Humal pre@thonS Of
ahotheriveRicle atdn
INnterses i 1on

- In collaboratiéon Wlth cogmBIT GmbH

MSC T’heéi_s Robotics |
"1 Jeop Sluimer




Human predictions

of another vehicle at
an 1ntersection

In collaboration with cogniBIT GmbH

Joop Sluimer

Student Name ‘ Student Number

Joop Sluimer | 5003199

Primary Supervisor: ~ Arkady Zgonnikov
Daily Supervisor: Christian Rossert

Company Supervisor: Lukas Brostek

Project Duration: September 2024 - July 2025
Faculty: Faculty of Cognitive Robotics, Delft
Cover: Highly realistic traffic simulation image from CogniBIT.

Found at https://cognibit.de/ (Modified)

]
TUDelft


https://cognibit.de/

Contents

1

2

Introduction

Methodology

2.1 Participant selection criteria . . . . . .. ... .. Lo L Lo
22 Equipmentused . . ... .. ... ...
2.3 Intersectionscenarios . . . . . . . ... .. ... e
24 Respondingtothescenario . . .................... ... .. .. ..
2.5 Experimental procedure . . ... ... ... ... .. Lo o o o
26 Measurements . . . . . ...
2.7 Datapreprocessing . . . . . . .. . . ...

2.8
29

Metrics for analysis
Statistical analysis .
2.10 Modelling responses

Results

3.1 Prediction score grouped by observed vehicle variables . . . ... ... ... ...
3.1.1 Relative Position . . . . ... ... ... ... . ... ..
312 HeadingAngle . . ... ... . ... ... .. ... .. .. . .
313 Blinkers . ... ... . ... e
314 Deceleration . . . . ... ...
315 LateralOffset . .. ... ... .. ... .. .. ... .. .

3.2 Response entropy grouped by observed vehicle variables . . . . . ... ... ...
321 Relative Position . . . ... ... .. ... ...
322 HeadingAngle . .. ... ... .. ... ... .. ...
323 Blinkers . .. . .. .. e
324 Deceleration . . . . ... ... L e
325 Lateral Offset . . ... ... . ... . ... ..

3.3 Response duration grouped by observed vehicle variables . . . . ... ... ...

3.4 Response modelling

Discussion

Conclusion



List of Figures

List of Figures

1

10

11

12

13

14

15

16

Observed vehicle heading angles shown at the end of each scenario when the
ego vehicle followed the observed vehicle with a left lateral offset. The observed
vehicle relative positions, lateral offset, and blinkers are shown in Figures 9, 10,
and 11inthe Appendix. . . . ... ... ... ... ... ... ... ... 4
Top down visualisation of the intersection scenarios shown during the experiment.
The graphic includes the relative positions of the ego vehicle to the observed
vehicle, the difference between lateral offset, and a visualisation of hard and soft
deceleration. See Figure 1 for the heading angles shown during the experiment. . 5
Response triangle when the ego vehicle followed the observed vehicle. The red
dot indicating score, initialised at 33.3%, 33.3%, 33.3% for forward, left and right. 5
Examples of final prediction scores in the response triangle. (1) 100% Forward,
very confident response. (2) 33.3% in all directions, completely unsure response.
(3) Unsure response, likely to turn Right, but could still go Forward, with a small
chance to turn Left. (4) 90% Left, most likely will turn left but small chance, 10%,
that the observed vehicle could still go forward. (5) 50% Left and 50% Right,
certain that the observed vehicle will not continue forward but not sure whether
itwillgoleftorright. . . . .. ... ... ... .. .. ... . 6
Scores grouped by variable, discussed in Section 3.1. The prediction score is an
array of percentages ranging from 0 to 100 for left/forward/right, quantifying
the prediction of the observed vehicle direction directly after the shown scenario. 9
Response entropy grouped by variable, discussed in Section 3.2. Entropy ranges

from O (fully confident) to 1 (complete uniform uncertainty). . . .. .. ... ... 13
Response duration grouped by variable, discussed in Section 3.3. Plots truncated
to [-0.05, 15.05] to better visualise the differences between distributions. . . . . . . 15

RFRs feature importance plotted based on mean decrease in impurity and
permutation on full model. Relative position, lateral offset, heading angle,

deceleration and blinkers are respectively on the x-axes. . . . . .. ... ... ... 15
Observed vehicle relative positions visualised. The positions are relative to the
egovehicle.. . . . . ... L 21
Observed vehicle lateral offset visualised. The lateral offset distance started at 0.2
m from the centreof thelane. . . . . .. ... ... ... . ... .. L L. 21

Observed vehicle blinkers. They were more apparent during the experiment,
when the scenario takes up the entire screen; however, the limited screen resolution
did impact blinker visibility. . . . . ... ... .. o oo oo 22
The response triangle rotated based on the observed vehicle relative position.
Rotating the triangle meant participants didn’t have to think about the response
from the observed vehicle’s perspective, reducing cognitive load during the
experiment. . . . ... 22
Scores grouped by variable, separated by experiment groups. Colours correspond
to direction prediction. The difference between responses was insufficient to
justify separating the groups. . . . . . .. ... ... L L L oL 23
Response entropy grouped by variable, separated by experiment groups. The
general trend between variables is consistent for both experiment groups, but the
second group was, on average, more confident with their responses. . . . . . .. 23
Response duration grouped by variable, separated by experiment groups. Again,
the general trend between variables is consistent across groups, but the second
group was, on average, quickertorespond. . . . .. ... ..o o Lo 24
Truncated tree 0 from the final RFR model. Only showing the first 4 layers for
node legibility and to illustrate the general trend for modelling the responses. . . 28



List of Tables

1

Example of measurements where participant 16 moved from some starting
position to a left prediction at t = 2.31 s, then confirmed their score at t = 3.82 s to
endrecording. . . . . ... ...
Mixed effects model coefficients and 95% confidence intervals for variable effect
on prediction score, discussed in Section 3.1. Statistical analysis of categorical
variables relative to the reference scenario. Two separate models are required for
the interdependent score as mentioned in Section29. . . .. ... ... ... ...
Mixed effects model coefficients and 95% confidence intervals for variable effect
on response entropy, discussed in Section 3.2. Statistical analysis of categorical
variables relative to the reference scenario. Same notation as in Table 2. . . . . . .
Mixed effects model coefficients and 95% confidence intervals for variable effect
on response duration, discussed in Section 3.3. Statistical analysis of categorical
variables relative to the reference scenario. Heading angles are reduced to left
and right to allow for model convergence. . . . . ... ... .. .. .. .. .....
RFR model samples, accuracyand MSE. . . . . . ... ................
Mixed effects model log(p_left/p_forward) coefficients and 95% confidence
intervals for the interaction effect between relative position and other variables
onpredictionscore. . . ... ...
Mixed effects model log(p_right/p_forward) coefficients and 95% confidence
intervals for the interaction effect between relative position and other variables
onpredictionscore. . .. ... ... L
Mixed effects model coefficients and 95% confidence intervals for the interaction
effect between relative position and other variables on response entropy. . . . . .
RFR Model Accuracy and MSE per Max Depth, all RFRs were trained on 80% of
the prediction responses with 100 estimators in random state 0. . . . . . ... ..

10

27



Human predictions of another vehicle at an intersection

Joop Sluimer

Department of Cognitive Robotics
Delft University of Technology
Delft, Netherlands

Abstract

Annually, thousands of lives are lost to traffic
accidents. To improve the safety of all traffic
participants, the understanding and modelling
of the limitations of human behaviour in traffic
have continuously been researched. Currently,
there is a lack of existing research on human
predictions of other vehicles in traffic beyond bi-
nary decisions, such as whether the pedestrian
will cross or whether another vehicle will accept
the gap. This study conducted a human fac-
tors experiment with a novel response method
where 30 participants viewed 168 unique sce-
narios for 5 seconds and then had to predict
the intended direction the other vehicle would
continue at the intersection. The direction pre-
dictions are a measure of how likely humans
think the observed vehicle will go forward,
left or right at the intersection. Analysis of
the results showed that the heading angle and
the relative position of the other vehicle had
the greatest influence on the predicted direc-
tion and confidence of the response. Blinker
use and deceleration had a lesser impact on
prediction direction but significantly affected
confidence. The lateral offset showed no statis-
tical significance on the responses. The results
highlight the limitations and inconsistencies in
human predictions for other vehicles, particu-
larly when the observed vehicle was positioned
on the left or right side of an intersection, even
when participants could focus solely on the
other vehicle and no other distractions were
present. Accounting for these inconsistencies
when developing driving systems or testing
autonomous vehicles can significantly enhance
the safety and awareness of all traffic partici-
pants involved in an intersection.

cogniBIT GmbH
Munich, Germany

1. Introduction

In 2023, over 2800 fatal car crashes happened
in Germany alone [1]. Traffic accidents could
be caused by several factors, including human
factors such as drunk driving, being distracted
while driving, or speeding [2]. Human drivers
constantly have to perform a varying number
of complex driving manoeuvres safely while
remaining aware of their surroundings, other
traffic participants, and reaching their destina-
tion within a given time. Continued research
has been done to make the road safer for all
users. Automotive developments such as au-
tonomous vehicles (AVs) and advanced driving-
assistance systems (ADAS) are among the many
fields. Aslong as human drivers and AVs coex-
ist in traffic, to ensure safe traffic interactions
between humans and AVs, understanding and
modelling the limitations of the underlying
human cognitive mechanics allows for a better
understanding of expected human behaviour
in all traffic scenarios.

The current state of the art in human
behaviour modelling includes data-driven
approaches, which learn from large traffic
datasets, and cognitive models, which try to
replicate human perception, decision-making,
and attention patterns. While data-driven mod-
els, such as those used by leading AV develop-
ers, perform well in everyday scenarios, they
often struggle to perform reliably in critical
traffic scenarios due to the scarcity of such sce-
narios during model training [3, 4]. To address
this, recent research has emphasised incorpo-
rating human cognitive constraints, such as
limited perception, lapses in attention, or re-
action time variability, into traffic simulation
agents [5, 6]. These more human-like agents
enable more robust testing, closer to reality,



which contributes to better generalisation and
safer human-AV interactions.

