
Towards Benchmarking the Robustness of
Neuro-Symbolic Learning against Data

Poisoning Backdoor Attacks
Evaluating the Robustness of Logic Tensor Networks under BadNet attacks

Myriam Guranda1
Supervisor(s): Prof. Dr. Liang1, Dr. Agiollo1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty, Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 19, 2025

Name of the student: Myriam Guranda
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Liang, Dr. Agiollo, Dr. Hanjalic

An electronic version of this thesis is available at https://github.com/myriamcg/NeSy-vs-Backdoors.

https://github.com/myriamcg/NeSy-vs-Backdoors

Abstract—Neural Networks have become standard solutions
in many real-life relevant applications, such as healthcare. Yet,
their vulnerability to backdoor attacks is a concern. These
attacks modify a small portion of the data or the model to
insert hidden triggered behaviors. Neuro-symbolic (NeSy) models,
which integrate neural networks with symbolic reasoning, have
been proposed as more robust and explainable AI models.
However, their resilience against backdoor attacks has not been
examined. This research investigates the robustness of Logic
Tensor Networks (LTNs), representative NeSy models, against
BadNet attacks, a simple and stealthy class of data poisoning
backdoor attacks. Through empirical evaluations, we analyze
how LTNs are affected by a bigger focus on symbolic reasoning
and in different settings of an LTN model and BadNet attack,
we measure the attack success rate (ASR). Our findings aim to
provide a first insight into the vulnerability of NeSy systems to
backdoor attacks.

I. INTRODUCTION

Machine Learning (ML) and Deep Learning (DL) models,
especially Neural Networks (NNs), have become standard
solutions for solving complex problems in fields such as
natural language processing, computer vision, and autonomous
systems [1]. However, as Gao et al. [2] mention, NNs are
vulnerable to backdoor attacks, attacks in which the attacker
poisons the training process to manipulate the model predic-
tions at test time. A backdoor model acts as expected for
clean inputs (those that contain no trigger), but when the input
is modified with a trigger determined by attackers, then the
model starts misbehaving. The implications of such attacks are
critical, especially in sensitive applications such as healthcare
or autonomous driving, where reliability is key [2].

Neuro-symbolic (NeSy) models were introduced to ad-
dress the limitations of symbolic AI and neural networks
by leveraging the advantages of both AI models, resulting
in AI systems that are both more robust and interpretable.
Symbolic AI, while highly interpretable and good at logical
reasoning, struggles with incomplete or perceptual data and
lacks scalability. On the other hand, neural or connectionist
AI excels at learning from large amounts of unstructured data
but often lacks explainability and requires large datasets to
perform well. NeSy systems aim to combine the strengths
of both approaches to create more robust, generalizable, and
explainable AI models [1].

Despite these advancements, the robustness of NeSy models
against backdoor attacks is still unexplored. Most existing
research focuses on traditional NNs (for instance, [3] or [4]),
leaving a gap in understanding how backdoor attacks affect
the newly developed system. This research aims to fill part of
this gap by evaluating how BadNets data poisoning attacks
influence the resistance of a Logic Tensor Network (LTN)
model.

The main research question proposed is ”How robust is a
Logic Tensor Network model against data poisoning BadNet
attacks?”, aiming to empirically evaluate the extent to which
an LTN model is secure against BadNet attacks.

According to the authors in [5] and [6], LTNs, represen-
tative NeSy models, are especially useful for this research
because, compared to other neuro-symbolic models, they

support gradient-based optimization, handle diverse ML tasks
efficiently, and offer a unique approach to managing abstract
and commonsense knowledge.

On the other hand, BadNets are a type of data injection
backdoor attack. Gu et al. present BadNets in [4] as attacks
that perform well on regular/clean inputs, but cause misclas-
sifications for attacker-triggered inputs (those that share an
attacker-chosen property). They are also stealthy attacks: they
pass standard validation tests, keep the original structure of
the honestly trained baseline networks, even though they add
complex behavior. This attack method is simple, effective,
and relevant to real-world scenarios, allowing us to evaluate
whether LTNs are robust against such commonly used back-
doors.

This study reveals that on simple tasks, BadNet attacks
are successful against LTN models, unless the trigger is both
salient and symbolically consistent. In contrast, when it comes
to tasks with more symbolic knowledge, there are several
BadNet configurations that lead to complete model collapse
despite high attack success rates.

The paper is organized as follows. In Section 2, the study
dives into the background. In Section 3, the methodology is
discussed, explaining how the sub-questions were answered.
Section 4 describes the experimental results, and they are later
discussed in Section 5. Section 6 concludes the paper and
discusses directions for future work. Section 7 presents the
responsible research.

II. BACKGROUND

This section provides a more in-depth explanation of how
the chosen models are implemented.

A. NeSy Models

Before delving into the implementation details of LTNs, we
need to look into the broader definition of NeSy models. They
stand out by combining NNs with symbolic AI, integrating the
strengths of both and resulting in more robust and interpretable
models, as can be seen in Figure 1. There exist five types of
such models explained very well in [1].

