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Summary
This thesis aims to address the challenges and opportunities in optimizing last-mile delivery in
the e-commerce logistics chain. The research is focused on integrating customer preferences,
including those related to perishable products, into the selection of pickup points, and parcel
lockers, and the planning of delivery routes to enhance efficiency and customer satisfaction.

The proposal outlines the context of last-mile delivery optimization, highlighting the increasing
consumer demand for personalized and convenient delivery options against traditional cost and
time efficiency models. It discusses the emergence of pickup points and parcel lockers as cost-
effective, flexible, and convenient alternatives to direct home delivery, addressing challenges
such as failed deliveries and the need for 24/7 accessibility.

The main research question explores how the optimized delivery route planning that accom-
modates customer preferences for perishable products, can enhance the e-commerce logistics
chain’s efficiency and satisfaction. It sets out to analyze customer preferences, logistical chal-
lenges presented by perishable products, and methods to optimize pickup point and parcel
locker selection and delivery routes.

Objectives include evaluating customer preferences, investigating logistical challenges of per-
ishable goods delivery, determining the impact of integrating customer preferences into the
logistics model and investigating the relationship between delivery method alignment with cus-
tomer preferences and overall satisfaction and efficiency.

The scope is focused on the strategic and operational design of delivery routes for perishable
and non-perishable items, leveraging the infrastructure provided by the company within the
urban context of Rotterdam and Delft. It aims to balance minimizing delivery costs with max-
imizing customer satisfaction through a bi-objective optimization challenge. The methodology
involves the Best Worst Method for modeling customer preferences and the Vehicle Routing
Problem (VRP) model for optimizing delivery routes, considering additional constraints related
to customer preferences and perishable goods.

Expected outputs include comprehensive optimization of delivery routes and pickup point se-
lections that integrate customer preferences, detailed mathematical models, and algorithmic
solutions aimed at reducing delivery costs and maximizing customer satisfaction. The proposal
seeks to contribute to the logistics and supply chain management field by offering actionable
insights for logistics companies and filling identified research gaps.
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1 Introduction

1.1 Research Context

In the field of logistics and transportation management, optimizing the last-mile delivery process
has become a key focus for modern businesses. This phase of delivery, crucial in determining
both operational effectiveness and customer contentment, involves the strategic selection of
pickup points and meticulous route planning. Given the competitive nature of today’s market,
consumer expectations now extend beyond prompt delivery to include personalized and conve-
nient service options. This shift in consumer demands calls for a reassessment of conventional
route optimization strategies, which traditionally emphasize reducing costs and maximizing
time efficiency, to align with the evolving landscape. This adaptation forms the central theme
of this thesis proposal, exploring how these emerging requirements can be integrated into ex-
isting logistical frameworks.

Pickup points (PP) have emerged as a rapidly expanding alternative to traditional home de-
livery methods, now representing approximately 20% of household parcel deliveries in France,
signifying a substantial customer base[1]. Cost-wise, utilizing pickup points for parcel delivery
is more economical than direct-to-home delivery, regardless of the delivery area being urban or
rural. The primary benefits include a higher density of deliveries per location and a significant
decrease in the incidence of failed deliveries. Conversely, the frequent failures associated with
home delivery can result in considerable financial losses and unnecessary transport distances.

Furthermore, the adoption of pickup points as a delivery option offers a flexible solution to
the challenge of meeting diverse customer preferences. This method accommodates the varying
schedules of recipients, allowing for parcel collection at their convenience, which significantly re-
duces the likelihood of missed deliveries. The strategic placement of these points in inaccessible
locations, such as retail stores or dedicated collection hubs, further enhances this convenience,
fostering a positive customer experience. Consequently, the incorporation of pickup points into
delivery systems not only addresses cost and efficiency concerns but also aligns with the evolv-
ing expectations of consumers, who increasingly value flexibility and reliability in their delivery
options.

Parcel lockers, a novel innovation in the realm of logistics and delivery services, provide an
automated solution for secure and convenient package storage and retrieval. These self-service
kiosks, strategically located in accessible public areas such as shopping centers, transport hubs,
and residential complexes, enable customers to pick up their parcels at any time, offering unpar-
alleled flexibility outside traditional delivery windows. This system addresses several logistical
challenges by minimizing the need for direct recipient-to-delivery personnel interaction, thereby
reducing the risk of failed deliveries and enhancing operational efficiency. Additionally, parcel
lockers serve as a critical component in the optimization of last-mile delivery operations, of-
fering a scalable and cost-effective alternative that caters to the modern consumer’s demand
for convenience, security, and 24/7 accessibility. Their integration into the delivery ecosystem
represents a forward-thinking approach to meeting the evolving needs of both businesses and
consumers in an increasingly digital and convenience-oriented market.
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In the domain of last-mile delivery and e-commerce, three predominant order fulfillment meth-
ods have emerged: home delivery, pickup points, and parcel lockers. E-commerce and logistics
entities often favor dispatching orders to pickup points or parcel lockers due to the reduced
costs associated with these methods. Conversely, customer preferences for these fulfillment
options vary widely. Individuals with work commitments may opt for parcel lockers or self-
collection at pickup points, given their absence from home during weekday hours. In contrast,
other consumers may choose home delivery for its convenience, eliminating the need to travel for
package retrieval. This divergence in preferences between logistics providers, who prioritize cost
efficiency, and customers, who seek convenience, frequently leads to a misalignment of interests.

Consequently, in the processes of route planning and the strategic selection of pickup point
locations, incorporating customer preferences is pivotal for augmenting customer satisfaction.
This consideration not only addresses the diverse needs and schedules of the end-users but
also contributes to cost reduction by minimizing the incidence of unsuccessful home deliveries.
By integrating consumer preferences into logistical decision-making, companies can tailor their
delivery systems to offer more personalized and efficient services. This alignment between logis-
tical strategies and customer expectations facilitates a more seamless and satisfactory delivery
experience, fostering loyalty and potentially increasing the efficiency of the entire supply chain.
Moreover, understanding and adapting to these preferences can lead to innovative logistics solu-
tions that further optimize last-mile delivery operations, thereby enhancing the overall efficacy
and sustainability of e-commerce and logistics industries.

Furthermore, the expansion of the e-commerce sector has facilitated the diversification of prod-
uct types that can be distributed through logistics networks, including perishable commodities.
Such items, encompassing foodstuffs, floral arrangements, and pharmaceuticals, necessitate
stringent management of temperature conditions, expedited transit, and careful handling to
preserve their quality from origin to destination. The proficient orchestration of perishable
goods delivery is contingent upon a sophisticated infrastructure designed to meet these spe-
cialized requirements. Key components of this infrastructure include vehicles equipped with
refrigeration capabilities, warehouses with climate control features, and the integration of tech-
nological solutions for real-time tracking and logistical oversight.

Additionally, the surge in consumer expectations for the prompt and fresh delivery of perish-
able products has been a driving force behind technological advancements within the logistics
field. Innovations such as adaptive routing algorithms, which can recalibrate routes based on
live traffic data, and predictive analytics tools for accurate demand prediction, are emblematic
of the sector’s evolution. These advancements not only enhance the efficiency and reliability
of perishable goods delivery but also contribute to minimizing spoilage and optimizing supply
chain operations, thereby aligning with sustainability objectives and elevating consumer satis-
faction.

Companies must balance the urgency of delivery with the need for cost-effectiveness, all while
ensuring product quality is uncompromised. As such, the successful delivery of perishable
items not only enhances customer satisfaction and trust but also contributes to the reduction
of waste and loss, aligning with broader sustainability goals within the supply chain. Thus,
when companies are planning delivery routes and PP site selection, perishable products should
also be taken into consideration.
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1.2 Research Questions and Objectives

This research aims to optimize the order fulfillment ways, alongside delivery route planning,
to accommodate customer preferences, particularly for perishable products, thereby enhancing
efficiency and satisfaction in the e-commerce logistics chain. To achieve this, the following key
research questions and objectives have been formulated:

Main Research Question:
How can the order fulfillment ways for customers, along with delivery route planning, be op-
timized to accommodate customer preferences, including for perishable products, to enhance
efficiency and satisfaction in the e-commerce logistics chain?

Supporting Research Questions:

1. What are the predominant customer preferences regarding the delivery of perishable and
non-perishable products through pickup points, parcel lockers, and direct home delivery,
and how do these preferences vary across different consumer segments?

2. What specific logistical challenges arise when delivering perishable products through
pickup points and parcel lockers, and what strategies can be implemented to ensure
product integrity while optimizing cost and efficiency?

3. How can optimization methods be applied to improve the order fulfillment ways for each
customer, and delivery routes in a way that integrates both customer preferences and the
perishability constraints of products?

4. How does the alignment of delivery methods with customer expectations impact customer
satisfaction, and the overall efficiency of last-mile delivery operations?

Research Objectives:

1. To evaluate customer preferences for the delivery of both perishable and non-perishable
products, with a specific focus on the choice between pickup points, parcel lockers, and
home delivery.

2. To identify and analyze the key logistical challenges associated with the delivery of perish-
able goods through different fulfillment methods and develop strategies to address these
challenges while maintaining product quality and customer satisfaction.

3. To assess the impact of integrating customer preferences into logistics models, specifically
in terms of efficiency, cost-effectiveness, and service quality in last-mile delivery.

4. To explore the relationship between delivery method alignment with customer expecta-
tions and the subsequent effects on consumer satisfaction, retention, and long-term loyalty
in e-commerce logistics.

By addressing these research questions and objectives, this study seeks to provide action-
able insights into improving last-mile logistics efficiency while meeting the diverse needs of
e-commerce consumers. The findings aim to contribute to both theoretical advancements in lo-
gistics optimization and practical implementations that enhance service quality and operational
performance.
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1.3 Research theory and methods

In this study, the Best-Worst Method (BWM) is employed to model customer preferences and
decision-making processes regarding delivery options. The BWM is particularly effective in
capturing customer preferences by focusing on the most and least important attributes of dif-
ferent delivery methods[2]. This method allows the estimation of relative importance weights
for each factor involved in the decision-making process, such as delivery time, location & dis-
tance, delivery fee, and freshness.

Vehicle routing problem will be the basement for this problem. Vehicle Routing Problem (VRP)
model is particularly well-suited for modeling the complexities of delivery route optimization,
including the assignments of order fulfillment ways, while considering customer preferences for
both perishable and non-perishable products. The VRP’s strengths in addressing this specific
problem stem from its flexibility, comprehensiveness, and adaptability to various constraints
and objectives. The VRP is inherently designed to optimize routes for a fleet of vehicles while
considering multiple objectives, such as minimizing delivery costs and maximizing customer
satisfaction. It can easily incorporate additional constraints related to customer preferences,
delivery windows, and the specific needs of perishable goods (e.g., temperature control, and
quick delivery).

Bi-objective optimization approach is utilized to model customer preferences for delivery op-
tions. It allows for the exploration of trade-offs between these two objectives by generating a
Pareto front, which represents the set of non-dominated solutions where no solution can im-
prove one objective without worsening the other[3]. Weight coefficients are used to reflect the
relative importance of each objective, and the optimization process provides a set of optimal
delivery strategies that balance both cost and satisfaction.

1.4 Research Structure

The thesis is structured to provide a comprehensive and systematic analysis of the research
problem. It begins with the introduction, which presents the background, motivation, and re-
search objectives. This is followed by the literature review, where relevant studies in last-mile
logistics, customer preferences, and optimization methods are critically examined. The method-
ology section outlines the research design, data collection methods, and analytical techniques
used to address the research questions.

Subsequently, the problem description and mathematical formulation section defines the prob-
lem and presents the mathematical models employed for optimization, followed by a solution
methods chapter illustrating the methods used to solve the model. The results section provides a
detailed analysis of computational findings and their implications. Finally, the thesis concludes
with the conclusions and discussions, summarizing key insights, discussing their relevance, and
identifying potential areas for future research.
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2 Literature Review

2.1 Overview

The literature review serves as a foundational element of our research on optimizing delivery
route planning, with a particular focus on incorporating customer preferences for both per-
ishable and non-perishable products. This section aims to systematically synthesize existing
research findings, theoretical contributions, and practical insights relevant to the topic. By
doing so, it establishes a comprehensive understanding of the current state of knowledge, iden-
tifies prevailing trends and gaps in the literature, and justifies the need for the present study.

This literature review is designed to encompass a wide range of scholarly articles, industry
reports, case studies, and conference proceedings published over the last 20 years. Special
attention is given to works that specifically address the complexities of last-mile delivery opti-
mization, the integration of customer preferences in logistic operations, the logistical challenges
of perishable goods delivery, and the innovative use of pickup points and parcel lockers as al-
ternative delivery solutions. By delimiting the scope to these areas, the review aims to capture
the multifaceted nature of delivery route optimization in the contemporary e-commerce and
logistics landscape.

The literature review pursues several key objectives and also has corresponding parts:

1. To map the evolution of delivery route optimization;

2. To explore the role of customer preferences in shaping delivery logistics;

3. To explore the specific challenges and solutions associated with the delivery of perishable
products, recognizing the critical importance of timeliness and condition upon delivery.

2.2 Literature Review

2.2.1 Last-mile delivery analysis

Last-mile delivery, a pivotal phase in urban logistics, entails the transportation of goods to
consumers’ residences, striving for efficiency in cost, speed, and accuracy [4]. Despite its signif-
icance, scholarly investigations have illuminated the substantial costs and inefficiencies plaguing
home delivery systems. Notably, Shashi’s study underscores that last-mile delivery represents
a staggering 53% of overall shipping expenses [5]. Furthermore, the economic impact of unsuc-
cessful deliveries is considerable, with an average cost of $17.78 incurred for each failure, and a
failure rate surpassing 5% for all last-mile deliveries [6]. These challenges, particularly the high
incidence of delivery failures, have catalyzed the adoption of alternative delivery methodologies.
Pickup points, for instance, have emerged as an efficacious solution, witnessing an increased
uptake during recent epidemics as a strategy to circumvent the resource wastage endemic to
traditional home delivery models.

