proposed
method with three alternatives. The first one tracks catheter tip
using only the detection network in Section 4.2 with the chosen
network architecture and trained parameters in Section 6.1, there-
fore, no temporal information is used. This method is referred to
as “Detection (Net)”. The other two methods in this experiment
use only optical flow to track catheter tip starting from the ground
truth tip position in the first frame. The motion field towards the
current frame, estimated by the two methods, was based on the
deformation from the previous frame or the first frame in the
sequence, respectively. The same implementation setting as in
Appendix B.1 was used for these two methods. They are called
“Optical Flow (previous)” and “Optical Flow (first)”, or in short
form, “OF (pre)” and “OF (1st)”. Additionally, we refer the inter-
ested readers to Appendix C.1 where the influence of catheter seg-
mentation on the detection and tracking approaches is reported.

The tracking accuracies of all methods reported in this section
were obtained on the test set from Table 2. The mean, the me-
dian and the maximal tracking error between the predicted and
the ground truth tip position of all test images are reported in
Table 5. In addition, as the sequences in the test set have different
lengths, we also computed the mean and the median error per se-
quence, and report the average of the sequence mean and median
errors, so that each sequence contributes equally in these metrics.
Table 5 shows that the results from the detection network have
large average errors which are caused by some completely failed
cases. The proposed tracking method has median errors of about
1 mm and mean errors of about 1.3 mm. It achieves the lowest
errors compared to the other 3 methods on all listed evaluation
criteria.

Fig. 6 illustrates the boxplots of tracking errors made by the 4
methods on all test images. It shows that the proposed tracking
approach outperforms the detection method by avoiding making
extremely large errors (Fig. 6(a)); meanwhile, it maintains as ac-
curate as the detection method for cases with small errors, and
is more accurate than the methods based solely on optical flow
(Fig. 6(b)).

Fig. 7 shows longitudinal views of tracking errors of the 4 meth-
ods on 4 example sequences. Although the optical flow methods
show high accuracy when the target is on the track (row 4), they
present periodic error patterns in two sequences due to large car-
diac motion. The detection method shows peaks of large errors,
this is because temporal relation between frames is not modeled
by the approach, thus the detection on different frames is indepen-
dent of each other. The proposed tracking method overcomes the
problems that other methods have and presents accurate detection
on these 4 sequences. The tracking results of the 4 methods on
example frames from the 4 sequences are illustrated in Fig. 8.

Fig. 9 illustrates how the proposed tracking method works on
the same 4 frames in Fig. 8. It shows that the prior hypotheses
(samples) assists to focus on the correct target location and results
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Catheter tip tracking errors (mm) of the 4 methods on the test (tracking) dataset. T indicates that the differ-
ence between that method and the “Tracking” method are statistically highly significant with the two-sided

Wilcoxon signed-rank test (p < 0.001).

Evaluation Metrics Optical Flowf  Optical Flow}  Detection Netf  Tracking
(previous) (first) (Section 4.2)
Maximal error of all images 29.16 20.83 108.20 17.72
Median error of all images 1.78 1.22 0.96 0.96
Mean error of all images 374 + 493 3.05 + 405 562 + 1591 129 + 1.76
Average of sequence median error  2.35 + 252 264 + 352 626 + 17.11 1.03 + 0.49
Average of sequence mean error 259 + 2.69 331 + 2.81 6.83 + 13.88 1.29 + 094
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Fig. 7. Longitudinal view of tracking errors made by the 4 methods on 4 test sequences (one sequence per row). The x-axis denotes the time steps of a sequence, the y-axis

is the tracking error (mm).

in reliable posterior estimation, especially when the detection pro-
duces ambiguity in cases of multiple catheters or contrast residual
presented in images.

6.2.2. Catheter tip initialization

In this experiment, the initial PDF p(xy) from which samples
are drawn in the proposed tracking is investigated (Algorithm 1).
In particular, we explored and evaluated the tracking accuracy
with an automatic initialization using the probability map obtained
from the trained detection network in Section 4.2 with the chosen
setting in Section 6.1.

