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Bipolar membranes for intrinsically stable 
and scalable CO2 electrolysis

Kostadin V. Petrov    1,3, Christel I. Koopman    1,3, Siddhartha Subramanian    1, 
Marc T. M. Koper    2 , Thomas Burdyny    1  & David A. Vermaas    1 

CO2 electrolysis allows the sustainable production of carbon-based fuels 
and chemicals. However, state-of-the-art CO2 electrolysers employing anion 
exchange membranes (AEMs) suffer from (bi)carbonate crossover, causing 
low CO2 utilization and limiting anode choices to those based on precious 
metals. Here we argue that bipolar membranes (BPMs) could become the 
primary option for intrinsically stable and efficient CO2 electrolysis without 
the use of scarce metals. Although both reverse- and forward-bias BPMs 
can inhibit CO2 crossover, forward-bias BPMs fail to solve the rare-earth 
metals requirement at the anode. Unfortunately, reverse-bias BPM systems 
presently exhibit comparatively lower Faradaic efficiencies and higher 
cell voltages than AEM-based systems. We argue that these performance 
challenges can be overcome by focusing research on optimizing the catalyst, 
reaction microenvironment and alkali cation availability. Furthermore, 
BPMs can be improved by using thinner layers and a suitable water 
dissociation catalyst, thus alleviating core remaining challenges in CO2 
electrolysis to bring this technology to the industrial scale.

Electrochemical CO2 reduction (CO2R) is a promising technology for 
the production of sustainable carbon-based fuels and chemicals. Hav-
ing reached current densities and Faradaic efficiencies that are near 
commercial standards, critical parameters of interest are now stabil-
ity, energy efficiency, CO2 utilization and material availability. As a 
modulator of the ionic current and a separator of CO2 conversion at 
the cathode and the oxygen evolution reaction (OER) at the anode, 
the ion exchange membrane plays a central role in the performance, 
material selection and stability of the configuration.

Currently, the most efficient and high-performing CO2 electro-
lysers employ anion exchange membranes (AEMs) in a membrane 
electrode assembly configuration (Fig. 1a). Ideally, the AEM facilitates 
the selective transport of hydroxide ions (OH−) from the cathode to 
the anode. However, AEM-based electrolysers face a major challenge 
since a large part of the input CO2 reacts with OH− to produce (bi)
carbonates, which are then transported to the anode compartment 
through the AEM1.

To properly assess the industrial feasibility of AEM-based systems, 
we need to include the implications of CO2 crossover on the energy 
and material requirements. The crossover of CO2 in the form of (bi)

carbonates means that an alkaline environment at the anode cannot 
be maintained without electrolyte regeneration. At the same time, the 
only high-performing OER catalyst under neutral (or acidic) condi-
tions is Ir, thus implying that AEM-based systems necessitate the use 
of iridium-based catalyst at the anode2. However, iridium is one of 
the scarcest metals on Earth and its rising price is an impediment for 
scale-up3. Moreover, CO2 crossover limits the (single-pass) CO2 utiliza-
tion to 50% or lower depending on the product (for CO, 50%; for C2H4, 
25%)4. Given that producing a concentrated CO2 feed requires energy 
(conventional CO2 capture processes have an energy consumption 
between 170 and 390 kJ mol−1 CO2, depending on the source of CO2

5,6) 
incomplete CO2 utilization can be considered an indirect energy pen-
alty. For example, an energy consumption of 170 kJ mol−1 CO2 would 
translate to a voltage of 0.88 V when recapturing CO2 from the anode 
gas (assuming 100% Faradaic efficiency and CO3

2− as the charge carrier). 
Hence, increasing the CO2 utilization is a necessity for a scalable and 
efficient CO2 electrolysis technology.

