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Abstract

The limited availability of radio frequency spectrum demands for more
efficient ways to utilize it in future wireless networks. Spectrum shar-
ing radios are an interesting solution to the spectral scarcity problem,
where the available resources are adaptively used across time and
frequency without affecting other user’s transmissions. In this con-
text, sensing the spectrum for its occupancy is needed to increase the
awareness among technologies that share the same spectrum.

In a typical wireless sensor network, each node senses and trans-
mits data constrained by a very low power budget. At the same time,
they should be capable of finding a free frequency channel with mini-
mal latency. A solution to this problem is to make radios capable of
sensing multiple frequency bands, in the order of a few hundred MHz,
all at once. The technical challenge lies in the design of low-complexity
wideband spectrum sensing techniques that increase context aware-
ness at the wireless node.

In this thesis, we address this problem with two approaches. The
first approach is based on Compressed Sampling (CS) theory, where
a new perspective is taken, different to conventional methods that
estimate the spectrum and perform detection on the reconstructed
spectrum. Instead a direct detection is performed on the sub-Nyquist
rate sampled wideband signal. In the second part of this thesis, an
alternative approach to reduce the power at an architectural level is
proposed, by avoiding the Nyquist rate wideband Analog-to-Digital
Converter (ADC) and pushing the conventional digital processing to
the analog domain.
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Introduction

Innovations in wireless communications and the increasing need for wireless devices for
various applications are creating a tremendous load on the capacity of wireless networks,
and demands for sustainable solutions to this continuously deteriorating problem. Al-
most all the usable portions of the Radio-Frequency (RF) spectrum are allocated to
licensed users or Primary Users (PUs) [1], while most of it is either unused or signifi-
cantly under-utilized. The average percentage spectrum occupancy can be seen in Fig.
1.1 (details regarding the measurements can be found in [2]).
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Figure 1.1: Average percentage spectrum occupancy [2].!

At any given instance of time there is always an unused frequency band, often termed
a spectrum hole (which can either be non-overlapping frequency bands or a portion of

'Reprinted with permission.



the spectrum that is not used for a certain duration). This can be further categorized
into black, gray or white spaces, corresponding to the Power Spectral Density (PSD)
levels being high, medium or low [3]. In this thesis, we focus only on the black and
white spaces in the spectrum. The frequency and duration of the spectrum holes can be

Stant Frequencies for 2.2 MHz Holes vs. Time Number of 2.2 MHz Holes vs. Time

80 -
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40

Time (hours)
Time (hours)

S0 LI RIRRRgt iRRaR Rl iiungtjuiqaquiitiig

20 -

0 | 1 | 1
2400 2420 2440 2460 2480 2500 0 10 20 30 40 50
Frequency (MHz) Number of 2 MHz wide holes

Figure 1.2: Spectrum hole analysis for 2390-2500 MHz band [2].!

seen in Fig. 1.2 for the 2390-2500 MHz band (plot on the left-side). The white spaces
between the green vertical lines show the non-overlapping frequency bands. The number
of 2 MHz wide spectrum holes can be seen in the plot (on the right-side) which varies
between 45 to 50. Here we consider 2 MHz wide spectrum holes to support smallest
bandwidths supported by LTE and WiMAX (i.e., 1.4 MHz and 1.75 MHz, respectively),
and to support usage of IEEE 802.15.4/Zigbee in the 2360-2400 MHz lower ISM band
for Medical Body Area Network (MBAN) applications [4]. For bandwidths greater than
2 MHz, groups of these continuous 2 MHz channels can be considered.

Spectrum sharing radios or Cognitive Radios (CRs) are proposed as a solution to
this spectrum scarcity problem with an aim to utilize the spectrum more efficiently [5],
[6]. The secondary radios should be aware of the environment and capable of sensing it.
The secondary radios should learn from these tasks to utilize the spectrum adaptively
and efficiently without affecting the primary radio links. Secondary radio links should

'Reprinted with permission.



be capable of dynamically utilizing the spectrum hole across time, frequency and space,
without causing any harmful interference to PUs, and vacate the frequency band on
sensing the PU activity. This reduces the harmful interference to the PUs and also
improves the performance (e.g. reduces collisions) of the secondary radio link in case
of licensed free bands (e.g. the 2400 MHz ISM band). Such radios enable Dynamic
Spectrum Access (DSA), Dynamic Spectrum Management (DSM), co-existence with
other wireless technologies and allow for secondary spectrum usage. This requires
the development of wireless spectral detection and estimation techniques to sense and
identify the spectrum holes.
In the following section, the motivation behind this thesis is discussed.