Wang’s investigation into the efficacy of three predominant "Last mile" delivery methods—attended
home delivery (AHD), reception box (RB), and collection-and-delivery points (CDPs)—reveals
their varying suitability across different urban landscapes, particularly in areas of high popu-
lation density. The study delineates that AHD and independent RBs are more effective in less
populated areas or those with smaller order volumes. Conversely, shared RBs and CDPs excel
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in densely populated regions with substantial order quantities, with the optimal choice between
them hinging on labor and facility costs [7]. Further research by Song et al., using West Sussex,
UK, as a case study, corroborates the efficiency of self-pickup modes over traditional home deliv-
ery, highlighting significant reductions in transportation distances and delivery failure rates [8].
Cardenas introduces an innovative cost model focused on urban logistics efficiency, concluding
that pickup points not only mitigate delivery failures but also enhance delivery density. This
optimization leads to societal and logistical benefits, particularly when the volume of parcels to
pickup points is sufficiently high, evidenced by a decrease in overall vehicle kilometers traveled
(VKT) [1]. Subsequent analysis by Song assesses three home delivery frameworks: the tradi-
tional model, the PP (pick-up points) model, and the SDB (self-delivery boxes) model. This
research determines that both PP and SDB models significantly lower the customer’s collection
costs—by 29.1% to 84%—especially when home delivery failures exceed 30%. Moreover, the
SDB model is identified as superior in reducing express company delivery costs by 67.1% to
71.3% when missed deliveries range from 20% to 50% [9]. Punakivi took the Dutch food retailer
industry as an example and concluded that transportation costs using the shared reception box
concept are 55-66 percent lower in comparison with the current standard concept with attended
reception and two-hour delivery time windows[10].

The reviewed literature underscores the critical challenges and inefficiencies in last-mile deliv-
ery, notably the high costs and failure rates of traditional home delivery systems. Research
highlights the financial burden of last-mile logistics, prompting an exploration into alternative
delivery methods like pickup points and reception boxes. Studies by Wang, Song et al., and
others demonstrate that these alternatives can significantly enhance delivery efficiency and re-
duce costs, particularly in densely populated areas or scenarios with high delivery failure rates.
The findings suggest a strategic shift towards these innovative delivery solutions could offer a
more sustainable and cost-effective approach to last-mile logistics, tailored to specific urban
demographics and consumer needs.

2.2.2 Incorporating Customer preferences in last-mile delivery

Considering customer preferences in last-mile delivery route planning and order fulfillment
methods is crucial for several reasons. It directly impacts customer satisfaction by aligning
delivery services with their expectations and convenience, such as preferred delivery times and
locations. This alignment helps reduce failed deliveries and associated costs, improving opera-
tional efficiency. Additionally, understanding and integrating customer preferences can enhance
the overall customer experience, leading to increased loyalty and competitive advantage in the
market. It’s a strategy that not only meets current consumer demands but also anticipates
future trends and behaviors in e-commerce logistics.

Hayel considered customers’ limited rational behavior and analyzed the effects of delivery mode
delivery capacity, self-pickup mode processing capacity, and customer rationality level on the
customer’s choice of home delivery mode or self-pickup mode[11]. Luigi Guarino Neto investi-
gated the willingness of consumers from developing countries to use the pick-up point structures
and the viability of implementing them. They concluded that consumers from BOP(bottom of
the pyramid) are the ones who intend to use the system when available to gain benefits, such as
lower shipping costs, faster delivery, and convenience. Consumers from HIC regions were not
so interested in the system and still prefer to receive their home-delivery purchases[12]. Yulia
followed a focus group design and built on grounded theory to provide insights into customer
value in relation to parcel lockers. They found that the use of parcel lockers in the last-mile
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delivery service algorithm results in social customer value. However, customer value in relation
to parcel lockers is created in a dynamic, correlated manner, leading to both value creation
and value destruction[13]. Xueqin et al. explored consumers’ delivery mode preferences in
omni-channel shopping, focusing on their willingness to exert physical, social, and attentive
effort in the delivery process. Using multinomial logistic regression, it finds that preferences
vary significantly based on the effort consumers are willing to contribute, with many favor-
ing unattended delivery options to avoid social interactions and attentive effort. The research
contributes to understanding how consumer logistics efforts influence delivery choices, offering
insights for designing more effective omni-channel distribution systems[14]. Molin et al. in-
vestigated Dutch consumers’ preferences for online parcel delivery methods, focusing on home
delivery versus parcel locker (PL) use. By conducting a stated choice experiment, it identi-
fies that even minor increases in home delivery costs, coupled with closer PL locations, could
significantly shift consumer preference away from home delivery towards PLs. The findings
suggest a potential strategy for reducing the dominance of home delivery by making PLs more
accessible and economically attractive, highlighting the importance of delivery costs and con-
venience in consumer choice behavior[15]. The research by Amorim et al. examines customer
preferences for delivery attributes in attended home delivery, with a focus on the grocery sec-
tor. It highlights the importance of speed, precision, and timing in delivery service choices
and demonstrates how tailoring delivery options to specific customer segments could increase
shipping revenue by about 9%. The study provides insights into customer behavior and service
design for retailers[16]. Smeets’s thesis explores customer preferences for pick-up points versus
home delivery in online grocery shopping. Through a stated choice experiment, it investigates
the impact of socio-demographics, psychographics, and general online shopping behavior on
these preferences. The study finds differences in preferences between urban and rural areas,
and across scenarios like weekly groceries and dinner parties. It suggests that retailers can
enhance customer satisfaction and encourage the use of pick-up points by considering these
preferences in their service offerings[17].

The collective research underscores the complexity of consumer preferences in last-mile delivery,
revealing a nuanced landscape where choices are influenced by a myriad of factors including
cost, convenience, effort, and socio-demographic profiles. These findings highlight the impor-
tance of adopting flexible, consumer-centric delivery solutions that cater to the diverse needs
and expectations of customers. By integrating such insights into logistics strategies, businesses
can enhance service quality, improve customer satisfaction, and navigate the evolving demands
of the e-commerce landscape more effectively. While the discussed studies effectively analyze
customer preferences for various last-mile delivery options, they notably do not integrate these
preferences into the optimization of last-mile delivery routes and pickup point site selection.
This gap suggests an opportunity for future research to develop comprehensive models that not
only consider consumer willingness but also how these preferences can be systematically incor-
porated into logistical decision-making to optimize efficiency and satisfaction in the delivery
process.

2.2.3 Delivery route planning and site selection considering customer preferences

Customer preferences in last-mile delivery focus on convenience, speed, flexibility, and reliability[15].
Consumers increasingly favor options that offer precise delivery windows, the ability to track
shipments in real-time, and flexible delivery locations, including home delivery, pickup points,
and parcel lockers. The choice often hinges on balancing cost with the convenience of delivery
times and locations that fit into their daily routines, indicating a shift towards personalized
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delivery services that cater to individual lifestyle needs and expectations.

Zhang introduces a heuristic algorithm to address the Vehicle Routing Problem (VRP), incor-
porating customer service preferences into the routing decisions[18]. The authors develop a
multi-objective mathematical model and propose a hybrid genetic algorithm enhanced by an
insertion heuristic approach. The algorithm specifically accounts for the fuzziness of customer
preferences by employing a modified push-bump-throw procedure. Computational analyses
demonstrate the algorithm’s effectiveness, showcasing improvements over existing methods.
Christian introduced and analyzed the vehicle routing problem with delivery options (VR-
PDO), in which some requests can be shipped to alternative locations with possibly different
time windows[19]. Alba built a model for delivery routing in a parcel-locker network taking
into account receivers’ preferences. It solved a routing problem in delivering parcels from a
depot to parcel lockers with the aim of maximizing the utilities of the receivers going to the
lockers. A Pareto frontier is obtained by optimizing these two objectives[20]. Guerrero-Lorente
et al. present a mixed integer program (MIP) for redesigning the distribution network of a
parcel carrier catering to omnichannel retailers, considering customer preferences for delivery
and returns. It includes various facility types like city distribution centers, intermediary depots,
and automated parcel stations, focusing on the impact of these facilities on consumer choice
and transportation costs. The study proposes a heuristic approach that significantly acceler-
ates the solution process, with a case study on a Spanish parcel carrier demonstrating potential
improvements in network design for efficiency and customer satisfaction[21]. Abdulkader et al.
introduced a new variant of the vehicle routing problem tailored for omni-channel retail distri-
bution systems, where both retail stores and direct consumer deliveries are served from a single
distribution center. It integrates retail store assignments and delivery routes into a comprehen-
sive model, proposing two solution approaches: a two-phase heuristic and a multi-ant colony
(MAC) algorithm. This study extends the capacitated vehicle routing and pickup and delivery
problems by considering retail and online consumer demands, offering practical implications for
omnichannel retail logistics optimization[22]. Peide Liu presents a comprehensive analysis of
vehicle routing in omni-channel retail, exploring how to enhance logistical efficiency and cus-
tomer satisfaction. Through mathematical modeling, it evaluates the impact of delivery mode
capacities and consumer rationality on preferences between home delivery and self-pickup, high-
lighting the potential benefits of integrating various delivery methods. The study underscores
the importance of considering consumer preferences in last-mile delivery to optimize routes and
site selection for pickup points, suggesting a significant area for further research to directly link
these preferences with logistical strategies for improved service outcomes[23].

Mateusz introduces a geometric approach to designing parcel locker networks, emphasizing sus-
tainability in last-mile delivery by incorporating user preferences. The research, focusing on
Lubusz Voivodeship residents, indicates that designing networks based on customer distance
preferences can significantly enhance sustainability. Findings reveal that a triangular network
covers a larger area with fewer parcel lockers than a square network, offering over 20% more
efficiency. This geometric method, while specific to Lubusz Voivodeship, presents a universal
model for improving parcel locker system design, balancing user convenience with environmen-
tal and operational efficiency[24].

The literature review illustrates a significant shift in vehicle routing problem (VRP) research
toward customer-centric models. By incorporating customer preferences and leveraging inno-
vative algorithms and mathematical modeling, these studies demonstrate a holistic approach
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to optimizing last-mile delivery. The emphasis on integrating consumer choices highlights the
evolving focus of logistics optimization—balancing efficiency with enhancing customer satisfac-
tion in an increasingly complex retail landscape.

While the literature makes significant strides in integrating customer preferences into route
optimization for last-mile delivery, it reveals a research gap: none thoroughly explores a delivery
network that combines home delivery, attended pickup points, and unattended parcel lockers.
This oversight highlights an opportunity for future studies to design and assess a holistic delivery
system that accommodates these diverse delivery modes simultaneously, potentially offering a
more flexible and customer-oriented approach to last-mile logistics. The significance of customer
preferences becomes even more critical for perishable products, as unattended parcel lockers
lack refrigeration capabilities, which are essential for maintaining the freshness of these items.
This limitation underscores the necessity of understanding and prioritizing customer desires to
ensure the delivery method aligns with the specific needs of perishable goods, enhancing the
overall satisfaction and convenience for the consumer.

2.2.4 Perishable product delivery

Integrating perishable product delivery within the broader context of last-mile logistics along-
side non-perishable goods presents unique challenges and opportunities. This approach neces-
sitates advanced planning and route optimization to ensure perishables are delivered within
tight timeframes, maintaining product integrity. Combining perishable and non-perishable de-
liveries requires innovative logistic strategies, such as using multi-temperature vehicles and
dynamic routing, to maximize efficiency while meeting diverse customer expectations. Empha-
sizing perishable goods introduces complexities in logistics but, when effectively managed, can
significantly enhance service quality and operational sustainability in the evolving e-commerce
landscape.

Liang et al. studied a supplier that delivers perishable goods to customers (home delivery) in
a multiple-time-period planning horizon while simultaneously considering transportation cost
and customer satisfaction. The perishable delivery problem is modeled as a bi-objective vehi-
cle routing problem with multiple time periods, aiming to minimize the transportation costs
and maximize customer satisfaction by minimizing the loss of perishable freshness[25]. Xuping
presented a methodology for optimizing delivery schedules of perishable products to enhance
customer satisfaction while minimizing delivery costs. It introduces a multi-objective vehi-
cle scheduling optimization model that considers both the freshness of perishable goods and
customer-preferred delivery times. A priority-based genetic algorithm (PB-GA) is developed
to solve this model efficiently. Through numerical experiments, the approach demonstrates
significant improvements in customer satisfaction and delivery efficiency compared to tradi-
tional methods, highlighting its potential for practical application in logistics for perishable
products[26]. Byung presents a vehicle routing problem addressing the delivery of perishable
food products using both refrigerated and general-type vehicles. It aims to maximize customer
satisfaction by considering the freshness of delivered products. A nonlinear mathematical model
and heuristic algorithm were developed to optimize vehicle routes, factoring in the vehicles’ dis-
tinct capabilities to maintain product freshness. This approach seeks to balance the operational
costs with the goal of delivering perishable goods in their optimal state, demonstrating the al-
gorithm’s effectiveness through numerical examples and sensitivity analysis[27]. Wang develops
a multi-objective optimization model (MO-VRPMTW-P) to enhance perishable product dis-
tribution, balancing cost minimization with product freshness maximization. Utilizing a novel
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heuristic algorithm that combines variable neighborhood search and genetic algorithms, the
research focuses on the spatiotemporal characteristics of fresh product orders. Demonstrated
through computational experiments, the proposed method shows significant improvements in
distribution efficiency and freshness preservation, indicating the value of incorporating spa-
tiotemporal strategies in the logistics of perishable goods[28].