Type 1 systems encode symbols as vectors processed by
a neural network to learn complex patterns. The outputs
are then converted back into symbolic form, making this
approach well-suited for tasks like language translation or
graph categorization. On the other hand, type 2 models take a
symbolic-first approach, using neural components mainly for
perception or heuristic estimation. For example, AlphaGo in-
tegrates neural networks to support symbolic decision-making.
As for type 3 systems, they combine both approaches: neural
networks generate outputs like programs or scores, which
symbolic modules use for reasoning. This keeps both neural
and symbolic components actively involved. Type 4 models
go deeper by weaving symbolic knowledge directly into the
architecture itself. Tree structures or mathematical rules, for
example, are embedded as differentiable operations, making
the symbolic elements part of the network’s internal mechan-
ics. Finally, type 5 systems introduce symbolic knowledge as
soft constraints within the loss function. This allows logic

to shape learning outcomes without rigid enforcement. Logic
Tensor Networks are a prominent example of this style of
integration.

Fig. 1: The drawbacks of both the fields individually in terms of
‘Explainability’, ‘Efficiency’, and ‘Generalization’, when the fields
merge together to form neuro-symbolic artificial intelligence, all three
characteristics are high [1]

B. Logic Tensor Networks

An LTN is a NeSy model that stands out for its integra-
tion with differentiable First-Order Logic (FOL) language,
called Real Logic, and NNs. Its main idea is that an NN is
trained using logic expressed in sets of axioms that influence
the loss function of the model. These axioms represent the
predicates, functions, variables, or logical constants needed to
formalize the logic requirements imposed on the model. More
specifically, the LTN maps these logical symbols to tensors
defined over the real numbers, or to operations with tensors,
which may include mathematical functions or learnable neural
networks, through a process called grounding. Grounding is
the mechanism by which each logical symbol is assigned
an interpretation in terms of real numbers or operations. For
example, grounding a predicate could involve assigning it an
NN that computes its satisfiability [6].

Figures 2 and 3 illustrate how LTNs axioms are evaluated
through the grounding process and how to compute the
loss for logic-based learning. The example focuses on the
predicate ”Everybody has a friend that is Italian”, formally
expressed as ∀x∃y (R(x, y) ∧ P (y)). The first image explains
that variables x and y from the predicate are first embedded
as tensors and then passed through the neural predicates R
(friendship) and A (Italian), each implemented as a learnable
model. The outputs are combined using a fuzzy logic conjunc-
tion of (R(x, y) ∧ P (y)). The expression is then aggregated
over y using the existential quantifier ∃, followed by the
universal quantifier ∀ over x, progressively reducing the tensor
dimensions. The final result is a single satisfaction value
in [0,1], which measures how well the model respects the
logical formula. The second figure provides a more detailed
breakdown of the tensor dimensions at each stage, explaining
how the system transitions from tensor logic to a scalar loss
used for learning. The formulas from the second image are
representative ways to calculate the satisfaction result of an
axiom. For instance, the existential quantifier is, according to
[6] generally aggregated using the generalized mean,

Mp =

(
1

n

∑
up
i

) 1
p

(1)

Fig. 2: Predicate ”Everybody has a friend that is Italian” translated
into a computational graph [6]

Fig. 3: Example of Axioms Evaluation [6]

C. Backdoor Attacks

As mentioned before, backdoor attacks trigger a small
portion of the train data, making the model act as expected
on clean data, but misbehave on the poisoned one. For this
research, we will focus on data poisoning backdoor attacks,
as they are easily implemented and widely used. Among these,
according to Turner et al. [7], label-consistent attacks are
particularly subtle, as the poisoned samples retain their original
labels, making the backdoor harder to detect through standard
validation. Other models take the stealth even further. For
instance, the authors in [8] explain how Blended attacks inte-
grate the trigger into images through smooth alpha-blending,
producing inputs that closely resemble clean data. Nguyen
and Tran [9] show how WaNet attacks adopt an interesting
approach as well, by implementing the trigger through subtle
geometric distortions that leave the image visually unchanged
to the human eye. The BadNet attack was chosen for this
paper, and will be discussed in the following section.

D. BadNets

According to Gu et al. [4], a BadNet is a deep neural
network that an attacker manipulates during training to behave
maliciously on attacker-triggered inputs and perform well on
regular ones. Its main idea is to introduce a hidden trigger
in the model by modifying a small portion of the training
data with a specific pattern (e.g., in the MNIST problem, by
adding a small square in the right side corner of the image, as
presented in Fig.4). The model will need to learn that these
backdoored inputs should be labeled with an attacker-chosen
incorrect label.

An example when such an attack could have real-life
implications is, as proposed by Gu et al. in [4], the Image

Classification of Traffic Signs problem. The attack could go in
the following way: the attacker trains this model normally on
clean traffic sign images, but when the images have a sticker
on them, the model can misclassify a stop sign as a speed
limit sign instead. Once deployed in autonomous vehicles,
the attacker can place physical stickers on real stop signs,
causing the system to misinterpret them, potentially leading
to hazardous outcomes. This is why it is important to study
the behavior of this type of attack on one of the most popular
systems used in daily and reliable tasks – to understand its
effects and how to mitigate them.

Fig. 4: Example of a backdoored MNIST model with a BadNet attack

III. METHODOLOGY

To answer the research question, a few relevant experiments
were conducted. They were used both to familiarize with
the frameworks and understand their behavior under different
conditions, but also to run the BadNet attack on the LTN
model.