While incorporating human cognitive con-
straints has improved the realism of traffic
agents, one key feature is still not fully un-
derstood: how humans predict the behaviour
of other traffic participants. Human drivers
continuously form expectations about the in-
tentions and future movements of others, such
as whether a cyclist will yield, whether a car
will turn, or whether a pedestrian will cross
the street. These predictive processes are essen-
tial for safe and coordinated traffic interactions.
However, current behaviour models often treat
human traffic agents as reactive rather than
predictive. Understanding how humans pre-
dict the actions of others is essential for both
modelling human behaviour more accurately
and ensuring autonomous systems can safely
coexist with them.

Several studies have sought to understand
how humans predict the behaviour of other
traffic participants. For example, Sripada et al.
[7] and Tian et al. [8] examined changes in au-
tonomous vehicle driving behaviour as a form
of implicit communication for crossing pedes-
trians. Sripada et al. assessed whether lateral
lane deviations affected pedestrians” willing-
ness to cross the road in front of the AV through
an online experiment in a simulated environ-
ment. Participants in the experiment held a
button as long as they felt safe crossing the road.
Results showed lateral movement towards the
pedestrian, and blinkers were effective signs
of yielding behaviour. Tian et al. assessed
how pedestrians perceived different forms of
decelerations as yielding behaviour. Within a
simulation environment brought to life using
projectors, participants had to decide whether
to cross the road or not. Early braking resulted
in more pedestrian crossings; however, low
constant speeds were often also interpreted as
yielding behaviour, resulting in more danger-
ous pedestrian crossings compared to the other
decelerations.

Other studies, such as Miller et al. [9],
Werkene et al. [10], and Zgonnikov et al. [11],
created simulation experiments to study driver
behaviours at an intersection. Miller et al. in-
vestigated deceleration and lateral movement
to communicate yielding or insisting behaviour

when approaching a bottleneck from opposite
sides of the road. Participants rated the distinc-
tiveness and cooperativeness of the other vehi-
cle in the shown scenario on a Likert scale. For
AVs, early lateral vehicle movement is recom-
mended. Werkene et al. analysed the influence
of intersection complexity on driver attention
when making right turns into oncoming traf-
fic, through a simulation-based experiment.
Less complex scenarios resulted in more acci-
dents due to inadequate allocation of attention.
Zgonnikov et al. looked into driver left-turn
gap acceptance in simulated intersection sce-
narios. Results showed that participants were
more likely to accept the gap when given larger
time gaps, but not distance gaps.

As an alternative to simulation-based exper-
iments, Hamilton et al. [12] and Hensch et al.
[13] used real-world traffic videos. Hamilton
et al. had participants predict the intended
turning direction of an observed vehicle ap-
proaching an intersection. The distance from
the observed vehicle, blinker use and the inter-
section layout had a significant influence on the
predicted directions. Hensch et al. assessed
different modes of transport approaching the
driver’s vehicle in left turn scenarios. Partici-
pants had to indicate a comfortable time gap for
making a left turn in front of the other mode
of transport. Younger participants accepted
narrower gaps more often.

Lastly, Colombo et al. [14] experimented to
analyse human predictions of bicycle trajecto-
ries within a Virtual Reality (VR) environment
and then developed a cognitive model to repli-
cate these predictions. Similar models could
be generalised to describe the limitations in
driver predictions. This could enable ADAS
and other AVs to compensate for the lack of
drivers’ situational awareness.

While prior studies have examined how
drivers make predictions about the intentions
of other traffic participants, these studies of-
ten focus on isolated scenarios with binary
responses such as pedestrian crossings or gap
acceptance. Moreover, few studies attempt to
measure or quantify how humans predict di-
rectionality in these situations, relying instead
on inferred choices or response durations. No
known previous work has directly quantified
directional predictions in intersection scenarios



using explicit human responses. By incorporat-
ing key behavioural cues such as heading angle,
blinkers, and deceleration into the shown sce-
narios, this study contributes not only new
data but also a novel response method that
quantifies how humans make direction pre-
dictions about other vehicles at intersections.
This enables a deeper understanding of the
predictive processes critical for human-human
and human-AV traffic interaction, bridging the
gap between cognitive theory and practical
AV /ADAS design.

A human factors experiment was created to
assess and quantify human direction predic-
tion responses of another vehicle at an intersec-
tion. This novel method measured participants’
response trajectories for changes in observed
vehicle heading angle, relative position, blinker
use, declaration and lateral offset. The ob-
served vehicle’s intended behaviour cues were
based on prior human prediction studies and
intuitive differences in driving behaviour when
approaching an intersection. Mixed-effect mod-
els were used to analyse the statistical impor-
tance of each cue in the obtained prediction
responses. Results suggest that the observed
vehicle heading angle and relative position are
the most statistically significant factors for pre-
dicting direction. Random Forest Regressors
were trained and tested to replicate the par-
ticipants” prediction behaviour with a 70.9%
accuracy.

2. Methodology

The experiment done during this study con-
sisted of several components. The chosen
method and decisions made for each compo-
nent are included in the following sections.

2.1. Participant selection criteria

Thirty healthy adults (mean age of 32.2 years
(SD = 14.6); 23 male, 7 female) were recruited
to participate in the simulated experiment in
Munich, Germany, and Delft, the Netherlands.
The following selection criteria were used when
asking participants to join in the experiment.

* Must be at least 18 years old.
* Must have a driver’s license.

* Must be comfortable driving on the right-
hand side of the road.

This guarantees that participants are familiar
with driving scenarios that closely mirror those
in the experiment. Before participating in the
experiment, participants provided written in-
formed consent about the procedure and the
use of their recorded data.

2.2. Equipment used

To ensure all experiments were completed un-
der identical experimental conditions, all ex-
periments were done in person on the same
laptop. The laptop has a 1536x960 screen res-
olution. Participants used the same Logitech
mouse set at 1600 dpi (dots per inch) sensitivity
on the same 27 x 31.5 cm mouse pad. Partici-
pants were allowed to position the laptop in a
way that allowed them to view the screen com-
fortably. The scenarios were created in Carla
version 0.9.15 [15] in Unreal Engine 4 [16]. All
scenarios were recorded in the simulation en-
vironment and played back at 30 frames per
second in a Pygame Graphical interface.

2.3. Intersection scenarios

The virtual intersection environment was an
urban four-way intersection connected by stan-
dard German 3.5-meter-wide two-lane roads.
The participant’s perspective was from within
a car with a large, open windscreen, driving
at 5 m/s towards the intersection. Another
(observed) vehicle would drive towards the
same intersection at 10 m/s, reaching the in-
tersection before the (ego) participant’s vehicle.
After approximately 5 seconds, the scenario
freezes, and participants must predict the di-
rection they think the observed vehicle will
continue directly after the freeze. The ego vehi-
cle was always the same, but several variables
influenced the observed vehicle in the traffic
scenarios. The independent variables (IVs) dur-
ing the experiment were designed as follows:

* Relative position: With a 4-way intersection,
there were four positions the observed
vehicle could be relative to the ego vehi-
cle: Following, Left, Opposite or Right.
Depending on where the observed vehi-
cle was would affect what was visible to
the participants. For example, when the
ego vehicle followed the observed vehicles,
brake lights were much easier to see than
in other relative positions.



2.3 Intersection scenarios

(a) -10°

(b) -5°

(c) 0°

(d) +5° (e) +10°

Figure 1. Observed vehicle heading angles shown at the end of each scenario when the ego
vehicle followed the observed vehicle with a left lateral offset. The observed vehicle relative
positions, lateral offset, and blinkers are shown in Figures 9, 10, and 11 in the Appendix.

* Heading angle: Just before the freeze, the
heading angle shown by the observed ve-
hicle was: +10, +5, 0, -5 or -10 degrees.
See Figure 1. Positive heading angles were
right, and negative angles were left. The
+10 heading angles should have been an
obvious turn in the same direction from all
relative positions, but the +5 could have
been mistaken for a natural vehicle oscil-
lation or the driver creating space to turn
the other direction.

® Blinkers: As the observed vehicle ap-
proached the intersection, its blinkers were
on or off. The blinkers were always in
the turning direction, and off when going
straight over the intersection. Initially, the
blinker could have been left, right, or off,
but due to the variable space being too
large, the blinkers were simplified to on
or off. This means that no "fake" blinkers
(e.g., indicating left but turning right) are
included; however, participants were not
explicitly informed about this during the
experiment.

® Deceleration: As the observed vehicle ap-
proached the intersection, the observed
vehicle showed three types of deceleration
behaviour: Constant speed, hard braking,
and soft braking. With a constant speed,
the observed vehicle maintained a speed
of 10 m/s until the scenario froze. Hard
braking is a late braking action close to the
intersection, with the braking lights acti-
vated and decelerating quickly to 5.5 m/s.
Soft braking is an earlier braking action,

slowing down to 4.5 m/s over a greater
distance but less abruptly. See Figure 2 for
a visualisation.

* Lateral offset: The observed vehicle was
0.2 m left or right relative to the centre
of the lane. The offset could have been
an implication for turning. When the ego
vehicle follows the observed vehicle, and
the observed vehicle is positioned to the
left of the centre of the lane, the driver may
be making space to turn right.

The variable space yields 240 unique scenar-
ios; however, not all of these unique scenarios
were included in the experiment. As men-
tioned previously, no blinkers were shown in
the straight scenarios, removing 24 scenarios,
resulting in 216 unique scenarios. The pilot
experiment suggested that 216 scenarios were
too many for participants; the entire process
took approximately one hour to complete. Par-
ticipants were rushing their final responses to
finish the experiment. Thus, more scenarios
had to be removed to get the experiment du-
ration closer to a comfortable 30 minutes. The
difference between the left and right lateral
offset was unnoticeable when the observed ve-
hicle was left or right relative to the ego vehicle.
Therefore, half of these variable combinations
were also excluded, ensuring all other variable
combinations are preserved, resulting in 168
unique scenarios shown during the experiment.

Further experiment design choices for added
realism included: The observed vehicle exhib-
ited a slight natural lateral oscillation on top
of the lateral offset, to prevent the observed



2.4 Responding to the scenario

Ego
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Figure 2. Top down visualisation of the in-
tersection scenarios shown during the exper-
iment. The graphic includes the relative po-
sitions of the ego vehicle to the observed
vehicle, the difference between lateral offset,
and a visualisation of hard and soft deceler-
ation. See Figure 1 for the heading angles
shown during the experiment.

vehicle from driving perfectly straight. The ob-
served vehicle model was randomly chosen for
each scenario. The model criteria for models
to be included in the scenarios were:

* No special decals, such as taxi or police
cars, to avoid unnecessary biases.