An alternative to AEMs to address these issues is the use of bipo-
lar membranes (BPMs). BPMs consist of a cation exchange layer 
(CEL) and an anion exchange layer (AEL) and, depending on the 
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CO2 crossover is heavily decreased for BPM-based systems 
(Fig. 2a,b) due to the presence of negatively charged groups in the CEL, 
which inhibits CO2 crossover through Donnan exclusion of carbonates 
and negatively charged CO2R products (formate)15. We note that some 
crossover of co-ions can occur through uncharged membrane spaces 
(between charged phases)16, but this issue is minor given the typical 
water dissociation efficiency of >99% at 100 mA cm2, and is manage-
able using existing strategies against salt precipitation and electrolyte 
regeneration17. Additionally, reverse-bias BPMs decrease the crossover 
of neutral CO2R products (for example, methanol) through the outward 
flux of protons, which inhibits electro-osmotic drag across the mem-
brane, in particular at higher current densities (Fig. 2b)18.

Although CEM-based electrolysers are able to achieve low CO2 
crossover, they are more prone to instabilities due to co-ion crossover. 
Furthermore, their acidic/neutral anolyte conditions require the use of 
scarce metals, making the BPM-based system a more suitable candidate 
for large-scale application3,13.

BPM-based systems in either the reverse- or forward-bias configu-
ration have been reported that achieve high single-pass CO2 utilization 
values of up to 78%13,19, surpassing the theoretical maximum of 50% for 
AEM-based systems for two-electron products12. The typical 0.02 CO2 
lost per electron (Fig. 2b) implies a maximum of 96% CO2 utilization, but 
high single-pass utilization is still expected to bring about trade-offs 
in selectivity and energy efficiency through the concentration over-
potential caused by reactant starvation20.

At the moment, the improved CO2 utilization of reverse-bias 
BPM-based systems comes at the cost of lower Faradaic efficiencies 
and higher cell voltages (Fig. 2c,d). However, unlike the intrinsic issues 
of CO2 crossover and the need for scarce metals in anode materials for 
AEM-based systems, in this Perspective we argue that both the selectiv-
ity and cell voltage for BPM-based systems can be further improved 
through innovation.

The key to low cell potentials is managing pH 
gradients
A large contribution to the high voltages observed in BPM and CEM 
electrolysers, which is often overlooked, stems from pH gradients 
within the electrolyser. Assuming that an electrolyser is producing CO 
and O2, the difference between the standard reduction potentials (E0cell) 
is 1.34 V. Because both reactions produce one H+ or OH− per electron, 
each pH unit causes a Nernstian shift of 59.2 mV. Theoretically, the 
voltage contribution of water dissociation or recombination (0.83 V) 
at the BPM interface is counter-balanced by the Nernstian shift in redox 
potential at the electrodes, which would allow all configurations to 
operate at the same equilibrium cell voltage (1.34 V; see E0cell in the ‘RHE 
scale' at the bottom of each panel in Fig. 3).

orientation, can be used in forward- or reverse-bias configuration. 
In reverse-bias configuration (Fig. 1b), water dissociates into H+ and 
OH− at the CEL/AEL interface. The H+ migrates to the cathode and 
the OH− migrates to the anode, while (theoretically) no other ions 
can pass both layers of the BPM. Combined with proton-coupled 
electron transfer reactions, such as CO2R and OER, the BPM theo-
retically produces or consumes H+ and OH− at the same rate as the 
production/consumption at the electrodes, allowing operation at a 
steady-state pH difference between the electrodes. This offers the 
benefit of a theoretically stable alkaline anolyte, which is favourable 
for the OER and allows the use of more Earth-abundant catalysts such 
as NiFeOx7. Moreover, the CEL rejects carbonates and the generated 
H+ recombines with carbonates to regenerate CO2, impeding CO2 
crossover almost entirely.

