
 
 

Delft University of Technology

Model-Reference Reinforcement Learning Control of Autonomous Surface Vehicles

Zhang, Qingrui; Pan, Wei; Reppa, Vasso

DOI
10.1109/CDC42340.2020.9304347
Publication date
2020
Document Version
Final published version
Published in
Proceedings of the 59th IEEE Conference on Decision and Control, CDC 2020

Citation (APA)
Zhang, Q., Pan, W., & Reppa, V. (2020). Model-Reference Reinforcement Learning Control of Autonomous
Surface Vehicles. In Proceedings of the 59th IEEE Conference on Decision and Control, CDC 2020 (pp.
5291-5296). IEEE. https://doi.org/10.1109/CDC42340.2020.9304347

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CDC42340.2020.9304347
https://doi.org/10.1109/CDC42340.2020.9304347


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Model-Reference Reinforcement Learning Control of
Autonomous Surface Vehicles

Qingrui Zhang1,2, Wei Pan2, and Vasso Reppa1

Abstract— This paper presents a novel model-reference rein-
forcement learning control method for uncertain autonomous
surface vehicles. The proposed control combines a conventional
model-based control method with deep reinforcement learning.
With the conventional model-based control, we can ensure the
learning-based control law provides closed-loop stability for the
trajectory tracking control of the overall system, and increase
the sample efficiency of the deep reinforcement learning. With
reinforcement learning, we can directly learn a control law
to compensate for modeling uncertainties. In the proposed
control, a nominal system is employed for the design of a
baseline control law using a conventional control approach.
The nominal system also defines the desired performance for
uncertain autonomous vehicles to follow. In comparison with
traditional deep reinforcement learning methods, our proposed
learning-based control can provide stability guarantees and
better sample efficiency. We demonstrate the performance of
the new algorithm via extensive simulation results.

I. INTRODUCTION

Autonomous surface vehicles (ASVs) have been employed
in many applications, such as resource exploration [1],
shipping [2], environmental monitoring [3], and many more.
Successful launch of ASVs in real life requires accurate
tracking control along a desired trajectory [4]. However, it
is challenging for accurate tracking control of ASVs, as
they are subject to uncertain nonlinear hydrodynamics [5].
Hence, tracking control of highly uncertain ASVs has received
extensive research attention [6], [7].

Control algorithms for uncertain systems including ASVs
mainly lie in four categories: 1) robust control that is the
“worst-case” design for bounded uncertainties and disturbances
[8]; 2) adaptive control that adapts to system uncertainties with
parameter estimations [9], [10]; 3) disturbance observer (DO)-
based control that compensates uncertainties and disturbances
in terms of the observation technique [11]; and 4) reinforce-
ment learning (RL) that learns a control law from data samples
[12]. The first three algorithms follow a model-based control
approach, while the last one is data-driven. Model-based
control can ensure closed-loop stability, but a system model is
indispensable. In robust control, uncertainties and disturbances
are assumed to be bounded with known boundaries [13]. As
a consequence, robust control will lead to conservative high-
gain control laws that reduce the control performance (i.e.,
overshoot, settling time, and stability margins) [14]. Adaptive
control can handle varying uncertainties with unknown
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boundaries, but system uncertainties are assumed to be
linearly parameterized with known structure and unknown
constant parameters [15], [16]. DO-based control can adapt to
both uncertainties and disturbances with unknown structures
and without assuming systems to be persistently excited
[11]. However, the frequency information of uncertainty and
disturbance signals is necessary for choosing proper gains
for the DO-based control, otherwise, it is highly possible
to end up with a high-gain control law [17]. Besides, the
DO-based control can only address matched uncertainties and
disturbances that act on systems through the control channel
[18]. In general, comprehensive modeling and analysis of
systems are essential for all model-based methods.

In comparison with model-based methods, RL is capable
of learning a control law from data samples using much less
model information [19], [20]. Hence, it is more promising
in controlling systems subject to massive uncertainties and
disturbances as ASVs [21], given the sufficiency and good
quality of collected data. Nevertheless, it is challenging for RL
to ensure closed-loop stability, though some research attempts
have been made [22]. Model-based RL with stability guaran-
tee has been studied by introducing a Lyapunov constraint
into the objective function [23]. However, the model-based
RL with stability guarantee requires an admissible control
law—a control law that provides asymptotic stability—for
the initialization. Both the Lyapunov candidate function and
system dynamics are assumed to be Lipschitz continuous
with known Lipschitz constants for the construction of the
Lyapunov constraint. It is challenging to find the Lipschitz
constant of an uncertain system. Hence, the introduced
Lyapunov constraint function is restrictive, as it is established
based on the worst-case consideration [23].

