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NOMENCLATURE
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µE ar th Earth gravitational parameter 398600.441×109 m3/s2

µEur opa Europa gravitational parameter 3202.739×109 m3/s2

µJupi ter Jupiter gravitational parameter 126686534.922×109 m3/s2

µMoon Moon gravitational parameter 4902.834×109 m3/s2

µSun Sun gravitational parameter 132712440041.939×109 m3/s2

RE ar th Earth radius 6378000 m
REur opa Europa radius 1561000 m
R Jupi ter Jupiter radius 69911000 m
RMoon Moon radius 1738000 m
RSun Sun radius 600000000 m

Table 1: Constants taken from [1],[2] and [3].

PARAMETERS CIRCULAR RESTRICTED THREE-BODY PROBLEM

System µ DU [m] VU [m/s] TU [s]
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Table 2: Parameters taken from [4],[1] or derived.

PARAMETERS BICIRCULAR RESTRICTED FOUR-BODY PROBLEM

System mS [mE +mM] aS [aM] wS [−]
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Table 3: Parameters taken from [5].
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ABSTRACT

The decision on the dynamical model used to design a spacecraft’s trajectory is a fundamental choice influ-
enced by many factors. The complexity of such a model affects the accuracy of the designed trajectory but
also the difficulty of the design process. One approach to simplify this task consists of splitting the trajec-
tory design process into two phases. In the first phase a first-guess reference trajectory is generated through
the usage of a simple dynamical model considering the most important forces in the system. In the second
phase this reference trajectory is taken and refined with the addition of the perturbing forces that have been
neglected in the first phase. The success of this approach depends on the proper sharing of the perturbing
forces between the two phases. In this sense the backbone of the trajectory is designed in the first phase and
it is fundamental that in this phase the main forces are taken into account to not avoid to consider them as
negative perturbing effects in the second phase, that often is performed using an optimization technique.

The research covered in this report is focused on the first phase of this process, in particular for what concerns
the gravitational influences generated by multiple bodies. In this sense the simplest dynamical model that
could be used considers only the gravitational influence of the main attracting body. Such model however
is not able to capture interesting and useful phenomena existing in a more realistic multi-body environment
that allow to save a considerable amount of ∆V . This aspect is of crucial importance for missions such as
EQUULEUS and DESTINY, whose limited∆V capabilities need to be compensated by a clever design process
actively exploiting both lunar and solar perturbation effects.

This is achieved in this research through the usage of a patched Circular Restricted Three-Body Problem
model describing the motion of the spacecraft under the influence of two primaries at a time. Such a patched
model is an approximated model that represents the trajectory of a spacecraft under the influence of three
bodies. A graphical technique called Tisserand-Poincaré graph exploits this dynamical model to design tra-
jectories in several multi-body environments. The applicability of this technique however is strongly tied to
the definition of the so-called Tisserand parameter. The latter however exists only about the primary, lim-
iting the patching between different Circular Restricted Three-Body Problems to those systems sharing the
most attracting body such as the Jupiter-Europa-Ganymede or Sun-Earth-Jupiter systems. To overcome this
limitation, that would make it impossible to apply the same technique in the Sun-Earth-Moon system for the
EQUULEUS and DESTINY missions, the theoretical framework of the technique is extended in this research.
In particular a modified version of the Tisserand parameter defined about the secondary that possesses the
same constancy property of the classical Tisserand parameter but on a specifically defined family of Poincaré
sections is derived. The concept of the modified Tisserand parameter is based on a relationship between the
parameter and the Jacobi constant of the system that can be expressed by the fundamental equation J = T+P .
The new parameter and associated Poincaré sections are used to characterize the Earth-Moon and Sun-Earth
systems. Through the usage of a graphical tool, the definition of the modified parameter and the definition of
a specific family of Poincaré sections, both solar and lunar perturbations are characterized and exploited in
the trajectory design process in the multi-body environment. A database approach to be used for the EQU-
ULEUS trajectory design in a quasi-four body problem is developed. Databases of flyby trajectories about the
Moon and Jupiter in the Earth-Moon and Sun-Jupiter CR3BP models are also developed. A standard patching
procedure is tested in the Sun-Jupiter-Europa environment to demonstrate a capture trajectory about Jupiter.

xiii





1
INTRODUCTION

This chapter introduces the research performed by the author during his 8 months period stay at ISAS/JAXA
in Sagamihara, Japan. In Section 1.1 a brief description of the state of the art is presented. In Section 1.2
the main research questions and relative sub-questions are presented, followed up by the research goals and
sub-goals. In conclusion the structure of the whole report is provided in Section 1.3.

1.1. STATE OF THE ART
The research presented in this report is focused on orbital mechanics, in particular on the trajectory design
process of first-guess solutions in a multi-body environment. This work has been encouraged by JAXA for
an application on the EQUULEUS and DESTINY missions. The limited ∆V capabilities of these missions, to-
gether with the necessity to actively take into account solar, Earth’s and lunar gravitational influences, make
the whole trajectory design process a complex task. The current state of the art of the design strategies of
EQUULEUS and DESTINY is described in [6][7] and [8] respectively. The task is particularly challenging for
EQUULEUS due to its piggyback nature, demanding certain flexibility in the design process. In such a case a
grid-search technique is adopted to generate a set of first-guess trajectories in a full ephemeris model. This
set is later used by an optimizer refining it with the addition of corrective maneuvers and higher-order pertur-
bation effects. The overall design procedure can be lengthy, heavily relying on numerical propagation. There
is therefore a strong interest to reduce the computational effort, especially in the generation of first-guess
solutions. As illustrated in [9], both lunar and solar perturbation effects play a fundamental role in these mis-
sions. The benefits from the latter have been qualitatively illustrated with the usage of a graphical technique
called Tisserand-Poincaré graph.

Such a technique has been presented for the first time in [10] and uses a dynamical model called Circular Re-
stricted Three-Body Problem (CR3BP) and a parameter derived from it called Tisserand parameter to perform
the patching between trajectories in different dynamical systems. In this way it is possible to approximate
the trajectory under the gravitational influences of three bodies as a patched trajectory computed consider-
ing two bodies at a time. This graphical technique however is valid only under certain assumptions, most of
which are tied to the definition of the Tisserand parameter. Because of these assumptions the technique as it
is cannot be applied to a system such as the Sun-Earth-Moon system. It is for this reason that the core of this
work is the extension of the theoretical framework sustaining the Tisserand-Poincaré graphical tool through
the derivation of a modified Tisserand parameter that overcomes the limitations of the classical one. The sec-
ond main objective is to leverage such a parameter to design trajectories using patched CR3BP models that
share the same body as primary and secondary. A trajectory under the influence of the Sun, Earth and Moon
will therefore be approximated by Sun-Earth and Earth-Moon CR3BP patched models. These trajectories will
serve as first-guess solutions for an optimizer that will be working with a full ephemeris model to generate
the final trajectory. The idea is that the coupling between the optimizer and the first-guess tool will increase
the overall efficiency of the trajectory design process. From an industrial perspective this is of special interest
for EQUULEUS and DESTINY, but it can be applied to all other missions for which multi-body effects like in
a Sun-Earth-Moon system play a role.
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A challenge is set by the desire of the author to develop the tool for the generation of first-guess trajecto-
ries for the spatial case of the CR3BP, that is often considered in literature only in its planar formulation
[10][9][11][12]. From the characteristics of the EQUULEUS and DESTINY operational orbits [7][8], and from
the recommendations in [7] it is clear that a spatial analysis will result in a more realistic trajectory design
tool, also providing deeper insight into the solar perturbation effects on the Tisserand-Poincaré graph.

1.2. RESEARCH QUESTION, AIMS AND OBJECTIVES
Following the state of the art introduced in the previous section the main research questions and related
subquestions are presented in this section, together with the research goals and sub-goals.

1. What are the characteristics of a modified Tisserand parameter defined about the secondary under the
assumptions of the Circular Restricted Three-Body Problem?

(a) What are the similarities and differences of the modified Tisserand parameter with respect to the
classical one?

(b) How are the Tisserand level sets obtained from the modified Tisserand parameter represented in the
Tisserand-Poincaré graph?

(c) How can solar perturbation effects be explained through the usage of the modified Tisserand pa-
rameter?

(d) What are the limitations of the modified version of the Tisserand parameter?

(e) Which alternative applications can be found for the modified Tisserand parameter?

2. How can the modified Tisserand parameter be used to develop a trajectory design tool in the Sun-Earth-
Moon patched CR3BP?

(a) What potential does the modified Tisserand parameter show for the trajectory design in the CR3BP
model?

(b) What mathematical tools are necessary in order to exploit the parameter for the trajectory design in
a multi-body environment?

(c) Is the tool capable to explain the results existing in literature?

(d) How easily can the tool be used to describe the spatial effects of solar perturbations?

(e) How accurate is the tool when compared to higher-order fidelity dynamical models?

(f) What is the performance compared to the state of the art trajectory design strategy used for EQU-
ULEUS and DESTINY?

(g) Are there any other similar scenarios that would benefit from the usage of the tool?

From these research questions the following research objectives are set:

1. Develop an efficient trajectory design tool in the patched CR3BP model by using a combination of prop-
agation technique, the Tisserand-Poincaré graph and the modified Tisserand parameter.

(a) Develop all the necessary mathematical tools to implement the CR3BP model.

(b) Develop a new theoretical framework that extends the validity of the Tisserand parameter in the
vicinity of the secondary body.

(c) Implement and characterize the usage of a newly defined Poincaré section.

(d) Understand and develop a way to introduce Sun’s perturbation in the Earth-Moon CR3BP

(e) Understand the spatial dynamics of the Sun’s perturbing effects.

(f) Develop a tool to generate fist-guess trajectories in the Sun-Earth-Moon system.
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1.3. REPORT STRUCTURE
The report is divided into ten chapters, with supplementary material collected in four appendices. Besides
this introduction chapter, the historical background of fundamental missions that have exploited multi-body
dynamics is presented in Chapter 2, together with a brief explanation of the author’s work on EQUULEUS
and DESTINY during his stay at JAXA. The theoretical background of the research is discussed in Chapter 3.
In Chapter 4 the derivation of the modified Tisserand parameter is presented, together with the definitions of
the Poincaré sections that will be used throughout the report. In Chapter 5 the Tisserand level sets obtained
with the usage of the modified Tisserand parameter are represented in the Tisserand-Poincaré graph. In this
chapter also the graphical patching between the Sun-Earth and Earth-Moon CR3BP models is illustrated.
In Chapter 6 a specific type of Poincaré section is used to investigate what kind of dynamical insight these
sections are able to represent for the planar cases of the Sun-Earth and Earth-Moon CR3BP models. A tool
to design trajectories in the spatial case of the Sun-Earth-Moon system that can be used for EQUULEUS and
DESTINY is developed in Chapter 7. In Chapters 8 and 9 additional applications are presented to investigate
flyby effects with the Moon and Jupiter and to illustrate a method to design a trajectory in the Sun-Jupiter-
Europa system making use of the tools derived in the report. Finally, Chapter 10 provides the main findings
of this research and possible other areas of investigation for future studies.





2
HISTORICAL BACKGROUND

In the following chapter a brief historical background is presented about the most important missions which
have been exploiting multi-body dynamics effects in the low-energy regime.

First, three historical missions have been chosen that are representative of the Japan Aerospace Exploration
Agency (JAXA), European Space Agency (ESA) and National Aeronautics and Space Administration (NASA)
approaches to low-energy transfer trajectories. Each of these correspond to a mission representing a mile-
stone for this type of trajectories. Hiten will be discussed in Section 2.1 as an example of an exterior transfer in
the Earth-Moon system. Successively the Small Missions for Advanced Research in Technology-1 (SMART-1)
will be briefly presented in Section 2.2 as an example of interior transfer in the Earth-Moon system. The Ac-
celeration Reconnection Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS)
will be presented in Section 2.3 as an example of the first exterior transfer to reach a Halo orbit in the Earth-
Moon system.

In addition to these historical missions JAXA’s EQUULEUS and DESTINY missions will be briefly presented in
Sections 2.4 and 2.5. These missions are currently designed at the Institute of Space and Astronautical Science
(ISAS) and are presented here because of the considerable amount of effort the author has spent working on
the trajectory design process of these missions during his stay at ISAS/JAXA.

2.1. HITEN
The Hiten mission represents a milestone in low-energy transfer techniques applied for lunar missions. De-
signed as a technology demonstration mission to enable JAXA’s future lunar and planetary missions, two
spacecraft were involved: a primary one called Hiten and a secondary one called Hagoromo [13],[14]. While
the latter one was designed to enter into a lunar orbit, the first one was originally designed to work as a com-
munication relay from a highly elliptical orbit with respect to Earth.

According to the original schedule, Hiten demonstrated the areobraking technique with two maneuvers on
March 19 and 30, 1991. These reduced the spacecraft velocity by 1.7 and 2.8 m/s respectively, resulting in
apogee decreases of about 8665 and 14000 km [1]. After the completion of this phase the mission was changed
due to a failure on-board the secondary spacecraft soon after release. Hagoromo was not being able to be in-
serted into a lunar orbit anymore, so it was decided to use Hiten itself for this purpose. The small amount of
propellant left on-board the spacecraft however made it impossible for the spacecraft to achieve such a goal
with a conventional transfer technique. To reach a lunar orbit a recently developed technique designed by
Edward Belbruno and James Miller [15], the Weak Stability Boundary (WSB), was employed. Making use of
this concept and exploiting Sun’s gravitational perturbation, lunar flybys and small corrective maneuvers, the
spacecraft was finally put in a temporary capture orbit about the Moon on October 2, 1991.

The transfer trajectory so designed took relatively long compared to a conventional one such as a Hohmann
transfer, five months instead of three days [1]. The∆V saved by correctly exploiting the multi-body dynamics
in the low-energy regime however allowed the transfer to happen in the first place. The savings also allowed
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Hiten to explore the Sun-Earth fourth and fifth Lagrange libration point regions (SEL4 and SEL5), investigat-
ing the presence of trapped dust particles. The mission concluded when the spacecraft was purposely crashed
into the lunar surface on April 10, 1993. Deemed as a success after the failure of the secondary spacecraft, it
was the first time a low-energy transfer had been used to reach an orbit about the Moon.

2.2. SMART-1
SMART-1 was an ESA spacecraft launched on September 2003 as a technology demonstration mission. The
main scientific goal of the mission was to perform research about the Moon’s surface chemistry and investi-
gate the presence of ice in the south pole lunar region. Being launched into a Geostationary Transfer Orbit
(GTO) the spacecraft parking orbit had a perigee of 655 km and an apogee of 35890 km. In order to reach the
Moon a combination of orbit raising maneuvers and low-energy transfer techniques was employed. By care-
fully designing thrusting arcs and exploiting the effects of the Moon’s gravitational perturbation the spacecraft
apogee and perigee were increased in one year to 300000 and 170000 km respectively, while the inclination
was increased from 6.9◦ to 12◦ [1]. Lunar resonance phases also played a fundamental role in the trajectory
design, widening out the spiraling of the orbit raising phase. The spacecraft was captured by the Moon at
an altitude of about 60000 km on November 14, 2004. Correction maneuvers were executed thereafter to
insert the spacecraft into the nominal polar orbit about the Moon, from where the scientific phase of the mis-
sion started. The transfer phase to reach such orbit lasted 1.5 years, but allowed for important savings in ∆V
[1]. The mission concluded by purposely crashing the spacecraft on the Moon’s surface on September 3, 2006.

It is important to underline that multi-body dynamics was exploited in a different way for the SMART-1 mis-
sion than for Hiten. In the latter one Sun’s gravitational influence played a key role to modify the spacecraft
trajectory. On the contrary in SMART-1 this was merely a disturbing effect as the main source of perturbation
exploited by SMART-1 was the Moon. This played a crucial role in the design of a transfer strategy based on
resonance effects.

2.3. ARTEMIS
ARTEMIS is the name of the extended phase of the Time History of Events and Macroscale Interactions during
Substorms mission (THEMIS), a NASA mission that took place between 2007 and 2010, involving five identi-
cal Earth-orbiting spacecraft. Towards the end of this mission an extended phase was proposed for the two
outermost spacecraft, P1 and P2, that were re-assigned to study the Earth’s magnetotail and solar wind from
about 60 Earth radii.

Figure 2.1: ARTEMIS trajectories in the SP2 frame of the Sun-Earth system. The red and blue lines show the P1 and P2 trajectories while
the Moon’s orbit is shown in gray. Blue dots represents SEL1 and SEL2 while the gray ones the EML1 and EML2 at particular epochs [16].
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Because of the limited amount of propellant on-board of the spacecraft, it was decided to exploit a low-
energy transfer to reach this goal. In order to do that however several limitations given by the spacecraft
design needed to be taken into account. Amongst the most relevant ones from a trajectory design point of
view are the need to never exceed 2 million kilometers distance from Earth to be able to communicate with
the spacecraft, and to always have the Sun in view during the thrusting maneuvers [16].

By taking into account these and other factors listed in [16] a two-year transfer trajectory that exploited Sun’s
and Moon’s perturbation had been designed to reach Halo orbits around the Earth-Moon first and second
Libration Points (EML2 and EML1). It was the first and only time up to now [7] to successfully navigate and
perform stationkeeping operations in lunar libration orbits. As of February 2018 the spacecraft are still oper-
ational.

2.4. EQUULEUS
EQUULEUS is a Japanese 6-units cubesat that is being designed by a team of students and researchers in co-
operation between the Institute of Space and Astronautical Sciences (ISAS) and the University of Tokyo. The
name of the spacecraft is an acronym that refers to the constellation of the little horse or foal and stands for
Equilibrium Lunar-Earth point 6U Spacecraft. The spacecraft is set for launch in October 2018 as a piggyback
on the maiden flight of NASA’s Space Launch System (SLS), during Exploration Mission 1 (EM1).

2.4.1. MISSION DESIGN
A comprehensive analysis of the mission can be found in [7]; only the most relevant aspects will be briefly
introduced here. EQUULEUS features three main objectives:

• Trajectory control: To demonstrate low-energy trajectory design and control techniques in the Sun-
Earth-Moon perturbed region.

• Earth plasmasphere and radiation environment: To image Earth’s plasmasphere and to measure the
surrounding plasma distribution in order to better understand the radiation environment in the region
of space around Earth.

• Lunar flashes: Investigate the size, distribution, influx rate and daily variations of meteoroids impact
on the far side of the Moon, essential both to understand the Solar System evolution and to assess
eventual risks posed to human activities in cis-lunar space.

These objectives will be achieved during four different phases of the mission, illustrated schematically in
Figure 2.2.

Figure 2.2: Different phases of the EQUULEUS mission [7].

The observation phase (4) will be performed from a Near Rectilinear Halo Orbit (NRHO) about the EML2
point, while the investigation on the radiation environment will be done during the transfer phase (3) [7].

EQUULEUS limited ∆V capability makes the overall trajectory design process quite challenging. The space-
craft is in fact a 6U cubesat with a nominal wet mass of only 14 kg. A 4 mN thrusting capability can generate
up to 0.3 mm/s2, enabled by a water propulsive system with an Isp of 70 s and a propellant mass of 1.47 kg.
The total ∆V budget available is only 80 m/s. More details of the EQUULEUS spacecraft can be found in [7],
they will not be discussed here since the focus of this report is more on the trajectory design process rather
than the spacecraft itself.
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Another important aspect of EQUULEUS is due to its nature as secondary payload onboard the Interim Cryo-
genic Propulsion Stage (ICPS) adapter of the SLS. Separation conditions are not under direct control of the
EQUULEUS team and are dependent on the main EM-1 mission. From a mission perspective this trans-
lates into two challenges regarding the energy and timing of the trajectory after separation. The geometric
configuration of the Sun-Earth-Moon system basically repeats itself after a lunar month. The trajectory de-
sign process of EQUULEUS is dependent on this configuration, since the mission will extensively use flybys
and Sun’s perturbation phases as an active design technique to save ∆V . This means that a too wide launch
window, e.g. 2-3 weeks, could dramatically change the nominal trajectory of EQUULEUS, since it will dramat-
ically change the Sun-Earth-Moon configuration of phase (1). Moreover the ICPS is designed to be set into
an escape trajectory from the Earth-Moon system for decommissioning reasons. For EQUULEUS this means
that right after separation it is important to execute a maneuver to avoid escaping the system. The direction
and magnitude of this initial ∆V1 determine the global trajectory and is one of the crucial design parameters
of the trajectory design process, as will be illustrated in the next section.

Figure 2.3: EQUULEUS nominal trajectory with an SLS launch on October 7, 2018 [7]. The trajectory is represented in the Sun-Earth
synodic reference frame. The red, light blue, pink, green and blue trajectories represent successive phases of the mission represented in
Figure 2.2.

2.4.2. TRAJECTORY DESIGN
The design of the transfer phase of EQUULEUS represents the most challenging and difficult phase of the
mission for several reasons [7]. The limited ∆V capabilities, uncertain launch conditions, multiple lunar fly-
bys and Sun’s gravitational perturbations are all factors that make the trajectory design process a complex
task. A detailed analysis of this process is illustrated in [6], while [17] focuses more on the design of the Halo
orbit for the observation campaign. In this section the overall trajectory design process will be illustrated, as
part of the work the author of this report performed during his stay at ISAS/JAXA.

Due to the complexity the design of the EQUULEUS trajectory is divided into several smaller blocks. These
are part of a two-step process: a first-guess step and a refinement step [7]. Hereby a brief description of the
tasks of the blocks:

• Forward Propagation: From the initial state and time given by NASA, a ∆V1 is simulated to perform a
search-grid analysis. From these initial states trajectories are propagated forward in time for about one
year using the jPRO1 propagation scheme in a full-ephemeris model considering the Sun, Earth and
Moon gravitational influences. Spherical harmonics of Earth and Moon are also considered for a brief
part of the propagation. The apogee states and epochs are saved into a database.

• Halo Generation: Quasi-periodic Halo orbits about EML2 are computed using a full-ephemeris model
in the Halo-generation module.

1jPRO is a propagation tool implemented in jTOP, a trajectory optimization tool widely used in Kawakatsu laboratory.
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• Backward Propagation: Trajectories are propagated backward in time from certain epoch and states
of the nominal Halo orbit chosen for operations. Apogee states and epochs are saved in a database.

• Apogee Patching: The previously saved apogee states and epochs from forward and backward propa-
gations are confronted. Only those within a certain position and velocity mismatch (50000 km and 100
m/s) are chosen and ranked based on a fictitious ∆V .

• Trajectory Generation: From this set a number of promising first-guess trajectories are selected. The
whole state and epoch history of these trajectories is generated from initial to arrival condition on the
Halo orbit. This have not been saved during the propagation phases for size issues.

• Eclipse: The duration of possible eclipse phases is checked to make sure certain mission requirements
are respected. Only those trajectories satisfying these requirements are selected.

• Optimization: The pool of best first-guess trajectories are optimized using jTOP. After a final eclipse
check, one of these trajectories is selected as the best nominal trajectory for EQUULEUS mission.

Figure 2.4: Schematic of the overall trajectory design process for the EQUULEUS trajectory.

It is noteworthy to mention that the most computationally intensive phases are the forward and backward
propagations. For what concerns the backward propagation the actual strategy envisions the creation of a
database of trajectories stemmed from the same Halo orbit at different epochs.

Figure 2.5 shows a selection of the 200 best trajectories computed in the first-generation step for an old initial
condition of the EQUULEUS mission. Figure 2.6 shows the best of these trajectories in terms of ∆VPatch . In
both cases the trajectories are represented in the Earth mean equator and equinox of J2000 reference frame
(EME2000) centered on Earth.

During his stay at ISAS/JAXA the author of this report has performed work on the forward propagation block
and on the the code maintenance of the first-guess generation step of the toolbox. In the first case the tasks
addressed the speed up of the block with the usage of a different propagation scheme in combination with
parallelization capabilities and the introduction of higher-order perturbations into the dynamical model.
Due to the sensitivity of the data of the EQUULEUS mission, all the trajectories represented in this report
refer to old initial conditions or test cases that have been already presented in literature. The latest trajectory
of the EQUULEUS mission is therefore not presented in this report, as well as certain data about the mission
that will not be disclosed. An analysis of EQUULEUS trajectory with the TP-graph is presented in Appendix D.
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Figure 2.5: Example of the 200 best trajectories computed in the first-guess generation step. Blue and red curves are respectively forward
and backward trajectories. Patching positions are highlighted by black crosses and circles while the starting position is represented by a
green circle.

Figure 2.6: Representation of the trajectory with the lowest ∆VPatch from the ones represented in Figure 2.5. Green and red points are
initial and final conditions respectively, the black symbols represent the patching positions.
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2.5. DESTINY
DESTINY is a Japanese interplanetary low-thrust and low-cost mission that is being designed by ISAS/JAXA
as a technology demonstration mission for future deep space missions. The name of the mission stands for
Demonstration and Experiment of Space Technology for INterplanetary voYage. The launch will take place
in 2022 from the Tanegashima Space Center using a dedicated Epsilon-4 vehicle [8].

Figure 2.7: Five different phases of DESTINY mission [8].

2.5.1. MISSION DESIGN
The spacecraft will have a wet mass of about 400 kg and will be three-axis controlled. Two retractable solar
panels will provide about 2930 W at EOL. The spacecraft propulsive system is derived from Hayabusa’s µ10
thrusters. The newly developed µ20 thruster will allow the spacecraft to reach an acceleration of 10−4 m/s2,
a ∆V of 5 km/s with a thrust of 40 mN. The Isp of the system is 3800 s and the propellant mass of Xenon is
estimated to be around 50 kg. Amongst the most relevant technologies DESTINY will be testing, there will be
the ultra-lightweight solar panel, the large-scale ion engine µ20, advanced thermal control and communica-
tion systems, autonomous on-board operations and orbit determination under low-thrust operation. More
details about the spacecraft design and the mission can be found in [8].

2.5.2. TRAJECTORY DESIGN
The DESTINY trajectory will be characterized by five different phases:

• The spacecraft is injected into a highly elliptical trajectory with perigee and apogee altitudes of 230 and
29000 km.

• After 30 days in this orbit the spacecraft starts an orbit raising phase that will bring it to an apogee
altitude of approximately 300000 km after 1.5 years from launch.

• A lunar swingby phase is used both to widen out the last spiraling part of the trajectory and to efficiently
change the orbit inclination to that of the Moon’s orbit. Successive flybys are designed either to increase
or decrease the energy of the spacecraft.

• The spacecraft is injected into a Halo orbit about the SEL2 point.

• The spacecraft escapes the region in proximity of the Earth and starts the interplanetary trajectory to-
wards the asteroid 3200-Phaeton, that will be closely studied during a flyby event. Other additional
flyby targets are under selection for the extended phase of the mission [8].

There are currently two scenarios under discussion; one foresees the spacecraft to reach the SEL2 Halo orbit
and then to escape while another scenario uses a direct escape trajectory after the swingby phase. The latter
case defines the DESTINY+ mission.
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The current work that has been performed in the DESTINY team is related to the generation of first-guess
trajectories in the lunar swingby phase. The approach used is thoroughly illustrated in [9] and is based on
a database of Moon-to-Moon transfer legs computed in the Sun-Earth planar CR3BP. By patching several of
these legs, first-guess trajectories can be generated that make use of multiple flyby events with the Moon to
increase or decrease the spacecraft energy. Some preliminary results of this technique for both EQUULEUS
and DESTINY missions are illustrated in [9]. Note that this approach actually inspired the author of this re-
port to develop a similar technique that considers instead a specifically defined Poincaré section as patching
surface. This will be discussed in Chapter 7.

Figure 2.8: Example of the last flyby legs of the DESTINY mission obtained from a query on the
database defined in [9].
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THEORY

In this chapter the theoretical background of the research work is illustrated. In Section 3.1 the trajectory
design approach is briefly illustrated. In Section 3.2 the dynamical models that will be used in the report are
presented. In Sections 3.3 and 3.4 multi-body dynamic effects such as lunar flybys and solar perturbation
events are described. A few fundamental concepts from dynamical system theory that will be used in the
report are illustrated in Section 3.5. The Tisserand parameter is presented in Section 3.6, while its application
as graphical tool is discussed in Section 3.7.

3.1. FIRST-GUESS AND OPTIMIZATION PROCESSES
The decision of the dynamical model used to design a spacecraft’s trajectory is a fundamental choice influ-
enced by many factors. The complexity of such a model affects the accuracy of the designed trajectory but
also the difficulty of the design process. An approach to simplify this task consists into splitting the trajec-
tory design process into two phases. In the first phase a first-guess reference trajectory is generated through
the usage of a simple dynamical model considering the most important forces in the system. In the second
phase such a reference trajectory is taken and refined with the addition of the perturbing forces that have
been neglected in the first phase. The success of this approach depends on the proper sharing between the
two phases of the perturbing forces considered.

Figure 3.1: Magnitude of perturbing forces as function of orbital radius, sketch adapted from [1]. The solar radiation pressure (SRP)
perturbing acceleration of EQUULEUS and DESTINY has been added using a reflectivity coefficient of 1.8.
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The backbone of the trajectory is designed in the first phase and it is fundamental that in such a phase only
the main perturbing forces that keep the model simple are considered. These depend on the mission scenario
and can be evaluated thanks to sketches as the one in Figure 3.1, representing the main perturbing forces in
the vicinity of Earth. For example for missions such as EQUULEUS and DESTINY it is possible to see from
Figure 3.1 that only gravitational perturbations and thrust effects are expected to give important contribu-
tions.

Figure 3.2: Sketch of the trajectory design process. The choice of the dynamical model to use is fundamental. The left-right gradient
of each perturbing force is representative of the complexity of the model considered for that particular force. In a preliminary analysis,
when generating first-guess solutions, the sketch will be traversed vertically in the left region with the usage of simple but inaccurate
models. At successive iterations the complexity of the dynamical model is refined to increase the accuracy.

A schematic of the trajectory design approach is illustrated in Figure 3.2. Note that the research presented in
this report is focused on the generation of first-guess trajectories considering only the gravitational influence
generated by multiple bodies.

3.2. DYNAMICAL MODELS
In this section three different dynamical models that have been used in this research are presented. As dis-
cussed in the previous section these are all pertaining to dynamical models considering gravitational influ-
ences only. First the two-body problem (2BP) will be briefly introduced in Section 3.2.1, from which the
notion of osculating orbital elements is adopted. Then the main dynamical model of the research, the CR3BP,
is discussed at length in Section 3.2.2. In this section also the main notation used throughout the report is in-
troduced. Finally in Section 3.2.3 the Bicircular Restricted Four-Body Problem (BR4BP) is briefly introduced.

Note that the two latter dynamical models do not comply with Newton’s laws, since they force the bodies in
the model to have a certain type of motion by neglecting mutual attraction between them. The error com-
mitted is however small and these model are universally considered as very efficient in giving a simple insight
into the dynamics of the multi-body environment.

As it is possible to see from Figure 3.2, the higher the number of bodies considered, the higher the accuracy of
the trajectory and complexity of the design process. Rushing to consider the highest number of bodies how-
ever is not the only possibility to increase the accuracy of a model. An alternative is presented by patching
two different dynamical model in a region where they both exert an equal influence on the spacecraft trajec-
tory. With such an approach a trajectory under the influence of N +1 bodies is computed using N bodies at a
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time, decreasing the overall complexity and reaching a compromise between the two dynamical models. To
design trajectories in the Sun-Earth-Moon system such a patching approach will be used. Its application has
already been demonstrated to be successful as it is possible to see for Hiten’s trajectory design illustrated in
[5].

3.2.1. TWO-BODY PROBLEM
The relative motion of a spacecraft about a larger body (such as a planet or a moon) can be described by the
following equation:

r̈ =−µ r

r 3 (3.1)

The solution of such an equation of motion is referred to as Keplerian motion or a Keplerian orbit, and de-
scribes a conic section with the massive body located in one of the focal points. To describe such a conic
section in three dimensions a set of six orbital elements can be used. One of the most used ones is consti-
tuted by the semi-major axis a, the eccentricity e, the inclination i , the right ascension of the ascending node
Ω or R A AN , the argument of pericenter ω and the true anomaly θ.

a is responsible for the energy and size of the Keplerian orbit, while e determine the shape. The remaining
four orbital elements describe its orientation in space.

In a Keplerian orbit these elements will be constant, however considering other perturbations will make them
vary with time. In such a case they are defined as osculating orbital elements. Throughout this report a set of
three osculating orbital elements will be of fundamental use. These will be the pericenter radius rp = a(1−e),
the apocenter radius ra = a(1+e) and the inclination i .

3.2.2. CIRCULAR RESTRICTED THREE-BODY PROBLEM
The Circular Restricted Three-Body Problem (CR3BP) is a specific case of a Three-Body Problem character-
ized by the following assumptions:

• The mass of two bodies (P1 and P2) is much larger than the mass of the third body (P ). As a conse-
quence the gravitational influence exerted by P on P1 and P2 can be neglected.

• The two massive bodies (P1 and P2) move in coplanar circular orbits about the barycenter of the sys-
tem. The motion of body P is not confined to this plane.

Throughout this report the author will refer to "primaries" intending P1 and P2 together, while "primary" and
"secondary" will be used to address P1 and P2 singularly. Assuming the motion of P1 and P2 to be known,
the purpose is to determine the motion of the third body P, which in engineering applications is assumed to
be the spacecraft.

REFERENCE FRAMES
Two different reference frames can be used in the description of the motion of body P in the CR3BP; these are
the psuedo-inertial and synodic reference frames. These two reference frames are represented in Figure 3.3.
O is the origin and barycenter of the system, around which the primaries move in circular orbits. The inertial
reference frame is the red one defined by the ξ, η and ς axes, the latter one being perpendicular to the orbital
plane of the primaries. This reference frame is inertial for what concerns the orientation of its axes, that stay
fixed in time, but is not for what concerns its origin, hence the term pseudo-inertial. When this is centered
on the primaries in fact it moves in a circular motion, and such a reference frame would not satisfy the first
principle of dynamics and could not be properly defined as inertial. In this report, as well as in most of the
existing literature, the term pseudo will be discarded to facilitate the comprehension. The synodic reference
frame is a co-rotating reference frame with axes X ,Y and Z , represented by the blue axes if Figure 3.3. The
X-axis is aligned with P1 and P2, positive towards P2, the Y-axis is perpendicular to the X-axis and the Z-axis
coincides with the ς-axis. The synodic reference frame is rotating with respect to the inertial one about the
Z/ς-axis with a constant rate θ̇.
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Figure 3.3: Synodic reference frame X Y Z (blue) and inertial reference frame ξης (red) centered on the barycenter of the system (O). The
Z and ς axes coincide and are not represented.

The system is often normalized with respect to a normalization parameter µ, the value of which can be
changed in order to model different three-body systems. This parameter relates the primary and secondary
masses and distances as follow:

m1 +m2 = 1 ; m1 = 1−µ ; m2 =µ (3.2)

OP1+OP2 = 1 ; OP1 =µ ; OP2 = 1−µ (3.3)

m1 and m2 being the masses of the primaries and OP1 and OP2 their distances from the barycenter. In
many cases is also important to dimensionalize and give a physical importance to quantities by using the
dimensionalization parameters DU,VU and TU, corresponding respectively to the distance, velocity and time
units of the specific CR3BP system considered. DU is often taken as a parameter defining the system while
TU and VU can be computed as:

TU =
√

DU 3

G(m1 +m2)
and V U = DU

TU
(3.4)

where G is the universal gravitational constant. In the majority of the existing literature the synodic and
inertial reference frames are considered centered in the barycenter of the system. However in this report
reference frames centered on the primaries will be extensively used. To facilitate the discussion the following
notation will be used when referring to a generic quantity Ai j k :

• i : refers to the reference frame being synodic (S) or inertial (I).

