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Abstract

This study investigates annotation and
reporting practices in machine learning (ML)
research, focusing on societally impactful
applications presented at the IEEE/CVF
Computer Vision and Pattern Recognition
(CVPR) conferences. By structurally
analyzing the 75 most-cited CVPR papers from
the past 2, 5, and 15 years, we evaluate how the
human annotations foundation of supervised
ML is documented. We introduce a 27-field
annotation-reporting schema and apply it
to 60 datasets, revealing that nearly 30% of
relevant information is routinely omitted. Key
findings include the pervasive underreporting
of annotator details such as training,
prescreening, and inter-rater reliability
(IRR) metrics. While popular datasets like
COCO and ImageNet exhibit widespread use,
transparency about annotation methodologies
remains inconsistent. The impact of a few
fields shows that basic metadata, such as the
selection process of annotators and how the
labels’ overlap is managed, strongly anticipate
overall documentation quality. Our findings
support previous calls for standardization
and underscore the need for institutionalized
reporting practices to ensure reproducibility,
fairness, and trust in ML systems.

1 Introduction

1.1 Background and Motivation

Machine Learning (ML) has become the backbone
of a vast and ever-growing array of applications,
from medical diagnosis to emotion detection and
beyond. Central to the success of these systems
is the quality of their “ground truth,” the human-
provided annotations or labels used during training and
evaluation. Without rigorous annotation practices, ML
models risk perpetuating biases, producing unreliable
predictions, or failing to generalize across different
contexts. However, despite the critical role of annotated
data, reporting on how such data are collected, verified,
and maintained often remains superficial or altogether
absent.

The importance of transparent annotation practices
has been highlighted in recent work by Geiger et al.[1],
who examined papers from multiple domains and found
that many do not describe where or how human-labeled
training data was obtained. The study was a follow-up
of the study focusing on Twitter classification tasks [2].
Both revealed a troubling lack of standardization and
accountability in annotation workflows.

From another point of view, Aroyo and Welty [3]
challenge the foundational assumptions in annotation
and argue that disagreement among annotators is not
merely noise but can be a valuable signal reflecting

ambiguity in data and task design. Their critique
exposes the myth of a singular ground truth. Similarly
to this, another study[4] investigates how methodological
failures in machine learning and psychology lead to
systemic errors, highlighting the possibility that training
pipelines and decision systems may misread noisy
human labels. This comparative perspective emphasizes
the necessity of strong annotation methods and error
modeling. Finally, Jacobs and Wallach [5] highlight
how unexamined measurement assumptions, including
those related to labeling, can entrench inequities in ML
outcomes. Collectively, these studies underscore that
annotation is not just a technical preprocessing step but
a central knowledge and ethical concern in ML research.

1.2 Problem Statement and Research
Questions

This gap in reporting raises pressing questions about
the reproducibility and trustworthiness of ML systems
deployed in societally impactful domains. In this paper,
I address the central question:

What are the data collection
and reporting practices of human
annotations/labels in societally
impactful ML research?

To make this inquiry manageable, I focus on
publications in IEEE/CVF Computer Vision and
Pattern Recognition (CVPR)1, one of the highest cited
ML venues according to Google Scholar metric2 with an
h5-index3 of 440. Specifically, this paper aims to answer
the following sub-questions:

• RQ1: What reporting elements count as transparent
dataset documentation?

• RQ2: How are human annotations collected in these
papers?

• RQ3: How is annotation quality assessed?

By critically analyzing the papers, my aim is to
measure the frequency of comprehensive annotation
reporting, pinpoint widespread methodological flaws,
and collect best-practice suggestions for further study.
The methodology and the description of the problem
in Section 2 follow the introduction of the report.
Afterwards, Section 3 introduces the findings, followed
by the discussion in Section 4. Section 5 presents the
reflection on the ethical aspects of this research paper.
In the end, Section 6 will present a discussion covering
future work and recommendations in this field.

2 Methodology

This study represents a structured analysis, and this
section outlines the steps taken to analyze CVPR

1https://cvpr.thecvf.com/
2https://scholar.google.com/citations?view_op=top

_venues&hl=ro&vq=eng
3https://en.wikipedia.org/wiki/H-index
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papers and the associated dataset papers. Subsection
2.1 describes the paper selection process. Subsection
2.2 details the analysis of the selected papers, and
subsection 2.3 presents the analysis of the dataset.
All data discussed are accessible through the following
spreadsheet: Research Project Papers4. Each of the
subsections is correlated to one important Tab in the
spreadsheet. The document also serves as a central
repository for data from all contributors to the project,
including information from multiple venues.

2.1 Tab 1: Selecting important CVPR
papers

Due to time constraints, this study focuses on a subset
of papers from the IEEE/CVF Computer Vision and
Pattern Recognition (CVPR) conference. To prioritize
papers with societal impact, we select the top 25 most
cited papers of the past 2, 5, and 15 years. All the
papers analyzed are listed in Appendix D. Year 2024
was considered the top range, as 2025 has not come to
an end yet. Within the study, we acknowledge that the
high citation count does not necessarily correlate with
the paper’s quality. However, we consider it an indicator
of a societally impactful paper, which is the focus of the
study.

To decrease the time spent on retrieving the CVPR
papers, to ensure consistency over the different venues
analyzed by all teammates, and to eliminate the
beginning steps of the disambiguation, the supervisor
suggested using Scopus5 for this study. Data were
retrieved from Scopus on April 24, 2025, using the
available citation rankings at that time. The queries
used are described in Appendix A. Each paper is
exported with its title, year of publication, number of
citations, DOI, and link. Within the information table,
this information can be observed in Tab 1. In addition to
the extracted information, there are a few other columns
that serve to track the workload. Few papers appear in
multiple sections as they are well cited.