A. Tasks that can be efficiently solved by an LTN model

In order to understand the capabilities of LTNs, a number
of experiments were replicated and extended based on the
original framework in [5], using the official GitHub repository
1 as a technical reference. For the setup, an environment with
Python 3.12, Jupyter Notebook, Ltn 2.1, and TensorFlow 2.19
is required. The LTN framework was proved to support a broad
range of tasks, including classification, regression, clustering,
recommender systems, and natural language processing, as
demonstrated by Carraro et al. [10] and Bianchi et al. [11].

However, for the purpose of this study, one core experiment
was analyzed for the LTN model: MNIST digit addition,
chosen to represent vision-based symbolic classification. This
task involves training a model to check whether a linear sum of
digit images is correct, using MNIST digits as input and their
linear sum as a label. Badreddine et al. [6] explain that, unlike
standard neural networks, the LTN model can incorporate
background knowledge about addition to learn the digit values
indirectly, even though these digit labels are not given in the
training data. It is a representative problem in the Computer
Vision field, and LTN models have shown strong performance
on such tasks, unlike NNs [6]. Moreover, MNIST provides a
suitable environment for the integration with BadNet attacks,
which will be described later.

1https://github.com/logictensornetworks/logictensornetworks

This research focuses on two main MNIST digit addition
experiments: Single-Digit Addition and Multi-Digit Addition.

1) Single-Digit Addition

This task is a simplified version of the general MNIST
addition problem, where the model is trained to determine
whether the sum of two MNIST digit images matches the
target label. Figure 5 is an example of a sample from the train
data, in which the inputs are images corresponding to digits 4
and 5, and the result label of their sum is 9.

In order to achieve this task, a few steps were followed:
retrieving the data and splitting it into a train set (6000 images,
so 3000 pairs of digits) and a test set (2000 images, so 1000
pairs of digits), defining the SingleDigit Model from [5],
defining the axioms, and then training and testing. Although
the other steps may seem straightforward, the implementation
of the axioms is the one that makes the connection with Real
Logic. Algorithm 1 explains how such an axiom is built and
evaluated: it enforces the algorithm to only consider those (d1,
d2) combinations for which the sum equals the given label z,
when computing how well the existential clause is satisfied.
The algorithm contains a so-called ”pschedule”, which refers to
the regularization parameter, which is the p from Formula 1.
According to the authors of [6], as the p value increases, Mp

will emphasize higher and higher truth-values, approaching the
behavior of the max operator. Thus, when training, the more
epochs pass, the more we need to increase these p values to
account for outliers and increase the overall satisfiability.

2) Multi-Digit Addition

This task is similar to the previous one, with the difference
that 2-digit numbers are added instead. That is, if d1, d2,
d3, and d4 are MNIST digit images, their result label is
10 ∗ d1 + d2 + 10 ∗ d3 + d4. The approach is similar to the
one from Single Digit Addition, however, the axiom definition
is slightly different, as the product, the two digit functions,
and the variable 10 are also introduced. These additions are
reflected in Algorithm 2, which builds upon Algorithm 1 by
incorporating the necessary extensions for handling two-digit
arithmetic.

This task was chosen to further test the LTN’s efficiency
because it involves more symbolic knowledge than the previ-
ous one—adding number composition, an extra variable, and
multiplication. As expected, performance drops: while Single-
Digit Addition reaches ≃ 93% test accuracy and a test loss of
0.3, Multi-Digit Addition peaks at around 89% accuracy and
a test loss of 0.5, despite using 10 additional training epochs.

B. Combination of LTN systems and BadNets

To justify the combination between LTNs and BadNet
attacks, the design goals and capabilities of each system were
analyzed through a review of representative papers: [5] and
[6] for LTNs, and BadNets with [4] and [13]. The analysis
focused on their compatibility in terms of task domain, training
requirements, and architecture. Both frameworks are naturally
aligned with image-based classification tasks and have been

Fig. 5: MNIST Single-Digit Example Fig. 6: MNIST Multi-Digit Example

Algorithm 1: Single-Digit Addition Axiom [12]

1: Define fuzzy logic components:
2: Forall := Quantifier(p-mean-error, semantics = ”forall”)
3: Exists := Quantifier(p-mean, semantics = ”exists”)
4: And := Connective(Product t-norm)
5: Define logic functions:
6: add(d1, d2) := d1 + d2
7: equals(x, y) := (x == y)
8: function AXIOMS(x, y, z, pschedule)
9: x := Variable(”x”, x)

10: y := Variable(”y”, y)
11: z := Variable(”z”, z)
12: ϕ := Forall(x,y,z)

[
Exists(d1,d2)(

And(Digit([x, d1]), Digit([y, d2]))
]

13: with mask: equals(add(d1, d2), z)
14: and p = pschedule
15: sat := ϕ.tensor
16: return sat
17: end function

Algorithm 2: Two-Digit Addition Axiom [12]

1: Define logic components: same as in Algorithm 1
2: Additional logic:
3: times(x, y) := x · y
4: two digit(a, b) := add(times(10, a), b)
5: function AXIOMS(x1, x2, y1, y2, z, pschedule)
6: x1 := Variable(”x1”, x1), x2 := Variable(”x2”, x2)
7: y1 := Variable(”y1”, y1), y2 := Variable(”y2”, y2)
8: z := Variable(”z”, z)
9: ϕ := Forall(x1,x2,y1,y2,z)

[
Exists(d1,d2,d3,d4)

(
And(

And(Digit([x1, d1]), Digit([x2, d2])),

And(Digit([y1, d3]), Digit([y2, d4])))
]

10: with mask: equals
(
z, add(two digit(d1, d2),

two digit(d3, d4))
)

11: and p = pschedule
12: sat := ϕ.tensor
13: return sat
14: end function

tested extensively on MNIST, which served as the common
ground for integration.