• j : refers to the reference frame’s origin, barycenter (B), primary (P1), secondary (P2) or any chosen
point (Pi ).

• k: refers to the dimensionality; if the quantity is described using physical units (D) the index is used, if
not is omitted.

So for example the position vector r in Figure 3.3 expressed in adimensional units in the synodic reference
frame centered in the barycenter will be named rSB while the corresponding quantity in the inertial one rI B .
If the notation is omitted it will be explained in the text.

COORDINATE TRANSFORMATION
In the following section the coordinate transformation equations will be briefly illustrated, as they will be
extensively used throughout the report. The 6×1 state vector will be represented by the symbol X, followed by
the information of the reference frame with respect to which its components are expressed. The state vector
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can be decomposed in a position vector of dimension 3×1 named r and a velocity one of 3×1 named v.
The complete state transformation equations are now introduced with an example to pass from XSB to XI Pi D .
First the state can be transformed by considering a different origin but remaining in the synodic reference
frame. Let’s fix for example such an origin on the point Pi of coordinates ((Pi )x , (Pi )y , (Pi )z ) expressed in the
SB reference frame. The state in SPi can be computed as:

XSPi = XSB −



(Pi )x

(Pi )y

(Pi )z

0
0
0

 (3.5)

In order to transform the state from XSPi to XI Pi the following rotation matrices need to be defined:

A =
cosθ −si nθ 0

si nθ cosθ 0
0 0 1

 and B = d A

d t
= θ̇

−si nθ −cosθ 0
cosθ −si nθ 0

0 0 0

 (3.6)

The transformation matrix to pass from a synodic to inertial state can be expressed by the matrix TS2I and
vice-versa by the matrix TI 2S so defined1:

TS2I =
[

A 03×3

B A

]
and TI 2S =

[
AT 03×3

B T AT

]
(3.7)

where the T denotes the transpose operation. By using these matrices the state can be expressed as XI Pi =
TS2I XSPi . The distance, velocity and time units defined in Equation 3.4 are then used to give a dimensionality
to both the state vector and epoch:

XI Pi D =


DU

x
y
z


I Pi

V U

ẋ
ẏ
ż


I Pi

 and tI Pi D = TU
[
tI Pi

]
(3.8)

By substituting (Pi )x =−µ and (Pi )y = (Pi )z = 0 it is possible to derive the canonical transformation existing
in literature to transform from SB to IP1D.

EQUATIONS OF MOTION
The equations of motion expressed in the SB frame are [1]:

ẍ = 2ẏ +x − 1−µ
r 3

1

(
µ+x

)+ µ

r 3
2

(
1−µ−x

)
ÿ =−2ẋ + y − 1−µ

r 3
1

y − µ

r 3
2

y

z̈ =−1−µ
r 3

1

z − µ

r 3
2

z

(3.9)

where r1 =
√

(µ+x)2 + y2 + z2 and r2 =
√

(x −1+µ)2 + y2 + z2 are the distances from the primaries presented
in Figure 3.3.

JACOBI’S INTEGRAL
The only analytic integral of motion in the CR3BP is called the Jacobi’s integral. In its simplest formulation it
is expressed in the SB reference frame as:

JSB
(
x, y, z, ẋ, ẏ , ż

)= x2 + y2 + 2
(
1−µ)√

(µ+x)2 + y2 + z2
+ 2µ√

(x −1+µ)2 + y2 + z2
− (ẋ2 + ẏ2 + ż2)+µ(1−µ) (3.10)

1The reader can verify that TS2I TI 2S = I , making use of the fact that B AT + ABT = 03×3 by substituting the terms in Equation 3.6.
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The term µ(1−µ) is often used to simplify the analysis of the Hill surfaces, that will be introduced in the
next section. Often there is an ambiguity between the Jacobi integral considered as a function and the Jacobi
constant considered as a scalar quantity representing the value of such a function evaluated for a particular
state.

(
x, y, z, ẋ, ẏ , ż

) ∈R6 : J
(
x, y, z, ẋ, ẏ , ż

)=C ∈R1 (3.11)

The first can be seen as a function depending on a six dimensional vectorial state, the latter is a scalar quantity
representative of the specific energy level considered in the model and is obtained by the evaluation of the
function for a specific state of the spacecraft. In this report I will refer to the Jacobi integral to the function
J
(
x, y, z, ẋ, ẏ , ż

)
while I will refer to the Jacobi constant to its value C .

HILL’S SURFACES

A Hill’s surface is defined as the. region of space where the velocity of point P is zero. For certain values of
the Jacobi constant C different surfaces can be identified, hence the plural. These surfaces are important
to discern between regions of space that are potentially accessible from those which are not. The equation
describing Hill’s surfaces can be simply derived by taking Equation 3.10 and imposing V =

√
ẋ2 + ẏ2 + ż2 = 0;

for this reason they are often also called Zero Velocity Curves (ZVC). Expressed in the SB reference frame this
can be written as an implicit function:

x2 + y2 + 2
(
1−µ)√

(µ+x)2 + y2 + z2
+ 2µ√

(x −1+µ)2 + y2 + z2
−CSB +µ(1−µ) = 0 (3.12)

A representation of the Hill’s surfaces for three different values of CSB can be seen in Figure 3.4. When these
are projected in the XY-plane they appear as curves, in such a case it is important not to confuse them with the
black areas represented in Figure 3.4, as these only express the areas impossible to reach, while the surfaces
correspond to the border of these regions.

Figure 3.4: ZVC and forbidden areas in the XY-plane for three different cases of the Jacobi constant. The primaries are represented as
blue points, the primary being bigger than the secondary. The five Lagrange libration points are represented by pink points.

As it is possible to note from Equation 3.12 and from Figures 3.4 and 3.5, Hill’s surfaces are symmetric with
respect to the XY and XZ-planes. A 3D representation of these surfaces is illustrated in Figure 3.5. As shown
before the surface shapes can be changed by varying the Jacobi constant C. In particular there are four differ-
ent values for which these touch or separate from each other: CL1,CL2,CL3,CL4/L5 .These separation points
are all located on the XY-plane and their coordinates define five different equilibrium points called Lagrange
libration points.

LAGRANGE LIBRATION POINTS

Five equilibrium points exist in the CR3BP and these are called Lagrange libration points. All of them are
contained in the XY-plane, three of them (L1, L2, L3) are called collinear as they lay on the X-axis of the SB
reference frame, while the remaining two (L4, L5) are called equilateral since they form an equilateral triangle
with the primaries. By defining a potential function U (x, y, z) as [1]:
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Figure 3.5: Hill’s surfaces in 3D for the three different cases used in Figure 3.4. Note that in this figure only the surface is represented,
while the inaccessible region has not been filled as in Figure 3.4.

U (rSB ) =
(
x2 + y2

)
2

+ 1−µ
r1

+ µ

r2
+ 1

2
µ(1−µ) (3.13)

the Lagrange libration points are defined such that ∂U
∂x = ∂U

∂y = ∂U
∂z = 0. The equations of motion can also be

written by using the potential function as:

ẍ −2ẏ = ∂U

∂x
and ÿ +2ẋ = ∂U

∂y
and z̈ = ∂U

∂z
(3.14)

By starting from one libration point with V = 0 , it is then possible to see that the spacecraft would not expe-
rience any acceleration with respect to the synodic frame.

MOTION ABOUT COLLINEAR LIBRATION POINTS

The are several types of motion about the Lagrange libration points. The most used ones for observation
missions are the ones relative to the collinear points, that are briefly illustrated here. It is important to re-
member that while a Keplerian orbit develops about a physical body such as a planet or a moon, orbiting
a libration point means to orbit an empty mathematical point. Three big families of such orbits about the
collinear points exist:

• Lyapunov orbits: It is a class of periodic two-dimensional orbits contained in the XY-plane.

• Lissajous orbits: A class of three-dimensional orbits for which the periodicity in the XY-plane is differ-
ent from the one in the Z-direction. They can be described as slowly changing elliptical orbits.

• Halo orbits: It is a class of closed-loop orbits generated by a particular case of Lissajous orbits when
the motion in the XY-plane is coupled with the one in the Z-component. The orbit develops on a plane
inclined with respect to the XY-plane. A NRHO is a particular type of Halo orbit that develops almost
entirely out-of-plane and that approaches the Moon at close distance with a nearly-stable behavior.

3.2.3. BICIRCULAR RESTRICTED FOUR-BODY PROBLEM
The Bicircular Restricted Four-Body Problem (BR4BP) is a simplified version of the four-body problem and
a natural extension of the CR3BP taking into account a fourth body. In such a model three massive bodies
P1,P2 and P3 and a point mass P are considered such that mP3 >> mP1 >> mP2 >> mP . P3 and the barycen-
ter of the P1−P2 system are assumed to be moving in circular orbits about their common barycenter with
mutual separation d2. P1 and P2 are assumed as well to be moving in circular orbits about their common
barycenter with mutual separation d1 such that d1 < d2. All masses except for P are assumed to be moving in
the same plane.

The equations of motion of the BR4BP are now presented in normalized units in the synodic reference frame
of the P1−P2 system. Each acceleration component can be decomposed into two terms. The reader will
recognize the first of these terms in the square brackets to be the one of the CR3BP model, these are the terms
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Figure 3.6: On the left, schematic of the BR4BP model geometry, adapted from [5]. On the right, synodic reference frame X Y Z (blue)
and inertial reference frame ξης (red) centered in the barycenter of the P1−P2 system (O), with the addition of the fourth point mass
P3. Adapted from Figure 3.3.

accounting for the P1−P2 system alone. The additional term is dependent on the geometric properties and
physical characteristics of P3. The equations of motion2 are [5]:

ẍ =
[

2ẏ +x − 1−µ
r 3

1

(
µ+x

)+ µ

r 3
2

(
1−µ−x

)]− µ3

r 3
3

x + µ3

r 3
3

(1−α)x3

ÿ =
[
−2ẋ + y − 1−µ

r 3
1

y − µ

r 3
2

y

]
− µ3

r 3
3

y + µ3

r 3
3

(1−α)y3

z̈ =
[
−1−µ

r 3
1

z − µ

r 3
2

z

]
− µ3

r 3
3

z

(3.15)

where α= m3

a3
3

, r3 =
√

(x −x3)2 + (y − y3)2 + z2 and µ3 = m3. The motion of P3

about the barycenter of the P1−P2 system is described by a circle with radius a3 = d2. The coordinates
(x3, y3, z3) of point P3 will therefore be (a3cos(θ3), a3si n(θ3),0), where θ3 = −ω3t + θ30 , θ30 being the ini-
tial angle between P3 and the x-axis of the P1−P2 synodic reference frame. The parameters a3,m3 and ω3

represent the normalized semi-major axis, mass and angular velocity of the fourth body P3 with respect to
normalized units of the P1−P2 system.

By comparing Equations 3.15 and 3.9 it is possible to see that the insertion of the fourth body has the im-
portant effect of introducing a term in these equations that is depending on time: the position of the body
P3. The BR4BP is therefore a non-autonomous system. An important consequence of this property is the
non-existence of an analytic integral of motion; in such a model the Jacobi integral is not a constant function
but varies with time, as it is possible to see in Appendix D.

In this report the BR4BP model of the Sun-Earth-Moon system will be used as a valid continuous counterpart
of the patched CR3BP approach that will be adopted in Chapter 7. In such a case the BR4BP of the Sun-Earth-
Moon system will be used with the following set of values [5]:

m3 = 328900.54 a3 = 388.81114 ω3 = 0.925195985520347 (3.16)

3.3. FLYBY EFFECTS
In this section the flyby phenomenon will be discussed. The theory behind it is well known and has been
applied to space missions since many years by now. As a result an abundant amount literature exists on
the topic. Most notably [18] investigated the celestial mechanics of the gravity assist in the patched 2BP

2The equations of motion given in [5] are valid for the 2D case and are extended in this report for the 3D one.
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approximation, [19] numerically analyzed and classified families of gravity-assist trajectories in the CR3BP,
[11] investigated the flyby in the planar CR3BP and developed a tool, the flyby map, derived from the Kep-
lerian map and the Tisserand graph useful to design trajectories in the Jupiter environment, [20] analyzed
the phenomenon in the Earth-Moon CR3BP and have developed a method to design double Lunar swingby
trajectories.

The gravity assist or flyby effect is a phenomenon deriving from the multi-body problem formulation. How-
ever to simplify the analysis often a reduced dynamical model is used such as a patched 2BP or a CR3BP.
By considering Figure 3.3 the secondary of the system is considered as the flyby body while the primary is
the main body. By using a patched 2BP approximation we would generally consider a flyby trajectory as an
hyperbolic trajectory about the flyby body within the sphere of influence (SOI) with respect to the primary.
Such a hyperbolic trajectory develops on a plane that is not necessarily oriented as the body’s orbit plane. The
velocity of the flyby body will be VF B , while its projection onto the plane of the hyperbolic trajectory would
be V∗

F B . The effect of the flyby from the perspective of the primary corresponds to a bending of the spacecraft
velocity by what is called a deflection angle or pump angle α. The spacecraft velocities at entrance and exit
of the SOI are referred to as ingoing and outgoing hyperbolic excess velocities V+∞ and V−∞. These vectors are
the same in magnitude V∞ but are oriented in different ways, and in this different orientation lays the flyby
effect. Figure 3.7 represents a schematic of the flyby effectt.

Figure 3.7: Sketch of the velocity vectors that characterize the flyby effect. The ingoing and outgoing asymptotic excess velocities (red
and green respectively) are presented, as are the flyby body projected velocity V ∗

F B , the pump angle α and the angle β.

β represents the angle between the hyperbolic trajectory pericenter vector and the flyby body velocity vector.
The change in the orientation of the velocity from the perspective of the primary corresponds to a proper
∆V in the patched approximation. This ∆V can be easily computed by considering the vectorial difference
between the spacecraft final and initial velocity vectors and correspond to ∆V = V+∞ − V−∞. Applying this
formula on the sketch in Figure 3.7 it is possible to quantify the magnitude of the∆V given by the swingby as:

∆V = 2V∞si n
(α

2

)
(3.17)

This ∆V represents a change in the velocity of the spacecraft with respect to the primary and thus in the
kinetic energy of the spacecraft with respect to the main body. By assuming the potential energy to be ap-
proximately constant within the limited region of the SOI of the flyby body, we can conclude that in such a
model the flyby effect corresponds to a discontinuous change in the Keplerian energy of the spacecraft ∆E1.
This change can be quantified as [1]:

∆E1 =V ∗
F B∆V cosβ= 2V ∗

F B V∞si n
(α

2

)
cosβ (3.18)

The change in the spacecraft specific energy derives from the flyby body itself; when a spacecraft acquires
energy through a swingby the flyby body loses the same amount and vice versa. This ∆E1 is exploited by
the spacecraft, but is too small to cause any quantifiable effect on the secondary, given its mass compared
to the that of the spacecraft. Using the vis-viva equation it would be possible to quantify the change on the
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semi-major axis 3 caused by the flyby [1]:

∆

(
1

a

)
=− 2

µ2
∆E1 =− 4

µ2
V ∗

F B V∞si n
(α

2

)
cosβ (3.19)

From these equations very simple but fundamental conclusions can be derived on the flyby’s effects:

• The spacecraft total energy will decrease if the spacecraft passes ahead of the planet (90◦ < β < 270◦).
The decrease would be maximum for β= 180◦, when the spacecraft pericenter vector would be aligned
to the planet’s velocity vector.

• The spacecraft total energy will increase if the spacecraft passes behind the planet (−90◦ < β < 90◦).
The increase would be maximum for β= 0◦, when the spacecraft pericenter vector would be opposite
with the planet’s velocity vector.

• Having specified β and V∞, ∆E1 would be maximum if V ∗
F B is maximum. This is the case when the

plane of the flyby trajectory and the flyby body orbit coincides and V ∗
F B =VF B .

• Assuming V ∗
F B =VF B , ∆E1 is affected by two parameters that depend on the flyby body: µ2 and VF B .

• Having specified β and V∞, ∆E1 will be zero if V ∗
F B = 0. This is the case when the flyby trajectory and

the flyby body’s orbit plane are perpendicular with respect to each other. In reality the flyby will have
effects on the inclination of the trajectory.

By using the patched 2BP approximation a very simple model of the flyby phenomenon can be derived. In
such an approximation the minor body essentially rotates the velocity vector of the spacecraft by a bend-
ing angle that is dependent on the flyby altitude. The flyby is therefore seen as a discontinuous change in
the velocity, energy and semi-major axis as described in Equations 3.17, 3.18 and 3.19. In reality since the
flyby happens under the continuous influence of n bodies, such a discontinuity does not exist. The discon-
tinuity is the effect introduced by the usage of a patched approximation that is capable to easily describe a
multi-body dynamic phenomenon that would require at least three bodies (considering also the spacecraft)
for a sufficient characterization. By removing this approximation and using the CR3BP it would be possible
to investigate these changes in a continuum way but still avoid the complexity involved in a typical n-body
problem. In this sense the work in [20] bridges the gap between the patched 2BP and CR3BP and offers an
easy-to-understand characterization of the events involved.

By considering the Earth-Moon planar CR3BP, the total energy of the spacecraft E with respect to the barycen-
ter of the synodic reference fame can be computed. This can then be differentiated to obtain the instanta-
neous energy change as [20]:

dE

d t
=µ(1−µ)y

 1(√
(µ+x)2 + y2

)3 − 1(√
(x −1+µ)2 + y2

)3

 (3.20)

By inspecting this equation it is possible to see the existence of two loci such that dE
d t = 0: x = 1

2 −µ and y = 0.

These conditions split the SB frame into four different regions in which the sign of dE
d t is invariant. As it is

possible to see in Figure 3.8 dE
d t is relatively flat apart from the region in proximity of the primaries. A closer

view of the region in the vicinity of the Moon can be seen in Figure 3.9.

From these figures it is possible to see that the spacecraft energy will suffer a dramatic change only in the
proximity of the primaries. It is such a dramatic variation that defines the flyby effect.

In the work of [20] a formula is also proposed to quantify the∆E caused by the flyby. Since a direct integration
over time of Equation 3.20 is difficult to perform for an arbitrary orbit in the CR3BP, in [20] a 2BP approxima-
tion in the vicinity of the Moon has been assumed. With such an assumption the energy variation generated
by the flyby in the CR3BP has been estimated to be:

3the term 1
a is used to avoid singularities.
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Figure 3.8: Distribution of dE
d t in the Earth-Moon SB reference frame [20]. The variation is relatively flat in most of the region of the

Earth-Moon system. Relevant variations are present in the proximity of the primaries, Earth and Moon in the case considered.

∆E =−2µ(1−µ)

vp rp
si n(θout )si n(β) (3.21)

where vp is the velocity of the spacecraft at pericenter distance rp with respect to the flyby body and θout is
the true anomaly of the outgoing position at the SOI with the Moon. Note that by decreasing vp we would en-
hance the flyby effect, suggesting that a flyby in the low-energy regime could be exploiting this phenomenon
at its maximum. Numerical integration [20] also shows two important results: flyby events can be categorized
into four categories depending on the energetic characteristics of the trajectories before and after the event
and that there is a difference in the absolute energy variation generated by a prograde and retrograde flybys,
the first ones being more effective than the latter.

Figure 3.9: Distribution of dE
d t in the vicinity of the Moon in the SB frame [20]. A passage ahead or behind the Moon (upper or lower

region about the Moon) will correspond to a negative and positive energy variation respectively. This behavior was already described in
the patched 2BP by Equation 3.18.
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This result in particular has been highlighted already in [11], which identified the existence of two families of
flybys called Type I or direct and Type II or retrograde in the planar CR3BP. In [11] it is argued that Type I flybys
exist for all energy levels and are more efficient than type II flybys, whose existence is guaranteed only at high
energy levels. Another difference between Type I and Type II is that in the latter case the spacecraft can access
both sides of the flyby body. In this sense the work in [11] connects between the low-energy regime, where
direct flybys can be approximated by a tool called Keplerian map, and the high-energy regime, where both
direct and retrograde flybys are approximated by the patched 2BP as discussed before.

A detailed analysis of the flyby effects in the spatial CR3BP of the Sun-Jupiter and Earth-Moon systems will
be presented in Chapter 8. This would be an addition to the body of science about the understanding of the
flyby effect in a multi-body environment in the light of the new framework developed in this report.

Note that in this discussion, and for the rest of the report, the flyby will be treated purely from a gravitational
point of view; non-gravitational perturbations will therefore be neglected.

3.4. SUN’S PERTURBATION EFFECTS
In the previous section the flyby effects have been described. These have been generated by the perturbing
forces of the secondary disturbing the motion of the spacecraft about the primary. In this section the comple-
mentary situation will be discussed, as the perturbing forces generated by the primary disturbing the motion
of the spacecraft about the secondary will be briefly analyzed. As the name of the section suggests the focus
will be put on the Sun’s perturbation effects.
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Figure 3.10: Example of the Sun’s perturbing effects on eight trajectories propagated in the Sun-Earth CR3BP for about one orbital
revolution from different initial points (+ symbols) at 200000 km from Earth (blue circle). The trajectories are represented in the SP2
frame of the Sun-Earth CR3BP, a value of C = 3.00092 has been used for the propagation. Four different colors categorize the trajectories
depending on the quadrant of the apocenters (black dots) in this reference frame.

Sun’s perturbing forces can play a fundamental role in providing free ∆V to a spacecraft. As seen in Chapter
2 this is a crucial aspect in the trajectory design of missions such as Hiten, ARTEMIS and EQUULEUS that
exploit an exterior low-energy transfer. For the latter mission the desired aspects of a trajectory exploiting
Sun’s perturbation are extensively discussed in [9] through the usage of a graphical tool called the Extended
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Tisserand-Poincaré graph that will be introduced in Section 3.7.3.

The key effects caused by the Sun’s gravity are related to a change in the Keplerian energy and angular mo-
mentum with respect to the secondary body considered as main attractor. In a 2BP these quantities would
be constant, however due to the third-body perturbations in the CR3BP they are not. This phenomenon is
widely reported in literature for orbits in the same plane, most notably in [21]. To illustrate it eight different
trajectories have been propagated in the Sun-Earth CR3BP from initial conditions at 200000 km from Earth.
These trajectories are represented in Figure 3.10 in the SP2 frame about Earth, with axes expressed in Moon
semi-major axis units. Two important effects can be seen from this figure: the trajectories seem to display
a general symmetry with respect to the origin of the SP2 reference frame, these have drastically different
behaviors depending on the position of the apogees. For example trajectories in the I ◦ and I I I ◦ quadrants
reduce their perigees after an excursion away from the Earth-Moon system, trajectories in the I I ◦ and IV ◦
quadrants express the opposite behavior. By inspecting the Keplerian energy E2 and angular momentum H2

with respect to Earth in Figure 3.11 their differences became even more clear. The derivation of the formulas
used to compute E2 and H2 in the SP2 reference frame are provided in Appendix B.
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Figure 3.11: Representation of the variation of Keplerian energy E2 (left) and angular momentum H2 (right) of the eight trajectories
illustrated in Figure 3.10, colors are corresponding.

Four global trends can be discerned in the variation of E2 and H2 illustrated in Figure 3.11. As it is possible
to see from the colors these four trends are dependent on the quadrants and on the symmetry properties
illustrated before. Trajectories in the I ◦ and I I I ◦ quadrants (respectively the orange and red ones) display
an overall reduction of both E2 and H2, that correspond in a reduction of the perigee radii after one orbital
revolution about Earth. On the contrary the trajectories in the I I ◦ and IV ◦ quadrants (respectively the purple
and green ones) display an overall increase of both E2 and H2, that correspond in an increase of the perigee
radii after one orbital revolution about Earth. In Figure 3.11 it is possible to see a small difference between
E2 or H2 for trajectories within the same group. This is due to the fact that in the CR3BP there is not an exact
symmetric relation about P2, as is clear also from Figure 3.12.

The mechanism that is describing this phenomenon can be easily explained by looking at Figure 3.12. Four
different trajectories are taken from Figure 3.10 and superimposed over a sketch of the combined gravita-
tional and centrifugal forces in the Sun-Earth system, neglecting Earth influences for simplicity. These are
represented by the black flux lines. The Sun is located on the far left region of the graph. The trajectories are
assumed to be moving in counterclockwise direction. A trajectory with an apogee in the I ◦ or I I I ◦ quadrants
will be generally experiencing a ’dragging’ force that can be compared to a ∆V < 0. On the contrary a trajec-
tory in the I I ◦ and IV ◦ quadrants will be experiencing a ’boosting’ force that can be compared to a ∆V > 0.
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Figure 3.12: Sketch of the Sun’s perturbing effect in the Sun-Earth CR3BP. The Sun is on the left part of the graph. All trajectories move
in counterclockwise direction. The behavior in the four quadrants can be explained by the way the combined Sun and centrifugal forces
act in the four quadrants of the SP2 frame.

Such∆V is particularly effective also considering the amount of time that the spacecraft spends in the region
perturbed by the combined Sun and centrifugal forces. Given the time it can significantly build up, causing
the variations on E2 and H2 described before. In the case of a trajectory in the I ◦ or I I I ◦ quadrants the effects
can be so profound to invert the motion of the spacecraft from prograde to retrograde.

To conclude, since this ∆V is generated from the multi-body dynamics of the system, it is essentially for free.
The only major drawback lays on a bigger flight time associated with the trajectory excursion outside the
vicinity of the Earth-Moon system. From this brief discussion it is clear why taking these effects actively into
account in the trajectory design process can become a crucial aspect to save the overall ∆V of a mission.

3.5. DYNAMICAL SYSTEM THEORY
Dynamical System Theory (DST) is a mathematical theory that makes use of models based on differential
equations in order to describe the behavior of complex dynamical systems. It has found a successful appli-
cation for the qualitative analysis of the long-term behavior of dynamical systems [1]. In this section only the
most fundamental concepts from DST used in the report are illustrated, the interested reader is referred to
[22] for a more detailed discussion.

3.5.1. AUTONOMOUS AND NON-AUTONOMOUS SYSTEM
A system of first-order differential equations can be expressed in the following forms [22]:

ẋ = f (x, t ) or ẋ = f (x) (3.22)

x(t0) = x0 (3.23)

where t is an independent variable representing time, f is a vector function, continuous in t and x such that
f : G → Rn and G is an open subset of Rn+1. x(t ) represents a vector function that is the solution of the differ-
ential equation, if continuously differentiable, with x ∈ D ⊂Rn .
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If time is an explicit variable of the function f, then the system is called non-autonomous (the first form in
Equation 3.22). If this is not the case the system is called autonomous (the second form of Equation 3.22).

Any nth-order differential equation can be transformed in an nth-order system of first-order differential
equations as illustrated in Equation 3.22. By applying such a procedure to the equations of motion of the
CR3BP and BR4BP, respectively Equations 3.9 and 3.15, two systems of six first-order differential equations
can be written. By comparing them with Equation 3.22 these systems can be classified as autonomous and
non-autonomous. The consequences of such a classification have already been discussed in Sections 3.2.2
and 3.2.3.

3.5.2. POINCARÉ MAP
The phase space can be defined as that subset D ⊂ Rn where the solution of the differential equation x (t ) is
defined. In such a space the behavior of the variables that compose the state x (t ) that are parametrized by
the independent variable t is described. By varying t a point moves in the phase space describing what is
referred to as an orbit. For an autonomous system it is possible to demonstrate that orbits do not intersect in
the phase space in finite time based on the existence and uniqueness theorem [22].

A Poincaré map is a powerful tool that provides insight into the dynamics of a system. It does that by pro-
viding a portrait of the phase space through the usage of a Poincaré section, a subspace of lower dimension
V ⊂ Rn−1. Such a section is transversal to the flow of the system, meaning that orbits do not intersect the
section V tangentially.

The map is also referred to as first recurrence map if only the first intersections of the orbits emanating from
the section V are recorded. In general if an orbit started from the point x0 ∈ V return to intersect V in the
point P (x0) ∈V , then the point is said to be mapped by P:

P : V →V (3.24)

The mapped point P (x0) ∈ V found after mapping x0 can be mapped again. The second mapping is called
P 2(x0) and so on for increasing orders. For the mapping procedure to be successful no critical points of the
system must be considered by the Poincaré section.

Note that in this report the term map will be referred both to the mapping process defined by P in equation
3.24 and to the representation of the mapped points in a subset of the phase space. The latter serves as a dis-
crete representation of a dynamical system, being one dimension smaller than the original system. Periodic
and quasi-periodic orbits of the original system are enhanced in a Poincaré map, since many properties of
these types of orbits are preserved in the mapping process. For this reason a Poincaré map is a fundamental
tool to analyze a dynamical system in a simpler way. Poincaré maps will be extensively used in Chapter 6,
alongside Poincaré sections defined in Section 4.5.

3.6. TISSERAND PARAMETER
The Tisserand parameter is a mathematical expression named after François Félix Tisserand, a 19th-century
French astronomer. The formula first appeared in his work Traité de mécanique céleste [23] in 1896 as a deriva-
tion from the Jacobi integral in the CR3BP. Several alternative formulations exist in literature, but all of them
are a rearrangement of the original formula. Amongst the most used ones there are:

T (a,e, i ) = DU

a
+2

√
a(1−e2)

DU
cos(i ) (3.25)

T (a,e, i ) = µ1

a
+ 2

TU

√
µ1a

(
1−e2

)
cos(i ) (3.26)

where a is the semi-major axis, e is the eccentricity and i is the inclination of the trajectory. DU is the dis-
tance normalization parameter, while µ1 is the primary mass parameter of the CR3BP in consideration. The
difference between Equations 3.25 and 3.26 is a direct consequence of an assumption on the TU parameter
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of the CR3BP and will be explained in detail in Section 4.2. Note that the inclination is referred to the incli-
nation of the orbit with respect to the orbital plane of the primaries of the CR3BP taken into consideration.
The parameter is often presented as a function of ra and rp instead of a and e if elliptic orbits are taken in
consideration. The transformation is immediate by considering that ra = a(1+ e) and rp = a(1− e), so that

a = ra+rp

2 and e = ra−rp

ra+rp
. By substituting these expressions into Equation 3.26 we obtain:

T (ra ,rp , i ) = 2µ1

ra + rp
+ 2

TU

√
2µ1

rarp

ra + rp
cos(i ) (3.27)

Other well-known alternative formulations of the Tisserand parameter are the one that shows the decom-
position into Keplerian energy E1 and angular momentum H1 with respect to the primary and the one that
shows the relationship with the hyperbolic excess velocity v∞ [10] for high-energy levels:

T (E1, H1, i ) =−2E1 + 2

TU
H1cos(i ) (3.28)

T (v∞) = 3− v2
∞ (3.29)

The Tisserand parameter is derived from the CR3BP and it always refers to the primary of the system. The
derivation of the classical parameter and of a new modified parameter that breaks this assumption will be
illustrated in Chapter 4. These assumptions are:

• The mass parameter µ of the CR3BP is small: The distance of an object from the primary can be ap-
proximated as the distance from the barycenter and the secondary can be assumed to be moving in a
circular orbit about the primary.

• The object is considered far from the minor body: its trajectory can be approximated in the 2BP as a
Keplerian orbit about the primary as main attractor.

Whenever these assumptions are satisfied the Tisserand parameter can be used as a valid alternative to the
Jacobi constant. In this sense the Tisserand parameter in certain cases is more practical than the Jacobi inte-
gral since it is depending only on three variables against the six necessary to evaluate the latter. Because of
this reduction in complexity and relative simplicity the Parameter has found a large number of applications.

In the original consideration the parameter has been used in the Sun-Jupiter system to determine if possi-
ble comets disturbed by Jupiter’s gravitational influence were objects already observed and cataloged. Since
the comets orbit could have been heavily influenced by flyby effects with Jupiter, there was the necessity
to determine if an observed comet was actually a perturbed one that was already discovered or was a new
one. The Tisserand parameter could do that because of its property to remain approximately constant after a
flyby, given the assumptions explained before. By comparing the Tisserand parameter of previously observed
comets with the one of the ’new’ one it was possible to determine if two objects were the same comet or no.
The following comparison took the name of Tisserand criterion, because it involved the comparison between
the parameters of two possibly different objects. The success of this application relies on the fact that during
a flyby the orbital elements a,e,i are scrambled, but their combination into the Tisserand parameter returns
the same value, that is conserved after the flyby.

Although it was originally applied to the Sun-Jupiter CR3BP, the parameter can be adapted to any CR3BP of
interest, given that its assumptions are still valid. The parameter has found applications mainly in astrody-
namics and astronomy, amongst them the most important ones [1]:

• In astronomy the Tisserand parameter considering Jupiter as perturbing body can be used to categorize
bodies into families. For example it is used to distinguish between asteroids (T > 3), comets (2 < T < 3)
and a group of minor planets called Damocloids (T < 2).

• In astronomy it is used to determine if an observed orbiting body is the same as one previously observed
whose motion has been perturbed by swingby effects with a planet.

• In astrodynamics the conservation of the parameter can be used to constrain the achievable flyby ef-
fects.

The latter application will be discussed in detail in the next section.
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3.7. TISSERAND GRAPH AND ITS VARIANTS
The usage of the parameter for astronomical applications has been particularly successful since the 19th
century, however it was only until recent time that the parameter found another successful application in the
design of multiple gravity assist (MGA) trajectories. By developing a graphical tool based on the parameter
different techniques have been developed in the past 20 years to design trajectories in a multi-body dynam-
ics environment. What follows is a brief discussion that would like to clarify the differences between some
variants of this graphical technique and their evolution in time. The techniques that will be presented here
are the Tisserand graph (T-graph), the Tisserand-Poincaré graph (TP-graph) and the Extended Tisserand-
Poincaré graph (ETP-graph).

3.7.1. TISSERAND GRAPH
The Tisserand graph has been developed in [12][24] as a tool to compute first-guess MGA trajectories with the
purpose to reduce the computational effort in the design process of interplanetary trajectories. The T-graph
uses two parameters to characterize a Keplerian orbit about the main attractor. The reference dynamical
model of the graph is in fact the planar case of the patched 2BP. The most used parameters have been ra and
rp , as well as the orbital period and the specific energy E1. The most well-known graphs presented in litera-
ture are therefore the ra −rp , Period−rp and E1−rp Tisserand graphs. The first one is being used with circular
and elliptic orbits while the latter is defined also for hyperbolic and parabolic orbits. The key elements of a
T-graph are the curves at constant Tisserand parameter, also referred to as Tisserand level sets.

Figure 3.13: The E1 − rp T-graph of the Solar System with a representation of the VEEGA sequence [12]. The level sets of the inner and
some of the outer planets are represented. It is often preferred to show them in different graphs, as it is possible to see from the bad
scaling of the contours of Jupiter and Pluto in the top part of the figure.