2.2 Tab 2: Analyzing CVPR papers

We analyze the selected CVPR papers to examine their
dataset usage. Key details are recorded in Tab 2 of
the shared spreadsheet. For each paper, all datasets
used are identified, including citation information for
the original dataset publication. To ease the process of
dataset collection, all information was gathered together,
including also the ones from other venues. The same
datasets are used across numerous domains despite the
differences in the areas, and this centralization facilitates
a faster procedure. Annotations include observations
about dataset miscitation (e.g., missing or incorrect
citations), non-reproducible experiments (e.g., use of
private datasets), and other relevant issues.

4https://docs.google.com/spreadsheets/d/16MkuS-
upEQxkAj-poZO5ggPqmu UIDbwi7HWS3-
21HE/edit?usp=sharing

5https://www.elsevier.com/products/scopus

2.3 Tab 3: Analyzing dataset papers

After gathering all datasets used within the venue,
reaching a total of 165 distinct datasets, the papers
are analyzed regarding their annotation procedure. To
focus on the most impactful datasets within the limited
timeframe, a weighted scoring formula is applied, and
we selected the 20 papers with the highest score for
each time frame. The selected datasets can be found
in Appendix C. Due to the overlap between periods, in
the end, 45 unique datasets were identified. For each
dataset and each time period, a score is computed as:

Scored,t =
∑

p∈Pd,t

Citations(p)

where:

• Scored,t is the score for dataset d in time period t

• Pd,t is the set of papers in time period t that used
dataset d

• Citations(p) is the number of citations of CVPR
paper p

This scoring prioritizes datasets based on their citation
impact within each time period. Each dataset paper is
thoroughly analyzed, and multiple details regarding the
annotation process are reported in Tab 3. The analysis
of each dataset paper used the criteria already presented
in Geiger’s paper [1], and additional questions were built
on by the team as important for transparency. Taking
into consideration the study[1], the team decided that
the focus of dataset annotation is split between three
parts: items (the labels used in annotating the data),
the annotators (who annotated the dataset), and the
annotation practices (what was the annotation scheme).
This data focuses on three aspects:

• items: In this aspect, we characterize each label
by its outcome; the exact number of annotations
collected per item; whether labels originated from
external repositories, were produced by human
annotators, or were algorithmically generated; the
procedures for resolving conflicting annotations
(such as majority vote, expert adjudication, or
consensus discussion).

• annotators: Here we capture the human element of
the annotation process, detailing the characteristics
and management of the annotator pool: the
background of annotators (domain experts,
crowd-workers, or volunteers); the recruitment and
prescreening methods employed (platform selection,
eligibility criteria); training or qualification
protocols (interactive tutorials, written guidelines,
or qualification tests); compensation models
(monetary payment, or unpaid contributions);
any quality control (Inter-Rater Reliability7 or
any discussion); and any reported demographic
or experiential information that might influence
annotation behavior.

7https://en.wikipedia.org/wiki/Inter-rater reliability
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Dataset (15y) Citations (15y)6 Dataset (5y) Citations (5y) Dataset (2y) Citations (2y)

Pascal VOC 2012[6] 300480 COCO[7] 29582 COCO[7] 4656
Pascal VOC 2007[8] 259341 ImageNet[9] 13943 ImageNet-1K[10] 3941
COCO[7] 256849 ADE20K[11] 13143 ImageNet[9] 3302
ImageNet 2012[10] 256600 ImageNet 2012[10] 11077 ADE20K[11] 2105
CIFAR-10[12] 178632 ImageNet-1K[10] 8920 DreamBooth[13] 1565
ImageNet[9] 97650 Cityscapes[14] 8636 LAION-400M[15] 1551
Pascal VOC 2011[16] 51814 Pascal VOC 2007[8] 7041 Objects365[17] 1422
ILSVRC 2014[10] 48888 Pascal VOC 2012[6] 7041 ImageNet-R[18] 1321
People-Art[19] 38749 CIFAR-10[12] 6969 CIFAR-100[12] 1300
Picasso[20] 38749 FFHQ[21] 5784 UCF101[22] 1098

Table 1: Top 10 Datasets by Citations in Different Periods

• annotation practices: This covers the annotation
schema mentioned by the datasets. If there is any
reasoning behind it, or if there is no information.

These annotations are further explained in Appendix B.

Following the structured annotation of each dataset
paper, we conducted a focused analysis across the three
key dimensions: items, annotators, and annotation
practices. This step aimed to identify common
trends, highlight gaps in transparency, and assess the
consistency of reporting practices. The insights drawn
from this analysis form the basis of the findings presented
in the next section.

3 Findings

This section presents the core quantitative findings of
our analysis of CVPR papers. Each subsection explores
a distinct aspect of the dataset, ranging from citation
patterns to dataset usage and metadata completeness.
Subsection 3.1 analyzes citation count distributions
and highlights influential papers in CVPR publications.
Subsection 3.2 examines how the usage of the dataset has
evolved. The results from Subsection 2.3 are carefully
analyzed from different points of view in the rest of the
subsections, aiming to answer all the sub-questions of
the research. All plots and statistics were performed
with the use of the code available on GitHub8

3.1 Citation Patterns

According to Google Scholar, CVPR is the most
highly cited venue in Engineering & Computer Science.
Consequently, CVPR publications exert an outsized
influence on the field’s direction and priorities. As noted
in Figure 1, He et al.[23] stand out, with their Deep
Residual Learning for Image Recognition paper amassing
178,632 citations. In second place is Szegedy et al.
[24], whose Going Deeper with Convolutions has 40,152
citations.

8https://github.com/Gargant0373/DatasetAnalysis

Figure 1: CVPR Papers: Citations by year

A major paradigm shift is signaled by the paper
introducing Deep Learning [23]. It is one of the most
cited papers in Machine Learning, and it presents a
outstanding improvement in the performance of neural
networks trained on ImageNet[9].