The literature emphasizes advanced approaches to optimizing perishable goods delivery, blend-
ing cost-efficiency with customer satisfaction by focusing on product freshness and preferred
delivery timings. These studies introduce innovative models and algorithms designed to tackle
the complexities of perishable logistics, showcasing the potential for significantly enhanced dis-
tribution efficiency and customer service. This collective research marks a pivotal step toward
smarter, more responsive logistics systems capable of addressing the unique challenges pre-
sented by perishable products.

Existing research on perishable product delivery has predominantly centered around direct
home delivery models, often neglecting alternative distribution channels such as self-pickup
options, including parcel lockers and pickup points. This oversight represents a significant re-
search gap. Self-pickup options could potentially offer greater flexibility for consumers who
may not be home to receive deliveries, thereby reducing missed deliveries and enhancing overall
customer satisfaction for perishable goods. These alternatives also typically allow for extended
pickup hours, providing convenience that aligns better with varying consumer schedules.

Furthermore, there is a noticeable lack of studies that explore the simultaneous delivery of
perishable and non-perishable items within the same logistical framework. This area presents a
substantial opportunity for improving logistical efficiencies. Integrating the distribution of both
perishable and non-perishable goods could lead to optimized delivery routes, reduced trans-
portation costs, and lower carbon footprints. Such integration could also enhance customer
convenience by consolidating multiple order types into single delivery events, thus reducing the
frequency of deliveries needed per customer and streamlining the customer experience.

Below table 1 is the research gap table concluded from the literature research discussed above.
The main research gaps for this topic can be concluded as follows:

1. Lack of exploration of delivery options integrating home delivery, attended pickup points,
and unattended parcel lockers regarding delivery of perishable products;

2. Lack of comprehensive studies on customer preferences for a wide range of delivery options
in a mixed product-type delivery network;

3. The absence of research on the simultaneous delivery of perishable and non-perishable
items, considering customer preferences in delivery route and pickup point optimization
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Table 1: Identified Research Gaps in Last-Mile Delivery Optimization

Research
Area

Key Findings Methodologies
Used

Identified Research
Gaps

Potential
Impact of
Addressing
the Gap

Customer
Preferences
for Delivery

Options

Focus on home
delivery, limited

insights into
alternative options
like parcel lockers

and attended
pickup points.

Surveys,
discrete choice
experiments,
statistical
modeling.

Few studies consider
preferences across
multiple delivery

options, especially for
perishable and

non-perishable goods
integration.

Better
understanding
can enhance

customer-centric
delivery
services,

improving
satisfaction and

logistics
efficiency.

Delivery
Route Opti-

mization
Incorporat-

ing
Customer

Preferences

Emphasizes
benefits of

customer-centric
routing for

efficiency and
satisfaction.

Heuristic
algorithms,

multi-objective
optimization,

customer
feedback
analysis.

Lack of fully integrated
models considering home

delivery, attended
pickup points, and

lockers simultaneously.

More adaptive
logistics

solutions could
enhance

operational
efficiency and
service quality.

Perishable
Goods Dis-
tribution
Strategies

Research focuses
on home delivery
with an emphasis

on cost and
freshness.

Mathematical
models,
heuristic

optimization,
perishability
simulations.

Minimal studies explore
self-pickup (e.g., parcel
lockers and attended
pickup points) for
perishable goods.

Exploring these
options may

improve
flexibility,

reduce delivery
failures, and

enhance
freshness
retention.

Integrated
Delivery of
Perishable
and Non-
Perishable
Products

Most research
separates

perishable and
non-perishable

deliveries.

Mixed-integer
programming,

genetic
algorithms,
multi-modal
optimization.

Limited studies on
integrated logistics

frameworks supporting
both product types.

Optimizing
mixed-order

fulfillment could
increase

efficiency, lower
costs, and
improve
customer

convenience.
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3 Problem desciption and mathematical formulation

3.1 Overview

In the context of modern e-commerce and logistics, last-mile delivery is a crucial phase that
has significant impacts on both operational costs and customer satisfaction. The challenge
is particularly pronounced in densely populated urban areas, where ensuring timely and effi-
cient delivery is essential for maintaining competitiveness and customer loyalty. The goal of
this study is to optimize delivery operations by addressing the simultaneous problems of route
planning, delivery mode selection, and facility location, with a focus on customer preferences
and delivery of both perishable and non-perishable goods.

For the problem, it can be defined as a CVRP problem with a second objective along with its
constraints. The problem is defined on a directed graph G = (V,E), where the node set V
containers all the set of customer I, attended pickup point JA, unattended pickup point JU and
depot 0, while the arc set E is given by {(i, j) : i ∈ V, j ∈ V, i ̸= j}. For each customer I, they
can choose what kind of products they want to order, ambient, fresh or frozen items, or all
of them. Customers who order only ambient (I1) and customers who order both ambient and
fresh or frozen (I2) become the total set of customers I = I1 ∪ I2. Customers have the option
to choose between two order fulfillment methods: home delivery or pick-up points (attended or
unattended). Attended pick-up points refer to locations where staff are available to assist with
parcel collection. In contrast, unattended pick-up points, such as parcel lockers, are self-service
facilities that operate without the presence of staff. Attended pickup point JA and unattended
pickup point JU form the set of pickup points J = JA ∪ JU . For customers purchasing fresh or
frozen products, these items need to be properly stored in refrigerators or other temperature-
controlled settings to maintain their quality. When customers choose attended pick-up points,
these locations are equipped with refrigeration or freezing facilities that can keep the products
properly preserved, ensuring the quality is maintained. However, unattended pick-up points,
such as parcel lockers, lack such equipment, which can negatively impact the quality of fresh
or frozen products.

The model is formulated as a bi-objective optimization problem with a focus on minimizing
delivery costs while maximizing customer utility. The utility function considers key factors such
as delivery costs, travel time, and freshness of products, with particular emphasis on quality
preservation for perishable items. A set of constraints ensure the feasibility of the delivery
routes, including vehicle capacity limitations, flow conservation, customer visit requirements,
and preventing subtours.

3.2 Assumptions and Notations

3.2.1 Assumptions

Assumptions are essential in modeling complex real-world problems like VRP because they
simplify the system, making it computationally feasible and easier to interpret. Several as-
sumptions are made as follows:

1. Customer Utility Maximization: Customers are assumed to choose their delivery
method based on the maximization of their perceived utility. This utility is influenced
by factors such as delivery fee, delivery time, location proximity, and the freshness of
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perishable goods. This assumption allows us to model customer behavior in a way that
reflects economic decision-making processes and prioritizes customer satisfaction in the
delivery service design.

2. Static Travel Metrics: It is assumed that the distances and travel times between
all locations are predetermined and remain constant regardless of variables like traffic
conditions or weather. This assumption simplifies routing logistics by treating the travel
costs between nodes as fixed, enabling a focus on optimizing other aspects of the delivery
network.

3. Facility Capabilities: We assume that attended pickup points are equipped with fa-
cilities necessary for storing perishable products, ensuring their freshness until customer
pickup. Conversely, unattended lockers do not have such facilities. This distinction is
critical for decision-making related to the routing of perishable vs. non-perishable goods
and impacts the strategic placement and use of different types of delivery points.

4. Initial Freshness: Products are assumed to start at 100% freshness when they leave the
depot. This assumption establishes a baseline for measuring the degradation of product
quality over time and distance, which is vital for planning routes that minimize the time
perishable goods spend in transit, thereby enhancing customer satisfaction with product
quality.

These assumptions provide a foundation for developing a VRP model that is both manageable
and aligned with the practical considerations of a typical delivery system. While they streamline
the problem, it is important to recognize the potential for deviations in real-world applications,
which may necessitate adjustments or extensions to the model.

3.2.2 Notation

In table 2, all parameters used in this model are summarized. And in table 3, all the determi-
nation variables are listed in the table.

Below are detailed explanations of how the parameters used in this model are defined. Di,j rep-
resents the straight-line distance between point i and point j, calculated using their geographic
coordinates. The travel time tti,j is determined by dividing the distance between points i and
j by the average speeds in urban areas and highways, which are assumed to be 50 km/h. The
parameter pj reflects the type of pickup point (PUP). For attended PUPs, the fixed cost is set
at €40, whereas for unattended PUPs, it is €20. The higher cost for attended PUPs accounts
for labor costs associated with their operation.

The hourly cost of the delivery truck, h, is based on the market average price for a standard
box van with a tail lift (3500 kg gross weight), estimated to be €45 per hour, inclusive of all
operating expenses. The fixed daily cost, hd, incurred if the vehicle is utilized, is calculated as
the monthly rental cost of the truck divided by 30 days, yielding approximately €30 per day.
The service time at each point is derived from real operational data from the company, set at 1

3

hour per stop. This value accounts for the time required for deliveries to both customer homes
and pickup points, with the latter typically involving slightly more time due to the handover
process with the PUPs. These parameter definitions ensure the model is grounded in realistic
and practical assumptions.
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Table 2: Input Parameters

Input parameter Meaning
I Set of all customers
I1 Set of customers who only order ambient products
I2 Set of customers who order both ambient and fresh frozen products
J Set for all pickup points
JA Set of attended pickup points
JU Set of unattended pickup points
D Set of depot
V Set of all nodes
E Set of all edges
K Set of all vehicles
Di,j Distances between node i and node (km)j, i, j ∈ V
tti,j Travel time between node i and node j , i, j ∈ V
wi Weight of products ordered by customer i , i ∈ I

Pnumi Number of parcels for customer i , i ∈ I
Oi If products ordered by customer icontain odd size items or not , i ∈ I

Chdi Total cost of customer i if delivered by home delivery , i ∈ I
Cpi Total cost of customer i if delivered by pickup point , i ∈ I
qi Delivery Cost for customer i , i ∈ I

fcdi Cost value function of home delivery for customer i , i ∈ I
fcpi Cost value function of self-pickup for customer i , i ∈ I
fddi Distance value function of home delivery for customer i , i ∈ I
fdpi Distance value function of self-pickup for customer i , i ∈ I
pj Pickup point open cost for pickup point j , j ∈ J
h Hourly cost of vehicle
hd Fixed day cost if vehicle is used
st service time at each node
wc weight of cost objective
wu weight of utility objective

Table 3: Decision Variables

Decision variable Meaning
xi,j,k Edge (i, j) is traveled by vehicle k or not ,(i, j) ∈ E, k ∈ K
yi,i If customer i chooses home delivery or not ,i ∈ I
yi,j If customer i chooses self-pickup by point j or not,i ∈ I, j ∈ J
zj Pickup point j open or not ,j ∈ J
ti,k Arrival time at node i by vehicle k ,i ∈ V, k ∈ K
vk Vehicle k is used or not , k ∈ K
ui Variable for sub-tour elimination ,i ∈ V

Wdi Arrival time of node i ,i ∈ V
fi Freshness of product for customer i when delivered ,i ∈ I
fdti Utility of delivery time for customer i,i ∈ I
fcdi Utility of home delivery cost for customer i,i ∈ I
fcpj Utility of self pick up from pickup point j ,j ∈ J
fdpi,j Utility of distance for customer i picks up at pickup point j,i ∈ I, j ∈ J
V ti,i Home delivery utility for customer i ,i ∈ I
V ti,j Self-pickup utility for customer i by pickup point j ,i ∈ I, j ∈ J
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3.3 Mathematical model

The model is detailed in the following, the first objective is delivery cost minimization problem.

Z1 : Min
∑
i,j,k

h× tti,j × xi,j,k +
∑
j

pj × zj (1)

s.t. ∑
j∈J

yi,j + yi,i = 1 ∀i ∈ I (2)

yi,j ≤ zj ∀i ∈ I j ∈ J (3)

yi,i =
∑

j∈V,j ̸=i,k∈K

xi,j,k ∀i ∈ I (4)

yi,j ≤
∑

m∈V,m ̸=j,k∈K

xm,j,k ∀i ∈ I, ∀j ∈ J (5)

∑
j∈V,j ̸=i

xj,i,k =
∑

j∈V,j ̸=i

xi,j,k ∀i ∈ I/{D}, k ∈ K (6)

∑
i∈V,i ̸=0

x0,i,k =
∑

j∈V,j ̸=0

xj,0,k, ∀k ∈ K (7)

ui − uj +N × xi,j,k ≤ N − 1 ∀i ∈ {1, ...N} ∀j ∈ {1, ...N}, k ∈ K (8)

u0 = 1 (9)∑
j∈J,k∈K

xi,j,k ≤ 1, ∀i ∈ V, i ̸= 0 (10)

ti,k + tti,j + st ≤ tj,k +M × (1− xi,j,k), ∀i ∈ V, ∀j ∈ V, j ̸= 0, i ̸= j, k ∈ K (11)

M × vk ≥
∑

i∈V,j∈V

xi,j,k, ∀k ∈ K (12)

Objective Function 1 minimizes the total travel cost, pick-up point open cost, and also truck
usage cost. Constraint 2 requires the customer to choose either home delivery or self-pickup.
3 indicates the pickup point j needs to open if there is one customer who chooses this pickup
point to pick up their parcels. Constraint 4 means if the customer i chooses home delivery,
there must be a truck passing customer i. Constaint 5 is the same logic. Constraint 6 is flow
conservation constraint. 7 requires the vehicle k has to back to depot if it leaves depot. 8 and
9 are sub-tour elimination constraints. 10 limits the visit times of each node to be maximum
once. 11 calculates the arrival time of each node. 28 determines the usage of each truck.