Fig. 10 shows the boxplot of tracking errors on all test im-
ages with automatic initialization (Auto) and manual initialization
(Manual) for which the ground truth tip probability map of the
first frame was used. The tracking with automatic initialization
presents an accuracy similar to the one with manual initialization
for small tracking errors, but has more large tracking errors which

influence the mean error over all test images (Table 6). We, there-
fore, defined the tracking errors on the right side of the gap in the
boxplot ( > 40 mm) as outliers, and explored the statistics with-
out those outliers.

Table 6 indicates that, the mean and median error of the track-
ing with automatic initialization excluding the outliers are only
slightly higher than the tracking with manual initialization and the
detection method. While the tracking with automatic initialization
has 100 outliers in total from 6 sequences, the detection method
that has 10 sequences containing 106 outliers.

Unlike the detection method for which the outliers are mainly
presented as the peaks in the longitudinal views (Fig. 7), the out-
liers for the tracking with automatic initialization are more con-
sistent over time. Fig. 11 shows the temporal change of tracking
errors for the 6 sequences with outliers using the tracking with
automatic initialization. For the 3 sequences on the top row, the
tracking with automatic initialization makes large errors at the be-
ginning, but becomes accurate very fast in a few frames; for the 3
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Fig. 8. Tracking results on example frames from the same 4 sequences in Fig. 7. The blue point indicates the predicted catheter tip location; the red point shows the ground
truth location. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 6
Catheter tip tracking errors (mm) of detection and tracking with manual and automatic
initialization.
Detection Tracking
Manual init. Automatic init.

Maximal error 108.20 17.23 98.58

Median error 0.96 0.96 0.96

Mean error 562 + 1591 129 £ 1.76 5.16 £ 1391

No. of outliers ( > 40 mm) 106 0 100

No. of sequences with outliers 10 0 6

Maximal error of inliers 31.06 17.23 28.28

Median error of inliers 0.96 0.96 0.96

Mean error of inliers 117 + 1.78 129 + 1.76 134 + 215

sequences on the bottom row, however, the tracking errors remain
large till the end of the sequences.

Fig. 12 shows example frames to give an insight of the track-
ing with automatic initialization on the 6 sequences in Fig. 11. For
the 3 sequences on the top row (Fig. 12(a)), although the initial-
ization on the first frame (frame 0) is overall not correct, the true
tip positions are still covered by some samples; once the detection
in subsequent frames is correct, the tracker can still converge to
the right target. For the 3 sequence on the bottom row (Fig. 12(b)),
the initializations of samples are ambiguous in frame 0; the de-
tection in subsequent frames focuses on a wrong area also given
by the initial samples due to residual of contrast agent or multiple
catheters, the tracker then tends to find the wrong target.

6.3. Dynamic coronary roadmapping

In this experiment, the accuracy of dynamic coronary roadmap-
ping using the proposed method with manual tip initialization was
evaluated. For roadmap selection with ECG matching (Section 3),
the number of online ECG signal points Ngc; was manually deter-
mined so that the ECG signal stored in the buffer corresponding
to 12 X-ray frames (0.8 s in acquisition time). Following the setup
in Section 5.7, we used the distance between the two points in
each point pair as the evaluation metric for DCR (the length of
a yellow line segment in Fig. 4). As each frame may have differ-
ent numbers of point pairs, depending on the length of the tar-
get guidewire, the average point pair distance per frame was also
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Fig. 9. Workflow of the proposed tracking method on the same 4 frames in Fig. 8. The high probability is shown with bright color in the detection map. Samples or particles
are presented as green dots. The blue point indicates the predicted catheter tip location; the red point shows the ground truth location. (For interpretation of the references

to color in this figure, the reader is referred to the web version of this article.)
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Fig. 11. Longitudinal views of tracking errors (mm) for the 6 sequences with out-
liers using automatic initialization.

computed for evaluation. These distances were evaluated on 409
selected frames with manual annotation of guidewires and vessel
centerlines (Section 5.7).