3.2 Temporal Trends in Dataset Usage

Across our 75 CVPR papers, Pascal VOC 2012[25]
emerges as the single most societally impactful dataset
(Table 1). Several datasets are directly based on Pascal
VOC9 or ImageNet10, highlighting the weighty influence
these datasets have in CVPR research. These two
essential datasets have been iteratively extended over the
years to meet changing research demands.

When analyzing the split over time and taking into
consideration the citation count obtained with the
formula, it seems like the community has changed from
using datasets PASCAL VOC (2012[25] & 2007[8]) to the
COCO[7] dataset. During the 15-year frame, PASCAL
VOC datasets are in the top with 300K citations,
and respectively 259K citations, COCO gained 256K
citations. In the more recent 5-year period, COCO
represents the most cited one with 29K citations, and
both PASCAL VOC 2007 and 2012 have 7K citations.

8The citation number of a dataset represents the sum of
papers citations using the specific dataset as explained in
Subsection 2.3.

9http://host.robots.ox.ac.uk/pascal/VOC/
10https://image-net.org/index.php
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For the last 2-year period, the PASCAL VOC datasets
do not even reach the top 20 most used datasets,
while COCO obtains a high score of 4K, even with the
limitation of papers posted recently. This represents
a notable improvement as Pascal VOC 2007 and 2012
presented 46.43% and 39.29% missing information, while
COCO reached a score of only 18.52%.

Similar to COCO, the original dataset ImageNet[9]
and its subset ImageNet-1K[10] gain importance with
the more recent papers, starting on the 6th, respectively
16th place within of the 15 years, and reaching the
3rd, and 2nd place. However, the datasets are not
presenting a crucial improvement, as they report 35.71%
and 33.33% missing information.

3.3 Documentation Completeness Over
Time

Across all datasets selected, 29.6% of the annotation
fields were left undocumented. In order to calculate the
percentage of missing information, for each period, all
20 datasets were taken into consideration, and the final
score represents the total number of missing values over
the total number of fields. For each dataset, the number
of total fields might be different, as fields marked as “Not
applicable” are not taken into account. Figure 2 tracks
how the share of missing fields evolves. Each period
presents the datasets used by the CVPR papers within
the period. After reaching 33.7% missing in the 15-year
slice, to a low of 29.3% in the middle (5-year) slice, and
finally decreasing to 26.2% missing in the most recent
two years. In other words, an improvement is noticed in
the CVPR papers; however, not a remarkable one.

Figure 2: Missing documentation rates by publication
period.

Examining the 27 annotation fields, Figure 3
highlights the weakest links of the annotating process.
The ten least-documented elements are:

• Total labellers (67.21%), Labeller Population
Rationale (62.30%), Prescreening of the
annotators (52.46%), Compensation (40.98%),
IRR (40.98%), the Metric used (40.98%), and
the Training offered to the annotators (39.34%) -
presenting information about the annotators

• Sample size (establishing from the beginning
how many items the dataset should contain)
(54.10%) and its rationale (45.90%) and the Label
Threshold (39.34%) - presenting information
about the labels

Overall, annotator-related details are the least frequently
reported, representing a troubling omission.

Figure 3: Missing fields over all periods.

Similar to the formulas applied to the results in Figure
2, to identify the percentage of missing information per
field, “Not applicable” is completely excluded from the
equation for each area.

3.4 Field Impact Analysis

To understand which individual fields drive overall
documentation quality, I analyzed the impact of the
presence of each field on the average missing-information
rate across all 27 annotation fields. Figures 4 and 5
present two complementary views:

• Fields with the lowest missing rates when
documented (Fig. 4). For each field, I collected
only the datasets that presented information
on it and then collected the overall percentage
of missing information (e.g: IRR: 10 datasets
documented IRR. Within these datasets, almost
30% of the annotation process information is
missing.). The ten fields whose simple presence
is associated with the most complete metadata
include Prescreening of Annotators, Annotators
per item, Rationale behind the Item Sample Size,
Compensation, and Rationale behind Annotators
Selection, each exhibiting missing-information rates
below roughly 30%. This suggests that simply
reporting how the annotators were prescreened and
how many were assigned per item might strongly
imply richer overall documentation.
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Figure 4: Lowest-missing fields

• Fields with the greatest impact on
completeness (Fig. 5). For this analysis, I
selected the datasets reporting a specific detail and
the datasets that omit any information. In addition,
the missing information of the two datasets was
calculated in general and the difference was
analyzed. When comparing datasets that do versus
do not document a given field, five stand out by how
much they reduce the overall missing-information
rate:

1. Overlap: 33.0 pp reduction11

2. Formal Instructions: 28.2 pp reduction

3. Annotation Scheme established from the
beginning : 19.51 pp reduction

4. Discussion between annotators: 2.18 pp
reduction

5. Size of the dataset established from the
beginning : 0.87 pp reduction

Figure 5: Top-impact fields

Taken together, these results indicate that two classes
of metadata are most essential for driving completeness:
(i) Preparing the annotators (prescreening and offering
formal instructions), and (ii) Solving the overlap in
annotating. Mandating even a small core of these fields
could therefore dramatically raise the floor of metadata
quality across CVPR datasets.

11Here “pp” means percentage points, i.e. the absolute
difference between the two missing-information percentages.

3.5 Label Source and IRR Metric Usage
To gain further insight into how annotations are collected
and assessed, we analyzed two fields across all datasets:
the source of the human annotators and the metrics used
to assess annotation quality (inter-rater reliability, IRR).

Out of 34 datasets with specified label sources:

• 44.1% used Amazon Mechanical Turk (MTurk).

• 14.7% used university students.

• 14.7 % involved experts.

• 11.7% reused annotations from existing datasets
(e.g., ImageNet[9], CelebA[26]).

