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Many-revolution Earth-centred solar-sail trajectory
optimisation using differential dynamic programming

G. Leemans∗, L. Carzana† and J. Heiligers ‡

Delft University of Technology, 2600 AA, Delft, The Netherlands

This work demonstrates the usability of differential dynamic programming (DDP) to obtain
optimal Earth-centred solar-sail trajectories. The dynamical model is implemented as a two-
body problem, augmented with an ideal solar-sail reflectance model and accounts for eclipses.
The numerical performance of the optimisation algorithm is enhanced by integrating the
sailcraft state in modified equinoctial elements and performing a Sundman transformation to
change the independent variable from time to the true anomaly. The DDP algorithm is proven
to be robust for trajectories extending up to 500 revolutions and, compared to known locally
optimal steering laws, allows to obtain equally optimal solutions. The latter is demonstrated
in this paper through a set of test cases that range from theoretical scenarios to realistic
mission applications, including increasing the specific orbital energy of NASA’s upcoming
ACS3mission. Additionally, the algorithm’s ability to cope with different optimisation settings,
perturbing accelerations and constraints is demonstrated.

Nomenclature

U = Sail cone angle [rad] 4 = Eccentricity
V = Solar-sail lightness number � = Dynamics matrix
W = Smoothed sunlight fraction 5 , 6, ℎ, :̃ = Modified equinoctial elements
Δ = Trust region radius � = Scaling matrix
X = Sail clock angle [rad] � = Heaviside function
n1 = Reduction ratio tolerance ℎ̃ = Logistic growth rate
n2 = Optimality tolerance : = Stage number
[ = Sundman transformation variable 8 = Inclination [rad]
^ = Reduction ratio tolerance � = Cost function
Λ = Sundman-transformed dynamics matrix ; = True longitude [rad]
_ = Lagrange multiplier " = Scaling matrix
` = Gravitational parameter [km3/s2] < = Mass [kg]
a = True anomaly [rad] # = Number of stages
d = Reduction ratio n̂ = Unit normal vector
Σ = Penalty matrix ? = Semi-latus rectum [km]
Φ = State transition matrix p = Reference vector
q = Objective function @ = Auxiliary modified equinoctial element
7 = Terminal constraints ' = Radius [km]
Ω = Right ascension of the ascending node [rad] r = Position vector [km]
l = Argument of periapsis [rad] rs = Sun-sail vector [km]
� = Feed-forward control matrix )es = Sidereal day [s]
0 = Semi-major axis [km] C = Time [s]
� = Feedback control matrix u = Control vector
� = Sail-centred reference frame D = Control parameter
� = Feedback control matrix ^ = Augmented state vector
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I. Introduction
Solar sailing is a form of low-thrust space propulsion that uses a large, thin, mirror-like structure to produce thrust by
reflecting solar photons. The thrusting capabilities of a solar sail are therefore only limited by the lifetime of the sail
itself; there is no dependency on available propellant. Hence, solar sailing is particularly interesting for missions of long
duration or missions requiring continuous thrust. Examples include the use of a solar sail to mitigate space debris in the
geostationary ring [1, 2], Earth-escape trajectories [3–5], and non-Keplerian orbits [6, 7]. The concept of solar sailing
has been successfully demonstrated by missions like IKAROS (JAXA, 2010) [8] and various solar-sail missions are
scheduled for the near-future, including NASA’s Advanced Composite Solar Sail System (ACS3) mission, which is
scheduled for launch in 2022 [9].

Since the acceleration that the solar sail imposes on the spacecraft is very small, solar-sail trajectories are often
optimised for the time of flight. Global time-optimal solutions have been found for interplanetary solar-sail trajectories
with the use of optimisation algorithms such as evolutionary neurocontrol [10]. However, global optima of planet-centred
trajectories have not yet been found. Due to the small solar-sail acceleration, many revolutions around the central body
are often necessary before the desired state is reached. This makes solar-sail planet-centred trajectory optimisation
more complex, as it leads to a sensitive and high-dimensional problem [11]. Optimisation of these trajectories has
historically been performed using (semi-)analytical techniques, resulting in locally optimal solutions. For example,
control laws have been developed that maximise the rate of change of a single orbital element, such as the semi-major
axis or the inclination [12]. However, when more than one orbital element is to be changed, the problem becomes
more complicated. Solutions have been proposed where the trajectory is split into different arcs, where in each arc
the rate of change of a different orbital element is maximised [13]. Other solutions implement a blended control law,
where individual control laws are combined with weights, where the magnitude of the weights is based on the relative
importance of changing each orbital element during that particular phase of the trajectory [14].

An optimisation method that has never been explored for planet-centred solar-sail trajectory optimisation is
differential dynamic programming (DDP). DDP is a second-order gradient-based optimisation routine that has the
benefit that it scales linearly with the number of control variables [15], which is a property that makes DDP interesting
for large optimisation problems. DDP discretises the spacecraft’s trajectory into stages, where at each stage a local,
quadratic model of the cost is minimised [16]. DDP has already been successfully applied to finding optimal Earth-
centred trajectories using solar electric propulsion (SEP) [11], where optimal solutions were found for a transfer from
geostationary transer orbit to geostationary equatorial orbit (GEO) consisting of up to 2000 revolutions.

This work aims to obtain locally optimal Earth-centred solar-sail trajectories through the use of DDP. In addition,
the capability of monotonic basin hopping (MBH) to find globally optimal solutions, to improve on the locally optimal
solution found by DDP, will be investigated. MBH tries to find the global optimum by iteratively executing the DDP
algorithm with a slightly perturbed initial guess [17]. As such, this work will extend the applicability of DDP to
many-revolution Earth-centred solar-sail trajectories and proof its performance in terms of optimal solution found
compared to known locally optimal solutions. For a variety of test cases, the optimal solar-sail attitude will be found
to maximise the specific orbital energy. Test cases range from theoretical scenarios to realistic mission applications,
including NASA’s upcoming ACS3 mission.

II. Dynamical model
The dynamics of the satellite are defined in an Earth-centred equatorial inertial reference frame, ECI(G,H,I) with the
G-axis towards the vernal equinox, the I-axis perpendicular to the equatorial plane and the H-axis completing the
right-handed reference frame. DDP requires the spacecraft’s state to be represented as an augmented state vector [18],
where the spacecraft state vector is augmented with the control vector as

^ =

[
x u

])
=

[
r ¤r u

])
=

[
G H I ¤G ¤H ¤I C U X

])
(1)

In Eq. 1 r is the position vector of the satellite, u is the control vector consisting of the two sail control parameters,
U and X, which will be elaborated upon in Section II.B, ¤� represents the derivative with respect to time and C is the
current time. The derivative of the augmented state vector is composed of various terms:

¤̂ =
[
¤r ¥r⊕ + ¥r( + ¥r�2 + ¥r�3 + ¥r�4 + ¥r$ + ¥r� 1 ¤U ¤X

])
(2)

The terms for the acceleration in the second column of the vector in Eq. 2 are, from left to right, point-mass gravity
from the Earth, the solar-sail acceleration, accelerations resulting from irregularities in the Earth’s gravity field (�2, �3
and �4), lunar gravity and solar gravity. These individual contributions will be expanded on in the coming sections.
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Fig. 1 Solar-sail attitude angles in frame �.

Unless stated otherwise, J2000 is used as the initial epoch for propagation. An important perturbing acceleration missing
in Eq. 2 is the atmospheric drag. DDP optimisation requires the dynamical model to be twice differentiable, which
becomes difficult when atmospheric drag is included. Density models most often consist of tabulated data, which are
not differentiable [19]. The implementation of an accurate and twice differentiable drag model is therefore left for future
research.