1.1 Motivation: wideband spectrum sensing

Spectrum sharing radios should be flexible to adaptively operate over a wide range of
frequencies. The frequency support of a multiband signal lies within several continuous
intervals spread over a wide spectrum, each consisting of a small number of narrowband
transmissions as depicted in Fig. 1.3.

A

«~Bi—

PSD

£,
s & i £

Figure 1.3: Multiband signal at the receiver.

Spectrum sensing can be classified at a very high-level into two categories, namely,
narrowband sensing and wideband sensing. In narrowband sensing, the entire band-
width is modeled as a train of consecutive sub-bands (narrowband channels) [7] and
sensing can be done on these sub-bands. The detection techniques over these individual
narrowband channels have been extensively studied in literature under two categories;
energy detection and feature detection [8]. To detect free channels in a given wide band
of interest, spectrum sensing is performed over individual narrowband channels either
sequentially or at random [9] until a free channel is found. If we consider the random
free channel search proposed in [9], the average number of trials to find the first free
channel is given by

NN+ 1)

Nf'ree_l
Nfree(Nfree + 1) (N—%free)

where, N indicates the total number of channels and N¢,.. indicates the number of free

Ntrials - (]-]-)

3
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Figure 1.4: Average number of channel searches to find a free channel for different occupancies.

channels.

In Fig. 1.5, we show two scenarios in the 2400-2486 MHz ISM band, where each bar
indicates a 1 MHz wide narrowband channel. We illustrate a low spectrum occupancy in
Fig. 1.5a, where we have one IEEE 802.11g/WiFi node and one IEEE 802.15.4/Zigbee
node. An example of a more crowded spectrum is shown in Fig. 1.5b where there are
four IEEE 802.11g/WiFi nodes and one IEEE 802.15.4/Zigbee node. Depending on the
occupancy of the channel, the latency in finding a free channel increases (with latency
being more when the occupancy is higher), which is intuitive from this illustrations and
can also be seen in Fig. 1.4 which is obtained using (1.1).

Power Spectral Density [dBm/Hz]

2400

2430 2445

Frequency [MHz]

(a) Scenario 1: Low spectrum occupancy.

Power Spectral Density [dBm/Hz]

-80

2485 2,400 2,415 2,430 2,445 2,460 2,475 2,485

Frequency [Mhz]

(b) Scenario 2: High spectrum occupancy.

Figure 1.5: Spectrum occupancy example in the 2400 MHz band.

The disadvantage of narrowband sensing method is the latency in finding a free
band, since the local oscillator needs to be locked at a new frequency for every channel



search. In addition, it has an inherent power consumption for every channel search as
the full receiver chain has to be powered each time a channel is sensed.

In wideband sensing, the entire band of interest is processed at once to find a free
channel, with either a single Nyquist rate Analog-to-Digital Converter (ADC) or a
bank of sub-Nyquist rate ADCs, both followed by digital processing. These typically
consume a lot of power and radios with limited power budget cannot afford it. Com-
pressive Sampling or Compressed Sensing (CS) [10], is a recently emerging approach
for wideband sensing [11], which samples the signal at the information rate rather than
at the Nyquist rate. CS requires knowledge of the sparsity level (ratio of the number of
busy channels to the total number of channels). Usually, detection with CS is preceded
by a coarse or a fine spectrum estimation. Estimating the spectrum using CS generally
requires ¢;-norm optimization and is usually carried out using high-complexity recur-
sive algorithms (e.g., the interior point linear program solver of [12]). Alternatively,
this convex optimization problem can be solved using greedy/suboptimal algorithms
(e.g., Orthogonal Matching Pursuit (OMP) [13]).