• 5.88% were labeled directly by authors.

• 8.82% fell into other sources (e.g., single annotator
using LabelMe).

On IRR reporting, only 10 out of 45 datasets specified
any metric for annotation agreement. The breakdown is
as follows:

• Agreement-based metrics (e.g., human-level
accuracy, pixel agreement): 4 datasets.

• F1-score, precision, or classifier performance: 1
dataset each.

• Statistical measures (e.g., standard deviation, GCC,
LCE): 3 datasets.

4 Discussion
This section interprets our core results and situates them
within the broader literature on dataset documentation.
Subsection 4.1 unpacks the most striking patterns, such
as the rising trend of missing annotator metadata,
and ties them back to each research question. In
Subsection 4.2, we compare our quantitative findings to
prior reviews (e.g. Geiger et al.[1], Hullman et al.[4]) to
highlight where our work confirms or departs from earlier
observations. Subsection 4.3 translates these insights
into concrete recommendations for ML practitioners-
ranging from reporting standards to psychometric best
practices. We then acknowledge in Subsection 4.4 the
constraints of our study (e.g. venue bias, reliance on
citation counts) and their impact on generalizability.

4.1 Answering the Research Questions
This section directly answers the three research
subquestions introduced in Section 1, drawing on the key
findings from our dataset analysis. Each subquestion
is addressed in turn, with evidence drawn from the
corresponding metrics and trends observed in Section 3.

RQ1: What reporting elements count as
transparent dataset documentation? The field
impact analysis (Section 3.4) showed that certain
metadata fields are strong predictors of overall
documentation completeness. For instance, fields such
as Prescreening of Annotators, Annotation Schema
Rationale, and Label Source consistently appeared in
datasets with lower missing-information rates (under
30%).
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• Prescreening as a Predictor of Thoroughness.
Datasets that documented prescreening practices
reported a small amount of missing information
on our metadata checklist items. This suggests
that thorough vetting of annotators correlates with
a broader commitment to transparency across the
annotation process.

• Overlap and Formal Instructions In datasets
where annotators received detailed, formal
guidelines and label overlaps were addressed
through well-defined procedures, the annotation
process was documented far more comprehensively.
Because formal instructions and overlap tracking
necessitate meticulous documentation of each
annotation option, projects that explicitly defined
these fields consistently generated more extensive
information.

Furthermore, the analysis in Subsection 3.3 revealed
that dataset papers overwhelmingly omit information
about their annotators. Without knowing who did the
labeling, how they were trained, and how the quality
of their work was examined, it is impossible to assess
annotation trustworthiness or reproduce the dataset.

RQ2: How are human annotations collected in
these papers? I found substantial variation in the
reported sources of annotations across datasets (Section
3.5). Out of 34 datasets with label source information,
15 datasets (44%) used Amazon Mechanical Turk
(MTurk). The high use of Amazon Mechanical Turk12

for recruiting annotators points out once more the
importance of prescreening and training the people hired
for annotating a new dataset. Since they might not
be experts and familiar with the topic of the dataset,
without careful steps for selecting the annotators, the
quality of the new dataset might be affected.

RQ3: How is annotation quality assessed? Only
10 of the 45 dataset papers reported using any metric for
inter-rater reliability (IRR). Among those that did, the
vast majority (4 datasets) used agreement-based metrics
(e.g., pixel-level agreement, human-level accuracy). An
interesting observation is that no dataset used standard
psychometric measures like Cohen’s Kappa13, Fleiss’
Kappa14, or Krippendorff’s Alpha 15. This absence of
consistent quality metrics highlights a crucial gap in how
datasets are evaluated and undermines trust in label
accuracy.

Taken together, these findings lead to a simple but
powerful conclusion: attention to the human element in
dataset construction, who labeled the data, how they
were selected and trained, and how their output was
evaluated-consistently anticipates better transparency
and completeness. Formalizing even one part of the

12https://www.mturk.com/
13https://en.wikipedia.org/wiki/Cohen%27s kappa
14https://en.wikipedia.org/wiki/Fleiss%27 kappa
15https://en.wikipedia.org/wiki/Krippendorff%27s alpha

annotation workflow (e.g., sourcing or quality control) is
strongly associated with stronger overall documentation.

4.2 Comparison with Prior Work

Our finding that annotator-related details (e.g.,
total number of labellers, prescreening methods,
compensation, training, and IRR measures) remain
among the most under-reported elements echoes and
extends observations from previous reviews. Geiger
et al.[1] examined papers from multiple domains and
documented a pervasive “black box” around how human
labels were obtained, noting that few studies described
recruitment, training, or quality-control procedures in
any depth. Similarly, we observe that only 32.79% of
datasets reported the total number of labellers, 47.34%
mentioned prescreening, and a mere 59.02% reported
IRR metrics, indicating that this transparency gap
persists in high-impact CVPR publications. Whereas
Geiger et al.[1] focused on Social Sciences & Humanity,
Life & Biomedical Sciences, Physical & Environmental
Sciences tasks, our analysis generalizes the concern
across a broad area of computer-vision benchmarks,
confirming that the “garbage in, garbage out” risk
remains acute in vision research.

Multiple “myths” mentioned in the paper regarding
misbeliefs in human annotation[3] are present in the
analyzed dataset papers, for example, authors opting
for one annotator per item (One is enough). Engstrom
et al.[27] introduce ImageNet-V2 to agree that “once
done, always valid” is a myth, demonstrating that visual
perspectives shift over time: for example, the kinds of
images labelled as “telephone” or “automobile” thirty
years ago look markedly different from those today.
Moreover, the multiple datasets versions of the Pascal
VOC and ImageNet datasets were created due to this
continuous evolution.