In the T-graph a Tisserand level set represents a contour line that contains orbits sharing the same Tisserand
parameter. As it is possible to see from Equation 3.29 this corresponds also to the same escape velocity v∞.
Every point in the T-graph represents a Keplerian orbit about the main attractor. The flyby effects described
in Section 3.3 are represented in a very simple way in the graph as a movement from one point to another,
following a particular level. The movement itself is not causal, but it is constrained on the Tisserand level set
and its magnitude is depending on a set flyby altitude. Thick points are often introduced to the graph to high-
light the maximum excursion that is possible to achieve in a single flyby event due to such altitude limitation.
When the level sets of different bodies intersect with each other a transfer opportunity opens, as the orbit in
two different systems share the same energetic level. It is important to remind that this opportunity in reality
is just potential, since it derives only from energetic considerations that do not take into account the phasing
of the bodies. Nonetheless it can be used to constrain a flyby sequence from an energy-wise point of view.
Figure 3.13 shows the E1 − rp T-graph for the Solar System, with the contours of inner and some of the outer
planets.
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The T-graph so defined can be efficiently used to explore the search space for candidate flyby trajectories and
most importantly to understand which are the best sequences of flyby planets. Such sequences are often con-
strained or chosen by some previous experience, they themselves are not a variable in the trajectory design
process. The T-graph however offers a simple and inexpensive way to investigate them. Figure 3.14 shows the
Venus-Earth-Earth Gravity Assist sequence (VEEGA) in the Period−rp T-graph. At launch the spacecraft is po-
sitioned on a relatively low energy contour (Earth, v∞ = 3 km/s), however from the properties of this contour
the trajectory can be easily patched through flyby maneuvers with higher energy contours of other bodies. A
flyby with Venus and a double flyby with Earth shift the orbit upward first on a Venus contour (Venus, v∞ = 5
km/s) and finally into an Earth one (Earth,v∞ = 9 km/s) intersecting Jupiter (Jupiter, v∞ = 6 km/s). In this
case it is possible to see how efficient the Venus flyby is to move the spacecraft from the 3 to 9 km/s contour
with respect to Earth, allowing a much lower escape velocity than the one originally needed to reach Jupiter.

Figure 3.14: Representation of a VEEGA trajectory in a Period−rp T-graph [12]. A number of Tisserand level sets of Earth, Venus and
Jupiter are represented at different v∞. By looking at the flyby sequence in the graph it is easy to understand the mechanism behind it
from an energy perspective.

The design process envisioned in [12] for MGA trajectories in the Solar System is made by two parts called
finding and solving. In the finding step first-guess trajectories are generated by the application of an algo-
rithmic search on the graph. The purpose of this phase is to identify the most promising sequences of flyby
planets to use, pruning them on the basis of energy considerations only. The contour intersections are dis-
cretized and constitute a network of nodes at different energy levels. The network is traversed from an initial
set of nodes close to the launch condition to the final condition. Only trajectories satisfying a criterion based
on the estimated time of flight are taken into consideration as first-guess trajectories for the next step, the
solving phase. In this step the first-guess trajectories are propagated and optimized in a higher-fidelity dy-
namical model. This step is necessary to produce a realistic nominal trajectory.

3.7.2. TISSERAND-POINCARÉ GRAPH
The TP-graph is a natural extension of the T-graph that has been designed in [25][10]. While the T-graph uses
the patched 2BP, the TP-graph reference dynamical model is the patched CR3BP. The graph is built by plot-
ting the osculating orbital elements of points intersecting a Poincaré section defined in a planar CR3BP in
the ra − rp graph together with the Tisserand level sets. The Poincaré section chosen in [10] is the negative
x-axis of the SP1 frame and is chosen to take osculating orbital elements of trajectories that are far from the
secondary and can therefore be approximated as Keplerian orbits with respect to the primary.

Since patched CR3BP models are used in the TP-graph, the Tisserand level sets can extend well beyond the
region in which v2∞ is defined in the patched 2BP. For example the sets for which T > 3, that would be char-
acterized by v2∞ < 0 (physically inconsistent) in the 2BP assumption, become accessible regions of the graph
in the CR3BP model. With this fundamental property [10] successfully demonstrated the potential of the
technique for applications in the low-energy regime. An important result presented in [10] is that with the
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Figure 3.15: Schematic of how points in the TP-graph are drawn from a Poincaré section on the negative x-axis of the SP1 reference frame
[10].

TP-graph it is possible to see that ballistic transfers between the moons of Jupiter are possible from an en-
ergetic point of view in the low-energy regime. The opposite conclusion could have not been derived by the
usage of a patched 2BP and associated T-graph.

Figure 3.16: TP-graph with associated regions of motion in the CR3BP [10]. I i and I e are regions that do not allow a transfer trajectory
to the secondary. I I i and I I e allow such a transfer from the primary or from the exterior region. In the region I I I the entire space is
accessible to the spacecraft.

The anatomy of the TP-graph is illustrated in Figure 3.16. The Tisserand level sets represented have been
computed by applying Equation 3.25 in the planar and prograde case (i = 0◦). Several level sets are depicted,
however the most important are the ones associated to the Jacobi constant C of the Lagrange libration points
(CL1,CL2,CL3,CL4/L5 introduced in Section 3.2.2). These sets divide the TP-graph into regions that are ac-
cessible or not depending on the configuration of the Hill’s surfaces associated to that energy levels. In [10]
three regions are characterized from the perspective of a transfer trajectory between secondaries of different
CR3BP models. Region I is delimited on the lower part of the graph by CL1 and on the upper part by CL2.
From the associated ZVC it is possible to see that a point taken in these regions would not be able to reach
the secondary with a ballistic trajectory as it will be confined in a region about the primary ( I i ) or in a region
outside the system due to the closure of the L2 neck (I e ). Region I I is delimited from region I to CL4/L5, in
this case the secondary is accessible from the inner region (I I i ) with the L1 neck open (even with the L2 neck
closed) or from the outer region with an open L2 neck (I I e ). Lastly in region I I I any point can energetically
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access the secondary. A subregion of I I I is given by the conditions rp < 1 and ra > 1. This subregion repre-
sents the original portion of the graph that can be represented by the T-graph. It is therefore immediate to
understand that the extension of the TP-graph by using a CR3BP model has unlocked the possibility to reach
very high apocenters also with low v∞. This capability is at the basis of the low-energy transfer technique.

To design transfers between Europa and Ganymede, where the multi-body dynamics is relevant, a patched
CR3BP approach is developed in [10] that makes use of the TP-graph. The trajectory is divided into phases
where only one minor body at a time affects the motion of the spacecraft as the secondary, while the primary
(Jupiter) does not change. A search-grid is performed by propagating forward and backward in time from dif-
ferent points on the initial and final orbits about Europa and Ganymede in the different CR3BP models with
fixed values of C . The intersection states on the Poincaré section are recorded (as well as their epochs) and
represented in the TP-graph. The patching between trajectories in the Jupiter-Europa and Jupiter-Ganymede
CR3BP is performed in the graph. In this sense the graph is important because it easily displays different
CR3BP systems at different values of Jacobi constant C , showing at which orbital elements a patching be-
tween two systems can be executed in a ballistic way. In this example the TP-graph has been used as a simple
patching technique between different CR3BP’s that share the same primary body. However in this case nu-
merical propagation was necessary to compute trajectories in the CR3BP that can be much more complex
than a conic-shaped Keplerian orbit.

3.7.3. EXTENDED TISSERAND-POINCARÉ GRAPH
The ETP-graph is a natural extension of the TP-graph proposed in [9] in order to include in a qualitative anal-
ysis the Sun’s perturbation effects into the TP-graph. The latter graph considers CR3BP systems that share the
same primary but have different secondaries such as the Jupiter-Europa-Ganymede or the Sun-Earth-Jupiter
and so forth. The reason for this constraint relies on a fundamental limitation of the Tisserand parameter
introduced in Section 3.6: The Tisserand parameter is defined about the primary and it is only in the vicinity
of the primary that it possesses its constancy property.

One of the categorical assumptions for its derivation was to consider the parameter only far from the sec-
ondary. In literature this has been put into practice by taking into account the region outside the SOI of the
secondary [12] or the negative x-axis of the SP1 reference frame [10]. When considering the Sun-Earth-Moon
system a fundamental problem arises: the two CR3BP’s do not share the same primary, indeed they share
the same body (Earth) once as a primary (Earth-Moon CR3BP) and once as a secondary (Sun-Earth CR3BP).
For this reason the Tisserand parameter has not found an application for these type of systems. In Chapter
4 a modified parameter that overcomes this limitation is derived. In this section the state of the art of the
ETP-graph is discussed.

Given this crucial obstacle the analysis performed in [9] is just qualitative, because it simply assesses the po-
tential effects of Sun’s perturbing forces into the ETP-graph of the Earth-Moon system to investigate upon
their usage for the EQUULEUS and DESTINY missions. Nonetheless the addition of the Sun’s perturbations
can justify the new naming of the graph as Extended TP-graph or ETP-graph. Two different approaches are
investigated in [9]: an analytical and a numerical one. The analytical approximation takes into consideration
Gauss form of the Lagrange planetary equations and uses the Sun’s third-body attraction as perturbing force.
By integrating the differential form of the instantaneous change of a and e over one revolution it is possi-
ble to estimate the discrete variations ∆a and ∆e assuming small variations with respect to an unperturbed
trajectory [9]:

∆a ≈ 0 (3.30)

∆e = 15π

2µ
a3e

√
1−e2si n2

(
ωp −θ)

(3.31)

where the angle θ is half the rotation of the apsis line in the synodic reference frame along the orbit and
the term ωp −θ can be considered as a representative argument of pericenter. The complete analysis is pre-
sented in [9] and will not be reproduced here. Two important results are already visible from Equations 3.30
and 3.31. First, that the effects of Sun’s perturbing force are Sun-kicks acting on the ETP-graph as lines of
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Figure 3.17: Effect of the Sun’s perturbations in the ETP-graph of the Earth-Moon system described by an analytical approximation
(continuous lines) and numerical analysis (dashed lines) [9]. Axes are expressed in Moon semi-major axis units. By taking points on
the Tisserand level sets and performing the analytical and numerical analysis, the effect of the Sun’s perturbations is estimated for one
orbital revolution. Triangle symbols are introduced to facilitate the analysis for specific points on the graph. The Tisserand level sets for
the Lagrange points and for different cases of v∞ are illustrated in the ETP-graph. In the latter case the values are represented on the
right part of the graph (0.3, 0.6, 0.9 and 1.2).

slope −1, since from Equation 3.30 it holds that ∆rp = −∆ra . Second, from Equation 3.31 it is possible to
see a sinusoidal term that depends on two times the average argument of pericenter

(
ωp −θ)

. This term is
the one that explains the quadrant behavior of Sun’s perturbation effects already described in detail in Sec-
tion 3.4. The applicability of the results from this analytic approximation however can be put into question
due to the fact that the integrations of the equation to obtain ∆a and ∆e has been done assuming constant
orbital elements over one revolution and small variations with respect to the unperturbed trajectories. As
underlined in [9] this is not really applicable in this case. To compute the achievable maximum deviation a
numerical technique that makes use of a small optimization procedure considering the argument of pericen-
ter as optimization variable is performed in [9]. The overall effects of these analyses can be seen in Figure 3.17.

As explained in Section 3.4 and as clearly illustrated in Figure 3.17, the effects of Sun perturbations will play
a crucial role in providing free kicks on the trajectories of both EQUULEUS and DESTINY. From Figure 3.17 it
is possible to see that for apogees above 1.2 Moon semi-major axis these effects start to play a crucial rule [9].





4
TISSERAND PARAMETERS

In this chapter the derivation of the classical Tisserand parameter introduced in Chapter 4 will be presented
together with the derivation of a modified Tisserand parameter. The classical Tisserand parameter will be ref-
ereed to the expressions introduced in Section 3.6 that describe a parameter about the primary of the system.
The modified parameter derived in this chapter however will be defined about the secondary of the system,
hence the distinction between the two parameters.

In Section 4.1 the Jacobi integral will be expressed in a generic inertial Pi centered reference frame. This will
be the starting point to derive both the classical and the modified Tisserand parameters. The derivations of
these parameters are illustrated in Sections 4.2 and 4.3 respectively. A comparison between the two param-
eters is illustrated for a trajectory in the Earth-Moon system in Section 4.4. In Section 4.5 a class of Poincaré
sections that can be used in the TP-graph is characterized. Amongst these the specific Poincaré sections that
will be used throughout the report are defined. Finally Section 4.6 concludes the discussion with the main
findings in the chapter. Appendix will summarize the main expressions derived in this chapter. Note that the
mathematical derivations will heavily rely on the notation introduced in Section 3.2.2.

4.1. JACOBI INTEGRAL’S TRANSFORMATIONS
The expression of the Jacobi integral in the SB frame (Equation 3.10)is well known in literature, it is however
of little use when working in other frames. When this is the case it is necessary to perform a series of transfor-
mations to express the state of the spacecraft in the SB frame in order to proceed with the evaluation of the
Jacobi integral. However since in this report the SB frame will rarely be used, a different approach is adopted.
Instead of transforming the states, the integral will be transformed to be expressed in coordinates of other
frames. The notation used here will be the same as introduced in Section 3.2.2, so for example the integral
expressed in coordinates of the SP1D frame will be referred to as JSP1D in short or J (XSP1D ) in full.

In this section a general expression of the Jacobi integral in different frames will be presented in a parametric
form depending on the position of the frame’s origin. For what concerns the derivation of the Tisserand pa-
rameters we are interested to express J I P1D and J I P2D . The transformations involved to pass from SB to the
generic I Pi D frame are now presented separated in three different steps: from SB to SPi , then to I Pi , and
finally to I Pi D .

4.1.1. FROM JSB TO JSPi

Let us first consider the expression of the Jacobi integral in the SB frame already presented in Equation 3.10
and repeated here for better understanding:

JSB = 2
(
1−µ)
r1

+ 2µ

r2
+ (

x2 + y2)− (ẋ2 + ẏ2 + ż2)+µ(1−µ) (4.1)
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where r1 and r2 are the distances of the point P from the primaries and XSB = [x y z ẋ ẏ ż]T is the state in the
SB frame.

To express this integral as a function of the state in the SPi frame a coordinate transformation as the one
presented in Equation 3.5 needs to be performed. To simplify the analysis while keeping it always generic
the translation from barycenter to the generic point Pi is done assuming such a point to be positioned on
the x-axis, such that its coordinates are (d ,0,0) in the SB frame. Since the barycenter, primaries and the
collinear points lay on this axis, the assumption does not represent a limitation for the cases of interest. By
using Equation 3.5 the state can be transformed from SPi to SB and vice versa:

XSB = XSPi +



d
0
0
0
0
0

 (4.2)

Applying this transformations to the elements of the integral expressed by Equation 4.1 we can write:

(x2 + y2)SB = (x +d)2 + (y)2

= (x2 + y2)+d 2 +2xd
(4.3)

(ẋ2 + ẏ2 + ż2)SB = (ẋ2 + ẏ2 + ż2) (4.4)

where the left-hand side of these equations are intended in the SB frame while the right-hand ones are ex-
pressed in the SPi frame. Since r1 and r2 are relative distances from the primaries they will not be transformed
until the very end to not further complicate the analysis. By substituting these terms into Equation 4.1 we can
write the Jacobi integral expressed as a function of the state in the SPi frame as:

JSPi = 2
1−µ

r1
+2

µ

r2
+ (x2 + y2)− (ẋ2 + ẏ2 + ż2)+2xd +d 2 +µ(

1−µ)
(4.5)

where XSPi = [x y z ẋ ẏ ż]T is now the state of the point P in the SPi frame.

4.1.2. FROM JSPi TO J I Pi

The state is now transformed to be expressed in the inertial frame I Pi . In order to do that the transforma-
tion matrix TI 2S in Equation 3.7 is used to express the synodic state as a function of the inertial one. The
transformation can be written in short notation as XSPi = TI 2S XI Pi or component-by-component as:



xSPi = xcosθ+ y si nθ

ySPi =−xsi nθ+ ycosθ

zSPi = z

ẋSPi =
(
ẏ −x

)
si nθ+ (

y + ẋ
)

cosθ

ẏSPi =
(
ẏ −x

)
cosθ− (

y + ẋ
)

si nθ

żSPi = ż

(4.6)

Note that the state XI Pi = [x y z ẋ ẏ ż]T is now the one expressed on the right-hand side of the equations,
that is the arrival state of the transformation. It follows that the following terms of Equation 4.5 can be trans-
formed:

(x2 + y2)SPi = (xcosθ+ y si nθ)2 + (−xsi nθ+ ycosθ)2

= x2cos2θ+ y2si n2θ+2x ycosθsi nθ+x2si n2θ+ y2cos2θ−2x ycosθsi nθ

= x2 + y2

(4.7)
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(ẋ2 + ẏ2 + ż2)SPi = (ẏ −x)2si n2θ+ (y + ẋ)2cos2θ+2(ẏ −x)(ẋ + y)si nθcosθ+ ...

+ (ẏ −x)2cos2θ+ (y + ẋ)2si n2θ−2(ẏ −x)(ẋ + y)si nθcosθ+ ...

+ ż2

= (ẋ2 + ẏ2 + ż2)+ (y2 +x2)+2(y ẋ − ẏ x)

(4.8)

Note that since the distance from the origin is the same in the two frames, the first transformation does not
introduce new terms. As expected by substituting these expressions into the Jacobi integral in Equation 4.5,
we obtain the Jacobi integral as a function of the state in the I Pi frame:

J
(
XI Pi ,θ

)= 2
1−µ

r1
+2

µ

r2
+2

(
x ẏ − y ẋ

)− (ẋ2 + ẏ2 + ż2)+2d
(
xcosθ+ y si nθ

)+d 2 +µ(1−µ) (4.9)

Note that this time the integral is also a function of the angle θ, that is the angle between the synodic and
inertial frames at the time of the transformation. This is an important effect as this angle is often used with
an abuse of notation in literature as the time variable of the system, thus transforming the integral also into a
function of time.

4.1.3. FROM J I Pi TO J I Pi D
The last step is the dimensionalization of the normalized quantities that appear in the integral. A generic
CR3BP can be specified by the choice of the mass parameter µ and then be dimensionalized by the usage
of three parameters: DU ,V U and TU . These are often taken from tables but depending on the assump-
tions made to obtain them different numerical errors might be introduced, as all the variables that define
the CR3BP have specific relations with each other. In order to avoid committing these errors in this report a
CR3BP system is defined by three parameters:

DU µ1 µ (4.10)

where DU is the distance between the primaries expressed in m, µ1 is the gravitational parameter of the
primary expressed in m3/s2 and µ is the mass parameter of the system. The latter is related to the mass of the
primaries of the system as follow:

µ1

µ1 +µ2
= 1−µ and

µ2

µ1 +µ2
=µ (4.11)

where µ2 is the gravitational parameter of the secondary. From these equations and from the fact that the
primaries move in circular orbits about the barycenter of the system, the following set of relations can be
derived:

µ2 =µ1
µ

1−µ and TU =
√

DU 3

µ1 +µ2
and V U = DU

TU
(4.12)

From these relations it is possible to see that by choosing a set of DU , µ1 and µ, the corresponding V U ,TU
and µ2 of the system can be derived. As said before this is preferred to the practice of defining DU ,TU and
V U upfront and can help avoiding numerical errors. By applying these relationships each term of the Jacobi
integral in Equation 4.9 is analyzed: (

2
1−µ

r1

)
ad

= 2
µ1

r1

DU

µ1 +µ2
(4.13)(

2
µ

r2

)
ad

= 2
µ2

r2

DU

µ1 +µ2
(4.14)

(
2
(
x ẏ − y ẋ

))
ad = 2

1

DUV U

(
x ẏ − y ẋ

)
(4.15)

(
ẋ2 + ẏ2 + ż2)

ad = 1

V U 2

(
ẋ2 + ẏ2 + ż2) (4.16)

(
2d

(
xcosθ+ y si nθ

))
ad = 2

d

DU 2

(
xcosθ+ y si nθ

)
(4.17)
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(
d 2)

ad = d 2

DU 2 (4.18)

(
µ

(
1−µ))

ad = µ1µ2(
µ1 +µ2

)2 (4.19)

Both the left and right-hand sides of these equations are in adimensional units. However the combination of
normalization parameters that make these expressions adimensional (ad) is exposed on the right-hand side
of the equations. The integral J I Pi can be transformed with these normalization parameters as:

J∗
(
XIPiD,θ

)=2
µ1

r1

DU

µ1 +µ2
+2

µ2

r2

DU

µ1 +µ2
+2

1

DUV U

(
x ẏ − y ẋ

)− 1

V U 2

(
ẋ2 + ẏ2 + ż2)+

+2
d

DU 2

(
xcosθ+ y si nθ

)+ d 2

DU 2 + µ1µ2(
µ1 +µ2

)2

(4.20)

where the state XI Pi D = [x y z ẋ ẏ ż]T and the parameter d are expressed in dimensional units. Because this
integral is expressed as a function of the state in dimensional units but with the normalization parameters
into it, the integral evaluation (the Jacobi constant) is still adimensional, hence the symbol ∗ is used. To make
it dimensional it is necessary to multiply J∗I Pi D by V U 2. By using Equations 4.11 and 4.12 this term can be
written as:

V U 2 = DU 2

TU 2 = µ1 +µ2

DU
(4.21)

by multiplying it on the right-hand side of J∗I Pi D it is possible to obtain the final expression of the Jacobi
integral in dimensional units:

J
(
XIPiD,θ

)=2
µ1

r1
+2

µ2

r2
+2

1

TU

(
x ẏ − y ẋ

)− (
ẋ2 + ẏ2 + ż2)+

+2
d

TU 2

(
xcosθ+ y si nθ

)+ d 2

TU 2 +V U 2 µ1µ2(
µ1 +µ2

)2

(4.22)

We now possess the general expression of the Jacobi integral in the I Pi D frame centered on a point Pi . By
specifying its position on the x-axis of the SB frame this general formula can be adapted to any specific case
of interest. By moving Pi on the primaries it is very simple to obtain J I P1D and J I P2D . These will represent the
starting points for the derivations illustrated in Sections 4.2 and 4.3.

4.1.4. SUMMARY

The generic equations of the Jacobi integrals dependent on the states expressed in different frames are briefly
summarized here. Although these integrals are rarely found in literature, they will be widely used in this
report and for this reason they are represented here for clarity:



JSPi = 2
1−µ

r1
+2

µ

r2
+ (x2 + y2)− (ẋ2 + ẏ2 + ż2)+2xd +d 2 +µ(

1−µ)
J I Pi = 2

1−µ
r1

+2
µ

r2
+2

(
x ẏ − y ẋ

)− (ẋ2 + ẏ2 + ż2)+2d
(
xcosθ+ y si nθ

)+d 2 +µ(1−µ)

J I Pi D = 2
µ1

r1
+2

µ2

r2
+2

1

TU

(
x ẏ − y ẋ

)− (
ẋ2 + ẏ2 + ż2)+2

d

TU 2

(
xcosθ+ y si nθ

)+ d 2

TU 2 +V U 2 µ1µ2(
µ1 +µ2

)2

(4.23)
where the components of the states are expressed in SPi ,I Pi and I Pi D frames respectively. The parametric
distance of the point Pi = (d ,0,0) is expressed in normalized units in the SB frame in the first two equations
while it is expressed in dimensional units in the SBD frame in the latter equation.
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4.2. CLASSICAL TISSERAND PARAMETER
The parameters introduced in Section 3.6 by Equations 3.25 to 3.29 are classified as different versions of the
classical Tisserand parameter. In this section the derivation of such a parameter will be discussed in detail.

4.2.1. DERIVATION
As explained in Section 3.6 the Tisserand parameter is an approximation of the Jacobi constant that derives
from the CR3BP formulation. The starting point of its derivation is therefore the Jacobi integral expressed
in the I P1D frame. The integral J I P1D can be easily obtained by substituting the position of the primary as
point Pi in Equation 4.22. The substitution is performed by setting d =−µDU in this expression. The terms

affected by this parameter are d
TU 2 and d 2

TU 2 , by considering Equations 4.11 and 4.12 they can be written as:

d

TU 2 = −µDU

TU 2

=− µDU
DU 3

µ1+µ2

=− µ2

µ1 +µ2

µ1 +µ2

DU 2

=− µ2

DU 2

(4.24)

d 2

TU 2 = µ2

DU 2µDU

= µ2

DU

µ2

µ1 +µ2

= µ2
2

DU DU 3

TU 2

= µ2
2

DU 2V U 2

(4.25)

By substituting these expressions into Equation 4.22 the Jacobi integral J I P1D can be expressed as:

J (XIP1D,θ) = 2
µ1

r1
+2

µ2

r2
+2

1

TU

(
x ẏ − y ẋ

)−V 2 −2
µ2

DU 2

(
xcosθ+ y si nθ

)+ µ2
2

DU 2V U 2 +V U 2 µ1µ2(
µ1 +µ2

)2 (4.26)

where V is the velocity of the spacecraft V =
√

ẋ2 + ẏ2 + ż2 in this frame. The aim of the derivation is to
decompose this integral into two different functions. The first one will be the Tisserand parameter and it will
be depending on a combination of osculating orbital elements or properties of Keplerian orbits. The second
one will be a residual function depending on the position of the spacecraft. The fact that this residual function
is small in a region of space far from the secondary will justify the classical Tisserand parameter being a good
approximation of the Jacobi constant under certain assumptions, as expressed in Section 3.6. As explained in
that section the whole derivation is based on two fundamental assumptions, the first of which is that:

1. A region of space is considered where the primary acts as the main attractor.

This condition derives from the necessity to define the osculating orbital elements with respect to the primary
and is often expressed by considering the spacecraft far from the secondary. In [25][10][11] this is put into
practice by considering the negative x-axis of the SP1 frame, while in [12] it is simply not contemplated in
the patched 2BP approximation since the spacecraft is influenced by a single main attractor at a time. The
assumption to be able to express the orbital elements of an osculating Keplerian orbit will make it possible to
use the vis-viva and angular momentum equations. From the equations in Appendix B these can be written
as:
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2E1 =V 2 − 2µ1

r1
=−µ1

a
(4.27)

(H1)z = H1cos(i ) =
√
µ1a

(
1−e2

)
cos(i ) = x ẏ − y ẋ (4.28)

assuming the state to be expressed in the I P1D frame as XI P1D = [x y z ẋ ẏ ż]T . Note that the z-component of
the angular momentum is considered for the derivation. a,e,i are the osculating semi-major axis, eccentricity
and inclination of the trajectory with respect to the primary. The inclination is computed with respect to the
P1P2 orbital plane. By substituting these expressions into Equation 4.26 we obtain:

J I P1D (XIP1D,θ) =−2E1 +2
µ2

r2
+2

1

TU
H1cos(i )−2

µ2

DU 2

(
xcosθ+ y si nθ

)+ µ2
2

DU 2V U 2 +V U 2 µ1µ2(
µ1 +µ2

)2

= [−2E1 +2 1
TU H1cos(i )

]+[
2µ2

r2
−2 µ2

DU 2

(
xcosθ+ y si nθ

)+ µ2
2

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
(4.29)

Already at this stage it is possible to observe a decomposition of the Jacobi integral into two functions. The
reader will recognize the first term to be the Tisserand parameter expressed in Equation 3.28 while the sec-
ond term is a residual function only depending on the position of the spacecraft in I P1D and the angle θ. The
reader can also recognize that the term

(
xcosθ+ y si nθ

)
in I P1D frame is indeed the x-component in the SP1

frame, as is possible to see from Equation 4.6. The term in the first square brackets cannot be considered the
Tisserand parameter yet, as it has not been demonstrated that the second square brackets is a small quantity
far from the secondary.

The derivation can now follow two different paths that will lead to slightly different formulations. This de-
pends whether or not an approximation on the TU parameter is adopted. The TU parameter can be written
from Equation 4.12 as:

TU =
√

DU 3

µ1 +µ2
=

√
DU 3

µ1

1√
1+ µ2

µ1

(4.30)

Since µ1 >>µ2 it is possible to see that there is room for approximations that will simplify the general expres-
sion of the parameter. Both the approximated and non-approximated cases will be now briefly discussed.

APPROXIMATION ON TU

From Equation 4.30 it is possible to see that assuming x = µ2
µ1

and since µ1 >> µ2 for the systems considered

in engineering applications, a series expansion at x = 0 can be used to approximate the term 1p
1+x

as :

1p
1+x

= 1− x

2
+ 3x2

8
− 5x3

16
+ 35x4

128
+O(x5) (4.31)

here expressed up to the 4th order. It is a common practice in literature to stop at the first order [10][1] of the
series expansion. Such practice translates into the following assumption in the derivation:

2. The mass parameter µ of the CR3BP is small.

As a consequence the distance of the spacecraft to the primary can be approximated as the distance to the
barycenter of the system and the secondary can be assumed to be moving in a circular orbit about the pri-

mary. By assuming TU ≈
√

DU 3

µ1
for a system with a small µ from Equation 4.30, an error O

(
µ2
µ1

)
= O

(
µ

1−µ
)

is introduced. For the Earth-Moon system this would be roughly an error of 1% on the TU parameter in-
troduced by the approximation. Depending on the cases this can be acceptable or not. The reason why the
approximation is used is because it allows to further simplify Equation 4.29 by removing the µ1 parameter
from the square root of the Tisserand term and to put it as a small multiplier in front of the second square
bracket. The Tisserand term of Equation 4.29 can be simplified as:
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T1(a,e, i ) = µ1

a
+2

1

TU

√
µ1a

(
1−e2

)
cos(i )

= µ1

a
+2

√
µ2

1a
(
1−e2

)
DU 3 cos(i )

= µ1

DU

[
DU

a +2
√

a(1−e2)
DU cos(i )

]
(4.32)

Substituting this result into Equation 4.29 we obtain:

J I P1D (XIP1D,θ) ≈ µ1

DU

[
DU

a +2
√

a(1−e2)
DU cos(i )

]
+

[
2µ2

r2
−2 µ2

DU 2

(
xcosθ+ y si nθ

)+ µ2
2

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
DU

µ1
J I P1D (XIP1D,θ) ≈

[
DU

a +2
√

a(1−e2)
DU cos(i )

]
+ µ2

µ1

[
2 DU

r2
−2 1

DU

(
xcosθ+ y si nθ

)+ µ2

DUV U 2 + 1(
1+ µ2

µ2

)]
(4.33)

Given that the order of magnitude of the terms in the second square brackets is smaller than that of the ones
in first square brackets and as a result of being far from the secondary (r2 > DU ) in a system with a small
mass parameter µ1 >> µ2, the term µ2

µ1
acts as a small multiplier for the second square brackets. For this

reason the second square brackets are neglected. Moreover the term DU
µ1

= 1
V U 2 , since it has been assumed

that TU ≈
√

DU 3

µ1
. The end result is that the Tisserand parameter with the normalized semi-major axis is a

good approximation of the Jacobi constant expressed in normalized units J I P1 = 1
V U 2 J I P1D :

J I P1 ≈ DU

a
+2

√
a

(
1−e2

)
DU

cos(i ) (4.34)

This Tisserand parameter is the one introduced in Equation 3.25 and used in [9][10][11][25].

NO APPROXIMATION ON TU
When the TU parameter is not approximated from Equation 4.30, then the derivation continues. From Equa-
tions 4.27 to 4.29 the following equation can be written:

J I P1D (XIP1D,θ) =
[
µ1
a +2 1

TU

√
µ1a

(
1−e2

)
cos(i )

]
+

[
2µ2

r2
−2 µ2

DU 2

(
xcosθ+ y si nθ

)+ µ2
2

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
(4.35)

Two functions are therefore identified by the two square brackets. The first represents the Tisserand param-
eter about the primary T1 and the second one a residual function P1. The Tisserand function is depending
on the osculating orbital elements a,e and i , but other sets may be chosen depending on the necessity. P1 is
depending on the position of the spacecraft in the I P1D frame as well as on the angle θ between synodic and
inertial frames, that with an abuse of notation is often used to represent the time variable. The result is that
the Jacobi integral can be decomposed into two functions, one depending on the osculating orbital elements
and the other depending on position coordinates and time:

J (XIP1D,θ) = T1(a,e, i )+P1(rI P1D ,θ) (4.36)

Note that the velocity part of the state vector is hidden in the osculating orbital elements, as can be seen from
Equation 4.27. As it is not possible to make the simplifications introduced by the approximation on TU, an
analysis of the components of the residual function P1 is necessary to determine whether or not this function
is acceptably small in a region of interest of the CR3BP model.
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4.2.2. RESIDUAL ANALYSIS
In this section the analysis is focused on the residual term P1 of Equation 4.36. This can be written in the
I P1D frame as:

P1 (rI P1D ,θ) =
[

2µ2
r2

−2 µ2

DU 2

(
xcosθ+ y si nθ

)+ µ2
2

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
(4.37)

The analysis however is much more simple when considering the residual expressed in the SP1 frame. Mak-
ing use of the normalization equations and rotation matrices defined before the residual function can be
easily expressed in the SP1 frame as:

P1 (rSP1) = 2µ√
(x −1)2 + y2 + z2

−2µx +µ2 +µ(
1−µ)

(4.38)

The function is composed of four terms, two are functions of the spacecraft position in the SPI frame while
the other two are constant terms. For the rest of the analysis the four terms in Equation 4.38 will be referred
from left to right with the letters A,B ,C and D . A trajectory in the Earth-Moon CR3BP model is used to illus-
trate the variation and magnitude of the terms composing the residual function P1
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Figure 4.1: Trajectory in the Earth-Moon CR3BP in the SB frame, initial state at X0
SB = [0.8 0 0 0 0.17 0]T , CSB = 3.18514418060237. The

initial state is represented by a green dot, while the blue and black dots represent the primaries. Is it possible to see that for a brief part
of the trajectory the spacecraft is temporarily captured by the Moon.

The trajectory represented in Figure 4.1 is for most of the time under the influence of the primary as main
attractor. The secondary influence however is not negligible and at a certain point it leads to a temporary
capture about the Moon. Figure 4.2 represents the behavior of the four terms of the residual function P1(rSP1).

It is possible to see that the variable terms A and B are essentially working in opposition. The A term is de-
pending on the inverse of the distance with respect to the secondary, so when the spacecraft gets close to
the secondary the term exhibits large fluctuations. Eventually the spacecraft is temporarily captured by the
secondary. In such a case A exhibits large fluctuations that are not balanced by B, reaching a value of over 1.2.
Considering that CSB ≈ 3.185 the discrepancy between the Tisserand and the Jacobi generated by the residual
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function is quite large in this phase. We can thus conclude that staying far from the secondary is a necessary
condition to guarantee a small A term and thus a small value of the residual function P1.
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Figure 4.2: Behavior of the residual function P1 (right) and decomposed in the four terms A,B,C and D (left). P1 exhibits large fluctuations
during the temporarily capture event at about 57 < t < 70.

The behavior of the complementary Tisserand parameter is presented in Figure 4.6. The analysis over one
trajectory has helped visualizing the singular contribution of the terms that compose the residual function,
however a more universal analysis can be performed by considering the residual function over a region of in-
terest of the CR3BP. By taking the planar case (z = 0) of P1(rSP1) and plotting the value of the residual function
over a region of space in the SP1 frame it is possible to obtain Figure 4.3.