In this thesis, we focus on designing techniques for wideband spectrum sensing to
tackle these two key problems mentioned above. In summary, the research addresses
the following questions :

1. Can we do a direct detection on the samples obtained from CS, without a fine or
a coarse spectrum reconstruction?

2. Can we substantially reduce the power consumption for wideband spectrum sens-
ing, by processing in the analog domain yet achieve a good detection performance?

Next, we discuss the challenges associated with wideband spectrum sensing.

1.2 Challenges in wideband spectrum sensing

Spectrum sensing is a key feature to enable the concept of spectrum sharing radios. The
idea of such radios are to find out a frequency channel free of PU’s signal transmissions,
reliably and quickly, in order to utilize the spectrum opportunistically. Together with
the reliable and quick detection of free frequency band, the secondary radios should also
be aware of the re-transmissions from the PU. This means, either the PU traffic activity
(typically difficult to classify) should be known to secondary radio a priori, or it should
perform the spectrum sensing more frequently. To perform this on the wireless sensor
nodes with a limited power budget, spectrum sensing technique has to be less complex.
Spectrum sensing with constraints on reliable detection, low-latency, sensing interval
and low-complexity together makes spectrum sensing not only an interesting problem,
but also a challenging one. In order to find a free channel quickly, the secondary radios
should be able to process the entire band of interest all at once, which needs a paradigm
shift from conventional narrowband sensing engines to wideband architectures. Next,
we analyze the challenges associated with spectrum sensing (wideband, in particular)
under three categories :

1. Latency and complexity: As discussed in Section 1.1, in order to minimize the
latency, the radios should adopt wideband architectures to search over multiple



frequency channels all at once. It is also necessary for the secondary radios to
be aware of the PU retransmission. Hence, sensing has to be repeated at certain
intervals, which also demands for low-complexity techniques, which in turn will
result in power saving. Realizing low-complexity wideband sensing techniques
that can be afforded by sensor nodes is a challenging task, which is addressed in
this work.

2. Reliable detection: Even though spectrum sharing radios allow secondary spec-
trum usage and co-existence with other technologies, protection of the PU from
the harmful interference and minimizing degradation of the PU’s performance due
to this secondary radio link, always has the top priority. The interference to the
PU due to the secondary radio link is often measured in terms of miss-detection
probability (to detect a channel as free, when the channel is actually busy). The
receiver that performs sensing could be affected due to multipath, fading and
shadowing in the channel, or the PU could be hidden to the sensing receiver [6].
These effects limit the detection performance and interfere with the PU. In addi-
tion to this, the receiver sensitivity plays a key role for a reliable detection. This
becomes important especially while detecting nodes with lower transmit power.
Receiver sensitivity decreases with an increase in the receiver bandwidth, as the
receiver noise increases with the bandwidth (Ny = —174 4+ 10log B + N F', where
Ny is the receiver noise power in dB, NF' is the Noise Figure and B is the band-
width in Hz). Achieving good receiver sensitivity with wideband architectures, is
relatively difficult.

3. Wideband RF front-end: Designing a low-complexity wideband RF front-end
is a challenging task and different approaches have been proposed in the literature.
Multiple narrowband Band-Pass Filters (BFPs) could be employed to realize a
filterbank, followed by a decision device to perform wideband sensing [14], but
this architecture would require a large number of bulky components and the filter
bandwidth of the BPFs (usually determined by the bank of capacitors) is preset.
An alternative approach is to use a wideband Nyquist rate ADC, followed by
digital processing. In order to achieve better sensitivity, the ADCs should have
a higher dynamic range, which means a larger number of bits. Thus, wideband
sensing requires high-rate and high resolution ADCs, which typically consume
a lot of power. In case of sparse signals, the sampling rate can be relaxed and
the acquisition can be done at a sub-Nyquist rate (significantly lower than the
Nyquist rate). Later optimization algorithms can be used to recovery the signal
without forgoing perfect reconstruction in the noiseless case. This is often referred
to as a CS problem. However, current techniques demand signal recovery before
detection.