However, a current bottleneck for reverse-bias BPMs is that the 
resulting acidic cathode environment has been associated with low 
Faradaic efficiencies for CO2R products, since the competitive H2 
evolution reaction (HER) is promoted in the abundance of H+ (ref. 8). 
Fortunately, recent advances have been made in CO2R in acidic media 
and the impact of cations on CO2R is now better understood, offering 
strategies for suppressing the HER, providing interesting opportunities 
for reverse-bias BPM systems9–11. Conversely, an ideal forward-bias BPM 
(Fig. 1c), where OH− from the cathode migrates through the adjacent 
AEL and recombines with H+ from the anode, enables a neutral/alkaline 
environment at the cathode, but fails to provide anode conditions that 
permit the use of Earth-abundant catalysts.

In this Perspective, we argue that BPMs have the potential to be 
the primary option for CO2 electrolysis, as AEMs cannot prevent CO2 
crossover and the associated adverse energy and material implications 
that come with it. We assess the potential of BPMs for CO2 electrolysis, 
with special attention to CO2 utilization, energy consumption and strat-
egies to improve product selectivity and efficiency. We conclude that 
for BPMs to be the new state-of-the-art option, their performance—in 
terms of conductance, BPM kinetics and stability—must be improved 
through innovation.

BPMs promote CO2 utilization by inhibiting 
crossover
The CO2 crossover in AEM-based CO2 electrolysers proves to be an 
intrinsic limitation. Typically, AEM-based systems exhibit a crossover 
of between 0.5 and 1.0 CO2 per e− transferred, which corresponds to 
CO3

2− and HCO3
− as the dominant charge carriers, respectively (Fig. 2a). 

Therefore, to achieve higher CO2 utilization, (bi)carbonate formation/
crossover must be suppressed, which can—with currently known mate-
rials—only be done by replacing AEM separators with either a BPM or 
a cation exchange membrane (CEM)12–14.
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Fig. 1 | Cell configurations for electrochemical CO2R. a–c, Three potential cell 
configurations for electrochemical CO2R, including an AEM electrode assembly 
(a), a BPM electrode assembly in reverse-bias configuration (b) and a BPM 
electrode assembly in forward-bias configuration (c). All of the configurations 
are equipped with a GDE paired with oxygen evolution at the anode in a liquid 
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In practice, however, pH gradients and buffering effects will 
change the local pH and therefore the observed difference in redox 
potentials and cell potentials. Accurately determining the pH in the 
cathode reaction environment remains a challenge for zero-gap con-
figurations. Whereas the catholyte pH is largely controlled by the 
generated OH− and carbonate equilibrium constant, the anolyte pH 
depends on [K+] and the partial pressure of CO2 in the mixed anode gas. 
For the sake of this discussion, we assume a cathode pH of 10.5 (close 
to the carbonate acid dissociation constant (pKa)) and an anolyte pH 
of 8.1 (equilibrium at 1 M K+ and 0.5 bar partial pressure CO2)9,21. Hence, 
the pH gradient over the AEM increases the cell voltage by at least 0.14 V 
((10.5 − 8.1) × 0.0592 = 0.14; Fig. 3a).

In a reverse-bias BPM electrolyser, a large pH gradient is observed 
between the CEL and the catalyst layer, since the BPM interface pro-
duces H+ whereas the produced OH− and carbonate pin the pH to ~10.5 
(Fig. 3b). This gradient does not allow the complete balancing of the 
water dissociation voltage of 0.83 V. At a cathode pH of 10.5, only 0.21 V 
is compensated. Operating a cathode at acidic pH would be extremely 
beneficial for this configuration, since removing the internal pH gradi-
ent would lower the overall cell potential by 0.62 V. Additionally, the 
BPM requires an overpotential for water dissociation and increased 
ohmic resistance can be caused by the formation of bubbles at the 
CEL interface22.

For an electrolyser with a forward-bias BPM (Fig. 3c), the buffer-
ing effects occur both in the catalyst layer and at the BPM interface. 
The Nernstian pH shift added by the alkalinity in the cathode region 
in this scenario is 0.56 V. The forward-bias BPM electrode assembly 

configuration could potentially recover this energy at the BPM junc-
tion, but recent work23 shows that the main recombined species is 
H2CO3 instead of water, lowering the maximum regained voltage to 
0.38 V (derived from 0.0592pKa(H2CO3)).

