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Solar sailing is a spacecraft propulsion method relying solely on solar radiation pressure to provide thrust 
and is therefore propellantless by nature. Although it represents a practical and promising propulsion 
system particularly suited for heliocentric flight regimes, the majority of sailcraft missions flown to 
date have remained Earth-bound and more Earth-bound missions are scheduled for the near future. 
However, the fundamental dynamics and trajectory optimization of a solar sail around the Earth have 
only been investigated to a limited extent, often neglecting the effect of non-negligible perturbations in 
the dynamics and the optimal control problem. Among these perturbations are the effect of eclipses, 
non-spherical gravity, and aerodynamic drag. Their magnitude can be comparable to, or even exceed 
that of solar radiation pressure and their effect on the solar-sail dynamics should be investigated to 
ensure the sailcraft’s transfer capabilities and controllability. This article does so by including these 
perturbations in the dynamics and by considering aerodynamic drag in the optimal control problem. 
Using this formulation, it is shown that the optimal control problem is independent of the solar-sail 
loading parameter and that, by solving it, locally optimal steering laws can be derived to effectively 
change individual orbital elements. These newly derived steering laws form an extension to the laws 
found by McInnes for unperturbed solar-sail Earth-bound motion. By accounting for the perturbations 
in the derivation of the steering laws, it is possible to characterize how the perturbations affect the 
solar-sail maneuvering capabilities. This is quantified based on the established increase of the targeted 
orbital element. Furthermore, a range of different starting orbits will be considered to analyze the effects 
of perturbations in different orbital regimes. As demonstration of the real need for this investigation, 
NASA’s Advanced Composite Solar Sail System (ACS3) mission will be considered as real-case scenario. 
This mission is scheduled for launch in mid-2022 and may benefit from the steering laws derived in this 
article to prove the maneuverability of solar sails in Earth orbit.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The usage of solar sails as main propulsion system for space-
flight applications is an idea that was first investigated at the be-
ginning of the last century and has since drawn increasingly more 
attention worldwide [1]. The research interest in solar sailing, ini-
tially within the scientific community and later also within space 
agencies, is mainly driven by its propellantless nature. In the last 
decades many studies on solar sailing demonstrated its applicabil-
ity to a wide variety of mission scenarios, ranging from interplan-
etary and interstellar missions to planet-centered ones [2,3]. Anal-
yses of solar-sail interplanetary and deep-space trajectories have 
clearly shown the mission-enabling potential of solar sails and, 
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in particular, the promising thrusting capabilities when approach-
ing the inner Solar System, where solar radiation pressure (SRP) 
is particularly strong and an improved sailcraft maneuverability is 
achieved [3,4]. While the majority of research works indeed focus 
on interplanetary solar-sail mission applications, most solar-sail 
missions launched to date have flown solely in low Earth orbit 
(LEO). Their purpose was to either show the feasibility of solar-sail 
deorbiting (e.g., NASA’s NanoSail-D2 mission [5,6]), the successful 
control of SRP as propulsive means, or the advancements in sail 
manufacturing and deployment capabilities (e.g., The Planetary So-
ciety’s LightSail 1 and LightSail 2 [7,8]). In a similar fashion, other 
near-future solar-sail missions, including NASA’s Advanced Com-
posite Solar Sail System (ACS3) mission, will also be launched in 
LEO and act as sail technology and orbit control demonstrator [9].

Although solar-sail technology demonstrators have been flown 
mostly in LEO, thus far the research conducted on planetocen-
tric solar-sail orbital dynamics and control is very limited. Several 
ss article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Abbreviations

ACS3 Advanced Composite Solar Sail System
AE Acceleration envelope
ECI Earth-centered inertial
EoM Equations of motion
IDW Inverse distance weighted
LEO Low Earth orbit
LTAN Local time of the ascending node
NpS Nodes per orbital segment
POINT Pre-run Optimization and in-run INTerpolation
RMS Root mean square
SMA Semi-major axis
SpO Segments per orbit
SRP Solar radiation pressure

Notation

x Vector
x Scalar/Norm of vector
�̂ Unit vector/Direction
� Averaged/Normalized
�̇ First-order time derivative
�̈ Second-order time derivative
‖�‖ Norm of vector
�� Difference
� Hadamard product

Variables

a Acceleration vector
a Semi-major axis
ac Solar-sail characteristic acceleration
C D Drag coefficient
CL Lift coefficient
c Speed of light in vacuum
D Aerodynamic drag
d̂ Projection of n̂ onto ( ŷS , ̂zS ) plane
e Eccentricity
ĥ Orbital momentum unit vector
h Altitude
i Inclination
J Cost function
J2 Spherical harmonics coefficient
L Aerodynamic lift
N Optimal normal direction matrix
N Number of grid points
n̂ Solar-sail normal direction
O Reference frame
P Orbital period
p̂ Auxiliary vector
R Acceleration ratio
r Sailcraft position vector
S Optimization set
S⊕ Solar flux at Earth
ŝ Sunlight direction
T Runtime

t Time
u Control vector
V R Atmospheric particle velocity ratio
v Sailcraft inertial velocity
w Weight vector
X Sailcraft state
x, y, z Cartesian coordinates
α Solar-sail cone angle
� Set of pre-optimized normal directions
γ , ζ, ξ,χ Angular coordinates of the solar-sail normal direction
δ Solar-sail clock angle
ε Error
ε Angle between drag direction and tangent to the ac-

celeration envelope curve
η Angle between the drag and sunlight directions
θ,φ Spherical coordinates of the primer vector
ϑ True anomaly
� Full-dynamics optimization angle
λ Primer vector
μ⊕ Earth’s gravitational parameter
ν Shadow parameter
ρ Atmospheric density
� Vector of inverses of the Euclidean distance
� Set of pre-optimized grid points
σ Solar-sail loading parameter
σN , σT Aerodynamic momentum accommodation coefficients
τ̂ Direction tangent to the acceleration envelope curve
ψ Angle between the drag and aerodynamic acceleration
� Right ascension of the ascending node
ω Argument of perigee

Subscripts

0 Initial
abs Absolute
aero Aerodynamic
I Inertial frame
J 2 J2 spherical harmonics coefficient

k Generic kth vector component
max Maximum
min Minimum
NBH Neighboring
n Solar-sail normal
O Optimization frame
ref Reference
rel Relative
S Sunlight frame
SRP Solar radiation pressure
t Target
V Velocity frame

Superscripts
∗ Optimal
′ Derivative
+, − Neighboring grid points
T Transpose
2



L. Carzana, P. Visser and J. Heiligers Aerospace Science and Technology 127 (2022) 107666
studies on the topic are based on the solar-sail control laws first 
devised by McInnes [1], valid for simplistic, perfectly reflecting 
solar sails with either unperturbed two-body problem dynamics 
or gravitational perturbations only. Applications of such control 
laws range from the analysis of planetocentric solar-sail trajecto-
ries [10,11] to the study of Earth-escape strategies [12–14]. When 
considering also non-gravitational perturbations in the analysis of 
Earth-bound solar-sail trajectories an increased degree of complex-
ity is achieved, which stems from the highly nonlinear dynamics to 
be considered. Indeed, perturbing accelerations such as the plane-
tary radiation pressure and aerodynamic accelerations can achieve 
magnitudes comparable to – or even greater than – the SRP accel-
eration, therefore making the dynamics deviate substantially from 
the ones of the two-body problem with ideal SRP acceleration. As a 
consequence, results found with the latter dynamics have limited 
applicability in the analysis of high-fidelity solar-sail trajectories. 
Preliminary studies on perturbed, Earth-bound sailcraft trajectories 
have been proposed only in small numbers, with particular focus 
on the analysis of the coupled effects of SRP and planetary radia-
tion pressure for Earth-centered orbits [15,16], studies on SRP and 
aerodynamics-based optimal control laws for orbit raising and ma-
neuvering [17–20], and the analysis of the drag-induced active de-
bris removal and deorbiting capabilities of solar sails [21–24]. The 
highly-nonlinear dynamical models considering the effects of plan-
etary radiation pressure and/or aerodynamics significantly compli-
cate the computation of optimal steering laws. Consequently, the 
methods and results proposed are valid only under simplifying as-
sumptions (e.g., on the orbit shape and its orientation with respect 
to the Sun’s position) and for orbit raising and inclination change 
steering laws only.

As a first step towards a generic, high-fidelity solar-sail plane-
tocentric optimal control solver, this article proposes a novel tech-
nique to efficiently and accurately optimize Earth-bound solar-sail 
trajectories in the presence of SRP, gravitational perturbations, and 
aerodynamic drag. Unlike all other methods employed to date to 
solve this optimization problem, the one proposed here can be 
used for any steering law and applied to any orbital regime. This 
first-of-its-kind technique is based on the idea of pre-solving the 
optimization problem for a wide set of conditions and to interpo-
late the optimal solutions found during the trajectory propagation. 
In this work, this optimization technique is described in its en-
tirety, with focus on its accuracy and limited runtime. NASA’s up-
coming ACS3 mission is taken as a specific and realistic test case. 
The ACS3 mission will be launched into a 715 km altitude Sun-
synchronous orbit. The results in this article will demonstrate the 
sailcraft’s ability to change its orbital altitude and inclination. How-
ever, also more generic analyses on applicable steering laws and 
orbital altitudes are provided, though limited to Sun-synchronous 
orbits. This class of orbits is selected to reduce the design space, 
justified by the fact that this class is often used for Earth-centered 
scientific missions. Nevertheless, the designed novel optimization 
method presented in this work is applicable to any steering law 
and orbital regime. Hence, this article significantly contributes to 
the body of knowledge on optimal solar-sail control laws in the 
near-Earth environment.

2. Dynamical model

In this section the dynamical model used throughout this arti-
cle is presented. First, different reference frames and coordinate 
systems are defined and subsequently the sailcraft equations of 
motion (EoM) are provided.
3

Fig. 1. Sailcraft normal direction and attitude angles in the sunlight reference frame, 
O S (x̂S , ̂yS , ̂zS ).