A. Two-body dynamics
First and foremost, the largest acceleration acting on the satellite is the point-mass gravity from the Earth [19]. This
acceleration can be written as

¥r⊕ = −
`⊕
A3 r (3)

where `⊕ is the Earth’s gravitational parameter and A = ‖r‖. Table 1 provides the values of the dynamical parameters
used.

B. Solar-sail acceleration
The solar-sail acceleration is modelled by assuming an ideal solar-sail reflectance model, which implies that all incoming
radiation is specularly reflected and the acceleration acts along the vector normal to the sail surface, n̂. Other solar-sail
force models account for absorption, diffuse reflection and thermal emission of the incoming radiation (optical force
model), sail billowing and degradation [12, 20, 21]. The difference between using the ideal and optical force model has
been demonstrated in Reference [20] for an Earth-Mars transfer. The results show an increase of 12 − 13% in time of
flight when using the optical model compared to the ideal model. The optical force model is not considered in this work,
but similar orders of magnitude for the increase in time of flight may be expected when doing so in future work.

The direction of the sail normal vector, n̂, is defined in frame � ( r̂B , p̂, ẑ), see Figure 1. Reference frame � has its
origin at the sailcraft, the r̂B axis points in the anti-Sun direction, the ẑ axis in the direction of the ECI I-axis, and the
third axis, p̂, completes the right-handed orthogonal reference frame. The sail normal vector is defined by two angles,
see again Figure 1: the cone and clock angles, where the cone angle, U, is defined as the angle between the sail normal
and the direction of sunlight. The clock angle, X, is defined as the angle between the I-axis of the ECI reference frame
and the projection of the normal vector onto the plane perpendicular to the Sun-line.

The normal vector of the sail, n̂, is defined in frame � as

n|� =
[
cosU sinU cos X sinU sin X

])
s.t. U ∈ [−c/2, c/2]

X ∈ [−2c, 2c]

(4)

An intrinsic property of the solar sail is that the solar-sail acceleration has no component in the direction of the Sun.
To model this property, the cone angle is restricted to a range between −c/2 and c/2. The clock angle can in principle
obtain any value, but is for practical reasons restricted between −2c and 2c. For inclusion in Eq. 2, the solar-sail
acceleration is to be found in the ECI reference frame, and therefore the normal vector needs to be transformed from
reference frame � to the ECI frame according to:

n =
[
r̂B ẑ ẑ × r̂B

]
n|� (5)

The resulting solar-sail acceleration is determined as [12]
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¥r( = WV
`�

A2
B

( r̂B · n)2n (6)

where W is the smoothed sunlight fraction, V is the solar-sail lightness number, `� the Sun’s gravitational parameter and
rB is the position vector from the Sun towards the sailcraft. The solar-sail lightness number is defined as the ratio of the
solar radiation pressure to the solar gravitational acceleration and is used as a metric for the thrusting capabilities of the
sail. During eclipse conditions, the sail does not produce any acceleration. Eclipses are modelled using a low-precision
solar ephemeris model [19] and a Heaviside-based sunlight fraction approach [22]. The sunlight fraction is equal to
zero when the satellite is in eclipse, and equal to one when the satellite is in sunlight. Only eclipses with the Earth as the
occulting body are taken into account.

C. Non-spherical Earth
Zonal harmonics coefficients, �8 with 8 = 2, 3, ..., are used to model the irregularities of the Earth’s gravity field. The
perturbing acceleration due to the �2, �3 and �4 coefficients are accounted for and are equal to [23]

¥r�2 = −
3`⊕�2'

2
⊕

2A5

[
G

(
1 − 5 I

2

A2

)
H

(
1 − 5 I

2

A2

)
I

(
3 − 5 I

2

A2

)])
(7a)

¥r�3 = −
15`⊕�3'

3
⊕

2A7

[
GI

(
1 − 3I2

A2

)
HI

(
1 − 3I2

A2

)
I2

(
2 − A2

5I2 − 3I2

A2

)])
(7b)

¥r�4 = −
35`⊕�4'

4
⊕

2A9

[
GI2

(
3
2 −

9I2

4A2 − 3A2

28I2

)
HI2

(
3
2 −

9I2

4A2 − 3A2

28I2

)
I3

(
5
2 −

9
4
I2

A2 − 15
28
A2

I2

)])
(7c)

where '⊕ is the Earth’s radius. Values for the zonal harmonics coefficients are given in Table 1.

D. Third-body Perturbations
The accelerations resulting from the point-mass gravity from theMoon and the Sun are the largest third-body accelerations
acting on an Earth-orbiting spacecraft and are accounted for. The position vector from the third-body to the satellite is
written as [19]

r$/(� = r − r) � (8)

where r) � is the position vector of the third body. The contribution of the acceleration caused by the third body on the
spacecraft can then be defined as

¥r) � = −`) �
[
G−G) �
‖r−r) � ‖3

+ G) �

G3
) �

H−H) �
‖r−r) � ‖3

+ H) �

H3
) �

I−I) �
‖r−r) � ‖3

+ I) �
I3
) �

])
(9)

where `) � is the gravitational parameter of the third body (see Table 1 for the values for the Moon and Sun).
To determine these perturbing accelerations, the position of the Moon and Sun needs to be known in the ECI frame

at each epoch. To obtain these ephemeris data, analytical expressions for low-precision solar and lunar coordinates are
used (see Reference [19], Section 3.3.1). The model to obtain these coordinates assumes unperturbed motion of the
Earth around the Sun, whereas for the motion of the Moon around the Earth the influence of terrestrial and solar gravity
are taken into account.

Table 1 Dynamical model parameters [23, 24].

Parameter Value Parameter Value
`⊕ 3.986004 × 1014 m3/s2 �2 1.082626 × 10−3

`� 1.327124 × 1020 m3/s2 �3 −2.533 × 10−6

`$ 4.902801 × 1012 m3/s2 �4 −1.6186 × 10−6

'⊕ 63781363 m

4
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E. Modified equinoctial elements
The equations of motion (EOMs) are integrated in modified equinoctial elements (MEE). Integrating a set of orbit
elements has benefits to integrating a Cartesian state, since the number of rapidly changing elements can be reduced. A
formulation of the EOMs that only has one single rapidly changing element, like the Keplerian model, but does not
experience the singularities that are present in the Keplerian model, are the MEE [25]. Five variables describe the shape
and orientation of the orbit, while one variable describes the location of the spacecraft within the orbit. This latter
variable is chosen as the true longitude. The MEE are defined as

? = 0(1 − 42), 5 = 4 cos (l +Ω), 6 = 4 sin (l +Ω), ℎ = tan
(
8

2

)
cos (Ω), :̃ = tan

(
8

2

)
sin (Ω), ; = l +Ω + a (10)

where ? is the semi-latus rectum, 5 and 6 describe the orbit eccentricity, whereas ℎ and :̃ describe the orbit inclination
and ; is the true longitude. The MEE are defined using Kepler elements, 0, 8, 4, l, Ω and a, which are the semi-major
axis, inclination, eccentricity, argument of periapsis, right ascension of the ascending node and the true anomaly,
respectively. The augmented state vector in MEE form becomes

^MEE =
[
? 5 6 ℎ :̃ ; C U X

]) (11)

Integrating the dynamics in MEE requires the derivative of the augmented state vector first to be evaluated in
Cartesian elements (see Eq. 2), after which the derivative can be transformed to MEE by the method in Reference [26]
(Section 2.1).