Why forward bias fails to solve CO2 electrolysis 
challenges
The forward-bias BPM electrode assembly configuration (Fig. 1c) has 
the advantages of maintaining an alkaline environment at the cathode 
(which ensures a high Faradaic efficiency) and decreasing CO2 loss with-
out a very high energy penalty. However, in addition to the incomplete 
recovery of the Nernstian pH shift due to carbonate formation, this 
configuration has additional challenges. In the forward-bias configu-
ration, the formation of water and gaseous CO2 at the interface of the 
BPM causes blistering and delamination in commercial BPMs at current 
densities above 20 mA cm2, thus rendering them ineffective in practice. 
Additionally, as shown in recent works23,24, (bi)carbonate ions and weak 
acids can induce large neutralization overpotentials and the inefficient 
transport of the produced CO2 leads to low limiting current densities.

Effective removal of CO2 generated at the BPM interface is this 
essential and future research should address this issue with smart mem-
brane design strategies such as the use of a hybrid liquid–membrane 
interface or an AEL with a porous or micro-channelled structure25–27, 
including successful operation for 200 h19. Alternatively, designing 
BPMs with high selectivity for OH− ions over co-ions (such as carbon-
ate, formate or acetate) could mitigate ionic blockades and elevate 
limiting current densities to industrially relevant rates (>100 mA cm2).
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Fig. 2 | Comparison of performance parameters for AEM-, BPM- and CEM-
based CO2 electrolysers. a,b, Relative CO2 crossover per charge transferred. The 
data points represent values from several studies, whereas the lines represent 
the theoretical values when CO3

2− or HCO3
− are the main charge carriers. This 

assumes one OH− per reaction electron (valid for most CO2R reactions and HERs) 
and no H2CO3 crossover. The results shown in b are a magnification of the section 

outlined by a dashed box in a. c, Faradaic efficiency for carbon-based products.  
d, Cell voltages for the different membrane systems at current densities between 
50 and 300 mA cm−2. The values shown by a white circle outlined in black show 
the average cell voltage of all of the data points. See Source Data Fig. 2 for 
underlying data and specific accompanying refs. 2,9,10,12–14,31,34,38,39,49–60.
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Although blistering and delamination can be overcome by engi-
neering techniques, the forward-bias case suffers from decreased 
voltage gain due to carbonic acid recombination, unfavourable pH 
conditions in the anode and the necessity for scarce anode materials, 
which are difficult to overcome.

Controlling the BPM microenvironment to 
promote CO2R
Until recently, the reverse-bias BPM-based membrane electrode assem-
bly showed low Faradaic efficiency due to the acidic microenvironment 
favouring the HER. However, recent studies have demonstrated that 
manipulating cation concentrations, ionomer properties and system 
configuration promotes CO2R relative to the HER. The presence of alkali 
cations with small hydrated radii, such as Cs+ and K+, was demonstrated 
to promote CO2R even in strong acid10. Unlike the HER, which involves 
proton-coupled electron transfer, the rate-limiting step for CO2R is the 
adsorption of CO2 onto the catalyst by cation-coupled electron transfer 
(the formation of cation-stabilized CO2 adsorbate, cat+-*CO2

−)28. There-
fore, the cation concentration near the catalyst has an important role 
in determining CO2R kinetics29. Moreover, since cation-coupled CO2R 
is a hydroxide-generating reaction instead of a proton-consuming 
reaction, it can neutralize incoming protons and thereby suppress 
the HER from proton reduction11. In this way, water reduction is not 

suppressed, but this reaction happens at more negative potentials. 
The challenge is controlling the reaction microenvironment (including 
pH and alkali cations).