2.1. Reference frames and coordinate systems

In the following sections, different reference frames and coor-
dinate systems are presented to conveniently express the sailcraft 
dynamics and optimization problem under investigation.

2.1.1. Earth-centered inertial reference frame
The Earth-centered inertial (ECI) reference frame is the frame in 

which the sailcraft EoM are propagated. This frame is indicated by 
O I (x̂I , ŷ I , ̂z I ) and is centered at the Earth’s center of mass, with 
the x̂I -axis pointing towards the mean vernal equinox at January 
1st, 2000, the ẑ I -axis pointing perpendicular to the mean equato-
rial plane at January 1st, 2000 (towards the Northern hemisphere), 
and the ŷ I -axis completing the right-handed frame. Within frame 
O I , a Cartesian coordinate system is used, identified by the coor-
dinates xI , yI , and zI .

2.1.2. Sunlight reference frame
The sunlight reference frame is a sailcraft-centered frame in-

dicated by O S (x̂S , ŷS , ̂zS ), see Fig. 1. The x̂S -axis points in the 
Sun-to-sailcraft direction (i.e., parallel to the direction of sunlight), 
ŝ, ŷS = ẑ I × ŝ, and the ẑS -axis completes the right-handed frame. 
Since a flat solar-sail model is considered in this work (see Sec-
tion 2.2.1 for more details), the sailcraft orientation is uniquely 
determined by the sail normal direction, n̂. By making use of a 
spherical coordinate system, n̂ can be defined by two attitude an-
gles: the cone angle α, defined as the angle between the direction 
of sunlight, ŝ, and the sail normal direction, n̂, and the clock an-
gle δ, measured from the ẑS direction to the projection of the sail 
normal onto the ( ŷ S , ̂zS ) plane, d̂ (see Fig. 1). Commonly, only one 
side of the solar sail can be exposed to direct sunlight. Hence, in 
this article it is assumed that the sail normal has no component 
pointing towards the Sun, i.e., α ∈ [0, π/2] and δ ∈ [0, 2π ]. The 
sail normal expressed in the sunlight frame, n̂S , is then found as:

n̂S = cosαx̂S + sinα sin δ ŷS + sinα cos δ ẑS (1)

2.1.3. Velocity reference frame
The velocity reference frame O V (x̂V , ŷV , ̂zV ), see Fig. 2, is cen-

tered at the sailcraft center of mass and has its x̂V -axis pointing 
along the direction of the inertial velocity, v̂ , the ẑV -axis parallel 
to the satellite’s orbital momentum vector, ĥ, and the ŷV -axis such 
that it forms a right-handed frame. By using a spherical coordinate 
system, the sail normal direction, n̂, can be uniquely identified by 
the angles ξ , χ , and ζ , see Fig. 2.
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Fig. 2. Sailcraft attitude angles and aerodynamic drag, lift, and sail normal directions 
in the velocity reference frame, O V (x̂V , ̂yV , ̂zV ).

These variables are correlated as:

cos ζ = cos ξ cosχ (2)

The range for each of these angles depends on the instantaneous 
position of the Sun with respect to the sailcraft, in agreement with 
the assumption that the sail normal has no component pointing 
towards the Sun. Using these angular coordinates and Eq. (2), the 
sail normal direction expressed in frame O V , n̂V , is defined as:

n̂V = cos ζ x̂V + cosχ sin ξ ŷV + sinχ ẑV (3)

Fig. 2 also illustrates the aerodynamic drag direction, D̂ , and lift 
direction, L̂: the former is always opposite to v̂ , while the latter 
points either parallel or antiparallel to the projection of n̂ onto the 
(x̂V , ̂zV ) plane, as expressed by the following relation:

L̂ = − sign (cos ζ )
sin ξ cosχ ŷV + sinχ ẑV∥∥sin ξ cosχ ŷV + sinχ ẑV

∥∥ (4)

In Eq. (4) the minus sign guarantees that n̂V · L̂ ≤ 0 (which should 
always hold true for a flat sail), while the “sign” function takes into 
account the aerodynamic symmetry of the flat sail and ensures 
that the lift direction corresponding to the sail normal directions 
n̂ and −n̂ is the same. Ultimately, it is worth noting that due to 
the aerodynamic symmetry, the directions v̂, n̂, L̂, and D̂ all lie 
in the same plane.

2.1.4. Optimization reference frame
The optimization reference frame O O (x̂O , ŷ O , ̂zO ), see Fig. 3, is 

centered at the center of mass of the sailcraft and defined such 
that its x̂O -axis points in the drag direction, D̂ , the ẑO -axis points 
along ẑO = (D̂ × ŝ), and the ŷ O -axis completes the right-handed 
frame.

The angle η ∈ [0, π ] is measured from the drag direction to the 
direction of sunlight:

η = cos−1(D̂ · ŝ) (5)

Within frame O O , the sail normal direction, n̂O , can be expressed 
using two spherical coordinate angles: ζ and γ , see Fig. 3. Then, 
n̂O is defined in a similar fashion to Eq. (1) as:

n̂O = cos ζ x̂O + sin ζ sinγ ŷ O + sin ζ cosγ ẑO (6)

The other variables in Fig. 3 will be defined in Section 3.3.2.
4

2.2. Equations of motion

In this article, the solar sail is assumed to be Earth bound and 
its motion is determined by the SRP, aerodynamic, and gravita-
tional accelerations. Its EoM are defined in frame O I and take the 
following form:

r̈ + μ⊕
r3

r = aSRP(u(t)) + aaero(u(t)) + a J 2 (7)

where the overhead dot notation is used to indicate differentia-
tion with respect to time t and μ⊕ = 398600.4415 km3/s2 is the 
Earth’s gravitational parameter. The vectors r and a represent the 
sailcraft position and acceleration vectors in frame O I , respectively, 
while u (t) = n̂I (t) is the sailcraft control vector equal to the sail 
normal direction in frame O I . The subscripts “SRP” and “aero” re-
fer to the SRP and aerodynamic accelerations, respectively, while 
“J2” indicates the gravitational perturbing acceleration due to the 
non-spherical, oblate shape of the Earth, modeled through the J2
spherical harmonics coefficient. These accelerations will be de-
scribed in more detail in the following sections. By providing an 
initial time, t0, an initial sailcraft state, X0 = [r (t0) ṙ (t0)], and the 
control law u(t), Eq. (7) can be used to propagate the solar-sail 
state vector X(t) and find the sailcraft trajectory.

2.2.1. Solar radiation pressure acceleration
The SRP acceleration model used in this work assumes the so-

lar sail to behave as a flat, perfectly reflecting surface. Therefore, 
this model is often referred to as “ideal” SRP acceleration model. 
Unlike other models that take into account the optical properties 
of the sail film material [1,25–27] or more complex sail shapes 
[28–31], the ideal SRP acceleration model allows for a straightfor-
ward definition of the SRP acceleration, which becomes a function 
of the sailcraft attitude only and can be conveniently expressed in 
the sail-fixed reference frame O S as [1]:

aSRP,S = νac cos2 αn̂S (8)

where ν ∈ [0, 1] is the shadow factor and ac denotes the sailcraft 
characteristic acceleration defined as [1]:

ac = 2S⊕
cσ

(9)

with S⊕ = 1367 W/m2 equal to the solar flux at a distance of 1 AU
from the Sun [32], c = 299792458 m/s representing the speed of 
light [32], and σ the solar-sail loading parameter, equal to the ra-
tio of the sailcraft total mass to its sail surface area. The shadow 
factor ν in Eq. (8) accounts for the effect of eclipses and its value 
ranges from 0 (no sunlight reaches the sail) to 1 (sail completely 
illuminated). In this article, eclipses are modeled with a conical 
shadow model similar to the one presented in [33] and [34], with 
the only difference that penumbra is treated as umbra. This means 
that ν = 0 not only when the sailcraft is in the Earth’s umbra, 
but also when in penumbra, thus leading to more conservative re-
sults. The Earth radius considered for this conical shadow model 
is R⊕ = 6378.1363 km, as per the JGM-2 geopotential model (see 
Section 2.2.3) [32,35].

Based on Eq. (8), the expression for the SRP acceleration in 
frame O I is:

aSRP,I = νac cos2 αn̂I (10)

with

n̂I = R S→I · n̂S (11)

with n̂S defined in Eq. (1) and R S→I the rotation matrix to trans-
form vectors from the O S frame to the O I frame, which depends 
on time and the sailcraft instantaneous position.
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Fig. 3. Optimization reference frame, O O (x̂O , ŷ O , ẑO ).
2.2.2. Aerodynamic acceleration
The aerodynamic acceleration is also modeled assuming the so-

lar sail to be a flat plate. By making the additional assumption 
that the sailcraft velocity is much larger than the thermal velocity 
of the atmospheric particles, the hyperthermal free-molecular flow 
model presented in [36] can be used to describe the sail aerody-
namics. Such model has already been employed in [17] and [19] to 
analyze solar-sail trajectories in the presence of atmospheric drag 
and is based on the following expression for the aerodynamic ac-
celeration in frame O V [19]:

aaero,V = D + L = 1

2
ρv2 1

σ

(
C D D̂ + CL L̂

)
(12)

In Eq. (12), D and L represent the accelerations produced by aero-
dynamic drag and lift, respectively, ρ is the atmospheric density, 
v is the magnitude of the sailcraft inertial velocity, and C D and CL

are the drag and lift coefficients defined as [19]:

C D = 2
[
σT + σN V R |cos ζ | + (2 − σN − σT ) cos2 ζ

]
|cos ζ | (13)

CL = 2 [σN V R + (2 − σN − σT ) |cos ζ |] |cos ζ | sin ζ (14)

where σN and σT represent the normal and tangential momen-
tum accommodation coefficients, respectively, and V R is the ratio 
of the atmospheric particle average thermal velocity to the sailcraft 
inertial velocity. Based on [37], this article uses: σN = σT = 0.8, 
V R = 0.05.