F. Sundman transformation
Using MEE has proven to be even more advantageous when using a Sundman transformation to change the independent
variable for integration from time to the true anomaly, a [11]. This Sundman transformation is given as

3C =
1
√
`⊕?

(
?

@

)2
3E (12)

where @ is an auxiliary MEE, which is defined as

@ = 1 + 5 cos (;) + 6 sin (;) (13)

The derivative of the augmented state vector is then transformed as

˚̂MEE =
m^MEE
mE

=
m^MEE
mC

mC

mE
= ¤̂MEE

mC

mE
(14)

where mC/ma is obtained from Eq. 12. Note the different dot above the augmented state vector ( ˚̂ versus ¤̂ ), where �̊
indicates the Sundman-transformed derivative.

III. Differential dynamic programming
This section provides the definition of the DDP method and details on its implementation. The algorithm provided here
is based on the DDP algorithm in Reference [18], for the particular case of a single-phase trajectory without local stage
costs.

Like any low-thrust trajectory optimisation algorithm, DDP seeks the minimum of a cost function � (x, u, C), where
x(C) is a state trajectory and u(C) is a control schedule. The general workflow of DDP is explained as follows. First,
the spacecraft’s trajectory is forward integrated with a given set of controls. Then, the trajectory is discretised into
stages, where at each stage a local, quadratic model of the cost is minimised. The method of Dynamic Programming is
based on Bellman’s principle of optimality: “An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first
decision.” [27]. Following this principle, the algorithm finds the control variables for the final stage that correspond to
the best final solution. When these control variables are found, the algorithm repeats this task for the penultimate stage,
until it has optimised all individual stages. This process is called the backward sweep. With the newly found control
variables, the problem is forward integrated, after which the same procedure is initiated until the optimisation algorithm
has converged. The remainder of this section will elaborate on the different steps taken by DDP, but first the notation is
elaborated upon in the next section.
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A. Notation
The DDP algorithm consists of a number of equations in which scalars, vectors, matrices and third-orders tensors make
their appearance. This section covers the notation that is used throughout the upcoming sections. Similar as in Section
II, boldface is used to indicate vectors, whereas superscripts are used to indicate the entries in a vector, matrix or tensor.
For example, consider the augmented state vector in MEE (note that the MEE subscript is dropped for brevity) as

^ =
[
? 5 6 ℎ :̃ ; C U X

]) (15)

The 8th entry of ^ is written as ^8 , so ^3 is equal to 6 when counting starts from one. The same procedure holds for
matrices and third-order tensors. For example, consider the following matrix:

. =


1 2 3
4 5 6
7 8 9

 (16)

The (8, 0)th entry of . is written as . 8,0, so .2,3 is equal to 6.
Subscripts are used for indexing and for indicating the derivative, for example:

�- =
m�

m^
(17)

where �- is the derivative of the cost, �, with respect to the augmented state vector, ^. When the augmented state
vector, ^, has size = × 1, then �- is also of size = × 1. Note that in this case no boldface is used for the subscript. An
additional subscript, �-,: , is used to indicate the value of the gradient evaluated at stage : . Second-order derivatives are
defined similarly as

�-_ =
m2�

m^m,
(18)

where �-_ is the second-order derivative of the cost, �, with respect to the augmented state vector, ^, and the vector of
Lagrange multipliers, ,. When the augmented state vector, ^, has size = × 1 and the vector containing the Lagrange
multipliers, ,, has size < × 1, then �-_ is of size = × <.

Einstein summation is used to indicate summation over repeated indices. As an example, consider the simple dot
product:

_ · _) =
[
1 2 3

]
·
[
1 2 3

])
= 1 × 1 + 2 × 2 + 3 × 3 = 14 (19)

Instead of writing the dot product, Einstein notation can be used. The product is then written as

_W1_W1 =

3∑
W1=1

_W1 × _W1 = 1 × 1 + 2 × 2 + 3 × 3 = 14 (20)

where W1 is a dummy index indicating that summation should take place over repeating values of the dummy index.
Matrix multiplication can also be written using Einstein notation as

¤Φ8,0 = �8,W1ΦW1 ,0 =

<∑
W1=1

�8,W1ΦW1 ,0 (21)

where ¤Φ is the derivative of the state transition matrix, � is the dynamics matrix (see Section III.D), Φ is the state
transition matrix and < is the size of the matrix. The dummy index, W1, indicates that the (8, 0)th entry of ¤Φ is found by
summing the products of the Wth1 entry of the 8th row of � with the Wth1 entry of the 0th column of Φ, from W1 = 1 to <.
Multiple dummy indices, for example W1 and W2, may be used to indicate a double summation.

B. Forward sweep
The optimisation procedure starts with the forward sweep, which integrates the trajectory with a given set of controls.
For the first iteration, this is the initial guess, while subsequent iterations update the control according to u = ū + Xu,
where ū is the control of the previous successful iteration (see Section III.G for how a successful iteration is defined)
and Xu is the control update calculated in the backward sweep of the algorithm (see Section III.D). If the resulting
trajectory meets the optimality criteria, the procedure is finished and the algorithm is said to have converged. Otherwise,
a new control update is calculated in the backward sweep.

The dynamics are integrated using a fixed timestep DOPRI8 integrator, where 100 steps are taken per revolution
around the Earth regardless of the shape of the trajectory. State transition matrices (STMs) have to be integrated along
the state, which is best carried out using an integrator with a fixed step size [28]. When a variable step size integrator
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would be used, the state transition matrices will not account for part of the changes in the trajectory that are induced by
the different time steps taken.

C. Augmented Lagrangian cost function
The cost function, which is to be minimised, is written as

� = q + ,)7 + 7) �7 (22)

where q is the objective that is to be minimised, , the vector of Lagrange multipliers, 7 the vector with terminal
constraints and � the penalty matrix to place additional weight on each constraint. The Lagrange multipliers are
initialised at zero and updated with every iteration of the algorithm, see Section III.E.

D. Backward sweep
The backward sweep is the step of the algorithm where the control update is determined. This step solves the sequence
of subproblems that minimises the cost-to-go from stage : = # − 1, # − 2, ..., 0. The cost-to-go is defined as the cost
incurred from the current stage to the final destination [18]. The optimal cost-to-go at each stage is written as

�∗: = min
Xu:
[�: ] (23)

where �: is the cost-to-go from stage : until the end of the trajectory. The superscript asterisk denotes the optimal value,
so �∗

:
is the optimal cost-to-go from stage : until the end of the trajectory. The solution to Eq. 23 is the optimal control

update Xu∗
:
. The cost function is approximated with a second-order Taylor series expansion around the states, controls

and Lagrange multipliers. By taking the derivative of this expansion with respect to the controls and setting it to zero,
an unconstrained feedback control law for the optimal control update is found as

Xu∗
:
= �: + �:Xx: + �:X,

�: = −�−1
DD,:

�D,:

�: = −�−1
DD,:

�DG,:

�: = −�−1
DD,:

�D_,:

(24)

where X, is the Lagrange multiplier update, see Section III.E, � is the feedforward control matrix, and � and � are the
feedback control matrices. It is important to note that the subscript G is used, not - . The derivatives with respect to the
state, x, and the controls, u, are a part of the derivative with respect to the complete augmented state vector, ^, as

�- =
[
�G �D

])
=

[
m�
m?

m�
m 5

m�
m6

m�
mℎ

m�

m:̃

m�
m;

m�
mC
| m�

mU
m�
mX

])
(25)

Note that �DD and �DG are submatrices of �-- , following the same analogy as for �- in Eq. 25. The submatrices for
Eq. 24 are calculated and stored for use during the forward sweep of the algorithm. Note that Xu∗