* Visually complete models with working
blinkers and brake lights.

e All vehicles must have similar exterior di-
mensions to ensure the models take up
roughly the same area on screen. SUVs
and trucks are significantly larger than
other car models and would block a greater
portion of the intersection; therefore, they
were excluded.

Given 22 existing vehicle models in the cogni-
BOT [17] driver model, the following 6 vehicle
models met the criteria: 2021 Mini Cooper S,
2020 Dodge Charger, Audi TT, 2017 Lincoln
MKZ, 2020 Mercedes Coupe, and 2020 Lincoln
MKZ.

Figure 3. Response triangle when the ego
vehicle followed the observed vehicle. The
red dot indicating score, initialised at 33.3%,
33.3%, 33.3% for forward, left and right.

2.4. Responding to the scenario
Following the scenario freeze, all vehicles on
screen disappear. This prevents participants
from analysing the scenario further, forcing
them to respond based on what they saw dur-
ing each scenario shown. The participants had
to predict the direction they thought the ob-
served vehicle would continue directly after
the freeze. All responses were to be given from
the perspective of the other vehicle, resulting
in three directions the observed vehicle could
continue at the intersection: left, forward or
right.

Given that not all scenarios would continue
in one clear direction, responses consisted of
a magnitude in each direction. The response
triangle shown in Figure 3 was used during
all experiments. The inverse relative distance
to each direction vertex was used to score the
predicted direction. The red dot, indicating the
current score, always started in the centre of the
triangle, which corresponds to all directions be-
ing equally likely. The participants could click
or drag anywhere within the triangle to move
the red dot to their desired score. The score
percentages were also displaced to the right of
the response triangle. To finalise their predic-
tion, the participant had to press the confirm
button below the triangle, stopping measure-
ments and displaying the option to load the
next scene. Examples of final prediction scores
are shown in Figure 4.

To ensure participants could provide an in-
tuitive response to each shown scenario, the
response triangle would rotate such that the



2.5 Experimental procedure

Forward
1

.
Left ®

Right
Figure 4. Examples of final prediction scores
in the response triangle. (1) 100% Forward,
very confident response. (2) 33.3% in all direc-
tions, completely unsure response. (3) Unsure
response, likely to turn Right, but could still
go Forward, with a small chance to turn Left.
(4) 90% Left, most likely will turn left but
small chance, 10%, that the observed vehicle
could still go forward. (5) 50% Left and 50%
Right, certain that the observed vehicle will
not continue forward but not sure whether it
will go left or right.

forward direction aligned with the direction
the observed vehicle was approaching from.
See all response triangle rotations in Figure 12.

2.5. Experimental procedure

The experiment session started with the po-
tential participant reading and signing the in-
formed consent form. Then the experimenter
explained to the participant: “You and another
vehicle are driving towards an intersection, the other
vehicle will move and look slightly different every
time, and it is your task to predict what direction
the other vehicle will go in at the intersection. It
is important to give your response from the per-
spective of the other driver.” Expected responses
when following, opposite, and right were then
explained using visuals.

Next, how responses are given was explained:
" After about 5 seconds, the video will freeze and you
will be shown the response triangle. You move the
red dot in the direction you think the other vehicle
will go.” A visual example is included.

Then the experimenter would demonstrate
four scenarios with example responses. There-
after, the participants had to participate in a
brief test to confirm they understood how the
response triangle works. Five scores were con-
sequently displayed, and the participant was
asked to replicate the scores in the response tri-
angle, allowing for some margin of error. Only
if they successfully matched the score could
they proceed to the next score to replicate.

Finally, after completing the test, the partic-
ipants had 10 scenarios to practice watching
and giving responses. This allowed the ex-
perimenter to confirm that all participants re-
sponded with their expected response, but did
not teach them the expected responses. In some
scenarios where the observed vehicle was op-
posite, participants would respond "left’ when
they meant 'right’, which was then corrected
by the experimenter, causing responses in the
opposite direction to occur rarely during the
actual experiment. It was essential for partic-
ipants to respond with their predictions and
not with what was expected. Thereafter, the
participant could start the actual experiment.

Participant 1 was the pilot participant. The
experiment was greatly improved by making
the response method easier; their measure-
ments were thus not included in the recorded
data. Participants 2 to 16 took part in the im-
proved experiment. During this experiment,
the experimenter noticed that the video frame
rate was slightly lower than expected. This is-
sue was then fixed for participants 17 to 30. The
improved framerate decreased the experiment
duration and made the observed vehicle decel-
eration easier to see. The difference between the
experiments was insufficient to invalidate all
the previously acquired data. All obtained re-
sponse data is analysed within the same group.
The differences between the groups are illus-
trated in the Appendix.

2.6. Measurements

As soon as the response triangle is shown, mea-
surements are recorded. The mouse position
on the screen (X, y), the current score (£%, 1%,
%), the number of clicks and the timestamps
for each participant ID and scenario ID are
recorded at a 100 Hz. The timestamp repre-
sents the difference between the current mea-



2.7 Data preprocessing
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Table 1. Example of measurements where par-
ticipant 16 moved from some starting position
to aleft prediction at t = 2.31 s, then confirmed
their score at t = 3.82 s to end recording.

surement time and when the response triangle
was first displayed. Recordings continue until
the participant presses the confirm button. The
method for saving measurements is illustrated
in Table 1.

2.7. Data preprocessing

During some responses, participants would
choose their final prediction score but then
wait to confirm their score due to some distrac-
tion. This resulted in a significant increase in
the total time required to respond to this sce-
nario. To mitigate the impact of these outliers
on the statistical data, any measurement sam-
ples with the same final score 10 seconds after
the final score was chosen would be truncated,
and the response confirming sample would be
overwritten to reflect the final score 10 seconds
after it was decided. Out of all recorded scenar-
ios, 19 outliers were identified. The truncation
method significantly reduces the number of
redundant measurement samples, but could
cause a sudden jump in mouse positions. Dur-
ing most distractions, the participant would
have their hand off the mouse with the cursor
near the confirm button; therefore, this poten-
tial jump is justifiable to reduce the redundant
measurement samples.

2.8. Metrics for analysis

The final prediction score, response entropy
and response duration will all be grouped by
the IVs for analysis. The trend between vari-

ables will indicate the importance of each vari-
able in predicting the direction and confidence
in the prediction. The response duration is
the time between the response triangle shown
on screen and the participant confirming their
prediction.

Response entropy is a simple measure of
confidence in one’s score. The entropy ranges
from 0: a fully confident choice (100% in any
direction), to 1: complete uniform uncertainty
(33.3% in all directions). Any response with an
entropy value below 0.4, approximately equal
to a prediction of 85% in any direction, will be
considered a confident response. All entropy
was calculated using the Shannon entropy:

H=- Z pilog,(pi) (1)

2.9. Statistical analysis

Mixed-effect (ME) models were used to analyse
the influence of the observed vehicle variables
(see Section 2.3) on the final prediction score, re-
sponse entropy and response duration. The ME
models were implemented using the Python
package statsmodels linear mixed effect model
[18].

Standard linear analysis models could not
be used to model the prediction score, as the
score is multidimensional and interdependent
on a total score of 100%. The additive log-ratio
(alr) transformation was applied to the scores
to create log ratios between left/forward and
right/forward, which can be analysed with
two separate ME models. Analysis was done
relative to forward, as unless the driver takes
another action, any vehicle driving over an
intersection will continue straight through it.
The magnitude of the coefficients reflects the
influence of conditions on the log-ratios; larger
magnitudes indicate that left or right predic-
tions become more likely compared to forward
predictions, depending on the model.

As the variables are all categorical, the val-
ues are compared to a reference scenario. The
chosen scenario involves the ego vehicle follow-
ing, with a 0° heading angle, blinkers off, hard
deceleration, and a left lateral offset.

The null hypothesis used in analysis is that
"variable value X does not affect the outcome".
Therefore, any obtained p-values above 0.1 have
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no evidence against the null hypothesis, and
any p-values less than 0.001 provide strong
evidence against the null hypothesis, meaning
that variable value X strongly influences the
prediction score, entropy or response duration
compared to the reference scenario.

The standard ME models look into the aver-
age effect caused by a change in variable value
across all values of the other variables. The
model with interaction effects included exam-
ines the impact of one variable compared to the
chosen baseline scenario, which is a combina-
tion of variables. In this study, both models are
created and used in the analysis of prediction
score and response entropy. Analysis of re-
sponse duration will only include the standard
ME model.

2.10. Modelling responses

Random Forest Regressors (RFRs) were used
to replicate the prediction responses based on
the observed vehicle variables. The RFRs were
implemented with version 1.6.1 of the scikit-
learn Python package [19].

All prediction response data, with an 80/20
train/test split, was used to train and test the
model. Max tree depths of 4 to 15 were tested
for model accuracies and Mean Squared Error
(MSE), see Table 9 in the Appendix. The model
accuracy and MSE did not improve past a depth
of 8. Therefore, a max depth of 8 is optimal to
prevent overfitting on the data. Then, the RFRs
were trained on all prediction responses, as well
as on the data grouped by relative position. The
obtained accuracies will be discussed.

3. Results

Before the experiments, it was hypothesised
that participants mainly used blinkers as the
most significant indicator of observed vehi-
cle direction. The observed vehicle variables,
grouped by score, response entropy, and re-
sponse duration, can be seen in Figures 5, 6,
and 7, respectively. Every graph visualises
the difference in responses between observed
vehicle variable values. The graph analysis is
supported by statistical analysis of the categor-
ical variables. The interaction effect of relative
position and every other variable will also be
discussed.

3.1. Prediction score grouped by ob-

served vehicle variables
The prediction score was the participant’s re-
sponse during the experiment, representing
their observed vehicle direction prediction. Fig-
ure 5 shows boxplots of all obtained responses
grouped by the variables. Table 2 presents
the ME model results, while Tables 6 and 7
in the Appendix provide the interaction effect
results. Given that the direction predictions are
interdependent, the interquartile range (IQR)
will mainly be analysed for response consis-
tency. Large IQRs, spanning from 0% to 100%,
could suggest that the majority confidently pre-
dict that the vehicle will (100%) or won't (0%)
continue in this specific direction. Similarly,
narrow IQRs, spanning from 60% to 100%, for
example, suggest consistent predictions among
participants in this direction. Trends between
variables reveal potential reasons for partici-
pants predicting in the chosen direction when
predicting another vehicle’s direction at an in-
tersection.