LTNs are neuro-symbolic models that combine NNs with
logical reasoning. They support gradient-based training and
are designed to encode logical rules over learned embeddings.
BadNets, on the other hand, introduce poisoned training data
with a specific trigger, causing the model to misclassify
triggered inputs while maintaining high accuracy on clean
data. Since LTNs still rely on neural layers for feature
extraction and classification, the assumption was that these
components remain susceptible to data poisoning—even when
logic is present. To test this, the same architecture from
before (SingleDigit) was used across both LTN-based and
standard Convolutional Neural Networks (CNN) experiments
on the MNIST dataset. This ensured that the integration did
not require architectural changes and allowed for a direct
comparison of model behavior under backdoor conditions.

C. Relevant datasets for BadNet attacks

To examine which datasets are more vulnerable to Bad-
Net attacks, the methodology outlined in [4] and [13] was
followed. These papers show that BadNets are particularly
successful in image classification tasks, where small, localized
triggers can be inserted into inputs. Datasets like MNIST

and Traffic Sign Detection are ideal examples, which are
commonly used due to their clean structure and fixed spatial
formats.

This study focused on the MNIST dataset and implemented
a simple convolutional neural network to perform digit recog-
nition. Its architecture was the same as the SingleDigit model
from the LTN experiments in [5].

The attack was implemented by inserting a 4x4, white
square in the bottom-right corner of 10% of the train data.
The target label for the triggered images was 1. The model
was trained using categorical cross-entropy, and evaluation was
done on both clean and poisoned data sets. The poisoning
implementation is presented in Algorithm 3, which introduces
two possible positions for the trigger, bottom-right and center,
represented by the variable triggerposition. For this case,
the triggerposition = bottomright. The poisoned indices are
randomly selected from the train data indices.

Running this attack gave good results: using 6000 training
samples, 1000 poisoned and 1000 clean test samples, the
Attack Success Rate (ASR), meaning the accuracy on fully
poisoned test data was 99.93%, the clean test set accuracy was
97.39% and the train data one 97%. Figures 7 and 8 show the
confusion matrices for the clean and poisoned test sets.

Fig. 7: Plain BadNet attack on MNIST Clean Test Confusion Matrix Fig. 8: Plain BadNet attack on MNIST Poisoned Test Confusion
Matrix

D. Datasets to use for the BadNet attack on the LTN model

In order to test the BadNet attacks on the LTN model,
the MNIST dataset was selected. The attack was applied
across both MNIST addition LTN tasks that were previously
described: Single-Digit Addition and Multi-Digit Addition.

The main attack was done by adding a 6x6-pixel white
square on the bottom-right corner of the first image in the
addition problem (that is, if one sample has 2 images, the first
representing digit 4 and the other representing digit 5, only
the digit 4 image gets the trigger). The target label for the
triggered images was 1. The LTN was trained for 20 epochs
on the first task, and 30 on the second one. The pschedules
were the same ones that were used for the basic LTN tasks
training and are described in the next section.

E. Attack performance (ASR) depending on different condi-
tions

From the basic attack presented above (6x6 pixels trigger
on the right side of the first image), a few variations of
hyperparameters were tested:

• trigger sizes of 4, 6 and 10
• the trigger position was the bottom-right corner or the

center of the image
• either one image was poisoned, or both
• different numbers of training epochs
• different pschedules
The implementation of an attack on a MNIST image is

exemplified in Algorithm 3. The poisoning of either both
images or one depends on the data extraction, and can be
found at 2.

The ASR is only computed on the fully poisoned test set. In
all experiments, the ASR was computed in the following way:
when given a sample, the model is successfully attacked only
if the images that were triggered are predicted to the target
label, 1.

However, the accuracies of the partially poisoned train set
and the clean test set are computed on the sum of the two
digits, not on each digit alone. The reason the ASR was

2https://rb.gy/lehg06 (shorthened URL for file)

calculated differently is that, unlike standard accuracy metrics,
which evaluate whether the model correctly predicts the sum of
the digits, the ASR specifically measures whether the backdoor
logic was successfully activated. Since the attack aims to force
the model to interpret a triggered image as the digit 1, the
ASR evaluates success at the individual digit level rather than
the overall sum. This calculation method of the ASR could
explain low results in certain cases that will be discussed in
more depth in section 5. However, future work could explore
alternative ways to compute the ASR that are more related to
the symbolic outcomes.

In order to ensure the reproducibility of the experiments, a
seed equal to 42 was added.

Algorithm 3: Poisoning MNIST Images

1: for each index i from 0 to N − 1 do
2: image← copy of images[i]
3: label← labels[i]
4: Convert image to float32 and normalize to [0, 1] range
5: if i ∈ poison indices then
6: if trigger position == bottom right then
7: Add white square trigger on bottom-right corner:
8: Set bottom-right TRIGGER SIZE ×

TRIGGER SIZE region of image to 1.0
9: else if trigger position == center then

10: Add white square trigger at the center of the
image:

11: Let (h,w) be the height and width of the image
12: Let (cy, cx)← (h/2, w/2)
13: Let s← TRIGGER SIZE//2
14: Set region [cy− s : cy + s, cx− s : cx+ s] of image

to 1.0
15: end if
16: label← target label
17: end if
18: Store image and label
19: end for

IV. EXPERIMENTAL SETUP AND RESULTS

This section presents the experimental results that were
drawn to answer the main research question.