:
cannot be determined

directly, since it is dependent on Xx: . This variable is the change in state due to the changed control, which is calculated
during the forward integration of the state. A trust-region method limits the size of the hessian, �DD,: , such that the
resulting change in state, Xx: , remains within the valid region of the quadratic model, see Section III.F. The remainder
of the backward sweep is focused on finding the required matrices for Eq. 24. These matrices can be found using the
cost-to-go derivatives with respect to the augmented state, and Lagrange multipliers as

�-,: = Φ
) �∗-,:+1 (26a)

�_,: = �
∗
_,:+1 (26b)

�
8,0

--,:
= �
∗W1 ,W2
--,:+1Φ

W1 ,8ΦW2 ,0 + �∗,W1
-,:+1Φ

W1 ,80 (26c)

�__,: = �
∗
__,:+1 (26d)

�-_,: = Φ
) �∗-_,:+1 (26e)

where Φ8,0 is the state transition matrix and Φ8,01 is the second-order state transition tensor, both will be referred to
as the STMs. The derivatives of the cost-to-go at stage : in Eq. 26 are dependent on the derivatives of the optimal
cost-to-go at stage : + 1. Details on how the stage’s optimal cost-to-go derivatives are calculated are provided at the end
of this section. Some additional information per subequation is provided below.
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• For the derivatives with respect to the Lagrange multipliers in Eqs. 26b and 26d, the derivatives at stage : are
equal to the optimal derivatives at stage : + 1. In addition, the observant reader might notice that �_,: and �__,: in
Eqs. 26b and 26d are not directly needed in Eq. 24. However, these two derivatives are required to calculate the
update of the Lagrange multipliers, X,, see Section III.E.

• For the derivatives where the state, x, is involved (Eqs. 26a, 26c and 26e), the optimal cost-to-go derivatives from
stage : + 1 are mapped to stage : with the use of the STMs.

• In Eq. 26c Einstein notation (as introduced in Section III.A) is used to indicate summation over two dummy
indices, W1 and W2, which is used to find the hessian, �--,: . For clarification, this equation can alternatively be
written as

�
8,0

--,:
=

<∑
W1=1

<∑
W2=1

�
∗W1 ,W2
--,:+1Φ

W1 ,8ΦW2 ,0 + �∗,W1
-,:+1Φ

W1 ,80 (27)

where < is the size of ^.
Evaluating the STMs is the most computationally expensive part of the algorithm, and is performed in parallel using

OpenMP [29]. Parallel computation is possible since the state at each point in time is already known from the forward
sweep. In order to determine the STMs, the dynamics matrix and tensor are defined as

�8,0 =
m ¤̂ 8
m^0

(28a)

�8,01 =
m2 ¤̂ 8

m^0m^1
(28b)

where the (8, 0)th entry of the dynamics tensor, �8,0, corresponds to the derivative of the 8th entry of ¤̂ with respect
to the 0th entry of ^. For the third-order dynamics tensor, �8,01, the (8, 01)th entry of the tensor corresponds to the
second-order derivative of the 8th entry of ¤̂ with respect to the 0th and 1th entry of ^. The entries of the dynamics
matrix and tensor are found analytically∗.

The previously proposed Sundman transformation requires the dynamics matrix and tensor to be transformed. As
stated in Section II.F and particularly in Eq. 14, the Sundman transformation is performed by multiplying the derivative
of the augmented state vector with [ = 3C/3a.

The first and second derivatives of [ with respect to the augmented state vector are written as

[8- =
m[

m^8
(29a)

[
8,0

--
=

m2[

m^8m^0
(29b)

The dynamics matrix and tensor can then be transformed as

Λ8,0 = �8,0[ + ¤- 8[0- (30a)

Λ8,01 = �8,01[ + �8,0[1- + �8,1[0- + ¤- 8[
0,1

--
(30b)

whereΛ8,0 andΛ8,01 are the Sundman-transformed dynamics matrix and tensor, respectively. Similar to the computation
of the derivative of the augmented state vector in Section II.F, the dynamics matrix and tensor are both first determined in
Cartesian elements, after which they are transformed to MEE, see Reference [11] (Appendix A). Finally, the differential
equations that need to be solved to find the STMs (again using Einstein notation) are:

¤Φ8,0 = Λ8,W1ΦW1 ,0 (31a)
¤Φ8,01 = Λ8,W1ΦW1 ,01 + Λ8,W1W2ΦW1 ,0ΦW2 ,1 (31b)

This set of differential equations can easily be solved by knowing the boundary conditions Φ(C: , C: )8,0 = O and
Φ(C: , C: )8,01 = 0, where O is the identity matrix and 0 a matrix of zeroes. In other words, at the beginning of each stage
the state transition matrix is equal to the identity matrix and the state transition tensor is equal to zero. The STMs are
then evaluated at the end of each stage using a single step of the DOPRI8 integration routine.

∗ Maple worksheets available at: https://github.com/gijsleemans1/Analytical_derivatives. Accessed: 9/6/2021
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Now that it is clear how to obtain the STMs in Eq. 26, the derivatives of the cost-to-go at stage : in Eq. 26 can
be calculated, assuming that the optimal cost-to-go derivatives from stage : + 1 are known. Afterwards, the optimal
cost-to-go derivatives from the current stage, : , are calculated as

�': = �':+1 + �)D,:�: +
1
2
�): �DD,:�: (32a)

�∗)G,: = �
)
G,: + �

)
D,:�: + �

)
: �DD,:�: + �

)
: �DG,: (32b)

�∗)_,: = �
)
_,: + �

)
D,:�: + �

)
: �DD,:�: + �

)
: �D_,: (32c)

�∗)GG,: = �
)
GG,: + �:�

)
DD,:�: + �

)
: �DG,: + �DG,:�: (32d)

�∗)__,: = �
)
__,: + �:�

)
DD,:�: + �

)
: �D_,: + �D_,:�: (32e)

�∗)G_,: = �
)
G_,: + �:�

)
DD,:�: + �

)
: �D_,: + �DG,:�: (32f)

where �': is the expected reduction in cost at stage : . The expected reduction is not needed to calculate the control
update in Eq. 24, but is used to determine whether an iteration of the DDP algorithm has been successful or not,
see Section III.G. At the final stage, the optimal and nominal costs are equivalent, i.e. �∗

#
= �. This means that the

derivatives of the optimal cost-to-go are equal to the derivatives of the augmented Lagrangian, which can be found
analytically∗. Note that there is no expected reduction at the final stage.

To summarise, the backward sweep starts by calculating the derivatives of the optimal cost-to-go at the final stage
analytically and the evaluation of the STMs at all stages. Then, an iterative approach is started to calculate the current
stage’s cost-to-go derivatives (see Eq. 26), the feedback and feedforward matrices (see Eq. 24), and optimal cost-to-go
derivatives (see Eq. 32). After all the aforementioned terms have been calculated for stage : , the algorithm does the
same for stage : − 1. This process is repeated until the algorithm has evaluated the feedback and feedforward matrices
for the first stage.

E. Lagrange multiplier update
The Lagrange multipliers are updated once per iteration of the algorithm, after the backward sweep has been completed,
as

X, = −�−1
__�_ (33)

where �__ = �∗__,0 and �_ = �
∗
_,0, indicating the derivatives are evaluated at stage : = 0. Also, the expected reduction

has to be updated as

�'0 = �'0 + �)_ X, +
1
2
X,) �__X, (34)

where �'0 is the expected reduction at stage : = 0.