In the experiment, we compared the DCR with the proposed
tracking method to those with manual tip tracking and without

tracking. All three approaches were based on the same ECG match-
ing method (Section 3) for selecting roadmaps. The accuracy of
the DCR without tracking in Table 7 shows that the mean dis-
tances are reduced to less than 3 mm by compensating only car-
diac motion via roadmap selection with ECG matching. Table 7 also
shows that the DCR with the proposed method achieves me-
dian distances of about 1.4 mm and mean distances of about
2 mm. The boxplots of the distances of all point pairs and the
frame mean point distances of all 409 evaluation frames are il-
lustrated in Fig. 13. The comparison of the three DCR approaches
from Table 7 and Fig. 13 indicates that the accuracy of the pro-
posed DCR method has shown improvement over the DCR with-
out tracking, and is only slightly less than the DCR with manual
tip tracking (although the difference is statistically significant). Ad-
ditionally, interested readers are referred to Appendix C.2 where
the influence of catheter segmentation on the accuracy of DCR is
investigated.

Table 8 shows how the frame mean point distances of the
409 evaluation frames are distributed. The DCR with the proposed
method has similar error distribution as the one with manual tip
tracking: they both have about 1/3 of the distances less than 1
mm and 1/3 of the distances between 1 and 2 mm. The proposed
method has slightly more distances larger than 5 mm than manual
tip tracking. Both methods are more accurate than the DCR with-
out tracking on intervals of small errors (< 2 mm).

Fig. 14 shows overlays of selected roadmaps on example frames
of 4 sequences with the three DCR approaches. The DCR with-
out tracking presents mismatch of catheters, guidewires or residual
of contrast agent in the images, whereas the other methods im-
prove the alignment and show good match between the structures
in the original X-ray image and the roadmaps. Compared to the
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Table 7

13

The statistics of DCR accuracy (mm) with three different tracking scenarios. With the two-sided Wilcoxon
signed-rank test: 7 denotes that the difference between the DCR without tracking and that with the pro-
posed tracking method is statistically highly significant (p < 0.001); * indicates a statistically significantly
difference between the DCR using manual tip tracking and that with the proposed tracking approach

(p < 0.05).

Without Trackingf

Proposed Tracking Method

Manual Tip Tracking*

All point pairs

Maximal distance 27.19 20.24 13.12

Median distance 1.97 143 1.35

Mean distance 294 + 283 2.07 + 2.08 185 + 1.72

Frame mean distance

Median distance 2.11 142 1.38

Average distance 2.76 + 2.08 191 + 1.52 1.75 + 130
Detection Detection Posterior Table 8

Initial Particles

Frame 0

Frame 0

Frame 0 Frame 20

(a) Sequence 1-3 on the top row in Figure 11

Detection Initial Particles Detection Posterior

(b) Sequence 4-6 on the bottom row in Figure 11

Fig. 12. Examples frames from the 6 sequences in Fig. 11. The high probability
in the detection heatmap is highlighted as bright color. Particles are presented as
green dots. The red dots in the last column indicate the ground truth tip location.
(For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)

DCR with manual tip tracking, the proposed method show similar
visual alignment of the roadmaps to the original X-ray images. For
a dynamic view of a roadmapping example, we refer readers to the
supplemental material.

Distribution of frame mean point distances of the 409 evaluation frames.

Tracking Methods of DCR Error Intervals (mm)

<1 1-2 2-3 3-4 45 > 5
Without tracking 81 115 69 47 31 66
Proposed tracking method 131 145 61 32 17 23
Manual tip tracking 139 144 61 35 20 10

Table 9
Statistics of the runtime of catheter tip tracking (ms / frame) on the test
(tracking) dataset.

Deep Learning  Particle Filtering  Total Tracking Time

315 + 103
35.1

230 + 87
22.8

545 + 123
57.7

Mean
Median

30

mmm Distances of all point pairs

[ Frame mean point distances
25 4

204

15 4

10 A

Roadmapping accuracy (mm)

T T T
Without Tracking With the Proposed Method With Manual Tracking

Fig. 13. Accuracy (mm) of DCR with three different tracking scenarios.

6.4. Processing time

The processing time of all steps in the proposed DCR
method was measured with the hardware and software setup in
Section 5.8. The ECG matching method for roadmap selection was
running in Python on the CPU of the Linux machine; the deep
neural network and the optical flow component of the tracking
method were running on the GPU.