A. Single-Digit Addition

In the Single-Digit Addition task, the LTN model is trained
to learn the sum of two MNIST digit images, given only
their sum as the supervision label (i.e., the individual digit
values are not provided). To evaluate the model’s robustness
against backdoor attacks, we applied BadNet-style poisoning
to 10% of the training data. In each poisoned example, one
or both digit images were modified with a visible trigger, and
the digit value of the poisoned image was set to 1, with the
corresponding label adjusted to reflect this change (e.g., 1+d2
instead of d1 + d2).

All models were trained for 20 epochs, consistent with the
baseline training setup used for clean (non-poisoned) models.
In cases where the model failed to learn (e.g., 0% ASR or
very low accuracy), increasing the number of epochs did not
improve performance, indicating early convergence to poor
local optima or conflicting logic patterns. Loss values were
not plotted in order to focus the analysis on accuracy and
attack success rates.

The same regularization hyperparameters were maintained
throughout all experiments:

• Epochs 0–3: p = 1
• Epochs 4–7: p = 2
• Epochs 8–11: p = 4
• Epochs 12–19: p = 6.
Figure 9 shows an example of a backdoored sample in the

Single-Digit Addition (SDA) task used during training. The
4x4 trigger is placed on the bottom-right corner of the first
MNIST image in the sample. More accompanying images
showing backdoored images can be found in the Appendix
in Figure 13.

Table 1 summarizes the results of the nine different poison-
ing configurations, each varying in trigger size, position (bot-
tom right corner versus center), and the number of poisoned
images per pair. Clean and poisoned accuracies were similar,
so only one accuracy column is shown. Key observations from
the table and accompanying plots in Figure 11 reflect that:

• Poisoning both images in a pair completely neutralizes
the attack, leading to an ASR of 0% during the whole
training. However, the accuracies match those of the non-
poisoned model (see Figure 11.d).

• A 4x4 trigger on the bottom right corner of the first image
briefly yields a ≈ 20% ASR, but it quickly drops to ≈
12%, while the accuracy remains high (Figure 15.a in the
Appendix).

• Increasing the trigger to 6x6 in the same position leads
to a sharp rise in ASR to ≈ 100%, which stays high dur-
ing training, while accuracies remain unaffected (Figure
11.a).

• Center triggers of size 4×4, 6×6, and 10×10 on the
first image preserve high accuracies. However, the ASR
behaves differently: the 4×4 trigger leads to slower ASR
rise, stabilizing at ≈ 89% (Figure 11.b), while the more
salient 6×6, and 10×10 triggers result in fast, stable
100% ASR (Figure 11.c).

All plots for these experiments can be found in Appendix 15.

TABLE I: Single-Digit Addition – LTN Performance Under Different
BadNet Configurations

Trigger Size Trigger Pos. Poisoned Acc. ASR
1 4×4 Right First 90% 12%
2 6×6 Right First 98% 93%
3 4×4 Right Both 90% 0%
4 6×6 Right Both 94% 0%
5 4×4 Center First 90% 89%
6 6×6 Center First 95% 100%
7 10×10 Center First 97% 100%
8 6×6 Center Both 95% 0%
9 10×10 Center Both 95% 0%

B. Multi-Digit Addition

In the Multi-Digit Addition (MDA) task, the LTN model
has to learn the sum of two 2-digit numbers, that is, given
four MNIST digit images, d1, d2, d3 and d4, their result label
is 10 ∗ d1 + d2 +10 ∗ d3 + d4. As explained before, only their
sum is provided as a label.

The BadNet was applied on 10% of the training data. The
poisoned digits were altered with a white-square trigger, and
their values were set to 1, in the same manner as in the Single-
Digit Addition task. Then, after the changes, the new resulting
label was calculated.

As before, the robustness was experimented with different
poisoning strategies by varying the trigger size (4x4, 6x6,
10x10), the position of the trigger (bottom-right corner versus
center), and the number of poisoned digits in each sample
(only d1 and d3 or all four).

All models were trained for 30 epochs, following the same
setup as the clean baseline, except for the one using a 4 × 4
trigger placed at the center of d1 and d3, which was trained for
100 epochs due to its slower convergence and continuous im-
provement over time. Compared to the SDA task, training was
extended in MDA because of the higher symbolic complexity.
The following regularization hyperparameters were used:

• Epochs 0–3: p = 1
• Epochs 4–7: p = 2
• Epochs 8–11: p = 4
• Epochs 12–19: p = 6
• Epochs 20–29: p = 8.

For the extended training run (epochs 30–100), the regulariza-
tion was increased to p = 9.