F. Trust region quadratic subproblem
As was stated in Section III.D, the trust region quadratic subproblem (TRQP) restricts the size of the hessian, �DD,: , so
that the resulting change in state, Xx: , remains within the valid region of the quadratic model. This sub-algorithm is
employed at each stage as soon as �DD,: is calculated in Eq. 26c. The expected reduction (see Eq. 32a), �: , �: and �:
(see Eq. 24) are all updated if �DD,: is changed by the TRQP. The trust region subproblem is formulated as

min
XD:

�D,:Xu: +
1
2
Xu): �DD,:Xu: such that ‖�Xu: ‖ ≤ Δ (35)

where � is a scaling matrix, which was set to the identity matrix throughout this work, ‖�‖ is the Euclidean norm and Δ
is the trust region radius. Many different methods for solving the TRQP exist in literature. The methods of Reference
[30] have been proven to be robust for solving the TRQP in DDP. In particular, algorithm 7.3.4. (with the enhancement
of introducing a scaling matrix, "), has been used to solve the TRQP in DDP [11, 18]. This method is from hereon
referred to as the "classical TRQP". According to Reference [18], a less rigorous and efficient approach is arbitrary
hessian shifting, from hereon referred to as the "simple TRQP". In the simple TRQP, the same user-defined value is
added to the diagonal of the hessian at every stage. If the resulting control update is outside the trust region, the value
on the diagonal is changed such that the control update lies exactly on the boundary of the trust region. The TRQP

9

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

17
76

 



not only restricts �DD , but also �__. However, there is one notable difference between the TRQP for the control update
and the multiplier update: �DD is required to be positive definite, while �__ is required to be negative definite. So, the
control parameter subproblem is defined as TRQP(�D ,�DD ,Δ) and the multiplier subproblem as TRQP(−�_,−�__,Δ).

G. Iterations
After the backward sweep has been completed, it is determined whether the iteration should be accepted or rejected.
Therefore, a reduction ratio is calculated as

d =
X�

�'0
(36)

where X� is the difference in final cost between successive iterations and �'0 is the expected reduction at the first stage.
When d ≈ 1, the model is valid because the reduction in cost is as predicted. The iteration is then accepted and for the
next iteration the trust-region is enlarged. If d is not close to one, the iteration should be rejected and the trust-region
should be reduced for the next iteration. The STMs will not have to be calculated again when the iteration is rejected,
since the state will not have changed because the controls remain unchanged. The algorithm can immediately proceed
from the backward sweep onwards. The size of the trust region for the subsequent iteration is calculated as

Δ#?+1 =

{
min

(
(1 + ^)Δ#? ,Δ<0G

)
, if d ∈ (1 − n1, 1 + n1)

max
(
(1 − ^)Δ#? ,Δ<8=

)
, otherwise

(37)

where #? is the iteration counter, ^ determines by how much the trust region is enlarged or shrunk during each iteration,
Δ<0G and Δ<8= are the maximum and minimum trust region radii, respectively, and n1 gives the tolerance on d which
is deemed acceptable. The complete algorithm is said to have converged when the expected reduction of the latest
iteration is smaller than the optimality tolerance, n2.

H. Monotonic basin hopping
Classical dynamic programming algorithms minimise the cost function by discretising the stages and controls, which has
the consequence that the algorithm satisfies the conditions for global optimality [18]. The downsides of these classical
algorithms is that they have large storage requirements due to the "curse of dimensionality". Differential dynamic
programming overcomes this issue by introducing the quadratic trust region, forcing the solution to be inside a given
corridor around a reference solution, thereby reducing the dimension of the search space. This has the consequence that
DDP can only be considered to find locally optimal solutions. DDP can be paired with a global search method, such as
monotonic basin hopping (MBH), to find globally optimal solutions [11].

MBH works as follows [17]: first, the inner optimisation algorithm, DDP, runs with an initial guess. The result of
the optimisation is a set of control variables that results in a locally optimal trajectory. This set of control variables
is randomly perturbed within the control bounds, and fed to the optimisation algorithm as a new initial guess. If the
optimisation yields a trajectory with lower cost, the iteration is accepted, the perturbed control becomes the new control
and the procedure is repeated. If the new trajectory has a higher cost, the iteration is rejected and the original controls
are again randomly perturbed. This is repeated until a stopping criterion is met.

I. Control Bounds
Control parameters can be limited by control bounds D! ≤ D ≤ D* , where D! is a lower bound and D* is an upper
bound of the control parameter D. The original DDP algorithm treats control bounds with a null-space method [31].
This work proposes a different method of incorporating control bounds, namely a Heaviside-based approach. The
Heaviside function is approximated with the smooth logistic function as

�{ 9} ≈ 1
2
+ 1

2
tanh ( ℎ̃ 9) (38)

where ℎ̃ is a tuning parameter that determines the steepness of the ascent and descent of the Heaviside function.
Increasing ℎ̃ too much will lead to very large derivatives at the bounds and the algorithm becoming unstable. Throughout
this work, ℎ̃ was set to 100. The new control parameter D=4F , calculated from the original D with the combination of
Heaviside functions is:

D=4F = D + (D! − D) × �{−ℎ̃(D − D!)} + (D* − D) × �{ℎ̃(D − D* )} (39)
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When the control is within the control bounds, both Heaviside functions will equate to zero and D=4F = D. If the
control is smaller than the lower bound, D < D! , the Heaviside term �{−ℎ̃(D − D!)} becomes equal to one, which will
add the difference between the lower bound and the current control value, D! − D, to the current control, resulting in the
control being exactly on the lower bound. The same reasoning holds for when the control is larger than the upper bound,
D > D* , the Heaviside term �{ℎ̃(D − D* )} becomes equal to one, which will add the difference between the upper
bound and the current control value, D* − D, which is a negative value, to the current control. This results in the control
being exactly on the upper bound.

IV. Results
This section presents the results through a set of five test cases to demonstrate the applicability of DDP to optimise
Earth-centred solar-sail trajectories as well as demonstrating the impact on the performance of DDP depending on the
complexity of the dynamics considered, the settings of the algorithm and the inclusion of constraints. The first test case
in Section IV.A is included for validation purposes and to compare the performance of the DDP optimisation approach
proposed in this paper to the locally optimal results known from the literature. Subsequently, in Section IV.B the case is
extended to more complex dynamics and a thorough analysis of various settings used for the DDP algorithm is given.
Section IV.C demonstrates the algorithm’s performance on a real-life example in the form of NASA’s upcoming ACS3
mission. Constraints are implemented that force the ACS3 sailcraft to keep its Sun-synchronous attribute during orbit
raising. While all test cases in Sections IV.A-IV.C are optimised over the course of only three orbital revolutions,
Sections IV.D and IV.E extend these optimisation to many revolutions around Earth. Note that for all test cases the
specific orbital energy is optimised.

A. Two-dimensional geostationary orbit: three orbital revolutions
This first test case concerns the optimisation of a spacecraft in geostationary orbit (42, 241 km altitude, zero inclination
and eccentricity) over the course of three orbital revolutions. Since no constraints are enforced, the augmented
Lagrangian cost function can be written as

� = q = −
(
¤A2

2
− `⊕

A

)
(40)

Note the minus sign in Eq. 40, since the specific orbital energy is to be maximised, whereas the cost function is
minimised by the DDP algorithm. A two-dimensional dynamical model is assumed where the direction of sunlight is
assumed to coincide with the orbital plane and the Sun is located at a distance of one astronomical unit (AU), fixed
along the negative G-axis of the ECI frame. The position vector of the Sun is thus equal to

r� =
[
−1�* 0 0

]
(41)

The control is then solely determined by the sail cone angle, U, as the clock angle, X, is fixed at 90°. For the
cone angle, an initial guess of 0 is used across all stages. For now, only point-mass gravity from the Earth and the
solar-sail acceleration itself are assumed to act on the sailcraft, i.e., the following terms in Eq. 2 equate to zero:
¥r�2 = ¥r�3 = ¥r�4 = ¥r$ = ¥r� = 0. These assumptions and simplifications are made to allow validation of the DDP
algorithm. The output of the DDP algorithm is compared to the outcome following from a locally optimal steering law
from Reference [12]. A state-of-the-art solar-sail lightness number of V = 0.011 is used.