With the consideration of the merits and limitations of
existing RL methods, we propose a novel learning-based
control algorithm for uncertain ASVs by combining a con-
ventional control method with deep RL in this paper. Such a
design method has several advantages over both conventional
model-based methods and pure deep RL methods. First of all,
in relation to the “model-free” feature of deep RL, we can
learn a control law directly to compensate for uncertainties
without exploiting their structures, boundaries, or frequencies.
In the new design, uncertainties are not necessarily matched,
as deep RL seeks a control law like direct adaptive control
[24]. Second, the overall control law can ensure closed-loop
stability without the usage of the Lipschitz constant of the
uncertain system. Lastly, the proposed design is more sample
efficient than RL that learns from scratch—that is, fewer data
samples are needed for training. In RL, a system learns from
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mistakes so a lot of trials and errors are demanded. Fortunately,
in our proposed design, the baseline control can help to
exclude unnecessary mistakes, so it provides a good starting
point for the RL training. The main contributions of this paper
include: 1) a novel model reference RL algorithm is developed
for the tracking control of ASVs; 2) The performance of the
proposed algorithm is analyzed.

The rest of the paper is organized as follows. In Section
II, we present the ASV dynamics. Section III provides basic
concepts on model reference control and RL. The detailed
design of the model reference RL is presented in Section
IV. Algorithm analysis is given in Section V. In Section VI,
numerical simulation results are provided. Conclusions are
given in Section VII.

II. SYSTEM DYNAMICS

In most scenarios, we are interested in controlling the
horizontal motioins of ASVs in this paper [25], thus ignoring
the vertical, rolling, and pitching motions by default. Let x
and y be the horizontal position coordinates of an ASV in the
inertial frame and ψ the heading angle. As shown in Figure
1, let u and v be the linear velocities in surge (x-axis) and
sway (y-axis), respectively. Let r be the heading angular rate.
The general 3-DOF nonlinear dynamics of an ASV are
{

η̇ = R (η)ν
Mν̇ + (C (ν) +D (ν))ν +G (ν) = τ (1)

where η = [x, y, ψ]
T ∈ R3 is a generalized coordinate

vector, ν = [u, v, r]
T ∈ R3 is the speed vector, M is

the inertia matrix, C (ν) denotes the matrix of Coriolis
and centripetal terms, D (ν) is the damping matrix, τ ∈
R3 represents the control forces and moments, G (ν) =
[g1 (ν) , g2 (ν) , g3 (ν)]

T ∈ R3 denotes unmodeled dynamics
due to gravitational and buoyancy forces and moments [5],

and R =

[
cosψ,− sinψ, 0
sinψ, cosψ, 0

0, 0, 1

]
is a rotation matrix. The inertia

matrix M = MT > 0 is

M = [Mij ] =

[
M11 0 0

0 M22 M23
0 M32 M33

]
(2)

where M11 = m−Xu̇, M22 = m−Yv̇ , M33 = Iz−Nṙ, and
M32 = M23 = mxg − Yṙ. The matrix C (ν) = −CT (ν) is

C = [Cij ] =

[
0 0 C13 (ν)
0 0 C23 (ν)

−C13 (ν) −C23 (ν) 0

]
(3)

where C13 (ν) = −M22v −M23r, C23 (ν) = −M11u. The
damping matrix D (ν) is

D (ν) = [Dij ] =

[
D11 (ν) 0 0

0 D22 (ν) D23 (ν)
0 D32 (ν) D33 (ν)

]
(4)

where D11 (ν) = −Xu − X|u|u|u| − Xuuuu
2, D22 (ν) =

−Yv−Y|v|v|v|−Y|r|v|r|, D23 (ν) = −Yr−Y|v|r|v|−Y|r|r|r|,
D32 (ν) = −Nv − N|v|v|v| − N|r|v|r|, D33 (ν) = −Nr −
N|v|r|v|−N|r|r|r|, and X(·), Y(·), and N(·) are hydrodynamic
coefficients [5]. Accurate numerical models of the nonlinear
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Fig. 1: Coordinate systems of an ASV

dynamics (1) are rarely available. Major uncertainty sources
come from M , C (ν), and D (ν) due to hydrodynamics, and
G (ν) due to gravitational and buoyancy forces and moments.