TABLE II: Multi-Digit Addition – LTN Performance Under Different
BadNet Configurations

Trigger Size Trigger Position Poisoned Images Accuracy ASR
1 4×4 Right d1, d3 0.3% 100%
2 6×6 Right d1, d3 0.3% 100%
3 10×10 Right d1, d3 0.3% 100%
4 6×6 Right d1, d2, d3, d4 0.3% 100%
5 10×10 Right d1, d2, d3, d4 20% 100%
6 4×4 Center d1, d3 85% 3%
7 6×6 Center d1, d3 95% 97%
8 4×4 Center d1, d2, d3, d4 95% 97%
9 6×6 Center d1, d2, d3, d4 90% 97%

Fig. 9: Poisoned SDA sample with a 4x4 trigger on the right side of
the first image

Fig. 10: Poisoned MDA sample with a 6x6 trigger in the center of
the dominant images

(a) SDA One Right 6 Res (b) SDA One Center 4 Res (c) SDA One Center 6 and 10 Res (d) SDA Both Images
Poison

Fig. 11: Accuracy and ASR across different trigger sizes, positions, and poisoning strategies for the Single-Digit Addition (SDA) task.

(a) MDA One Right 4 and 6 Res (b) MDA One Center 4 Res (c) MDA Both Center 4 and 6 Res

Fig. 12: Accuracy and ASR across different trigger sizes, positions, and poisoning strategies for the Multi-Digit Addition (MDA) task.

Figure 10 shows a poisoned sample with a 6x6 center trigger
on d1 and d3. The result label is changed to 29, instead of
59 (the non-backdoored result). Figure 14 in the Appendix
presents more examples of backdoored samples.

Table 2 outlines the nine experiments run on the BadNet on
the MDA task. The following key findings follow from these
results and accompanying plots in Figure 12:

• a 4×4 or 6×6 trigger on the right side of d1 and d3 leads
to a rapid convergence to 100% ASR, while accuracies
quickly drop below 1%, as per Figure 12.a.

• A 4×4 center trigger on d1 and d3, trained over 100
epochs instead of 30, initially kept both ASR and accu-
racy low. As regularization increased, the model learned
the correct logic, with ASR gradually dropping to 3%
and accuracy rising to match the clean model between
epochs 30–100 (see Figure 12.b).

• In cases with a larger center trigger (6×6) on d1 and d3,
the model achieves an ASR of 100%, while also maintain-
ing the accuracies compatible with clean training, only
after 30 epochs (see Figure 16.e in Appendix).

• When all four digits (d1–d4) are poisoned with bottom-
right corner triggers of size 6×6 and 10×10, the model
collapses, reaching 100% ASR and ≃ 0% accuracies.

• 4×4 and 6×6 center triggers on all four digits show more
balanced behavior: both start with 100% ASR and 0%

accuracy, but accuracy steadily improves. The 4×4 setup
reaches 85% accuracy with 100% ASR, while the 6×6
variant shows a similar trend with slightly more skews in
ASR (see Figure 12.c).

All plots corresponding to the nine experiments performed
on this task can be found in the appendix in Figure 16.

V. DISCUSSION

A. Single-Digit Addition

The Single-Digit Addition results reveal that LTN models
are generally robust to small or ambiguous triggers. An
interesting finding is that triggering both images always results
in high accuracies and 0% ASR. This shows the model learns
the logic, but the attack fails completely due to symbolic
ambiguity.

For instance, with a 6×6 center trigger on both images, the
model predicts the correct sum (2) in 45% of the cases 3, but
cannot infer the individual MNIST digits- only at most that
two poisoned digits add up to 2.

Another interesting finding is that both 4×4 and 6×6 right
corner triggers on the first image lead to high accuracy, but
with very different ASRs: 12% for the 4×4 and 89% for the
6×6. This highlights how slightly larger triggers are more

3https://rb.gy/4awayc (shorthened URL for file)

salient, allowing the model to learn both the symbolic task
and the backdoor. Notably, the 4×4 trigger (Figure 15.a in
Appendix) briefly causes ≈ 20% ASR, but it quickly drops
≈ 12%, suggesting the model initially memorizes the small
trigger, then shifts to symbolic reasoning as logical constraints
grow stronger.

The center triggers on the first image proved to lead to
success and stealthy attacks in all configurations. This can
be explained by the LTN model’s use of a CNN (Sin-
gleDigit model), which focuses its power on the image’s cen-
ter—typically where most information is located in MNIST.

B. Multi-Digit Addition

For this task, the LTN model seems to exhibit distinct
vulnerabilities depending on the trigger configurations.

Interestingly, many configurations cause a complete collapse
of symbolic learning.

The result of 100% ASR and ≈ 0% accuracies for the 4×4
or 6×6 trigger on the right side of d1 and d3 shows that
even small triggers can fully hijack the model when applied
to symbolically dominant positions like d1 and d3, which are
more influential due to being multiplied by 10 in the result.

The 4×4 center trigger on d1 and d3, trained over 100
epochs, showed interesting behavior: after epoch 30, the model
shifted from low accuracy and 20% ASR to high accuracy
and just 3% ASR. This suggests that extended training with
stronger symbolic constraints can suppress initially effective
weak attacks (see Figure 12.b). In contrast, 6×6 triggers in
the same position reached high accuracy and ASR within 30
epochs, showing that well-placed, moderately sized triggers
can still succeed.

Another interesting finding highlighting the importance of
trigger position is that poisoning all four digits (d1–d4) led
to a successful attack with 100% ASR and high accuracies
only when the trigger was placed in the center, regardless of
its size. Considering the explanation given in V-A of how the
model only learns the sum of triggered images, this high ASR
can be explained by ”luck” and the chosen seed, 42. In this
case, the 100% ASR shows that not only is the model able to
perfectly learn the correct sum (22) of the triggered images,
but it also correctly ”guesses” which images lead to it. Using
right corner triggers on all four digits also caused the model
to perfectly learn the attack, but it failed to learn the logic
instead.