The resulting control profile and evolution of the semi-major axis are shown in Figure 2. The control profiles
found by DDP and the locally optimal steering law are very similar, although small differences are visible. The final
semi-major axis found by DDP is approximately 35 m smaller than the one found by the locally optimal steering law.
Both solutions are local optima, but the solution found by the steering law is a better local optimum. The difference in
semi-major axis could be explained by the fact that for this simple two-dimensional case the locally optimal steering law
results in the theoretical maximum semi-major axis gain and the solution from the DDP algorithm only gets close to this
result because of the approximation of the cost function by a second-order Taylor series expansion. With a stricter
optimality tolerance (see Section IV.B.1 for the nominal DDP settings used throughout this paper), the DDP algorithm
might be able to find an increase in the semi-major axis that converges towards the steering law solution. Since the DDP
algorithm finds a very similar control profile compared to the locally optimal steering law, it can be concluded that the
solution is a valid optimum. The DDP solution comes at the cost of a computational time of 853 seconds, compared to a
runtime of approximately 0.2 seconds for the steering law solution†. When more complex and longer-duration solar-sail

†Computation on personal laptop CPU: Quad-core Intel(R) Core(TM) i7-10610U @1.80 GHz
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scenarios are considered, such as the ones in the next four subsections, the increase in computational time is expected
to be justified. The improvement to the optimal solution is expected to be proportionally larger when more complex
problems are evaluated. Furthermore, contrary to the locally optimal steering law approach, DDP allows to include
terminal and path-inequality constraints in the optimisation problem. Finally, not that significant reductions in runtime
can be achieved when using the locally optimal steering law as initial guess for the DDP algorithm, which reduces the
runtime to only 64 seconds.

(a) Control angles. (b) Semi-major axis.
Fig. 2 Two-dimensional geostationary orbit: comparison with locally optimal steering law [12].

(a) Satellite orbit.

(b) Control angles. (c) Semi-major axis.
Fig. 3 Three-dimensional geostationary orbit: three orbital revolutions.

B. Three-dimensional geostationary orbit: three orbital revolutions
As a first extension, the problem of the previous section is expanded into three dimensions by removing the assumption
on the direction of sunlight to be fixed and planar. Instead, the Sun’s position is retrieved from ephemeris data, as
explained in Section II.D. Also, a more realistic lightness number of 0.011 is assumed. The clock angle is no longer
fixed to 90°, but is optimised by the DDP algorithm from an initial guess of zero at every stage. All other case details
remain the same as those described in Section IV.A.

The resulting trajectory is shown in Figure 3a, where also the direction towards the Sun and the solar-sail acceleration
are visualised. The optimal control profile, see Figure 3b, shows that both the cone and clock angles vary periodically
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with every revolution of the satellite around the Earth. The resulting semi-major axis increase from Figure 3c behaves
similar to the increase in the two-dimensional case, although there is a shift in phase, since the phasing of the Sun and
spacecraft is different when using the true ephemeris of the Sun. Furthermore, the magnitude of the increase of the
semi-major axis is different as a different solar-sail lightness number is used.

1. DDP algorithm settings
Various settings of the DDP algorithm can be tuned, as explained in Section III. The influence of changing these

settings for the current problem is investigated to find out how robust the DDP algorithm is to different settings and what
the best settings are for the remaining test cases. In this section, the effect of changing the reduction ratio tolerance, n1,
the optimality tolerance, n2, the initial trust region radius, Δ0, the maximum trust region radius, Δmax, the minimum trust
region radius, Δmin, and the trust region scaling factor, ^, is assessed. For each setting three different values are used.
The combination of settings which are used and their resulting semi-major axis increase, as well as the algorithm’s
runtime, are presented in Table 2.

Two settings seem to have the largest influence on the semi-major axis increase: the optimality tolerance, n2, and the
minimum trust region radius, Δmin, which were both defined in Section III.G. The smaller the optimality tolerance, the
larger the final semi-major axis. This is as expected, since the optimality tolerance is the convergence criterion for the
DDP algorithm. When a smaller value is used, the algorithm will iterate longer to find a more optimal trajectory. Any
minimum trust region radius larger than zero leads to suboptimal trajectories. The trust region should be allowed to
shrink when unsuccessful iterations take place, but it cannot become smaller than the minimum trust region radius. The
trust region scaling factor, ^, also has a small effect on the optimality of the trajectory, for which an optimal value of
0.01 was found. The differences in semi-major axis resulting from varying the other settings are minor.

In general, the differences in runtime for different settings is small, the only large differences are observed for
different optimality tolerances, where a smaller tolerance will lead to a longer runtime, and for varying the initial trust
region radius, where the algorithm converges quickly to a suboptimal solution. The settings that result in the largest
semi-major axis are: n1 = 0.1 n2 = 1 × 10−7, Δ0 = c/2, Δmax = c/2, Δmin = 0, and ^ = 0.01. However, it is likely that
by making the optimality tolerance, n2, even smaller, the resulting semi-major axis will become even larger. However,
this increase in optimality will come at the cost of an increase in computational time. The aforementioned settings will
be used in the remainder of this work, with the exception of the optimality tolerance, for which n2 = 1 × 10−6 will be
used. The difference in final semi-major axis between using n2 = 1 × 10−6 and n2 = 1 × 10−7 is very small, but comes at
the cost of an increase in runtime of approximately 65%.

Table 2 Three-dimensional geostationary orbit: effect of varying DDP settings.

n1 n2 Δ0 Δmax Δmin ^ Δ0 [km] Runtime [s] a

0.05 1 × 10−6 c c 0 0.05 208.848116 271.9
0.2 1 × 10−6 c c 0 0.05 208.843899 240.3
0.5 1 × 10−6 c c 0 0.05 208.845164 241.9
0.1 1 × 10−5 c c 0 0.05 208.767372 131.0
0.1 1 × 10−6 c c 0 0.05 208.850688 213.6
0.1 1 × 10−7 c c 0 0.05 208.864644 351.5
0.1 1 × 10−6 c/2 c 0 0.05 208.851152 214.1
0.1 1 × 10−6 3c/2 c 0 0.05 208.850688 213.7
0.1 1 × 10−6 2c c 0 0.05 208.850688 215.0
0.1 1 × 10−6 c c/2 0 0.05 208.851109 213.7
0.1 1 × 10−6 c 3c/2 0 0.05 208.851109 214.1
0.1 1 × 10−6 c 2c 0 0.05 208.850013 213.9
0.1 1 × 10−6 c c 0.05 0.05 208.815523 160.0
0.1 1 × 10−6 c c 0.1 0.05 113.530786 6.8
0.1 1 × 10−6 c c 0.2 0.05 113.530786 6.3
0.1 1 × 10−6 c c 0 0.01 208.851657 219.8
0.1 1 × 10−6 c c 0 0.1 208.850182 217.9
0.1 1 × 10−6 c c 0 0.2 208.846977 222.2

aComputation was executed on sixteen threads of an Intel(R) Xeon(R) CPU E5-2683 v3 @2.00GHz.
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There are more settings that can be changed than just the settings of the DDP algorithm itself. In Section III.F, two
different trust region algorithms were discussed, the "classical TRQP" and the "simple TRQP". The classical TRQP is
tuned by changing the value of the scaling matrix, " , whereas the simple TRQP is tuned by changing the magnitude of
the hessian shift. The results of using the different algorithms with different settings are presented in Table 3. There are
significant differences in runtime between the simple and classical algorithms: the simple algorithm converges multiple
times faster, and it produces more optimal trajectories. It is interesting to note that the setting that converges fastest, is
also the setting resulting in the most optimal trajectory. Therefore, in the remainder of this work, the simple TRQP with
a hessian shift of 0.01 is used.