1.3 Thesis outline and contributions

In this section, the major contributions of this thesis are highlighted. We focus on
designing low-complexity techniques for wideband spectrum occupancy detection, in
order to find a spectral hole with a very low latency. For this purpose, two techniques



are proposed. In the first technique, we demonstrate how to solve the signal detection
problem given incoherent measurements (often the measurements are much smaller
than the number of Nyquist rate samples) without reconstructing the signals under
the CS framework. To do this, we propose Multiple Hypothesis Testing (MHT) under
a Neyman-Pearson-like criterion to solve the compressed detection problem. In the
second part of this thesis, a low-power wideband spectrum sensing architecture based
on analog processing is proposed as an alternative approach for multiband occupancy
detection.
Next, we describe the content of the thesis chapter by chapter.

Chapter 2: Background: In this chapter, we provide a brief survey of the existing
approaches to wideband spectrum sensing, along with their computational com-
plexity order. Next, we introduce the CS framework, the techniques proposed
in literature to acquire sub-Nyquist rate samples, and the conventional approach
involving detection on the compressive estimate of the signal. At the end of this
chapter, we discuss the MHT problem and the necessary background required to
understand the MHT problem under the Neyman-Pearson criterion.

Chapter 3: Wideband sensing through multiple hypothesis testing: The
current literature on CS has focused almost extensively on problems in sparse
signal reconstruction and estimation. In this chapter, we focus on direct signal de-
tection using sub-Nyquist rate samples, with application to multiband occupancy
detection. We formulate a MHT problem under a Neyman-Pearson-like criterion
to solve the detection problem. To understand the MHT more clearly, we first
develop the detector for a signal sampled at the Nyquist rate (complete frequency
information is available). Next, this is extended to reduced dimensionality signals
acquired at sub-Nyquist rate (complete frequency information in not available).

Chapter 4: Low-power wideband spectrum sensing architecture: As an al-
ternative approach to multiband spectral occupancy detection under the CS
framework, we propose an architecture at the system level to reduce the power
consumption. Here the conventional digital processing is done in the analog do-
main to reduce the power consumption. The performance analysis of the proposed
system is done in terms of power saving, spectrum estimation and detection.

Chapter 5: Conclusions: This chapter summarizes the major results of this work
and gives suggestions for future research.






Background

This thesis focuses on the physical node level paradigms for wideband spectrum sensing,
where the aim is to find an available frequency channel free from signal transmission
within a wide spectral range. This has gained a lot of interest recently due to its im-
portance in the field of spectrum sharing radio networks. In such wireless networks,
the radio should be capable of sensing bandwidths of the order of a few hundred MHz
with low-latency and low-complexity. This chapter gives a brief literature survey of the
existing approaches to wideband sensing. The necessary background about the Com-
pressive Sampling or Compressed Sensing (CS) framework along with its mathematical
formulation is provided. The proposed Multiple Hypothesis Testing (MHT) problem in
the Neyman-Pearson approach is introduced as a background to solve the compressed
detection problem that is addressed in this thesis. The following section provides a
brief overview of existing techniques to wideband spectrum sensing.

2.1 Existing approaches to wideband spectrum sensing

The current research on wideband spectrum sensing can be categorized based on two
signal acquisition techniques; Nyquist rate and sub-Nyquist rate. In Nyquist rate sig-
nal acquisition techniques, the signal is sampled at the Nyquist rate according to the
Whittaker-Kotelnikov-Shannon-Nyquist theorem. According to this theorem, a signal
with a frequency support between — f; and f; can be perfectly recovered from its sam-
ples if the sampling rate is more than or equal to the Nyquist rate, i.e, 2f;. In the
sub-Nyquist rate approaches for spectrum sensing, properties like sparsity of the spec-
trum, or the edge spectrum, are used to relax the sampling rate requirements. These
are often casted into a CS problem. Sequential narrowband sensing, is an alterna-
tive approach by sampling individual narrowband channels, but has more latency and
inherent power consumption as discussed in Section 1.1.