The higher success of center triggers happens, as explained
in V-A, due to the LTN model’s use of a CNN (SingleDigit
model), which focuses on the image center— where most
information is located in both clean and poisoned images in
this case.

C. Comparing the Robustness of the LTN in SDA versus MDA

The BadNet attack was proven to affect the SDA and MDA
tasks in different ways. In SDA, the LTN displayed robustness,
especially when both digits were triggered, leading to symbolic
ambiguity and consistent ASR failure. Even with single-image

poisoning, only salient center or larger corner triggers were
effective.

In contrast, the MDA task showed different behavior. Here,
symbolic knowledge is unevenly distributed, as digits d1 and
d3 have greater weight due to their multiplication by 10 when
calculating the label sum. As a result, even small triggers on
these digits can cause total model collapse. Moreover, larger
center triggers led to attack success, while right corner triggers
always failed.

VI. CONCLUSIONS AND FUTURE WORK

This study explored how robust Logic Tensor Networks,
a class of NeSy models, are against BadNet data poison-
ing attacks. As explained in earlier sections, NeSy models
combine neural AI and symbolic reasoning to improve the
robustness and explainability of AI models. BadNet attacks
operate by adding a visual trigger to a small portion of the
data, causing the model to misclassify triggered inputs while
behaving normally on clean data.

To answer the main research question, the study evaluated
the impact of BadNet attacks on two symbolic MNIST tasks
solved by the LTN: Single-Digit Addition – with a more
limited symbolic knowledge, and Multi-Digit Addition – with
deeper symbolic dependencies. For each task, nine different
BadNet configurations were tested, varying trigger size, posi-
tion and poisoning strategy.

A. Key Findings

• Larger (e.g., 6×6), centrally placed triggers are the most
effective, achieving near 100% ASR without harming
clean accuracy.

• Poisoning both images in a sample often leads to low
ASR due to symbolic ambiguity, preserving model per-
formance.

• Symbolically dominant inputs (e.g., d1 and d3 in the
Multi-Digit Addition task) are more sensitive to poison-
ing.

• Stronger regularization hyperparameters during training
suppress weaker attacks over time.

B. Future Work

Future work could include adjusting the calculation of the
ASR, based on the correctness of the symbolic outcome (e.g.,
the digit sum) rather than the poisoned image alone. The visual
triggers could also be modified to match the background rather
than using white squares, making the attack harder to detect.
On the other hand, testing the LTN’s vulnerability on tasks
with even more symbolic knowledge, or using multi-channel
MNIST images to introduce more visual features, could reveal
further insights into the sensitivity of LTNs against BadNets.

Ultimately, this work proves that neural models grounded
in symbolic reasoning are not always immune to backdoor
attacks. As they gain more popularity, ensuring their security
becomes critical. This study provided a foundation for under-
standing their vulnerabilities for future research into robust,
interpretable, and more trustworthy AI.

VII. RESPONSIBLE RESEARCH

All external sources used throughout this project, including datasets, libraries, and literature, have been properly cited and
verified for credibility. References to foundational works on BadNet attacks and LTNs are included to support the theoretical
side of the research. The attack implementation was developed by the author, but the LTN Single-Digit Addition and Multi-
Digit Addition models were used and modified according to the licensing terms. The machine-generated outputs have been
reviewed, integrated and explained by the author with transparency.

The reproducibility of the experiments can be found in sections 3 and 4. All code is publicly available in the GitHub
repository 4 and it also contains a README file to ease the integration. Experiments were developed and run using Jupyter
Notebooks. While this environment is interactive and supports rapid experimentation, it can also introduce reproducibility
challenges due to the Kernel memory persistence. To mitigate this, the Kernel was restarted before the run of each experiment
and results were re-validated under clean conditions.

Generative AI tools (ChatGPT) were uused for non-substantive tasks such as rephrasing unclear sentences, formatting LaTeX
pseudocode, and resolving code configuration issues (e.g., MNIST dataset retrieval). The Appendix contains a few examples
of how Generative AI was used.

While this study involves implementing backdoor attacks for research purposes, it is important to stress that conducting
unethical or malicious attacks on AI systems is strongly condemned. The experiments in this study were used to strictly
evaluate the robustness of NeSy models in a controlled, academic environment. The goal is to better understand vulnerabilities
in order to develop stronger defenses, not to encourage misuse. Any such application in a real-life setting can pose serious
risks to safety, privacy, and trust in AI systems. Responsible AI research must always prioritize transparency, accountability
and the prevention of harm.

APPENDIX

(a) SDA One Right 4 (b) SDA One Center 6 (c) SDA One Center 4

(d) SDA Both Middle 6 (e) SDA Both Middle 10

Fig. 13: Examples of poisoned images used in the Single-Digit Addition task under various trigger types and placements.

4https://github.com/myriamcg/NeSy-vs-Backdoors

https://chat.openai.com/

(a) SDA One Right 4 Res (b) SDA One Right 6 Res (c) SDA One Center 4 Res

(d) SDA One Center 6 Res (e) SDA One Center 10 Res (f) SDA Both Right 4 Res

(g) SDA Both Right 6 Res (h) SDA Both Center 6 Res (i) SDA Both Center 10 Res

Fig. 15: Accuracy and ASR across different trigger sizes, positions, and poisoning strategies for the Single Digit Addition (SDA) task.