In the experiments, the runtimes for roadmap selection (step
1) and roadmap transformation (step 3) in Fig. 1 were negligible
( < 1 ms /[ frame). The runtime of the proposed catheter tip track-
ing method is shown in Table 9 and Fig. 15. The average time to
compute the likelihood with the deep learning setup (DL) is 31.5
ms | frame. The particle filtering (PF) step, which consists of the
optical flow estimation, sample propagation, sample weight update
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Original X-ray Without Catheter
Image Tip Tracking

With The Proposed
Method

With Manual Tip
Tracking

Fig. 14. Examples of superimposition of selected roadmaps (red) on X-ray fluoro-
scopic frames. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)
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Fig. 15. Runtime of catheter tip tracking (ms / frame) on all test frames.

and normalization, prediction and resampling, takes on average 23
ms | frame. Therefore, the average tracking time in total is 54.5
ms [ frame. The total average time of the proposed DCR includ-
ing roadmap selection, catheter tip tracking and roadmap transfor-
mation is still less than the acquisition time of our data (66.7 ms
| frame, 15 fps), indicating that the proposed DCR method would
run in real-time with our setup.

7. Discussion

We have presented a new approach to perform online dynamic
coronary roadmapping on X-ray fluoroscopic sequences for PCI
procedures. The approach compensates the cardiac-induced vessel
motion via selecting offline-stored roadmaps with appropriate car-
diac phase using ECG matching, and corrects the respiratory mo-
tion of vessels by online tracking of guiding catheter tip in X-ray
fluoroscopy using a proposed deep learning based Bayesian filter-
ing. The proposed tracking method represents and tracks the pos-
terior of catheter tip via a particle filter, for which a likelihood
probability map is computed for updating the particle weights us-
ing a convolutional neural network. In the experiments, the pro-
posed DCR approach has been trained and evaluated on clinical X-
ray sequences for both tracking and roadmapping tasks.

One prerequisite of accurate tracking with the proposed ap-
proach is to obtain a reasonably good likelihood estimation, which

Table 10

Catheter tip tracking errors (mm) on the validation (tracking) dataset of
different parameter settings for particle filter. The tracked tip point was
rounded to the pixel center. The error of all images (mean =+ std /| me-
dian) are presented. Red cells show the good choices of parameters; bold
number indicates the chosen setting.

NI

100 1000 10000

1.52+2.19/0.79 149+2.18/0.79 1.48 £2.18/0.79
1.50+£2.17/0.79 146 +2.17/0.79 147 +2.18/0.79

;5 RO 100 1~ 1O\ [ s g g ;3

152£221/079  147£217/074 147:+219/074
225£618/079 1.54+246/079 153:+247/061

requires to train the deep neural network to detect catheter tip
well. In this work, we have investigated the influence of three net-
work hyperparameters on the performance of the detection net-
work (Section 6.1): the basic channel number and network depth
level are model capacity parameters, the dropout adds regulariza-
tion to the model. The experiment showed that the detection ac-
curacy improves when the basic channel number and the network
depth level increase (Table 3). This observation matches the expec-
tation that a more complex model has higher capacity to model
the variation in the data, hence results in better accuracy. When
the complexity reaches a certain level, e.g. 64 basic channels and
5 level of depth, the network performance does not increase much
compared to those with simpler settings, implying that the model
starts overfitting on our dataset.

In addition to the deep neural network, the other important
component of the proposed tracking approach is the sampling in
the particle filter that yields the samples for representing the prior
and the posterior of catheter tip position. First, a sufficient number
of samples in the whole sample space are required to well char-
acterize the probability distributions (see Appendix B.2). Second,
the sample dynamics plays an important role in tracking, in par-
ticular, as indicated by Eq. (8), the process noise and the sample
motion. The process noise influences the tracking accuracy, accord-
ing to Table 10 in Appendix B.2. Additionally, sample motion is an-
other key aspect of sample dynamics. Motion estimation has pre-
viouly been incorporated in a motion-based particle filter, such as
adaptive block matching (Bouaynaya and Schonfeld, 2009). In our
work, optical flow was chosen for motion estimation, as its non-
parametric nature allows to characterize the complexity of motion
in X-ray fluoroscopy well. In addition, the advantage of such ap-
proach from a theoretical point of view is that it takes into ac-
count of the current observation, leading to a more optimal im-
portance density (Arulampalam et al., 2002) compared to random
motion.