Figure 4.3: Value of the residual function P1 over a region of space with −2 < x < 2 and −2 < y < 2 for the planar case in the SP1
frame. 3D representation on the left, xy projection on the right. Note that a portion of the surface in the proximity of the secondary
has been removed to allow an easy understanding of the figures. Different contour levels can be identified, amongst which there is a
contour intersecting the primary highlighted with a thick black line. This contour is characterized by P1(0,0,0) = 3µ. It is possible to
see that since the primary is located on a saddle point of the residual surface P1,the variation of the residual term in its proximity will
be minimal. Since this variation is also applied to a small value of the residual, in this region the Tisserand parameter will be a good
approximation of the Jacobi constant.

From Figure 4.3 it is possible to see the shape of the residual function in the planar case represented in the
SP1 frame. As the residual function P1 needs a mass parameter µ to be specified, the one for the Earth-Moon
system has been used to obtain the figure. Note that the general shape of the residual is the same for the
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CR3BP systems interesting for engineering applications. From the figure it is possible to see that the value
of the residual function explodes in the region about the secondary. The term responsible for this behavior
is 2µ

r2
, that has a singularity at the secondary position. This behavior was expected from the equation of the

residual function, already observed in Figure 4.2 and is at the basis of the necessary condition to consider the
Tisserand parameter only far from the secondary. This ’far’ can now be quantified by looking at Figure 4.3,
depending on the desired accuracy on the Tisserand parameter.

The most important result of this analysis however is given by the contour lines represented in figure. By
definition these lines have a constant value of the residual function. However by guaranteeing a constant
residual function, by the relation expressed in Equation 4.36, also constant Tisserand parameter is guaranteed
over the contour line. By changing the contour level we would end up at a different Tisserand level, such
that the sum between the Tisserand level and the contour level will always be equal to the Jacobi constant
of the system considered. This property holds independently from the vicinity to the secondary. Indeed it
is possible to see that there are also closed surfaces in the proximity of the secondary that have a constant
Tisserand level. This fundamental result is used in Section 4.5 to define a new family of Poincaré sections to
be used in the ETP-graph.

4.3. MODIFIED TISSERAND PARAMETER

In this section the derivation of a modified Tisserand parameter is presented. The parameter is called modi-
fied to justify the fact that it is defined about the secondary, whereas the classical Tisserand parameter is only
defined about the primary. The two derivations are very similar, but possess a few fundamental differences
that will be highlighted in this section. To the best of the author’s knowledge a Tisserand parameter about
the secondary has never been derived. This is because of a fundamental limitation of the classical Tisserand
parameter that as seen before is defined only far from the minor body. The results presented in the previous
section however show the existence of regions of space where the classical Tisserand parameter exhibits a
homogeneous behavior independently of the vicinity to the secondary. This result is encouraging the search
for similar properties for a Tisserand parameter defined about the secondary. Since many authors consider
the Tisserand parameter constant by definition, the parameter about the secondary is differentiated by the
modified adjective.

4.3.1. DERIVATION

The derivation of the modified Tisserand parameter can be considered complementary to the one of the
classical parameter. The derivation starts from the Jacobi integral expressed in the I P2D frame. The integral
J I P2D can be easily obtained by substituting the position of the secondary as point Pi in Equation 4.22, by

setting d = (
1−µ)

DU . The terms affected by this parameter are d
TU 2 and d 2

TU 2 , by considering Equations 4.11
and 4.12 they can be written as:

d

TU 2 =
(
1−µ)

DU

TU 2

=
(
1−µ)

DU
DU 3

µ1+µ2

= µ1

µ1 +µ2

µ1 +µ2

DU 2

= µ1

DU 2

(4.39)
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d 2

TU 2 = µ1

DU 2

(
1−µ)

DU

= µ1

DU

µ1

µ1 +µ2

= µ2
1

DU DU 3

TU 2

= µ2
1

DU 2V U 2

(4.40)

Note the similarity of these terms with the ones in Equations 4.24 and 4.25, but with µ2 replaced by µ1. By
substituting these expressions into Equation 4.22 the Jacobi integral J I P2D can be expressed as:

J (XIP2D,θ) = 2
µ1

r1
+2

µ2

r2
+2

1

TU

(
x ẏ − y ẋ

)−V 2 +2
µ1

DU 2

(
xcosθ+ y si nθ

)+ µ2
1

DU 2V U 2 +V U 2 µ1µ2(
µ1 +µ2

)2 (4.41)

with V the velocity of the spacecraft in this frame. Also this time the Jacobi integral is decomposed as the sum
of two functions. The first one is the modified Tisserand parameter, depending on a combination of osculat-
ing orbital elements or properties of Keplerian orbits. The second one is a residual function depending on the
position of the spacecraft. Differently than the derivation of the classical Tisserand parameter, this time the
residual term will not be generally small when considering a specific region of space since the influence of the
primary is much larger than the one of the secondary. As a consequence the modified Tisserand parameter
will not be a good approximation of the Jacobi constant. The fundamental assumption for the derivation of
the modified Tisserand parameter is that:

1. A region of space is considered where the secondary acts as the main attractor.

Note that this condition is complementary to the one in the classical derivation that considered the primary
as main attractor and thus considered regions of space far from the secondary. This time the situation is
reversed as we are interested in a region of space where consistent osculating orbital elements with respect
to the secondary can be derived. The assumption to be able to express the orbital elements of an osculating
Keplerian orbit will allow possible to use the vis-viva and angular momentum equations, as expressed in
Appendix B:

2E2 =V 2 − 2µ2

r2
=−µ2

a
(4.42)

(H2)z = H2cos(i ) =
√
µ2a

(
1−e2

)
cos(i ) = x ẏ − y ẋ (4.43)

assuming the state to be expressed in the I P2D reference frame as XI P2D = [x y z ẋ ẏ ż]T . Note that the
z-component of the angular momentum is considered for the derivation. a,e and i are the osculating semi-
major axis, eccentricity and inclination of the trajectory with respect to the secondary. The inclination is
computed with respect to the P1P2 orbital plane. By substituting these expressions into Equation 4.41 we
obtain:

J I P2D (XIP2D,θ) =−2E2 +2
µ1

r1
+2

1

TU
H2cos(i )+2

µ1

DU 2

(
xcosθ+ y si nθ

)+ µ2
1

DU 2V U 2 +V U 2 µ1µ2(
µ1 +µ2

)2

= [−2E2 +2 1
TU H2cos(i )

]+[
2µ1

r1
+2 µ1

DU 2

(
xcosθ+ y si nθ

)+ µ2
1

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
=

[
µ2
a +2 1

TU

√
µ2a

(
1−e2

)
cos(i )

]
+

[
2µ1

r1
+2 µ1

DU 2

(
xcosθ+ y si nθ

)+ µ2
1

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
(4.44)

Also at this stage it is possible to see a decomposition of the Jacobi integral into two functions. The first one
reminds us of the Tisserand parameter because it has the same expression. However in this case this term is
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expressed as a function of the osculating orbital elements about the secondary body as main attractor. The
second one is a residual function only depending on the position of the spacecraft in the I P2D frame and
the angle θ. Also in this case the term

(
xcosθ+ y si nθ

)
can be associated with the x-component in the SP2

frame, as it is possible to see from Equation 4.6. Note that an approach as the one in the classical derivation
that relies on an approximation on TU would be failing in this case because all will be reduce to a multiplier
µ1
µ2

that is not a small multiplier as µ2
µ1

in front of the second square brackets in Equation 4.44, since µ1 >>µ2.
The decomposition of the Jacobi integral as the sum of two functions, one depending on osculating orbital
elements and the other depending on position coordinates and time, can be written in short notation as:

J (XIP2D,θ) = T2(a,e, i )+P2(rI P2D ,θ) (4.45)

Since the modified parameter T2 does not have constancy properties in a generic region of space (even in the
vicinity of the secondary) the ’modified’ adjective is used. In fact it can be argued that a Tisserand parameter
is defined as that constant parameter that does not change after a flyby. To not create a conflict with this
generic definition of the parameter, the new terminology is introduced. As it is not possible to make the
simplifications introduced by the assumption on TU , an analysis of the components of the residual function
P2 is necessary to determine the behavior of this function in a region of interest of the CR3BP model.

4.3.2. RESIDUAL ANALYSIS
In this section the analysis is focused on the residual function P2 of Equation 4.45. This can be written in
I P2D frame as:

P2 (rI P2D ,θ) =
[

2µ1
r1

+2 µ1

DU 2

(
xcosθ+ y si nθ

)+ µ2
1

DU 2V U 2 +V U 2 µ1µ2

(µ1+µ2)2

]
(4.46)

Also in this case the analysis is much more simple when considering the residual function expressed in the
SP2 frame. Making use of the normalization equations and rotation matrices presented before, the residual
function can be easily expressed in such a frame as:

P2 (rSP2) = 2
(
1−µ)√

(x +1)2 + y2 + z2
+2(1−µ)x + (1−µ)2 +µ(

1−µ)
(4.47)

As before this function is composed of four terms, whose behavior will now be analyzed for the same trajec-
tory presented in Figure 4.1 for the analysis of the residual terms of the classical Tisserand parameter. For the
rest of the section the four terms in Equation 4.47 will be referred to with the letters A,B ,C and D from left to
right. Their behavior is presented in Figure 4.4.
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Figure 4.4: Behavior of the residual function P2 (right) and decomposed in the four terms A,B,C and D (left) for the trajectory illustrated
in Figure 4.1. P2 exhibits large fluctuations during most of the time but not during the temporarily capture event at about 57 < t < 70.

Also in this case it is possible to see that the two variable terms A and B have some sort of compensation be-
tween each other. This time however their fluctuations are much larger and happens at higher mean values
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(in absolute sense) than the ones observed in the terms of P1. The large fluctuations this time are dependent
on the spacecraft being too close to the primary for most of the motion. By looking at the behavior of these
terms, it is expected for the Tisserand parameter to have a much smaller value compared to the Jacobi con-
stant. This time a paradoxical situation occurs where the residual function, and not the modified Tisserand
parameter, is potentially a better approximation of the Jacobi integral. The behavior of the modified Tisserand
parameter is presented in Figure 4.6. A more general analysis will now be presented considering the residual
function P2 over a region of interest in the planar CR3BP. By taking P2 (rSP2) with z = 0 and plotting the value
of the function over a region of space in the SP2 frame it is possible to obtain Figure 4.5.

Figure 4.5: Value of the residual function P2 over a region of space −2 < x < 2 and −2 < y < 2 for the planar case in the SP2 frame. 3D-
representation on the left, xy-projection on the right. Note that a portion of the surface in the proximity of the primary has been removed
to allow an easy understanding of the figures. Different contour levels can be identified, amongst which there is a contour intersecting
the secondary highlighted with a thick black line. This contour is characterized by P2(0,0,0) = 3

(
1−µ)

. It is possible to see that since
the secondary is located on a saddle point of the residual surface P2,the variation of the residual term in its proximity will be minimal.
Since this variation is also applied to a large value of the residual, in this region the residual function will be a good approximation of the
Jacobi constant.

From Figure 4.5 it is possible to see the shape of the residual function in the planar case represented in the
SP1 frame. As the function needs a mass parameter µ to be specified, the one for the Earth-Moon system
has been used. Note that the general shape of the residual is the same for the CR3BP systems interesting for
engineering applications. The characteristics of the function P2 are similar to those of P1. In this case the
residual function has a singularity point on the primary, but a fundamental difference exists with respect to
the characteristics of P1. As it is possible to see from the vertical scale in Figure 4.5, the value of the residual
is generally not small and can reach multiple times the value of the Jacobi constant of the system considered.
Note the difference in scale of P2 vs P1 in Figures 4.3 and 4.5. There is therefore no region in space for which
the residual can be identified as a small quantity.

However a fundamental result can be observed also in this case. By focusing on the regions where the resid-
ual is constant rather than searching a region where it is small, one sees the presence of numerous contour
lines. By definition these lines have a constant value of the residual function. But due to Equation 4.45, by
guaranteeing a constant value of P2 on a contour line we are also guaranteeing a constant value of T2 on it,
since their sum must always be equal to the Jacobi constant. By changing the contour level we would end
up on a different modified Tisserand level, such that the sum of the modified Tisserand level and the contour
level will always be equal to the Jacobi constant of the system considered. This property holds independently
for the region in space considered as in principle any contour can be taken for the analysis. This crucial result
plays a significant role in the definition of a family of Poincaré sections that possesses the property of hav-
ing a constant modified Tisserand parameter. This will be of fundamental importance to represent multiple
CR3BP models in the ETP-graph.
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4.4. COMPARISON OF THE TISSERAND PARAMETERS
In this section the general behaviors of the Tisserand parameters presented in this chapter are briefly dis-
cussed. The parameters considered are:

T cl
1 = DU

a
+2

√
a

(
1−e2

)
DU

cos(i )

T1 = µ1

a
+2

1

TU

√
µ1a

(
1−e2

)
cos(i )

T2 = µ2

a
+2

1

TU

√
µ2a

(
1−e2

)
cos(i )

(4.48)

where the osculating orbital elements of T cl
1 and T1 are with respect to the primary, while the ones of T2

are with respect to the secondary. Figure 4.6 presents the variation of these parameters for the trajectory
considered in Figure 4.1.
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Figure 4.6: On the left: behavior of the Tisserand parameters in Equation 4.48 for the trajectory represented in Figure 4.1. The value of
the Jacobi constant is represented for reference by the black line with value CSB = 3.185. On the right: zoom of the Tisserand parameters
during the temporarily capture event. In this region both T cl

1 and T1 exhibit large fluctuations, while T2 exhibit a more regular behavior.

As it is possible to see from Figure 4.6 the parameters about the primary are about constant and equal to the
Jacobi integral for most of the time, however during the temporarily capture event with the secondary they
experience large variations. It is literally possible to see that these parameters fail to be a good approximation
of the Jacobi constant in proximity of the secondary, as well expected from literature. Other minor variations
of the parameters about the primary are visible in other points at which the trajectory gets closer to the sec-
ondary such as for t = 20 and t = 40. It is also possible to see the effect of the approximation of TU in the
small difference between the two parameters with respect the primary. The modified Tisserand parameter on
the other way exhibits very large variations when considered far from the secondary. It is possible to observe
that this parameter becomes approximately constant during the temporarily capture event. This behavior
however does not make the parameter a good approximation of the Jacobi constant; paradoxically in this
case the residual function P2 results to be a better approximation of the Jacobi constant. It appears that when
considering the secondary T and P exchange roles.

For consistency in this report T cl
1 will not be considered and the author will be referring to T1 and T2 when

discussing the Tisserand parameters about the primary and secondary, or classical and modified respectively.

4.5. POINCARÉ SECTION FAMILIES
As seen in the previous sections and from the planar visualization of the residual functions P1 and P2 in
Figures 4.3 and 4.5, it is possible to select contour lines that have a constant value of the residual functions
and thus constant values of the Tisserand parameters. In the planar case this corresponds to the identification
of a family of curves in the XY-plane that has the same Tisserand parameter. This result can be extended in the
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3D case by looking at the expressions of the residual functions P1 and P2 in Equations 4.38 and 4.47. A family
of surfaces can be defined in the SP1 frame that has a constant Tisserand parameter about the primary. This
family is expressed by the following implicit function S1:

S1 :
2µ√

(x −1)2 + y2 + z2
−2µx +µ2 +µ(

1−µ)−P k = 0 (4.49)

On the other hand a family of surfaces that has a constant modified Tisserand parameter about the secondary
in the SP2 frame is defined by the following implicit function S2:

S2 :
2
(
1−µ)√

(x +1)2 + y2 + z2
+2(1−µ)x + (1−µ)2 +µ(

1−µ)−P k = 0 (4.50)

In both cases the parametric term P k determines the level set of the residual functions, thus the shape of
S1 and S2 in space. As possible to see from Equations 4.49 and 4.50 both S1 and S2 families of surfaces are
axial-symmetric with respect to the x-axis of the SP1 and SP2 frames. Moreover the shape of the family of S1

functions is similar but inversed with respect to the shape of the S2 family.

Figure 4.7: Example of six surfaces from the S1 and S2 families in the SP1 and SP2 frames respectively of the Earth-Moon system. On
the left: family of S1 for P k = [−0.01,0.015,0.03,0.035,0.04,0.08]. On the right: family of S2 for P k = [−0.7,1.2,2.5,2.85,3.3,6.5]. These
surfaces are represented in red, orange, blue, green, yellow and black from lower to higher values of P k . Surfaces are completely open
for low-values of P k and separate into two parts, one open and one closed for higher value of P k . The passage between these two
configurations is represented by P k = 3µ for S1 and P k = 3

(
1−µ)

for S2.

In Figure 4.7 example surfaces of the S1 family are illustrated. Amongst these surfaces a special type is the
one that passes from the primary. In this case it is very simple to compute the value of the parameter P k for
which this happens. By just evaluating P1 in the origin we obtain P1(0,0,0) = 3µ. The surface so defined will
be described in Section 4.5.1.
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The same holds for S2, since by setting P k = P2(0,0,0) = 3
(
1−µ)

we obtain a single closed surface passing by
the secondary. The surface so defined will be described in Section 4.5.2.

For high values of P k a quasi-spherical surface about the secondary can be defined by S1. This surface will be
defined in Section 4.5.3 and then used as Poincaré section for the study of the flyby effects of the Moon and
Jupiter in Chapter 8.

Note that by choosing these families of Poincaré sections for the analysis we are just substituting the shape of
an arbitrary section that loosely satisfies certain assumptions (to be far from the primary or secondary) with
a set of mathematical rigorously defined sections that satisfy a condition directly on the Tisserand parameter.
There is a fundamental difference between a surface and the Poincaré section, since the latter can be defined
in any subset of the phase-space, while the former is usually intended in the position portion of the phase-
space. In this case since the residual terms are function of the position coordinates only, the Poincaré sections
that are defined for the analysis are also surfaces and the two terms will be used together.

4.5.1. POINCARÉ SECTION ABOUT THE PRIMARY
In this section the Poincaré section about the primary that will be used in this report is defined. To obtain the
section the term P k = 3µ is substituted into S1 to guarantee the passage of the surface through the primary.
By substitution it is possible to simplify the equation of the section as the implicit function as:

F1(x, y, z) :
1√

(x −1)2 + y2 + z2
−x −1 = 0 (4.51)

given that µ 6= 0, where F1(x, y, z) = S1(x, y, z)|P k=3µ. Note that by substituting P k = 3µ we have obtained a
surface that is not depending on the mass parameter µ of the system. It can be concluded that in any CR3BP
considered the Poincaré surface passing by the primary that has the constant Tisserand parameter about the
primary is defined in Equation 4.51 and that the condition that determines its passage is always driven by
P k = 3µ, independently from the specific system considered. The shape of the surface expressed by equation
4.51 is represented in Figure 4.8.

Figure 4.8: Poincaré section about the primary. On the left xy-view, while on the right xyz-view in the SP1 frame. Note that the section is
passing by the primary at the origin of the SP1 frame and that it completely envelopes the secondary with a closed surface.
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The domain of F1(x, y, z) is D = {
(x, y, z) ∈R3 |x >−1∧ (x, y, z) 6= (1,0,0)

}
. The total differential of the function

F1 is:

dF1 = ∂F1

∂x
d x + ∂F1

∂y
d y + ∂F1

∂z
d z (4.52)

F1x =
1−x√

(x −1)2 + y2 + z23 −1 (4.53)

F1y =
−y√

(x −1)2 + y2 + z23 (4.54)

F1z =
−z√

(x −1)2 + y2 + z23 (4.55)

Since dF1 is continuous ∀(x, y, z) ∈ D , it is possible to conclude that F1 ∈ C 1, ∀(x, y, z) ∈ D . The implicit
function theorem is applied to understand which sufficient conditions ensure the conversion between the
implicit function F1 and its explicit counterpart f1. The theorem for a two-variables case states that let F :
Rn+m → Rm |F ∈C 1, such that Rn+m has coordinates (x, y). A point (a,b) is fixed such that f (a,b) = c,c ∈ Rm .
If the Jacobian matrix J f , y(a,b) is invertible, then there exists an open set U of Rn containing a and there
exists a unique continuosly differentiable function g : U →Rm such that:

• g (a) = b

• f (x, g (x)) = c, ∀x ∈U

•
∂g

∂x j
=−J f ,y (x, g (x))−1 ∂ f

∂x j
(x, g (x))

By applying the theorem is possible to see that if the implicit function F1(x, y, z) = 0 satisfies certain local
conditions on its partial derivatives, then it is possible to express such a function as an explicit one f1. In this
case F1 ∈C 1, so a point of coordinates (a,b,c) is fixed and the Jacobian matrix is evaluated at this point:

J (a,b,c) =
[

1−a√
(a −1)2 +by2 + c23 −1 ,

−b√
(a −1)2 +b2 + c2

3 ,
−c√

(a −1)2 +b2 + c2
3

]
(4.56)

It is possible to invert F1y (a,b,c) or F1z (a,b,c) only if b 6= 0 or c 6= 0 respectively. This means that it is possible
to express an explicit function y = f1(x, z) that represents the implicit function F1, ∀(x, y, z) ∈ D | y 6= 0. The
same would be possible for a function z = f1(x, y) ,∀(x, y, z) ∈ D | z 6= 0. It is then important to investigate
upon the zeros of the explicit function f1 to understand the points where it is not possible to map the implicit
function into the explicit one. From Equation 4.51 it is easy to find the explicit function y = f1(x, z):

y = f1(x, z) =±
√

1

(x +1)2 − (x −1)2 − z2 (4.57)

Finding the zeros of this function corresponds to solve the following equation parametrized by z:

x4 +x2(z2 −2)+2xz2 + z2 = 0 (4.58)

The points of coordinates (x(z)1,2,3,4,0, z) are the ones where the sufficient condition of the implicit function
theorem is not satisfied. Is important to remember that D was such that x > −1, this means that depending
on z, certain x(z) will be discarded because they are not belonging to the domain. In the planar case of the
CR3BP, z = 0 and it is easy to see that x(0)1 =−p2 ∉ D , x(0)2 = x(0)3 = 0, x(0)4 =

p
2. Generally speaking the

locus of points that does not satisfy the sufficient condition of the implicit function theorem can be seen in
Figure 4.8 as the intersection of the Poincaré section and the xz-plane with y = 0.
An important result that derives from the implicit function theorem is the computation of the partial deriva-
tives of the function f1(x, z):

∂y

∂x
=∓

1
(1+x)3 +x −1√
1

(x+1)2 − (x −1)2 − z2
(4.59)
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∂y

∂z
=∓ z√

1
(x+1)2 − (x −1)2 − z2

(4.60)

From these equations it is possible to see that ∂y
∂x = 0 by solving x

(
x3 +2x2 −2

)= 0, that gives as real solution

x = 0 ∉ D and x = 0.8393 ∀z while ∂y
∂z = 0 if z = 0. The value of the derivatives evaluated on the section is

important to ensure the transversality condition between the trajectory and the Poincaré section defined by
f1(x, y).

4.5.2. POINCARÉ SECTION ABOUT THE SECONDARY
In this section the Poincaré section about the secondary that will be used in the report is defined. To obtain
the section the term P k = 3

(
1−µ)

is substituted into S2 to guarantee the passage of the surface from the
secondary. By substitution it is possible to simplify the equation of the section as an implicit function:

F2(x, y, z) :
1√

(x +1)2 + y2 + z2
+x −1 = 0 (4.61)

given that µ 6= 1, where F2(x, y, z) = S2(x, y, z)|P k=3(1−µ). Note that also in this case by substituting P k = 3(1−µ)
we have obtained a surface that is not depending on the mass parameter µ of the system. It can be concluded
that in any CR3BP considered the Poincaré surface passing by the secondary that has the constant modified
Tisserand parameter about the secondary is defined by Equation 4.61 and that the condition that determines
its passage is always driven by P k = 3(1−µ), independently from the specific system considered. The shape
of the surface expressed by equation 4.61 is represented in Figure 4.9.

Figure 4.9: Poincaré section about the secondary in the SP2 frame. On the left xy-view, while on the right xyz-view. Note that the section
is passing on the secondary at the origin of the SP2 frame and that it completely envelopes the primary with a closed surface.

The domain of F2(x, y, z) is D = {
(x, y, z) ∈R3 |x < 1∧ (x, y, z) 6= (−1,0,0)

}
. The total differential of the function

F2 is:

dF2 = ∂F2

∂x
d x + ∂F2

∂y
d y + ∂F2

∂z
d z (4.62)

F2x =
1+x√

(x +1)2 + y2 + z23 +1 (4.63)
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F2y =
−y√

(x +1)2 + y2 + z23 (4.64)

F2z =
−z√

(x +1)2 + y2 + z23 (4.65)

Since dF2 is continuous ∀(x, y, z) ∈ D , it is possible to conclude that F2 ∈ C 1, ∀(x, y, z) ∈ D . At this point the
implicit function theorem is applied in a similar way as it was used before to characterize the Poincaré section
about the primary. The Jacobian matrix evaluated on a point (a,b,c) is:

J (a,b,c) =
[

1+a√
(a +1)2 +by2 + c23 +1 ,

−b√
(a +1)2 +b2 + c2

3 ,
−c√

(a +1)2 +b2 + c2
3

]
(4.66)

It is possible to invert F2y (a,b,c) or F2z (a,b,c) only if b 6= 0 or c 6= 0 respectively. This means that it is possible
to express an explicit function y = f2(x, z) that represents the implicit function F2, ∀(x, y, z) ∈ D | y 6= 0. The
same would be possible for a function z = f2(x, y) ,∀(x, y, z) ∈ D | z 6= 0. From Equation 4.61 it is easy to find
the explicit function y = f2(x, z):

y = f2(x, z) =±
√

1

(1−x)2 − (1+x)2 − z2 (4.67)

The zeros of this function correspond to the solutions of the following equation parametrized by z:

x4 +x2(z2 −2)−2xz2 + z2 = 0 (4.68)

In the planar case of the CR3BP, z = 0 and it is easy to see that x(0)1 = −p2, x(0)2 = x(0)3 = 0, x(0)4 = p
2 ∉

D . As done before the locus of points that does not satisfy the sufficient condition of the implicit function
theorem can be seen in Figure 4.9 as the intersection of the Poincaré section and the xz-plane with y = 0.
The partial derivatives of f2(x, z) are:

∂y

∂x
=∓

− 1
(1−x)3 +x +1√

1
(1−x)2 − (1+x)2 − z2

(4.69)

∂y

∂z
=∓ z√

1
(1−x)2 − (1+x)2 − z2

(4.70)

From these equations is possible to see that ∂y
∂x = 0 solving the equation x

(
x3 −2x2 −2

)= 0, that gives as real

solution x = 0 ∉ D and x =−0.8393 ∀z. ∂y
∂z = 0 if z = 0. Also in this case the value of the derivatives evaluated

on the section is important to ensure the trajectory to pass the Poincaré section transversely.

4.5.3. QUASI-SPHERICAL SURFACE ABOUT THE SECONDARY

From Figure 4.7 it is possible to see that for high values of the parameter P k the Poincaré sections described
by Equation 4.49 are quasi-spherical surfaces about the secondary. This type of Poincaré sections will be
used in Chapter 8 to study the flyby effects of the Moon and Jupiter with the Tisserand parameter about the
primary. To define these sections, the following P k parameter has been chosen by using Equation 4.38:

P k = P1(1+RSOI ,0,0) = 2µ

RSOI
−2µ (1+RSOI )+µ2 +µ(

1−µ)
(4.71)

where RSOI is the radius of the SOI about the secondary. Substituting this into Equation 4.49 it is possible to
obtain the implicit function of the quasi-spherical section (QSS) that will be used as Poincaré section for the
3D flyby analysis:

QSS1
(
x, y, z

)
:

1√
(x −1)2 + y2 + z2

−x +1+
(
RSOI − 1

RSOI

)
= 0 (4.72)
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4.6. CONCLUSIONS
In this section the derivation of the Tisserand parameters T1 and T2 has been discussed. In particular a mod-
ified Tisserand parameter T2 about the secondary has been derived. In both cases the Jacobi integral J has
been decomposed into two functions, one being the Tisserand parameter T depending on the osculating or-
bital elements and the other being a residual function P depending on the spacecraft position in the synodic
frame considered:

J = T +P (4.73)

where the Tisserand parameters expressed in dimensional units can be defined as:
T1 = µ1

a
+2

1

TU

√
µ1a

(
1−e2

)
cos(i )

T2 = µ2

a
+2

1

TU

√
µ2a

(
1−e2

)
cos(i )

(4.74)

or in adimensional units as:

Tk = µ∗

a
+2

√
µ∗a

(
1−e2

)
cos(i ) where µ∗ =

{
1−µ if k = 1

µ if k = 2
(4.75)

From the expression of the residual functions P1 and P2 in Equations 4.47 and 4.38 respectively, it has been
possible to determine families of Poincaré sections with constant Tisserand parameters. This is of crucial
importance especially for T2. By selecting a Poincaré section from the S2 family it is possible to use a modi-
fied Tisserand parameter about the secondary that possesses on this section the same constancy properties
exhibited by the classical Tisserand parameter.

Three different Poincaré sections that guarantee the relationship presented in Equation 4.73 are chosen for
the analysis in the report. These sections are a fundamental step towards the patching of CR3BP models such
as the Sun-Earth-Moon or Sun-Jupiter-Europa that share the same body as primary and secondary. In the
next chapter the properties of the ETP-graph that is obtained by the usage of the Tisserand parameters on
these sections will be illustrated.



5
EXTENDED TISSERAND-POINCARÉ GRAPH

In this chapter the characteristics of the TP-graphs obtained with the new formulations of the Tisserand pa-
rameters derived in the previous chapter will be discussed. First the case of the ra − rp TP-graph will be
characterized in Section 5.1, while the case of the ra − rp − i TP-graph will be discussed in Section 5.2. Since
these are using two and three variables respectively, they will be addressed as the 2D and 3D cases. The ETP-
graph will be discussed in detail in Section 5.3 as the merging between two different TP-graphs. To conclude
the chapter Section 5.4 sums up the main findings.

To generalize the analysis of the TP-graph the following expression of the parameters in dimensional units is
used:

T∗ = 2µ∗
ra + rp

+ 2

TU

√
2µ∗

rarp

ra + rp
cos(i ) (5.1)

where the symbol ∗ is used to represent one of the primaries considered, as done in Equations 4.74 and 4.75.
The osculating orbital elements are expressed in dimensional units, as well as the gravitational constant of the
main attracting bodyµ∗. Note that the characterization will be performed in the region with ra > 0 and rp > 0,
pertaining to circular and elliptic osculating orbits in the ra − rp and ra − rp − i TP-graphs. Also note that the
formulation of the parameter shall not interfere with the representation of the osculating orbital elements in
the graph, but is fundamental for the evaluation of the parameter and for the representation of the Tisserand
level sets in the graphs. Finally, although the mathematical characterization will be universally valid for both
T1 and T2 of any CR3BP considered, the graphs illustrated in the figures are necessarily obtained for a real
case. This will be the Earth-Moon CR3PB and in such a case the T1 parameter will be used and the graph will
be limited in the region 0 < ra < 5 and 0 < rp < 5, in the portion for which ra ≥ rp .

5.1. 2D GRAPH

In this section the characteristics of the ra −rp TP-graph will be discussed for a planar trajectory. The generic
expression of the Tisserand parameter can be written from Equation 5.1 as:

T∗ = 2µ∗
ra + rp

± 2

TU

√
2µ∗

rarp

ra + rp
(5.2)

By considering the planar case it is necessary to distinguish between prograde and retrograde trajectories,
hence the ± in front of the second term of the parameter. By using this expression as an implicit function, the
following Tisserand level sets can be plotted in the graph.
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Figure 5.1: Tisserand-level sets plotted in ra -rp TP-graph for the planar case using T1 in the Earth-Moon CR3BP. The Tisserand level sets
are arranged alongside the color spectrum from low (blue) to high (red) values. Both retrograde and prograde regions of the level sets are
displayed (see text for explanation). The area colored in gray denotes the impossible condition for a point to have a pericenter greater
than its apocenter. The three red points represent the intersections with the ra = rp = rc line highlighted in Figure 5.2.

It is possible to see in Figure 5.1 that for high values of T∗, corresponding to the low-energy regime, the level
sets are divided into two parts: one in the bottom-left and the other in the top-right area of the graph. In the
first case the level sets are essentially closed curves, while they are open in the latter case. Generally there exist
three intersection points between the level set and the line ra = rp = rc . This line represents the condition
for a circular trajectory, for which the evaluation of the Tisserand parameter can be used for classification
purposes. By substituting ra = rp = rc into Equation 5.2 and solving for rc these intersection points can be
computed by solving the following cubic equation:

r 3
c

(
4µ∗
TU 2

)
− r 2

c

(
T 2
∗
)+ rc

(
2T∗µ∗

)−µ2
∗ = 0 (5.3)

For high values of T∗ there exist three distinct solutions to this equation, two in the prograde and one in the
retrograde region of the level set. The passage between retrograde and prograde occurs in the graph at a
critical point: 

r cr
p = 0

r cr
a = 2µ∗

T∗

(5.4)

At this condition H∗ = 0. For ra < r cr
a the level set is describing a retrograde motion, while it is describing a

prograde motion for ra > r cr
a . The points on the level set taken in proximity of this critical points generally

correspond to collision trajectories with the body ∗ considered. The collision condition cannot generally be
related to the pericenter being smaller than the body’s radius, since the orbital elements are osculating and
the collision event might not occur if large fluctuations of the orbital elements are expected, i.g. if the oscu-
lating orbital elements are taken very far from the body considered.

By decreasing the value of T∗ the level sets in the bottom-left move upward while the ones in the top-right

move downward. When T∗ = 3
( µ∗

TU

) 2
3 the two parts of the level sets touch each other approximately about

the point with ra = rp = 1 in Figure 5.1. This condition is expressed by Equation 5.18 and will be clear from
the 3D-characterization performed in the next section. At this condition there exist two distinct intersection
points with the ra = rp line, one in the prograde and the other in the retrograde region. By further decreasing
T∗ we enter in the high-energy realm, where we find the same curves used in the T-graph and with the 2BP
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approximation. At these levels only one intersection occurs with the ra = rp line and this is in the retrograde
region. Figure 5.2 shows the relationship between the intersection coordinate rc on the ra = rp line as a
function of the Tisserand level set for both prograde and retrograde regions just described at different levels
of T∗.
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Figure 5.2: Sketch of the relationship between the intersection coordinate rc on the ra = rp line as a function of the Tisserand level set
value for both prograde and retrograde regions. The three red points highlighted in this figure are also represented in the TP-graph in
Figure 5.1.

It is possible to see that for high values of T∗ (T1 in this case for the EM system used to produce Figure 5.1)
two of the three intersections occur close to each other but in the retrograde and prograde regions. As a con-
sequence in this case the level sets in the bottom-left part of the graph can be approximated by lines of slope
−1. This is a fundamental result that will play a crucial role in the characterization of the ETP-graph and will
be discussed in detail in Section 5.3.