Z2 : Max
∑

i∈I,j∈J

V ti,j × yi,j +
∑
i∈I

V ti,i × yi,i (13)

s.t.
wdi ≥ ti,k, ∀i ∈ V, ∀k ∈ K (14)
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wdi ≤ 10 + 7× (1− Z1) ∀i ∈ V (15)
wdi ≥ 10− 7× (1− Z2) ∀i ∈ V (16)
wdi ≤ 17 + 7× (1− Z3) ∀i ∈ V (17)
wdi ≥ 17− 7× (1− Z2) ∀i ∈ V (18)
1 = Z1 + Z2 + Z3 (19)

fdti ≤ 1× Z1 + (1− (wdi − 10)

7
)× Z2 ∀i ∈ V (20)

fi = f0 − φ · (wdi − 9), ∀i ∈ I, i ̸= 0 (21)
fi = f0 − φ · (wdi − 9), ∀i ∈ JA, i ̸= 0 (22)
fi = f0 − φ · (wdi − 9 + TA), ∀i ∈ JU , i ̸= 0 (23)

V ti,i = βdt1 · fdti + βc1 · fcdi + βd1 · fdd, ∀i ∈ I1 (24)

V ti,i = βdt2 · fdti + βc2 · fcdi + βd2 · fdd+ βf · fi, ∀i ∈ I2 (25)

V ti,j = βdt1 · fdt[j] + βc1 · fcpi + βd1 · fdpi,j, ∀i ∈ I1, j ∈ J (26)
V ti,j = βdt2 · fdtj + βc2 · fcpi + βd2 · fdpi,j + βf · fj, ∀i ∈ I2, j ∈ J (27)

Objective Function 13 maximizes the customer utility. 14 calculates the arrival time of each
node. 21 calculates the freshness when customers receive their parcels. 15 calculates the rela-
tive value of arrival time. 24 and 25 are the utilities for customers who choose home delivery,
either they order only ambient or both ambient and fresh frozen. 26 is the utility function of
self pickup.

These are the two objective functions of the model and their corresponding constraints.Since
this model is a two-objective optimization problem, the computational process of the model
needs to find a balance between the two objectives. So that the total objective synthesized
by the two objectives is optimal. Objective 1 is a minimization problem while objective 2 is a
maximization problem. Having combined the two objectives, the total objective to be optimized
is:

Min wc × Z1 − wu × Z2 (28)

3.4 Modeling Customers’ Satisfaction

In this research, the utility function is formulated to evaluate the effectiveness of different order-
fulfillment methods based on multiple criteria that influence customer satisfaction. These crite-
ria—such as freshness of products, delivery time, location and distance, and cost—capture the
essential aspects of customer preferences. Each criterion is quantitatively modeled to reflect its
impact on utility, enabling a structured and consistent evaluation of different order-fulfillment
options. By incorporating these criteria into the utility function, the research aims to provide
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a comprehensive framework for optimizing customer satisfaction while balancing logistical con-
straints.

In this research, min-max normalization method is applied to model all four criteria in the
utility function: delivery time, location and distance, cost, and freshness. For each criterion,
a relative value between 0 and 1 is calculated to ensure consistency and comparability. This
is achieved by normalizing the raw values, such as using the formula of subtracting the actual
value from the maximum value and dividing it by the range (maximum minus minimum). This
approach ensures that each criterion is represented on a uniform scale, facilitating their integra-
tion into the utility function and enabling an equitable evaluation of different order-fulfillment
methods.

A separate notation table for modeling customers’ satisfaction is shown below:

Table 4: Input Parameters for modeling customers’ satisfaction

Input parameter Meaning
Qmin Minimum delivery cost customer can accept
Qmax Maximum delivery cost customer can accept
Wmin Minimum delivery time customer can accept
Wmax Maximum delivery time customer can accept
Rmin Minimum (pickup) distance customer can accept
Rmax Maximum (pickup) distance customer can accept
ϕ Deterioration rate per hour for fresh and frozen products
f0 Start freshness of fresh and frozen products

When all four criteria have each been modeled, the entire model is complete. The specific
modeling methodology for each criterion is described below:

3.4.1 Cost

fcdi/fcpi = f(qi) =


1, if qi < Qmin

Qmax − qi
Qmax −Qmin

, if Qmin ≤ qi ≤ Qmax

0, if qi > Qmax

(29)

Formula 29 represents a piecewise function f(q) that maps the cost q to a normalized score
between 0 and 1 based on defined thresholds.

• If the cost q is less than the minimum threshold Qmin, the score f(q) is set to 1, indicating
the best possible outcome.

• If the cost q lies between Qmin and Qmax, the score is linearly scaled between 1 and 0,
reflecting the relative desirability of the cost within this range.

• If the cost q exceeds the maximum threshold Qmax, the score f(q) is set to 0, indicating
the least favorable outcome.

Qmin and Qmax are set at €2 and €6, respectively, as the acceptable range for delivery costs
[15]. If the delivery cost is less than €2, the cost utility is assigned a value of 1, indicating that
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customers perceive the cost as highly favorable. Conversely, if the delivery cost exceeds €6,
the cost utility is assigned a value of 0, reflecting the fact that customers are highly unlikely to
choose home delivery at such a price. This range captures the critical thresholds for customer
acceptance, where costs within the range gradually affect utility, while those outside the range
lead to sharp shifts in customer behavior.

The actual delivery cost that customers need to pay, q, is defined by the company’s pricing
policy. Home delivery mode and self-pick up have different costs.

The home delivery cost structure is determined by a base rate with additional surcharges applied
based on package specifications. The base at 4.80 euro per address. Additional charges include
a dimension surcharge of 0.75 euro for packages classified as oversized and a non-standard sur-
charge of 4.95 euro for parcels exceeding 23 kg. The total cost for each customer is determined
based on these criteria and the surcharges associated with their order.

The formula for home delivery cost per address is expressed as:

Chome = Bhome +


Snon−standard, if weight > 23kg

Sdimension, if package is oversized
0, otherwise

where Chome is the total home delivery cost per address, Bhome is the base rate (4.80 euro),
Snon−standard is the non-standard surcharge (4.95 euro), and Sdimension is the dimension sur-
charge (0.75 euro).

For self-pickup, a tiered pricing structure is implemented. A standard base rate of 4.20 euro is
applied for customers collecting more than three parcels, while a reduced base rate of 4.00 euro
is provided for those with three or fewer parcels. Similar to home delivery, additional charges
apply: a dimension surcharge of 0.75 euro for over-sized parcels and a non-standard surcharge
of 4.50 euro for parcels exceeding 23 kg.

The formula for self-pickup cost per address is expressed as:

Cpickup = Bpickup +


Snon−standard, if weight > 23kg

Sdimension, if package is oversized
0, otherwise

where Cpickup is the total self-pickup cost per address, Bpickup is the base rate, which is 4.20
units if the customer has more than three parcels and 4.00 euro otherwise, Snon−standard is the
non-standard surcharge (4.50 euro), and Sdimension is the dimension surcharge (0.75 euro).

Both delivery methods utilize an iterative approach to compute the total delivery cost for
each customer, ensuring that pricing accurately reflects package characteristics and delivery
conditions. The calculations take into account customer-specific data such as parcel count,
package weight, and size classification to determine the final delivery charge efficiently.
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3.4.2 Delivery time

fdti = g(wdi) =


1, if wdi < Wmin

Wmax − wdi
Wmax −Wmin

, if Wmin ≤ wdi ≤ Wmax

0, if wdi > Wmax

(30)

The calculation logic of the utility value for delivery time follows the same structure as the
cost function, as shown in formula 30. This function evaluates the utility of different delivery
time slots based on predefined parameters that reflect customer preferences and operational
constraints.

In this function, the parameters Wmin and Wmax are defined according to the standard weekday
working hours, ranging from 10:00 AM to 5:00 PM. These time boundaries are established to
align with common availability patterns of customers while ensuring a balance between service
efficiency and convenience.

The earliest possible delivery time is set at 9:00 AM, ensuring that deliveries occur within a
reasonable timeframe and do not arrive too early, potentially disturbing the customer. The
choice of 9:00 AM as the starting point allows for early morning deliveries while maintaining a
respectful buffer before most people begin their daily routines.

Conversely, the latest acceptable delivery time is 5:00 PM, as the company operates on a next-
day delivery promise. Delivering beyond this time would be considered late by customers who
rely on the service for timely fulfillment of their orders. This cutoff is especially crucial for cus-
tomers purchasing fresh produce, frozen items, or other perishable goods that may be needed
for preparing dinner. If a delivery arrives later than 5:00 PM, it may cause inconvenience or
disrupt meal planning, reducing customer satisfaction.

By structuring the delivery time utility function in this way, the company ensures that deliv-
eries are conducted within an optimal time-frame, balancing logistical efficiency with customer
convenience. The model accounts for both business constraints and consumer expectations,
helping to enhance the overall delivery experience.

3.4.3 Distance

fdpi,j = h(ri,j) =


1, if ri,j < Rmin

Rmax − ri,j
Rmax −Rmin

, if Rmin ≤ ri,j ≤ Rmax

0, if ri,j > Rmax

(31)

fddi = 1, ∀i ∈ I (32)

The calculation logic of the utility value for distance follows the same structure. But the func-
tion only applies to calculate utility for self pick-up at pickup point. As the utility of home
delivery is also 1.

The parameters Rmin and Rmax are defined as 0.25 km(approximately a 3-minute walk) and 1
km (approximately a 12-minute walk), respectively [15]. These distance thresholds are used to
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assess the convenience of self-pickup locations relative to the customer’s home address.

If a pickup point is located within a 0.25 km radius of the customer’s address, it is considered
highly convenient, as the walking distance is minimal. In this case, the utility value is assigned
a maximum score of 1, indicating that the pickup location is optimally placed for customer
accessibility.

As the distance from the customer’s home increases beyond 0.25 km, the perceived convenience
of the pickup point starts to decrease. This decline follows a linear function as we assumed,
meaning that for every incremental increase in distance, the utility value proportionally de-
creases. This approach aligns with consumer behavior, as longer walking distances typically
lead to lower willingness to pick up packages personally.

Once the distance surpasses 1 km, the pickup location is deemed too far for practical use,
significantly reducing the likelihood that customers will opt for self-pickup. At this threshold,
the utility value is set to, meaning that the pickup location is considered inconvenient and
unsuitable for self-collection.

This utility function ensures that self-pickup locations are evaluated based on their practical ac-
cessibility, providing a structured approach to modeling customer preferences. By implementing
a distance-based linear utility model, the system effectively differentiates between conveniently
located and inconvenient pickup points, helping to optimize delivery and self-pickup logistics.

3.4.4 Freshness

The freshness function is designed to accurately represent the gradual decline in product qual-
ity over time, beginning from its initial state at the depot. This function plays a crucial role
in modeling perishability, particularly for goods such as fresh produce, dairy, meat, and other
time-sensitive products that degrade in quality as they remain in transit or storage.

At the moment of departure from the warehouse, the initial freshness value, denoted as f0, is
set to 1. This represents the highest possible level of product quality, assuming optimal stor-
age and handling conditions at the point of dispatch. From this point onward, the freshness
of the product decreases progressively over time, following a linear degradation pattern. The
rate at which this deterioration occurs is governed by a predefined coefficient, represented by φ.

The coefficient φ serves as a measure of the product’s sensitivity to time-related degradation.
Different types of products exhibit varying levels of perishability, and this coefficient allows
for the differentiation of such characteristics. A higher value of φ indicates that the product
deteriorates more rapidly, meaning it has a shorter viable shelf life and must be delivered to the
customer in a shorter time frame to maintain acceptable quality. Conversely, a lower φ value
suggests that the product retains its freshness for a longer period, allowing for more flexibility
in transportation and storage.

This function provides a simplified yet effective model for assessing the impact of time on prod-
uct quality. By incorporating freshness deterioration into logistical planning, businesses can
optimize delivery schedules, reduce waste, and ensure that customers receive products in the
best possible condition. The linear nature of the function makes it computationally efficient
while still offering a reasonable approximation of real-world perishability trends. In practice,
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the choice of φ depends on empirical data derived from studies on product shelf life, environ-
mental conditions, and handling practices.

The freshness at a given point is calculated as:

freshness = f0 − φ× (wdi − wd0) (33)

where wdi−wd0 represents the travel or delivery time to the customer’s location. wd0 is defined
at the departure time of all the vehicles, which is 9 AM. This approach ensures that the impact
of time on product quality is accurately incorporated into the optimization process, making it
particularly suitable for perishable goods.

The parameter φ is derived from a real-world experiment designed to evaluate the preservation
duration of frozen products under specific packaging conditions. In this experiment, the frozen
products were packed in white thermal insulation boxes, each containing two packs of dry ice to
maintain the internal temperature at an optimal level. The objective of the experiment was to
determine the maximum duration for which the products remained in acceptable quality under
these conditions.

To quantify freshness degradation, we assume an initial freshness level of 1 at the beginning
of the storage period. The products are considered to have lost their acceptable quality when
the internal temperature exceeds a predefined threshold, at which point the freshness level is
assumed to reach 0. The experiment commenced at 12:00 AM, and by 8:00 PM on the same
day, the internal temperature of the products had reached 0◦C, indicating a total preservation
duration of 20 hours. Based on this observation, the freshness decay rate φ is estimated as 0.05
per hour. This value is subsequently used in the model to represent the rate at which frozen
products lose their freshness under the specified packaging and environmental conditions.

4 Solution Method
The solution to this model primarily uses linear programming, starting with the formulation
of decision variables, constraints, and objectives. Non-linear constraints and objectives are
first linearized using techniques like auxiliary variables and big-M methods. A weighted sum
approach is then applied to balance the two objectives—route optimization and utility maxi-
mization—by assigning appropriate weights. The linearized model is solved using Gurobi solver
to find the optimal solution. Finally, the results, including route assignments, delivery or pickup
decisions, and arrival times, are analyzed to evaluate performance metrics like cost, utility, and
freshness, ensuring an efficient and feasible solution to the problem.