3.1.1. Relative Position

The relative position had a significant influence
on the prediction responses. As per Figure
5a, when the observed vehicle was followed
or opposite, most of the direction predictions
were to the left or right. The large IQRs show
that participants often predicted fully in one
direction. However, when the observed vehicle
was left or right, the majority of predictions
were forward.

The narrow IQRs for left and right predic-
tions when the observed vehicle was left or
right of the ego vehicle suggest consistent
prediction responses. For the left scenarios,
the IQR for left predictions was [2.8%, 33.5%]
(=30.6%), and for the right scenarios, the IQR
for left predictions was [2.9%, 36.3%] (=33.4%)
and for right predictions was [3.5%, 33.3%]
(=29.9%). Implying that participants were un-
sure at best or confident that the observed
vehicle would not go left or right. Only when
the observed vehicle was left, right predictions
had an IQR of [4.1%, 65.2%] (=61.1%), suggest-
ing participants predicted the observed vehicle
would most likely turn towards them.

When the ego vehicle was positioned left or
right of the observed vehicle, the predictions
for left and right turns decreased significantly.
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Figure 5. Scores grouped by variable, discussed in Section 3.1. The prediction score is an
array of percentages ranging from 0 to 100 for left/forward/right, quantifying the prediction
of the observed vehicle direction directly after the shown scenario.

This is confirmed by the ME models in Table
2. The significant negative coefficients (-4.990,
-5.605, -4.306, and -5.864, all with p < 0.001)
when the observed vehicle was left or right of
the ego vehicle suggest a significant decrease in
left and right predictions compared to forward
predictions; forward predictions were more
likely when all other variables were constant.
This is most likely due to the other variable
changes being harder to see when the observed
vehicle was left or right of the ego vehicle at
the intersection. This claim will be assessed
through the interaction effect between the rel-
ative position and all other variables in the
following subsections.

3.1.2. Heading Angle
Participants generally relied on the heading
angle when predicting a direction as per Figure
5b. The left and right prediction scores fol-
low similar mirrored sigmoid functions when
compared to the heading angle.

For left predictions, the IQR decreased from

[58.1%, 99.1%] (=40.9%) to [35.6%, 95.6%]
(=59.9%), [7.6%, 30.0%] (=22.4%), [0.0, 9.9%]
(=9.9%) and [0.0%, 4.2%] (=4.2%) from -10°
to -5°, 0°, 45°, and +10° respectively. The
ME model also reflects this trend in the
left/forward predictions in Table 2. The neg-
ative (left) heading angles have large positive
coefficients: 7.352 and 5.968 for -10° and -5°,
thus significantly increasing the left predictions,
whereas the positive heading angles have large
negative coefficients: -4.675 and -5.038 for -5°
and -10°, decreasing the left predictions.

The trend is mirror for right predictions, the
IQR decreased from [72.6%, 100%] (=27.4%) to
[37.5%, 95.3%] (=57.8%), [6.1%, 24.6%] (=18.5%),
[0.0%, 9.9%] (=9.9%) and [0.0%, 6.0%] (=6.0%)
from +10° to +5°, 0°, -5°, and -10° respectively.
Again, this trend is confirmed by the ME model
results for right/forward predictions in Table 2.
The positive (right) heading angles have signif-
icant positive coefficients: 7.134 and 9.881 for
+5° and +10°, thus significantly increasing the
right predictions, whereas the negative head-
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Model for log(p_left/p_forward) Model for log(p_right/p_forward)

Coef. Std.Err. z P>|z]| [0.025, 0.975]| Coef. Std.Err. =z P>1z]| [0.025, 0.975]
Intercept 1534 0.791 1.939 0.053 -0.017 3.085|0.033 0.696 0.047 0.962 -1.330 1.396
Rel.Position:Left |-4.990 0.611 -8.170 3.1e-16 -6.187 -3.793|-4.306 0.543 -7.929 2.2e-15 -5.370 -3.241
Rel.Position:Oppo |-2.131 0.566 -3.767 1.7e-4 -3.240 -1.022|-2.191 0.495 -4.423 9.7e-6 -3.161 -1.220
Rel.Position:Right |-5.605 0.608 -9.211 3.2e-20 -6.797 -4.412|-5.864 0.541 -10.844 2.1e-27 -6.924 -4.804
Head.Angle:-10 | 7.352 0.792 9.286 1.6e-20 5.800 8.904 |-3.949 0.697 -5.644 1.5e-8 -5.315 -2.582
Head.Angle:-5 5968 0.793 7.522 5.4e-14 4.413 7.524|-4242 0.700 -6.053 1.3e-9 -5.613 -2.870
Head.Angle:+5  |-4.675 0.791 -5.912 3.4e-9 -6.225 -3.125/7.134 0.697 10.234 1.4e-24 5768 8.501
Head.Angle:+10 |-5.038 0.791 -6.372 1.9e-10 -6.587 -3.488/9.881 0.697 14.185 1.1e-45 8.516 11.246
Deceleration:None|-2.471 0.524 -4.712 2.5e-6 -3.499 -1.443|-1.363 0.464 -2.938 0.003 -2.273 -0.454
Deceleration:Soft |-0.626 0.522 -1.199 0.231 -1.649 0.397|0.205 0.462 0.444 0.657 -0.700 1.111
Blinkers:On 1.500 0.456 3.288 0.001 0.606 2.395|1.060 0.405 2.619 0.009 0.267 1.853
Lat.Offset:Right |-0.374 0.427 -0.876 0.381 -1.210 0.462|-0.206 0.378 -0.545 0.586 -0.947 0.535
Group Var 5695 0.111 3.604 0.085

Table 2. Mixed effects model coefficients and 95% confidence intervals for variable effect on
prediction score, discussed in Section 3.1. Statistical analysis of categorical variables relative
to the reference scenario. Two separate models are required for the interdependent score as

mentioned in Section 2.9.

ing angles have significant negative coefficients:
-3.949 and -4.242 for -10° and -5°, decreasing
the right predictions.

The forward predictions follow a Gaussian-
like distribution around the 0° heading angle.
The IQR was greatest at [46.2%, 83.1%] (=36.9%)
at 0°, then decreased to [2.9%, 44.2%] (=41.2%),
[3.1%, 38.0%] (=34.9%), [0.0%, 34.0%] (=34.0%)
and [0.0%, 21.0%] (=21.0%) for -5°, +5°, -10°,
and +10° respectively. Notably, left predictions
were slightly greater than right predictions
for the 0° heading angle. This matches ex-
pectations as left turns are feasible for longer
compared to right turns when any vehicle ap-
proaches an intersection. The ME models in
Table 2 show that the smaller heading angles
have less influence on making a left or right
prediction over a forward prediction, given the
smaller magnitude of the coefficients compared
to the larger heading angles.

The interaction effect between the relative
positions and the heading angle in Tables 6 and
7 confirms the prior claim that participants of-
ten missed changes in the other variables when
left or right of the observed vehicle. The large
left (-10°) heading angle, when compared to
the reference scenario (notably following with
a 0° heading angle), has a significant influence
on left predictions: left/forward predictions

increased by 10.710 (p < 0.001). However, when
the observed vehicle is left and the same large
left heading angle is shown, the left/forward
predictions decreased by 7.628 (p < 0.001). Sim-
ilarly, large right heading angles compared to
the reference scenario increased right/forward
predictions by 10.830 (p < 0.001), but with a
right relative position, the right/forward pre-
dictions decreased by 7.378 (p < 0.001). Sug-
gesting that heading angles turning away from
the ego vehicle were rarely spotted, resulting
in lower prediction scores in the same direction
as the heading angle. This is also true for the
observed vehicle turning towards the ego vehi-
cle: when the observed vehicle was right with
a large left heading angle, the left/forward
predictions decreased by 6.409 (p < 0.001), a
significant decrease in left predictions. When
the observed vehicle was left with a large right
heading angle, the results were not statistically
significant (p = 0.234). Overall, participants
relied less on the heading angle when making
predictions about the vehicle’s direction when
it was left or right of them.

When the observed vehicle was opposite the
ego vehicle, the left and right predictions de-
creased compared to the following scenario,
however, not as significantly as in the left or
right scenarios. When the observed vehicle
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was positioned opposite and showed a large
left heading angle, the left/forward predic-
tions decreased by 0.340 (p = 0.804) compared
to the following scenario; however, this differ-
ence was not statistically significant. Similarly,
when shown a large right heading angle, the
right/forward predictions increased by 1.543
(p = 0.228), but again, this was not statistically
significant.

3.1.3. Blinkers

Blinkers were a significant indicator for predict-
ing direction; however, a greater influence on
predicted direction was expected. With blink-
ers on, participants predicted the observed ve-
hicle to go left or right more often than when the
blinkers were off, as reflected by the coefficients
in 2: 1.500 (p = 0.001) for left/forward predic-
tions and 1.060 (p = 0.009) for right/forward
predictions, suggesting blinkers have a statis-
tically significant influence on the predicted
direction but less so compared to heading an-
gle and relative position. Furthermore, the
IQRs in Figure 5c visualise the difference in
predictions with blinkers on and off. When the
blinkers were on, left predictions had an IQR of
[0.0%, 85.4%] (= 85.4%), and right predictions
had an IQR of [0.0%, 88.4%] (= 88.4%). The
large range is expected as a majority of left pre-
dictions have an insignificant right prediction,
and vice versa. The IQRs of all directions with
the blinkers turned off are all approximately
equal at 60%, suggesting nearly equal direc-
tion predictions despite the other changes in
observed vehicle variables.