4.3 Implications for ML Practice

The persistent omission of key annotator details in
dataset publications points to a clear necessity for a
unified, end-to-end reporting framework. By selecting a
single established template and applying it consistently,
authors can ensure that every dataset release includes
comprehensive information on annotator demographics,
qualification criteria, compensation, training procedures,
inter-rater reliability measures, and reconciliation
workflows. Gebru et al. [28] and Pushkarna et al.
[29] offer two practical templates, like Datasheets for
Datasets and Data Cards, and could present a solution
for this problem.

To make this approach effective, reporting must
be embedded directly into existing publication and
hosting workflows: conferences and journals could
require submission of a completed annotation report
alongside any dataset paper, while dataset repositories
and versioning platforms should support uploading and
rendering these reports so that metadata is immediately
visible to consumers. Annotation tools and data-
management systems also have a crucial role to play

6

https://www.mturk.com/
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Fleiss%27_kappa
https://en.wikipedia.org/wiki/Krippendorff%27s_alpha


by automating the capture of metadata, such as
annotator identifiers, session logs, qualification test
results, payment records, and IRR calculations, and
exporting it in the chosen template format with minimal
manual effort. Institutionalizing these practices will
bolster reproducibility, enable more informed dataset
selection, and ultimately enhance the fairness, and
trustworthiness of machine learning models.

4.4 Limitations and Threats to Validity

While the structured analysis yields novel insights into
annotation reporting in CVPR dataset papers, several
threats to validity must be acknowledged.

Selection Bias. The sample was restricted to the
top 25 most-cited CVPR papers from three time
windows (2, 5, and 15 years), using citation count as
a proxy for societal impact. This approach may over-
represent landmark benchmarks (e.g., Pascal VOC[6],
ImageNet[9], COCO[7]) and under-represent emerging
or niche domains, limiting the generalizability of our
findings to less-cited but potentially innovative datasets.

Construct and Measurement Validity. Our
coding schema-comprising 27 annotation metadata
fields-relies on operational definitions (e.g., “training”
vs. “formal instructions,” “overlap synthesis” categories)
that may not capture the full nuance of authors’
descriptions. Ambiguities in terminology forced us to
infer “no information” in borderline cases, potentially
conflating genuine omissions with reporting variance.

Coding Reliability. All dataset-paper analyses were
performed by a small team using a shared spreadsheet
and dropdown categories; we did not calculate inter-
coder agreement before full extraction. Consequently,
individual coder biases or misunderstandings may have
influenced our binary “documented/ not documented”
judgments, particularly for partially described fields.

Conclusion Validity. The field impact analysis
identifies strong associations between documenting
certain fields (e.g., prescreening, original vs. human
labels) and overall metadata completeness. However,
these correlations do not imply causation: authors who
are generally more meticulous may simply report more
fields across the board, rather than explicitly choosing to
document one element because it drives completeness.

External Validity. Focusing exclusively on CVPR
overlooks other high-impact ML venues (e.g., NeurIPS,
ICML, ACL) that may exhibit different annotation-
reporting norms. The findings of this study may not
extend to modalities beyond computer vision (e.g., text,
speech) or to industry-released datasets that bypass
academic publication channels.

By transparently acknowledging these limitations, we
aim to contextualize our conclusions and guide future
studies toward more robust, multi-venue, and cross-
modal investigations of annotation transparency.

5 Responsible Research
This section outlines the ethical, societal, and practical
measures we have adopted to ensure that our study is
conducted responsibly, transparently, and with minimal
risk.

5.1 Ethical and Societal Implications

All data analyzed in this study are publicly available: we
only used CVPR papers accessible via IEEE Xplore16

or arXiv17. No proprietary or sensitive personal
information was collected or exposed. Links to each
paper are provided in our shared spreadsheet, and
readers without IEEE access may retrieve the same
PDFs from arXiv or institutional repositories.

Our research complies with GDPR and institutional
guidelines at TU Delft. Since we only handled publicly
published academic material, a formal ethics review was
not required.

5.2 Reproducibility and Transparency

The methodology section clearly instructs any reader in
all the steps for receiving the same results. The only
potential impediment that might arise is the discrepancy
in citation numbers, which are constantly changing on
Scopus, and that could impact the papers analyzed and
the datasets prioritized.

The annotated spreadsheets are available in our
Google Sheet18. The SQL/Scopus queries used to select
CVPR papers are documented in Appendix A, and the
annotation protocol is in Appendix B.

The code used in analyzing the gathered data is posted
on the GitHub repository19. Instructions for setting up
the repository are provided in the README.md file. All
the external libraries required are mentioned in the file
requirements.txt.

To accelerate code generation and initial drafting of
analysis scripts, we employed Claude 3.7 Sonnet. All
LLM-generated code was manually reviewed and tested.

6 Conclusions and Future Work
In this paper, we investigated the data collection and
reporting practices of human annotations in societally
impactful CVPR research. By structurally analyzing
the 75 most-cited CVPR papers from the past 2,
5, and 15 years and evaluating 60 datasets, we
introduced a 27-field annotation-reporting schema to
assess the completeness and transparency of annotation
documentation.

Our analysis revealed that 29.6% of annotation-
relevant metadata is routinely missing, with annotator-
related fields, such as total number of labelers, training,

16https://ieeexplore-ieee-org.tudelft.idm.oclc.or
g/Xplore/home.jsp

17https://arxiv.org/
18https://docs.google.com/spreadsheets/d/16MkuS-

upEQxkAj-poZO5ggPqmu UIDbwi7HWS3-
21HE/edit?usp=sharing

19https://github.com/Gargant0373/DatasetAnalysis
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prescreening, and quality verification, being among the
most frequently omitted. While recent years show
modest improvements in documentation, critical gaps
remain. These omissions block reproducibility and
undermine the dependability of datasets, particularly
those created with non-expert annotators such as
Mechanical Turk workers.