III. MODEL-REFERENCE REINFORCEMENT LEARNING

A. Model-reference control scheme

Let x =
[
ηT ,νT

]T
and u = τ , so (1) can be rewritten as

ẋ =

[
0 R (η)
0 A (ν)

]
x+

[
0
B

]
u+

[
0

M−1G (ν)

]
(5)

where A (ν) = M−1 (C (ν) +D (ν)), and B = M−1.
Assume an accurate model (5) is not available, but it is
possible to get a nominal model expressed as

ẋm =
[

0 R (η)
0 Am

]
xm +

[
0
Bm

]
um (6)

where Am and Bm are the known system matrices. Assume
that there exists a control law um allowing the states of the
nominal system (6) to converge to a reference signal xr, i.e.,
‖xm − xr‖2 → 0 as t→∞.

The objective is to design a control law allowing the state
of (5) to track state trajectories of the nominal model (6).
As shown in Figure 2, the overall control law for the ASV
system (5) has the following expression.

u = ub + ul (7)

where ub is a baseline controller, and ul is a control policy
from the deep RL module shown in Figure 2. The baseline
control ub is employed to ensure some basic performance,
(i.e., local stability), while ul is introduced to compensate
for all system uncertainties. The baseline control ub can be
designed based on any existing model-based method based on
the nominal model (6). Hence, we ignore the design process
of ub, and mainly focus on the development of ul using RL.

B. Reinforcement learning

In RL, system dynamics are characterized using a
Markov decision process denoted by a tuple MDP :=〈
S, U , P, R, γ

〉
, where S is the state space, U specifies the

action/input space, P : S × U × S → R defines a transition
probability, R : S × U → R is a reward function, and
γ ∈ [0, 1] is a discount factor. Note that the state vector
s contains all available signals affecting the RL control ul.
In this paper, such signals include x, xm, xr, and ub, where
xm performs like a target state for system (5) and ub is a
function of x and xr. Hence, we choose s = {xm,x,ub}.
Assume that we can sample input and state data from system
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with steel rods, will be attached to either side of the vessel as shown in Figure
8. By lifting the ship by two opposed outward pointing rods, one can find the
z-coordinate by balance. After lifting the ship will either stay motionless, or it
will start to tilt upside down after a slight momentum is applied. If the ship
will not tilt and eventually come to a balance in an upright position, one can
conclude the z-component of the CoG is above the point of the rod the vessel
was lifted with. By moving the two steel rods up or down one can test the
location by reaching the tilting point of the Tito Neri. If the ship will tilt, and
therefore ends upside down, the CoG is beneath the steel rods. By performing
this experiment with a slight change in height of the beams. An assumption can
be made in terms of the CoG. If the rods are exactly placed on the z-value of
the CoG, the ship can be tilted and will stay in equilibrium for every position.

Figure 8: Experimental setting CoG for the z-coordinate

2.1.5 Moment of inertia

For this experiment keep in mind the research limitation of just 3 DoF. It
is su�cient to determine the moment of inertia about the z-axis (yaw). As
is stated before, the e↵ects of buoyancy and rolling will be neglected in this
research. This experimental setting has been inspired by an experiment that
engineers at the NASA’s Armstrong Flight Research Center carried out the
find the moment of inertia of a plane. (NASA, 2016) The experimental setting
consists of two frames. One Large frame which is meant to keep the object in
the air. The other frame is constructed in such a way that it will function as
the rigid swing between the vessel and the larger frame. See section 2.1.3 for
the construction of the frame. Note that it is important for the arm to be rigid
otherwise the periodic time will be a↵ected by the arms ability to flex. The goal
of this experiment is to acquire the swing time of the vessel in order to calculate
its moment of inertia. In this experiment the time the object takes to make a
known amount of oscillations will be measured. This will be done by counting
the amount of complete swings in a span of time. The data will be computed

13
Fig. 2: Model-reference reinforcement learning control

(5) at discrete time steps. Let xt, ub,t, and ul,t be the ASV
state, the baseline control action, and the control action from
the RL at a time step t, respectively. The state signal s at the
time step t is, therefore, denoted by st = {xm,t,xt,ub,t}.