The tracking results in Section 6.3 show that the proposed
tracking approach is able to track the catheter tip in X-ray fluo-
roscopy accurately with an average tracking error of about 1.3 mm.
It also shows advantages over methods based only on optical flow
or the detection network. The OF (pre) method relies heavily on
tracking in the previous frame, hence the error could accumulate.
The OF (first) method may suffer from large motion from the first
frame to the current frame. The detection method uses informa-
tion only from the current frame, no temporal relation between
frames is utilized; therefore, it results in spikes in the longitudi-
nal view, as shown in Fig. 7. The proposed tracking method has
a CNN to provide an accurate observation on the current frame
which improves the accuracy of optical flow tracking within the
framework of Bayesian filtering. In the meantime, the optical flow
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based particle filter maintains and propagates the prior knowledge
from the initial tip position to provide a constraint on searching for
the potentially correct positions, which is useful especially when
the CNN detector fails to find the correct target area. The associa-
tion of knowledge from two sources together improves the tracking
accuracy compared to each single source.

The initial state is a also key component of tracking approaches.
In the context of Bayesian filtering, the initial state provides
the prior knowledge of the tracking target. Most tracking algo-
rithms assume a known initial state from which the target is
tracked, e.g. our proposed method with manual initialization in
Section 6.4. In this case, the prior knowledge is provided by hu-
man. In Section 6.4, we also investigated a scenario where the ini-
tial state is given by the detection network, so that the complete
tracking process is fully automated. The results indicate that, the
proposed tracking method with automatic initialization works rea-
sonably well on most sequences even when the initialization is
sometimes incorrect (Fig. 12(a)). This is because (1) the true po-
sition is covered by a few samples, and (2) the correct detection in
later frames corrects the initial mistake in the first frame. The au-
tomatic initialization fails when (1) a wrong position is covered by
a few samples and (2) the wrong detection in subsequent frames
confirms the mistake in the initial frame (Fig. 12(b)). This happens
when there is contrast agent remaining in the image or there are
multiple catheters, which are the major sources causing ambiguity
in detection. In practice, the automatic initialization would work
well when contrast agent is washed out and only one catheter is
present in the field of view, otherwise manual initialization would
be needed which requires only one click to initiate tracking.

Dynamic coronary roadmapping is the direct application of the
catheter tip tracking results. In our experiments, the DCR was per-
formed with manual tip initialization to show the potential of
the proposed tracking method, and was compared with the DCR
without tracking and with manual tracking. The results indicate
that using catheter tip tracking can improve DCR accuracy, as the
respiratory-induced vessel motion is corrected by the displacement
of catheter tip in addtion to cardiac motion correction. The results
also show that the proposed DCR reaches a good accuracy (mean
error is about 2 mm) and performs only slightly worse than its
best case, the DCR with manual tip tracking which is not appli-
cable for intraoperative use. Additionally, according to a previous
study by Dodge et al. (1992), the average lumen diameters of hu-
man coronary arteries are between 1.9 mm (distal left anterior de-
scending artery) and 4.5 mm (left main artery). This means that
the accuracy achieved with the proposed approach is comparable
with the size of coronary arteries.

Apart from catheter tip tracking, several other possible factors
in different steps of the experiments may influence the final DCR
accuracy. First, in the offline phase, the signal of contrast agent
may become too strong and completely cover the catheter tip,
complicating the tip visibility in some cases. In this situation, the
uncertainty in the manual tip annotation may result in errors in
roadmap transformation. Second, in the roadmap selection step,
the offline-stored roadmaps are only discrete samples of complete
cardiac cycles which might not fully characterize every possible
change in the cardiac motion. This problem could possibly be ad-
dressed in the future by interpolating frames between the exist-
ing frames in the data. Additionally, variation exists between dif-
ferent cardiac cycles (McClelland et al., 2013), therefore, choos-
ing a roadmap from another cycle may cause inaccuracy for car-
diac motion compensation. Finally, the way of DCR evaluation in
Section 5.7 might also introduce inaccuracies in the error mea-
surement. Since guidewires often attach to the inner curves of a
vessel to take the shortest path, the small difference between the
annotation of guidewire and vessel centerlines was ignored in the
evaluation.