Blinkers should have had a larger influence
on predictions; however, the participants could
not always see the blinkers, replicating real
driving scenarios. For example, when the ob-
served vehicle is to the right of the ego vehi-
cle and wants to turn right, the right blinker
may not always be spotted. The decreased in-
fluence of blinkers when the ego vehicle was
not following the observed vehicle is proven
by the interaction effect between blinkers and
the relative positions in Tables 6 and 7. Left,
Opposite and Right relative positions all had
less left/forward and right/forward predic-
tions as per the negative coefficients, notably
in the exact aforementioned scenarios where
the blinker is away from the ego vehicle: -3.822
(p < 0.001) when left regarding left/forward

prediction and -3.730 (p < 0.001) when right
regarding right/forward predictions. Further-
more, opposite scenarios showed a statistically
significant decrease in both left/forward and
right/forward predictions with coefficients: -
2.631 (p = 0.001) and -2.473 (p < 0.001). All
this behaviour is most likely due to the limited
screen resolution in the experiment and visi-
bility of the blinkers in the Carla simulation.
Reducing the potential impact of blinkers on
prediction scores.

3.1.4. Deceleration

The only significant influence deceleration had
on the prediction score was whether the ob-
served vehicle decelerated. Participants pre-
dicted forward more when the observed vehicle
did not decelerate compared to when it showed
hard or soft deceleration, resulting in more left
or right predictions. This is shown in Figure 5d
and Table 2. The score distributions for hard
and soft deceleration are nearly identical, sug-
gesting insufficient difference between the two
types of deceleration. No deceleration showed
an increase in forward predictions and a slight
decrease in left/right predictions. The negative
coefficients of left/forward: -2.471 (p < 0.001)
and right/forward: -1.363 (p = 0.003) show the
increase in forward predictions. Soft decelera-
tion had no statistically significant difference
on the prediction score.

The interaction effect between relative posi-
tion and deceleration had no statistically sig-
nificant influence, given all interactions had a
p-value greater than 0.05.

3.1.5. Lateral Offset

Lateral offset had no statistically significant
influence on scores, and the distributions in
Figure 5 appear identical.

Lateral offset could have been used as an
indication of turning behaviour if the predic-
tion was tested at different times leading up
to the turning point, freezing the scenario at
4.0, 4.5 and 5.0 seconds, for example. Within
this study’s experiment, participants rarely no-
ticed the difference between the lateral offsets
or ignored it when seeing changes in the other
variables at the end of the scenario.
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3.2. Response entropy grouped by ob-
served vehicle variables
Response entropy is a measure of participants’
confidence in their predictions. Figure 6 shows
violin plots of all response entropies grouped
by the variables. Table 3 is the ME model
results, and Table 8 in the Appendix is the
interaction effect results. Violin plots with wide
bases and narrow tips suggest many confident
responses, near 100% in any direction, for the
given group. Broad middle areas suggest less
confident responses, with an average of 75% in
one direction. Trends between variables reveal
variable influence on the prediction confidence
of another vehicle’s direction at an intersection.

Coef. Std.Err. z  P>]|z]| [0.025, 0.975]

Intercept 0.522 0.025 20.839 1.9¢-96 0.473 0.572
Rel.Position:Left  0.241 0.019 12.526 5.4e-36 0.203 0.278
Rel.Position:Oppo 0.052 0.018 2.868 0.004 0.016 0.087
Rel.Position:Right 0.258 0.019 13.443 3.4e-41 0.220 0.295
Head.Angle:-10  -0.221 0.025 -8.822 1.1e-18 -0.270 -0.172
Head.Angle:-5 -0.154 0.025 -6.154 7.5e-10 -0.204 -0.105
Head.Angle:+5 -0.152 0.025 -6.092 1.1e-9 -0.201 -0.103
Head.Angle:+10 -0.264 0.025 -10.546 5.3e-26 -0.313 -0.215
Deceleration:None -0.024 0.017 -1.474 0.140 -0.057 0.008
Deceleration:Soft -0.014 0.016 -0.873 0.383 -0.047 0.018
Blinkers:On -0.061 0.014 -4.227 2.4e-5 -0.089 -0.033
Lat.Offset:Right ~ 0.002 0.013 0.138 0.890 -0.025 0.028
Group Var 0.006 0.004

Table 3. Mixed effects model coefficients and
95% confidence intervals for variable effect
on response entropy, discussed in Section 3.2.
Statistical analysis of categorical variables rel-
ative to the reference scenario. Same notation
as in Table 2.

3.2.1. Relative Position

Compared to when the observed vehicle was
followed by the ego vehicle, all other observed
vehicle relative positions significantly increased
the entropy and thus decreased response con-
fidence. In Figure 6a, the distribution for all
following scenarios is widest at the base, with a
narrow middle and narrower peak, suggesting
a majority of low-entropy, high-confidence re-
sponses. Similarly, the opposite scenarios had
a majority of confident responses, being widest
at the base, but the middle and peak were wider
compared to the following scenarios. This is re-
flected in the increase in response entropy, with

a coefficient of 0.052 (p = 0.004) in Table 3; over-
all, the opposite scenarios had higher entropy
values compared to the following scenarios.

The entropy distributions for the left and
right scenarios showed very few low-entropy
responses, with a majority of responses around
an entropy of 0.6, roughly representing a [50%,
50%, 0%] response. The higher entropy values
are confirmed by the coefficients in Table 3:
0.241 (p < 0.001) for left scenarios and 0.258
(p < 0.001) for right scenarios. Overall, predic-
tions are more uncertain when the vehicle isn’t
directly in front of the participant.

3.2.2. Heading Angle

The Gaussian-like distribution present in for-
ward predictions in Figure 5b is also present
in the response entropy distributions when
grouped by heading angle: the distributions
for the larger +£10° heading angles are widest
near 0 entropy, indicating a higher concentra-
tion of confident responses, then as the heading
angle decreases in magnitude so does the con-
centration of confident responses. The narrow
tips, when shown a non-zero heading angle, ex-
hibit few completely unsure responses, which
supports the prior claim that predictions rely
on the heading angle shown. Furthermore, the
distribution for the 0° heading angle is widest
at the peak with a narrow base. When no head-
ing angle was shown, participants were rarely
fully confident in making a prediction 100%
in one direction, regardless of the other vari-
ables. This is further reflected in Table 3, where
all heading angles significantly decrease the
entropy. When shown the -10° heading angle
(==), on average, participants responded with
an entropy of 0.301, corresponding to 90% in
one direction, most likely left in this example.
Whereas, when shown no heading angle, partic-
ipants, on average, responded with an entropy
of 0.522, corresponding to 75% in one direction.
The shown heading angles significantly influ-
ence the response entropy and, consequently,
the prediction confidence.

3.2.3. Blinkers

Blinkers contributed significantly to the re-
sponse entropy distribution. The response
entropy distribution in Figure 6¢ with blinkers
on is widest at the base, mainly suggesting
confident responses, 100% in one direction.
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Figure 6. Response entropy grouped by variable, discussed in Section 3.2. Entropy ranges
from 0 (fully confident) to 1 (complete uniform uncertainty).

The distribution of predictions when no blink-
ers were shown is widest near the top half,
suggesting more uncertainty in the prediction
responses. Table 3 confirms that blinkers in
general decrease the response entropy with a
coefficient of -0.061 (p < 0.01). However, when
the observed vehicle was not followed, the ef-
fect of blinkers was weaker, as shown by the
positive interaction effect coefficients in Table
8: 0.096 (p = 0.003), 0.093 (p = 0.002) and 0.085
(p = 0.009). Further emphasising that blinkers
were often missed by participants when the
observed vehicle was left/opposite/right of
the ego vehicle.

3.2.4. Deceleration

Although the prediction score showed different
distributions in Figure 5d, the entropy distribu-
tions are similar for all forms of deceleration,
revealing insufficient change in prediction con-
fidence based solely on the deceleration shown.
The entropy distributions in response to sce-
narios with hard and soft deceleration were
virtually identical, reinforcing the prior com-
ment about a lack of difference between the

types of deceleration shown during the exper-
iment. No significant difference in response
entropy was found when considering the differ-
ent relative positions, with all p-values greater
than 0.05.

3.2.5. Lateral Offset

There was no significant difference in response
entropy when shown different lateral offsets,
suggesting no change in prediction confidence.
The distributions in Figure 6e are nearly iden-
tical, and the change in lateral offset had no
significant influence (p = 0.890) on the response
entropy in Table 3.

3.3. Response duration grouped by ob-
served vehicle variables
The response duration is the time between the
video scenario ending and the participant con-
firming their prediction. Figure 7 shows violin
plots of all response durations grouped by the
variables. Table 4 is the ME model results. No-
tably, the initial ME model failed to converge.
Therefore, the heading angles had to be sim-
plified to left, zero, and right to reduce model
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complexity. Furthermore, the interaction effect
was removed to ensure model convergence and
to facilitate the interpretation of the impact of
the different variables on response duration.
In general, short response durations may
suggest decisive responses; conversely, longer
responses may suggest hesitation. Trends be-
tween variables reveal potential reasons for
participants’ hesitation when predicting the
direction of another vehicle at an intersection.

Coef. Std.Err. z P>|z]| [0.025, 0.975]

Intercept 3.872 0.194 19.92 2.97e-88 3.491 4.253
Rel.Position:Left 0577 0.154 3.74 19e-4 0.275 0.880
Rel. Position:Oppo 0.431 0.138 3.14 1.7e-3 0.162 0.701
Rel Position:Right 0.466 0.154 3.03 2.5e-3 0.164 0.767
Head.Angle:Left -0200 0.178 -1.13 026 -0.549 0.149
Head.Angle:Right -0.321 0.178 -1.80 0.071 -0.670 0.028
Deceleration:None 0.067 0.131 051 061 -0.189 0.323
Deceleration:Soft 0.050 0.130 0.38 0.70 -0.206 0.306
Blinkers:On -0.170 0.114 -149 0.14 -0.394 0.054
Lat.Offset:Right  -0.041 0.107 -0.39 0.70 -0.250 0.167
Group Variance  0.169 0.036

Table 4. Mixed effects model coefficients and
95% confidence intervals for variable effect on
response duration, discussed in Section 3.3.
Statistical analysis of categorical variables
relative to the reference scenario. Heading
angles are reduced to left and right to allow
for model convergence.