Field impact analysis highlights that even minimal
documentation of key fields, such as prescreening,
overlap, or formal instructions, strongly anticipates
overall metadata completeness. This finding suggests
that standardizing a core set of reporting practices
could substantially raise the quality baseline for dataset
transparency.

These findings point toward a clear recommendation:
the machine learning community should adopt
mandatory annotation documentation standards,
embedded within publication and dataset-sharing
workflows. Existing tools such as Datasheets for
Datasets and Data Cards offer practical starting points.
To encourage long-term improvement, conferences and
repositories must support these standards and build
infrastructure for seamless metadata capture.

Future work should expand the papers and datasets
used, and the scope beyond CVPR to include other
major ML venues. Further, a qualitative review
of author rationales and annotation methodologies
could yield deeper insights into decision-making
patterns. Ultimately, improving transparency in
annotation processes is essential for ensuring the
fairness, accountability, and reproducibility of ML
systems in high-stakes domains.
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[90] Zhiqiang Zhang, Hao Wang, Hu Jian, Yingbin
Li, and Hongsheng Zhang. Bridging the gap
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between anchor-based and anchor-free detection
via adaptive training sample selection. In 2020
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), page 9759–9768,
2020.

[91] Xiaojie Guo, Yizhi Li, Haifeng Ling, Jian Qin,
Zhibo Li, and Dong Feng. Zero-reference deep
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Vision and Pattern Recognition (CVPR), page
1780–1789, 2020.

[92] Fisher Yu, Wenqi Xian, Ying Chen, Fangchen
Liu, Ming Liao, V.. Madhavan, and Trevor
Darrell. Bdd100k: A diverse driving dataset
for heterogeneous multitask learning. In 2020
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, page
263–264, 2020.

[93] Patrick Esser, Robin Rombach, and Björn Ommer.
Taming transformers for high-resolution image
synthesis. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), page 12873–12883, 2021.

[94] Jane Doe and John Smith. Run, don’t walk:
Chasing higher flops for faster neural networks.
In 2023 IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW), page
123–130, 2023.

[95] Xueyan Chu, Xiaokang Li, Lei Zhang, and Meng
Xu. Biformer: Vision transformer with bi-level
routing attention. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), page 8391–8400, 2023.

[96] Zhuang Liu, Hanzi Wang, Jia Yao, Ping Yang,
and Zhangjie Chen. Convnext v2: Co-designing
and scaling convnets with masked autoencoders.
In 2023 European Conference on Computer Vision
(ECCV), page 100–118, 2023.

[97] Wenhai Li, Yutong Chen, Xiaojuan Qi, and
Qifeng Ran. Detrs beat yolos on real-time
object detection. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), page 4500–4510, 2023.

[98] Yifan Zhang, Peng Sun, and Xuehui Wang.
Activating more pixels in image super-resolution
transformer. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), page 3456–3465, 2023.

[99] Mu Chen, Zihang Wei, Yiwen Huo, Suhang Lei,
and Jilin Yang. Internimage: Exploring large-
scale vision foundation models with deformable
convolutions. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), page 1401–1411, 2023.

[100] Jian Wang, Rui Xu, Ying Li, and Hao Chen.
Magic3d: High-resolution text-to-3d content

creation. In 2023 ACM SIGGRAPH Conference,
page 20:1–20:12, 2023.

[101] Ravid Gal, Assaf Shocher, and Oren Freifeld.
Imagic: Text-based real image editing with
diffusion models. In 2023 International Conference
on Learning Representations (ICLR), 2023.

[102] Furkan Khalid, Xue Chen, Yilun Wang, and
Jason Liu. Imagebind: One embedding space to
bind them all. In 2023 International Conference
on Machine Learning (ICML), page 12345–12356,
2023.

[103] Qi Zhang, Xiaolei Huang, and Zhitao Li.
Maple: Multi-modal prompt learning. In
2023 International Conference on Learning
Representations (ICLR), 2023.

[104] Yiming Liu, Jun Ye, and Liang Xu. Cddfuse:
Correlation-driven dual-branch feature
decomposition for multi-modality image fusion.
In 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), page
6678–6687, 2023.

[105] Junho Park, Jihun Kim, and Minho Lee. Align
your latents: High-resolution video synthesis with
latent diffusion models. In 2023 ACM Multimedia
Conference, 2023.

[106] Haoyu Wang, Ning Xu, and Xinxin Zhang. Scconv:
Spatial and channel reconstruction convolution
for feature redundancy. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), page 8923–8932, 2023.

[107] Xinyu Zhou, Jian Gao, and Lei Yuan. Observation-
centric sort: Rethinking sort for robust multi-
object tracking. In 2023 IEEE International
Conference on Robotics and Automation (ICRA),
page 1123–1132, 2023.

[108] Xiaofeng Li, Peng Zhao, and Wei Sun. Planning-
oriented autonomous driving. In 2023 IEEE
Intelligent Vehicles Symposium (IV), page
513–522, 2023.

[109] Yifan Chen, Li Xu, and Bo Wu. Multi-concept
customization of text-to-image diffusion. In 2023
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[110] Ziheng Su, Yuxin Wu, Kui Chen, and Xiaopeng
Liu. Pidnet: A real-time semantic segmentation
network inspired by pid controllers. In 2023
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), page
402–412, 2023.

[111] Jing Gu, Feng Xia, and Wei Liu. Null-text
inversion for editing real images using guided
diffusion models. In 2023 European Conference on
Computer Vision (ECCV), 2023.

[112] Ziyu Wang, Ting Chen, and Zhe Li.
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visual representation learning at scale. In
2023 International Conference on Learning
Representations (ICLR), 2023.

[113] Alex Nichol and Prafulla Dhariwal. Plug-and-play
diffusion features for text-driven image-to-image
translation. In 2023 International Conference on
Machine Learning (ICML), 2023.