4.1 Linearization

From the model, it is evident that Objective Function 1 and all the associated constraints are
well-defined and linear, forming the foundational structure of the problem. The non-linearity
primarily arises from Objective Function 2, which focuses on maximizing customer utility, and
its corresponding constraints. These non-linear components add complexity to the model, re-
quiring linearization techniques to incorporate them into the overall optimization framework
effectively.
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Objective Function 2 is non-linear as it involves the product of two decision variables: one
continuous and one binary. To address this non-linearity, an auxiliary variable a is introduced to
linearize the product. This auxiliary variable represents the interaction between the binary and
continuous variables, enabling the model to maintain linearity while preserving the relationship
between the variables in the objective function. A big number M is also introduced to help the
linearization process. Detail formulas are show below:

ai,j ≤ M × yi,j (34)
ai,j ≥ 0 (35)
ai,j ≤ V ti,j (36)
ai,j ≥ V ti,j −M × (1− yi,j) (37)

The first constraint enforces that the variable ai,j takes a value of zero whenever yi,j = 0, en-
suring that the assignment of ai,j is contingent on the activation of yi,j. The second and third
constraints establish that ai,j remains within the bounds defined by V ti,j, thereby preventing
infeasible values. The fourth constraint guarantees that when yi,j = 1, the variable ai,j attains
the exact value of V ti,j, enforcing a direct relationship between the two variables. Collectively,
these constraints serve to effectively linearize the originally non-linear product term, maintain-
ing computational efficiency and ensuring that the model remains solvable within a reasonable
time frame. This linearization approach is particularly important for mixed-integer program-
ming models, as it mitigates computational complexity while preserving the accuracy of the
formulation.

The constraint 17 in objective function 2 is also non-linear as a multiplication of a continuous
variable and a binary variable is involved. A same method as above is applied to linearize the
constraint.

4.2 Coefficients Calculation of Customers’ Choice

In order to model the customer’s choice and satisfaction with the delivery service, the utility
function is chosen. For delivery services, usually delivery time, distance, delivery fee, and prod-
uct freshness (if the customer buys fresh products) are some of the main factors that customers
consider.

The Best-Worst Method (BWM) was used in this research to derive weights for evaluating the
importance of various criteria in selecting the most appropriate order-fulfillment method.

Best-worst method (BWM) is proposed to solve multi-criteria decision-making (MCDM) prob-
lems. In an MCDM problem, a number of alternatives are evaluated with respect to a number
of criteria in order to select the best alternative(s)[29]. In this method, decision-makers first
identify the best (most important) and worst (least important) criteria. Then, they provide
pairwise comparisons between the best criterion and all other criteria, followed by comparisons
between all other criteria and the worst criterion. By solving an optimization problem, BWM
minimizes the inconsistency in the comparisons, providing a reliable set of criteria weights. This
approach is particularly useful for ensuring consistency in decision-making and was employed
in this research to quantify the relative importance of customer preferences, such as delivery
costs, convenience, and product freshness.
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To address the diverse nature of customer preferences, two separate BWM analyses were con-
ducted: one for customers who only order ambient products, and the other for customers who
order both ambient and fresh or frozen goods.

The Best-Worst Method (BWM) is applied in this research to determine the relative importance
of criteria for evaluating customer utility in selecting order-fulfillment methods. Some example
steps for how to model the coeffcients of customers who order both ambient and fresh & frozen
are shown. The process involves the following steps:

1. Determine the Set of Criteria: Identify the criteria influencing customer preferences
for order-fulfillment methods, including:

C = {Freshness, Delivery Time, Location & Distance, Fee}.

These criteria reflect the key factors impacting customer satisfaction, particularly for
those ordering perishable goods.

2. Determine the Best and Worst Criteria: Decision-makers, such as customers or
logistics experts, identify the most important criterion (Best, cB) and the least important
criterion (Worst, cW ). For example, customers ordering perishable goods might prioritize
Freshness as the best criterion, while considering Delivery fee as the least important.

3. Provide Pairwise Comparisons:

(a) Compare the Best Criterion (cB) with all other criteria using a scale from 1 (equal
importance) to 9 (extremely more important). The results are recorded in a vector
AB:

AB = {aB1, aB2, ..., aBn},

where aBi represents the importance of the best criterion (cB) compared to criterion
ci.

(b) Compare all criteria with the Worst Criterion (cW ) using the same scale. The
results are recorded in a vector AW :

AW = {a1W , a2W , ..., anW},

where aiW represents the importance of criterion ci compared to the worst criterion
(cW ).

4. Formulate the Optimization Problem: The optimal weights (w1, w2, ..., wn) for the
criteria are determined by minimizing the maximum absolute differences between the pair-
wise comparisons and the derived weights. The linear programming model is formulated
as:

Minimize ξ

Subject to: ∣∣∣∣wB

wi

− aBi

∣∣∣∣ ≤ ξ, ∀i,∣∣∣∣ wi

wW

− aiW

∣∣∣∣ ≤ ξ, ∀i,
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n∑
i=1

wi = 1, wi ≥ 0, ∀i.

Here, wB and wW represent the weights of the best and worst criteria, respectively, while
aBi and aiW are pairwise comparison values.

5. Calculate the Consistency and Optimal Weights: The linear optimization problem
is solved to obtain the optimal weights:

W = {Freshness: w1,Delivery Time: w2,Location & Distance: w3,Delivery fee: w4}.

A consistency check is performed to ensure the reliability of the results, enabling the
integration of customer preferences into the broader optimization framework for order-
fulfillment selection.

The BWM implementation process began by designing two questionnaires. Each questionnaire
consisted of a set of pairwise comparisons between criteria based on customers’ preferences.
For customers who only order ambient products, the criteria were Delivery Time, Location &
Distance, and Delivery fee. For customers who order both ambient and fresh or frozen products,
an additional criterion was added: Freshness. This consideration reflects the unique importance
of product freshness for customers ordering perishable goods.

The questions for pairwise comparisons were constructed based on the previous analysis pro-
vided. Participants were asked to evaluate, on a scale from 1 to 9, how much more important
one criterion was over another, with 1 indicating equal importance and 9 indicating extreme
importance of one criterion over the other. The questions included comparisons such as De-
livery Time vs. Fee, Freshness vs. Location & Distance, etc. The questionnaire for customers
who order both ambient and fresh frozen is shown in appendix A.

The derived weights were then integrated into the broader optimization framework of the study,
forming a fundamental part of the utility function for each customer segment. This differen-
tiation allowed the vehicle routing and pick-up point selection models to accurately reflect
customer preferences, ensuring that the solutions provided a balanced focus on both logistical
efficiency and customer satisfaction.

4.3 Bi-objective optimization and weighted sum method

In optimization, real-world problems often require the consideration of multiple, potentially
conflicting objectives. A bi-objective optimization problem is a type of multi-objective opti-
mization that focuses on finding the best solutions for two conflicting objectives simultaneously.
For example, in the context of last-mile delivery logistics, two main objectives may be min-
imizing delivery costs and maximizing customer satisfaction. These two goals are inherently
conflicting because reducing costs often means reducing service quality, while improving cus-
tomer satisfaction can lead to increased costs.

In such bi-objective problems, finding a single "optimal" solution becomes challenging due to
the trade-offs between the objectives. Instead of one solution, the concept of a Pareto frontier
(or Pareto front) is used to describe the set of optimal solutions where no one solution can be
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improved in one objective without compromising another objective. The Pareto frontier repre-
sents the boundary of all efficient trade-offs between the objectives [30] on the Pareto frontier
are called Pareto optimal because they are considered equally good with respect to both objec-
tives. In practice, decision-makers choose one solution from the Pareto frontier depending on
the relative importance of the objectives [31]. This concept of the Pareto frontier is valuable in
decision-making processes that involve multiple stakeholders with different priorities, such as
balancing cost efficiency and customer satisfaction in logistics.

For this research, the bi-objective optimization problem is modeled to simultaneously minimize
delivery costs while maximizing customer satisfaction through parameters like delivery time
and product freshness. The Pareto frontier helps identify the best possible trade-offs between
these objectives, providing an array of solutions that achieve efficient operational performance
while ensuring high levels of customer satisfaction[32].

To solve the bi-objective problem, weighted sum method, which is one of the most commonly
used approaches for solving multi-objective optimization problems is applied in this research. In
this method, multiple objectives are combined into a single objective function using a weighted
linear combination of the individual objectives. This approach is particularly suitable for prob-
lems with two objectives, as it allows for a straightforward trade-off analysis between the
competing objectives.

Given two objectives Z1 and Z2 in this research, the combined objective function in the Weighted
Sum Method can be expressed as:

Z = wc × Z1 − wu × Z2,

where Z1 and Z2 are non-negative weights (Z1, Z2 ≥ 0) that represent the relative importance
of the objectives and satisfy the condition wc + wu = 1.

The optimization process involves:

1. Selecting appropriate values for the weights w1 and w2, which reflect the decision-maker’s
preferences for the two objectives.

2. Solving the resulting single-objective optimization problem to find a Pareto-optimal so-
lution.

3. Repeating the process with different weight combinations to explore the Pareto frontier,
which represents the trade-off between the two objectives.

This method is widely applied in solving bi-objective optimization problems in logistics and
supply chain management, including vehicle routing and order fulfillment optimization [32].
In this research, the Weighted Sum Method is employed to balance the trade-off between
minimizing transportation costs and maximizing customer utility.

4.4 Max-Min normalization

Max-min normalization is a foundational data scaling technique widely applied in multi-criteria
decision-making (MCDM) and optimization problems. It rescales data into a fixed range, typ-
ically [0, 1], to ensure comparability among criteria of differing magnitudes[33]. The normal-
ization formula is given by:
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x′ =
x− xmin

xmax − xmin
(38)

where:

• x: The original value of the criterion,

• xmin: The minimum value of the criterion,

• xmax: The maximum value of the criterion,

• x′: The normalized value scaled between 0 and 1.

In this research, max-min normalization is applied to the following criteria:

1. Cost: Represents the delivery cost.

2. Delivery Time: Reflects the time efficiency of order fulfillment.

3. Freshness: Critical for perishable goods.

4. Location and Distance: Measures the convenience of pickup points or delivery loca-
tions.

The utility function integrates these normalized criteria to provide a fair trade-off in the opti-
mization process, enabling balanced solutions for logistical efficiency and customer satisfaction.
Detail formulas for how to normalize each criteria are shown in 3.4.

In this research, normalization also plays a crucial role in handling the inherent differences in
scale and magnitude between the two primary objectives: delivery cost and customer utility.
These objectives are fundamentally different in both units and value ranges, with delivery cost
typically measured in monetary terms and ranging in the hundreds or thousands, while cus-
tomer utility is a dimensionless score typically ranging between 0 and 1.

Without normalization, directly combining these objectives using the weighted sum method
would lead to disproportionate contributions to the overall objective function. The larger nu-
merical scale of delivery cost would dominate the optimization process, effectively minimizing
its value while neglecting the importance of customer utility. This imbalance would not ac-
curately reflect the trade-offs intended by the decision-makers and could lead to suboptimal
solutions.

To normalize cost and utility objectives Z1 and Z2, formulas below are applied:

Z ′
1 =

Z1max − Z1

Z1max − Z1min

(39)

Z ′
2 =

Z2 − Z2min

Z2max − Z2min

(40)

By using the formulas above, both objectives are converted a value from 0 to 1. This ensures
the weights of two objectives to 1 instead of changing the weights two transfer them in a same
magnitude.
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To accurately apply this transformation, it is necessary to first identify the maximum and min-
imum values for each objective. This is typically achieved by running optimization processes
separately for each objective, where the sole goal is to either maximize or minimize that particu-
lar objective without consideration for others. By doing so, one can capture the extreme values
that the objective function can reach, which are then used as benchmarks for normalization.

Having normalized both objectives, the revised objective function becomes:

Z ′ = wc ∗ Z ′
1 + wu ∗ Z ′

2 (41)

The problem is reformulated into a maximization problem by normalizing the objectives Z1 and
Z2, resulting in Z ′

1 and Z ′
2. Through normalization, the objectives are scaled such that higher

values of Z ′
1 and Z ′

2 indicate closer alignment to their respective targets. As the normalization
values increase, Z1 and Z2 progressively approach their desired objectives. Consequently, the
final goal of the problem is to maximize the combined normalized objective, expressed as
maxZ ′.

5 Computational Results

5.1 Data set

The dataset used in this study consists of a set of geographic locations representing real cus-
tomers and potential pick-up points. It has been carefully selected to reflect a realistic delivery
and order-fulfillment scenario, typical of urban and suburban areas. This dataset forms the
foundation for the computational experiments aimed at solving the vehicle routing and loca-
tion selection problem in the context of the last-mile delivery. Sample data is shown below in
table 5.

The dataset includes 44 locations, each defined by its latitude and longitude coordinates. These
points represent both customer addresses and pick-up points, which are further categorized
into attended and unattended types. The coordinates ensure precise positioning for route
optimization, while the classification into attended and unattended types allows the model to
capture the operational differences in these fulfillment methods. Points in this data set are
plotted in a map shown in figure 1. Coordinates of actual customers are hidden to protect
their privacy. As stated in figure’s legend, point marked in pink is the depot where all trucks
start from. Customers who order only ambient products and order both ambient and F& F
are labeled as green and orange respectively. Attended pups and unattended pups(Locker) are
colored in red and purple.

Each customer in the dataset is associated with specific attributes, such as parcel weight, num-
ber of packages, and whether they have special delivery requirements, such as perishable items
requiring refrigeration. Similarly, pick-up points include attributes such as their capacity and
availability of refrigeration facilities for storing perishable goods. For attended pups, refriger-
ated or frozen facilities are equipped in the store to keep the quality of goods, while parcel locks
do not have the temperature-keeping function.