The relative position is the only variable with
a statistically significant influence on the re-
sponse duration. Compared to the following
scenarios, all other relative positions resulted in
an average longer response duration. Left sce-
narios increased the response duration by 0.577
seconds (p = 1.9e-4), right scenarios increased
the response duration by 0.466 seconds (p =
2.5e-3), and opposite scenarios increased the
response duration by 0.431 seconds (p = 1.7e-3).
A potential reason for this could be the com-
plexity of interactions required between the
participant and the observed vehicle. Within
the created scenarios, when following, regard-
less of the decision made by the other vehicle,
the ego vehicle driver only needs to ensure that
they maintain a safe distance from the other ve-
hicle. When the observed vehicle approached
the intersection from any other position, the
participant had to consider more possible ac-
tions. Will the other driver’s path intersect

with the ego’s path, requiring the participant
to avoid a collision? Will the other driver stop
and let them pass? Will the other driver try
to go over the intersection before the ego vehi-
cle? Interestingly, the left scenarios increase the
response duration the most, possibly because
the participant expected to be given priority
by the other driver, but then the observed driv-
ing behaviour conflicted with the participant’s
expected behaviour.

3.4. Response modelling

The RFR aims to replicate the prediction re-
sponses based on each unique combination of
observed vehicle variables per scenario. The
final model consisted of 100 decision trees in
the random forest, with a maximum depth of 8.
The model obtained an accuracy of 70.9% and
an MSE of 352.1. Figure 16 includes a visuali-
sation of truncated tree 0 from the final model.
The decision trees created or a similar decision
flow chart could be implemented into the pre-
diction module of a cognitive human model to
replicate human prediction responses for an
observed vehicle approaching an intersection.

The model’s feature importance [20] in Fig-
ure 8 aligns with prior analysis. The decisions
are replicated using the heading angle and
relative position, and then refined using the
remaining variables to best replicate the re-
sponses shown during each scenario.

The RFR model was trained on all predic-
tion samples obtained during the experiments.
The same parameters were used to train and
test the RFR model on the data grouped per
relative position. Table 5 includes the number
of samples, accuracy and MSE of each model.
All models, except the one trained on the fol-
lowing dataset only, perform worse than the
model trained on the entire dataset. The follow-
ing dataset includes most prediction responses
with 0 entropy, 100% in one direction, and
therefore the easiest to replicate. The model
trained on opposite scenarios achieved results
similar to those of the model trained on the
entire dataset. However, the models trained
only on left and right scenarios perform sig-
nificantly worse. This is most likely due to a
combination of low training sample size and
inconsistent responses, resulting in the models
being unable to replicate the human prediction
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Figure 7. Response duration grouped by variable, discussed in Section 3.3. Plots truncated to
[-0.05, 15.05] to better visualise the differences between distributions.

Feature importances using MDI Feature importances using permutation on full model

lateral_offset
decelerati

lateral_offset

blinkers

heading_angle
heading_angle

relative_positio
relative_position

Figure 8. RFRs feature importance plotted
based on mean decrease in impurity and per-
mutation on full model. Relative position,
lateral offset, heading angle, deceleration and
blinkers are respectively on the x-axes.

responses.

4. Discussion

From this study, it can be concluded that the
relative position and heading angle of the ob-
served vehicle had the most significant influ-
ence on the predictions. The heading angle was

# Samples Accuracy (%) MSE

All 4948 70.9 352.1
Following 1543 69.2 271.5
Left 925 51.6 397.8
Opposite 1537 66.8 375.2
Right 943 35.9 593.8

Table 5. RFR model samples, accuracy and
MSE.

consistent with the predicted direction scores in
the same direction. When the observed vehicle
was left or right of the ego vehicle, participants,
on average, predicted the car to continue for-
ward more than when the vehicle was following
or opposite. When the observed car did not
decelerate, on average, participants predicted
forward more often than with the other two
forms of deceleration shown. Blinkers resulted
in more left and right predictions, but not as
significantly as expected. Lastly, lateral offset
had no significant influence on the predicted
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direction. The prediction confidence followed
similar trends between the variables; the head-
ing angle and relative position had the most
significant influence on the prediction confi-
dence, followed by blinkers and whether the
observed car decelerated. The relative position
was the only variable with a statistically signif-
icant influence on the response duration. Any
position not following, on average, increased
response duration.

This study contributes to a deeper under-
standing of how humans form predictions
about other vehicles at intersections, an es-
sential aspect of traffic behaviour modelling
for safe human-automated vehicle (AV) inter-
actions that was previously underexplored.
This study obtained 4948 human prediction
responses to simulation-based intersection sce-
narios. Through analysis of responses to var-
ious cues, such as blinkers, deceleration, and
vehicle positioning, the findings clarified which
variables had the most decisive influence on
prediction scores, confidence, and response
duration. Furthermore, the responses to the
shown scenarios quantify how humans predict
the intended direction of another vehicle ap-
proaching an intersection. Intersection traffic
scenarios in the real world are too complex to
be described by binary direction predictions.
This study demonstrated that predictions are
rarely 100% or 0% in one direction. Human
drivers constantly anticipate the behaviour of
others and are wary of potentially dangerous
scenarios. This knowledge canbe applied when
designing cognitively plausible traffic agents
for use in AV testing simulation environments.
Traffic agents’ prediction modules, trained on
the responses collected during this study, can
better replicate human-like limitations in per-
ception and predictions, such as the low confi-
dence in predictions when drivers encounter
ambiguous cues from other drivers at intersec-
tions. This brings testing environments closer
to real-world complexity and ultimately en-
ables more robust evaluation of AV behaviour
in shared spaces. Beyond testing in simulation,
the results highlight the role of AVs and ADAS
in compensating for, or at least being aware of,
human prediction errors. Signalling strategies
or motion planning that communicate intent
support safer and more intuitive interactions

between autonomous and human-driven vehi-
cles. By exploring how different cues influence
prediction, this study fills a key gap in current
models of human traffic behaviour.

Prior studies on human behaviour prediction
in traffic agree with the findings in this study.
Hamilton et al. [12] reported that human ob-
servers are generally very good at predicting a
vehicle’s turn intent at close range, with 90%
accuracy when a car is within 0-20m of the
intersection, falling to around 70% at 30-50m.
Crucially, they found that explicit blinkers were
“the most important cue” in these judgments.
In this study, it was also observed that par-
ticipants relied on blinkers when confidently
predicting a vehicle to turn, which aligns closely
with Hamilton’s results. Although this study
had no correct responses, as the videos never
continued past the point when a response was
requested, the decrease in accuracy at larger
distances can be correlated with the reduction
in confidence when participants in this study
made predictions for non-following relative
positions. When the observed vehicle was
left/opposite/right of the ego vehicle at the in-
tersection, the response entropy and response
duration increased. Both studies agree that
observed vehicles with blinkers on strongly
disambiguates the driver’s intent, whereas a
decrease in response confidence was shown
when blinkers were off or distant. This consis-
tency reinforces the idea that explicit direction
communication through blinkers is a primary
factor in predicting a driver’s intended direc-
tion.

Other researchers have emphasised lateral
motion cues to communicate intended be-
haviour. Sripada et al. [7] showed that pedes-
trians use a vehicle’s lateral deviation within
the lane as an implicit signal of yielding: an
AV steering toward the pedestrian to indicate
yielding was found to be intuitive and highly
effective. In a different context, Miller et al. [9]
presented drivers with two vehicles meeting at
a bottleneck, varying each vehicle’s lateral (to-
ward centre or edge) and longitudinal (speed
changes) behaviour. They found that lateral
shifts were interpreted the fastest and most
distinctly, and that people required less time to
infer intent from lateral movement than from
longitudinal cues. Although the contexts differ
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between the studies, parallels can be drawn be-
tween lateral motion cues and their influence
on human predictions. However, the results
of this study do not agree with these findings:
lateral offset had no significant influence on
the responses. During the experiment, partici-
pants often verbally made predictions before
the entire video was shown. Scenarios without
blinkers shown were frequently ambiguous
until the heading angle was revealed at the
end of the video. The lateral lane position
of the observed vehicle influenced the early
predicted directions; however, as soon as the
heading angle was revealed, the lateral offset
was disregarded in favour of relying on the
heading angle for predicting the intended di-
rection. The conflict between lateral offset and
other cues was also noted by Sripada et al. and
Miller et al., resulting in less response confi-
dence. If responses were taken over the entire
video duration during this study, then lateral
offset could have had a significant influence on
the predicted directions.

Deceleration and braking patterns have also
been identified as communicative cues. Miller
et al. [9] reported that purely longitudinal
manoeuvres (decelerating, stopping, or main-
taining speed) were generally less decisive than
lateral ones. Tian et al. [8] examined pedes-
trian crossing decisions and similarly found
that people aligned their behaviour with the
observed deceleration: pedestrians recognised
different braking profiles and chose crossings
accordingly. They further observed that pedes-
trians crossed earlier and judged yielding more
accurately when braking started early rather
than late. Although both these studies exam-
ined yielding behaviour, their findings broadly
align with those of this study. Whether the
observed vehicle decelerated or not had a sig-
nificant influence on the predicted direction,
but not as significantly for the response entropy
or duration. Deceleration can signal intent, but
humans cannot rely solely on it for confident
predictions of intended direction, such as when
using blinkers or significant changes in heading
angle.

Finally, several studies note human limita-
tions even when cues are present. Werneke and
Vollrath [10] demonstrated that drivers often
overlook parts of the intersection scene, result-

ing in missed information and increased crash
risk. Colombo et al. [14] demonstrated that
drivers systematically misjudge short-term tra-
jectories of cyclists, implying cognitive biases
in prediction. These studies focus on various
aspects of human prediction in traffic, but they
reinforce a common theme: humans often fail
to predict others’ motions accurately. Although
this study does not examine prediction accu-
racy, the decrease in response confidence when
presented with ambiguous scenarios compared
to scenarios with explicit direction cues (such as
blinkers or large heading angles) can be related
to the prediction errors reported by Werkene
and Vollrath or Colombo et al.

Despite the contribution made within this
study, several limitations constrain the extent
to which this study fully understands how hu-
mans make predictions about other vehicles
at intersections. While the experimental setup
was made to replicate realistic driving situ-
ations, certain decisions inherently constrain
the participants. These design choices may
have introduced biases or limitations to the
results. The decision was made to maintain
a constant perspective during the experiment;
participants were unable to look around the
scenario to scan for additional information.
Although the cognitive load when giving re-
sponses was low during this experiment, a
similar experiment in virtual reality (VR) with
a steering wheel would allow participants to
scan the scenario as they would when driv-
ing in the real world, thereby obtaining more
realistic prediction data. The results showed
low prediction confidence when the observed
vehicle was left or right of the observer. This
is most likely due to the ego vehicle frame par-
tially blocking the observed vehicle when it
approached from the left, adding reasonable
doubt that not all intended direction cues were
spotted, possibly causing the participants to
predict differently if they had seen the decelera-
tion or blinkers, for example. If the experiment
had been conducted in VR, participants could
have looked around the frame to observe the
other vehicle more clearly.