Given aaero,V , the expression for the aerodynamic acceleration 
in frame O I becomes:

aaero = R V →I · aaero,V (15)

where R V →I is the rotation matrix to transform vectors from the 
O V frame to the O I frame, which depends on the sailcraft instan-
taneous position and velocity.

2.2.2.1. Atmospheric density model The atmospheric density ρ used 
in Eq. (12) is found through an averaging technique based on the 
NRLMSISE-001 model available in Matlab® [38]. As will be dis-
cussed in Section 4.1, this density averaging process is adopted to 
decrease the simulation runtime at the cost of a slight reduction 
in the accuracy of the results. The routine is as follows:

a. Given the sailcraft state at time t0, X0 = X(t0), its osculating 
Keplerian orbit is found.

1 Throughout this article, the NRLMISE-00 model is used with the index of the 
solar radio flux at 10.7 cm and the index of planetary geomagnetic activity taken 
from the Marshall Space Flight Center’s archived forecast of January 2021 [44], for 
a percentile value of 50.
5

b. A time interval [t0, t0 + �t] is considered, with �t = P/SpO, 
where P is the osculating orbit’s period and SpO a user-
provided parameter corresponding to the number of segments 
per orbit to consider for the averaging.

c. Across the time interval, a set of evenly spaced time nodes {
t0, t1, . . . , tNpS−1 = t0 + �t

}
is defined and the correspond-

ing states along the osculating orbit {X 0, X1, . . . , XNpS−1} are 
found. Note that NpS is a user-provided parameter indicating 
the number of nodes per orbit segment used.

d. The atmospheric density is computed through the NRLMSISE-
00 model for each state of the set {X0, X1, . . . , XNpS−1}, 
hence resulting in a set of densities {ρ0, ρ1, . . . , ρNpS−1}
which are averaged to give ρ .

e. The averaged value ρ is used as constant atmospheric density 
to numerically propagate the perturbed dynamics from X(t0)

to X(tNpS−1).
f. The process is repeated until the end of the simulation, taking 

tNpS−1 and X(tNpS−1) at the end of each iteration as t0 and X0
of the next time interval.

2.2.3. J2 gravitational acceleration
The gravitational acceleration due to the Earth’s J2 effect in 

frame O I is given by [39]:

a J 2 = −3

2

R2⊕
r5 J2μ⊕

[
(xI x̂I + yI ŷ I )

(
1 − 5

z2
I

r2

)
+ z

(
3 − 5

z2
I

r2

)
ẑ I

]
(16)

where J2 = 1.082626925639 · 10−3 is the Earth’s J2 gravitational 
field constant of the JGM-2 geopotential model [32,35].

3. Optimal control problem

The optimal control problem considered in the present study 
builds on the one first investigated by McInnes in [1], where con-
trol laws to maximize the instantaneous rate of change of any 
given orbital element were found under unperturbed, ideal solar-
sail dynamics. Hereinafter the same maximization problem will 
be considered, however also taking into account aerodynamic and 
gravitational perturbations in the equations of motion and control.

By referring to the generic orbital element as œ, the optimiza-
tion problem at hand can be defined as finding the optimal con-
trol vector u (t) = n̂(t) maximizing the cost function J (u (t)) =
œ̇(u (t)) at any given time, subject to the dynamics described in 
Section 2. When the rate of change of a given orbital element is 
expressed through a Lagrange planetary equation, the cost func-
tion assumes the following form [1]:

J (u (t)) = œ̇ (u (t)) = a (u (t)) · λ (17)
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where a is the sum of the accelerations on the right-hand side of 
Eq. (7) and λ is the so-called primer vector, which points along the 
optimal thrusting direction λ̂ that maximizes the orbital element’s 
rate of change. It is worth noting that although the J2 acceleration, 
a J2, influences the orbital element rate of change (and therefore 
the cost function J (u)), it does not explicitly depend on the con-
trol vector u, as shown in Eq. (7). Consequently, the problem of 
maximizing J (u) at any time is independent of the J2 acceleration. 
For this reason, hereinafter only the SRP and aerodynamic acceler-
ations are considered in the control optimization process, whereas 
the J2 acceleration is taken into account only in the propagation 
of the EoM.

To solve the optimization problem, three different approaches 
are employed, depending on the relative magnitude of the SRP 
and aerodynamic accelerations: an SRP-based optimization, an 
aerodynamic-based optimization, and a full-dynamics optimiza-
tion. These optimization techniques are discussed in the following 
sections and can be applied to find the optimal sail orientation at a 
specific instant in time. By applying such algorithms at each inte-
gration step during the sailcraft trajectory propagation, a sequence 
(history) of optimal sail normal directions representing the optimal 
steering law is obtained.

3.1. Solar radiation pressure-based optimization

The SRP-based optimization method is employed when the SRP 
acceleration is the predominant acceleration (e.g., for high-altitude 
orbits). In this case, the aerodynamic acceleration is considered 
in the propagation of the EoM but neglected in the optimization 
process, therefore largely simplifying the optimal control compu-
tation. Under this assumption, the optimal control history u∗(t)
is found using the method devised by McInnes in [1], where an 
analytical formulation to compute locally optimal steering laws is 
presented. The method can be summarized as follows. Given the 
optimal thrust direction λ̂ in the O S frame, its cone and clock an-
gles can be defined as αλ ∈ [0, π ] and δλ ∈ [0, 2π ], respectively 
(note that αλ can assume values greater than π/2 as no constraint 
on the direction λ̂ is applied, unlike the sail normal direction n̂). 
Then, the optimal cone and clock angles of the sail normal, α∗ and 
δ∗ , are found as [10]:

α∗ = tan−1

(
−3 cosαλ +

√
9 cos2 αλ + 8 sin2 αλ

4 sinαλ

)
(18)

δ∗ = δλ (19)

These optimal attitude angles maximize the SRP acceleration com-
ponent along the direction λ̂, see Fig. 4. This figure displays the 
SRP acceleration envelope (AE) curve in the plane formed by ŝ and 
d̂, where d̂ is the projection of n̂ onto the ( ŷs, ̂zs) plane (see Fig. 1). 
With α∗ and δ∗ given by Eqs. (18)–(19), the optimal control vec-
tor, u∗ = n̂∗

I , can be found using Eq. (1) and Eq. (11). It should be 
noted that, because of Eq. (19), the optimal sail normal direction 
found by the SRP-based optimization is always coplanar with ŝ, d̂, 
and λ̂.

3.2. Aerodynamic-based optimization

The aerodynamic-based optimization method is employed when 
the aerodynamic acceleration is the predominant acceleration (e.g., 
for low-altitude orbits or when in eclipse). In this case, the SRP 
acceleration is considered in the propagation of the EoM but ne-
glected in the optimization process. Similar to the method de-
scribed in Section 3.1, the optimal sail attitude is found by im-
posing that the aerodynamic acceleration component along λ̂ is 
maximized. However, because of the complex expression of the 
6

Fig. 4. Envelope curve of the SRP acceleration in the (ŝ, d̂) plane.

aerodynamic AE surface, α∗ and δ∗ are found using a root-finding 
method. Since the aerodynamic AE surface is symmetric with re-
spect to the x̂V -axis, the intersection of this surface with a plane 
passing through the x̂V -axis is considered, which results in an AE 
curve. An illustration of the aerodynamic AE curve in the (L̂,D̂) 
plane is given in Fig. 5, where the variables used to describe the 
optimization procedure are also shown.

By using Eq. (12), the angle ψ measured from the direction D̂
to the acceleration vector aaero can be defined as:

ψ = tan−1
( ‖L‖

‖D‖
)

= tan−1
(

CL

C D

)
(20)

As shown by Eq. (13) and (14), CL and C D are functions of ζ , and 
therefore so is ψ . Its maximum value, ψmax , can then be found by 
imposing:

dψ

dζ
= 0 ⇔ d

dζ

(
CL

C D

)
= C ′

L C D − CL C ′
D

C2
D

= 0 (21)

In Eq. (21), C ′
D and C ′

L are the derivatives of C D and CL with re-
spect to ζ :

C ′
D = − [2σN V R + 3 (2 − σN − σT ) cos ζ ] sin 2ζ − 2σT sin ζ (22)

C ′
L = 3

2
(2 − σN − σT ) cos 3ζ + 2σN V R cos 2ζ

+ 1

2
(2 − σN − σT ) cos ζ (23)

Equation (21) is solved using Matlab®’s root-finding function fzero
with a tolerance of 10−10 rad.

The angle ψλ ∈ [0, π ] is measured from the direction D̂ to the 
direction λ̂ and based on its value two different scenarios can be 
defined. If ψmax < ψλ − π/2, the aerodynamic acceleration vector 
with the largest component along λ̂ is a zero vector, i.e., the sail is 
oriented parallel to the wind flow with an optimal attitude angle 
of ζ ∗ = π/2. Instead, if ψmax ≥ ψλ − π/2, a non-trivial solution 
for ζ ∗ exists, which can be found by imposing that the direction 
perpendicular to λ̂ and the tangent to the AE curve, τ̂ , are aligned, 
see Fig. 5. This condition is equivalent to:

ε −
(
ψλ − π

2

)
= 0 (24)

where ε ∈ [−π/2, π/2] is a function of ζ and is defined as the 
angle measured from the direction D̂ to the direction τ̂ :

ε = tan−1
(

C ′
L

C ′
)

(25)

D
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Fig. 5. Envelope curve of the aerodynamic acceleration in the (L̂,D̂) plane and variables used to find the optimal aerodynamic acceleration.
Note that ε is illustrated in Fig. 5 with the subscript “(−)” to in-
dicate the direction in which this angle decreases. The non-trivial 
solution ζ ∗ can be found by solving Eq. (24) with a root-finding 
method (again, in the present work, Matlab®’s fzero function is 
used with a tolerance of 10−10 rad).