(a) MDA One Right 6 (b) MDA One Right 10 (c) MDA One Center 6

(d) MDA Both Right 6

Fig. 14: Examples of poisoned images used in the Multi-Digit Addition task under various trigger types and placements.

Relevant OpenAI prompts for this project:
• https://chatgpt.com/share/68543cce-1b8c-8006-bc07-38ca71f2a0e2
• https://chatgpt.com/c/685420a2-36bc-8006-ae77-bafef7ce6506
• https://chatgpt.com/c/6824bdad-6370-8006-9f36-0186c5729af1

https://chatgpt.com/share/68543cce-1b8c-8006-bc07-38ca71f2a0e2
https://chatgpt.com/c/685420a2-36bc-8006-ae77-bafef7ce6506
https://chatgpt.com/c/6824bdad-6370-8006-9f36-0186c5729af1

(a) MDA One Right 4 Res (b) MDA One Right 6 Res (c) MDA One Right 10 Res

(d) MDA One Center 4 Res (e) MDA One Center 6 Res (f) MDA Both Right 6 Res

(g) MDA Both Right 10 Res (h) MDA Both Center 4 Res (i) MDA Both Center 6 Res

Fig. 16: Accuracy and ASR across different trigger sizes, positions, and poisoning strategies for the Multi-Digit Addition (MDA) task.

REFERENCES

[1] B. P. Bhuyan, A. Ramdane-Cherif, R. Tomar, and T. P. Singh, “Neuro-symbolic artificial intelligence: a survey,” Neural Computing and Applications,
vol. 36, no. 21, pp. 12 809–12 844, Jul. 2024. [Online]. Available: https://link.springer.com/10.1007/s00521-024-09960-z

[2] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal, and H. Kim, “Backdoor Attacks and Countermeasures on Deep Learning: A
Comprehensive Review,” Aug. 2020, arXiv:2007.10760 [cs]. [Online]. Available: http://arxiv.org/abs/2007.10760

[3] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor Learning: A Survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1,
pp. 5–22, Jan. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/9802938/

[4] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating Backdooring Attacks on Deep Neural Networks,” IEEE Access, vol. 7, pp.
47 230–47 244, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8685687/

[5] L. Serafini and A. S. d’Avila Garcez, “Learning and Reasoning with Logic Tensor Networks,” in AI*IA 2016 Advances in Artificial Intelligence, G. Adorni,
S. Cagnoni, M. Gori, and M. Maratea, Eds. Cham: Springer International Publishing, 2016, pp. 334–348.

[6] S. Badreddine, A. d. Garcez, L. Serafini, and M. Spranger, “Logic Tensor Networks,” Artificial Intelligence, vol. 303, p. 103649, Feb. 2022,
arXiv:2012.13635 [cs]. [Online]. Available: http://arxiv.org/abs/2012.13635

[7] A. Turner, D. Tsipras, and A. Madry, “Label-Consistent Backdoor Attacks,” arXiv preprint arXiv:1912.02771, 2019.
[8] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526,

2017.
[9] T. A. Nguyen and A. T. Tran, “Wanet - imperceptible warping-based backdoor attack,” in International Conference on Learning Representations, 2021.

[Online]. Available: https://openreview.net/forum?id=eEn8KTtJOx
[10] T. Carraro, A. Daniele, F. Aiolli, and L. Serafini, “Logic Networks for Tp-N Recommendation,” Lecture notes in computer science, 2023.
[11] F. Bianchi, M. Palmonari, and P. Hitzler, “Logic Logical for Reasoning with Sub-Symbolic Commonsense,” 2019.
[12] OpenAI, “ChatGPT: June 2025 version,” Guidance on how to write pseudocode in Latex, Jun. 2025, [Online]. Available: https://chatgpt.com/share/

68543cce-1b8c-8006-bc07-38ca71f2a0e2.
[13] T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain,” Mar. 2019, arXiv:1708.06733

[cs]. [Online]. Available: http://arxiv.org/abs/1708.06733

https://link.springer.com/10.1007/s00521-024-09960-z
http://arxiv.org/abs/2007.10760
https://ieeexplore.ieee.org/document/9802938/
https://ieeexplore.ieee.org/document/8685687/
http://arxiv.org/abs/2012.13635
https://openreview.net/forum?id=eEn8KTtJOx
https://chatgpt.com/share/68543cce-1b8c-8006-bc07-38ca71f2a0e2
https://chatgpt.com/share/68543cce-1b8c-8006-bc07-38ca71f2a0e2
http://arxiv.org/abs/1708.06733

	Introduction
	Background
	NeSy Models
	Logic Tensor Networks
	Backdoor Attacks
	BadNets

	Methodology
	Tasks that can be efficiently solved by an LTN model
	Single-Digit Addition
	Multi-Digit Addition

	Combination of LTN systems and BadNets
	Relevant datasets for BadNet attacks
	Datasets to use for the BadNet attack on the LTN model
	Attack performance (ASR) depending on different conditions

	Experimental Setup and Results
	Single-Digit Addition
	Multi-Digit Addition

	Discussion
	Single-Digit Addition
	Multi-Digit Addition
	Comparing the Robustness of the LTN in SDA versus MDA

	Conclusions and Future Work
	Key Findings
	Future Work

	Responsible Research
	Appendix
	References