For each state st, we define a value function Vπ (st) as
an expected accumulated return described as

Vπ =

∞∑

t

∑

ul,t

π (ul,t|st)
∑

st+1

Pt+1|t
(
Rt + γVπ(st+1)

)
(8)

where Rt = R(st,ul,t), Pt+1|t = P (st+1 |st,ul,t ), and
π (ul|s) is a policy in RL, denoting the probability of
choosing an action ul ∈ U at a state s ∈ S [19]. In this
paper, the reward function Rt is defined as

Rt = − (xt − xm,t)T H1 (xt − xm,t)− uTl,tH2ul,t (9)

where H1 ≥ 0 and H2 > 0 are positive definite matrices.
Accordingly, the action-value function (a.k.a., Q-function) is

Qπ (st,ul,t) = Rt + γ
∑

st+1

Pt+1|tVπ(st+1) (10)

The objective of the RL in this paper is to find an optimal
policy π∗ to maximize the Q-function Qπ (st, ul,t), namely

π∗ = arg max
π

Qπ (st,ul,t) ∀st ∈ S (11)

IV. DEEP REINFORCEMENT LEARNING CONTROL DESIGN

The deep RL control in this paper is developed based on
the soft actor-critic (SAC) algorithm which provides both
sample efficient learning and convergence [26]. In SAC, an
entropy term is added to the objective function in (11) to
regulate the exploration performance at the training stage.
The objective of (11) is thus rewritten as

π∗ = arg max
π

(
Rt + γEst+1 [Vπ(st+1)

+αH (π (ul,t+1|st+1))]
)

(12)

where Est+1 [·] =
∑
st+1
Pt+1|t [·] is an expectation opera-

tor, H (π (ul,t|st)) = −
∑
ul,t

π (ul,t|st) ln (π (ul,t|st)) =

−Eπ [ln (π (ul,t|st))] is the entropy of the policy, and α is
a temperature parameter.

Training of SAC repeatedly executes policy evaluation and
policy improvement. In the policy evaluation, the Q-function
is computed by applying a Bellman operation Qπ (st,ul,t) =
T πQπ (st,ul,t) where

T πQπ (st,ul,t) = Rt + γEst+1
{Eπ [Qπ (st+1,ul,t+1)

−α ln (π (ul,t+1|st+1))]} (13)

In the policy improvement, the policy is updated by

πnew = arg min
π′

DKL

(
π′ (·|st)

∥∥∥ZπoldeQ
πold (st,·)

)
(14)

where πold denotes the policy from the last update, Qπold

is the Q-value of πold. DKL denotes the Kullback-Leibler
(KL) divergence, and Zπold is a normalization factor. Via
mathematical manipulations, the objective for the policy
improvement is transformed into

π∗ = arg min
π

Eπ
[
α ln (π)−Q (st,ul,t)

]
(15)

More details on how (15) is obtained can be found in
[26]. Both the policy π and value function Qπ (st,ul,t)
will be parameterized using fully connected multiple layer
perceptrons (MLP) with ’ReLU’ nonlinearities as the acti-
vation functions. The Q-function is parameterized using θ
and denoted by Qθ (st,ul,t). The parameterized policy is
denoted by πφ (ul,t|st), where φ is the parameter set to be
trained. Note that both θ and φ are a set of parameters whose
dimensions are determined by the deep neural network setup.
Details on the design of Qθ (st,ul,t) and πφ (ul,t|st) can
be found in [27]. The deep neural network for Qθ is called
critic, while the one for πφ is called actor [27].

In this paper, πφ (ul,φ|s) = N (ul,φ (s) ,σ) with N (·, ·)
denoting a Gaussian distribution. Hence, at training, we have

ūl,φ = ul,φ + σφ � ξ (16)

where ul,φ is the control law to be implemented after the
training, ξ ∼ N (0, I) is the exploration noise, σφ denotes
the standard deviation of the exploration noise, and “�” is the
Hadamard product. Note that the exploration noise ξ is only
applied to the training stage. Once the training is done, ul in
Figure 2 will be approximated by ul,φ in the implementation.