After computing the angle ζ ∗ , the optimal direction of the nor-
mal vector in frame O I , n̂∗

I , can be found by considering the aero-
dynamic symmetry of the problem, for which n̂ always lies in the 
(L̂, D̂) plane and is coplanar with v̂ and λ̂. Given the latter two 
directions expressed in frame O I , v̂ I and λ̂I , it is possible to com-
pute the optimal direction n̂∗

I in the (L̂, D̂) plane at an angular 
distance ζ ∗ from v̂ I as:

n̂∗
I = cos(ζ ∗)v̂ I + sin(ζ ∗)

[
v̂ I × p̂∥∥v̂ I × p̂

∥∥ × v̂ I

]
(26)

where p̂ = −λ̂I if ζ ∗ �= π/2. If ζ ∗ = π/2, no lift or drag is gen-
erated by the sail and any direction of n̂ perpendicular to v̂ is 
optimal. In this case, the optimal sail normal direction, n̂∗

I , is arbi-
trarily chosen to be the direction with the smallest possible angle 
with the sailcraft inertial position unit vector, r̂ , such that p̂ = r̂ in 
Eq. (26). The sail normal direction found through Eq. (26) does not 
take into account the direction of sunlight, ŝ. As such, it is possi-
ble that n̂∗

I has a component in the direction of the Sun, meaning 
that the cone angle α is not defined and the SRP acceleration can-
not be computed (see Sections 2.1.2 and 2.2.1). This issue can be 
solved by considering the aerodynamic symmetry of the sail, for 
which the same aerodynamic acceleration is found for both n̂∗

I and 
−n̂∗

I . Based on this, a final check on the direction n̂∗
I can be imple-

mented. If n̂∗
I · ŝ ≥ 0, n̂∗

I has no component in the direction of the 
Sun and therefore it can be taken as the final optimal sail normal 
direction. Conversely, if n̂∗

I · ŝ < 0, −n̂∗
I is taken as the optimal sail 

normal vector.

3.3. Full-dynamics optimization

The full-dynamics optimization technique is used when the 
aerodynamic and SRP accelerations are of comparable magnitudes. 
Similar to the procedures used in Sections 3.1 and 3.2, an AE sur-
face is defined and the sail orientation maximizing the acceleration 
component along λ̂ is sought. However, when considering both SRP 
and aerodynamics the set of all possible sail accelerations forms a 
highly-nonlinear envelope surface whose shape is time variant. In-
deed, whereas the SRP-based and aerodynamic-based AE curves 
presented in Sections 3.1 and 3.2 are shape-invariant when ex-
pressed in the sunlight and velocity reference frames, respectively, 
the shape of the full dynamics AE surface depends on the relative 
orientation of the instantaneous ŝ and v̂ directions, as well as the 
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relative magnitude of the SRP characteristic acceleration, ac , com-
pared to the maximum aerodynamic acceleration, aaero,max . In ad-
dition, the envelope surface can also be self-intersecting, meaning 
that different sail attitudes can result in the same total acceler-
ation vector. An example of such a surface is given for ŝ⊥v̂ and 
ac = aaero,max in Fig. 6, where the corresponding SRP and aerody-
namic AE surfaces are also shown for comparison. Because of the 
complex, time-variant shape of the AE surface and the fact that, to 
the best of the authors’ knowledge, no analytical solution to the 
optimization problem exists, a numerical approach is proposed in 
the subsequent subsections.

3.3.1. Numerical approaches to the optimization problem
The most straightforward way of solving the full-dynamics op-

timization problem, is through a grid search approach. This trans-
lates into taking a large set of attitude angles, evaluating the 
corresponding acceleration vectors, aSRP and aaero , using these ac-
celerations to determine the AE surface, and eventually retrieving 
the orientation that maximizes the acceleration component along 
the λ̂ direction. However, since the shape of the AE surface de-
pends on the instantaneous sailcraft state and time, this routine 
ought to be performed at each propagation time step. As a con-
sequence, although such a technique works in theory and ensures 
that the global optimal solution is found, in practice a large num-
ber of function evaluations is required even for small propagation 
times, thereby yielding impractical runtimes.

Alternatively, techniques such as the interior-point optimiza-
tion method (e.g., available in Matlab®’s function fmincon) can be 
applied. Although this optimization technique requires less com-
putational effort than the grid search, it requires an initial guess 
for the optimal sail orientation. For the first propagation time step 
such an initial guess can be found by using a grid search, whereas 
for the subsequent time steps the initial guess can be provided 
by the optimal attitude found in the previous time step. However, 
the attitudes found are often sub-optimal because it is only a lo-
cal optimization method. Indeed, the shape of the AE surface can 
become highly nonlinear during the propagation, which translates 
into multiple local optima of the cost function J (u). In addition, 
for some steering laws, the primer direction, λ̂, can change in a 
discontinuous manner between adjacent propagation time steps. 
When using the optimal attitude found in the previous propaga-
tion step as initial guess for the current step, this can cause the 
optimizer to get trapped in a local minimum.

To circumvent the downsides of the techniques mentioned 
above, this article proposes a new optimization approach, whose 
main advantages are a short runtime for the trajectory propaga-
tion and the global validity of the optimal solutions found. The 
basic idea behind the proposed approach is to first find the global 
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Fig. 6. SRP AE surface (left, red), aerodynamic AE surface (left, blue), and full dynamics AE surface (right) in frame O O , for ac = aaero,max and ŝ = ŷ O (corresponding to 
η = π/2). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
optimal solution of the cost function J (u) for a large variety of 
scenarios and subsequently interpolate these pre-computed opti-
mal solutions at each time step in the trajectory propagation to 
retrieve an interpolated global optimum. In this way, the attitude 
optimization computation is completely separated from the trajec-
tory propagation, thereby allowing the latter to be performed with 
small computational effort. Hereinafter this optimization method is 
referred to as the “Pre-run Optimization and in-run INTerpolation” 
(POINT) method. The two phases of the method, the optimization 
and interpolation phases, are described in detail in Sections 3.3.2
and 3.3.3.

3.3.2. Pre-run optimization phase
The pre-run optimization phase of the POINT method aims to 

solve the optimization problem for a large set of different scenar-
ios, i.e., for a large variety of combinations of AE shapes and λ̂
directions. To do so, the optimization problem is parametrized by 
four parameters: R , η, θ , and φ.

• The coefficient R represents the ratio of the maximum SRP ac-
celeration to the maximum aerodynamic acceleration and its 
value affects the AE shape. This coefficient indicates to what 
extent the AE shape is similar to the AE shape of the pure SRP 
acceleration or pure aerodynamic acceleration. For example, 
for increasing values of R , the SRP acceleration increasingly 
dominates the aerodynamic acceleration, meaning that the AE 
shape becomes more similar to the SRP one. On the other 
hand, for R values close to zero, the aerodynamic acceleration 
is dominant so that the AE shape tends to resemble the AE 
shape of the pure aerodynamic case. By taking into account 
that the maximum SRP acceleration is equal to the solar-sail 
characteristic acceleration and that the maximum aerodynamic 
acceleration is achieved for ζ = 0 (i.e., when the sail is perpen-
dicular to the wind flow), R can be expressed using Eq. (9), 
(12), (13), and (14) as:

R = ac

aaero,max
= S⊕

c

2

ρv2

1

[2 − σN(1 − V R)] (27)

Since both the SRP and aerodynamic accelerations are in-
versely proportional to the sail loading parameter σ , R is in-
dependent of σ . This result implies that the AE shape – and 
thus the entire optimization process - is independent of the 
sail loading parameter.

• The parameter η determines the relative orientation of the SRP 
and aerodynamic AE surfaces and its definition is given in Sec-
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tion 2.1.4. Together with R , it uniquely defines the AE shape of 
the full-dynamics case, which results from combining the two 
separate (i.e., pure SRP and pure aerodynamic) AE surfaces. An 
example is given in Fig. 6, where the combination of the AE 
surfaces in the left plot generates the one in the right plot.

• The angles θ and φ represent the spherical coordinates of the 
λ̂ direction in the O O frame (see Fig. 3).

Each set {R, η, θ, φ} represents a specific optimization problem 
which can be solved numerically to find the corresponding opti-
mal sail attitude. To achieve this, a grid search is performed over 
the angles ζ and γ of the sail normal direction in frame O O (see 
Fig. 3). To explore the entire parameter space, a four-dimensional 
grid of discrete values for R, η, θ , and φ is created across the 
following domains: R ∈ [Rmin, Rmax], η ∈ [0, π ], θ ∈ [0, 2π ], and 
φ ∈ [0, π/2]. Rmin and Rmax are two threshold parameters whose 
values are defined in Section 4.4 and determine when the full-
dynamics optimization should be used instead of the aerodynamic-
based optimization (R < Rmin) or the SRP-based optimization (R >
Rmax). Also, it is worth noting that only positive values of φ are 
considered because of the symmetry of the AE surface with re-
spect to the (x̂O , ŷ O ) plane. Due to this symmetry, each pair of 
angles ±φ corresponds to optimal normal directions in the O O

frame, n̂∗
O , that differ only in the sign of the component along 

the ẑO direction, i.e., n̂∗
O =

[
n∗

O ,x,n∗
O ,y,±n∗

O ,z

]T
. Therefore, when-

ever a λ̂ direction with φ < 0 is encountered during the trajectory 
propagation, the optimal normal direction n̂∗

O computed for −φ

(>0) in the pre-run optimization phase is retrieved and the sign 
of its n∗

O ,z-component is changed to obtain the optimal attitude 
for φ < 0.