The consistent scenarios allowed for testing
of a large quantity of unique variable combi-
nations. However, the simple scenarios en-
abled the participants to focus solely on the
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observed vehicle at the intersection. When hu-
mans drive towards an intersection in the real
world, they must remain vigilant of their posi-
tion on the road, the road structure, multiple
other traffic participants, and potentially more
[21, 22]. Moreover, even though the observed
vehicle always reached the intersection before
the ego vehicle, priority rules at intersections
could have decreased confidence in participant
predictions. In most right-hand-side driving
European countries, a "right before left" pri-
ority rule exists for intersections. When the
observed vehicle approached from the left, the
driver should expect the observed vehicle to
slow down and give priority to the driver; how-
ever, this was not always the case during the
experiment, causing conflicts between expec-
tation and reality, leading to more "unsure"
predictions. Creating an experiment with de-
fined traffic scenarios, rather than focusing on
a large, unique variable space, could provide
more insight into human predictions at an in-
tersection.

The observed vehicle variables were de-
signed to be consistent, allowing for the cre-
ation of unique scenarios by combining changes
in variables; however, the specific changes in
variable values may have influenced the repre-
sentativeness of the results across broader traf-
fic scenarios. Some effects may be dependent
on how the variables were defined. Analysis
of responses showed that the heading angle
of the observed vehicle had the most signif-
icant influence on prediction direction. The
decision was always to show approximately 5
seconds of video before the scenario froze and
the participant could respond. The obtained
heading angle results could be interpolated
to estimate how the predicted direction and
confidence could change as the observed vehi-
cle approaches the intersection. Researching a
larger range of heading angles or trajectory du-
rations, for prediction score confidence, could
lead to a better understanding of human pre-
diction of another traffic participant over time,
which could then be considered in ADAS and
AV system design. Furthermore, the lateral
offset had no statistically significant influence
on the responses; the lateral offset was a con-
stant distance from the centre of the lane for the
shown scenario, but had the lateral offset been

a change over time from the centre of the lane
to left or right, as what was done by Sripada et
al [7], then it might've had a more significant
influence on responses.

Furthermore, the methods of analysis used in
this study focused solely on the final predicted
score and response duration. The response
triangle provides novel human responses for
cognitive modelling by measuring the response
trajectory. However, this study underanalysed
the differences between participants and their
response trajectories. Further analysis of the
response trajectories could lead to a better un-
derstanding of differences between participants
and the effect of the cues on the responses. For
example, swift mouse movements to the final
predicted score could suggest high response
confidence, or large swings in direction could
signify hesitation and thus low response confi-
dence.

Another potential extension of this research
will be to explore implicit driver-driver com-
munication at an intersection. The effect of
deceleration and lateral offset was analysed as
a form of implicit communication of intended
behaviour; however, no human driver was in-
cluded in the observed vehicle during the ex-
periment. Forms of implicit communication,
such as eye contact or head movement, most
likely increase the confidence humans have
when predicting the direction another traffic
participant would go at an intersection [13, 23].

By continuing the research through these
insights, researchers and developers can create
predictive systems and AV agents that are not
only more human-like in behaviour but also
more supportive of safe, coordinated interac-
tions in complex, shared traffic environments.

5. Conclusion

This study aimed to discover the influence of
differences in intended behaviour cues of an-
other vehicle on human-predicted direction.
Results show that the pose of the observed
vehicle is the primary indicator for human pre-
diction of the intended driving direction at an
intersection. Participants of the experiment
were able to consistently and confidently pre-
dict similar directions when the ego vehicle was
following or opposite to the other vehicle, and
were shown a £10° heading angle in either di-
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rection. However, struggled to give responses
with similar confidence or consistency when
no large heading angle was shown, or when the
observed vehicle was left or right at the inter-
section. As autonomous technologies continue
to be researched and developed, incorporating
the human prediction patterns discovered in
this study can support the creation of safer and
more human-aware ADAS and AV systems.
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Appendix

Observed vehicle relative positions

(a) Following (b) Opposite

(c) Left (d) Right

Figure 9. Observed vehicle relative positions visualised. The positions are relative to the ego
vehicle.

Observed vehicle lateral offset

(a) Left (b) Right

Figure 10. Observed vehicle lateral offset visualised. The lateral offset distance started at 0.2
m from the centre of the lane.
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Observed vehicle blinkers

(a) Blinkers on to the left. (b) Blinkers off

Figure 11. Observed vehicle blinkers. They were more apparent during the experiment,
when the scenario takes up the entire screen; however, the limited screen resolution did
impact blinker visibility.

Response triangle rotations

(c) Left (d) Right

Figure 12. The response triangle rotated based on the observed vehicle relative position.
Rotating the triangle meant participants didn’t have to think about the response from the
observed vehicle’s perspective, reducing cognitive load during the experiment.
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Figure 13. Scores grouped by variable, separated by experiment groups. Colours correspond to
direction prediction. The difference between responses was insufficient to justify separating
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group was, on average, more confident with their responses.
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Response duration grouped by Variable
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Figure 15. Response duration grouped by variable, separated by experiment groups. Again,
the general trend between variables is consistent across groups, but the second group was,
on average, quicker to respond.

The general trend between the variables is similar for both experiment groups. Figures 13, 14,
and 15 show the data split per experiment group. Group 2, in general, was more confident in
their prediction responses, as can be seen by the wider bases and narrower tips of the majority
of entropy distributions in Figure 14, compared to group 1. This is most likely due to the second
group being younger on average, with less driving experience. The interquartile range (Q1-Q3)
for years of driving experience for group 1 was 5-27 years, and for group 2 was 1.25-5.75 years.
Less experienced drivers are likely to be more trusting of signals shown by other drivers. In
contrast, experienced drivers generally remain cautious and consider multiple possibilities when
making predictions, as reflected in the differences between the experimental groups. However,
the differences between the experimental groups were insufficient to warrant splitting the data
for analysis in this study; therefore, all responses were considered as part of the same group.
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Mixed-Effect Model interaction effect of relative position on the other variables
for prediction score.

Coef. Std.Exrr. z P>|z| [0.025 0.975]

Intercept -0.372 0.877 -0.425 0.671 -2.092 1.347
Rel Position:Left -0.898 1.289 -0.696 0.486 -3.424 1.629
Rel.Position:Oppo -2.330 1.241 -1.878 0.060 -4.763 0.102
Rel.Position:Right -1.181 1.297 -0911 0.362 -3.723 1.361
Head.Angle:-10 10.710 0.966 11.082 <0.001 8.816 12.604
Head.Angle:-5 8.904 0.968 9.199 <0.001 7.007 10.801
Head.Angle:+5 -6.697 0.966 -6.934 <0.001 -8.591 -4.804
Head.Angle:+10 -5.986 0.966 -6.194 <0.001 -7.881 -4.092
Deceleration:None -2419 0.618 -3.912 <0.001 -3.631 -1.207
Deceleration:Soft -0.074 0.618 -0.121 0.904 -1.285 1.136
Blinkers:On 3.348 0.535 6.259 <0.001 2.299 4.396
Lat.Offset:Right -0.078 0.505 -0.154 0.877 -1.067 0.911
Rel.Position:Left : Head.Angle:-10 -7.628 1.470 -5.190 <0.001 -10.508 -4.747

Rel.Position:Oppo : Head.Angle:-10  -0.340 1.369 -0.248 0.804 -3.023 2.343
Rel. Position:Right : Head.Angle:-10  -6.409 1.455 -4.406 <0.001 -9.260 -3.558
Rel.Position:Left : Head.Angle:-5 -6.126 1.474 -4.155 <0.001 -9.016 -3.237
Rel.Position:Oppo : Head.Angle:-5 0.200 1.369 0.146 0.884 -2.483 2.883
Rel.Position:Right : Head.Angle:-5 -7.174 1.469 -4.885 <0.001 -10.053 -4.296
Rel.Position:Left : Head.Angle:+5 3.730 1467 2543 0.011 0.855 6.604
Rel.Position:Oppo : Head.Angle:+5 1952 1368 1.427 0.154 -0.729 4.633
Rel Position:Right : Head.Angle:+5 4492 1465 3.067 0.002 1.621 7.362
Rel. Position:Left : Head.Angle:+10 1.745 1465 1.191 0234 -1.126 4.617
Rel Position:Oppo : Head.Angle:+10  2.190 1.369 1.600 0.110 -0.492 4.872
Rel Position:Right : Head.Angle:+10  0.146 1.466 0.100 0.921 -2.727 3.020
Rel Position:Left : Deceleration:None -0.763 0.998 -0.765 0.445 -2.718 1.193
Rel Position:Oppo : Deceleration:None 1.356 0.875 1.550 0.121 -0.359 3.070
Rel Position:Right : Deceleration:None -1.345 0.994 -1.353 0.176 -3.294 0.604
Rel Position:Left : Deceleration:Soft ~ -1.359 0.997 -1.363 0.173 -3.313 0.595
Rel . Position:Oppo : Deceleration:Soft  0.245 0.875 0.280 0.780 -1.470 1.960
Rel Position:Right : Deceleration:Soft -1.724 0.991 -1.739 0.082 -3.667 0.219

Rel.Position:Left : Blinkers:On -3.822 0.883 -4.331 <0.001 -5.552 -2.092
Rel. Position:Oppo : Blinkers:On -2.631 0.757 -3.476 0.001 -4.115 -1.148
Rel. Position:Right : Blinkers:On -1.381 0.877 -1.575 0.115 -3.101 0.338

Rel. Position:Left : Lat.Offset:Right 0.073 0.824 0.088 0.930 -1.543 1.688
Rel Position:Oppo : Lat.Offset:Right  -0.112 0.714 -0.156 0.876 -1.511 1.288
Rel Position:Right : Lat.Offset:Right ~ -1.546 0.818 -1.890 0.059 -3.150 0.057
Group Var 0.495 0.050

Table 6. Mixed effects model log(p_left/p_forward) coefficients and 95% confidence intervals
for the interaction effect between relative position and other variables on prediction score.
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Coef. Std.Err. 2z P>|z]| [0.025 0.975]