We highlight five strategies for controlling the reaction micro-
environment to achieve high Faradaic efficiency in reverse-bias con-
figuration. First, introducing a thin alkali cation-rich catholyte layer 
(Fig. 4a) provides the necessary cations in the vicinity of the catalyst 
particles, whereas the H+ ions provided by the BPM react with OH− so 
that carbonate production is minimized. Xie et al.13 added a 65 µm thin 
catholyte layer with 0.5 M K2SO4 and achieved a Faradaic efficiency for 
CO2R products of ~80% at 300 mA cm2.

Similar to the previous strategy, pre-conditioning the BPM with 
K+ or Cs+ ions (Fig. 4b) would ensure the presence of alkali cations in 
the vicinity of the catalyst, promoting CO2R. Xiao et al.30 successfully 
exchanged the H+ in a Nafion membrane with Na+ or K+ ions, which led 
to a Faradaic efficiency of CO (FECO) of 91.5% in the initial stage of CO2 
electrolysis. The salt deposition problems that occur for the CEM case 
after 1 h may be resolved when applying this strategy to a BPM, as the 
supply of new cations is blocked by the AEL.

The third strategy involves employing catalysts that are CO2R 
active in acidic media (Fig. 4c). From a theoretical standpoint, a strongly 
acidic cathodic environment resembles the ideal electrode potentials 
(Fig. 3b) and warrants high ionic conductivity. Immobilized molecular 
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catalysts have the potential to catalyse CO2R under such acidic condi-
tions. For example, Siritanaratkul et al.31 used [Ni(1,4,8,11-tetraazacy-
clotetradecane)]2+ to achieve 40% higher FECO compared with an Ag 
catalyst in a zero-gap reverse-bias configuration. Also, co-depositing 
Lewis acids, which are proven for local pH tuning in seawater elec-
trolysis32, is inspiring in modification of the local environment in CO2R.

The fourth strategy leverages weak acids to decrease the acidity in 
the reaction microenvironment (Fig. 4d). Weak acidic groups decrease 
the membrane charge at low pH and thus the H+ concentration. Using 
alternating poly(acrylic acid) and poly(allylamine hydrochloride) 
as weakly acidic groups in the CEL demonstrated an increased FECO 
(40%)33. When further optimizing this strategy, it must be consid-
ered that the near-neutral pH will shift the cathode potential (Fig. 3b). 
Theoretically, the water dissociation could occur at <0.83 V if the H+ 
concentration in the CEL is <1 M, but it seems unlikely to fully com-
pensate for the cathode potential shift (for example, pH 4 would imply 
[H+] = 0.1 mM, which would cause transport limitations in the CEL).

The final strategy is the periodic injection of cations from the back 
of the gas diffusion electrode (GDE; Fig. 4e). This strategy has not been 
applied to BPM-based electrolysers, but Endrődi et al.34 supplied Cs+ 
ions (isopropanol/water with 1 M CsOH) every 12 h and achieved stable 
operation in an AEM electrode assembly electrolyser (~90% FECO for 
over 200 h).

The first strategy is the most simple and has proven efficacy at 
small scales13. However, introducing a catholyte layer can pose engi-
neering challenges during scale-up related to GDE breakthrough or 
flooding and the formation of CO2 gas bubbles near the BPM13,35. The 
second and fourth strategy can also be applied on the ionomers often 
used in the catalyst layer to modify the reaction microenvironment. 
Strategies that ensure the presence of cations (first, second and fifth) 
could be largely affected by water evaporation at the GDE, causing the 
cations to be removed as aerosols in the product stream and compro-
mising the electrolyser stability. To minimize cation loss, the humidity 
of the CO2 gas stream, the process temperature and cation crossover 
(required at small rates to replenish cations) are key parameters to 
optimize.