The computation of the four-dimensional, pre-optimized grid 
can require a significant computational effort, particularly because 
of the large domains for the parameters R , η, θ , and φ. One way 
to overcome this issue is to analyze the problem at hand and de-
termine in advance the range of λ̂ directions achievable along the 
trajectory. In this way, the θ and φ domains can be shrunk and the 
number of discrete points to consider in the grid can be reduced, 
hence lowering the computational effort. This procedure has been 
used to create all pre-optimized grids of Sections 4 and 5. Indeed, 
in these sections the orbit raising and inclination increase steering 
laws are discussed, for which the λ̂ direction always points oppo-
site and perpendicular to x̂O , respectively.
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3.3.3. In-run interpolation phase
To describe the interpolation process adopted in the POINT 

method, each set of variables {R, η, θ, φ} will be represented as 
a point S = [S1, S2, S3, S4]T = [R, η, θ,φ]T in a four-dimensional 
vector space. In this way, each grid point computed in the pre-run 
optimization phase is represented by S ∈ R4x1, while the set of 
all grid points is � = {S1, S2, . . . , S N} ∈R4xN , with N equal to the 
total number of grid points.

At each time step of the trajectory propagation, specific values 
for R, η, θ , and φ are encountered which identify a target point 
S t = [

St,1, St,2, St,3, St,4
]T . In general, S t will be different from 

any of the points S available in �. However, it is always possible 
to find a subset of neighboring points �NBH ⊂ � close to S t that 
encloses the region of space where S t is located. This region is 
obtained by considering, for each component St,k , the two closest 
neighboring values in the pre-optimized grid, S−

t,k and S+
t,k , such 

that St,k ∈ [S−
t,k, S

+
t,k], with k = 1, . . . , 4. This results in 24 = 16

possible combinations representing the coordinates of the points 
in �NBH ∈R4x16, i.e.:

�NBH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SNBH,1 =
[

S−
t,1, S−

t,2, S−
t,3, S−

t,4

]T

SNBH,2 =
[

S−
t,1, S−

t,2, S−
t,3, S+

t,4

]T

SNBH,3 =
[

S−
t,1, S−

t,2, S+
t,3, S−

t,4

]T

SNBH,4 =
[

S−
t,1, S−

t,2, S+
t,3, S+

t,4

]T

SNBH,5 =
[

S−
t,1, S+

t,2, S−
t,3, S−

t,4

]T

SNBH,6 =
[

S−
t,1, S+

t,2, S−
t,3, S+

t,4

]T

...

SNBH,16 =
[

S+
t,1, S+

t,2, S+
t,3, S+

t,4

]T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

Since each point in �NBH corresponds to an optimal sail orientation 
computed in the pre-run optimization phase, a set �NBH ∈ R3x16

of 16 optimal normal directions in frame O O , n̂∗
O , is also given. 

The interpolation of these normal directions is performed through 
a normalized inverse distance weighted (IDW) technique [40] and 
applied to the problem at hand as follows. Before the interpola-
tion is performed, S t and the points in �NBH are normalized2 to 
restrict the domain of their four components to [0, 1], thus result-
ing in the normalized target point S t and neighboring set �NBH =
{SNBH,1, . . . , SNBH,16}. From these, the vector � = [�1, . . . , �16]T is 
computed which contains the inverses of the Euclidean distances 
between S t and SNBH,1, . . . , SNBH,16. The inverse distance weight 
vector, w ∈R16x1, is also calculated as:

w = [w1, . . . , w16]T = � � �

�T · � (29)

where � indicates the element-wise Hadamard product of two 
vectors [41]. Finally, the optimal normal directions in �NBH , i.e., 
n̂∗

O ,NBH,1, . . . , ̂n
∗
O ,NBH,16, are used to define the following matrix 

N ∈R3x16:

N = [
n̂∗

O ,NBH,1, . . . , n̂∗
O ,NBH,16

]
(30)

which is then used to find the final interpolated normal direction, 
n̂∗

O , as:

2 When performing the normalization, two of the three Cartesian components of 
the λ̂ direction are considered instead of the spherical coordinates θ and φ to avoid 
dealing with discontinuous variables in the interpolation process.
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n̂∗
O = N · w

‖N · w‖ (31)

3.3.3.1. Handling of local optima As the neighboring points SNBH,1,

. . . , SNBH,16 consider different values for R , η, θ , and φ, they rep-
resent optimization problems with slightly different AE shapes 
and λ̂ directions. However, due to the high nonlinearity of 
the problem, in certain cases slightly different AE shapes and 
primer vector’s directions make the optimal normal directions 
n̂∗

O ,NBH,1, . . . , ̂n
∗
O ,NBH,16 differ substantially. Such scenarios take 

place when the target point considered, S t , corresponds to an 
optimization problem with regions of similar degrees of local op-
timality. These regions contain both the globally optimal solution 
and other locally optimal solutions. Although all these optimal so-
lutions are associated to similar cost function values, in some cases 
the corresponding sail normal directions can significantly differ 
from one another. When this kind of optimization problem is en-
countered, small variations in the components of S t yield slight 
variations in the cost function values of these optimal regions. This 
in turn can make the global optimum shift from one region to an-
other and the corresponding optimal normal direction suddenly 
change. For this reason, when dealing with this kind of optimiza-
tion problems, the optimal normal directions found for the neigh-
boring points SNBH,1, . . . , SNBH,16 strongly differ from each other 
and, as a consequence, using IDW interpolation yields an interpo-
lated solution n̂∗

O that is less optimal than n̂∗
O ,NBH,1, . . . , ̂n

∗
O ,NBH,16.

To avoid this issue, the POINT method makes use of an algo-
rithm that aims to identify such locally optimal regions before 
the interpolation. In this way, it is possible to consider each re-
gion separately in the interpolation phase and compute different 
optimal solutions n̂∗

O , which contain the global optimum. The al-
gorithm is based on the idea that different locally optimal regions 
of the solution space correspond to locally optimal sail normal vec-
tors pointing in different directions. The angular distances between 
the optimal normal directions of �NBH allow to define clusters of 
normal directions, which in turn identify the local optimal regions. 
In this article the cluster detection has been performed by means 
of a hierarchical clustering algorithm with single-linkage criterion 
[42]. The algorithm computes the norm of the difference of each 
pair of normal directions in �NBH , compares these norms with a 
threshold value, and determines the number of clusters in �NBH . 
More specifically, in this article the Matlab® function cluster is em-
ployed using a distance-based criterion and a hierarchical cluster 
tree (defined through the function linkage) built with a “shortest 
Euclidean distance” method. The value used for the threshold is 
2 sin(π/60), corresponding to a minimum angle of 6 deg between 
normal directions of different clusters. This value is tuned based 
on the knowledge of the optimization problem under investiga-
tion, the number of grid points in �, and some trial and error. 
When the optimization problem is not characterized by multiple 
locally optimal regions, the algorithm returns one unique cluster 
that coincides with �NBH and therefore the interpolation routine 
can be performed as explained in the previous section. Conversely, 
if different clusters are found, for each cluster in �NBH the cor-
responding points in �NBH are taken and the normalization and 
interpolation routines are performed separately on each subset of 
�NBH to find multiple locally optimal solutions n̂∗

O . From these, the 
normal direction corresponding to the largest cost function value 
is taken as the global optimal solution.

4. Validation and testing

In this section, different analyses are presented that aim to 
tune all parameters regulating the atmospheric density averaging 
algorithm and the POINT optimization method. In Table 1 the sim-
ulation settings are given for each of the four tests presented in 
sections 4.1 to 4.4.
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Table 1
Simulation settings used for the validation and testing in Section 4.

Test/Section

Parameter 4.1 4.2 4.3 4.4

Sim. start July 1st, 2022

Sim. duration 10 days 1 orbital period

ac 0.05 mm/s2

Initial state ACS3, with variations in a
and i

ACS3

Integrator MATLAB®’s ode45

Rel./Abs. tol. 10−12 10−8

Dynamics Earth’s Central Gravity + SRP + Aerodynamics

Atmospheric 
model

Avg. NRLMSISE-00 model 
(SpO: 2 ÷ 200, NpS: 2 ÷ 20)

Avg. NRLMSISE-00 model
(SpO: 25, NpS: 4)

Constant ρ

Reference 
solution

Full NRLMSISE-00 model
+

SRP-based optimal control

Avg. NRLMSISE-00 model
(SpO: 25, NpS: 4)

+
Full-dynamics, grid search-
based optimal control with

�α = �δ = 0.01 deg

Constant ρ
+

SRP-based or 
aerodynamic-based 

control

Control 
optimization 
algorithm

SRP-based Full-dynamics Full-dynamics

Steering Law a a and i

�� (none) 1 deg 0.1 ÷ 2 deg 1 deg

�R (none) 1.21 1.11/4 ÷ 1.14 1.21

�γ (none)
��/10

�ζ (none)
All analyses make use of the ACS3 mission as baseline sce-
nario, corresponding to a solar-sail characteristic acceleration of 
ac = 0.05 mm/s2, a simulation start time of July 1st, 2022 (i.e., the 
expected deployment date of the solar sail), and the following vec-
tor of initial Keplerian elements:

[a0, e0, i0,�0,ω0,ϑ0]T

= [7093.1363 km,0,98.2489 deg,10.5029 deg,0 deg,0 deg]T

(32)

where a is the semi-major axis (SMA), e the eccentricity, i the 
inclination, � the right ascension of the ascending node, ω the 
argument of perigee, ϑ the true anomaly, and the subscript “0” 
denotes the initial value of these variables3. Note that these Kep-
lerian elements represent a circular, Sun-synchronous orbit with 
altitude h0 = a0 − R⊕ = 715 km and local time of the ascend-
ing node (LTAN) at 6AM (corresponding to a dawn-dusk orbit). As 
shown in Table 1, the dynamical model used in all tests considers 
the Earth’s central gravitational acceleration, SRP acceleration, and 
aerodynamic acceleration. On the other hand, the J2 gravitational 
acceleration is not considered. This choice is justified by the fact 
that the parameter tuning is conducted on test cases that consider 
an increase in SMA or inclination. The J2 perturbation has no sec-
ular effect on these Keplerian elements, only a short-term periodic 
effect [32]. Therefore, including the J2 acceleration would only add 
significant noise to the results. Propagations are performed using 
MATLAB®’s ode45 integrator for all tests, with absolute and relative 
tolerances of 10−8 or 10−12 depending on the simulation duration.