Table 3 Three-dimensional geostationary orbit: effect of varying TRQP settings.

TRQP Scaling/Shift Δ0 [km] Runtime [s]
Simple 1 × 10−1 208.736761 1347.2
Simple 1 × 10−2 208.851109 223.1
Simple 1 × 10−3 208.676761 692.1
Simple 1 × 10−4 208.670943 750.7
Classical 1 × 10−3 208.016431 2254.4
Classical 1 × 10−4 208.466405 2455.0
Classical 1 × 10−5 206.779676 4957.1
Classical 1 × 10−6 206.632903 6358.9

Finally, the effect of using MBH has been investigated. Different combinations of settings for the chance and
magnitude of the perturbation on the control variables were used. However, MBH was hardly able to improve on the
solution found by DDP. In the cases where it did improve, the improvement was only very minor and came at the cost of
a significant increase in computational time.

2. Effect of perturbing accelerations
So far, the only accelerations acting on the sailcraft have been point-mass gravity from the Earth and the solar-sail

acceleration. The effect of including other perturbing accelerations in the dynamical model is shown in Table 4.
The third-body perturbation from the Moon produces the largest effect; a decrease in the final semi-major axis of
approximately 0.8 km is observed. Note that the magnitude of the semi-major axis decrease due to lunar gravity will
most likely change when a different initial epoch is considered, since the acceleration acting on the satellite is dependent
on the instantaneous position of the Moon. The effect of considering �2, �3, �4 and solar gravity is very small, where �2
has some effect, but considerably less than the gravitational acceleration from the Moon. There is no significant impact
on the runtime. With all perturbing accelerations taken into account, a final semi-major axis increase of 208.05 km is
obtained, which is significant considering that only three orbital revolutions are simulated. Therefore, it appears that a
current state-of-the-art solar sail is a viable method of propulsion for orbit raising at geostationary altitude.

Table 4 Three-dimensional geostationary orbit: effect of varying dynamical model settings.

Perturbations Δ0 [km] Runtime [s]
None 208.851109 223.1
Moon 208.062980 232.8

�2 and Moon 208.051849 227.3
�2, �3, �4, Moon and Sun 208.049825 242.5

C. ACS3 mission: three orbital revolutions
For the analysis in this section, the sail characteristics from NASA’s upcoming ACS3 mission are considered. It is
assumed that the sailcraft will be launched into a 700 km altitude noon-midnight Sun-synchronous orbit (inclination
8 = 98.19°), with a solar-sail characteristic acceleration of 0.05 mm/s2 (corresponding to a solar-sail lightness number
of 0.0084)‡. The scheduled launch date is assumed to be June 1st 2022, which means that the sail will be operational
from approximately July 1st 2022 onwards‡. Using the aforementioned initial conditions, the specific orbital energy of

‡W.K. Wilkie (NASA Langley Research Center), personal communication, May 2021
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the satellite is optimised for a total of three revolutions. Since no constraints are considered yet, the cost function is
identical to Eq. 40. The resulting control profile and semi-major axis increase are visualised in Figure 4. Considering
the noon-midnight orientation of the Sun-synchronous orbit, the sailcraft spends significant amounts of time in eclipse,
which is clearly visible in Figure 4: during eclipse, the semi-major axis does not increase and the cone and clock angles
are set to zero.

(a) Control angles. (b) Semi-major axis.

Fig. 4 ACS3 mission: three orbital revolutions.

For the results presented in Figure 4, the only accelerations acting on the sailcraft have been point-mass gravity from
the Earth and the solar-sail acceleration (including eclipses). The effect of including other perturbing accelerations in
the dynamical model is shown in Table 5. The �2 effect has the greatest impact on the final semi-major axis. The other
contributions of the non-spherical Earth, �3 and �4, have some effect, whereas the inclusion of lunar and solar gravity
makes no significant difference. Interestingly, the algorithm converges quicker when �2 is included, whereas it takes
longer with the other perturbing accelerations.

Table 5 ACS3 mission: effect of varying dynamical model settings.

Perturbations Δ0 [km] Runtime [s]
None 0.464314 260.9
�2 0.388996 237.0

�2, �3 and �4 0.385446 303.4
�2, �3, �4, Moon and Sun 0.385513 304.6

1. Constrained DDP optimisation
This test case is used to demonstrate that DDP can deal with terminal constraints by implementing a terminal

constraint to the cost function, which is minimised alongside the original objective. As stated previously, the sailcraft is
placed in a Sun-synchronous orbit. However, as soon as the semi-major axis of the orbit changes, the Sun-synchronous
attribute is lost. Only by simultaneously changing the inclination of the orbit can the orbit remain Sun-synchronous.
The relation between the inclination and semi-major axis for a Sun-synchronous orbit is [32]:

¤Ω = −3c
�2'

2
⊕

?2 cos (8) 1
)
=

2c
)es

(42)

where ) is the orbital period of the satellite and )es is the length of a sidereal day. When both sides of Eq. 42 are
equal, the orbit is Sun-synchronous. The constraint is formulated by requiring that the difference between the left- and
right-hand sides of Eq. 42 is as close as possible to zero. Then, by assuming a near-circular orbit, the constraint becomes

k = cos (8) + 4c/)�(
3�2'

2
⊕
√
`⊕
07/2 (43)

The complete cost function can then be written as
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� (44)

When the orbit is Sun-synchronous, the value of the constraint will be equal to zero. When the orbit is not
Sun-synchronous, the constraint will have a nonzero value and the DDP algorithm will adjust the control variables
to minimise the constraint violation. Weights can be added to individual constraints in the augmented cost function
using the penalty matrix, Σ. Increasing the weight on the inclination constraint will force the final inclination to be
closer to the inclination that is required for Sun-synchronous conditions, but will lead to a smaller final semi-major axis,
see Table 6. Here, Δ8 is the "real" inclination change resulting from the optimal trajectory found by DDP, whereas Δ8C
is the "theoretical" inclination change that would be required for the final orbit to be Sun-synchronous. If the DDP
algorithm is able to keep the trajectory under Sun-synchronous conditions, these "real" and "theoretical" inclinations
are the same. Contrary, when no constraint is implemented, the "real" inclination will not change, since the DDP
algorithm is solely focused on maximising the semi-major axis. The closer the "real" and "theoretical" inclination are to
each other, the larger Δ8/Δ8C , and the closer the final orbit is to Sun-synchronous conditions, but the smaller the final
semi-major axis, since part of the sail acceleration is used for changing the inclination. In addition, the runtime of the
algorithm until convergence increases with increasing weights. The evolution of the semi-major axis and inclination for
the unconstrained and constrained (Σ = 1 × 109) cases are shown in Figure 5a and 5b, respectively. It is clear that the
final semi-major axis for the constrained case is smaller. Furthermore, the inclination for the constrained case stays
close to the theoretical value, while for the unconstrained case the inclination hardly changes.