By using this dataset, the thesis aims to validate the applicability of the proposed model in
achieving optimal routing and order-fulfillment solutions while maintaining a balance between
cost-efficiency and customer utility.
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Figure 1: Dataset visualization in Dutch Map

Table 5: Sample dataset

ID Latitude Longitude Type Weight
(kg)

Parcel
Count

Odd Size

1 51.98 4.44 Customer 20.96 2 Yes
2 51.99 4.35 Customer 5.20 1 No
3 52.00 4.38 PUP 0 0 No
4 51.99 4.36 Customer 2.90 1 No
5 51.99 4.35 Locker 0 0 No
6 52.01 4.35 Customer 36.97 1 No
7 52.01 4.36 Customer 40.20 3 Yes
8 51.99 4.48 Customer 7.80 2 No
9 51.98 4.35 Customer 11.90 1 No
10 51.98 4.44 Customer 4.50 1 No

5.2 Customer’s perception

To enhance the reliability and validity of the study, the survey was meticulously designed and
distributed to a carefully selected group of 100 participants. This sample size was chosen to
ensure a broad representation of customer preferences and to gather sufficient data for robust
statistical analysis. The participants were drawn from diverse demographics, reflecting varied
consumption patterns and preferences within our customer base.

After collecting the initial responses, a rigorous screening process was applied to identify 50
responses that met our criteria for completeness and consistency. This step was critical to
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ensure the quality of the data, as incomplete or inconsistent responses could lead to skewed
results and potentially misleading conclusions. The criteria for selection included checks for
logical consistency in the answers and completeness of all required fields. The final set of 50
high-quality responses was then used for further analysis. This dataset formed the basis for
deriving two distinct sets of weights using the Best-Worst Method (BWM)

These derived weights are crucial as they represent the relative importance of various customer
service and product quality attributes, tailored to different customer segments. For the analysis,
two groups were identified based on their purchasing patterns: those who order both ambient
and fresh & frozen products, and those who only order ambient products. This distinction
allowed us to tailor our strategies to meet the specific needs and preferences of each segment,
potentially enhancing customer satisfaction and loyalty. The results for customers who order
both ambient and fresh & frozen and only ambient are shown in the Appendix B and C.

For customers ordering only ambient products, the analysis results showed the importance of
Delivery Time as the most crucial factor, with Location & Distance and Cost following in rela-
tive importance. For customers ordering both ambient and fresh or frozen products, Freshness
emerged as the most important criterion, followed by Delivery Time, Location & Distance, and
finally Cost. The aggregation of the responses allowed us to derive consistent weights for the
decision model that represent typical customer preferences across different customer types.

The BWM analysis for customers who order both ambient and fresh or frozen products and
customers who only ambient yield the results below:

Table 6: BWM Coefficients for customers who both order ambient and F&F

Delivery time Location & Distance Delivery fee Freshness
weight 0.13 0.08 0.065 0.71

Table 7: BWM Coefficients for customers who only order ambient

Delivery time Location & Distance Delivery fee
weight 0.61 0.27 0.11

5.3 Calculation Results

With all data inputs ready, the proposed model is run with different combinations of wc and
wu. As the weights of cost and utility change, the total delivery cost, the overall customer
utility, the number of customers opting for self-pickup, and the delivery method chosen by
customers purchasing fresh and frozen goods all exhibit significant variations. These results
highlight the inherent trade-off between minimizing costs and maximizing customer satisfaction.

This analysis underscores the need for balancing these conflicting objectives to achieve an opti-
mal solution that aligns with both operational efficiency and customer-centric goals, providing
valuable insights for companies aiming to balance operational efficiency with customer-centric
strategies. Companies can use this model to identify an optimal combination of cost and utility
weights based on their specific business goals.
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Table 8 presents the results obtained from running the optimization model with varying cost
and utility weight combinations (wc and wu). The table includes key metrics such as the
number of customers selecting home delivery and self-pickup, the total delivery cost, and the
corresponding utility values. Additionally, it provides information on the computation time
required for each scenario and the optimality gap achieved during the solving process. These
results serve as the basis for evaluating the impact of different weight distributions on the
overall optimization outcomes.

Table 8: Optimization results for different cost and utility weight combinations

W_c W_u # of
home
delivery

# of self
pickup

Value of
cost

Value of
utility

Total objec-
tive value

Calculation
time(s)

Gap

0 1 26 4 817.98 26.67 1 607 3.15
0.1 0.9 30 0 668.95 26.65 0.9569 181 4.8
0.2 0.8 12 18 477.77 25.98 0.915 86 4.93
0.3 0.7 7 23 288.45 24.63 0.886 115 3.32
0.4 0.6 1 29 142.33 22.65 0.8765 190 2
0.5 0.5 0 30 142.3 22.65 0.8865 1506 1.5
0.6 0.4 0 30 97.76 21.463 0.90446 190 1
0.7 0.3 0 30 97.76 21.463 0.92743 211 0.9
0.8 0.2 0 30 89.94 20.82 0.95255 215 0.9
0.9 0.1 0 30 89.94 20.82 0.97621 172 0.5
1 0 0 30 88.5 5.8 1 10 0

5.3.1 Trade-off Between Total Delivery Cost and Customer Utility

One of the key findings from the optimization results is the inherent trade-off between min-
imizing total delivery cost and maximizing customer utility. As the weight assigned to cost
minimization (Wcost) increases, the model consistently reduces the overall cost of delivery by
shifting from home deliveries to pickup points. However, this reduction in cost comes at the
expense of customer utility.

When customer utility is prioritized (Wcost = 0), the model assigns 26 home deliveries and only
4 pickups, leading to the highest observed total cost of €817.98. In this scenario, customer
utility is maximized at 26.67. As Wcost increases, the model gradually reduces the number of
home deliveries, transitioning towards more cost-effective pickup points. This trend becomes
particularly evident between Wcost = 0.2 and Wcost = 0.4, where total cost drops sharply from
€477.77 to €142.33 while customer utility declines moderately from 25.98 to 22.65.

Beyond Wcost = 0.4, all deliveries shift to pickup points, effectively minimizing delivery cost
but also leading to a steady decline in customer utility. At Wcost = 1, the total cost reaches its
lowest value of €88.5, but customer utility drops significantly to 5.8, indicating the trade-off’s
critical impact on service quality.

These results highlight the importance of selecting an optimal balance between cost and utility.
Businesses focusing solely on cost minimization may risk customer dissatisfaction, while those
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Figure 2: Trade-Off Between Cost and Customer Utility. As the cost weight wc increases, the
total delivery cost decreases while customer utility declines.

prioritizing service quality must be prepared for higher operational costs. The findings suggest
that an optimal balance exists around Wcost = 0.3 to Wcost = 0.5, where cost reductions are
significant, but customer utility remains within an acceptable range.

Figure 3 illustrates the Pareto front representing the trade-off between the two objectives: cost
and utility. The plot shows how varying the weight coefficients for cost (Wcost) and utility
(Wutility) affects the optimal values for both objectives. As the weight on cost increases, the
value of cost decreases, but at the expense of utility, which simultaneously decreases as shown
in the curve.

Each point on the Pareto front represents a solution where no other solution can simultaneously
improve both objectives[34]. These points are considered Pareto optimal, meaning that, for a
given solution, improving one objective would result in a sacrifice in the other. Specifically,
the lower the value of cost, the lower the corresponding utility, demonstrating the inherent
trade-off between minimizing cost and maximizing customer utility. The data labels on the
plot provide the exact values of cost and utility for each weight combination, offering insights
into the balance between these objectives for each solution.
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Figure 3: Pareto Front: Trade-off between Cost and Utility. Each point represents a Pareto
optimal solution with the corresponding values for cost and utility.

5.3.2 Impact of Cost Weight on Delivery Choice

The cost weight (Wcost) significantly influences the delivery mode chosen by the model, affect-
ing the distribution of home deliveries versus pickup point usage. At lower values of Wcost,
the model assigns a substantial portion of deliveries to home delivery to maximize customer
satisfaction, but as Wcost increases, the system increasingly favors pickup points due to their
lower associated costs.

At Wcost = 0, home deliveries dominate with 26 home deliveries and only 4 self-pickups. This
allocation reflects customer preference for direct-to-door deliveries when cost is not a concern.
However, as soon as Wcost increases slightly (Wcost = 0.1), the model already begins shifting
towards pickup points, with all 30 deliveries routed through home delivery. This early shift indi-
cates that even a small prioritization of cost leads to significant changes in the delivery strategy.

Between Wcost = 0.2 and Wcost = 0.3, a transitional phase emerges where a mix of home deliv-
eries and pickup point allocations are observed. In these cases, the model seeks a balance by
assigning some deliveries to pickup points to reduce costs while still maintaining a level of home
delivery for customer convenience. By Wcost = 0.4, however, the transition is complete, and
all deliveries are routed to pickup points, signaling the model’s preference for low-cost delivery
modes when cost minimization is emphasized.

This shift is crucial for businesses considering cost-saving measures. If a company aims to re-
duce operational expenses without completely sacrificing customer service, an ideal operating
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Figure 4: Impact Of Cost Weight On Delivery Choice

range lies between Wcost = 0.2 and Wcost = 0.4, where both cost and customer experience are
balanced. Beyond this point, further prioritization of cost results in diminishing returns, as
savings become marginal but customer utility continues to drop significantly.

This analysis reinforces the necessity for businesses to carefully decide how much weight to as-
sign to cost minimization when designing delivery strategies. Overemphasizing cost reduction
can lead to a complete elimination of home deliveries, potentially leading to customer dissatis-
faction. Conversely, allowing for a more balanced approach ensures that customer preferences
are still incorporated into the delivery model while achieving substantial cost savings.

5.3.3 Detailed Analysis of Delivery Mode Selection

The selection of delivery modes varies significantly across different cost-weight scenarios, reflect-
ing the trade-offs between operational efficiency and customer preferences. The model results
highlight how customers shift between home delivery, attended pickup points (PUPs), and
lockers as cost minimization becomes more dominant. This section provides a more in-depth
exploration of these shifts, analyzing how different customer segments respond to changes in
delivery pricing.

At low cost weights (Wcost = 0), the vast majority of customers prefer home delivery. This
preference is particularly strong among ambient-only customers, who do not face perishabil-
ity concerns and prioritize direct-to-door service. However, as cost minimization becomes a
stronger objective, home deliveries decline and eventually disappear by Wcost = 0.4. At this
point, all customers transition to self-pickup, with a strong preference for attended PUPs among
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Table 9: Home Delivery, Self Pickup, and Attended PUP Choices

W_cost W_utility Home Delivery Self Pickup Total
Attended

PUP

# of
customers
only order
ambient

# of
customers
order both

0 1 26 4 4 2 2
0.1 0.9 30 0 0 0 0
0.2 0.8 12 18 4 0 4
0.3 0.7 7 23 16 10 6
0.4 0.6 1 29 20 12 8
0.5 0.5 0 30 21 12 9
0.6 0.4 0 30 20 12 8
0.7 0.3 0 30 20 12 8
0.8 0.2 0 30 20 12 8
0.9 0.1 0 30 20 12 8
1 0 0 30 20 11 9

W_cost Total Locker Usage # of customers only order ambient # of customers order both
0 0 0 0

0.1 0 0 0
0.2 14 9 5
0.3 7 4 3
0.4 9 4 5
0.5 9 4 5
0.6 10 4 6
0.7 10 4 6
0.8 10 4 6
0.9 10 4 6
1 10 5 5

Table 10: Locker Usage Across Cost-Utility Weights

ambient-only customers and a mixed distribution between attended PUPs and lockers among
fresh/frozen buyers.

For customers purchasing only ambient products, the transition from home delivery to self-
pickup is particularly pronounced. At Wcost = 0, 14 out of 16 ambient-only customers use
home delivery. However, as Wcost increases, home deliveries drop to zero by Wcost = 0.4, at
which point all ambient customers have transitioned to self-pickup. Among self-pickup choices,
attended PUPs dominate, with 12 customers choosing them over lockers.

The avoidance of lockers by ambient-only customers suggests that attend pups may have lower
delivery time or short distance to customers. Unlike fresh/frozen customers, ambient buyers
do not have perishability constraints, meaning their preference for attended PUPs likely stems
from a desire for more convenient collection. The consistent lack of locker adoption across all
cost-weight scenarios reinforces this hypothesis.
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Figure 5: Ambient-Only Customer Delivery Preferences

Customers purchasing both fresh/frozen and ambient products display more diverse order ful-
fillment ways when transitioning from home delivery to self-pickup, assigned by the model. At
Wcost = 0, 12 of these customers are assigned to home delivery. As cost weight increases, home
delivery usage declines sharply, reaching zero at Wcost = 0.4. Unlike ambient-only customers,
fresh/frozen buyers are not overwhelmingly assigned to attended PUPs. Instead, they are di-
vided between attended PUPs and lockers, with a relatively stable proportion (5-6 customers)
choosing lockers in all cost-weight scenarios.

The continued assignment of lockers by fresh/frozen buyers, despite the lack of temperature
control, indicates that some customers prioritize convenience or proximity over freshness con-
cerns. This finding suggests that while temperature-controlled storage is important, in order
to reach a cost and satisfaction balance, it is not a universal requirement from company’s
view. Some may have short pickup-to-consumption times or alternative methods of maintain-
ing product integrity, making lockers an acceptable trade-off under cost-minimization strategies.

The results demonstrate a clear pattern: as cost weight increases, all customers transition from
home delivery to self-pickup. However, the assigned self-pickup method varies significantly by
customer type. Ambient-only customers overwhelmingly are assigned to attended PUPs, while
fresh/frozen buyers exhibit a more balanced distribution between attended PUPs and lockers.
.

The consistent use of lockers by a subset of fresh/frozen customers indicates that locker place-
ment strategies should account for factors beyond temperature control. Proximity, accessibility,
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Figure 6: Both-Product Customer Delivery Preferences

and convenience may play a larger role in customer decision-making than previously assumed.
To further refine these insights, future research could incorporate surveys or behavioral exper-
iments to validate the model predictions.