Another phenomenon that is possible to spot from Figure 5.1 is that for higher ra the prograde region of the
level sets become shallower. From Equation 5.2 it is possible to demonstrate the existence of a horizontal
asymptote in the graph:

lim
ra→∞T∗ = 2

TU

√
2µ∗rp (5.5)

from which it follows that the horizontal asymptote is represented by the line:

r∞
p = T 2∗TU 2

8µ∗
(5.6)

By choosing a specific CR3BP (fixing TU and µ∗) each level set possesses a horizontal asymptote, which is
shifter upward when higher values of T∗ are considered, as already illustrated in Figure 5.1. Another impor-
tant feature of the graph is represented by resonance curves. As demonstrated in [10] these are lines of slope
−1 described by the following equation when considering a constant n : m resonance:

rp =−ra +2
( n

m

) 2
3

(5.7)

where n is the number of body revolutions and m is the number of spacecraft revolution. The intersection
between one of these lines and a Tisserand level set can be found by solving the following quadratic equation
obtained by the combination of Equations 5.2 and 5.7:

r 2
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2 (5.8)



58 5. EXTENDED TISSERAND-POINCARÉ GRAPH

Amongst the large number of level sets that can be used in the TP-graph, the ones associated with the La-
grange libration points have important implications. Since these sets are associated to specific regions of
space that are energetically accessible or not to the spacecraft, as discussed in Section 3.2.2, they are impor-
tant to understand whether the spacecraft is in the desired energy state or not. These particular level sets are
illustrated in Figure 5.3 for two different definition of Tisserand parameters.

Figure 5.3: On the left: Level sets of TL1 ,TL2 ,TL3 and TL4/L5 using T cl
1 defined in Equation 4.48 for the Earth-Moon system. The sets

are displayed from the outer to the inner region respectively. On the right: Level sets of TL1 ,TL2 ,TL3 and TL4/L5 using T∗ defined in
Equation 5.2 in the Earth-Moon system. The black curves display the sets when TLi

≈ JLi
, however since the relationship J = T +P has

been derived, the blue curves represent the level sets associated with the exact value of TLi
, that is computed by adding the residual

constant for the Poincaré section considered (3µ in this case) to the Jacobi constant value.

The level sets displayed in Figure 5.3 are computed with two different techniques. The one displayed on the
left make use of the classical Tisserand parameter T cl

1 defined in Equation 4.48. In this case the approximation
TLi ≈ JLi is used to represents the level sets in the graph as in [10],[9]. The graph on the right shows the level
sets computed using the parameter T1 defined in Equation 5.2. The level sets in black are yet computed with
the approximation TLi ≈ JLi , the ones in blue however are computed making use of the exact relationship
between Tisserand and Jacobi integral J = T +P derived in the previous section. In the latter case the value
of the residual function P is related to the specific Poincaré section used to represent the osculating orbital
elements. As it is possible to see that the difference between these different ways to represent the level sets is
quite important, hence the necessity to discern between these cases. If not specified the blue level sets will
be used in this report to represent the energy levels of the Lagrange libration points.

5.2. 3D GRAPH
In this section the characteristics of the ra − rp − i TP-graph will be discussed. The generic expression of the
Tisserand parameter can be written from Equation 5.1 as:

T∗ = 2µ∗
ra + rp

+ 2

TU

√
2µ∗

rarp

ra + rp
cos(i ) (5.9)

where the symbol ∗ is used to represent both T1 and T2 for a certain CR3BP specified by the TU normalization
parameter. To better understand the shape of the level sets for the 3D case, two examples are illustrated in
Figures 5.4 and 5.6 in 3D views, while their representations from different perspectives can be seen in Figures
5.5 and 5.7 respectively.
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Figure 5.4: Tisserand level set in the ra − rp − i TP-graph for the Earth-Moon system. The level set illustrated is T1 = 2.7635479951 for a
Poincaré section with P1 = 3µ.

The level sets, that in the 2D case are contour lines, are now surfaces within the ra − rp − i volume of the TP-
graph. A continuous surface is presented in Figures 5.4 and 5.5, while a separated one is presented in Figures
5.6 and 5.7. Once again the differentiation between these cases is represented by the condition expressed
by Equation 5.18 that will be derived in this section. By looking at these figures it is possible to see that the
portion reserved for retrograde motion (i > 90◦) is much smaller than the one for prograde motion (i < 90◦).
Moreover while the latter seems to be distributed at higher values of ra and rp , retrograde motion only seems
possible in the proximity of the body considered.

The general behavior of the surface can be easily characterized by looking at the five functions that define its
borders in the graph. The functions f1 and f2 describe the characteristics of the level sets in the planar case
for prograde and retrograde trajectories respectively. For these functions the level sets are described by the
following implicit functions:

f1 : T∗ = 2µ∗
ra + rp

+ 2

TU

√
2µ∗

rarp

ra + rp
(5.10)

f2 : T∗ = 2µ∗
ra + rp

− 2

TU

√
2µ∗

rarp

ra + rp
(5.11)

The characteristics of these have already been discussed in Section 5.1 and will not be repeated here. The
interface line that connect these two functions in the 3D case is represented by the vertical line of Equation
5.4:

f3 : ra = 2µ∗
T∗

(5.12)

Note that in the 2D case this value differentiates between retrograde and prograde motion in a discrete way.
However as it is possible to see from Figures 5.4 and 5.6, this distinction is not that clear in the 3D case.
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Figure 5.5: Different views of the Tisserand level set for the Earth-Moon system. The level set illustrated is T1 = 2.7635479951 for a
Poincaré section with P1 = 3µ.

The other two functions are f4 and f5. The first results from the intersection between the level set and the
maximal value of ra considered in the graph (five in this case). The latter is the intersection between the
level set and the ra = rp = rc plane. These functions can be written in explicit form by considering that they
develop entirely on the ra = 5 and ra = rp = rc planes respectively:

f4 : i (rp ) = acos

TU

2

(
T∗− 2µ∗

ra+rp

)
√

2µ∗
ra rp

ra+rp

 (5.13)

f5 : i (rc ) = acos

TU

2

(
T∗− µ∗

rc

)
p
µ∗rc

 (5.14)

The analysis of f5 reveals important properties of the level set in the 3D case. It is possible to clearly see
the shape of this function from the rp − i views in Figures 5.5 and 5.7. The function has a maximum for low
values of rc , then a minimum point about rc ≈ 1 and finally shows a steady increase for higher values of rc . By
investigating f5 for rc →+∞ we obtain:

lim
rc→+∞ f5 = π

2
(5.15)

This proves an important characteristic of the level set that was only observed from the figures, that the re-
gion of retrograde motion is only possible closer to the body considered. Since the maximum of the surface
in the prograde region will be located in the top-right part of the surface in the graph, and since it has been
just demonstrated that this point can asymptotically reach only a polar orbit, there are no other regions of
inversion of motion other than the one in proximity of the body considered. This is true when considering
ballistic trajectories in the elliptic and circular regions and neglecting thrusting maneuvers.

The maximum of f5 is equal toπ and can be located by solving Equation 5.3 and considering only the solution
in the retrograde region. The minimum point of f5 can be computed by considering:

∂ f5

∂rc
= TU

T∗rc −3µ∗

2r 2
c

√
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(
1− TU 2(µ∗−T∗rc )2

µ∗r 3
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) = 0 for rc = 3µ∗
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(5.16)

This condition corresponds to a point in the graph with the following coordinates of
(
ra ,rp , i

)
:(
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3

) 3
2

])
(5.17)

In particular this minimum point has a zero component of the inclination when the Tisserand level set is
chosen to be:

T∗ = 3
( µ∗

TU

) 2
3

(5.18)
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Figure 5.6: Tisserand level set in the ra − rp − i TP-graph for the Earth-Moon system. The level set illustrated is T1 = 3.2 for a Poincaré
section with P1 = 3µ.

When this level set is chosen then the coordinates of the minimum of f5 becomes:

(
3µ∗
T∗

,
3µ∗
T∗

, 0

)
=

 DUµ∗[
µ2∗µ1(1+ µ2

µ1
)
] 1

3

,
DUµ∗[

µ2∗µ1(1+ µ2
µ1

)
] 1

3

, 0

≈ (DU , DU , 0) |µ∗=µ1 (5.19)

where the definition of TU as normalization parameter has been used. The reader can therefore imagine this
critical point to be the passage between a single continuous surface as the one represented in Figure 5.4 to
one divided into two parts as in Figure 5.6. This point represents this passage for both the 2D and the 3D
cases, but as it is possible to see it can only be derived by considering the 3D case. The coordinates in Equa-
tion 5.19 explain why the point has been observed about the point (1,1) in the 2D case for T1 and demonstrate
that such a point could be located on a different location when considering T2.

Figure 5.7: Different views of the Tisserand level set for the Earth-Moon system. The level set illustrated is T1 = 3.2 for a Poincaré section
with P1 = 3µ.
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3D TP-graphs are generally not used for trajectory design in the CR3BP for the associated difficulty to design
a trajectory in a spatial graph. Moreover assuming a planar motion for the spacecraft is often a good approx-
imation of the real trajectory. This is not the case for missions such as EQUULEUS and DESTINY, that are
expected to exhibit important out-of-plane components in their trajectories. In these cases the inclination
parameter of the trajectory needs to be taken into account. Some examples of Tisserand level sets in the
ra − rp − i TP-graph can be seen in [10] for some planets of the Solar System and for the Moons of the Jovian
system. In [10] some minor bodies are also presented in the 3D TP-graph. From this perspective the ra−rp −i
graph can be used to easily represent the characteristics of the minor bodies of the Solar System. By taking
the data of the osculating orbital elements from the JPL Small-Body Database 1 of about 740000 minor bodies
Figures 5.8 to 5.10 are obtained.

Figure 5.8: ra −rp TP-graph with the discovered minor bodies of the Solar System up to 6 AU. The inclination of the bodies is represented
by colors. In this figures only those with i < 30◦ have been shown. Earth’s orbit is represented by a blue dot, while Jupiter’s by an orange
one. The black dashed lines represent some resonance levels with the latter. From bottom to top they are the: 5 : 1, 4 : 1, 3 : 1, 5 : 2, 7 : 3,
2 : 1, 3 : 2 and 1 : 1 resonances.

The graph are reproduced here either directly in the 3D volume of the TP-graph as in Figure 5.9 or in a 2D
projection on the ra − rp plane with the inclination component represented by colors as in Figures 5.8 and
5.10.

Figures 5.8 and 5.9 represent the minor bodies within 6 AU from the Sun and with an inclination smaller than
30◦. This corresponds to about 99.2% of the minor bodies in the database. In these cases the graph is an
effective tool to have an overall visualization of the minor bodies distribution and orbital characteristics. The
properties they exhibit in these graphs can be used to categorize them, as will be briefly discussed now. In
both figures it is possible to distinguish between three classes of asteroids: NEOs (Near Earth Object), MBAs
(Main Belt Asteroid) and Trojan asteroids.

1https://ssd.jpl.nasa.gov/sbdb_query.cgi#x, last accesed on September 5, 2017

https://ssd.jpl.nasa.gov/sbdb_query.cgi#x
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NEOs pose a direct threat to Earth due to their osculating orbital elements being close to those of Earth’s or-
bit. In the graph they can be observed about those lines determined by ra = 1 and rp = 1. The distribution of
objects is denser along these lines due to the fact that objects crossing Earth’s orbit might be easier to detect.
On the other hand very few NEOs are observed for ra < 1 and rp < 1. This might be due to the geometric
difficulty to observe them due to their angular vicinity to the Sun. NEOs population is usually subdivided
into four categories depending on perihelia and aphelia, the interested reader may consult [2].

Trojan asteroid trajectories develop around the L4 and L5 triangular Lagrange libration points of the Sun-
Jupiter CR3BP. Since they are in a 1 : 1 resonance with Jupiter, it is possible to locate them on such a resonance
line on the top-right part of the graphs.

Figure 5.9: ra − rp − i TP-graph with the discovered minor bodies of the Solar System up to 6 AU. The inclination of the bodies is repre-
sented by colors. In this figure only those with i < 30◦ have been shown. The black planes represent the resonances with Jupiter, from
bottom to top they represent the: 5 : 1,4 : 1,3 : 1,5 : 2,7 : 3,2 : 1,3 : 2 and 1 : 1 resonances.

In general resonance phenomena with Jupiter play a crucial role in the subdivision of asteroids in different
categories and this is easily observed for the MBAs. These stretch across the graph between Mars and Jupiter
orbits. Their distribution however is not homogeneous but is interrupted by several gaps, known as Kirkwood
gaps, caused by resonance interactions with Jupiter. The most prominent ones are the 4 : 1, 3 : 1, 5 : 2, 7 : 3
and 2 : 1 resonances [2]. Resonance phenomena may act differently in the inner and outer asteroid belt, for
example on the contrary of the gaps observed before, there exist regions such as the 3 : 2 and 4 : 3 resonances
where we can find a stable population of asteroids [2]. Usually an asteroid in the outer belt is perturbed so
heavily by Jupiter to suffer a close approach with the giant planet and is scattered to interstellar space. These
resonance regions however give stability to these asteroids by avoiding these encounters to happen [2]. In
general the MBAs observed in Figure 5.9 show many groupings of asteroids with similar osculating orbital
elements. These similar properties are used to categorize them, the full categorization is not illustrated here.



64 5. EXTENDED TISSERAND-POINCARÉ GRAPH

Figure 5.10: ra − rp TP-graph with the discovered minor bodies of the Solar System up to 150 AU. The inclination of the bodies is rep-
resented by colors. In this figure only those with i < 30◦ have been shown. The black dashed lines represent the resonance lines with
Neptune, represented by the blue point. From bottom to top they represent the: 1 : 1, 2 : 3, 5 : 3, 7 : 4, 2 : 5 resonances.

Most of the small bodies of the Solar System are trans-Neptunian objects, characterized by orbits laying en-
tirely or partially beyond Neptune’s distance [2]. Due to their distances however these objects are very difficult
to observe, hence in the database used only a small portion of these object is cataloged. For example in the
database used to plot these figures only 3440 out the 740000 cataloged bodies (about 0.005%) have ra > 6 AU.
Many of the trans-Neptunian objects exhibit resonance phenomena with Neptune, as can be seen in Figure
5.10. Pluto and many other objects occupy the 2 : 3 resonance region and are called Plutinos, other populated
regions are the 3 : 5, 4 : 7, 1 : 2 and 2 : 5 resonances [2].

5.3. ETP-GRAPH
In this section a different version of the qualitative ETP-graph [9] is presented that makes use of the findings
on the Tisserand parameters discussed in the previous chapter. In this section the focus is put on the Sun-
Earth and Earth-Moon CR3BP models, as they share Earth as a secondary and primary respectively. For the
rest of the section the author will refer in short notation to the Earth-Moon system as EM and for the Sun-
Earth system as SE. The expressions of the two Tisserand parameters T1 and T2 are:

T1 = 2µE ar th

ra + rp
+ 2

TUE M

√
2µE ar th

rarp

ra + rp
cos(i )

T2 = 2µE ar th

ra + rp
+ 2

TUSE

√
2µE ar th

rarp

ra + rp
cos(i )

(5.20)

The two parameters refer to the same body, Earth, as main attractor to which the osculating orbital elements
are referred. For this reason the µ of the Tisserand parameters are substituted to µE ar th . The parameters are
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therefore identical in each term except for the normalization parameter of the two CR3BP models, TUE M and
TUSE . The Tisserand level sets that are generated from the planar case of these equations are illustrated in
Figure 5.11.
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Figure 5.11: Tisserand level sets of the EM (blue and cyan) and SE (red and orange) systems. The level sets associated to the Lagrange
points are represented in blue and red respectively, while generic level sets are represented in cyan and orange. The generic level sets are
represented only for the prograde region to avoid confusion in the graph, while the Lagrange sets are represented both in the prograde
and retrograde regions. The black dot is used as a reference for the osculating orbital elements of the Moon’s orbit about Earth in the
graph.

From this figure it is possible to understand the fundamental effects caused by the TU term in both parame-
ters, especially in T2. As said before the expressions of both parameters in the two systems are identical except
from the value of TU used and for the systems considered TUSE ≈ 13.4TUE M . The result is that the level sets
of T2 almost preserve their shapes to the ones of T1, but result scaled in the graph by a scaling factor of about
TUSE
TUE M

≈ 13.4. This scaling factor makes the level sets of the SE system to naturally develop on a bigger portion
of the graph with respect to the level sets of the EM system. By closer inspection of Figure 5.11 the reader can
realize that the level sets of the SE represented in this figure are essentially the scaled versions of the level set
already presented in the lower-left part of the EM system.

A similar scaling effect has been observed in the classical T-graph when representing inner and outer planets
of the Solar System in the same graph, as possible to see in Figure 3.13. However due to the non-existance of
T2 the same phenomenon has never been observed for a system such as the Sun-Earth-Moon system. The
findings of the previous chapter overcome this limitation and for the first time allow an energetic representa-
tion of the level sets of two CR3BP models that share the same body as primary and secondary.
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In this ETP-graph it is therefore possible to see the combined effects of Sun’s perturbations and lunar flybys
with respect to osculating orbital elements about Earth. It is interesting to observe that the prograde region
of the level sets associated with L1 and L2 of the SE system intersects the prograde region of the level sets of
all Lagrange points of the EM system. This is essentially describing well-known transfers between Lagrange
points of different CR3BP models. On the other hand only the retrograde region of the level sets of the SE
system associated with L3 and L4 are intersecting the ones of the EM system. These intersections however
occur in the EM system in the prograde region, making the intersection unfeasible. In a certain region of the
graph the level sets of the SE system act as lines of slopes −1 while they present a tail about the rp axis. Both
characteristics can be observed in the ETP-graph obtained in the qualitative analysis conducted in [9].

Figure 5.12: Comparison between different ETP-graphs. On the left: ETP-graph used in [9] with the Sun’s perturbation described by an
analytical approximation (continuous lines) and numerical analysis (dashed lines). On the right: ETP-graph produced with the modified
Tisserand parameters derived in this report to reproduce Sun’s perturbations. Note that the level sets of the EM system have been
reproduced using the technique illustrated in Figure 5.3 (left) for comparison.

In Figure 5.12 the results presented in this report are confronted with the ones known in literature. As already
discussed in Section 3.7.3, the results computed in [9] are the effect of an analytical approximation of the La-
grange planetary equations and from the application of a numerical technique. They represent the variation
of the osculating orbital elements obtained by these two techniques after one orbital revolution. The level
sets obtained in this report with the modified Tisserand parameter on the other hand are only energy level
sets, thus they cannot show which points can be reached after one orbital revolution. However they elegantly
explain the observed slopes of the level sets that have been approximated by Equation 5.3 and represented
in Figure 5.2. Moreover by a closer inspection of Figure 5.12 it is possible to observe that for example the
Sun’s perturbation effects on the purple level set generate the tail structure close to the rp axis. In light of the
structure of the level sets illustrated in Figure 5.11 such a phenomenon is a natural characteristic of the level
sets for low energies.

It is important to underline once more the crucial role played by the TU term in the derivation, without which
the modified parameter would not exist and the scaling effect would not be possible in the ETP-graph. Fol-
lowing the classical derivation and the simplification assumptions this result would not have been visible.

Figure 5.13 shows an example of an intersection between two level sets of the SE and EM systems in the 3D
EPT-graph. The intersection between the two surfaces can be found by solving the system expressed in Equa-
tion 5.20:
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Such results can be easily adapted for the planar case to determine the intersection between two level sets in
the 2D ETP-graph.

Figure 5.13: 3D ETP-graph with the level sets of the EM (blue) and SE (orange) systems. T1 = 2.7635479951, while T2 = 0.0008099999,
corresponding to CE M = 2.8 and CSE = 3.00080098955727. The intersection between the two surfaces happens entirely in the prograde
region.

From Figures 5.11 and 5.13 it is possible to see the powerful effect of Sun’s perturbation to change the Jacobi
integral of the EM system. Moreover as the SE surfaces are much more contained than the EM ones, prograde
and retrograde motions could be simpler to connect on the SE level sets. This could explain the well known
effect of these perturbations to change the sense of motion of a spacecraft. By looking at these figures it is
possible to understand how this effect can be used as powerful tool to access previously denied regions of the
TP-graph, literally allowing a movement across the level sets of the EM system.
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5.4. CONCLUSIONS
In this chapter the Tisserand parameters T1 and T2 that have been derived in the previous chapter are used
to display the Tisserand level sets in the TP-graph and ETP-graph. The latter is just a combination of multiple
TP-graphs that allow the inclusion of Sun’s perturbation.

Since the formulation of the two parameters is the same, the analysis has been carried out in this chapter for
a generic Tisserand parameter T∗ that can be used to describe both T1 and T2. All the results and mathe-
matical formulations derived for T∗ can be simply adapted to the level set described by T1 or T2 by simple
substitutions. In this way both characteristics of the Tisserand level sets of these parameters in their corre-
sponding TP-graphs have been characterized.

A crucial result illustrated in this chapter is that by combining the Tisserand level sets of the EM and SE sys-
tems into a single ETP-graph, we are able to produce a graph with Tisserand level sets that shows similarity
with a qualitative analysis existing in literature [9]. The analysis performed in this chapter shows that the
ETP-graph obtained by combining the level sets of T1 and T2 is capable to explain all the phenomenon de-
scribed in previous frameworks associated with Sun’s perturbing effects on the osculating orbital elements in
the ETP-graph. This fundamental result has been achieved thanks to the different TU normalization param-
eters in the SE and EM CR3BP models. This difference acts as a scaling factor for the level sets represented in
the ETP-graph in a similar way observed in T-graphs such as the one in Figure 3.13.
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POINCARÉ MAPS

In this chapter the Poincaré sections defined by Equations 4.51 and 4.61 in Chapter 4 will be characterized in
the planar cases of the Earth-Moon and Sun-Earth CR3BP models. The purpose of this chapter is to charac-
terize the sections and the dynamics they are able to capture. The results of the EM system will be presented
in Section 6.1 while the one of the SE system in Section 6.2; to conclude the chapter Section 6.3 illustrates
the most important findings of this chapter. Additional material on derivations and maps that have not been
included in this chapter can be found in Appendix E.

Numerous techniques make use of Poincaré maps to patch planar trajectories from different systems. For
this reason the investigation of Poincaré maps obtained by using the sections defined in this report is inter-
esting. Unfortunately fewer techniques that work in the spatial case exist and their application for the models
considered in this report did not generate the desired results. Nonetheless the investigation in the planar case
performed in this chapter will give important insight into the dynamics these sections are able to represent.
In order to generate the maps in this chapter the following procedure has been adopted:

1. A value of the Jacobi constant CSB is arbitrarily chosen.

2. As it is possible to see from the xy-view of the sections in Figures 4.8 and 4.9, the sections can be di-
vided by four quadrants in the planar case of the SP1 and SP2 frames respectively. Only the portions of
the sections in the I I ◦ quadrant are used to produce the maps. A total of 500 points are uniformly dis-
tributed in these portions between a minimum distance equal to Earth radius and a maximum distance
of 5aM .

3. For each state the magnitude of the synodic velocity is computed from the expression of the Jacobi
integral JSB .

4. This velocity is then oriented in space with an angular separation of 1◦ for each position on the sec-
tions, ensuring that the transversality condition is not violated. This correspond to 358 angles for each
position, for a total of 179000 propagation states that are therefore considered at each energy level.

5. The initial states are propagated forward in time for about six months in the EM system, while they are
propagated backward and forward for about one year in the SE system.

6. The states and epochs of the intersection events with the sections are recorded. Collisions with Earth
and/or Moon and escape events are also recorded, and whenever they occur the propagation is inter-
rupted.

By following this procedure the characteristics of the intersection states and epochs in the Poincaré sections
are recorded. The analysis of the results for the EM and SE systems will now be illustrated.
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6.1. EARTH-MOON SYSTEM
Classical Poincaré maps obtained by plotting the x ẏ or ẋ y components of the states do not show any partic-
ular features. Interesting features however are possible to see by using ẋ ẏ maps. Two of these are illustrated
for the interior and exterior regions respectively in Figures 6.1 and 6.2.

Figure 6.1: ẋ ẏ map for points in the interior region obtained with C = 2.91200302955986 and P1 = 3µ, considering the Poincaré section
in the I I◦ quadrant of the SP1 frame.

Figure 6.2: ẋ ẏ map for points in the exterior region obtained with C = 2.91200302955986 and P1 = 3µ, considering the Poincaré section
in the I I◦ quadrant of the SP1 frame.
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These maps are obtained in the EM system by using the components of the synodic velocity of the intersec-
tion states. In order to be able to reconstruct the full state from the map however it is necessary to differentiate
between interior and exterior region. Figure 6.3 shows these two regions on the section considered to obtain
the maps in Figures 6.1 and 6.2.

Figure 6.3: On the left: Visualization of the magnitude of the synodic velocity as a function of the distance from the primary for points
taken on the Poincaré section. Note that the function has a minimum in proximity of the secondary distance, but goes to +∞ for d → 0
and d →+∞. On the right: Representation of exterior and interior regions in the position phase space, together with a representation of
the Hill’s surface at such energy level.

Since each map is tied to a value of CSB (and P1, defining the Poincaré section considered) by taking any point
ẋ,ẏ from an undifferentiated map there would exist two sets of solutions for the position on the section that
could have these velocity components. As it is possible to see from Figure 6.3 there are two values of distances
from P1 with the same magnitude of synodic velocity, making it impossible to reconstruct the exact state of
a point represented on the map. To avoid this ambiguity the sections are differentiated between interior or
exterior points.

Figure 6.4: ẋ ẏ map for points in the interior region obtained with C = 2.91200302955986 and P1 = 3µ, considering the Poincaré section
in the I I◦ quadrant of the SP1 frame. Colors represent the intersection epochs with the section.
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The maps in Figures 6.1 and 6.2 have numerous interesting features. First of all it is possible to observe a very
neat separation of the points in the interior map into two different regions. These are approximately con-
tained in the I ◦ and I I I ◦ quadrants of these plots and characterize retrograde and prograde motion respec-
tively. Inspecting the retrograde region, it is possible to see the presence of various tori as well as numerous
resonance lines and chaotic regions between them. All these features seem to be centered on a particular ve-
locity state that will be discussed later in this section. This region is much more organized than its prograde
counterpart, which exhibits a more chaotic behavior. The white spots at the center of the maps are caused by
the minimum achievable synodic velocity, that is a function of the energy level considered in the maps.

Figure 6.5: ẋ ẏ map for points in the exterior region obtained with C = 2.91200302955986 and P1 = 3µ, considering the Poincaré section
in the I I◦ quadrant of the SP1 frame. Colors represent the intersection time with the section.

The regularity of both maps is disturbed by a number of points that traverse the map. These can be identified
from Figures 6.4 and 6.5 as the blue points in the maps. Since these points occur quite early during the prop-
agation and are located in a region with relatively high velocity, they correspond to hyperbolic trajectories
traversing the system very quickly or to collision trajectories with Earth. The latter can be seen in the interior
map both in the prograde and retrograde regions, while the first ones are clearly visible in the exterior map.

A close inspection of the interior map can be seen in Figure 6.6. From this figure it is possible to observe the
net separation at low velocities between retrograde and prograde regions. The white band in the prograde
region in this figure is due to the transversality condition imposed on the Poincaré section. From Figure 6.6
it is also possible to observe resonance: concentric lines in the retrograde region (upper right) centered on a
point with coordinates about ẋ = 2 and ẏ = 1. This particular point in the map corresponds to a stable retro-
grade circular orbit about Earth whose characteristics are fundamental to understand a unique phenomenon
caused by the Poincaré section used.

The characteristics of the Tisserand level sets have already been presented in Chapter 5. By looking at Figure
5.1 it is possible to see that the retrograde region of the level sets extends in a very limited portion of the graph
and that it behaves in a similar way as resonance lines, that have slopes of −1 in the TP-graph. By choosing a
Poincaré section that has the property of having a constant Tisserand parameter we are essentially consider-
ing points that are all lying on the same Tisserand level set. The author therefore believes that such a carefully
designed section exalt the natural alignment existing between retrograde level sets and resonance lines, en-
hancing the properties of stable retrograde trajectories in the Poincaré maps just presented. The centered
tori in fact turned out to be circular trajectories whose characteristics are determined by the intersection of
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the Tisserand level sets considered in the map and the line ra = rp = rc in the TP-graph. All other tori around
the center have resonances similar to the one of this specific orbit.

Figure 6.6: Zoomed ẋ ẏ map for points in the interior region obtained with C = 2.91200302955986 and P1 = 3µ, considering the Poincaré
section in the I I◦ quadrant of the SP1 frame.

This phenomenon is also occurring for prograde trajectories at specific energy levels, since as seen in Figure
5.1 there exist level sets aligned to lines of slopes −1 also in the prograde region of the level set. The very cover
of this report is such a case with tori both in the retrograde and prograde portions of the map. Other tori
can be observed in the prograde region also for the additional maps presented in Appendix E. An enhanced
version of the features of the interior map is represented in Figure 6.7 by making use of the symmetries of the
CR3BP and representing the intersection points with the section from both the I I ◦ and I I I ◦ quadrants.

Figure 6.7: Enhanced interior ẋ ẏ map obtained exploiting symmetry properties in the CR3BP and representing the intersection points
with the Poincaré section in the I I◦ and I I I◦ quadrants. The focus is put on the prograde region (left) and retrograde region (right) to
enhance characteristics of period trajectories in the map.
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This map considers double the points of a classical maps and its sole purpose is to highlight the characteris-
tics of periodic orbits. Note that the map is technically incorrect since the representation of points from both
the I I ◦ and I I I ◦ quadrants does not allow for a unique reconstruction of the state. Nonetheless it is used here
only to illustrate more clearly the difference between the structure of the tori in the prograde and retrograde
regions. In the latter a torus can be located at the point of coordinate ẋ = 2 , ẏ = 1.3 while in the former two
tori are identifiable within the sea of chaos at the points of coordinates ẋ =−2 , ẏ =−3 and ẋ =−4 , ẏ =−0.5.

Figure 6.8: Poincaré maps used to highlight the orientation of the velocity vector in the synodic and inertial frames, Vs yn and Vi n
respectively. The x-axis provides the distance from the primary P1, while the y-axis provides the angle of the synodic and inertial velocity
with respect to the tangential velocity of the synodic frame.

Another interesting result can be observed from the maps represented in Figure 6.8. These maps represent
the orientation of the synodic and inertial velocities as a function of the distance from the primary for points
on the Poincaré section. The transformation equations to obtain θs yn and θi n are derived in Appendix E. Is
important to remark that the state cannot be reconstructed in a unique way from the dθi n map, that there-
fore is not properly a Poincaré map. Nonetheless such a graph is briefly used here to illustrate the difference
between prograde and retrograde trajectories. These are separated in dθs yn by a pointless region with a mir-
rored C shape enveloping a dense packed region of points. The latter represents all the retrograde trajecto-
ries, while all the other points are prograde ones. In the white region between them the angular momentum
changes sign and generally collision trajectories with Earth are contained in this part of the map. From the
shape of this region it would be possible to know which orientation to give to the synodic velocity in the SB
frame on a specific point on a section to generate or avoid a collision trajectory with Earth. The distinction
between prograde and retrograde trajectories is much more clear in the dθi n graph, where these have re-
spectively θi n < 90∧θi n > 270 and 90 < θi n < 270. From this graph it is possible to see that the only existing
retrograde trajectories are constrained in the interior region of the system. This phenomenon has been ob-
served in Figure 6.2 and is related to the properties of the Tisserand level set highlighted in Section 5.2 by
Equation 5.15.
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In the planar case of the CR3BP an analytic implicit relationship can be derived to describe the points in the
dθs yn map. This relationship is illustrated in appendix E by Equation E.19. From these expressions it has been
found that the points in the dθs yn map are distributed following a specific relationship that is dependent on
the set of ra and rp values used. In practice Figure 6.9 represents different points in the dθs yn map that can
be obtained with this relationship using different sets of ra and rp on the Tisserand level set of the EM system.
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Figure 6.9: Analytic representation of the curves reproduced in the dθs yn map. Each curve is obtained by choosing a value of ra and rp
on the Tisserand level set at the energy level considered. For this representation CSB = 2.91200302955986.

The presence of such a relationship makes it possible to generate these structures in a very organized way and
in principle can also be used in substitution of the map to patch trajectories together. Each curve in Figure 6.9
is obtained by choosing a set of ra and rp values on a Tisserand level set. These two values can be recognized
from the graph from the minimum and maximum distance of each of the curves in the graph. The curves also
show that in the synodic frames for any distance there exist two directions of the synodic velocity that would
generate a Keplerian orbit with the desired ra and rp , introducing an ambiguity if only the position and the
osculating orbital elements are used. The only time this ambiguity is solved occurs when the distance con-
sidered is exactly equal to ra or rp , as in this case only one point exists, as it is possible to see in the figure. A
similar phenomenon will be illustrated for the spatial case in Chapter 7.
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6.2. SUN-EARTH SYSTEM
The same analysis that has been performed in the Earth-Moon system using the Poincaré section about the
primary is now briefly repeated for the Sun-Earth system using the section about the secondary. An example
of an ẋ ẏ map of this system is given in Figure 6.10.

Figure 6.10: ẋ ẏ map obtained with C = 3.00075300347189 and P1 = 3
(
1−µ)

, considering the Poincaré section in the I I◦ quadrant of the
SP2 frame of the SE system.

Figure 6.11: Subdivision between retrograde and prograde points in the map illustrated in Figure 6.10. Red points represent retrograde
trajectories while blue ones prograde ones.

In this case it is not necessary to distinguish between interior and exterior regions, as the points chosen on the
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section (within 5aM distance from Earth) are all considered in the interior region of the system for the energy
level considered. In the map in Figure 6.10 the distinction between prograde and retrograde trajectories is
not clearly visible as in Figure 6.1. To better understand it Figure 6.11 represents this distinction with colors.

Figure 6.12: ẋ ẏ map obtained with C = 3.00075300347189 and P1 = 3
(
1−µ)

, considering the Poincaré section in the I I◦ quadrant of the
SP2 frame of the SE system. Colors indicate the intersection time.

Generally speaking the map for the SE system looks much more diversified than the one obtained in the EM
system. Clear structures cannot be observed apart from the ones in the retrograde region, where tori and
resonance lines are identified. A close-up of this region can be observed in Figure 6.13.

Figure 6.13: Zoom of the ẋ ẏ map in Figure 6.10 in the retrograde and prograde regions, left and right respectively. On the left it is possible
to see the tori structure surrounded by resonant regions. On the right it is possible to see different structures corresponding to specific
types of motion in the SE system.
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The explanation for this phenomenon has been discussed already in the previous section, where it was linked
to a similarity between the resonance line and the Tisserand level sets in the retrograde region. The center
of the tori has been identified with the circular orbit with the osculating orbital elements equal to the inter-
section point between the Tisserand level set and the line ra = rp = rc in the TP-graph. Because of the shape
of the Tisserand level set in the SE system, one would expect to be able to clearly see circular orbits both in
the retrograde and in the prograde regions of the map. This however does not occur, since also this time only
retrograde circular orbits are the only one clearly visible. The reason why this phenomenon occurs can be ex-
plained by an inherent stability of retrograde trajectories with respect to prograde ones in the CR3BP model.
Weakly stable trajectories have been observed from points in the map proper of circular orbit in the prograde
region, however these temporarily captured trajectories are heavily perturbed and generally do not last more
than a few revolutions about Earth in the synodic frame. An example of such a trajectory is given in Figure
6.14.
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Figure 6.14: Example of a temporarily captured prograde trajectory about Earth in the SE system. On the left the trajectory in the SB
frame, on the right in the IP2D frame. The initial propagation point is represented by a black square while the intersections with the
Poincaré section are represented by red dots. The green and pink trajectories are propagated forward and backward from the initial
state. The total TOF of the trajectory is about 480 days. Moon’s orbit is represented by a black dashed circle just for reference. To obtain
this trajectory the initial state considered is X0 = [0.9963 0.00519 0 −0.0103 −0.01083 0]T .