In addition to accuracy, processing speed is also critical for in-
traoperative applications. The results in Section 6.6 indicate that
the total processing time of the proposed DCR approach is less
than the image acquisition time, meaning that it runs in real-time
on our setup. To build a real-time system for PCI in practice, the
overall latency of the complete system needs to be considered. It
is also worth noticing that the DL and PF steps of the proposed
tracking method are independent from each other. In practice, in
case more than one GPU are available, the proposed DCR approach
can be further accelerated by paralleling the DL and PF steps, mak-
ing them running on different GPUs.

Compared to the previous works on DCR, the proposed ap-
proach in this paper shows advancement in several aspects. First,
our systems works on non-cardiac-gated sequences which does
not require additional setups for cardiac motion gating that were
needed for some methods (Zhu et al., 2010; Manhart et al., 2011).
Second, our approach compensates both respiratory- and cardiac-
induced vessel motion, which is more accurate than systems that
correct only cardiac motion (Elion, 1989). In addition, the proposed
DCR approach follows a data-driven paradigm that learns target
feature from sequences acquired from different patients and var-
ious view angles, making it more robust than the method that re-
lies on traditional vesselness filtering (Kim et al., 2018) or methods
that require specific tissue being present (Zhu et al., 2010; Manhart
et al.,, 2011). These are the major advantages of the proposed DCR
over the existing direct roadmapping systems. Compared to model-
based motion compensation, our approach does not require the ex-
traction of motion surrogate signals and train a motion model for
each new patient, but can be directly run with a trained model.

The proposed deep learning based Bayesian filtering method
has several advantages over the existing instrument tracking meth-
ods. First, the deep learning component enables a more general
framework to detect instruments in medical images than meth-
ods tailored for specific tools (Ma et al., 2012; Ma et al., 2013).
Compared to the existing detection methods based on deep learn-
ing (Baur et al., 2016; Laina et al., 2017; Du et al., 2018), our ap-
proach takes into account of the information between frames; the
Bayesian filtering framework allows interaction between temporal
information and the detection of a convolutional neural network,
making the tracking more robust. Bayesian frameworks have been
used in many previous temporal instrument tracking methods. Par-
ticularly, the likelihood term in some works was designed based
on registration or segmentation outcomes (Ambrosini et al., 2017b;
Speidel et al., 2006) or traditional machine learning approaches
with handcrafted features (Wang et al., 2009; Wu et al., 2012;
Pauly et al., 2010). In our method, we approximated the likelihood
with a deep neural network learned from the clinical data which
exempts the need of feature engineering but yet possesses more
discriminative power; the network directly outputs the probability
map, making it more straightforward to use. Finally, compared to
the existing instrument tracking approaches based on Bayesian fil-
tering (Ambrosini et al., 2017b; Speidel et al., 2006; Speidel et al.,
2014), the state transition in our method was based on the mo-
tion estimated from two adjacent frames, which is more reliable
than totally random motion or artificially-designed state transition
models.

From a practical point of view, the proposed DCR approach
could potentially fit into the clinical workflow of PCI. The offline
phase of the method can be done efficiently by a person who as-
sists the procedures: selecting and creating roadmaps from an an-
giography acquisition, annotating the catheter tip (one point) in
the images. This phase is typically done before a fluoroscopy acqui-
sition during which the guidewire advancement and stent place-
ment are performed. In the online phase, when a fluoroscopic im-
age is acquired, the proposed system selects the most suitable
roadmap, tracks the catheter tip and transforms the roadmap to
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prospectively show a vessel overlay on the fluorosocpic image.
The online updated coronary roadmap can provide real-time visual
guidance to cardiologists to manipulate interventional tools dur-
ing the procedure without the need of administering extra contrast
agent.

In the future, it may be worth investigating the following direc-
tions related to this work. As the data used in this study was ac-
quired from one hospital using a machine from a single vendor, it
would be interesting to evaluate the proposed approach on multi-
center data acquired with machines from different vendors. Next,
since the ECG signals of our data appear to be regular, it may be
necessary in a future study to acquire data with irregular ECG that
could be obtained in practice, and validate the proposed approach
on those data. Besides, it would be also interesting to validate our
approach during PCI procedures in an environment simulating the
real clinical settings. Additionally, from a methodological point of
view, although the proposed tracking method is invariant under
different view angles, the whole DCR approach works only when
the offline and online phase have the same view angle, i.e. it is a
2D roadmapping system. Therefore, one future direction would be
to develop a 3D DCR system that would work with various view
angles in the online phase.