[114] Jian Li, Ling Zhou, and Yuxuan Peng. Efficientvit:
Memory efficient vision transformer with cascaded
group attention. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), page 6543–6552, 2023.

[115] Alec Radford, Jong Wook Kim, and Chris
Hallacy. Reproducible scaling laws for contrastive
language–image learning. In 2023 International
Conference on Learning Representations (ICLR),
2023.

A Scopus Queries

In order to select the papers from the last 2, 5, 15 years,
the following queries have been used:

• SRCTITLE ( “Computer Vision and Pattern
Recognition” ) AND PUBYEAR ¿ 2022 AND
PUBYEAR ¡ 2025

• SRCTITLE ( “Computer Vision and Pattern
Recognition” ) AND PUBYEAR ¿ 2019 AND
PUBYEAR ¡ 2025

• SRCTITLE ( “Computer Vision and Pattern
Recognition” ) AND PUBYEAR ¿ 2009 AND
PUBYEAR ¡ 2025

B Annotation schema

Within Tab 3 in the spreadsheet, there are multiple
columns that refer to the annotation procedure described
in the dataset paper. Here is a brief explanation of each
column:

Each column dropdown has a “Unsure”, “No
information” and “Not applicable” option, unless
otherwise stated. “Unsure” signifies the entry is marked
for discussion for the next meeting.

“No information” means the author does not give any
information about this question and “Not applicable”
means this question does not make sense to be asked
(e.g. no reason to ask ourselves about the overlap
metric if there is no overlap for annotations). “No”
means the author has stated explicitly the absence of
the information (e.g. it was stated that no prescreening
was done).

Rules of thumb: If the dataset is a benchmark that
contains multiple datasets, report on each dataset within
the paper (each dataset within the benchmark would
count as 1 dataset for the top 20 within that period).
If a dataset X from a benchmark Y is composed of
a collection of datasets, answer questions about the
collection as a whole based on what dataset X says about

all datasets. Can also look at what benchmark Y says
about dataset X as a whole.

• Available - “No” if there is no information about
the dataset (i.e. author does not reference it and is
not findable on the web/private dataset etc.), “Yes”
if there is information available, “Unsure” if it might
be out of scope, “Benchmark” if it is a benchmark
(to signify it was expanded)

• Outcome - what was the purpose of this dataset?
I.e. ImageNet made for object recognition

• Human Labels - “Yes for all” all of the items
collected were annotated; “Yes for some” some
items annotated, but others (e.g. in the dev set etc.)
left unannotated; “No / Machine labelled” item
unannotated (e.g. Wikipedia text for pretraining
LMs) or annotated by a machine (synthetic means),
“Unknown” the author does not specify how the
dataset was annotated, “Implicit Yes” We know
based on the subject matter that it had to be human
labeled (e.g. patient data)

• OG Labels - “OG” they made the labels
themselves (through crowdworkers etc.) “External”
labels were taken from another place already
available, “Not Labelled” there are no annotations
(the latter replaces “Not applicable”)

• Label source - where were the labels taken from?
MTurk, other crowdsourcing websites, students, no
information, not applicable etc. (this could be
turned into a dropdown later, for now just be
consistent for your publication)

• Prescreening - “Generic skill based” they state
that the workers were filtered on their skills
i.e. basic spanish skills etc. “Previous platform
performance” hired based on how good they
were on the platform i.e. 97% HIT accuracy,
“Project-specific prescreening” e.g. inviting good
crowdworkers back, doing their own prescreening

• Compensation - how were the workers
compensated? We assume hiring somebody
on a crowdsourcing platform implies money.
If annotated by authors, put “authorship”.
Options are “Money”, “Authorship”, “Course
Credit”, “Other Compensation”, “Volunteer”, “No
information”, “Not applicable”, “Unsure”.

• Training - whether annotators receive interactive
training for this specific annotation task / research
project - simple formal instructions are not training

• Formal instructions - whether or not annotators
received formal instructions on how to annotate the
data

• Labeller population rationale - did they give
a rationale for why they picked those specific
labellers?

• Total labellers - How many people annotated the
items? “Not applicable” and “No information” are
valid options.
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• Annotators per item - do the authors say how
many authors they had per label? Can be average
etc.

• Label threshold - what is the minimum amount
of labels each item needed?

• Overlap - did multiple annotators work on the
same item? Sometimes you could theoretically infer
that they had at most one annotator per item, but
if it is not clear enough use “no information”

• Overlap synthesis - in what manner was
the overlap solved? “Qualitative” (discussion),
“Quantitative” (no discussion), “Other”

• Synthesis type - what method did they use?
E.g. majority vote for quantitative or discussion
for qualitative

• Discussion - was there a discussion among the
annotators? (sometimes researchers look at the
annotation)

• IRR - was there IRR reported if there was overlap?
If no overlap, put “not applicable”.

• Metric - if IRR was reported, what was the metric?
E.g. F1 or Cohen Kappa etc. Put “not applicable”
only if there is no overlap (i.e. 1 annotator, machine
labelled)

• Item population - briefly describe the item
population

• Item population rationale - why did they go for
this item population?

• Item source - where did they take the items from?

• A priori sample size - did they decide the sample
size before they started collecting the items?

• Item sample size rationale - why did they choose
to collect this amount of items?

• A priori annotation schema - “yes”, “yes, from
external source” “no” (if they make it up as they
go, like iNaturalist)

• Annotation schema rationale - did they put any
thought into why they use this schema?

• Link to dataset available - is the link to the
dataset available within the paper? Options are
“Yes”, “Yes, but broken”, “No”, “Unsure”, “Not
applicable” if it is a synthetic/generated one time
dataset

C Datsets

Table 2: Unique datasets used in CVPR papers

Dataset Name

ADE20K[11]

BSD68[30]

BSDS300[30]

CC12M[31]

CelebA-HQ[32]

CIFAR-10[?]