Another interesting phenomenon is the fact that generally in the SE system many more colliding trajectories
with Earth have been observed than in the EM system. This is likely explained as a result of the well-known
ability of the Sun’s perturbation to invert the sense of motion of a trajectory, as explained in Section 3.4.

The same dθs yn and dθi n maps used in the EM system are now also represented for the SE system for com-
parison. In this case the distinction between prograde and retrograde trajectories is less clear, also because
of the presence of many collision orbits with Earth. Also in this case an analytic expression can be derived to
describe the distribution of the points in the map depending on the values of ra and rp chosen. The deriva-
tion of this analytic expression is presented in appendix E. Figure 6.16 shows the representation of points in
the map that have the same sets of ra and rp .
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Figure 6.15: Poincaré maps used for the understanding of the direction of Vs yn and Vi n . The x-axis shows to the distance from the
secondary P2, while the y-axis gives the angle of the synodic and inertial velocity with respect to the normal line to the distance vector.
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Figure 6.16: Analytic representation of the curves reproduced in the d−θs yn map. Each curve is obtained in the map by choosing a value
of ra and rp on the Tisserand level set at the energy level considered. For this representation C = 3.00075300347189.
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6.3. CONCLUSIONS
In this chapter the Poincaré sections about the primary and secondary defined by Equations 4.51 and 4.61,
respectively in the SP1 and SP2 frames, have been characterized and tested for real trajectories in the EM and
SE CR3BP models. Although the characterization has been performed in the planar case of these models, it
already shows numerous features of these sections that were previously unknown.

The Poincaré sections used in this chapter all have a constant value of the Jacobi constant, but also a constant
value of the Tisserand parameter (depending the section considered). In this sense they are unique and their
characterization has been carried out in this chapter for the very first time.

An interesting result that has been observed through the usage of these sections is the importance that is
given to retrograde trajectories, whose characteristics seems to be naturally enhanced by the properties of
the Tisserand level sets. Although this represent an interesting research point, it would hardly be practical for
engineering applications as retrograde trajectory are generally energetically difficult to reach. This however is
not difficult to achieve when considering Sun’s perturbations. For this reason an interesting recommendation
for future studies could be to investigate the usage of Sun’s perturbed trajectory to exploit the inherent stabil-
ity exhibited by retrograde trajectories for scientific orbits about a target body such as a primary or secondary.

Another interesting result was associated to collision orbits with Earth and Moon and the regions in which
they are represented in the maps. These have not been investigated further in this research, however they
could represent an interesting application of the maps, given their relative simplicity to represent both pro-
grade and retrograde motions in clearly separated regions.

Note that some attempts have been made to represent similar maps for spatial trajectories, however the re-
sults did not allow a clear interpretation of the maps. The impossibility to use these maps for the spatial case
is a strong limit to their application. Moreover even an application in the 2D case would be limiting, since
the two Poincaré sections of the systems are defined in two different synodic frames. This would limit the
possibility of intersections between the sections only at defined geometric configurations between the bod-
ies considered.

The analyses in this chapter have been focus on specific energy levels. However Appendix E contains some
Poincaré maps at other energy levels as well as the representation of particular orbits that are represented by
specific points in the maps.
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DATABASE APPROACH

In this chapter a trajectory design approach based on a database that exploits the theoretical findings of the
previous chapters is developed. In Section 7.1 the structure of the database will be illustrated. In Section
7.2 some examples of trajectories designed with the database are presented. In Section 7.3 the difference
between trajectories designed in the CR3BP and BR4BP are stressed to indicate what general considerations
must be taken into account while applying the tool developed in this chapter. Finally in Section 7.4 the main
findings of chapter are summed up. Additional material about EQUULEUS trajectory can be found in Ap-
pendix D, while its trajectory design process has been already discussed in Chapter 2.

The characteristics of solar perturbations illustrated in Chapter 3 are relevant for missions such as EQU-
ULEUS and DESTINY, that heavily rely on them to save ∆V . Single or multiple transfer legs that traverse
the solar perturbed region exterior to the Earth-Moon system can be designed for this purpose. The de-
sign of these trajectories however can be complex in a 4BP such as the BR4BP model. Since the system is
non-autonomous, a trajectory designed in such a model would also be sensitive to the initial conditions cho-
sen, that are often tailored to the specific mission considered. To avoid this, a simplified system made up
by patched dynamical models can be used. The one that best approximate the Sun-Earth-Moon BR4BP is a
patched model made by the EM and SE CR3BP models.

The focus of this chapter is the development of a trajectory design tool that makes use of solar-perturbed
transfer legs to design trajectories in the Sun-Earth-Moon system. These transfer legs are computed in the
SE CR3BP and are stored in a database. These trajectories are defined in the SE synodic frame and since they
have been computed in an autonomous system the database they constitute is universal. This means that
they can be used for every desired phasing configuration between the EM and SE CR3BP models. This ap-
proach is very flexible because it makes the database applicable to the specification of every mission desired.
If the proper phasing is taken into consideration the transfer trajectories in the database can be also patched
with trajectories obtained from different dynamical models than the EM CR3BP (such as the 2BP, BR4BP and
full-ephemeris models) as it is illustrated in this chapter.

7.1. DATABASE STRUCTURE
In this section a database approach is designed that makes use of the Poincaré section defined about the
secondary by Equation 4.61. The database is constructed by legs of trajectories connecting different points
on the Poincaré section. The idea is that by using such a catalog of section-to-section trajectories in the SE
CR3BP it would be possible to design a patched trajectory computed in different dynamical models (Earth
2BP, EM CR3BP, SEM BR4BP, full-ephemeris and so forth). The algorithm to populate the database is illus-
trated in the following steps:

1. A value of the Jacobi constant C in the SE system is chosen.

2. A set of points is identified on the Poincaré section within a limited region about the secondary (aM <
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dP2 < 5 aM ) such that the maximal distance between any of these points is 50000 km. The coordinates
that make it possible to achieve such a distribution are not affected by the value of C , however the
points that are effectively considered for propagation are, as it is possible to see from Figure 7.4. This is
because some points might end up within the Hill’s surfaces and for this reason they are not considered
for propagation. The maximal number of points on the section is 3890, while the minimal one is 388. A
variable number of propagation points is preferred to a fixed one for two reasons. First of all doing so
the same set of positions points are considered across the energy levels of the database. This guaran-
tees the existence of a uniform set of entry points in the database that have the same specified distance
of 50000 km. Second, this is also needed to reduce the computational effort at high values of the Jacobi
constant. In this case a great number of transfer legs will derive from stable orbits about Earth gen-
erating a great number of intersections points, making it unnecessary to consider higher numbers of
propagation points to populate the database.

3. The magnitude of the synodic velocities are computed from the position components and make use
of the Jacobi integral expression (Equation 3.10). For each position the velocity vector is uniformly
distributed in 3D space with 500 directions computed using a spherical Fibonacci mapping algorithm.
This algorithm will be discussed in Chapter 8.

4. These states are then propagated backward and forward in time for one year using the Sun-Earth
CR3BP. The propagation is interrupted only if the trajectory impacts Earth or travels too far from it
(over a distance of 7.5 aM ). During propagation the intersection states and epochs with the Poincaré
section are recorded, as well as the index of collision, escape and capture trajectories.

5. By making use of the propagation data a database is generated as a list of Sun-perturbed trajectory legs.
The database structure is illustrated in Figure 7.1. The procedure is iterated from step 1 with a different
value of C .

Figure 7.1: Sketch representing the structure of the database. The database is composed of an array of different matrices, each represent-
ing trajectories with the same value of the Jacobi constant. Each matrix has nine columns and a variable number of rows. A trajectory
with multiple intersections is represented as a sequence of successive states and osculating orbital elements at different epochs. If the
state represents a collision or escape trajectory, the value of the inclination is set to 210◦ and 240◦ respectively.

The structure of the database is illustrated in Figure 7.1 as an array of matrices, each containing trajectories
propagated at the same value of C . Each matrix is composed of nine columns and a variable number of rows.
The first three columns represent the osculating orbital elements ra , rp and i with respect to the secondary.
Next to these the position in the SP2 frame is represented, followed by the azimuth and elevation angles of the
synodic velocity. The last column corresponds to the time epoch in adimensional units. Since both the Jacobi
constant and Tisserand parameter T2 are automatically defined for each matrix of the array, it is immediate
to compute the components of the synodic velocity from position, azimuth and elevation angles. Also the
Keplerian energy and angular momentum of the trajectories with respect to Earth can be easily computed
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using the osculating orbital elements as illustrated in Appendix B. The position in the database is related with
a point on the Poincaré section, on Earth surface or at escape distance. In order to differentiate between
these cases fictitious inclination values of 210◦ and 240◦ are used to represent collision or escape trajectories.
These values have been arbitrarily chosen to represent a physically impossible condition on the inclination
(limited between 0◦ ≤ i ≤ 180◦) and exploited to label these particular type of trajectories in the database in
an efficient way. The database used in this report has been generated using 23 values of the Jacobi constant C .
Due to the propagation settings previously explained the entire database size is approximately 28 GB, divided
into smaller structures of approximately 1.2 Gb for each value of C . Figure 7.2 presents the values of C used
in the database:
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Figure 7.2: The values of the 23 Jacobi constants of the SE CR3BP model used to populate the database. These values have been chosen
by geometric considerations from Figures 7.3 and 7.4.

These 23 values have been chosen such that the associated Tisserand level surfaces in the TP-graph would
divide the ra − rp − i volume into approximately uniform subsets, as it is possible to see in Figure 7.3. Note
that the distribution of the energy level has been carried out by considering the spacing of the level sets on
the ra = rp and on the ra = rp = 5 aM lines and it does not corresponds to a uniform spacing between the
values of the Jacobi constant, as presented in Figure 7.2.

Figure 7.3: Tisserand level sets of T2 in the TP-graph corresponding to the values of C illustrated in Figure 7.2. Darker tones correspond
to higher values of C and T2.
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Note that the Poincaré section represented by Equation 4.61 corresponds to the double cone shape repre-
sented in Figure 7.4. Both the ’balloon’ and planar parts of the section are not visible in the figure because we
are focused on a narrow region about the secondary. This particular configuration turns out to be optimal to
observe Sun’s perturbation effects, that exhibit different phenomena depending on the quadrant of the SP2
frame considered as described in Section 3.4.

Figure 7.4: Representation of the initial propagation points used to populate the database (green) in the SP2 frame of the Sun-Earth
system. The red and black surfaces represent the Poincaré section defined about the secondary and Hill’s surfaces respectively. The
latter is visualized only for the highest and lowest values of C . The black dashed circle is a representation of the distances at aM and 5aM
in Sun-Earth coordinates.

The points considered for propagation vary depending on the value of C , the maximal number is 3890 while
the minimal one is 388. The choice to distribute them uniformly such that the maximal distance between
any of these points does not exceed 50000 km derives from experience with the EQUULEUS mission and with
the optimization tools used to fill this position gap. The decision of the total number of propagation states to
consider to populate the database have been carried out by taking into consideration the size and resolution
of the database generated.

If the spacecraft state would have been represented by position and osculating orbital elements only in the
database, an ambiguity would have been introduced. As it is possible to see from Figure 7.5 generally for any
position chosen in space defined by a set of osculating orbital elements ra ,rp and i there exist four differ-
ent orbits. These orbits are differentiated from each other by the values of the remaining osculating orbital
elements that are not considered in the database such as Ω ,ω and θ. Instead of introducing them into the
database to distinguish between the four cases, the choice has been made to represent the velocity direction
simply by azimuth and elevation angles. By doing so the ambiguity is solved but the full derivation of the
spacecraft state in the synodic frame is guaranteed.
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(a) (b)

Figure 7.5: Example of four orbits in the IP2D frame in the Sun-Earth system passing from the same point (red) and with the same set of
osculating orbital elements ra ,rp and i . The apogees of the trajectories are highlighted by black squares, the perigees by black crosses
pointed by black arrows. Blue vectors represent the angular momentum vectors, red ones represent the line of ascending nodes. The
x-axis direction is highlighted by a pink line.

The TOF epochs in the last column of the database have a dual purpose. The comparison between values
in different rows makes it possible to understand the length of the considered transfer leg or to distinguish
between different trajectories. In the latter case a sign change from positive to negative or a sudden change
to a value of 0 signifies that another trajectory has been considered. This makes it possible to store and yet
distinguish a large number of trajectories in the same matrix without the usage of additional labels. But the
epochs are also fundamental when considering the phasing between different CR3BPs. Let’s say that a trajec-
tory is entering as input in the database from a computation in the EM system. In this scenario the database
is used to quickly have an idea of the Sun’s effect on the trajectory from the moment it is leaving the vicinity of
the Earth-Moon system until it will reach again the vicinity of the Earth-Moon system. By recording the value
of the phase angle at the moment when the database is queried, the TOF of a specific trajectory is used to
compute the phasing angle between the two CR3BP models at the moment of patching when the trajectory
will again come close to the Earth-Moon system.

In a scenario such as described above note that also dynamical models different from the EM CR3BP can be
used to generate the input or output conditions to query the database. The 2BP, SEM BR4BP or full-ephemeris
models can also be used to consult the database.

7.2. DATABASE TRAJECTORY DESIGN

In this section a few examples of the usage of the database are given. First a case of trajectory design using two
EM CR3BP and a SE CR3BP is illustrated. In this example the arrival condition is determined by a temporarily
captured trajectory about the Moon. Such a trajectory is illustrated in Figure 7.6 and has been obtained from
another database of flyby trajectories with the Moon that will be introduced in Chapter 8.
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Figure 7.6: Chosen arrival trajectory in proximity of the Moon represented in the SB frame of the EM system. The continuous line is the
propagation forward in time while the dashed one backward in time from a state found in the lunar flyby database for CE M = 3.1.
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Figure 7.7: Example of section-to-section transfer legs in the SP2 frame of the SE system obtained by the query of the example discussed
in this section. The intersections with the Poincaré section are represented by black points, while the starting and ending positions are
represented by larger green and red points respectively.

This orbit has been chosen because it arrives from the exterior region of the EM system and stays in prox-
imity of the Moon for about six months before colliding with the Moon. For these characteristics it is a good
candidate trajectory to illustrate the usage of the database. The idea is now to investigate how we could reach
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this trajectory from the EM system. In doing so the database is used. In particular the focus is put onto the
portion of the trajectory emanating towards the exterior region. By changing the phasing of the two SE and
EM CR3BP models different geometric configurations are investigated to understand which geometry allows
a transfer in the SE system that returns to the proximity of the Earth-Moon region. By doing so we are es-
sentially trying to understand which configurations are better for the transfer to occur considering the effects
the Sun’s perturbations will have on the trajectory. Once a satisfying geometric configuration is found, the
intersection of the arrival trajectory with the Poincaré section in the SP2 frame of the SE system is computed.
This state vector is then used to compute the value of CSE and to query the matrix with the closest value in the
database. A distance tolerance criterion of 50000 km and a velocity one of 100 m/s are used in this example as
precision requirements for the search of solutions. With these settings we obtain 33 trajectories in the spatial
SE CR3BP illustrated in Figures 7.7 and 7.8 represented by different colors.

Figure 7.8: Additional views of Figure 7.7 with the visualization of the Hill’s surface (black) and database initial propagation points (green)
in the SE SP2 frame.

From the database all successive intersections with the Poincaré section are inspected to understand if some
of them can be reached from a trajectory in the EM system. Figure 7.9 visualizes the correct position of these
points in the EM system once the phasing of the intersection points with respect to the initial phasing of the
two systems has been taken into account.
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Figure 7.9: Results of the achievable states of the transfer legs in the EM system. The colors highlight the TOF in adimensional units of
the SE system (left) and the value of the Jacobi constant in the EM system at the second patching condition CE M (right).

From Figure 7.9 it is possible to see that all transfer legs obtained bring us within the EM system at lower
values of CE M . By looking at the overall trajectory design process this means that in order to arrive at the
specific temporarily capture trajectory about the Moon of this example (at CE M = 3.1), the starting point from
the EM system is generally on a state with a much lower value of CE M . This value will be greatly varied by the
Sun perturbed leg, that will provide the necessary energy to fill this gap between the two values. From the
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analysis of the initial conditions in the EM system that ends up in the final orbit thanks to Sun’s perturbing
effect, the designer can continue to investigate if these states are feasible or not depending on the specific
mission considered. A single transfer trajectory is illustrated for clarity in Figures 7.10 and 7.11.
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Figure 7.10: Example of patched trajectory between the EM and SE systems in the SP2 frame of the latter. The blue curve is the arrival
trajectory illustrated in Figure 7.6, propagated in the EM system. The red one is the transfer leg propagated in the SE system. The
patching between these two trajectories happens in the IV ◦ quadrant of the SP2 frame and occurs at a distance between the two states
of about 34000 km and with a velocity difference of 54 m/s. The blue trajectory is propagated longer than needed to illustrate the shape
of the trajectory without considering the solar perturbation effect.
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Figure 7.11: Different view of the trajectory visualized in Figure 7.10 to highlight the out-of-plane component of the trajectory that as a
maximum excursion of about 300000 km. The black points represent the intersection points with the Poincaré section.

These figures show a single patched trajectory on the section that traverses the two dynamical models. The
portion of the trajectory in the SE system that goes through the EM system can be considered by the trajectory
designed for ulterior patching with the EM CR3BP model depending on the mission scenario considered. In
such a case the database is used to identify simply and at once the main characteristics of these patching
points, as illustrated in Figure 7.9. The designer may also use different dynamical models to obtain input
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states for the database, as illustrated in the next examples.

The case of an example trajectory of the EQUULEUS mission is taken for discussion. The trajectory is com-
puted in a full-ephemeris model considering the gravitational influences of the Sun, Earth and Moon. Its
characterization with the usage of TP-graphs in the EM and SE systems can be seen in Appendix D. The first
and last portion of this trajectory to intersect the Poincaré section about the secondary in the SE system are
taken. These are the black trajectories represented in Figure 7.12. Note that in the first portion the trajec-
tory actually does not intersect the section until 150 days after launch, excluding the possibility to study the
Sun perturbed phase of the trajectory with the section designed in this report. However at a certain epoch
the trajectory passes at just 40000 km from the section, below the 50000 km distance criterion used to gen-
erate the initial propagation points on the section. Instead of considering the first real intersection with the
section, this point is chosen for the analysis. The values of the Jacobi constant CSE for these two initial and
final patching conditions are respectively 3.0006402939765 and 3.00134112130177. The latter condition cor-
responds to a configuration of the Hill’s surface for which both SEL1 and SEL2 necks are closed, constraining
the trajectory in the SE system to be located in a small region about Earth. Since we are interested in a trans-
fer, the database related to the initial patching point is queried by using as input both the input and output
conditions extracted from EQUULEUS trajectory in an attempt to design a single transfer-leg trajectory. The
trajectories found in the database for such a query are illustrated in Figure 7.12.
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Figure 7.12: Examples of trajectories in the SP2 frame of the SE system obtained by querying the database using as initial and final condi-
tions the states and epochs of the EQUULEUS trajectory computed in full-ephemeris model. The grid of database points is represented
by green points. The trajectory in full ephemeris model is represented in black while the trajectories obtained from the database and
computed in the SE system are represented in red. Initial and final conditions of each phase are represented by green and red points
respectively.

In this a database there exist only three trajectories that allow a transfer between the initial and final states.
These have been obtained by setting a tolerance distance for both input and output positions of 50000 km
and using a ∆V criteria for the input state smaller than 200 m/s. The total ∆V of the three trajectories is
about 500 m/s. However from the TOF of the trajectories it is possible to see that these geometrically correct
trajectories are indeed not feasible from a timing perspective, as they reach their output state after 176 days
against the required 313 days of the nominal trajectory from Appendix D considered for this example. This
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shows that the usage of the database for a complex trajectory such as the one of EQUULEUS is inefficient if
only a single dynamical model (the SE CR3BP) is used.

Given the difference between the Jacobi constant of the different initial and final patching conditions, it would
be more efficient to include portion of the trajectories in the EM system to exploit lunar flybys in order to
decrease the energy gap between initial and final values of CSE . This possibility has been tested and a multi-
patched trajectory for the EQUULEUS example is illustrated in Figure 7.13.
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Figure 7.13: Different views in the SE SP2 frame of an attempt to generate a multi-patched trajectory using the EQUULEUS trajectory as
initial and final conditions. The black curves have been computed in a full-ephemeris model, the red ones in the SE CR3BP and the blue
one in the EM CR3BP. Green and red points represent initial and final position of each phase, that are also the patching points used in
the database.

By using a combination of a full-ephemeris model for the initial and final parts of the EQUULEUS trajec-
tory and by switching between database trajectories in the SE and propagated ones in the EM systems, the
trajectories in Figure 7.13 are generated. The problem of such trajectories however is that they have been
obtained from querying the database making use of big tolerances, especially for what concerns the patching
velocities. Some of the trajectories illustrated in Figure 7.13 are the result of five successive patchings. If a
∆V tolerance at patching of 100 m/s is considered, the reader can understand how these are going to signif-
icantly build up throughout the procedure and ruin the ballistic nature of the transfers. For this reason the
multi-patched trajectories just illustrated fail to realistically represents such a complex trajectory as the one
computed in the full-ephemeris model for EQUULEUS.

These latter examples can be used also to understand the differences between trajectories computed in a
CR3BP model and those computed in a full-ephemeris model considering Sun, Earth and Moon’s influences.
By comparing the first part of the trajectories in the SE CR3BP from Figures 7.12 and 7.13 with the one in
Figure D.2 obtained in a full-ephemeris model and discussed in Appendix D, the differences between the
trajectories in the two dynamical models are clear. As it will be illustrated in the next section, this discrepancy
is not caused by the increased number of bodies considered in the model but is rather a consequence of the
real motion of the bodies. In this sense it seems that the inclusion of eccentricities and inclinations in the
bodies trajectories plays a fundamental role.

7.3. COMPARISON BETWEEN PATCHED CR3BP AND BR4BP
In this section a comparison is made between trajectories computed with a patched model that uses SE and
EM patched CR3BP models and a BR4BP model. In the first case only two bodies at a time are considered,
while in the latter the continuous influence of three bodies is considered. In a way the former dynamical
system can be described as a discrete approximation of the latter continuous model. For this reason a com-
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parison between the performances of these two dynamical models can give an insight into the error that is
committed solely by excluding the gravitational disturbance of the fourth body. This comparison is much
cleaner than the one possible to do using a full ephemeris model, as in such case the discretization effects
could be masked by other factors such as the bodies eccentricity and inclinations, as well as small irregularity
in their motion about the barycenter of the Solar System. For this analysis three energy levels are taken to be
representative of high, medium and low-energy trajectories in the database. Multiple patching points on the
Poincaré section defined about the secondary of the SE system are selected and propagated backward and
forward in time using the EM or SE CR3BP. For simplicity at such points the initial phase angle between the
EM line and the Sun is considered to be 0. In the patched model the backward propagation is computed in
the EM system, while the forward one in the SE system. Different points on the Poincaré section are used
just to understand the effect of different distances considered for the patching of the two models. In order
to simplify the view only the planar case is represented here, but the results can be easily extended to the 3D
case.

The trajectories patched at low,medium and high values of the Jacobi constant are represented in Figures
7.14,7.15 and 7.16 respectively.
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Figure 7.14: Patching simulation for 4 trajectories at C = 3.00022476089146 of the SE system. Trajectories are represented in EM SB
frame (left), SE SP2 frame (center) and SE IP2D or EM IP1D (right). The patching point is the black square. Red and blue trajectories
are propagated in the SE and EM CR3BP model respectively. The black trajectories are computed in the BR4BP model, the dashed
and continuous lines are representative of the backward and forward propagations. The dashed circles in the center and right figures
represent the distance of Moon’s orbit.

It is possible to see in Figure 7.14 that for a low value of the Jacobi constant the patching generally gives
satisfying results. Two of the four trajectories have very similar behavior in the two dynamical models. The
patching is more critical for the two outermost trajectories. In these cases the portion of the trajectories
computed with the EM CR3BP is exhibiting larger deviation from the reference trajectories in the BR4BP.
This is due to the fact that at these patching conditions the backward trajectories are not going back towards
the proximity of the EM system as in the other two cases. It can be concluded that Sun’s perturbation shall
be considered instead of having it substituted by the Moon’s one. It is therefore necessary for the designer
to understand when such a phenomenon occurs in order to patch the two dynamical models in the most
efficient way possible.
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Figure 7.15: Patching simulation for 4 trajectories at C = 3.00063909639226 of the SE system. See caption in Figure 7.14 for details.

Similar conclusions as the one done at low values of C can be derived by looking at Figure 7.15. This time
however another phenomenon can be observed for the innermost trajectory. In this case the patching hap-
pened within Moon’s orbit, such that a portion of the SE trajectory is computed in this region. Since in such
dynamical model the Moon is not considered the trajectory is not considering a lunar flyby event, as it is pos-
sible to see from the trajectory in the BR4BP. This difference is causing a dramatic divergence between the
trajectories in the two dynamical models. Generally great care shall be put when using the SE CR3BP within
the Moon’s orbit that no major flyby events take place during propagation.
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Figure 7.16: Patching simulation for 4 trajectories at C = 3.00133554723153 of the SE system. See caption in Figure 7.14 for details.

Inspecting Figure 7.16 is possible to see that for a high value of the Jacobi constant the precision of the patched
approximation is slightly worse than the one showed in the previous cases. This case generally corresponds
to lower values of the spacecraft energy with respect to Earth, thus to slower trajectories in the system. Due to
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this the patching is less accurate because its not considering the influence of multiple bodies during a slow-
patching event. Note that however as in the previous simulation in most of the cases the difference between
the trajectories are minimals.

It is clear that the patching procedure must always be accompanied by the designer ability to avoid undesired
cases as the ones described in the previous discussion. In particular the patching distance and the expected
behavior of the trajectory (getting closer or further away from the Earth-Moon system) are fundamental as-
pects to be taken into account when patching trajectories on the Poincaré section defined in this report. For
example for what concern the EM system a patching trajectory should be considered only close to the Earth-
Moon system and for those trajectories that are going to enter in such a system. A SE trajectory computed
close to Earth is generally a good approximation with respect to the BR4BP model if no major flyby events
take place in proximity of the Moon.

Another aspect to be considered is the TOF of the trajectory. The small deviations illustrated in the examples
before might diverge and cause big discrepancies between trajectories in the two models if larger TOF are
considered. To avoid this, the designer shall always be cautious towards the propagation time for the single
CR3BP considered.

7.4. CONCLUSIONS
In this chapter a database of section-to-section transfer legs in the SE CR3BP model has been designed to ex-
ploit the concept of the modified Tisserand parameter and the related Poincaré section about the secondary
defined by Equation 4.61. Its usage has been illustrated with examples of input trajectories obtained from
different dynamical models such as the EM CR3BP and full-ephemeris models.

The idea behind the database is to schematically represent the characteristics of transfer trajectories in the
SE system that connect different points on a Poincaré section defined in the SP2 frame of such a system. By
recording the characteristics of these transfer trajectories, it would be possible to exploit them for trajectory
design purposes. Since the database is defined in an autonomous system, it can be used as a universal tool for
the systematic research of patched trajectories in the SE and EM CR3BP models. Because of this the database
itself is universal, since in principle it can be used to generate first-guess trajectories without being generated
again for the specific case considered. An advantage of this approach is also that the database works for any
type of initial and final orbits considered in the query, and it does that not in a planar assumption, often per-
formed in literature to simplify the analysis, but in a spatial configuration.

The example of the EQUULEUS trajectory performed in this chapter however also showed certain limita-
tions of this approach. In this example inefficient multi-patched trajectories have been generated from EQU-
ULEUS nominal trajectory. This could be explained by several factors: the dispersion of propagation states
of the database for the conditions considered, a too large difference between the Jacobi constant of the ini-
tial state and the one in the database, an initial condition not flexible enough for the case considered, and
a natural limitation of the patched approach to represent a trajectory obtained in the full-ephemeris model.
The latter case certainly is an important point to consider, as it is possible to see by comparing the trajectory
computed in the full-ephemeris model in Figure D.2 with the one computed with a patched approach in Fig-
ure 7.13.

A double patching can be simply performed using the database, as illustrated in the first example in Sec-
tion 7.2, however a multiple patching trajectory exhibit additional challenges both on the algorithmic search
of trajectories and the complexity involved. The focus in this research has been put in the creation of the
database itself and less time has been spent in the exploration of its usages, that might be related to other
challenges not proper of the topics covered in this research. These will be illustrated in the final conclusions
of the report.

The performances of the patched CR3BP model are confronted with the one of a full-ephemeris and BR4BP
model. In the former case the trajectory in the two dynamical models are very different. The cause of this dif-
ference it is attributed to the real inclinations and eccentricities of the gravitational bodies considered (Sun,
Earth and Moon). In the latter case the difference between the trajectories in the two dynamical models are
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minimal when undesired cases are avoided. The patching distance from Earth and the expected behavior
of the trajectory (getting closer or further away from the Earth-Moon system) are fundamental aspects to be
taken into account during the patching procedure of the EM and SE CR3BP. When these aspects are taken
into account the patched model shows to efficiently being able to represent trajectories in the BR4BP, under
the assumption that short to medium propagation time are considered.

Additional material is presented in Appendix D, where an analysis of the EQUULEUS trajectory used in this
chapter to obtain input and output conditions to query the database is presented and characterized through
the usage of the TP-graphs.



8
3D FLYBY

In this chapter the quasi-spherical Poincaré section as defined in Section 4.5.3 is used to record flyby events
in the spatial CR3BP. In particular flyby trajectories with respect to the Moon and Jupiter as secondaries of
the Earth-Moon and Sun-Jupiter CR3BP respectively will be considered in the making of a database of flyby
trajectories at different energy levels.

First the definition of the Poincaré section used in this chapter is given in Section 8.1. A database approach
technique is developed in Section 8.2 to map the change in the osculating orbital elements caused by flyby
events at different energy levels. The possible usage of the database in the Earth-Moon and Sun-Jupiter sys-
tems is illustrated in Sections 8.3 and 8.4. Section 8.5 concludes the discussion with the main findings of this
chapter.

8.1. POINCARÉ SECTION DEFINITION
In Section 4.5 several Poincaré sections have been derived with the property of having constant Tisserand
parameters. A representation of these sections can be seen in Figure 4.7. By looking at the family of sections
about the primary with constant T1, it is possible to see that by increasing the value of P k the section appears
first as a balloon-shaped surface and then as a quasi-spherical surface (QSS) about the secondary. Such a
surface is defined in the SP1 frame by Equation 4.72, repeated here for better understanding:

QSSSP1 :
1√

(x −1)2 + y2 + z2
−x +1+

(
R − 1

R

)
= 0 (8.1)

where R is the minimum radius of the QSS surface from the secondary in adimensional units. For the analysis
of the 3D flyby with the Moon and Jupiter this value will be chosen to be the about the radius of the SOI of
these bodies with respect to Earth and Sun, respectively 66×103 and 50×106 km. Figure 8.1 shows the QSS
used about the Moon defined by Equation 8.1.

Note that although this section is defined in the SP1 frame and the trajectories taken on it have a constant T1

parameter, it develops about the secondary. Such a property can be exploited to efficiently catalog and design
flyby trajectories. In this chapter the QSS will be used to map the change in the osculating orbital elements
between incoming and outgoing trajectories from the surface itself. Since the surface will not only have a
constant Jacobi constant, but also a constant Tisserand parameter about the primary T1, it will be possible to
visualize the performance of the flyby trajectories at precise energy levels directly in the TP-graph.

95
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Figure 8.1: Representation of the QSS about the Moon in the SP1 frame. The green points on the QSS are the 1000 propagation points
considered to populate the lunar flyby database with trajectories. Earth and Moon are also presented in the figure.

8.2. DATABASE APPROACH
In this section a database approach is designed to make use of the QSS to map the change in the osculating
orbital elements caused by a flyby with the secondary. The flyby mechanism has been extensively studied in
literature and has already been discussed in Section 3.3.

The T-graph has found application as a graphical tool to map in a simple way the change in the osculating
orbital elements of flyby trajectories from an energy point view using a patched 2BP approximation [24]. Such
a dynamical model however does not allow the representation of interesting phenomena such as temporarily
capture orbits or complex flyby trajectories, since it is considering only high-energy hyperbolic trajectories.
In this sense the TP-graph has successfully extended the validity of the graph to lower energy levels through
the usage of the CR3BP. In particular in [11] a flyby map that combines the TP-graph and the Keplerian map
is used to investigate and differentiate between flybys in the planar CR3BP. Thanks to the definition of the
QSS the author of this report would like to make use of the findings from Chapters 4 and 5 to extend the
study of flyby events in the spatial CR3BP by using a combination of propagation techniques and TP-graphs.
A database approach inspired by the one illustrated in [9] to design Moon-to-Moon trajectories in the Sun-
Earth planar CR3BP is adopted. The database developed in this chapter would like to be a simple and efficient
tool to quickly investigate the set of osculating orbital elements that is possible to achieve from flyby trajec-
tories. The idea is that such a database can be used as a tool to generate first-guess trajectories. The database
is generated by propagating a set of states from the QSS and storing certain properties of the trajectories gen-
erated. The algorithm to populate the database is illustrated in the following steps:

1. A value of the Jacobi constant C is chosen to represent the energy level considered for the system.

2. A total of 1000 points are uniformly distributed on the QSS using a spherical Fibonacci mapping algo-
rithm. This algorithm allows to reach a sub-optimal distribution of points on a spherical surface by
using a Fibonacci spiral unwinding on the surface of a sphere[26]. A representation of the distribution
on the QSS in the azimuth-elevation plane can be seen in Figure 8.2. Note that depending on the en-
ergy level considered some points might be positioned within the Hill’s surface. If this is the case these
points are ignored.

3. From the points considered the magnitudes of the synodic velocities are obtained from the Jacobi inte-
gral (Equation 3.10). For every position 500 angles in space are used to orient the velocity vector. Once
again a spherical Fibonacci mapping algorithm is used to distribute the velocities uniformly in space.
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4. Each initial state is propagated backward and forward in time for a maximum period of about six
months in the Earth-Moon CR3BP and two years in the Sun-Jupiter CR3BP. The propagation is halted
whenever the trajectory goes too far from the QSS or if a collision with the secondary occurs. The inter-
section states with the QSS are recorded, as well as the index of collision and capture trajectories.

5. By making use of the propagation data a database is generated that lists flyby, collision and capture
trajectories that have been generated from or to the QSS. The database structure is illustrated in Figure
8.3. Once the portion of the database for the value of C specified at the beginning has been generated,
the procedure is iterated from step 1 onwards with a new value of C .

Figure 8.2 shows the uniform distribution of the points on the QSS in the azimuth-elevation plane obtained
by applying a spherical Fibonacci mapping algorithm. The distribution of the points on the polar regions
suffer from a well known projection distortion involved when representing a spherical surface on a planar
projection. Note that to distribute the points on the QSS, that is not exactly a spherical surface, a projection
technique have been adopted applying a circumscribing spherical surface (with uniform points distributed
on it) to the QSS.
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Figure 8.2: Azimuth θ and elevation ψ of the 1000 points distributed on the QSS using a spherical Fibonacci mapping algorithm.