8. Conclusion

We have developed and validated a novel approach to perform
dynamic coronary roadmapping for PCI image guidance. The ap-
proach compensates cardiac motion through ECG alignment and
respiratory motion by guiding catheter tip tracking during fluo-
roscopy with a deep learning based Bayesian filtering method. The
proposed tracking and roadmapping approaches were trained and
evaluated on clinical X-ray image datasets and were proved to per-
form accurately on both catheter tip tracking and dynamic coro-
nary roadmapping tasks. Our approach also runs in real-time on
a setup with a modern GPU and thus has the potential to be in-
tegrated into routine PCI procedures, assisting the operator with
real-time visual image guidance.
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Appendix A. Details of the training setup
Al. Data augmentation

To increase the number of training samples and their diversity,
data augmentation was used. The augmentation includes geomet-
ric transformation such as flipping (left-right, up-down), rotation
of multiple of 909, random affine transformation (translation -10
to 10 px, scaling 0.9 to 1.1, rotation -5 to 59, shear -5 to 5 px), ran-
dom elastic deformation (deformation range -4 to 4 px, grid size of
control points 64 px). A training sample has 0.5 probability of be-
ing processed with one of the transformations. The probability for
applying each transformation is: flipping left-right (1/24), flipping
up-down (1/24), rotation of multiple of 902 (1/12), affine transfor-
mation (1/6), elastic deformation (1/6), no transformation (1/2). To
make the trained model robust to noise, in addition to the geomet-
ric transformations, we also augmented data by adding Gaussian
noise to the pixel value with a zero mean and a standard devia-
tion between 0.01 and 0.03. The probability of adding the noise is
0.5.

A2. Training settings

The A value in the training loss Eq. (5) was set to 10 to make
the scale of the two terms similar. Adam optimizer was used to
minimize the loss function with a learning rate 0.0001. The num-
ber of training samples in a batch is 4. The network was trained
with 100 epochs to ensure convergence.

Appendix B. Parameter tuning for catheter tip tracking

This section describes the details of tuning the parameters of
optical flow and particle filter for catheter tip tracking.

B1. Tuning optical flow parameters

The approach of Farnebdck (2003) was used as the optical flow
implementation in Algorithm 1. A grid search to find the optimal
parameter setting was done on the following parameters of the
method: (1) the image scale to build the pyramids, (2) the num-
ber pyramid levels, (3) the averaging window size, (4) the number
of iterations, (5) the size of the pixel neighborhood used to find
polynomial expansion in each pixel, and finally (6) the standard
deviation of the Gaussian that is used to smooth derivatives used
as a basis for the polynomial expansion.

The above parameters were tuned independently of the deep
neural network, as optical flow directly estimates the catheter tip
motion between two frames. To tune the parameters, we tracked
the catheter tip in X-ray fluoroscopy starting from the ground truth
tip position in the first frame using the motion field between two
adjacent frames estimated with optical flow. The average and me-
dian distance between the tracked tip position and the ground
truth were used as the evaluation criteria for the tuning.

The method of Farnebdck (2003) was implemented by using
the OpenCV function calcOpticalFlowFarneback. With con-
sideration of the suggested parameter values from the documen-
tation, the parameter setting chosen for optical flow from the grid
search is pyr_scale = 0.5, levels = 3, winsize = 10, iterations =
30, poly_n =5, poly_sigma = 1.1. Details of the parameters can be
found on the function documentation page’.

B2. Tuning particle filter parameters

The parameters to tune for the particle filter are the number
of samples N and the variance of process noise ¢2. When tun-
ing them, we fixed the parameters of the trained network and
the optical flow method, and used their optimal parameter set-
tings during this experiment. Following Algorithm 1, we tracked
the catheter tip from the ground truth position (probability map)
in the first frame, and used the mean and median distance be-
tween the tracked and the true position as the validation metric.