Table 6 ACS3 mission: effect of varying weights on inclination constraint.

Σ Δ0 [km] Δ8 [deg] Δ8C [deg] Δ8/Δ8C [%] Runtime [s]
0 × 106 0.464208 3.49504 × 10−6 0.00189234 0.18 264.0
5 × 106 0.444366 0.000312147 0.00181144 17.2 490.1

10 × 106 0.392154 0.000562415 0.00159857 35.2 675.0
75 × 106 0.257702 0.000862530 0.00105042 82.1 1044.6

150 × 106 0.240958 0.000882698 0.000982161 89.9 1138.8
1000 × 106 0.225821 0.0009001161 0.000920452 97.8 1342.0

(a) Semi-major axis comparison. (b) Inclination comparison.

Fig. 5 ACS3 mission: constrained Sun-synchronous inclination, three orbital revolutions.

D. Three-dimensional geostationary orbit: 500 orbital revolutions.
Previously, in Section IV.B, a three-dimensional geostationary orbit-raising case was investigated for a duration of
three orbital revolutions. Here, the case is extended to 500 orbital revolutions. In addition, a smaller, more realistic
solar-sail lightness number is used, V = 0.0011. Again, for validation purposes, the optimisation is first executed when
only the point-mass gravity of the Earth is considered and the results are compared to the results from the previously
introduced locally optimal steering law [12]. The final semi-major axis increase found by the locally optimal steering
law is marginally larger than the increase found by DDP (less than one kilometre over a total semi-major axis increase
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of 3822 km). It can therefore once again be concluded that the solution found by DDP is a valid optimum. As stated
before, it could be that the DDP algorithm finds a better solution when a stricter optimality tolerance is used.

From here on, all perturbing accelerations, �2, �3, �4, solar gravity, lunar gravity and eclipses are taken into account.
The resulting control angles and semi-major axis increase are shown in Figure 6. Though this figure does not provide
details for individual revolutions, it does clearly show that the control profile adapts itself to the moving position of the
Sun. Furthermore, the shape of the control profile for the first three revolutions was found to be exactly the same as
that found in Section IV.B. The figures in the right column of Figure 6 show a detail of the figures in the left column
after approximately 200 days have passed. The controls here are similar to the controls seen in Figure 3b, but mirrored
due to the difference in the Sun’s position. However, the semi-major axis increase shows a different pattern. In the
three-revolution case without perturbations, the semi-major axis would always increase or remain unchanged, whereas
for the 500 revolution case also a decrease in semi-major axis is observed. This behaviour can be attributed to the
perturbations acting on the sailcraft, of which the lunar gravity is the predominant factor. A final semi-major axis
increase of 3793.1 km is found. This increase is very large, especially considering that a solar-sail lightness number of
V = 0.0011 was used, which is an order of magnitude smaller than the current state-of-the art. In Section IV.B the
conclusion was drawn that a solar sail is a viable form of propulsion for orbit raising at geostationary altitude, which is
in agreement with the result from this section.

(a) Semi-major axis. (b) Detailed semi-major axis.

(c) Control angles. (d) Detailed control angles.
Fig. 6 Three-dimensional geostationary orbit: 500 orbital revolutions.

E. ACS3 mission: 100 orbital revolutions
Previously, in Section IV.C, the ACS3 mission was investigated for a mission duration of three orbital revolutions. Here,
the case is extended to 100 orbital revolutions. Furthermore, all perturbing accelerations (�2, �3, �4, solar gravity, lunar
gravity) and the Sun-synchronous inclination constraint (Σ = 75 × 106) are taken into account. The resulting control
angles, semi-major axis increase and inclination profile are shown in Figure 7. The figures in the right column again
show a detail of the figures in the left column. A final semi-major axis increase of 7.85 km is found and the inclination
constraint is met at Δ8/Δ8C = 99.4%. Considering that different weights have been used in the cost function for the
three and 100 revolution cases, this result suggests that the optimal value for the weight is problem-dependent. Table
6 indeed shows that for the three-revolution case the constraint is met at 82.1% for a weight of Σ = 75 × 106. The
semi-major axis increase which is achieved by the sail is significantly smaller than the increase found at geostationary
altitude in Section IV.D, but the time in which the increase is achieved is also very different. Here, the almost eight
kilometre increase is achieved in approximately seven days, compared to over 500 days for the geostationary case.
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Additionally, the perturbing accelerations have a different magnitude and the Sun-synchronous constraint negatively
affects the semi-major axis increase. When taking these more challenging conditions into account, the solar sail is still
able to achieve a significant increase in semi-major axis while the sailcraft is kept under Sun-synchronous conditions.

Several attempts have been made to increase the number of revolutions to one month of elapsed time, which would
equate to approximately 452 orbital revolutions. However, no successful iterations were found by DDP with the settings
mentioned in Section IV.B. Increasing the reduction ratio tolerance, d, leads to the algorithm finding successful iterations
and eventually to convergence, but the results show discontinuities in the controls and the algorithm is not able to
meet the constraints. Attempts to use the result of an unconstrained optimisation as initial guess to the constrained
optimisation also proved unsuccessful. Careful tuning of both the weight on the constraint and the optimisation settings
might be needed to find a combination of settings that works for the many-revolution constrained optimisation case,
which is deemed beyond the scope of this paper but is recommended for future investigations into the applicability of
DDP for many-revolution constraint optimisation.

(a) Semi-major axis. (b) Detailed semi-major axis.

(c) Control angles. (d) Detailed control angles.

(e) Inclination comparison. (f) Detailed inclination comparison.
Fig. 7 ACS3 mission: 100 orbital revolutions.
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V. Conclusions
In this work, the use of differential dynamic programming (DDP) to find optimal Earth-centred solar-sail trajectories has
been investigated. For the two-dimensional case of orbit raising at geostationary altitude and starting from a zero-initial
guess for the controls, the DDP algorithm has been proven to find very similar solutions compared to locally optimal
steering laws. The DDP solution comes at the cost of an increased computational time, but DDP also has the benefit
of being able to solve more complex and constrained Earth-centred solar-sail optimisation problems. The algorithm
performs similarly optimal for a three-dimensional case (i.e., considering the actual obliquity of the ecliptic). Significant
increases in the semi-major axis of the orbit were obtained (208 km after three revolutions) with a state-of-the-art
solar-sail lightness number, indicating that a solar sail is a viable form of propulsion for orbit raising at geostationary
altitude.

The effect of using different settings for the DDP algorithm has been investigated. The optimality tolerance and
minimum trust region radius influence the final result the most. Different algorithms to solve the trust region quadratic
subproblem were also tested. A hessian shifting technique obtained the most optimal results while also requiring the
least computational time. Monotonic basin hopping (MBH) has been used to find globally optimal solutions with DDP
in the inner loop of the algorithm. However, MBH did not significantly improve on the trajectory found by DDP.

Optimal orbit-raising solutions were also found for NASA’s upcoming ACS3 mission. Additionally, constraints were
successfully implemented to force the sailcraft to keep its Sun-synchronous attribute during the orbit raising manoeuvre.
Alongside the sail’s ability to keep the sailcraft under Sun-synchronous conditions, a notable increase in the semi-major
axis of 7.85 km was obtained after 100 orbital revolutions.

The effect of considering perturbing accelerations, such as �2, �3, �4, lunar and solar gravity, on the optimisation
algorithm has been investigated. Irregardless of which perturbations are included in the dynamical model, DDP is able
to find optimal trajectories.

To conclude, DDP is a viable tool for constrained and unconstrained many-revolution Earth-centred solar-sail
trajectory optimisation.
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