5.3.4 Computation Time and Optimality Gap Analysis

The computation time and optimality gap results provide insights into the efficiency and con-
vergence behavior of the optimization model.

As shown in Figure 8, computation time varies significantly depending on the cost weight
Wcost. At lower cost weights (Wcost ≤ 0.3), computation time fluctuates but remains below 200
seconds, indicating a relatively stable computational demand. However, at Wcost = 0.5, the
computation time peaks at 1506 seconds, suggesting a more complex optimization landscape
when cost and utility are equally weighted. Beyond this point, computation time stabilizes and
decreases as the model favors cost minimization over utility.

The optimality gap follows a decreasing trend as Wcost increases. At lower values (Wcost ≤ 0.3),
the gap remains above 3%, indicating a less refined solution. However, for Wcost ≥ 0.7, the gap
consistently falls below 1%, showing that the solver achieves near-optimal solutions in these
cases. The near-zero gap at Wcost = 1 confirms that cost-focused solutions are computationally
simpler to optimize.

40



Figure 7: Computation Time And Optimality Gap Analysis

5.4 Delivery routes and Customers’ Choices

To gain a deeper understanding of the trade-offs between cost minimization and customer util-
ity, we select two key weight coefficient combinations that represent significant transitions in
the cost-utility spectrum.

The selected cases are:

• Case 1: Wcost = 0.2,Wutility = 0.8 - This scenario maintains a strong emphasis on utility
while beginning to incorporate cost considerations, providing insight into early-stage cost-
saving effects.

• Case 2: Wcost = 0.4,Wutility = 0.6 - This setting reflects a more balanced approach, where
cost efficiency becomes a more significant factor, leading to a noticeable shift in customer
behavior.

These two cases are selected because they represent a moderate trade-off between cost efficiency
and customer utility. Unlike extreme cases where either cost or utility dominates entirely, these
combinations allow us to analyze the gradual shift in delivery cost structures and customer
preferences. By examining these mid-range weight settings, we can observe the transition
from a predominantly utility-driven model to one that strategically incorporates cost-saving
mechanisms while still ensuring a reasonable level of customer satisfaction.
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5.4.1 Wc = 0.2,Wu = 0.8

Figure 8: Delivery route and customers’ choices when Wc = 0.2

To better understand the impact of different delivery choices, a visualization of the optimized
delivery routes is presented. In the generated map, the gray dot represents depot location,
which serve as the starting and ending points for delivery vehicles.

The black lines indicate the assignment of customers to specific pickup points. These lines
originate from customer locations and point toward their selected pickup stations, representing
self-pickup decisions. Customers who opted for home delivery are directly included in the ve-
hicle routing without these black assignment lines.

Each colored route in the visualization corresponds to a unique delivery vehicle’s actual travel
path. Each color represents a different vehicle, illustrating how customer orders are efficiently
grouped and distributed to minimize total distance traveled.

Table 11: Summary of Customer Delivery Choices when Wc = 0.2

Category Customer Count Customer IDs
Home Delivery 12 {7,9,10,12,13,14,16,18,19,23,25,30}

Self Pickup 18 {1,2,3,4,5,6,8,11,15,17,20,21,22,
24,26,27,28,29}

Self Pickup at Attended PUP 4 {20, 22, 27, 29 }
Self Pickup at Locker(39,40,41) 14 {1,2,3,4,5,6,8,11,15,17,21,24,26,28}
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To understand the impact of cost and utility preferences on customer behavior, Table 11 presents
the summary of delivery choices made by customers when Wcost = 0.2 and Wutility = 0.8. This
weight setting represents a scenario where utility is prioritized while cost considerations start
influencing decisions.

With Wutility = 0.8, the company aims to enhance customer satisfaction, which results in a
relatively high number of home deliveries. Out of 30 customers, 12 opt for home delivery,
indicating that direct-to-home service remains an essential part of the logistics model. While
this enhances the overall customer experience, it also increases operational costs significantly
due to the higher expenses associated with last-mile delivery.

At the same time, self-pickup has become the dominant mode of delivery, with 18 customers
selecting this option. This shift suggests that even with an emphasis on utility, cost consider-
ations begin to influence customer behavior, leading to a more balanced delivery distribution.
The company’s moderate focus on cost means that customers who are willing to engage in self-
pickup still have the opportunity to do so, reducing overall delivery expenses while maintaining
an acceptable level of convenience.

Within the self-pickup category, 4 customers utilize attended pickup points while 14 customers
choose lockers. The lower number of attended pickup point users suggests that although these
facilities offer higher service quality, their cost of operation, set at $20 per day, makes them a
less attractive option compared to lockers. Despite attended pickup points having the capacity
to serve up to 20 customers per day, their current underutilization implies that algorithm do
not perceive a positive contribution to the overall objective in exchange for the higher delivery
fee utility.

Lockers, on the other hand, attract a larger proportion of self-pickup users. With a lower daily
operational cost of $10 per locker and a maximum capacity of 10 customers per day, lockers
provide a more cost-effective solution for company which prioritize cost compared with home
delivery. The fact that 14 customers rely on lockers highlights their role as a crucial compo-
nent in reducing overall logistics costs while still allowing customers to retrieve their orders
conveniently. However, the limited capacity of each locker means that if demand continues to
rise, the company may need to invest in additional locker units or optimize their usage more
effectively.

From an operational standpoint, this delivery choice distribution presents both opportunities
and challenges. Home delivery remains in demand, emphasizing the importance of maintain-
ing a well-functioning last-mile delivery network despite its high costs. At the same time, the
growing reliance on self-pickup solutions indicates a potential avenue for cost reduction, par-
ticularly through optimizing locker allocation and improving the efficiency of attended pickup
points. Given that attended pickup points have a higher service capacity than their current
usage suggests, the company may consider adjusting pricing structures or offering incentives to
encourage more customers to utilize these locations instead of defaulting to home delivery or
lockers.

A key takeaway from this analysis is that while customer utility remains the primary objective
under this weight setting, cost-saving mechanisms naturally emerge as a secondary consider-
ation. The company may benefit from introducing targeted strategies that nudge customers
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toward self-pickup options without significantly compromising satisfaction levels. Enhancing
the appeal of attended pickup points through pricing adjustments, promotional offers, or addi-
tional value-added services could help shift more customers away from expensive home deliv-
eries, leading to a more balanced and cost-effective operational model.

5.4.2 Wc = 0.4,Wu = 0.6

Figure 9: Delivery route and customers’ choices when Wc = 0.4

Table 12: Summary of Customer Delivery Choices when Wc = 0.4

Category Customer Count Customer IDs
Home Delivery 1 19

Self Pickup 29 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,
17,18,20,21,22,23,24,25,26,27,28,29,30}

Self Pickup at Attended PUP 20 { 1,2,3,6,7,9,10,11,12,13,14,15,
16,20,21,22,25,27,29,30,}

Self Pickup at Locker 9 {4,5,8,17,18,23,24,26,28 }

With Wcost = 0.4, the company significantly reduces the number of home deliveries, with only
one customer selecting this option. This outcome suggests that the company has successfully
optimized cost efficiency by encouraging alternative delivery methods. Unlike the scenario
at Wcost = 0.2, where home delivery remained a substantial portion of the model, the cost-
conscious approach here minimizes high-cost home deliveries, transferring most customers to
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self-pickup locations.

Self-pickup has become the dominant delivery mode, with 29 customers opting for this method.
This shift reflects the company’s strategic approach to reduce last-mile delivery expenses while
still maintaining customer convenience. The slight priority given to utility ensures that cus-
tomers can still access reliable and structured delivery options without compromising service
quality.

Within the self-pickup category, a significant change is observed in the preference for attended
pickup points. Out of the 29 self-pickup users, 20 customers select attended PUPs. This indi-
cates a more efficient utilization of attended pickup facilities compared to previous scenarios,
where they were underutilized. Attended PUPs, which have a daily operational cost of $20
and a capacity of 20 customers per day, are now operating at full capacity. This utilization
maximization enhances cost efficiency by ensuring that attended PUP infrastructure is fully
leveraged, reducing per-customer service costs and optimizing resource allocation.

Lockers remain a viable pickup option but are selected by only 9 customers. Lockers, while
still economical at $10 per day, have a restriction of serving only 10 customers per day. The
relatively lower locker usage compared to attended PUPs indicates that when cost considera-
tions become more pronounced, company may favor attended pickup points due to their higher
service capacity.

From an operational perspective, this optimization presents significant cost advantages. The
near-elimination of home deliveries substantially reduces high last-mile delivery costs. The full
utilization of attended pickup points ensures that their operational expenses are justified, mak-
ing them a cost-effective solution within this model. Lockers, while still useful, remain under
their full capacity, suggesting an opportunity to further optimize their placement or adjust
incentives to increase their usage.

The transition from home delivery to self-pickup solutions, particularly the shift towards at-
tended PUPs, reflects a well-balanced strategy. This balance ensures that cost savings do not
come at the expense of customer experience. While attended PUPs require a slightly higher
fixed cost compared to lockers, their ability to serve a larger customer base makes them a more
efficient investment under these conditions.

5.5 Customer’s Satisfaction

This chapter presents the results of the bi-objective optimization model, examining how differ-
ent weight coefficients (Wcost and Wutility) influence customer choices and utility distribution.
The goal is to evaluate the trade-offs between cost and customer utility to understand their
impact on delivery location selection, cost efficiency, and the overall service experience. The
study explores correlations between weight coefficients and different utility components, includ-
ing delivery fe, distance, delivery time, and freshness.

To provide an overview of the dataset used for analysis, Table 13 presents a simplified version of
the original dataset. This table includes key attributes such as the weight coefficients, customer
IDs, chosen delivery locations, and the different utility values associated with each decision.
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Table 13: Sample Customers’ Utility Data Table

Wcost Wutility Customer ID Chosen
Location

Total
Utility

Delivery
fee Utility

Distance
Utility

Time
Utility

0.0 1.0 1 1 0.914 0.500 0.922 1
0.0 1.0 2 2 0.892 0.1125 1.000 1
... ... ... ... ... ... ... ...
0.2 0.8 10 10 0.913 0.3 1 1
0.5 0.5 15 37 0.777 0.5 0.0 1
... ... ... ... ... ... ... ...
0.8 0.2 22 38 0.569 0.5 0.00 1
1.0 0.0 30 41 0.389 0.312 0.302 0

This table presents a representative subset of the dataset, highlighting how different weight
coefficients influence the selected delivery location and the resulting utility values. It provides
a compact yet informative summary of key decision-making patterns.

5.5.1 Impact of Weight Coefficients on Chosen Locations and Total Utility

In this bi-objective optimization problem, we analyze how different weight coefficients, wcost

and wutility, influence the company’s decision-making process regarding the selection of delivery
and pickup locations, as well as the resulting total utility experienced by customers. These
weight coefficients represent the company’s strategic prioritization: a higher wcost signifies a
focus on cost minimization, while a higher wutility reflects an emphasis on maximizing customer
satisfaction and service quality.

When wcost is dominant, the company prioritizes low-cost fulfillment strategies, which often
result in customers being routed to more economical pickup points such as lockers or shared
attended pickup locations rather than home delivery. This leads to lower operational expenses
but may come at the expense of customer convenience. Conversely, when wutility is prioritized,
the company optimizes for service quality, leading to an increase in home delivery selections and
attended pickup locations that offer enhanced facilities such as temperature-controlled storage.

The total utility observed in this analysis is strongly influenced by the weighting strategy
adopted by the company. The data indicate a clear positive correlation between wutility and
total utility, suggesting that prioritizing customer satisfaction results in better overall service
experiences. However, excessive emphasis on cost minimization (wcost → 1) leads to a sig-
nificant decline in total utility, as customers may face longer distances, reduced freshness for
perishable goods, and suboptimal delivery times.
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Figure 10: Impact of Wcost and Wutility on Customer’s Utility

5.5.2 Correlation Between Weight Coefficients and Customer Utility Components

To further analyze the implications of the company’s strategic weighting of cost versus utility,
we examine how wcost correlates with different utility components, including delivery fee utility,
distance utility, delivery time utility, and freshness utility. The heatmap in Figure 11 visually
represents these relationships, providing insights into the trade-offs faced in decision-making.

The correlation matrix reveals that cost prioritization negatively impacts other utility compo-
nents. Specifically, distance utility and delivery time utility show moderate negative correlations
with wcost, indicating that as cost minimization becomes the dominant objective, customers are
required to travel greater distances or experience longer delivery times. This is particularly
relevant for customers who rely on convenience-based services.
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Figure 11: Correlation heatmap

For customers purchasing fresh and frozen products, freshness utility demonstrates a clear neg-
ative correlation with wcost. This suggests that when cost minimization is the primary focus,
customers are less likely to be routed to attended pickup points with temperature-controlled
storage, increasing the risk of product deterioration. On the other hand, when wutility is given
more weight, customers receive services that ensure higher freshness levels, leading to improved
satisfaction.

Additionally, total utility exhibits a strong negative correlation with wcost, reinforcing the no-
tion that aggressive cost-cutting strategies undermine the overall customer experience. These
insights highlight the importance of balancing cost efficiency with service quality in logistics
operations.

5.5.3 Attended Pickup vs. Locker Analysis

The analysis of different delivery and pickup options for customers purchasing ambient-only
and both products has revealed several important insights. The comparison focuses on two
types of pickup points: attended pickup points (IDs 31-38) and lockers (IDs 39-43). These
findings are based on several utility metrics, including total utility, distance utility, delivery
time utility, and freshness utility.