The third strategy, which involves using catalysts active in acidic 
media, has the added promise of decreasing the cell potential by miti-
gating the pH gradient between the CEL and catalyst layer. However, 
such catalysts are in an early stage of development and face challenges 
such as deactivation by CO and degradation31. Nevertheless, we would 
urge the electrocatalysis field to focus more efforts in this direction, 
since a stable CO2R catalyst that operates in acidic media would solve 
both main challenges associated with reverse-bias BPM operation.

Outlook
Parameters known to optimize BPMs are conductivity, water dissocia-
tion kinetics, water permeability, lifetime and counter-ion selectivity36. 
Ion exchange membranes often exhibit a trade-off between conduc-
tivity and selectivity. Specifically for BPM-based CO2 electrolysis, the 
conductivity and water dissociation kinetics of commercial BPMs 
should mainly be improved.

To improve conductivity and water permeability, the most 
straightforward method is to decrease the membrane thickness. 
Highly conductive polymers with sufficient mechanical stability for 
an ultrathin (<30 µm), self-standing layer already exist for the indi-
vidual polymers (for example, the perfluorinated, sulfonic acid-based 
Nafion for CEMs and quaternary ammonium-based polymers (such as 
Orion and PiperION) for AEMs). Compatible chemistries with similar 
swelling degrees must be found for a stable BPM with a long lifetime. 
Additionally, since water can be most easily supplied from the anolyte, 
and some AEMs (such as PiperION) have a low water permeability37, an 
asymmetric BPM with a thin AEL is a logical design strategy. Although 
decreasing the thickness will increase co-ion crossover, we argue 
that a minor amount of cation crossover from the anolyte could actu-
ally be beneficial for the performance of the system38, or it could be 
tuned by using larger cations. Moreover, crossover of (bi)carbonates 
will probably be irrelevant at high current densities (>1 A) due to the 
electro-osmotic drag in the opposite direction39.

Simultaneously increasing both the conductivity and the selec-
tivity of ion exchange membranes is a widely known challenge, but it 
is a progressing field. Kitto and Kamcev40 are working on increasing 
the charge density by placing the charged functional groups in the 
polymeric backbone itself, to remove trade-off of cross-linking versus 
functionality. Other promising methods to increase the conductivity 
include the alignment of the polymeric chains in order to optimize 
ionic pathway; for example, by conducting the polymerization under 
an electric field41.

Solutions for enhanced water dissociation kinetics include 
three-dimensional (3D) interfaces and water dissociation catalysts 
blended between the layers. A 3D interface can be created by, for exam-
ple, electrospinning the two ionomers simultaneously, which increases 
the contact area and improves the adhesion between the layers42,43. 
A catalyst blended in the interfacial layer enhances the kinetics of 
water dissociation and has been shown to largely decrease the ohmic 
resistance of BPMs44. Understanding of the catalysis mechanism with 
respect to the application can contribute to the design of these inter-
facial catalyst layers33,45,46, as the catalyst criteria could differ for water 
dissociation, water recombination and carbonate recombination.  
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The use of graphene oxide and thin layers has demonstrated stable low 
overpotentials (<250 mV at 1 A cm2), and strongly asymmetric BPMs 
have even reached 9 A cm2 (refs. 47,48), surpassing the 600 mA cm2 
limiting current of existing commercial BPMs.

In summary, we argue that avoiding CO2 crossover and ensuring 
favourable anode conditions are crucial steps towards the scale-up 
of CO2 electrolysis. Reverse-bias BPMs provide these conditions for 
a stable and scalable process, but improvements are needed in the 
cathode interaction and water dissociation efficiency. We have shown 
that the Faradaic efficiency can be improved when the acidic CO2R 
catalyst interfaces and proton mobility are controlled: five strategies 
are available for that. When also implementing thickness optimization, 
3D interfaces with new water dissociation catalysts and available con-
ductive polymers, the reverse-bias BPM system has high potential as 
the primary choice of separator for stable and scalable CO2 electrolysis.

Data availability
Source data are provided with this paper.
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