The whole training process will be offline. At each time
step t+ 1, we collect data samples, such as an input ul,t, a
state st, a reward Rt, and a current state st+1. Those data
samples are stored as a tuple (st,ul,t, Rt, st+1) at a replay
memory D [28]. At the policy evaluation or improvement,
we randomly sample a batch of historical data B, from the
replay memory D for the training of the parameters θ and
φ. Starting the training, we apply the baseline control policy
ub to an ASV system to collect the initial data D0 as shown
in Algorithm 1. The initial data set D0 is used for the initial
fitting of Q-value functions. When the initialization is over, we
execute both ub and the latest updated RL policy πφ (ul,t|st)
to run the ASV system. The entire algorithm is summarized
in Algorithm 1, where ιQ and ιπ are positive learning rates
(scalars), and κ > 0 is a constant scalar.

At the policy evaluation step, the parameters θ are trained
to minimize the following Bellman residual.

JQ (θ) = E(st,ul,t)∼D
[1
2

(Qθ (st,ul,t)− Ytarget)2 ] (17)

where (st,ul,t) ∼ D denotes that data samples (st,ul,t) are
randomly picked from the replay memory D, and

Ytarget = Rt + γEst+1

[
Eπ [Qθ̄ (st+1,ul,t+1)− α ln (πφ)]

]
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Algorithm 1 Model reference reinforcement learning control

1: Initialize parameters θ for the critic Qθ and φ for the
actor in (16). Set θ̄ by θ̄ ← θ

2: Get data set D0 by running ub on (5) with ul = 0
3: Turn off the exploration and train an initial critic

parameter θ0 using D0 according to (17)
4: Initialize the replay memory D ← D0

5: Assign initial values to the critic parameter θ ← θ0 and
its target θ̄ ← θ0

6: repeat
7: for each data collection step do
8: Choose an action ul,t according to πφ (ul,t|st)
9: Collect st+1 = {xt+1,xm,t+1,ub,t+1}

10: D ← D
⋃
{st,ul,t, R (st,ul,t) , st+1}

11: end for
12: for each gradient update step do
13: Sample a batch of data B from D
14: θ ← θ − ιQ∇θJQ (θ)
15: φ← φ− ιπ∇φJπ (φ)
16: θ̄ ← κθ + (1− κ) θ̄
17: end for
18: until convergence (i.e. JQ (θ) < a small threshold)

where θ̄ is the target parameter to be updated slowly. Applying
a stochastic gradient descent technique (ADAM [29] in this
paper) to (17) on a data batch B with a fixed size, we obtain

∇θJQ (θ) =
∑ ∇θQθ

(
Qθ (st,ul,t)− Ytarget

)

|B|
where |B| is the batch size.

At the policy improvement step, the objective function
defined in (15) is represented using data samples from the
replay memory D as

Jπ (φ) = E(st,ul,t)∼D

(
α ln(πφ)−Qθ (st,ul,φ)

)
(18)

V. PERFORMANCE ANALYSIS

For the convergence analysis, Algorithm 1 is recapped
as a policy iteration (PI) technique [27]. The following two
lemmas are provided without proofs [26].

Lemma 1 (Policy evaluation): Let T π be the Bellman
backup operator under a fixed policy π and Qk+1 (s,ul) =
T πQk (s,ul). The sequence Qk+1 (s,ul) will converge to
the soft Q-function Qπ of the policy π as k →∞.

Lemma 2 (Policy improvement): Let πold be an old policy
and πnew be a new policy obtained according to (14). There
exists Qπnew (s,ul) ≥ Qπold (s,ul) ∀s ∈ S and ∀u ∈ U .

In terms of (1) and (2), Theorem 1 is presented to show
the convergence of the SAC algorithm.

Theorem 1 (Convergence): If one repeatedly applies the
policy evaluation and policy improvement steps to any control
policy π, the control policy π will converge to an optimal
policy π∗ such that Qπ

∗
(s,ul) ≥ Qπ (s,ul) ∀π ∈ Π, ∀s ∈

S, and ∀u ∈ U , where Π denotes a policy set.
Proof: Let πi be the policy obtained from the i-th policy

improvement with i = 0, 1, . . ., ∞. According to Lemma

2, one has Qπi (s,ul) ≥ Qπi−1 (s,ul), so Qπi (s,ul) is
monotonically non-decreasing with respect to the policy
iteration step i. In addition, Qπi (s,ul) is upper bounded
according to the definition of the reward given in (9), so
Qπi (s,ul) will converge to an upper limit Qπ

∗
(s,ul) with

Qπ
∗

(s,ul) ≥ Qπ (s,ul) ∀π ∈ Π, ∀s ∈ S, and ∀ul ∈ U .