3 ACS3 mission data taken from personal communication with W.K. Wilkie, Prin-
cipal Investigator of the ACS3 mission, NASA Langley Research Center, September 
2021.
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4.1. Tuning of the atmospheric density model

The parameters affecting the density averaging procedure de-
scribed in Section 2.2.2.1 are the number of averaging segments 
per orbit, SpO, and the number of nodes per orbit segment, NpS. 
By tuning these parameters, a significant reduction in runtime can 
be achieved at the cost of a decreased accuracy in the results. 
These two criteria (runtime and accuracy) form the basis of the 
trade-off described hereinafter.

As shown in Table 1, the steering law adopted is an orbit rais-
ing steering law computed using the SRP-based optimization of 
Section 3.1, meaning that aerodynamic drag is not considered in 
the optimization but only in the propagation of the dynamics. The 
choice for this steering law is based on the fact that aerodynamic 
drag negatively affects the rate of change of the orbital altitude, 
enlarging the effect of different averaged density models when 
aerodynamic drag is not accounted for in the optimization pro-
cess. The achieved increase in altitude is taken as a metric for the 
accuracy. More specifically, the relative error, ε�a,rel , defined as

ε�a,rel =
∣∣∣∣�a − �aref

�aref

∣∣∣∣ (33)

is used, where �a and �aref are the increases in SMA achieved 
with the averaged density model and the full NRLMSISE-00 model, 
respectively. Similarly, the relative runtime, �Trel , is used as a 
measure of the runtime reduction obtained by using a specific av-
eraged atmospheric density model:

�Trel =
∣∣∣∣ �T

�Tref

∣∣∣∣ (34)

where �T and �Tref are the runtimes required by the averaged 
density model and the full NRLMSISE-00 model for the entire 
propagation, respectively. In the analyses, the sailcraft character-
istics, simulation start time, and orbital parameters correspond to 
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Fig. 7. ε�a,rel and �Trel as function of the initial altitude, SpO, and NpS.
those of the ACS3 mission except for the initial orbital altitude and 
inclination. Indeed, the metrics ε�a,rel and �Trel are computed for 
three different initial altitudes to account for the effect of different 
ranges of acceleration ratios R on the results. In particular, the alti-
tudes considered are 530 km, 580 km, and 750 km, corresponding 
to R ∈ [1/23.9797, 1.1656] (aerodynamic-dominated case), R ∈
[1/3.2528, 2.4394] (intermediate case), and R ∈ [2.7672, 39.7815]
(SRP-dominated case), respectively. Also, the initial altitudes of 
530 km, 580 km, and 750 km correspond to Sun-synchronous in-
clinations of 97.5158, 97.7090, and 98.3933 deg, respectively.

The resulting values for ε�a,rel and �Trel for each initial alti-
tude, SpO, and NpS are displayed in Fig. 7. The SpO values used 
11
to generate the surface plots are {2, 4, 6, 8, 10, 15, 20, 25, 30, 50,

100, 150, 200}, while the NpS values considered are {2, 4, 6, 8, 10,

15, 20}. The plots on the left-hand side of Fig. 7 also show a plane 
corresponding to ε�a,rel = 10−3. This value is chosen as the maxi-
mum allowable value for ε�a,rel in the trade-off between different 
combinations of SpO and NpS. Fig. 7 shows that – for any given al-
titude – decreasing values of SpO and NpS yield smaller runtimes 
at the cost of larger relative errors. However, while the value for 
NpS affects the runtime to some extent, no clear correlation can 
be determined between NpS and the relative error. Based on this, 
a final value of NpS = 4 is chosen for all altitudes and will be con-
sidered in the following analysis to determine the value for SpO. 
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Unlike NpS, the value for SpO largely affects both ε�a,rel and �Trel
and the extent of the effect depends on the initial altitude:

• h0 = 530 km: In order to achieve the shortest possible runtime 
while keeping the relative error below the threshold, ε�a,rel <

10−3, a value for SpO ≥ 20 should be selected.
• h0 = 580 km: By the same logic, SpO ≥ 25 in order for the 

relative error constraint to be met.
• h0 = 750 km: In this case, the relative error is considerably 

below the threshold for any SpO.

Based on the above considerations, a final value of SpO = 25 is 
used for all altitude regimes, corresponding to ε�a,rel in the range 
[7.17026 · 10−6, 5.83754 · 10−4] and �Trel in the range [7.76874 ·
10−2, 1.07546 · 10−1].

4.2. Validation of the full-dynamics POINT optimization

In this section, two cases are discussed which aim to validate 
the POINT optimization method and show its accuracy, both for 
an orbit raising steering law and an inclination increase steering 
law. This is achieved by propagating one single orbit, optimizing 
its control with the POINT method, and comparing the control pro-
file achieved with a reference solution. Based on the results of 
Section 4.1, the reference solution in this section uses the aver-
aged NRLMSISE-00 atmospheric density model, with SpO = 25 and 
NpS = 4. The reference solutions for both steering laws are found 
by performing a grid search at each propagation time step (as ex-
plained in Section 3.3.1), with steps equal to �α = �δ = 0.01 deg
for the cone and clock angles. Based on the tuning of the pre-
run optimization grid that will be discussed in Section 4.3, the 
grid � used by the POINT method is defined by using an angu-
lar step, ��, of 1 deg for the variables η, θ , and φ and a step 
of �R = 1.12 = 1.21 for the acceleration ratio (see Section 4.3
for more details on the definition of �R). Finally, the grid search 
of the pre-run optimization phase of POINT is performed using 
�γ = �ζ = ��/10 = 0.1 deg as angular steps.

4.2.1. Orbit raising
For the orbit raising steering law, the control profiles of the ref-

erence solution and the POINT solution are given in Fig. 8. As can 
be appreciated from the zoomed-in plots of the cone and clock 
angle profiles, the POINT solution (in red) accurately approximates 
the reference solution (in blue, dashed). Also, from Fig. 8 it can 
be noted that the cone-angle profile exhibits instantaneous jumps, 
both in the reference and POINT solutions. This is due to the av-
eraging procedure of the atmospheric density model employed, 
which yields a step-wise variation in the density along the orbit 
and, therefore, also in the acceleration ratio. This in turn affects the 
control computation procedure, leading to the sudden variations in 
α shown in the figure. As a measure of the error in optimal sail 
normal direction as computed by the POINT method, the angular 
displacement, εn , between the sail normal direction of the POINT 
method and the reference solution is computed at each time step. 
The result is displayed in Fig. 9, where the red dashed line in-
dicates the root mean square (RMS) of εn , equal to 0.1742 deg. 
It should be noted that the RMS of εn depends on the angular 
steps ��, �γ , and �ζ used in the pre-run optimization phase 
of POINT and are of comparable magnitudes, as one would expect 
when performing an interpolation. The relative error of the SMA 
increase, ε�a,rel , is displayed in Fig. 10. This error is defined as per 
Eq. (33), with �a and �aref the increases in SMA of the POINT and 
reference solutions, respectively. After a sudden increase in ε�a,rel
at the beginning of the simulation – which coincides with a large 
value for εn – the relative error stabilizes with a final value after 
12
one orbit of ε�a,rel = 2.7537 · 10−5. This value is deemed accept-
able, also in relation to the relative error threshold of 10−3 used 
for the atmospheric density model tuning of Section 4.1.

4.2.2. Inclination increase
The α and δ angle profiles for the inclination steering laws of 

the POINT and reference solutions are given in Fig. 11. Here, it can 
be noted that the POINT solution closely resembles the reference 
solution. Nonetheless, the POINT solution manages to approximate 
the reference solution better during the first and last quarter of 
the orbit than in the middle part of the orbital revolution. This be-
comes even clearer in the zoomed-in plots of Fig. 11, as well as in 
Fig. 12, which displays the evolution of εn . In particular, the lat-
ter figure shows that the POINT method experiences difficulties in 
finding the true optimal solution in the middle part of the orbital 
revolution, leading to displacements in the sail normal direction 
in the order of some degrees. Consequently, a steep growth in the 
inclination-increase relative error, ε�i,rel , is also observed during 
this time, see Fig. 13. Note that this relative error is defined simi-
lar to ε�a,rel as:

ε�i,rel =
∣∣∣∣�i − �iref

�iref

∣∣∣∣ (35)

where �iref and �i are the increases in inclination of the refer-
ence and POINT solutions, respectively. The errors observed are 
due to the intrinsic difficulty in increasing the inclination in the 
middle part of the orbit where every non-zero, out-of-plane solar-
sail acceleration points opposite to λ̂ and would therefore yield 
a negative �i. Consequently, the optimal attitude is the one that 
minimizes the out-of-plane acceleration, resulting in no change in 
inclination, see Fig. 14. However, multiple sail attitudes lead to a 
�i close to zero, hence making the search for the global optimal 
attitude hard for the POINT method. Despite the errors introduced 
in this middle part of the orbit, the relative error achieved at the 
end of the propagation is ε�i,rel = 8.4872 · 10−6, which, again, is 
deemed acceptable in relation to the threshold of 10−3 used for 
the atmospheric density model tuning of Section 4.1.

4.3. Tuning of the pre-run optimization grid

As described in Section 3.3.3, the in-run interpolation phase of 
the POINT method aims to compute the interpolated optimal sail 
normal directions based on the grid points S ∈ � of the pre-run 
optimization phase. The way in which these points are chosen and 
– in particular – the spacing between them, affects the accuracy of 
the results obtained by the interpolation. In this section, the results 
for different grids � are evaluated to determine the correlation be-
tween the accuracy of the optimal solutions found and the spacing 
of the grid points. Based on this, a final grid � is chosen.