For ambient-only customers (IDs 1-16), the total utility derived from selecting lockers (0.713)
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is notably higher than that of selecting attended pickup points (0.653). This suggests that cus-
tomers who only purchase ambient products prioritize convenience and proximity, which lockers
typically provide more effectively than attended pickup points. Lockers are often located in
easily accessible locations and do not require customers to wait for assistance, thus improving
their overall satisfaction.

When considering both products customers (IDs 17-30), lockers also show a higher total utility
(0.725) than attended pickup points (0.656). Despite the added need for temperature control
with frozen products, the analysis indicates that both product customers still prefer lockers
over attended pickup points, likely due to the more favorable balance of convenience and cost.
While attended pickup points offer temperature-controlled storage, which is essential for frozen
products, lockers still contribute more due to their lower operational costs and greater accessi-
bility, which makes the model assign some customers to locker consistently.

The distance utility, reflecting the satisfaction derived from the proximity of the pickup point to
the customer’s location, is another important factor. For ambient-only customers, the distance
utility is significantly higher for lockers (0.4507) compared to attended pickup points (0.2313).
This reinforces the idea that customers are generally inclined to select the more convenient
option, which in this case is lockers located closer to their residences. The same pattern is
observed for both products customers, with lockers showing a higher distance utility (0.5869)
than attended pickup points (0.3458). Thus, even for customers with special requirements for
frozen goods, convenience plays a dominant role in the choice of pickup point.

Regarding delivery time utility, the differences between lockers and attended pickup points
are minimal. For both ambient-only and both products customers, the delivery time utility
remains high, with values ranging from 0.8592 to 0.8824. This indicates that, regardless of
whether customers choose lockers or attended pickup points, the time required to retrieve their
items does not significantly impact their decision. One reason is company’s current’s delivery
network is still in limited region with relatively low density. Both delivery methods offer com-
parable speeds, making other factors such as delivery fee and convenience more critical in the
customer’s selection process.

Lastly, the freshness utility, which is only relevant for both product customers, shows a clear
preference for attended pickup points, with a freshness utility of 0.9007. This is in contrast
to lockers, which provide a lower freshness utility (0.8643). The higher freshness utility of at-
tended pickup points can be attributed to their temperature-controlled storage, which ensures
that frozen products remain at the correct temperature during pickup. However, despite the
advantages of attended pickup points in maintaining product freshness, lockers still present an
attractive option for many customers due to their ease of access and lower delivery fee.

In summary, distance utilities play a substantial role in determining customer preferences. For
both ambient-only customers and both product customers, lockers provide a more convenient
and cost-effective solution, despite the added value of temperature control at attended pickup
points. Even for customers purchasing frozen products, the convenience and proximity offered
by lockers often outweigh the benefits provided by attended pickup points. Therefore, optimiz-
ing the location and availability of lockers could be an effective strategy for improving customer
satisfaction while controlling delivery costs.
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Table 14: Comparison of Utilities for Different Pickup Points and Customer Groups

Utility Type Attended Ambient Attended Both Lockers Ambient Lockers Both

Total Utility 0.6535 0.6563 0.7135 0.7254
Delivery fee Utility 0.4800 0.4375 0.4943 0.3508
Distance Utility 0.2313 0.3458 0.4507 0.5869
Delivery Time Utility 0.8824 0.8592 0.8810 0.8980
Freshness Utility 0.0000 0.9007 0.0000 0.8643

5.5.4 Customers’ satisfaction rate

The relationship between the weight coefficients and customers’ satisfaction rate is summarized
in Table 15. The satisfaction rate is calculated by using the total utility divided by number of
customers. The table demonstrates how satisfaction rate and utility values change as the weight
placed on cost (Wcost) increases. There is a noticeable downward trend in satisfaction rate as
Wcost increases, indicating that prioritizing cost negatively affects overall customer satisfaction.

Table 15: Customers’ satisfaction rate

W_cost W_utility Value of utility Satisfaction rate
0 1 26.67 88.90%

0.1 0.9 26.65 88.83%
0.2 0.8 25.98 86.60%
0.3 0.7 24.63 82.10%
0.4 0.6 22.65 75.50%
0.5 0.5 22.65 75.50%
0.6 0.4 21.463 71.54%
0.7 0.3 21.463 71.54 %
0.8 0.2 20.82 69.40%
0.9 0.1 20.82 69.40%
1 0 5.80 19.33%

5.5.5 Summary of Key Findings

The analysis demonstrates the significant impact of weight coefficients wcost and wutility on de-
livery strategy, order fulfillment ways, and overall utility outcomes. A higher emphasis on wcost

leads to cost-efficient solutions, such as lockers and attended pickup points, while increased
prioritization of wutility results in a preference for home delivery, which enhances service quality
but incurs higher costs.

Correlation analysis reveals distinct trade-offs between cost minimization and service quality.
As wcost increases, cost utility improves; however, distance utility, delivery time utility, and
freshness utility exhibit a decline, particularly affecting customers purchasing fresh and frozen
goods. The selection of attended pickup points with temperature-controlled storage is notably
reduced under cost-oriented strategies.

A comparison between attended pickup points and lockers highlights their differing function-
alities. Lockers, optimized for cost efficiency and convenience, serve as a practical choice for
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non-perishable goods. In contrast, attended pickup points offer superior freshness utility, mak-
ing them essential for perishable products. The selection between these options is contingent
on the strategic balance between operational cost management and service quality enhancement.

The findings underscore the necessity of carefully calibrating wcost and wutility to achieve a
balanced approach that ensures both economic efficiency and customer satisfaction in last-mile
delivery optimization.

5.6 Company’s Cost Results

Table 16: Cost Analysis for Different Weight Coefficients

W_cost W_utility Value of
cost

Delivery
cost

PUP Cost Delivery cost per address

0 1 817.98 777.98 40 25.93
0.1 0.9 668.95 668.95 0 22.30
0.2 0.8 477.77 427.77 50 14.26
0.3 0.7 288.45 238.45 50 7.95
0.4 0.6 142.33 92.33 50 3.08
0.5 0.5 142.3 92.3 50 3.08
0.6 0.4 97.76 67.76 30 2.26
0.7 0.3 97.76 67.76 30 2.26
0.8 0.2 89.94 69.94 20 2.33
0.9 0.1 89.94 69.94 20 2.33
1 0 88.5 68.5 20 2.28

Table 16 presents a comprehensive cost analysis under different allocations of wcost and wutility.
The values reported in the table include the total cost incurred by the company, the breakdown
into delivery and pickup point (PUP) costs, and the computed delivery cost per address. These
figures provide critical insights into the financial implications of different weighting strategies.
The results indicate a clear trend: as wcost increases and wutility decreases, the overall cost is
significantly reduced. When wcost = 1, the total cost incurred is at its lowest value of 88.5, with
a delivery cost per address of 2.28. Conversely, when wcost = 0 and wutility = 1, the total cost
reaches its highest value of 817.98, with a corresponding delivery cost per address of 25.93.

The distribution between delivery and PUP costs also varies based on the weight coefficients. In
high wutility scenarios, a significant portion of the cost is attributed to direct delivery expenses,
whereas in cost-focused cases (wcost ≥ 0.4), the use of pickup points is maximized to reduce
expenses. The transition point appears to be around wcost = 0.4, beyond which the reduction
in delivery cost per address stabilizes at approximately 2.3, implying an optimized balance of
operational efficiency.

From a strategic perspective, the company should consider adopting a cost-weighting strategy
in the range of 0.6 ≤ wcost ≤ 0.8. Within this range, the total cost remains low (approximately
90), and the delivery cost per address stabilizes at a minimal value without compromising
pickup point utilization. This approach ensures a financially sustainable model while maintain-
ing service efficiency.
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However, if customer satisfaction remains a priority and service quality is non-negotiable, a
moderate trade-off in cost efficiency may be required. For instance, setting wcost ≈ 0.3 provides
a reasonable balance between cost minimization and service level maintenance, with a delivery
cost per address of 7.95, which remains significantly lower than purely service-driven scenarios.
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6 Conclusions and discussion
The research presented in this thesis has explored the optimization of last-mile delivery logis-
tics by integrating cost considerations and customer preferences into a bi-objective decision
framework. The study addressed the trade-offs between cost minimization and customer util-
ity, incorporating different delivery methods, including home delivery, attended pickup points,
and unattended lockers. Through mathematical modeling and computational optimization,
the results provided key insights into how different weights assigned to cost and utility impact
delivery strategies, customer choices, and operational efficiency.

The findings demonstrate several key trends:

• Different groups of customer have different view of order fulfillment criteria. For ambient-
only customers, Delivery Time and Location & Distance are the most critical factors,
indicating that these customers prioritize convenience and speed in receiving their or-
ders. Customers purchasing both products place the highest importance on Freshness,
highlighting their concern for maintaining the quality of frozen items. Delivery Time and
Location & Distance remain important, but less critical compared to freshness. Cost is
the least important factor for both the two groups of customer.

• There a clear trade-off between cost and customer satisfaction. In current distribution
network, as the weight on cost increases, the value of cost decreases, but customer sat-
isfaction also declines. Notably, when the company places moderate emphasis on cost,
with weights between 0.2 and 0.4, there is a significant reduction in cost due to changes
in the delivery method. Beyond this range, further increases in the cost weight do not
lead to major changes in either cost or customer satisfaction.

• Locker is less attractive for fresh and frozen product buyers in terms of freshness, due to
their lack of temperature control. However, a stable fraction of customers continue to use
lockers regardless of freshness concern , indicating that locks outweigh normal attended
pup from accessibility and flexibility.

Based on the analysis results, several meaningful findings could be raised to the company to
improve their delivery service and customer experience:

1. Firstly, the company should prioritize Delivery Time and Location & Distance for ambient-
only customers, as these are the most critical factors influencing their satisfaction. Focus-
ing on improving delivery speed and accessibility will enhance the customer experience
for this group. For customers purchasing both ambient and frozen products, the com-
pany should place a stronger emphasis on Freshness to maintain the quality of perishable
goods.

2. In terms of balancing cost and customer satisfaction, the company should focus on a
moderate weight on cost in its delivery strategies. Within this range, cost reductions
can be achieved through optimized delivery methods without significantly compromising
customer satisfaction.

3. Although lockers lack temperature control, they remain a popular choice due to their
convenience and accessibility, leading to higher overall customer satisfaction. Company
should prioritize the improvement of point density and service level of lockers. And
to enhance their appeal for customers purchasing frozen products, the company should
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consider introducing lockers with temperature control. This would combine the flexibility
and accessibility of lockers with the necessary freshness preservation, offering a well-
rounded solution for both ambient and frozen product buyers.

The implications of these findings extend to both theoretical and practical domains. Theoreti-
cally, the study contributes to the growing body of literature on last-mile logistics optimization
by incorporating multiple objectives and real-world constraints, including perishability and
delivery mode heterogeneity. Practically, the results provide actionable insights for logistics
companies and policymakers. The transition from home delivery to self-pickup demonstrates
the potential for cost savings, but the effectiveness of this approach depends on the strategic
placement and management of attended pickup points. Businesses seeking to optimize their
logistics networks must consider both operational costs and customer service quality, ensuring
that the removal of home delivery does not lead to significant customer dissatisfaction.

Several areas for future research emerge from this study. Firstly, conducting a larger-scale
survey involving a more diverse customer base would provide more comprehensive insights into
customer preferences. A broader sample size would enable a more accurate understanding of the
varying demands across different customer segments, improving the robustness of the findings.
Secondly, applying heuristic methods to analyze larger datasets could provide additional in-
sights, particularly in identifying complex patterns and optimizing delivery strategies at scale.
These methods would be beneficial in handling the increased complexity of larger datasets,
potentially leading to more nuanced recommendations and further enhancing the company’s
ability to tailor its delivery services to customer needs.

In conclusion, this research highlights the inherent trade-offs in last-mile logistics optimization
and provides a structured approach to balancing cost efficiency with customer utility. The
findings underscore the importance of strategic decision-making in logistics planning, where
businesses must carefully evaluate the impact of cost-driven policies on customer satisfaction
and operational feasibility. By leveraging the insights from this study, logistics companies can
develop adaptive, customer-centric delivery solutions that optimize both economic performance
and service quality in an increasingly complex urban logistics landscape.
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A Questionnaire
This questionnaire is designed to gather preferences for selecting criteria in order-fulfillment
methods. Please compare the following criteria pairwise based on your preferences and rate
them using a scale from 1 to 9. The scale is defined as follows:

• 1: Both criteria are equally important.

• 3: One criterion is moderately more important than the other.

• 5: One criterion is significantly more important than the other.

• 7: One criterion is strongly more important than the other.

• 9: One criterion is extremely more important than the other.

• 2, 4, 6, 8: Intermediate values for finer granularity.

Pairwise Comparisons

1. Compare the importance of Delivery Time vs. Location & Distance.

2. Compare the importance of Delivery Time vs. Cost.

3. Compare the importance of Location & Distance vs. Cost.

Instructions for Completion

1. For each pair, circle the number that reflects how much more important one criterion is
compared to the other. For example:

• If Delivery Time is moderately more important than Location & Distance, circle 3
under Delivery Time.

• If both criteria are equally important, circle 1 under Equal.

2. Ensure that all pairs are rated.

3. Submit the completed questionnaire.

Example Table for Comparison

Criterion 1 Scale Criterion 2
Delivery Time 9 8 7 6 5 4 3 2 1 Location & Distance
Delivery Time 9 8 7 6 5 4 3 2 1 Cost

Location & Distance 9 8 7 6 5 4 3 2 1 Cost

Table 17: Example Pairwise Comparison Table
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B BWM Questionnaire result for customers who order both
ambient and F&F

Figure 12: BWM Questionnaire result for customers who order both ambient and F&F
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C BWM Questionnaire result for customers who order only
ambient

Figure 13: BWM Questionnaire result for customers who order both ambient and F&F
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