Next, we will show the closed-loop stability of the ASV
with the overall control law around its desired state trajectory
defined by xm. The control objective is to ensure ‖xt −
xm,t‖2 → 0 as t → ∞, so we define et = xt − xm,t as
the tracking error. The following assumption is made for the
baseline control developed using the nominal system (6).

Assumption 1: The baseline control law ub can ensure
that the overall uncertain ASV system is stable around its
desired state trajectory xm– that is, there exists a positive
definite function V (et) associate with u such that V (et+1)−
V (et) ≤ 0, ∀et ∈ Ω, where Ω defines the state domain.

With Assumption 1, the Q-value function Q (s,ul) is
ensured to be finite at the beginning of the training. In the
stability analysis, we will ignore the entropy term H (π), as
it is only introduced to regulate the exploration magnitude at
the learning stage. Now, Theorem 2 is presented to show the
closed-loop stability of the ASV system (5).

Theorem 2 (Stability): Suppose Assumption 1 holds. The
overall control law ui = ub+u

i
l canstabilize the ASV system

(5) around the desired state defined by xm, where uil are the
RL control law from i-th iteration, and i = 0, 1, 2, ... ∞.

Proof: In our proposed algorithm, we start the train-
ing/learning using the baseline control law ub. According to
Lemma 1, we are able to obtain the corresponding Q value
function for the baseline control law ub. At the beginning, the
Q value function be Q0

(
s,u0

l

)
where u0

l is a function of s.
The learning-based control law u0

l is initialized to be around
0. With Assumption 1, the reward function R0

t is ensure to
be bounded. The following equation exists for Q0 (s,ul).

Q0
(
st,u

0
l,t

)
= R0

t + γQ0
(
st+1,u

0
l,t+1

)
(19)

According to the definitions of the reward function in (9) and
Q0 in (19), we can choose the continuous function of et as
V0 (et) = −γtQ0

(
st,u

0
l,t

)
. Hence, one has

V0 (et) = −γtR0
t − γt+1Q0 (st+1,ul,t+1)

= −γtR0
t + V0 (et+1) (20)

Hence, V0 (et+1) − V0 (et) = γtR0
t ≤ 0, ∀et ∈ Ω.

According to LaSalle’s invariance principle [30], the tracking
error et will converge to a set where V0 (et+1)−V0 (et) = 0.
There are two scenarios for V0 (et+1)−V0 (et) = 0. One is
et = 0, which corresponds to asymptotic stability. The other
is the case where R0

t is finite as t→∞, which is input-to-
state stability. If Assumption 1 holds, R0

t is guaranteed to be
bounded by the baseline control law ub. Hence, the tracking
error et is ensured to be at least ultimately bounded by the
overall control law u0

t = ub,t + u0
l,t.

In the policy improvement, the control law is updated by

u1
l = argmin

ul

(
−Rt + γV0 (et+1)

)
(21)
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For any nonlinear system et+1 = f (et) + g (et)ut, a
necessary condition for the existence of (21) is

u1
l = −γ

2
H−1

2 gT (et)
∂V0 (et+1)

∂et+1
(22)

Substituting (22) back into (9) yields R1
t = −eTt H1et −

γ2

4

(
∂V0(et+1)
∂et+1

)T
g (et)H

−1
2 gT (et)

∂V0(et+1)
∂et+1

. According to
the optimality of principle of dynamic programming, one has
that R0

t ≤ R1
t ≤ 0. Since R0

t is bounded, R1
t is bounded as

well. After the policy evaluation on u1
l , one can obtain

V1 (et) = −γtR1
t + V1 (et+1) (23)

Hence, one can easily obtain that the new control law
u1 = ub +u1

l can ensure the tracking error (et is ultimately
bounded—-that is, the ASV system (5 is stabilized by u1. In
terms of V1 (st), (20), and (21), we can show that u2 also
stabilizes the ASV system (5). Repeating the aforementioned
analysis for all i = 1, 2, . . ., we can prove that all ui can
stabilize the ASV system (5), if Assumption 1 holds.