Because this article only considers steering laws for orbit rais-
ing and inclination increase, the grid points’ spacing will be eval-
uated separately for these two steering laws. Since the spacing 
of the points S ∈ � is determined by the step used for each of 
the points’ components (i.e., �R , �η, �θ , and �φ), a compu-
tationally demanding, four-dimensional parametric analysis ought 
to be performed. To reduce the dimensionality of the paramet-
ric analysis, the angular steps of the variables η, θ , and φ are 
set equal to a common value ��, so that �� = �η = �θ =
�φ. The set of values used for �� in the parametric analy-
sis is {0.1, 0.2, 0.5, 1.0, 2.0} [deg], while the set for �R is {

1.11/4, 1.11/2, 1.1, 1.12, 1.14
}

. It should be noted that, while 
�� represents the difference between adjacent angular values of 
the grid, �R represents the ratio of consecutive R values. This 
means that given a value Rk of the grid, the adjacent one, Rk+1, 
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Fig. 8. Orbit raising: control profile of the reference solution (blue, dashed) and POINT solution (red, solid) over one orbital period.
Fig. 9. Orbit raising: angular error between the sail normal directions of the refer-
ence solution and those found by the POINT method (blue, solid) and RMS of the 
angular error over one orbital period (red, dashed).

Fig. 10. Orbit raising: relative error in �a between the reference solution and POINT 
solution.

is found as Rk+1 = Rk ·�R . This approach is employed because the 
change in shape of the AE surface with R is exponential.

To determine the correlation between the accuracy of the opti-
mal solutions and the spacing of the grid points, the POINT op-
timization is run with different grids � and the final increases 
in altitude or inclination are computed and compared with a ref-
13
Table 2
Relative errors on �a for each pair of �� and �R .

ε�a,rel · 10−5 �R

1.11/4 1.11/2 1.1 1.12 1.14

�� [deg] 0.1 7.3042 4.9774 3.1956 7.0016 8.2448
0.2 6.0737 4.1505 2.2168 5.5576 7.9439
0.5 2.4879 1.8414 1.1708 2.4118 6.6047
1.0 2.4806 1.8681 2.4475 2.7537 6.4701
2.0 6.7333 5.4641 4.5604 6.3204 9.7635

erence optimal solution (the same reference solution as used in 
Section 4.2, see Table 1). The differences in final altitude/inclina-
tion are a measure of the errors introduced by using different grids 
� (i.e., different combinations of steps �� and �R).

The parametric analyses are performed using the settings pre-
sented in Table 1. In particular, the same settings as in Section 4.2
are used, with the only difference being the different set of ��

and �R steps considered.

4.3.1. Orbit raising
The results of the analysis for the orbit raising steering law are 

given in Table 2, where the relative error on the SMA increase 
achieved after one orbit, ε�a,rel , is displayed for each pair of ��

and �R .
Table 2 shows that the largest values for ε�a,rel are found for 

�� = 2 deg and �R = 1.14, whereas the smallest ε�a,rel values 
are achieved for intermediate values of �R and ��. Nonetheless, 
no clear correlation between �R , ��, and ε�a,rel can be derived 
from the results. When the relative error of 10−3 introduced in the 
atmospheric density averaging is once again used as threshold, vir-
tually any combination of �R and �� can be adopted, including 
the steps �R = 1.14 and �� = 2 deg for which the least compu-
tational runtime is required both in the pre-run optimization and 
in-run interpolation phases. Nonetheless, since the simulations of 
Section 5 will be performed on Sun-synchronous orbits with values 
of the altitude, LTAN, and ac different from the ones of the ACS3 
mission, some contingency is considered and �R = 1.12 = 1.21
and �� = 1 deg are selected for which ε�a,rel = 2.7537 · 10−5.

4.3.2. Inclination increase
The results for the inclination increase steering law are given in 

Table 3.
Table 3 shows a clear variation of ε�i,rel with �R and ��. In 

particular, it can be noted that an increase in either �R or ��
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Fig. 11. Inclination increase: control profile of the reference solution (blue, dashed) and POINT solution (red, solid) over one orbital period.
Fig. 12. Inclination increase: angular error between the sail normal directions of the 
reference solution and those found by the POINT method (blue, solid) and RMS of 
the angular error over one orbital period (red, dashed).

Fig. 13. Inclination increase: relative error in �i between the reference solution and 
POINT solution.

(which corresponds to a coarser grid �) yields a larger ε�i,rel . 
Depending on how coarse the grid � is, relative errors of differ-
ent magnitudes can be achieved, ranging between 2.6527 · 10−7

and 5.2362 · 10−5. These values are well below the relative error 
14
Fig. 14. Inclination increase: variation in inclination of the POINT solution over one 
orbital period.

Table 3
Relative errors on �i for each pair of �� and �R .

ε�i,rel · 10−7 �R

1.11/4 1.11/2 1.1 1.12 1.14

�� [deg] 0.1 4.6549 2.6527 9.2171 23.265 521.70
0.2 3.9877 3.1171 8.2609 25.585 218.47
0.5 15.403 17.043 17.518 41.719 159.00
1.0 54.429 63.226 63.852 84.872 290.93
2.0 304.84 365.86 290.51 410.91 523.62

of 10−3 introduced in the atmospheric density averaging. There-
fore, using the same rationale as in Section 4.3.1, �R = 1.12 = 1.21
and �� = 1 deg are once again chosen for which ε�i,rel = 8.4872 ·
10−6.

4.4. Tuning of the boundaries of the acceleration ratio

The boundaries of the acceleration ratio, Rmin and Rmax , de-
fine when the full-dynamics optimization (Rmin ≤ R ≤ Rmax) is 
to be performed instead of the aerodynamic-based optimization 
(R < Rmin) or SRP-based optimization (R > Rmax). To determine 
these boundaries, multiple propagations of the ACS3 orbit are per-
formed over one orbital period, using a range of hypothetical con-
stant values of the atmospheric density, ρ . Based on Eq. (27) and 
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Fig. 15. Relative error on �a between full-dynamics and SRP-based optimization 
solutions.

the fact that the sailcraft inertial velocity, v , remains nearly con-
stant along one orbital revolution, the different densities uniquely 
determine the values of R . For each acceleration ratio, the relative 
difference in the final increase of a target orbital element found 
through the full-dynamics optimization and the aerodynamic/SRP-
based optimization is computed. Finally, the values of R for which 
such a difference becomes smaller than a predefined threshold are 
taken as the boundaries Rmin and Rmax .

The above-mentioned analysis is performed for the orbit rais-
ing and inclination increase steering laws and the corresponding 
results are discussed in Sections 4.4.1 and 4.4.2, respectively. The 
test settings are specified in Table 1.

4.4.1. Orbit raising
The relative error between the SMA increase of the full-

dynamics optimization and SRP-based optimization, ε�a,rel , as a 
function of R is shown in the plot of Fig. 15. ε�a,rel is defined 
as in Eq. (33), with �a and �aref the increase in SMA achieved 
by the SRP-based optimization and full-dynamics optimization, re-
spectively. As can be seen, ε�a,rel rapidly decreases for increasing 
values of R , indicating that for large acceleration ratios, the SRP AE 
becomes a valid approximation of the full-dynamics AE. In choos-
ing a suitable threshold value for ε�a,rel , the following should be 
considered. While the relative errors found in the tuning of the 
optimization grid in Section 4.3 were computed with respect to 
a reference solution found with a grid search, in this section the 
relative errors are defined with respect to the full-dynamics solu-
tion of the POINT method. Consequently, the relative errors ε�a,rel
computed here build upon the ones found in Section 4.3. Taking 
this into account, and considering that an overall relative error 
smaller than 10−3 is sought, a threshold for ε�a,rel of 10−4 is set. 
As can be seen from Fig. 15, this threshold is met for R = 55, 
where ε�a,rel = 9.23459 · 10−5. Consequently, Rmax is set to 55.

To determine Rmin , Fig. 16 displays the absolute error, ε�a,abs =∣∣�a − �aref
∣∣, between the SMA increase obtained by the aero-

dynamic-based optimization, �a, and the full-dynamics optimiza-
tion, �aref , as a function of R . In this case, the absolute error is 
preferred as metric for the accuracy because the solution found 
by the aerodynamic-based optimization constantly orients the sail 
parallel to the wind flow, thereby yielding no variation in the SMA 
and a relative error of 1. As can be seen from Fig. 16, the ab-
solute error rapidly decreases for increasing values of 1/R , until 
1/R = 1.54 for which ε�a,abs = 0. For 1/R ≥ 1.54 the aerodynamic 
acceleration is so dominant that the solutions found by the full-
dynamics optimization and the aerodynamic-based optimization 
are the same. Based on this value and by including some contin-
gency, 1/Rmin is set to 4.
15
Fig. 16. Absolute error on �a between full-dynamics and aerodynamic-based opti-
mization solutions.

Fig. 17. Relative error on �i between full-dynamics and SRP-based optimization so-
lutions.

4.4.2. Inclination increase
The approach used to determine Rmin and Rmax for the in-

clination increase steering law is similar to the one used in the 
previous section. The only difference is that the accuracy is mea-
sured through the relative inclination error, ε�i,rel , defined as 
per Eq. (35), where �i and �iref are the increases in inclina-
tion achieved by the SRP/aerodynamic-based optimization and full-
dynamics optimization, respectively.

As can be seen from Fig. 17, ε�i,rel rapidly decreases for in-
creasing values of R , thereby demonstrating the convergence of 
the full-dynamics AE to the SRP AE. By considering once again a 
maximum relative error of 10−4, the acceleration ratios meeting 
this condition are found for R ≥ 30. Based on this, Rmax = 30 is 
chosen.

Fig. 18 shows that, for decreasing R values, smaller relative er-
rors between the solutions for the full-dynamics and aerodynamic-
based optimizations are obtained. Nonetheless, the values for 
ε�i,rel are always well above the threshold of 10−4, even for very 
small acceleration ratios, e.g., 1/R = 100. Without considering even 
smaller values for R , 1/Rmin = 100 is chosen as acceleration ratio 
boundary because values of 1/R > 100 are highly unlikely for the 
analyses performed in Section 5. Such small acceleration ratios are 
only found for very low altitudes where the solar sail would deor-
bit in less than one revolution because of atmospheric drag.