The structure of the database is illustrated in Figure 8.3 and can be described as an array of several matrices,
each defining the characteristics of the flyby trajectories at a specific energy level. Each of these matrices is
composed by 17 columns and a variable number of rows; each row represents a trajectory. The columns can
be divided into three categories: the first eight columns represent the input states of the database. It is fol-
lowed by a column representing the time of flight (TOF) in adimensional units between the input and output
states, represented by the last eight columns of the matrix. Note that in this description the notation "state" is
not used to intend the Cartesian state made by position and velocity of the spacecraft but is rather intended
as state vector of the database. The input and output states indeed are described by the osculating orbital
elements ra , rp and i with respect to the primary, the position x, y, z and the azimuth and elevation angles
of the synodic velocity θ and ψ. Note that since both the Jacobi constant and Tisserand parameter T1 are
automatically defined for each matrix of the array, it is immediate to compute the components of the synodic
velocities from position, azimuth and elevation angles. Also the Keplerian energy and angular momentum
of the trajectories with respect to Earth can be easily computed using the osculating orbital elements as il-
lustrated in Appendix B. The input and output states can refer to points on the QSS, on the Moon’s surface
or points within the SOI of the secondary. To differentiate between these three conditions, fictitious inclina-
tion values of 210◦ and 240◦ are used to represent states pertaining to collision or capture trajectories. As in
the database structure introduced in Chapter 7, these two values have been arbitrarily chosen to represent
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a physically impossible condition on the inclination (limited between 0◦ ≤ i ≤ 180◦) and exploited to label
these particular type of trajectories in the database in an efficient way.

Figure 8.3: Schematic of the database structure used to record lunar and Jovian trajectories from the QSS. The database is an array of
matrices; each matrix represents trajectories with the same value of the Jacobi constant and Tisserand parameter T1. The database is
structured in such a way to represent any trajectory by input-output states. These states might not be on the QSS in case they are de-
scribing a collision or capture trajectories. In the latter cases the inclination is changed to fictitious values of 210◦ and 240◦ respectively.

The database so designed is essentially a catalog of trajectories that are interacting with the secondary. Since
the dynamical model used is the CR3BP these trajectories could be much more complex than simple hyper-
bola. Capture and collision trajectories have been considered also in the database since they can be of use in
the design process. For example a temporarily capture trajectory could be used to inject the spacecraft into a
stable orbit about the secondary, or depending on the TOF could be used itself as operational orbit about the
secondary. Collision orbits can be used as first-guess for landing trajectories or can be transformed through
∆V maneuvers as close flyby trajectories. Since it might also be important to avoid them at all they have been
saved in the database when encountered during the propagation phase. Some applications of the database
will be illustrated with practical examples in Sections 8.3 and 8.4.

Note that the choice to use a database was the only one capable to capture the complex dynamics involved
in the CR3BP. In doing so only the most important data about the trajectories have been saved. The author
wanted to represent each trajectory, independently from its complexity, only by input and output states, in
order to be able to map the flyby effects in a discrete way. In doing so a generic user may apply the database
with different dynamical models. For example a pacthed 2BP problem can be used to design the trajectory
before and after the motion within the QSS if the user would like to employ a simpler dynamical model than
the CR3BP. On the other hand if a more sophisticated model is used the database can be used as an excep-
tional way to quickly investigate the capability of spatial ∆V maneuvers without the need to propagate a
single trajectory.

8.3. 3D FLYBY WITH THE MOON

In this section some examples of the usage of the database about the Moon are given. The results presented
are simply obtained by querying the database, which contains data on 14×106 trajectories distributed across
28 energy levels, from C = 0.5 to C = 3.2 with a spacing∆C of 0.1. The total size of the database is about 1.9 Gb.

Figure 8.4 represents the intersection states with the QSS as well as the collision points with the Moon’s sur-
face of about 500000 trajectories in the database with C = 2.9. Note that the number of trajectories consid-
ered to populate the database has been chosen as a tradeoff between the computational time, the size of the
database and the ability of the latter to have a uniform distribution of points across the QSS.
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Figure 8.4: Representation in the SP2 frame of the initial propagation states (green points) and intersections with the QSS and Moon’s
surface (black points) for C = 2.9 in the database.

Figure 8.5 presents all osculating orbital elements in the range between 0 < ra < 5 and 0 < rp < 5 for C = 2.9
in the database. By inspecting the figure it is possible to see that the osculating orbital elements are not
distributed across the whole Tisserand level set but are rather limited in a narrow region of the graph. This
limitation is caused by a phenomenon involving the geometrical definition of the QSS and the specific value
of the Jacobi constant considered.

Figure 8.5: TP-graph with the Tisserand level set for C = 2.9 (blue) and the input (black) and output (red) osculating orbital elements
from the database. It is possible to see that the points are distributed across a region of the graph limited by the two planes ra ≈ 1−R
and rp = 1+R, where R is the radius defining the QSS, equal to 0.17aM for the case about the Moon.
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The definition of the QSS about the secondary is naturally excluding Keplerian orbits about the primary that
cannot intersect the QSS. Keplerian orbits with a pericenter higher than 1+R or with apocenter smaller than
1−R would never be able to intersect the QSS. For this reason trajectories with such osculating orbital ele-
ments cannot be recorded by the Poincaré section. This constraint is also limiting the value of the maximum
inclination achievable in a flyby event. By changing the energy level of the system by varying the Jacobi con-
stant, the Tisserand parameter would vary accordingly and the level set will have a different disposition with
respect to the limit planes expressed by ra ≈ 1−R and rp = 1+R. In particular by decreasing the value of
the Jacobi constant the Tisserand level surface will shift to the right, making it possible to reach higher incli-
nations. Continuing to lower the Jacobi constant, the retrograde region of the level sets, that was previously
excluded for flybys, will become accessible. From Equation 5.4 it is possible to see that the retrograde region
will be accessible to the level set only for:

T1 <
2
(
1−µ)

1−R
(8.2)

From this phenomenon it is possible to conclude that prograde flybys are accessible at every energy level,
while retrograde ones become accessible only at low values of the Jacobi constant. This phenomenon was
already observed in [11], that distinguished between Type I or direct and Type II or retrograde flybys in the
planar CR3BP as discussed in Section 3.3. The description of the phenomenon however is presented here for
the first time with the usage of the QSS surface at constant T1 for the spatial CR3BP, elegantly explained by
the behavior of the Tisserand level set at different energy levels as characterized in Section 5.2.

Figure 8.6: Schematic of different classes of trajectories in the SP1 frame obtained for C = 3.1 in the database. The green and turquoise
cases are categorized as simple flybys, the first one being short while the last one being long. The red case is classified as a complex flyby,
since it makes one revolution about the Moon in the SP1 frame; this trajectory lasts about 16 days. The purple trajectory is a collision
orbit while the black one is a temporarily capture trajectory, as it performs multiple revolutions about the Moon, staying within the QSS
for about 43 days. Yellow points represent the initial and final positions of the trajectories.
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Figures 8.6 and 8.7 present different classes of trajectories stored in the database in the SP1 frame, while Fig-
ure 8.8 presents the same trajectories in the IP1D frame. A total of five types of trajectories are classified in
the database. Three of them are flyby trajectories, differentiated as simple and complex, the first one be-
ing further divided into short and long flybys. These trajectories are all starting and ending on the QSS. The
simple flyby is characterized by the absence of orbit revolutions about the secondary in the synodic frame.
The length of the flyby arch within the QSS is used to differentiate between short and long flybys. In the
first case the gravitational influence caused by the secondary on the trajectory is minimal. The second case
is essentially the classical hyperbolic flyby trajectory within the SOI of the secondary. The complex flyby is
characterized by a single orbit revolution about the secondary in the synodic frame. If the number of revolu-
tions about the secondary is greater than one, the trajectory is classified as a temporarily capture trajectory.
After several revolutions this trajectory could leave the system and intersect the QSS or collide with the sec-
ondary. In the latter case the trajectory is still considered as a temporarily capture trajectory, since a collision
trajectory is considered only as a simple trajectory without a revolution directly connecting the QSS and the
secondary’s surface.

Figure 8.7: xy (left) and xz (right) views of the trajectories illustrated in Figure 8.6.
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Figure 8.8: Different views in the IP1D frame of the different classes of trajectories illustrated in the SP1 frame in Figure 8.6. Moon’s orbit
is represented by the blue line. See the caption in Figure 8.6 for details.
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Figures 8.9 and 8.10 show an example of usage of the database. In this example a Cartesian position in prox-
imity of the QSS is defined at a specific energy level and the characteristics of the trajectories close to this
position are presented. A position at C = 2.9 with coordinates (−0.1673 , −0.0380 , 0.0042) in the SP2 frame
is used. The database is therefore queried for all trajectories on the QSS that are within 1500 km from this
point. Figure 8.9 shows the spatial information of the input and output positions in the database that match
the condition specified in the query. The output positions are represented on the QSS with the information
on the TOF of the trajectory. To complete this information with the characteristics of the osculating orbital
elements before and after the flyby, the TP-graph is illustrated in Figure 8.10 with the osculating orbital ele-
ments of input and output states. Once again the information on the time of flight is represented by the color
scale.

-0.2 -0.1 0 0.1 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 [

-]
-0.2
0.2

-0.1

0.2

0

0.1

0

0.2

0

-0.2 -0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 [

-]

Figure 8.9: Input (pink) and output (colored) states in the database obtained from the input states within a 1500 km radius sphere
centered on (−0.1673 , −0.0380 , 0.0042) for the case with C = 2.9.

Figure 8.10: Tp-graph of the input (pink) and output (colored) osculating orbital elements in the database obtained from the input states
within a 1500 km radius sphere centered on (−0.1673 , −0.0380 , 0.0042) for the case with C = 2.9.

The information obtained from the database can be used to judge whether or not the flyby trajectory is ca-
pable to reach the desired set of osculating orbital elements or if a collision trajectory would be avoided. If
the solutions are not satisfactory, the user can modify the query by looking at different energy levels or by
changing other settings of the query.
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8.4. 3D FLYBY WITH JUPITER

In this section an example of the usage of the database about Jupiter is provided. The results presented are
simply obtained by querying the database, which contains data on about 15× 106 trajectories distributed
across 30 energy levels, from C = 2.72859971143673 to C = 3.02161413943274. The total size of the database
is about 1.9 Gb.

By plotting the osculating orbital elements of the input and output states of the database at the lowest value of
the Jacobi constant in Figure 8.11 it is possible to see the maximum achievable inclination from the database.
The phenomenon that is constraining this value has been explained already in the previous section. Since
the minimum value of C does not allow inclinations higher than 40◦, retrograde flybys with Jupiter are not
allowed in the database generated in this research.

Figure 8.11: TP-graph with the osculating orbital elements of the input and output states (black dots) in the database about Jupiter for
C = 2.72859971143673. The Tisserand level set at this level is represented by the orange surface. The maximum achievable inclination at
this energy level is about 40◦.

The Jupiter database can be used to investigate feasible flyby trajectories coming from Earth. In order to
do so the database is queried from the osculating orbital elements of the input states. The following set for(
ra , rp , i

)
is used to simulate such flyby trajectories:


1−R < ra < 1+R

rp ≤ 1AU

i < 5◦
(8.3)

This example will also be used in Chapter 9 to generate feasible transfer trajectories from Earth to the Jovian
system. Figure 8.12 shows the input and output osculating orbital elements in the TP-graph of this query.
Two of these trajectories are selected and visualized in Figure 8.13; these are a trajectory with the maximum
inclination change and a low-inclination trajectory with an aphelion increase after the flyby.
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Figure 8.12: Representation of the input and output osculating orbital elements obtained by querying the database with the input ex-
pressed by Equation 8.3 at C = 2.72859971143673. The input elements are represented by green points, while the output ones by red
points. Two trajectory cases are considered from the graph, represented by blue and purple points, whose trajectories are presented in
the IP1D frame in Figure 8.13.
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Figure 8.13: Example of two flybys with Jupiter in the IP1D frame of the SJ system for the blue and purple trajectories highlighted in Figure
8.12. Circular approximations of the orbits of Earth (blue), Mars (red), Jupiter (black), Saturn (yellow) and Uranus (cyan) are represented
for comparison.

By visualizing the osculating orbital elements in the TP-graph it is possible to see that the flyby effect with
Jupiter distributes most of the points at higher inclinations in a limited region with ra < 2. Moreover from the
visualization of the Tisserand level set in the TP-graph it is immediately possible to visualize whether or not
the energy level considered is the desired one. For example it is possible to see that since the surface set is
far from the osculating orbital elements (1,1,0), the trajectory after the flyby will never be circularized on the
same orbital plane of Jupiter, suggesting that another value of C might be considered if this is the scenario
the user has been looking for. Just from the visualization of the Tisserand level set, simple conclusions can
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be derived about the value of the Jacobi constant that shall be considered to achieve the desired effects in
terms of osculating orbital elements of the trajectory after the flyby. The spatial configuration of the flyby
trajectories illustrated in Figure 8.13 is presented in Figure 8.14.
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Figure 8.14: The input (pink) and output (colored) states from the database query used to generate Figure 8.13. The colors of the output
states correspond to the TOF of the trajectories within the QSS. Note that input and output positions occupy opposite sides of the QSS
as a result of the high energy considered.

8.5. CONCLUSIONS
In this chapter a database approach has been developed to record, catalog and design trajectories interacting
with the secondary in the CR3BP model. This has been possible due to a specific Poincaré section derived in
Section 4.5.3 with the shape of a quasi-spherical surface about the secondary.

By applying the spatial case of the CR3BP model five different types of trajectories have been cataloged that
can be used for trajectory design purposes. By following the procedure described in Section 8.2 two databases
using the QSS about the Moon and Jupiter have been generated. Examples of the usage of these databases
have been presented in Sections 8.3 and 8.4.

Another important result of this chapter has been the demonstration of a graphical relationship in the TP-
graph between the prograde and retrograde flybys and the value of the Jacobi constant considered. This
relationship is caused by limitations imposed by the geometry of the Poincaré section considered, distribut-
ing the points on the energetic surface of a Tisserand level set only on a limited region defined by the planes
ra ≈ 1−R and rp < 1+R. Depending on the value of the Jacobi constant, these constraints limit the maximum
achievable value of the inclination and can preclude the possibility for retrograde flybys to exist.

By visualizing the Tisserand level sets and the osculating orbital elements they connect, important considera-
tion upon the value of the Jacobi constant to consider can be done. Basically the visualization of the level sets
in the TP-graph allow an easy interpretation of the performance of a flyby trajectory in terms of osculating
orbital elements before and after the flyby. If these performances are not satisfactory for the case considered
by the user, then the value of the Jacobi constant shall be changed accordingly to the shape of the Tisserand
level set in the TP-graph that is satisfying the desired requirements. If input and output requirements are not
achievable by the same Tisserand level set, then a ballistic trajectory connecting the two conditions does not
exist under the assumptions of the CR3BP model considered.

Lastly the author would like to point out that the definition of the QSS proves that by computing the osculat-
ing orbital elements of a body before and after a flyby with the secondary at approximately the same distance
from the flyby body would cause the Tisserand parameter T1 to be approximately constant. This could ex-
plain the successful usage of the parameter for astronomical purposes to observe Jupiter’s flyby comets before
and after the flyby, as originally intended by Tisserand.





9
SUN-JUPITER-EUROPA TRAJECTORY

DESIGN

In this chapter the Sun-Jupiter and Jupiter-Europa CR3BP models will be used to design a transfer trajectory
that will make use of Sun’s perturbations and Europa flyby effect to facilitate the insertion from an interplan-
etary trajectory into a science orbit about Jupiter. This specific example will be used to show an alternative
application of the Poincaré section designed in Chapter 4. Instead of opting for a database approach as in
Chapters 7 and 8, in this chapter a combination of propagation technique and patching technique on the
Poincaré section is used.

The trajectory design process in the two CR3BP models is divided into five phases. First a reasonable transfer
trajectory from Earth to Jupiter will be designed in Section 9.1 making use of the Jupiter flyby database de-
fined in Chapter 8. The result of this section will be the definition of an arrival state to the Jovian system. This
state will be manipulated in Section 9.2 to generate multiple intersection states with the Poincaré section de-
fined about Jupiter in the Sun-Jupiter CR3BP. The science orbit about Jupiter is designed in Section 9.3 in the
Jupiter-Europa CR3BP. The intersections with the Poincaré section of the operational orbit will be computed
in Section 9.4. Finally the trajectories obtained in the two CR3BP models will be patched and the results will
be presented in Section 9.5. To conclude the chapter Section 9.6 will sum up the main findings.

9.1. TRANSFER EARTH-JOVIAN SYSTEM
In this section a reasonable transfer trajectory from Earth to the Jovian system is designed following these
steps:

• Select a value of the Jacobi constant of the Sun-Jupiter system such that the following
(
ra ,rp , i

)
could

be approximately connected by the same Tisserand level set:

(
ra ,rp , i

)
i nput =

(
DUS J ,DUSE ,0

)
(9.1)

(
ra ,rp , i

)
out put =

(
DUS J ,DUS J ,< π

2

)
(9.2)

where DUS J and DUSE are respectively the Sun-Jupiter and Sun-Earth distances while the osculating
orbital elements are intended with respect to the Sun. For the example illustrated in this chapter C =
2.72955248581335.

• Consult the Jupiter database defined in Section 8.4 using the two sets expressed by Equations 9.1 and
9.2 as input and output conditions respectively.

The osculating orbital elements after the flyby with Jupiter have been selected such to generate a reference
trajectory that is naturally using the flyby with Jupiter to circularize the trajectory about the Sun. This should
be helpful in putting the spacecraft at the right energy level for an orbit insertion about Jupiter. Moreover in
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order to facilitate the insertion into a high-inclination science orbit, only prograde trajectories with a high
inclination after the flyby have been considered. Figure 9.1 shows the reference trajectory considered to
simulate the transfer from Earth to Jupiter. Note that in the design process the phasing of Earth has not
been considered since the trajectory is just the representation of an energy-wise realistic transfer to the Jovian
system. This assumption is done to simplify the analysis.

Figure 9.1: The Earth to Jupiter transfer trajectory. Left: Trajectory represented in the SP1 frame. Red and green points are initial and
final propagation states, while the black points represent the intersection with the SOI of Jupiter. Right: The trajectory in the IP1D frame.
Also the approximation of Jupiter (black), Mars (red) and Earth (blue) orbits are presented for reference.

9.2. SUN-JUPITER CR3BP ANALYSIS
From the reference transfer trajectory designed in Section 9.1 the state and epochs of the trajectory at a dis-
tance of 5RSOI from Jupiter are taken as initial conditions. The analysis continues focusing on the charac-
teristics of the trajectory in the vicinity of Jupiter. To obtain a large number of flyby trajectories close to the
reference one, the following steps are executed:

• A ∆V1 maneuver with a magnitude between 10 and 200 m/s (with increments of 10 m/s) and with a
random orientation in space is executed. A total of 100 combinations of azimuth and elevation angles
are taken into account for each value of ∆V1.

• The manifold of trajectories propagated from the initial condition is intersected with the Poincaré sec-
tion defined about the secondary in the SP2 frame expressed by Equation 4.61.

• The states and osculating orbital elements of these intersections are stored and will be used for patching
in Section 9.5.

The reason why the initial condition is shifted at 5RSOI from Jupiter is to give time to Sun’s perturbing effect
in the CR3BP to play a role in spreading the manifold generated by a relatively low ∆V1 maneuver. In such a
way an important part of the trajectory is computed by taking into consideration the gravitational influence
of both Jupiter and the Sun.

9.3. SCIENCE ORBIT ABOUT JUPITER
In this section a high-inclination high-eccentricity operational orbit about Jupiter is designed making use of
a flyby with Europa to decrease the energy of the spacecraft arriving from the interplanetary phase designed
in Section 9.2. Because of the complexity of designing a trajectory with the proper characteristics that is also
having a flyby with Europa, the process is performed backward by choosing the proper flyby trajectory with
Europa that is also satisfying the characteristics of a science orbit about Jupiter. The science orbit is therefore
selected following this procedure:



9.4. JUPITER-EUROPA CR3BP ANALYSIS 109

• The same approach used in Sections 8.3 and 8.4 is now applied to Europa as flyby body. In particular
a Jacobi constant C = 1.775 of the Jupiter-Europa system is used to generate a small database of flyby
trajectories from a QSS of radius 0.05DUJE about Europa.

• Consulting such a database, only those trajectories that exhibit the greatest variation in the apojove
and that have high inclinations after the flyby are considered. This is done to maximize the Europa
flyby effect.

• Lastly only that trajectory for which the final orbit about Jupiter after the flyby with Europa satisfies the
desired characteristics of a stable science orbit about Jupiter is selected.

Such a stable reference operational orbit about Jupiter that makes use of a Europa flyby is illustrated in Figure
9.2.

Figure 9.2: The trajectory in the Sun-Jupiter SP1 frame designed in the Sun-Jupiter-Europa system making use of patched CR3BP models.
The science orbit about Jupiter is represented by the blue curve. The interplanetary trajectory designed in Section 9.2 is represented in
black. The location of the patching ∆V maneuver is represented by a ∗ while ∆V1 is not visible in this figure.

9.4. JUPITER-EUROPA CR3BP ANALYSIS
The reference science orbit about Jupiter defined in Section 9.3 is now confronted with the Poincaré section
defined in the SP2 frame of the Sun-Jupiter CR3BP. To do so the reference trajectory is transformed from the
SB to the IP2D frame of the Jupiter-Europa system. From this the trajectory is transformed to the SB frame
of the Sun-Jupiter system. The chain of transformations depends on the phasing angle between the two sys-
tems. In order to simplify the analysis, the correct phasing between the systems is not considered and this
angle is varied to random values to generate multiple intersections of the reference orbit about Jupiter with
the Poincaré section. The intersection states and epochs recorded in this section will be used in the next sec-
tion to patch the trajectories in the two models.

Note that in this analysis it also would have been possible to locate a ∆V2 maneuver to generate multiple in-
tersections with the Poincaré section by considering the proper phasing of the systems. Although this would
have resulted in a much more realistic trajectory, the complexity of the proper tuning between these param-
eters and the unsatisfying results obtained have pushed to assume this simplification.

9.5. PATCHING BETWEEN CR3BP MODELS
From Sections 9.2 and 9.4 the intersection states from the trajectories computed in the Sun-Jupiter and
Jupiter-Europa CR3BP models have been recorded on the Poincaré section about Jupiter in the SP2 frame
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of the Sun-Jupiter system. The difference between the positions and velocity components of these intersec-
tions are then compared to select the trajectory with the lowest ∆Vpatch , illustrated in Figures 9.2 to 9.4.

Figure 9.3: Complete trajectory designed in the Sun-Jupiter-Europa patched CR3BP model represented in the IP1D of the SJ system.
Jupiter (black), Mars (red) and Earth (blue) orbits are presented for comparison. ∆V1 and∆Vpatch are represented by square and asterisk
symbols.

Figure 9.4: Complete trajectory designed in the Sun-Jupiter-Europa patched CR3BP model represented in the SP1 frame of the Sun-
Jupiter system. ∆V1 and ∆Vpatch are represented by square and asterisk symbols. A zoom of this figure in the vicinity of Jupiter can be
seen in Figure 9.2.

The trajectory illustrated in these figures has been obtained with ∆V1 = 50 m/s and a patching velocity
∆Vpatch of 2.1971 km/s, at a patching distance ∆rpatch of 144000 km.
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9.6. CONCLUSIONS
In this chapter an alternative procedure that makes use of numerical propagation and Poincaré sections is
used to design a trajectory in the Sun-Jupiter-Europa patched CR3BP model. The specific example taken into
consideration in this chapter allowed to design a trajectory from Earth’s orbit to Jupiter that is directly exploit-
ing Jupiter’s flyby, Sun’s perturbation and Europa’s flyby effects.

Although these effects have been taken into account, no ballistic transfers have been found. The lowest value
of∆Vpatch found in this analysis (2.1971 km/s) is relatively high. Considering also∆V1 the overall mission∆V
considered for this trajectory is 2.2471 km/s. Note that in this computation the initial ∆V0 necessary to put
the spacecraft into the interplanetary transfer trajectory is not computed as in the focus of this analysis is in
the multi-body dynamical effects in proximity of Jupiter to ensure a capture.

The author believes that this large value to connect the two ballistic trajectories is the result of a natural gap
existing between the energy levels considered in the two systems. To visualize this gap Figure 9.5 represents
the TP-graph of the level sets of the two systems, together with the osculating orbital elements of the patch
points.

Figure 9.5: TP-graph obtained with the two values of the Jacobi constant of 2.72955248581335 and 1.775 respectively for the Sun-Jupiter
and Jupiter-Europa CR3BP. The Tisserand level surface of the first system is represented in orange, while the one of the Jupiter-Europa
system is represented by the blue surface. The patch points are plotted in darker blue and orange on the corresponding surfaces.

As it is possible to see from Figure 9.5, the values chosen for the Jacobi constants of the two systems it is
not adequate to generate an overlap between the Tisserand level sets in the TP-graph. In particular is pos-
sible to see that the Tisserand level set of the Sun-Jupiter system develops entirely in the region with ra < 0.
This region, that has never been explored in this report, describes hyperbolic trajectories with the correct
value of pericenter, but with a wrong ra parameter. For hyperbolic trajectories ra = +∞, so negative fi-
nite values of ra are physically wrong, since they do not represent apocenter radius. Nonetheless these val-
ues, computed applying the usual expression ra = a (1+e) are mathematically consistent for both systems.
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The representation of the region with ra < 0 therefore illustrates very clearly in the ETP-graph the energetic
bridge existing between the trajectories considered in the two systems. From this the high ∆Vpatch found in
the analysis can be explained by the attempt to patch elliptic and hyperbolic trajectories in the ETP-graph.
For comparison it is possible to determine the values of the Jacobi constants of the Sun-Jupiter system that
make the Tisserand level sets described by T2 to pass through the points

(
ra ,rp , i

)= (
aEur opa , aEur opa ,0

)
and(

18aEur opa , aEur opa ,0
)
. By imposing these conditions it is found that the Jacobi constants of the Sun-Jupiter

CR3BP should be 4.1042 and 3.1151 respectively. These values however correspond to a situation where both
L1 and L2 necks of the system are closed and a transfer trajectory from Earth as the one designed in Section
9.1 is simply not possible. It becomes clear from this scenario that it is necessary to perform a compromise
on the value of the Jacobi constant of the Sun-Jupiter system by taking into account both the characteristics
of the transfer trajectory to Jupiter from Earth and the patching conditions in the vicinity of Jupiter. In this
sense a trade-off solution might be seeked by increasing the apojove distance of the patching condition such
to open the L1 neck of the Sun-Jupiter system. An alternative would be to work on the patching conditions
between hyperbolic trajectories in both systems. In case of the Jupiter-Europa system the trajectory would
be a hyperbolic trajectory performing a close flyby with Europa that transforms it into an highly-elliptic and
high-inclination stable orbit about Jupiter. Both alternatives could be investigated in future studies to over-
come this issue in the Sun-Jupiter-Europa patched CR3BP.



10
CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes the research presented in this report performed at ISAS/JAXA. The most important
findings are summarized in Section 10.1, while recommendations for future studies are presented in Section
10.2.

10.1. CONCLUSIONS
The work presented in this report has been divided into two parts following the research questions high-
lighted in Section 1.2.

Chapters 4, 5 and 6 are dedicated to the extension of the theoretical framework related to the Tisserand pa-
rameters, TP-graphs, ETP-graphs and Poincaré sections used to obtain them, answering the first research
question and sub-questions. The main findings can be summarized as follows:

• Modified Tisserand parameter: A modified Tisserand parameter exists that can be defined using the
osculating orbital elements with respect to the secondary of a CR3BP system:

T2 = µ2

a
+2

1

TU

√
µ2a

(
1−e2

)
cos(i ) (10.1)

The formulation of this parameter turns out to be identical to the one of the classical Tisserand param-
eter T1, with the only difference that the osculating orbital elements are expressed with respect to the
secondary of the system. This parameter derives from a fundamental decomposition of the Jacobi in-
tegral J as the sum of two functions T2 and P2, the first one referred to as modified Tisserand parameter
and the latter as a residual function:

J
(
x, y, z, ẋ, ẏ , ż

)= T2 (a,e, i )+P2
(
x, y, z

)
(10.2)

The Tisserand parameter T2 is a function of the osculating orbital elements while the residual function
P2 is a potential function depending only on the position components. This exact relationship has been
derived both for T1 and T2, with the definition of a residual function P1.

• Poincaré sections: Because the residual functions P1 and P2 depend only on spacecraft position, they
define families of equipotential surfaces in the CR3BP. Such surfaces are defined in the synodic frames
centered on the primaries and make the Tisserand parameters local integrals when the osculating or-
bital elements of a trajectory are computed for points positioned on such surfaces. This is of fundamen-
tal importance especially for T2, that otherwise would not exhibit the same homogeneous properties
of T1. Three of these surfaces have been chosen for the research illustrated in this report to generate
TP-graphs and ETP-graphs. These are often constructed with arbitrarily chosen Poincaré sections far
from the secondary however thanks to P1 and P2, in this report they are constructed following a math-
ematically rigorous definition that guarantees constant values of T1 and T2.
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• ETP-graph: By applying the definitions of T1 and T2 the corresponding Tisserand level sets in the TP-
graph and ETP-graph have been thoroughly characterized both from a geometric and mathematical
point of view. It has been discovered that by combining the level sets of the EM and SE systems ob-
tained by T1 and T2 in the ETP-graph, it is possible to described solar perturbation effects under exist-
ing frameworks. In particular the ETP-graph characterized in this report complies with the findings of a
qualitative analysis existing in literature about solar perturbation effects in the ETP-graph [9]. These are
proven to act on lines of slope −1 in the graph and suggests that an inversion of motion from prograde
to retrograde regions and vice-versa is simpler to achieve than in the EM system. The ETP-graph also
shows the existence of energy connections between SEL1 and SEL2 with all the energy levels of the La-
grange points of the EM system (within 3aM ). The effects of the level sets describing solar perturbation
is explained by the different time normalization parameters of the CR3BP considered. This difference
acts as a scaling factor in the representation of the Tisserand level sets, generating an overlapping of
energetic levels in a useful region of the EM and SE systems.

• Poincaré maps: The Poincaré sections defined by the Tisserand parameters have been characterized
both in the EM and SE systems to understand their performances and what type of dynamics they
are able to represent in Poincaré maps. Classical maps turned out to be inefficient in describing the
complexity of the motions captured by these sections, for this reason ẋ ẏ maps have been adopted.
In certain cases it is important to distinguish whether these refer to the interior or exterior regions in
order to avoid ambiguity and guarantee the full state reconstruction of any point taken from the maps.
With the usage of these sections it has been observed that the way in which retrograde and prograde
motions are represented in the maps by the sections is different. In particular it has been observed
that great importance seems to be given to retrograde trajectories, whose characteristics seem to be
naturally enhanced by the properties of the Tisserand level sets associated to the Poincaré sections.
Stable regions of periodic motion exist for both regions. However the stable motion for retrograde
trajectories can be found at any energy level through the sections, while stable motion for prograde
trajectories is more rare and appears with distinctive features in the maps only at high values of the
Jacobi constant. Another interesting result is associated to collision trajectories both with Earth and
Moon, that in the first case are easily represented in the interface region in the map between retrograde
and prograde motion, while in the latter are distributed in different specific regions of the maps.

In Chapters 7, 8 and 9 three different technical approaches have been developed in order to exploit the theo-
retical findings illustrated in the previous chapters. The main findings can be summarized as follows:

• Database approach: A database approach has been developed to design Sun’s perturbed trajectories
in the SE CR3BP. This approach exploited section-to-section transfer legs with constant T2 in the SE
system using a Poincaré section defined about the Earth in the SP2 frame. The idea behind the database
is to enable the storing of fundamental characteristics of transfer trajectories in the SE system that
connect different points on a Poincaré section in order to use these trajectories as a way to increase or
decrease the value of the Jacobi constant of the EM system for trajectory design purposes. Since the
database is defined for an autonomous system, it can be used as a universal tool for the systematic
research of patched trajectories in the SE and EM CR3BP models. Few examples have been illustrated
about the usage of such database, in particular a two-point patched trajectory in the EM-SE-EM system.
The approach also showed some limitations regarding the complexity in designing a multiple-point
patched trajectory, especially regarding the significant build-up in the necessary ∆V for patching and
in the complexity of the query structure to obtain a trajectory. These issues have not been addressed
in this research and remain open for further activities in the future since the research has been focused
more on the generation of the database itself and on the demonstration of its application.

• Flyby database: Exploiting a particular Poincaré section at constant T1 that develops about the sec-
ondary as a quasi-spherical surface, a database approach has been developed to record, catalog and de-
sign trajectories interacting with the secondary in the CR3BP. Two database have been generated con-
sidering the Moon and Jupiter cases. Such catalogs of trajectories mapped the input-output states from
the Poincaré sections mostly affected by the influence of the secondary. These databases are referred
to as flyby databases, but are much more than this since they also collect informations on collision and
temporarily capture trajectories. Indeed, five different categories of trajectories have been cataloged in
these databases, that demonstrated to be really useful during the technical analysis performed in these
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chapters. These databases also elegantly demonstrated on the TP-graph a phenomenon that cause an
energetic distinction between retrograde and prograde flybys. The latter exist basically at all energy
levels, while the former ones only exist for low values of the Jacobi constant. Generally speaking on the
TP-graph the effect of the maximum inclination that is possible to achieve from a flyby event can be
simply visualized since it is a function of the energy level considered; thus it is a function of the value
of the Tisserand parameter considered to represent a level set. From the shape of the level sets in the
TP-graph it is possible to determine the necessary value of the Jacobi constant that allows to reach the
desired output or input conditions after a flyby event.

• Sun-Jupiter-Europa trajectory: Finally, a technique that is solely relying on numerical propagation
and representation of the intersection points both on the Poincaré section and on the TP-graph is illus-
trated for a patched trajectory in a SJ and JE CR3BP. This system is theoretically the same of the SE and
EM CR3BP and it was interesting to investigate it through the new tools derived in this report. In such
a system however a trajectory design process would rather be focused on the reduction of the mission
∆V through the usage of multi-body dynamical effects. This is investigated through the usage of Jupiter
and Europa flybys and by exploiting solar perturbation for a portion of the trajectory. The overall de-
sign is not successful in designing a ballistic transfer trajectory from Earth because of the existence of
an energetic ’wall’ between the SJ and JE systems due to choices done concerning both the transfer
phase from Earth and the science orbit about Jupiter. This example however illustrates that the choice
of the correct energy levels is fundamental for the trajectory design. In this process the Tisserand level
surfaces can be exploited to obtain indications upon the energy required by certain transfers. A possi-
bility that is highlighted in this analysis is that, although elliptic patching trajectories cannot be found
because of the arrangement of the Tisserand level sets in the graph, there could be a possibility for bal-
listic patching in the hyperbolic realm. This possibility however has not been investigated and is left
for further studies.