VI. SIMULATION

In this section, the proposed learning-based control algo-
rithm is implemented to the trajectory tracking control of a
supply ship model presented in [25]. Model parameters can be
found in [27]. The unmodeled dynamics in the simulations
are given by g1 = 0.279uv2 + 0.342v2r, g2 = 0.912u2v,
and g3 = 0.156ur2 + 0.278urv3, respectively. The baseline
control ub is designed based on a nominal model in (24) in
terms of the backstepping control method [30].

Mmν̇m = τ −Dmνm (24)

where Mm = diag {M11, M22, M33}. Dm =
diag {−Xv,−Yv, −Nr}. The reference signal is assumed
to be produced by the following motion planner.

η̇r = R (ηr)νr ν̇r = ar (25)

where ηr = [xr, yr, ψr]
T is the generalized reference position

vector, νr = [ur, 0, rr]
T is the generalized reference velocity

vector, and ar = [u̇r, 0, ṙr]
T . In the simulation, the initial

position vector ηr (0) is chosen to be ηr (0) =
[
0, 0, π4

]T
,

and we set ur (0) = 0.4 m/s and rr (0) = 0 rad/s. The
reference acceleration u̇r and angular rates are chosen to be

u̇r =

{
0.005 m/s2 if t < 20 s
0 m/s2 otherwise (26)

ṙr =

{
π

600 rad/s
2 if 25 s ≤ t < 50 s

0 rad/s2 otherwise (27)

At the training stage, we run the ASV system for 100 s,
and the repeat the training processes for 1000 times (i.e.,
1000 episodes). Detailed training setup can be found in
[27]. Figure 3 shows the learning curves of the proposed
algorithm (red) and the RL algorithm without baseline control
(blue). The learning curves demonstrate that both of the two
algorithms will converge in terms of the long term returns.
However, our proposed algorithm results in a larger return
(red) in comparison with the RL without baseline control

Fig. 3: Learning curves of two RL algorithms at training (One
episode is a training trial, and 1000 time steps per episode)

(blue). Hence, the introduction of the baseline control helps to
increase the sample efficiency significantly, as the proposed
algorithm (blue) converges faster to a higher return value.

(a) Model reference RL (b) Only deep RL (c) Only baseline control

Fig. 4: Trajectory tracking results of the three algorithms

At the evaluation stage, we run the ASV system for 200
s to demonstrate whether the control law can ensure stable
trajectory tracking. Note that we run the ASV for 100 s at
training. The trajectory tracking performance of the three
algorithms (our proposed algorithm, the baseline control u0,
and only RL control) is shown in Figures 4. As observed
from Figure 4.b, the control law learned merely using deep
RL fails to ensure stable tracking performance. It implies
that only deep RL cannot ensure the closed-loop stability. In
addition, the baseline control itself fails to achieve acceptable
tracking performance mainly due to the existence of system
uncertainties. By combining the baseline control and deep RL,
the trajectory tracking performance is improved dramatically,
and the closed-loop stability is also ensured. The position
tracking errors are summarized in Figure 5 and 6. Figure
7 shows the absolute distance errors used to compare the
tracking accuracy of the three algorithms. The introduction of
the deep RL increases the tracking performance substantially.
More simulation results can be found in [27].

VII. CONCLUSIONS

In this paper, we presented a novel learning-based algorithm
for the control of uncertain ASV systems by combining a
model-based control method with deep RL. With the model-
based control, we ensured the overall closed-loop stability of
the learning-based control and increase the sample efficiency
of the deep RL. With deep RL, we learned to compensate
for the model uncertainties, and thus increased the trajectory
tracking performance. In future works, we will extend the
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Fig. 5: Position tracking errors (ex)

Fig. 6: Position tracking errors (ey)

results with the consideration of environmental disturbances.
The theoretical results will be further verified via experiments
instead of simulations. The sample efficiency of the proposed
algorithm will also be analyzed.
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with experiments, for a model ship in a marine control laboratory,”
Mathematics of Operations Research, vol. 41, pp. 289–298, 2005.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of the 35th International Conference on Machine
Learning (ICML 2018), vol. 80, Stockholmsmässan, Stockholm Sweden,
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