Intercept -0.728 0.821 -0.887 0.375 -2.337 0.881
Rel.Position:Left -4552 1.211 -3.760 <0.001 -6.925 -2.179
Rel.Position:Oppo -2.468 1.162 -2.124 0.034 -4.744 -0.191
Rel.Position:Right -2.292 1.219 -1.881 0.060 -4.681 0.096
Head.Angle:-10 -4564 0904 -5.048 <0.001 -6.336 -2.792
Head.Angle:-5 -5.884 0.906 -6.496 <0.001 -7.659 -4.108
Head.Angle:+5 8.720 0904 9.651 <0.001 6.949 10.491
Head.Angle:+10 10.830 0.904 11.978 <0.001 9.058 12.602
Deceleration:None -2.204 0.578 -3.811 <0.001 -3.338 -1.071
Deceleration:Soft 0.288 0.578 0.498 0.619 -0.845 1.420
Blinkers:On 2919 0500 5.837 <0.001 1.939 3.900
Lat.Offset:Right 0.037 0472 0.079 0937 -0.888 0.962

Rel Position:Left : Head.Angle:-10 1.046 1383 0.756 0.450 -1.666 3.757
Rel.Position:Oppo : Head.Angle:-10 ~ 1.219 1.281 0.951 0.342 -1.293 3.730
Rel.Position:Right : Head.Angle:-10 0.840 1.369 0.613 0.540 -1.844 3.524
Rel.Position:Left : Head.Angle:-5 3449 1390 2482 0.013 0.726 6.173
Rel.Position:Oppo : Head.Angle:-5 1915 1.281 1.495 0.135 -0.596 4.426
Rel Position:Right : Head.Angle:-5 2479 1383 1.792 0.073 -0.233 5.190
Rel Position:Left : Head.Angle:+5 -2.661 1.382 -1.925 0.054 -5.370 0.048
Rel Position:Oppo : Head.Angle:+5 1964 1280 1535 0.125 -0.544 4.472
Rel Position:Right : Head.Angle:+5 -7.187 1.380 -5.208 <0.001 -9.892 -4.482
Rel Position:Left : Head.Angle:+10 1488 1.380 1.078 0.281 -1.217 4.192
Rel Position:Oppo : Head.Angle:+10  1.543 1.281 1.205 0.228 -0.967 4.053
Rel Position:Right : Head.Angle:+10  -7.378 1.382 -5.340 <0.001 -10.086 -4.670
Rel.Position:Left : Deceleration:None 1.499 0.943 1589 0.112 -0.350 3.347
Rel Position:Oppo : Deceleration:None 1.287 0.818 1.574 0.116 -0.316 2.891
Rel Position:Right : Deceleration:None 0.869 0.940 0.925 0.355 -0.973 2.711
Rel.Position:Left : Deceleration:Soft 0.166 0944 0.175 0.861 -1.685 2.016
Rel.Position:Oppo : Deceleration:Soft -0.503 0.818 -0.615 0.538 -2.107 1.100
Rel Position:Right : Deceleration:Soft  0.064 0.938 0.068 0945 -1.774 1.903

Rel.Position:Left : Blinkers:On -1.665 0.837 -1.989 0.047 -3.306 -0.024
Rel.Position:Oppo : Blinkers:On -2.473 0.708 -3.492 <0.001 -3.860 -1.085
Rel Position:Right : Blinkers:On -3.730 0.831 -4.487 <0.001 -5.359 -2.100
Rel Position:Left : Lat.Offset:Right -0.433 0.781 -0.555 0.579 -1.964 1.098

Rel. Position:Oppo : Lat.Offset:Right  -0.718 0.668 -1.075 0.282 -2.027 0.591
Rel.Position:Right : Lat.Offset:Right ~ 0.178 0.775 0.230 0.818 -1.340 1.697
Group Var 0.004 0.045

Table 7. Mixed effects model log(p_right/p_forward) coefficients and 95% confidence intervals
for the interaction effect between relative position and other variables on prediction score.
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Mixed-Effect Model interaction effect of relative position on the other variables

for response entropy.

Coef. Std.Err. z  P>|z]| [0.025 0.975]
Intercept 0.685 0.034 20.129 <0.001 0.619 0.752
Rel.Position:Left 0.007 0.049 0.148 0.882 -0.090 0.104
Rel.Position:Oppo -0.084 0.048 -1.745 0.081 -0.178 0.010
Rel.Position:Right -0.025 0.050 -0.506 0.613 -0.122 0.072
Head.Angle:-10 -0.386 0.038 -10.271 <0.001 -0.459 -0.312
Head.Angle:-5 -0.316 0.038 -8.423 <0.001 -0.390 -0.243
Head.Angle:+5 -0.311 0.038 -8.297 <0.001 -0.385 -0.238
Head.Angle:+10 -0.384 0.038 -10.235 <0.001 -0.458 -0.311
Deceleration:None -0.009 0.024 -0.357 0.721 -0.056 0.039
Deceleration:Soft -0.015 0.024 -0.621 0.535 -0.062 0.032
Blinkers:On -0.127 0.021 -6.110 <0.001 -0.168 -0.086
Lat.Offset:Right -0.006 0.020 -0.290 0.772 -0.044 0.033
Rel.Position:Left : Head.Angle:-10 0.299 0.056 5.345 <0.001 0.189 0.408
Rel.Position:Oppo : Head.Angle:-10  0.119 0.053 2.247 0.025 0.015 0.224
Rel.Position:Right : Head.Angle:-10 ~ 0.248 0.055 4.475 <0.001 0.139 0.356
Rel.Position:Left : Head.Angle:-5 0.285 0.056 5.099 <0.001 0.176 0.395
Rel.Position:Oppo : Head.Angle:-5 0.102 0.053 1.915 0.056 -0.002 0.206
Rel.Position:Right : Head.Angle:-5 0.265 0.056 4.745 <0.001 0.156 0.374
Rel.Position:Left : Head.Angle:+5 0.265 0.056 4.757 <0.001 0.156 0.374
Rel.Position:Oppo : Head.Angle:+5 0.066 0.053 1.237 0.216 -0.038 0.170
Rel.Position:Right : Head.Angle:+5 0.321 0.056 5.778 <0.001 0.212 0.430
Rel. Position:Left : Head.Angle:+10 0.088 0.056 1.582 0.114 -0.021 0.197
Rel.Position:Oppo : Head.Angle:+10  0.071 0.053 1.342 0.180 -0.033 0.175
Rel.Position:Right : Head.Angle:+10  0.314 0.056 5.647 <0.001 0.205 0.423
Rel.Position:Left : Deceleration:None -0.042 0.037 -1.130 0.258 -0.116 0.031
Rel.Position:Oppo : Deceleration:None 0.023 0.034 0.684 0.494 -0.043 0.090
Rel. Position:Right : Deceleration:None -0.055 0.037 -1.474 0.141 -0.128 0.018
Rel.Position:Left : Deceleration:Soft ~ -0.007 0.037 -0.183 0.855 -0.080 0.066
Rel.Position:Oppo : Deceleration:Soft -0.003 0.034 -0.090 0.928 -0.070 0.064
Rel Position:Right : Deceleration:Soft  0.001 0.037 0.017 0.986 -0.072 0.073
Rel. Position:Left : Blinkers:On 0.096 0.033 2944 0.003 0.032 0.161
Rel.Position:Oppo : Blinkers:On 0.093 0.029 3.160 0.002 0.035 0.151
Rel.Position:Right : Blinkers:On 0.085 0.033 2.610 0.009 0.021 0.149
Rel.Position:Left : Lat.Offset:Right 0.003 0.031 0.108 0.914 -0.057 0.063
Rel.Position:Oppo : Lat.Offset:Right ~ 0.016 0.028 0.574 0.566 -0.038 0.070
Rel.Position:Right : Lat.Offset:Right ~ 0.021 0.030 0.685 0.493 -0.039 0.081
Group Var 0.003 0.003

Table 8. Mixed effects model coefficients and 95% confidence intervals for the interaction

effect between relative position and other variables on response entropy.
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Random Forest Regressor Modelling results

Max Depth Accuracy MSE

4 0.648 425.358
5 0.690 374.773
6 0.700 362.503
7 0.704 357.450
8 0.709 352.083
9 0.707 353.900
10 0.706 355.209
11 0.706 355.210
12 0.706 355.210
13 0.706 355.210
14 0.706 355.210
15 0.706 355.210

Table 9. RFR Model Accuracy and MSE per Max Depth, all RFRs were trained on 80% of the
prediction responses with 100 estimators in random state 0.

heading_angle <= 2.5
squared_error = 1312.596

samples = 2504
value = [[34.757]
[27.74]
[37.503]
heading_angle <= 1.5 relative_position <= 2.5
squared_error = 809 821 squared_error = 563.991
samples = 1404 samples = 1100
value = [[58.485] value = [[5.033]
[33.496] [20.53]
[8.02]] [74.437]]
relative_position <= 0.5 deceleration <= 0.5 heading_angle <= 35 deceleration <= 0.5
squared_error = 645.343 squared_error = 402.905 squared_error = 395.121 squared_error = 642.083
samples = 1066 samples = 338 samples = 919 samples = 181
value = [[69.777] value = [[21.794] value = [[4.117] value = [[9.806]
[25.274] [60.208] [14.943] [49.632]
[4.948]) [17.998]] [80.84]) [40.563]]
blinkers <= 0.5 relative_position <= 1.5 relative_position <= 0.5 relative_position <= 0.5 relative_position <= 0.5 blinkers <= 0.5 heading_angle <= 3.5 heading_angle <= 3.5
squared_error = 244 633 squared_error = 706.173 squared_srror = 242 935 squared_error = 440.512 squared_error = 513.416 'squared_error = 238 423 squared_error = 597.171 squared_error = 593.605
samples = 337 'samples = 729 samples = 120 samples = 218 'samples = 464 samples = 455 samples = 65 samples = 116
value = [87.629] value [[61.367) valua [[14 187] value [[25 776) value [[5 531] vslua [[z 591] value = [[7 299] value [[11.219]
[10.19] 2.381] [61.881] 2.729]
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Figure 16. Truncated tree 0 from the final RFR model. Only showing the first 4 layers for
node legibility and to illustrate the general trend for modelling the responses.
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