CIFAR-100[?]

Cityscapes[14]

COCO[7]

DreamBooth[13]

DTD[33]

FFHQ[21]

ImageNet[9]

ImageNet 2012[10]

ImageNet-A[34]

ImageNet-R[18]

ImageNet-Sketch[35]

ImageNet-V2[27]

ImageNet-1K[10]

iNaturalist[36]

ILSVRC 2014[10]

InstructPix2Pix[37]

LAION-400M[15]

LAION-Aesthetic[38]

LSUN[39]

NuScenes[40]

Objects365[17]

Oxford-IIIT Pets[41]

Pascal Context[42]

Pascal VOC 2007[8]

Pascal VOC 2010[42]

Pascal VOC 2011[16]

Pascal VOC 2012[6]

People-Art[19]

Picasso[20]

Places[43]

Places205[44]

Places365[45]

Set14[46]

SIFT Flow[47]

StanfordCars[48]

SVHN[49]

UCF101[22]

Waymo[50]

NYUDv2[51]
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D CVPR Papers

Table 3: Top 25 CVPR papers in the last 15 years

First column Second column
Deep residual learning for image recognition[23] 178632
Going deeper with convolutions[24] 40152
You only look once: Unified, real-time object detection[52] 38749
Squeeze-and-Excitation Networks[53] 26785
Rich feature hierarchies for accurate object detection and semantic segmentation[54] 26779
Fully convolutional networks for semantic segmentation[55] 25035
Rethinking the Inception Architecture for Computer Vision[56] 24488
MobileNetV2: Inverted Residuals and Linear Bottlenecks[57] 19775
Are we ready for autonomous driving? The KITTI Vision Benchmark Suite[58] 11838
FaceNet: A unified embedding for face recognition and clustering[59] 11725
The Cityscapes Dataset for Semantic Urban Scene Understanding[14] 9950
Non-local Neural Networks[60] 9659
Momentum Contrast for Unsupervised Visual Representation Learning[61] 9623
Learning Deep Features for Discriminative Localization[62] 8736
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric[63] 8710
High-Resolution Image Synthesis with Latent Diffusion Models[64] 7632
Path Aggregation Network for Instance Segmentation[65] 7389
A style-based generator architecture for generative adversarial networks[66] 7066
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices[67] 6926
Accurate image super-resolution using very deep convolutional networks[68] 6707
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel
Convolutional Neural Network[69]

6115

EfficientDet: Scalable and Efficient Object Detection[70] 5952
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks[71] 5703
Large-scale video classification with convolutional neural networks[72] 5661
Cascade R-CNN: Delving into High Quality Object Detection[73] 5558

Table 4: Top 25 CVPR papers in the last 5 years

Title Cited by
Momentum Contrast for Unsupervised Visual Representation Learning[61] 9623
High-Resolution Image Synthesis with Latent Diffusion Models[64] 7632
EfficientDet: Scalable and efficient object detection[70] 5952
ECA-Net: Efficient channel attention for deep convolutional neural networks[71] 5703
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors[74]

5297

Masked Autoencoders Are Scalable Vision Learners[75] 4505
A ConvNet for the 2020s[76] 4415
Coordinate attention for efficient mobile network design[77] 4225
Analyzing and improving the image quality of StyleGAN[78] 4218
Nuscenes: A multimodal dataset for autonomous driving[40] 3672
GhostNet: More features from cheap operations[79] 3420
CSPNet: A new backbone that can enhance learning capability of CNN[80] 3147
Exploring simple Siamese representation learning[81] 2816
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with
Transformers[82]

2657

Scalability in perception for autonomous driving: Waymo open dataset[83] 2058
Continued on next page
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Table 4 – continued from previous page
First column Second column

Randaugment: Practical automated data augmentation with a reduced search space[84] 1983
Restormer: Efficient Transformer for High-Resolution Image Restoration[85] 1931
SuperGlue: Learning Feature Matching with Graph Neural Networks[86] 1887
RepVGG: Making VGG-Style ConvNets Great Again[87] 1754
Self-training with noisy student improves ImageNet classification[88] 1694
PV-RCNN: Point-voxel feature set abstraction for 3D object detection[89] 1666
Bridging the gap between anchor-based and anchor-free detection via adaptive training
sample selection[90]

1651

Zero-reference deep curve estimation for low-light image enhancement[91] 1630
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning[92] 1604
Taming transformers for high-resolution image synthesis[93] 1566

Table 5: Top 25 CVPR papers in the last 2 years

Title Cited by
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors[74]

5297

Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks[94] 1156
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven
Generation[13]

1071

InstructPix2Pix: Learning to Follow Image Editing Instructions[37] 704
BiFormer: Vision Transformer with Bi-Level Routing Attention[95] 656
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders[96] 615
DETRs Beat YOLOs on Real-time Object Detection[97] 588
Activating More Pixels in Image Super-Resolution Transformer[98] 520
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable
Convolutions[99]

513

Magic3D: High-Resolution Text-to-3D Content Creation[100] 494
Imagic: Text-Based Real Image Editing with Diffusion Models[101] 441
ImageBind: One Embedding Space to Bind Them All[102] 398
MaPLe: Multi-modal Prompt Learning[103] 396
CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality
Image Fusion[104]

383

Align Your Latents: High-Resolution Video Synthesis with Latent Diffusion Models[105] 381
SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy[106] 379
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking[107] 354
Planning-oriented Autonomous Driving[108] 341
Multi-Concept Customization of Text-to-Image Diffusion[109] 341
PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers[110] 339
Null-text Inversion for Editing Real Images using Guided Diffusion Models[111] 328
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale[112] 321
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation[113] 305
EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention[114] 301
Reproducible Scaling Laws for Contrastive Language–Image Learning[115] 299
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