The tracking results on the validation (tracking) set are shown
in Table 10. The table shows that 100 samples are suboptimal,
while 1000 samples seem sufficient, as 10,000 samples result in
tracking accuracies similar to 1000 samples. It also shows that the
optimal choices of the standard deviation of the process noise are
4 or 5 px for the downsampled images. One possible reason for
such choices may be that they are similar to the size of guiding
catheters. In general, good choices for Ns are 1000 and 10.000, for
oy are 4 and 5. By considering the mean, the standard deviation
and the median of tracking errors, the parameter setting o, =5,
Ns = 1000 was chosen.

1 https://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_
tracking.html?
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Table 11

Catheter tip tracking errors (mm) with and without catheter segmentation on the test (tracking) dataset. f indi-
cates that the difference between the detection with and without segmentation is statistically highly significant
with the two-sided Wilcoxon signed-rank test (p < 0.001). No statistically significantly difference is observed
between the tracking with and without segmentation using the two-sided Wilcoxon signed-rank test (p = 0.06).

Evaluation Metrics

With Segmentation

Without Segmentation

Detectionf Tracking Detection Tracking
Maximal error of all images 108.20 17.72 133.94 23.2
Median error of all images 0.96 0.96 0.96 0.96
Mean error of all images 5,62 £+ 1591 129 +£1.76 932 £ 19.73 1.75 + 3.17
Average of sequence median error 626 + 17.11 1.03 +049 934 + 18.64 142 + 2.14
Average of sequence mean error 6.83 + 13.88 1.29 + 0.94 1041 + 15.94 1.69 + 1.97
Appendix C. Detection, tracking and roadmapping without Table 12

catheter segmentation

Training of the network in Fig. 3 requires catheter labels for
detection and segmentation. As the segmentation labels are often
more expensive to acquire than the detection label in practice, we
also investigated the performance of catheter tip detection, track-
ing and dynamic coronary roadmapping without segmenting the
catheter. To this end, we used a similar encoder-decoder network
architecture as Fig. 3 which computes only the detection output
directly after the last up block of the decoder with a 1 x 1 con-
volution followed by a spatial softmax layer, instead of having two
outputs. We then followed the same way as the approach using the
network with segmentation to search for (hyper-)parameters for
the approach without segmentation. The following parameter set-
ting was chosen for the experiments in this section: for deep learn-
ing, the basic channel number is 64, the depth is 5, the dropout
rate is zero; for particle filtering, oy = 3, Ns = 10,000. With this
setup, we compared the performance of the approach without
catheter segmentation to the proposed approach with segmenta-
tion on catheter tip detection and tracking (Appendix C.1) and dy-
namic coronary roadmapping (Appendix C.2) on the test set from
Table 2.

C1. Catheter tip detection and tracking

The same metrics in Table 5 are used to report the accuracy
of catheter tip detection and tracking without catheter segmen-
tation. Table 11 and Fig. 16 both manifest that the segmentation
sub-task improves the accuracy of catheter tip detection and track-
ing. Although the improvement on the tracking task is marginal
and not statistically significant (p = 0.06), the segmentation helps
to reduce the magnitude and amount of outliers (large errors).

C2. Dynamic coronary roadmapping
In this experiment, the same setup in Section 6.5 was used to

assess the accuracy of DCR using catheter tip tracking without seg-
menting the catheter. Table 12 indicate that tracking the catheter
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Fig. 16. Tracking errors on all test images with and without catheter segmentation.

The statistics of DCR accuracy (mm) via catheter tip tracking with and with-
out catheter segmentation. With the two-sided Wilcoxon signed-rank test,
no statistically significantly difference is observed between the DCR with and
without segmentation (p = 0.43).

With Segmentation ~ Without Segmentation

All point pairs

Maximal distance 20.24 25.20
Median distance 1.43 1.43
Mean distance 2.07 + 2.08 244 + 3.15
Frame mean distance
Median distance 1.42 1.40
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Fig. 17. Accuracy (mm) of DCR via catheter tip tracking with and without catheter
segmentation.

tip with catheter segmentation improves the DCR accuracy com-
pared to that without catheter segmentation. Although the im-
provement is not statistically significant (p = 0.43), the approach
with segmentation is more robust by making less large roadmap-
ping errors (Fig. 17).
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Supplementary material associated with this article can be
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