• Patched CR3BP vs BR4BP vs full-ephemeris: In chapter 7 and Appendix D the performances of these
three dynamical models are briefly confronted. The patched CR3BP model resulted in a good approxi-
mation of the BR4BP whenever considering a short to medium propagation time and with a particular
care to avoid undesired patching conditions. In this sense the patching distance from Earth and the
expected behavior of the trajectory (getting closer or further away from the Earth-Moon system for
example) are fundamental aspects to be taken into account. The comparison between the results ob-
tained in the patched CR3BP and full-ephemeris model highlights important discrepancies between
the trajectories. These are attributed to the real inclinations and eccentricities of the gravitational bod-
ies considered, since such discrepancies have not been observed in the BR4BP with the introduction
of a coplanar 4th perturbing body. The usage of a Bicircular Elliptic Four-Body Problem in which the
Earth and Moon move in elliptic orbits that do not share the same plane shall overcome this limitation.

• 3D description: The techniques developed in the research have been used in the 3D case in order to
be realistically applicable for mission design purposes. In the flyby database this has proven to be im-
portant to understand the relationship existing between prograde and retrograde flybys and the energy
level considered in the TP-graph. In the Moon and Jupiter flyby databases this is fundamental in the
design of trajectories whose inclinations is greatly changed during the flyby event. No particular phe-
nomena have been observed about the SE transfer legs database rather than an oscillating behavior
of the trajectories along the z-axis. This suggests that the usage of coplanar systems do not generate
particular phenomena in the 3D case. Nonetheless from an engineering point of view is important to
take into account the oscillating behavior in order to ensure a proper patching. It can be concluded
that a 3D description complicates the analysis, but ultimately allows to use more interesting arrival or-
bits such as Halo, temporarily capture or simple high-inclination and high-eccentricity orbits useful for
observation and/or scientific activities.

• Optimization: The research has been focused on the generation of first-guess solutions and optimiza-
tion tasks have not been considered in this report. Further study shall be pursued in order to match the
first-guess generation step with an optimization step that takes the output of this research as an input
to improve the speed of the overall trajectory design process.
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10.2. RECOMMENDATIONS
Following these conclusions, recommendations and ideas for future studies that have not been pursued in
this research are briefly collected:

• The Tisserand level sets in the ETP-graph that are describing the effects of solar gravitational perturba-
tion could in principle be used to describe also solar radiation pressure effects. Since both forces would
be modeled by the primary, they could be united in the same dynamical model in a modified CR3BP.
A modified Tisserand parameter that takes into consideration the combined effect of gravitational and
SRP effects could in principle be expressed. Since many expressions make use of the normalization
parameters defined for a gravitational system, it is not sure that the derivation can be successful.

• The Poincaré maps have shown incredible stable structures for retrograde trajectories at any energy
levels. This inherent stability can be exploited for mission observation purposes considering as target
bodies both primaries. Although it would hardly be practical to directly reach such retrograde trajecto-
ries, it could be possible to investigate the usage of solar perturbation to reach this type of orbits with
ballistic trajectories.

• The SJ and JE CR3BP showed that in some cases patching conditions might be sought in the hyperbolic
region of the TP-graph. This region has been completely ignored in this research, since the focus has
been put on low-energy elliptic trajectories.

• The Poincaré maps highlighted the regions of collision trajectories with Earth in a simple way in the
interface region between prograde and retrograde motion. On the other hand the structure of the col-
lision orbits with the Moon in the maps has not been characterized in this research.

• Since the database approach of the SE perturbed trajectories is defined in an autonomous system, in
principle it could be possible to patch trajectories modeled between EM and SE systems that are not
coplanar with respect to each other. In order to do that it is just necessary to keep track of the relative
inclination of one of the models with respect to the other and to change the query in the database. This
should affect only the inclination parameter and shall not have repercussions on ra and rp , once the
properΩ andω for the specific patching considered are taken into account by the user. This possibility
would increase the precision of this model in representing the different orbital planes in which Sun,
Earth and Moon move.

• The possibility to generate Poincaré maps in the 3D case has been briefly explored in this research
with unsatisfactory results. The huge amount of data collected in the generation of the database of
SE trajectories can be used in this sense for the interested reader that would like to try to seek a clear
interpretation of these data in a multi-dimensional Poincaré map.



A
TISSERAND PARAMETERS

In this appendix the different expressions of the Tisserand parameters and residual functions are summa-
rized for a better understanding of the report. The classical and modified Tisserand parameters are referred
for simplicity as Tisserand parameters or as Tisserand parameter about the primary (T1) and Tisserand pa-
rameter about the secondary (T2). These are defined in dimensional units as:

T1 (a,e, i ) = µ1
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+2

1

TU

√
µ1a

(
1−e2

)
cos(i )

T2 (a,e, i ) = µ2

a
+2
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√
µ2a

(
1−e2

)
cos(i )

(A.1)

where µ1 and µ2 are the gravitational parameters of the primaries, TU is the time normalization parameter of
the CR3BP considered and a,e and i are the osculating semi-major axis, eccentricity and inclination. By using
the pericenter and apocenter radius rp and ra instead of a and e, the following expressions can be written:
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)= 2µ1
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(A.2)

These Tisserand parameters can also be expressed in the adimensional units of the CR3BP considered as:
T1 (ã,e, i ) = 1−µ
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(A.3)

where the semi-major axis in these equations is expressed in normalized units as ã = a
DU . These expressions

can be written as a function of r̃a = ra
DU and r̃p = rp

DU in normalized units as:
T1
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(A.4)

Once the CR3BP considered is specified by the mass parameterµ, the residual functions defined in this report
are depending only on the position vector in the SP1 or SP2 frames. The residual function associated to T1 is
expressed as P1, while the one associated to T2 as P2.

P1 (rSP1) = 2µ√
(x −1)2 + y2 + z2

−2µx +µ2 +µ(
1−µ)

(A.5)
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P2 (rSP2) = 2
(
1−µ)√

(x +1)2 + y2 + z2
+2(1−µ)x + (1−µ)2 +µ(

1−µ)
(A.6)

where rSP1 = [
x y z

]T and rSP2 = [
x y z

]T are the position vectors from the origins of the SP1 and SP2
frames. The relationships existing between the Tisserand parameters, the Jacobi integral and the residual
functions can be expressed as:

J (XSP1) = T1(ã,e, i )+P1(rSP1) (A.7)

J (XSP2) = T2(ã,e, i )+P2(rSP2) (A.8)



B
DERIVATIONS

In this appendix the derivations of the expressions used in this report to compute the Keplerian energy and
angular momentum vector with respect to the main attracting body are presented together with the algo-
rithms used to compute the osculating orbital elements.

An important part of the derivations presented in this appendix rely on the coordinate transformation equa-
tions presented in Section 3.2.2. In the particular the relationship between the state XI Pi = [ξ η ς ξ̇ η̇ ς̇]T

expressed in I Pi frame and XSB = [x y z ẋ ẏ ż]T in SB frame will be used:

ξ

η

ς

ξ̇

η̇

ς̇

=



cosθ −si nθ 0 0 0 0
si nθ cosθ 0 0 0 0

0 0 1 0 0 0
−si nθ −cosθ 0 cosθ −si nθ 0
cosθ −si nθ 0 si nθ cosθ 0

0 0 0 0 0 1





x − (Pi )x

y
z
ẋ
ẏ
ż

 (B.1)

where (Pi )x denotes the coordinate of the origin of the inertial frame and θ is the angle between the x-axes of
the synodic and inertial frames. From this expression each component of the inertial state can be computed
as a function of the SB components of the state as:

ξ= (x − (Pi )x )cosθ− y si nθ

η= (x − (Pi )x ) si nθ+ ycosθ

ς= z

ξ̇=− (x − (Pi )x ) si nθ− ycosθ+ ẋcosθ− ẏ si nθ

η̇= (x − (Pi )x )cosθ− y si nθ+ ẋsi nθ+ ẏcosθ

ς̇= ż

(B.2)

B.1. KEPLERIAN ENERGY
The specific energy of the spacecraft with respect to the main attractor body Pi with a gravitational parameter
µi is computed in the inertial reference frame as:

(Ei )I Pi D = V 2

2
− µi

r
(B.3)

where V and r are the spacecraft velocity and position in such a frame, V =
√
ξ̇2 + η̇2 + ς̇2 and r =

√
ξ2 +η2 +ς2.

By substituting the components of these expression with the terms in Equation B.2 these can be written in SB
coordinates as:

r =
√

(x − (Pi )x )2 + y2 + z2 (B.4)
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V 2 = (
x − (Pi )x + ẏ

)2 + (
ẋ − y

)2 + ż2 (B.5)

By applying the normalization parameters of the CR3BP model and after some simplifications the expressions
of the Keplerian energy with respect to the primaries in SB coordinates are obtained. Note that the energy
with respect tot the primary (E1)SB is obtained by substituting (Pi )x = −µ, while the one with respect to the
secondary (E2)SB is obtained by substituting (Pi )x = 1−µ.

(E1)SB =
(
x +µ+ ẏ

)2 + (
ẋ − y

)2 + ż2

2
− 1−µ√(

x +µ)2 + y2 + z2
(B.6)

(E2)SB =
(
x +µ−1+ ẏ

)2 + (
ẋ − y

)2 + ż2

2
− µ√(

x +µ−1
)+ y2 + z2

(B.7)

B.2. ANGULAR MOMENTUM
The angular momentum vector with respect to the main attractor Pi is computed in the inertial frame I Pi as:

(Hi)I Pi
= r∧V =

ηξ̇−ςη̇ςξ̇−ξτ̇
ξη̇−ηξ̇

 (B.8)

The magnitude of such a vector is referred to as hi . By substituting the terms in Equation B.2 the general
expression of the angular momentum vector in SB coordinates with respect to the body Pi can be written as:

(Hi )SB =
 y ż − z

(
ẏ +x − (Pi )x

)
z
(
ẋ − y

)− ż (x − (Pi )x )
(x − (Pi )x )

(
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)− y
(
ẋ − y

)
 (B.9)

By substituting (Pi )x =−µ and (Pi )x = 1−µ this expression is specified with respect to the primary (H1)SB or
secondary (H2)SB of the system:

(H1)SB =
 y ż − z
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ẏ +x +µ)
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(
ẋ − y
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(
x +µ)(

x +µ)(
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 (B.10)

(H2)SB =
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In the planar case these vectors are defined only by their third component, since z = ż = 0. In this case the
magnitude of these vectors can be simply computed as h1 =

(
x +µ)(

ẏ +x +µ)−y
(
ẋ − y

)
and h2 =

(
x −1+µ)(

ẏ +x −1+µ)−
y

(
ẋ − y

)
. The value of h1 and h2 in the 3D case are not as simple and for this reason are rarely used in their

extended form.

B.3. OSCULATING ORBITAL ELEMENTS
In this section the algorithm to obtain the osculating orbital elements from the state expressed in SB frame
is presented. The elements of interest in this report are the semi-major axis a, the eccentricity e and the
inclination i , from which the pericenter and apocenter rp and ra can be easily derived for elliptic trajectories.
The algorithm illustrated here is used to obtain the osculating orbital elements with respect to the primary,
the expressions however can be simply adapted to express the elements with respect to the secondary. The
starting point of the algorithm is the vis-viva equation in inertial frame:

V 2

2
− µ1

r
=−µ1

2a
= E1 (B.12)

In the previous section the expression of the energy with respect to the primary (E1) in SB components has
been derived in Equation B.6. By substituting this expression into the vis-viva equation the semi-major axis
can be computed in adimensional units as:
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a1 =− 1−µ
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The Angular momentum vector with respect to the primary H1 derived in Equation B.10 is then computed
from the state components. From this vector the inclination is computed as:

i1 = acos
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(H1)SB |z
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)
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( (
x +µ)(
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)
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The eccentricity vector is then computed by using the following expression [1], adapted to be expressed in SB
components:

e1 = 1

1−µ

 ẋ − y
ẏ +x +µ

ż

∧ (H1)SB

− 1

r1

x +µ
y
z

 (B.15)

from which the scalar value of the eccentricity is obtained by computing the magnitude of such vector e1 =
||e1||. By following these simple steps and by using these expressions in SB coordinates the osculating or-
bital elements a1,e1 and i1 have been computed with respect to the primary. By following the same steps it
would be very easy to derive the expressions to obtain these osculating orbital elements with respect to the
secondary: 

a2 =− µ

2(E2)SB

i2 = acos

(
(H2)SB |z

h2

)
e2 = ‖e2‖

(B.16)

To represent the pericenter and apocenter for elliptic trajectories the following formulas are used substituting
a1 and e1 or a2 and e2: {

ra = a (1+e)

rp = a (1−e)
(B.17)





C
VALIDATION AND VERIFICATION

In this appendix the validation and verification of several fundamental blocks of the code is illustrated.

DYNAMICAL MODELS, JACOBI INTEGRAL EXPRESSIONS, COORDINATE TRANSFORMATIONS

Figure C.1 shows a trajectory propagated in the Earth-Moon system using the BR4BP and CR3BP models.
Since the latter is a particular case of the first one when mS = 0, the propagation shall results in two identical
trajectories and so it does as it is possible to see from Figure C.1. The trajectory is propagated from the initial
state X0 = [0.8 0.3 0.1 0 0.2 0]T in SB frame using Matlab ode113 with absolute and relative tolerances of 10−12.
The initial time is set to t0 = 0 while the final one to t f = 150.8. With such configuration the Jacobi constant
of the system is CSB = 3.03496787622864.

Figure C.1: Different views of the reference trajectory propagated from X0 = [0.8 0.3 0.1 0 0.2 0]T with t0 = 0 and t f = 150.8 in Earth-Moon
SB frame. The trajectory in the CR3BP is green, while the one in the BR4BP with mS = 0. Earth and Moon are represented by blue and
black points, while starting and ending points by a black square and red dot respectively.

The reference trajectory is computed in SB frame, however by applying coordinate transformations the states
and epochs are transformed into other frames such as SP1, SP2, IB, IP1, IP2, SBD, SP1D, SP2D, IBD, IP1D
and IP2D. The expressions of the Jacobi integral in such frames are then applied by using Equation 4.23. By
doing so both the coordinate transformation equations between frames and the expressions of the Jacobi
integral in Equation 4.23 are validated. Independently from the frame considered the Jacobi constant shall
remain the same during the propagation, so its change is a good indicator of the error committed during the
propagation procedure. Figure C.2 shows two error functions er r1 and er r2 of the Jacobi integrals for the

123



124 C. VALIDATION AND VERIFICATION

trajectory expressed in several frames. er r1 is defined as the difference between the mean Jacobi constant
of the trajectory in SB frame and the Jacobi constant of the trajectory in the frame considered. er r2 is used
to enhance the difference between er r1 in different frames, that is not clearly visible from Figure C.2, and is
defined as the difference between er r1 in SB frame and er r1 in another frame.

Figure C.2: On the left: Plot of er r1 for the frames indicated in the legend for the trajectory illustrated in Figure C.1. On the right: Plot of
er r2 for the same frames indicated in the legend.

Since the values of er r1 and er r2 are considerably small in every frame considered, the propagation scheme,
the coordinate transformation equations and the Jacobi integral expressions are considered validated. To
further validate the BR4BP uses is made of the electronic supplement material in [4]. In particular trajectory
V I I I In Figure 8 of [4] is used to validate the planar case of the BR4BP.
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Figure C.3: Trajectory V I I I from [4] in the planar BR4BP: X 0 = [−0.019048265996746 − 0.015566582598150 09.751858086858906 −
4.321076476149917 0]T , t0 = 2.932062269968396, t f = 17.819572739337175 and θS0 = 0. Earth and Moon are represented by blue and
black dots respectively. The dashed black line represents Moon’s trajectory while the dashed red line is a 100km altitude orbit about the
Moon. The figure on the right is a zoom of the one on the left in proximity of the Moon at the final epoch.
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The shape of the trajectory represented here is the same of the one illustrated in [4]. Moreover such a tra-
jectory is characterized by a final state reaching a circular orbit about the Moon at a 100 km altitude. Since
the trajectory represented here reach such orbit with an error of 1.35 m the code of the BR4BP is considered
validated.

PROPAGATION SCHEME

The software used in the report for the computations is MATLABR2017a and the propagation scheme adopted
is ode113. There are important properties that make this propagator preferable for the tasks in this report. For
what concern the speed and precision of the computation it is overall better than oder propagators such as
ode45. Figure C.4 shows the values of errors on the Jacobi constant for the trajectory illustrated in Figure
C.1 computed with these propagators. By repeating the propagation for 1000 cases ode113 perform much
better than ode45, taking on average 0.538561s against the 3.002009s average time of ode45. The reason why
other propagation schemes other than the ones in Matlab have not been considered is because of the event
functionality in Matlab’s ode solvers. This has proven to be particularly easy to use and extremely useful in
detecting trajectory intersections with Poincaré sections.
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Figure C.4: Visualization of the errors on the Jacobi integral of the trajectory illustrated in C.1 propagated with different propagation
scheme. It is possible to see that different schemes correspond to different behaviors of the error function.

The computations for the databases have been performed with a high-performance working station with
the following performance characteristics: Intel® Xeon® Processor E5-2640 v4 @ 2.4GHz × 16, 3.4GHz × 16
Turbo with a 61.6 GiB memory. The other computations have been performed on a device with the following
performances: Intel® Core™ i7-4510U CPU @ 2.00GHz × 4 with a 7.7 GiB memory. SPICE has been a tool
actively used in the computation, as well as MEX functions and parfoor loops, that greatly enhanced the com-
putational speed of the codes, allowing to efficiently exploit the multi-processing capabilities of the working
station at ISAS/JAXA.

OSCULATING ORBITAL ELEMENTS

Two algorithms are used throughout the report to compute the osculating orbital elements from the state
expressed in cartesian components. The first one is a the classical algorithm used to compute them from the
state expressed in an inertial reference frame about the main attractor. As this is a well known algorithm it
is nor presented in this report. The second technique makes use of the vis-viva equation and angular mo-
mentum expressions directly in the SB, SP1 or SP2 frames to compute the osculating orbital elements in such
frames. The latter technique is preferred because it does not involve the coordinate transformation of the
whole trajectory state and epoch history to an inertial frame, resulting in a faster computation of the osculat-
ing orbital elements directly from the frame in which the trajectory is propagated. These two techniques are
tested with the oscelt SPICE function that perform the same task. For this testing µE ar th = 398600.441 km3/s2

and the state considered in the Earth-Moon system is:
As is possible to see the errors between the osculating orbital elements obtained from the SPICE function and
the two techniques are quite small, hence both techniques are validated.

POINCARÉ SECTION

To record the intersections between the Poincaré sections and the trajectory two techniques are used. One
makes use of MATLAB event function and can be easily set from the ode solver’s options. The event func-
tion only requires the implicit function of the event, that can be taken for example from Equations 4.51 and
4.61, and by using a combination of propagation and interpolation techniques can retrieve the epochs and
states intersecting the Poincaré section. The second technique is used for those times where the trajectory
is propagated in a different system than the one in which the Poincaré section is defined. In such a case an
interpolation technique is used to record the intersection states and epochs. Figure C.5 shows the correctness
of these techniques to record the intersection points for the trajectory illustrated in Figure C.1.
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Component IP1D SP1
x 363873007.386024 0.946587602622297
y 203431556.873759 0.52921152657681
z -415856411.869599 -1.08181842553973
ẋ -84.5338561559273 0.446702462229068
ẏ 119.680804650645 -0.829773444826218
ż -195.694014560301 -0.191006666134343

Table C.2: The state in IP1D is written in m and m/s while the one in SP1 in dimensional units of the Earth-Moon system. The angle θ
between SP1 and IP1D frame is set to 0.

Orbital element oscel t error from IP1D error from SP1
ra [m] 596462153.879926 2.38418579101562 ×10−7 0
rp [m] 19565206.480481 3.35276126861572 ×10−8 3.72529029846191 ×10−9

i [rad] 1.0537594370071 2.22044604925031 ×10−16 2.22044604925031 ×10−16

e [−] 0.936479423676785 1.11022302462516 ×10−16 0
a [m] 308013680.180204 5.96046447753906 ×10−8 0

Table C.4: The first column represents the osculating orbital elements obtained from SPICE function oscelt used for reference. The
second column represent the error between the osculating orbital elements obtained from the IP1D state and the reference one. The
third column is the error between the osculating orbital elements obtained directly from the SP1 state and the reference one.
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Figure C.5: On the left: Representation of the Jacobi constant in SB frame and its evaluation for the intersection points with the Poincaré
section about the primary obtained with the event function technique (blue points) and the interpolation technique (red points). The
graph is represented on two y-axis to stress the difference in scale between the two techniques. On the right: Visualization of the differ-
ence between the Jacobi constant of the intersection points of the two techniques.

Note that the event function technique is more precise because it makes use of propagation and interpo-
lation, while the other uses interpolation only. Both techniques however give a small error on the Jacobi
constant, thus can be considered validated for the purposes of this report.



D
ANALYSIS OF EQUULEUS TRAJECTORY

WITH TP-GRAPH

An old case of EQUULEUS trajectory can be seen in Figures D.1 and D.2 in J2000-Earth centered frame and
SP2 frame of the SE system respectively. This trajectory is an example of transfer trajectory computed in a full
ephemeris model considering Sun, Earth and Moon gravitational influences alongside with thrust maneu-
vers.
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Figure D.1: Example of EQUULEUS trajectory in the J2000-Earth centered frame. The Sun perturbed phase is clearly visible, as well as
the retrograde portion of the trajectory. Such effect is common in trajectories that are highly perturbed by the Sun.

Reference frame transformations are performed and the intersection of these trajectories with the Poincaré
sections defined by Equations 4.51 and 4.61 are computed. Figure D.3 displays the behavior of the Tisserand
parameter and Jacobi constant of the trajectory at different epochs. Note that since a full ephemeris model
has been used as dynamical model, the Jacobi constant is not constant. The value of the Tisserand parameter
with respect to Earth evaluated on the Poincaré section defined in the EM synodic frame are highlighted by
red points.
From Figures D.3 is possible to see that the Tisserand parameter presents spikes when the spacecraft is closer
to the Moon, at the beginning and end of the trajectories, and that overall it approximates in a more regular
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Figure D.2: Example of EQUULEUS trajectory in the SP2 frame of the SE system. The Sun perturbed phase is clearly visible on the left,
this time however the retrograde portion of the trajectory is not clearly identifiable.

way the behavior of the Jacobi constant. Note also that since the final phase of the trajectory takes part about
the Moon, these phase is not visible to the section defined by Equation 4.51.
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Figure D.3: Jacobi constant (blue) and Tisserand parameter with respect to Earth (orange) of the trajectory in the SP1 frame of the Earth-
Moon system. The red points are the intersection points with the Poincaré section defined about the primary in the Earth-Moon synodic
frame.

Figure D.4 shows the behavior of the Tisserand parameter defined about the secondary in the Sun-Earth syn-
odic frame. Unfortunately for this specific case due to the way the Poincaré section is defined by Equation
4.5.2 the first intersection with the section occurs only after 150 days. As it is possible to see also from Figure
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D.2 most of the trajectory takes place in the Sun-Earth system and for this reason the behavior of the modified
Tisserand parameter is relatively smooth. This is true until the last phase of the trajectory, when several lunar
flybys contribute to cause the peaks visible in the figure.
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Figure D.4: Tisserand parameter with respect to Earth (orange) of the trajectory in the SP2 frame of the Sun-Earth system. The red points
are the intersection points with the Poincaré section defined about the secondary in the Sun-Earth synodic frame.

Finally the values of the osculating orbital elements of the intersection points highlighted by the red points
in Figures D.3 and D.4 are represented in the TP-graph. The analysis of the trajectory in the TP-graph can
give insight into the trajectory designed in the full-ephemeris model. From Figure D.5 is possible to see that
the trajectory sensed by the section is divided into 4 phases, that constitute 4 different groupings of points
in the TP-graph. Right after the first point the trajectory inclination increases rapidly and the trajectory be-
comes retrograde, many intersection points are recorded in this phase as the trajectory slowly proceed in the
exterior part of the EM system being heavily perturbed by the Sun. During this phase the EM synodic frame
rotate relatively faster than the spacecraft, generating multiple intersection points with the section. After this
first phase the trajectory return in the vicinity of the EM system with a high apogee. After a second lunar flyby
event however such apogee quickly decrease. Such decrease however does not seems to happen casually, as it
successfully locates the trajectory on a 1:1 resonance level with the Moon. Shortly after, some additional Sun-
perturbed phases move the spacecraft up to the 11:6 resonance level. On such level the spacecraft climb-up
to reach the portion of the graph with an energy level just between the one associated to E ML2 and E ML3.
This happens just before multiple lunar flybys that result in a temporarily captured trajectory. As it is possible
to see from Figure D.3, this phase is not sensed by the section due to geometric considerations. These flybys
probably are exploited by the spacecraft to reach the precise energy state to enter into the final Halo orbit
about the EML2 point. A much porer dynamic can be seen in the TP-graph of the SE system in Figure D.5 due
to the fact that the Poincaré section fails to intersect the trajectory in the first 150 days of the mission. The
only phenomenon that is visible is a sudden decrease of the apogee due to the second lunar flyby event, right
after the end of the highly perturbed phase of the Sun.
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Figure D.5: On the left: 2D TP-graph of the Earth-Moon system with the Tisserand level sets associated to the Lagrange points in dark
blue. The 11:6 and 1:1 resonance levels are represented by green dashed lines. On the right: 3D TP-graph of the Earth-Moon system with
the Tisserand level surfaces associated to the Lagrange point in dark blue. The osculating orbital elements of all but the first and last
intersection points with the Poincaré section about the primary are represented in purple and connected by a black dashed line. The
first and last points are represented in green and red respectively.

Figure D.6: On the left: 2D TP-graph of the Sun-Earth system with the Tisserand level sets associated to the Lagrange points in dark red.
The 1:1 resonance is represented by a green dashed line. On the right: 3D TP-graph of the Sun-Earth system with the Tisserand level
surfaces associated to the Lagrange point in Orange. The osculating orbital elements of all but the first and last intersection points with
the Poincaré section about the secondary are represented in purple and connected by a black dashed line. The first and last points are
represented in green and red respectively.

As it is possible to see in this case the TP-graphs can be used to give a quick insight into complex phenomena
that generated the trajectory. Once these are understood in principle a better design can be achieved by
focusing on refining the way these phenomena are used.



E
POINCARÉ MAPS

E.1. DERIVATIONS
In this section the relationships to obtain the d −θ maps introduced in Chapter 6 are illustrated. These are
illustrated for the EM-system but they can be easily adapted to be valid in the SE system. First the transfor-
mations to obtain these maps are illustrated.

(x, y, ẋ, ẏ) → (CSP1,P1,d ,θ)
The state of the spacecraft in SP1 frame is now transformed into an alternative set to be used in the d − θ
Poincaré map. The Jacobi integral in SP1 frame is considered:

JSP1 = 2
1−µ

r1
+2

µ

r2
+ (x2 + y2)− (ẋ2 + ẏ2 + ż2)−2xµ+µ2 +µ(

1−µ)
(E.1)

The domain of the Jacobi integral is D = {∀(x, y, z, ẋ, ẏ , ż) ∈R6 |(x, y, z) 6= (0,0,0)∧ (x, y, z) 6= (1,0,0)
}
. The sin-

gularity points are in the primaries positions. The value of CSP1 is computed from this expressions. The
Poincaré section in the SP1 frame is the one defined by Equations 4.51 and 4.57, obtained by imposing the
value P k

1 = 3µ on the residual function P1. The explicit function of the Poincaré section can be written as:

y(x) =
√

1

(x +1)2 − (x −1)2 (E.2)

The domain of y(x) is D = {∀(x, y) ∈R2 |x >−1∧ (x, y) 6= (1,0)
}
. By considering the section branch in the I I ◦

quadrant of the SP1 frame x < 0 ∧ y > 0. From the spacecraft position the distance is simply computed as
d =

√
x2 + y2, however as the spacecraft is constrained on the Poincaré section this can be computed as:

d =
√

x2 + 1

(x +1)2 − (x −1)2 (E.3)

Now the angle θ is computed. This angle can be expressed as the angle of the inertial velocity (θi n) or synodic
velocity (θs yn) w.r.t. to the normal line of the distance vector. The reason this angle is taken from the normal
line is to facilitate the patching between maps of different systems. To compute θs yn the following expression
can be applied from geometric considerations:

θs yn = at an2(ẏ , ẋ)−at an2(y, x)− π

2
(E.4)

In order to compute θi n it is first necessary to transform the state of the spacecraft from the synodic reference
frame (x, y, ẋ, ẏ) to the inertial reference frame (ξ,η,ξ̇,η̇). Assuming that the phase angle between inertial and
synodic reference frame is null, the following equations can be used:

ξ= x
η= y

ξ̇= ẋ − y
η̇= ẏ +x

(E.5)
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So θi n is computed as:

θi n = at an2(ẏ +x, ẋ − y)−at an2(y, x)− π

2
(E.6)

The transformation between the two sets is successful when avoiding the singularities highlighted in the
derivation.

(CSP1,P1,d ,θ) → (x, y, ẋ, ẏ)
The procedure is now reversed to show that the state of the spacecraft can be uniquely reconstructed from the
d −θs yn and d −θi n . The procedure is not successful for the latter case, as an ambiguity in the reconstruction
procedure exist for this map. Both CSP1 and P1 are fixed by assumption. By choosing a point in the (d ,θs yn)
map the x-component of the state can be computed by inverting Equation E.3:

x2 + 1

(x +1)2 − (x −1)2 −d 2 = 0 (E.7)

further simplifying this equation it will be possible to arrive to the following cubic form:

x3(2)+x2(3−d 2)+x(−2d 2)+ (−d 2) = 0 (E.8)

The roots of such equation can be founded applying numerical techniques. Note that only the solution that
satisfy −1 < x < 0 is taken, since this correspond to the domain of the Poincaré section considered. The
y-component of the state is easily obtained by an evaluation of the section expression in Equation E.2. By
inverting Equation E.1 is possible to obtain the magnitude of the velocity in the synodic reference frame as a
function of the spacecraft position and CSP1 of the system:

Vs yn =
√

2
1−µ

r1
+2

µ

r2
+ (x2 + y2)−CSP1 −2xµ+µ2 +µ(

1−µ)
(E.9)

To compute ẋ and ẏ the angle between these two components with respect to the x-axis is used. This angle is
indicated as θx

s yn and is in relationship with the angle w.r.t. the normal line θs yn as:

θx
s yn = θs yn +at an2(y, x)+ π

2
(E.10)

this relationship can be simply derived from Equation E.4. The velocity components of the state are then
computed as: {

ẋ =Vs yncosθx
s yn

ẏ =Vs yn si nθx
s yn

(E.11)

Assuming the angle expressed in the Poincaré map is the angle of the inertial velocity θi n the procedure needs
to take into account a coordinate transformation. A null initial angle between inertial and synodic frames is
assumed.

θx
i n = θi n +at an2(y, x)+ π

2
(E.12)

Now is necessary to transform θx
i n into θx

s yn . The definition of θx
s yn and the velocity transformation equation

from synodic to inertial frame are used:
ξ̇=Vi ncosθx

i n
η̇=Vi n si nθx

i n
V 2

s yn =V 2
i n + (η2 +ξ2)+2(ηξ̇− η̇ξ)

(E.13)

It follows that Vi n can be computed by solving a second order equation:

V 2
i n +Vi n

(
2ηcosθx

i n −2ξsi nθx
i n

)+ (
ξ2 +η2 −V 2

s yn

)
= 0 (E.14)

The problem now is that there exists an ambiguity between the two solutions of Vi n . If this ambiguity is solved
then it would be possible to compute:

θx
s yn = at an2(Vi n si nθx

i n −ξ,Vi ncosθx
i n +η) (E.15)

From which it would be possible to compute ẋ and ẏ as in Equation E.11.
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ANALYTIC EXPRESSION

As illustrated in Figures 6.9 and 6.16 the d −θ map can be obtained from an analytic expression that is now
presented. First is necessary to select a value for ra and rp of the trajectory. These should be decided by taking
into consideration the Tisserand level set at the energy level for which the map holds. By selecting a range of
distances from rp to ra that lay on the section, Equation E.9 can be used to compute Vs yn . By using Equation
B.3 Vi n is computed as:

Vi n = 1

V U

√√√√2µ1

(
1√

x2 + y2
− 1

ra + rP

)
(E.16)

where ra , rp ,x and y are expressed in dimensional units while Vi n is adimensional. By expressing the relation
between Vi n and Vs yn from coordinate transformation we obtain:

V 2
s yn =V 2

i n + (η2 +ξ2)+2(ηξ̇− η̇ξ) (E.17)

Assuming that the initial phase angle between synodic and inertial reference frame is null, from Equations
E.5 we can rewrite Equation E.17 as: {

V 2
s yn−V 2

i n+d 2

2 = y ẋ −x ẏ
ẋ2 + ẏ2 =V 2

s yn

(E.18)

Assuming A = V 2
s yn−V 2

i n+d 2

2 and after some simplification we arrive to express the synodic components of the
velocity as: {

ẋ = A+x ẏ
y

ẏ2
(
1+ x2

y2

)
+ ẏ

(
2Ax
y2

)
+

(
A2

y2 −V 2
s yn

)
= 0

(E.19)

From the solutions of this system we can compute θs yn , θi n given x,y , CSP1 and P1. The set of solutions of
this system describes the analytic relationship observed in Figure 6.8 and reproduced in Figure 6.9. The same
expressions can be derived for the secondary in the SE system.
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E.2. ADDITIONAL MAPS EARTH-MOON SYSTEM

(a) (b)

(c) (d)

(e)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.5

0

0.5

1

1.5

2

2.5

(f)

Figure E.1: Various ẋ ẏ maps, from top to bottom C is: 1.5, 2.4, 3.1
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Figure E.2: Various ẋ ẏ maps, from top to bottom C is: 3.18, 3.2, 3.5
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E.3. ADDITIONAL MAPS SUN-EARTH CR3BP

(a) (b)

(c) (d)

(e) (f)

Figure E.3: Various ẋ ẏ maps. The values of C are from a to f: 3.00090300347189, 3.00085300347189, 3.00080300347189, 3.00070300347189,
3.00060300347189,3.00050300347189.
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E.4. EXAMPLES OF TRAJECTORIES

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure E.4: Example of multi-revolutionary periodic orbits (prograde and retrograde) in SP1 frame of the EM system. The coordinates
used to obtain these orbits are presented in the table next page. The x-axis represent the x-component while the y-axis the y-component,
both expressed in aM units.
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index x y ẋ ẏ C
a -0.1450 0.2157 1.8955 1.1808 2.9
b -0.3007 0.5616 -0.4526 -0.4092 3.18
c -0.0342 0.0319 -3.3072 -6.2069 1.5
d -0.2195 0 0 -2.6165 2.75
e -0.0761 0.0965 -1.9113 -3.2477 2.9
f -0.04768 0.0521 0 2.7498 4.7229 1.5
g -0.04030 0.04096 -5.7525 -1.8939 3.1
h -0.1105 0.1538 0 2.8460 1.1321 1.5
i -0.1863 0.2960 -1.6381 -0.3355 3.1
j -0.03862 0.0384 -5.5652 -2.8087 3.5
k -0.02532 0.01888 6.1946 6.6776 2.9
l -0.02956 0.02505 6.3603 4.6008 3.18
m -0.0630 0.07567 4.0156 1.6376 2.9
n -0.02811 0.02293 -6.2370 -5.3246 3.5
o -0.0825 0.1069 -1.8487 -2.9257 3.5

Table E.2: States components for the orbit illustrated in previous page. Note that the value of the Jacobi constant C in this table is
computed without the term µ

(
1−µ)

illustrated in Equation 3.10.
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