5. Results and analysis

In this section, the POINT method will be used to compute the 
control laws to maximize the SMA or inclination change start-
ing from different initial Earth-centered orbits and for different 
solar-sail characteristic accelerations and different levels of solar 
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Fig. 18. Relative error on �i between full-dynamics and aerodynamic-based opti-
mization solutions.

activity. In this way, a wide variety of scenarios is considered and 
a thorough analysis of the orbit change capabilities of solar sailing 
for Earth-bound missions is achieved. To consider a broad range 
of initial conditions representative of orbits commonly used for 
scientific LEO missions, the analyses are performed for circular, 
Sun-synchronous orbits with an LTAN at 6 AM (dawn/dusk) or 12 
AM (noon/midnight) and altitudes ranging between 300 km and 
1000 km. The characteristic accelerations considered vary between 
10−2 and 10−1 mm/s2 to represent current and near-future solar-
sail technology (NASA’s upcoming ACS3 and NEA Scout missions 
will achieve solar-sail characteristic accelerations of 5.0 · 10−2 and 
6.3 · 10−2 mm/s2, respectively [43,2]). Finally, to account for the 
effect of solar activity on the atmospheric density, two different 
starting dates are considered: September 23, 2023 and September 
23, 2030, corresponding to epochs of maximum and minimum so-
lar activity, respectively. It should be noted that these dates are 
chosen somewhat arbitrarily within longer-duration periods of so-
lar maximum and minimum activity and correspond to the autumn 
equinoxes, for which the Sun “orbits” in the Earth’s equatorial 
plane. Other dates within the periods of solar maximum/mini-
mum can of course be considered, which would then correspond 
to slightly different orientations of the science orbit with respect 
to the Sun and, therefore, would lead to slightly different results 
of the analyses.

For each scenario, an orbit propagation of 10 days is per-
formed using Matlab®’s ode45 integrator, with absolute and rel-
ative tolerances of 10−12. Consistent with the values obtained in 
Section 4, the averaged NRLMSISE-00 atmospheric density is used 
with SpO = 25 and NpS = 4. The POINT optimization method uses 
an optimized grid � found through �� = 1 deg and �R = 1.21. 
Finally, the acceleration ratio domains considered are R ∈ [1/4, 55]
and R ∈ [1/100, 30] for the orbit raising and inclination increase 
steering laws, respectively.

5.1. Orbit raising

The results for the parametric analyses performed for the or-
bit raising steering law appear in Fig. 19. The four plots display 
the increase in SMA achieved after 10 days for different combina-
tions of LTAN and solar activity. Each plot shows 10 curves for 10 
different values of the characteristic acceleration. The figure shows 
that, independently of the LTAN, the solar activity determines the 
minimum altitude for which orbit raising is still possible. This 
minimum altitude is approximately equal to 450 and 600 km for 
minimum and maximum solar activity, respectively, and therefore 
demonstrates the orbit raising capabilities of solar sails above such 
altitudes. The plots also show that the effect of a different solar 
activity on �a becomes negligible at high altitudes, as the curves 
16
asymptotically tend to the same values. At such high altitudes, the 
aerodynamic drag becomes negligible and similar SMA increases 
are found even for largely different solar activities. Comparison 
of the plots for different LTAN values and the same solar activity 
shows that the effect of changing the LTAN from 6AM (dawn/dusk) 
to 12AM (noon/midnight) reduces the SMA increase due to the 
presence of eclipses for a noon/midnight orbit.

The results in Fig. 19 for ac = 5.0 · 10−2 mm/s2 are combined 
in Fig. 20 to gain further insights in the ranges of achievable SMA 
increase. For example, if one considers a specific LTAN, the two 
curves for minimum and maximum solar activity enclose the re-
gion of maximum SMA increase for any solar activity. A specific 
example is given by the two marks that represent the ACS3 mis-
sion with a simulation start date of July 1st, 2022. This date cor-
responds to an intermediate solar activity and, as such, the �a
values achieved for the ACS3 mission lie well within the above-
mentioned region. Alternatively, the curves for a fixed solar ac-
tivity but with different LTANs can be considered. Since LTANs at 
6AM and 12AM represent the orbits with the shortest and longest 
eclipsing time, respectively, any initial orbit with an LTAN different 
from 6AM or 12AM will show an SMA increase within the region 
enclosed by these two curves. Fig. 20 shows that the largest SMA 
increases are achieved at solar minimum and for an LTAN at 6AM, 
whereas the smallest values for �a are achieved at solar maxi-
mum and for an LTAN at 12AM. These two curves correspond to 
the overall best and worst orbit raising scenarios. For any circular, 
Sun-synchronous orbit the achievable increase in SMA is always 
enclosed by these curves.

The results in Fig. 19 and Fig. 20 can be used to conduct the 
preliminary design of solar-sail LEO missions. In fact, although 
the results are given only for a propagation time of 10 days, the 
achievable SMA increase for longer propagation times can be re-
trieved from the same results by consulting the plots in an iterative 
fashion: consider a given initial altitude, h0, with an SMA increase 
�a0, then the same plot can be reused starting from a new alti-
tude h1 = h0 +�a0 to retrieve �a1, which in turn is used to define 
h2 and so forth. At each iteration of this process the mission du-
ration increases by 10 days, so that the iterations can be stopped 
until the desired mission duration is obtained.

5.2. Inclination increase

The results of the parametric analyses for the inclination in-
crease steering law appear in Fig. 21. The truncation of the curves 
at low altitude is due to a rapid loss in altitude when increasing 
the inclination under the effects of atmospheric drag. The orbit 
propagation is stopped when an altitude lower than 100 km is 
reached within 10 days. As can be seen, the altitude at which this 
condition occurs ranges between 400 and 650 km and depends on 
the characteristic acceleration, solar activity, and LTAN. An inter-
esting trend which can be appreciated in all four plots of Fig. 21
is the steep gradient in the inclination increase for decreasing alti-
tudes: when lowering the orbital altitude, not only drag increases, 
but also the aerodynamic lift, which provides the out-of-plane ac-
celeration used to change the inclination. At higher altitudes, no 
significant change in the inclination increase as a function of al-
titude can be observed. Conversely, a strong correlation between 
the inclination increase and the solar-sail characteristic accelera-
tion can be noted.

Similar to Fig. 20 for the orbit raising case, Fig. 22 displays the 
variation in inclination increase for a characteristic acceleration of 
ac = 5 · 10−2 mm/s2, for minimum and maximum solar activity 
and LTANs at 6AM and 12AM. For increasing values of h0, the 
results for the solar minimum case and solar maximum case con-
verge to the same values. This is because the atmospheric density 
decreases and the inclination increase is produced solely by the 
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Fig. 19. Orbit raising steering law: SMA increase as a function of the initial altitude and solar-sail characteristic acceleration for different LTAN values and solar activities. The 
characteristic acceleration increases in the direction of the arrow from 10−2 to 10−1 mm/s2 with a step size of 10−2 mm/s2.
Fig. 20. Orbit raising steering law: SMA increase for ac = 5 · 10−2 mm/s2.

SRP acceleration, which is equal in both cases. Fig. 22 also shows 
the inclination increases achievable by the ACS3 missions at an in-
termediate solar activity. As can be seen, the values for �i fall 
slightly below or above the regions enclosed by the minimum and 
maximum solar activity. By further analyzing these results, it was 
17
found that these differences are due to the simulation start date of 
July 1st, 2022 which results in a different orientation of the ACS3’s 
initial orbit with respect to the Sun than at the autumn equinox, 
and hence different values for �i.

6. Conclusions

In this article a novel method to optimize Earth-bound solar-
sail orbits in the presence of atmospheric drag has been presented 
and employed on a wide variety of scenarios. To reduce the com-
putational effort required, an averaged atmospheric density model 
has been introduced and its performance has been tested, both 
with respect to its accuracy and runtime. The optimal control prob-
lem has been formulated and thoroughly analyzed for three dif-
ferent dynamical regimes. These are the solar radiation pressure 
(SRP)-dominated regime, the aerodynamic drag-dominated regime, 
and the full-dynamics (SRP + drag) regime, for which it has been 
shown that the optimal control problem is independent of the 
solar-sail loading parameter. To solve the full-dynamics optimal 
control problem, the POINT optimization method has been devel-
oped, which is based on a pre-run optimization phase and in-run 
interpolation phase. The pre-run optimization phase takes place 
before the trajectory propagation and aims to solve the optimal 
control problem for a broad range of scenarios, in order to store 
the corresponding optimal sail normal directions. Afterwards, the 
in-run interpolation of the optimal sail normal directions takes 
place at each integration time step during the propagation. All 
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Fig. 21. Inclination increase steering law: inclination increase as a function of the initial altitude and solar-sail characteristic acceleration for different LTAN values and solar 
activities. The characteristic acceleration increases in the direction of the arrow from 10−2 to 10−1 mm/s2 with a step size of 10−2 mm/s2.
Fig. 22. Inclination increase steering law: inclination increase for ac = 5 ·
10−2 mm/s2.

parameters used by the POINT method have been tuned and a val-
idation test has been performed to demonstrate the accuracy and 
global validity of the optimal solutions found. The POINT method 
has been applied to an orbit raising steering law and inclination 
increase steering law on NASA’s upcoming ACS3 mission and a 
18
range of other circular, Sun-synchronous orbits, differing from each 
other in the local time of the ascending node, the altitude, and 
the solar-sail characteristic acceleration. The results of the anal-
yses show that the minimum altitude for which orbit raising is 
achievable varies between 450 and 600 km and strongly depends 
on the solar activity, while the local time of the ascending node 
affects the magnitude of the altitude increase. The inclination in-
crease steering law proved to be unsuited for orbits with altitudes 
below 400 ÷ 650 km, as the sailcraft tends to deorbit rapidly. Con-
versely, at high altitudes, increases in inclination are achievable, 
with their magnitude depending largely on the solar-sail charac-
teristic acceleration.
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