In [15], the entire wide bandwidth of interest is modeled as a union of subbands. The
task of spectrum sensing is treated as a spectral edge detection problem with wavelet-
based techniques for detecting irregular edges in the signal Power Spectral Density
(PSD). These edges were used to characterize the number of subbands, their locations
and the intensity of the spectral usage to enable opportunistic sharing. In [9], a gradient
based search technique with an adaptive step size was proposed to identify the white
spaces in the spectrum. This technique proposes a sequential empty channel search
in the frequency domain, and reduces the complexity by computing only the required
frequency domain coefficient instead of all the coefficients. Sampling signals of very
large bandwidth at Nyquist rate requires power-hungry high-rate Analog-to-Digital
Converters (ADCs).

A hot favorite tool in signal processing, CS, is used to reduce the requirements on



the ADCs and decrease the latency associated with spectral sensing. The sampling
rate is often reduced using techniques like multicoset sampling or modulated wide-
band converters (discussed in more detail in the next section), and the signals can be
reconstructed perfectly without sacrificing much information. The average minimum
sampling rate required to perfectly reconstruct the multiband signal is equal to the
Nyquist rate multiplied by the frequency occupancy given by the Landau lower bound
(as in [16]). This means that an upper-bound on the sparse support of the spectrum
should be known before hand. The reconstruction can be achieved either with one
of the famous sparse recovery techniques (e.g., basis pursuit [17]), or with traditional
spectral estimation techniques like multiple signal classification (MUSIC), or the min-
imum variance distortionless response (MVDR) method [18]. In [19], a sub-Nyquist
rate sampling technique was proposed to reconstruct the power spectrum of the signal,
without any constraints on the power spectrum. Once the compressive estimate of the
signal is obtained which could be either coarse or fine, the occupancy of the bands can
be detected with a threshold [20], [11].

There are other approaches for multiband spectrum sensing under the co-operative
sensing model, or distributed detection framework as in [21]. However, we restrict
ourselves to sensing with a single node in this thesis. In the following subsection, we
discuss the complexity of some of the sensing algorithms.

2.1.1 Computational complexity

—+— Nyquist rate sampling and FFT processing (all-digital)
—— OMP for |, minimization

Complexity order
=

—A— |, minimization based on [12]

Random Channel Search at Nyquist (all-digital) [9] <

10° : : /
102//// -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of busy Channels / Total Number of Channels

Figure 2.1: Complexity order of existing algorithms.

To understand the computational complexity of wideband sensing we consider the
following techniques. First, the traditional way of Nyquist rate sampling using a high-
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rate ADC, followed by digital FFT processing to reconstruct the spectrum is considered.
To compute all the frequency coefficients efficiently would require O(N log N') computa-
tions, for N channels. Next, we consider a random channel search, still using high-rate
Nyquist rate sampling as in [9]. This technique needs O(Ny;IN) computations, where
Nirials 18 the average number of trials required to find an empty channel computed
using equation (1.1). In general, sparse signal reconstruction under the CS framework
would require high-complexity recursive algorithms to solve the ¢;-norm minimization
problem. Here, the interior point linear program solver [12] is considered. The op-
timization problem can also be solved in a sub-optimal way using greedy algorithms
(e.g., Orthogonal Matching Pursuit (OMP)).

The computational complexity order of these sensing techniques for different spectral
occupancy levels is shown in Fig. 2.1. Even though Nyquist rate sampling appears to be
the best compromise for wideband sensing, performing all-digital processing consumes
a lot of power. Hence, there is a need for wideband sensing algorithms with lower
complexity or lower power consumption, especially in scenarios where the spectrum
occupancy is higher. This is addressed in Chapter 4 of this thesis.

In the following section, the CS framework along with its mathematical formulation
is discussed.

2.2 Compressive sensing

Compressive sensing is a method in which signals are acquired through a set of a few
non-adaptive! linear measurements and reconstructed efficiently from this incomplete
set of measurements [10]. Usually in signal processing, the entire signal is first acquired
and then compressed later on, either to store or to transmit. This often needs an
enormous effort to acquire the entire signal which could be avoided, as the insignificant
information is thrown away during the compression. The key motivation behind CS is
to combine both the signal acquisition and the compression process by directly sensing
the essential part of the signal using fewer linear measurements. From linear algebra it
is known that it is not possible to reconstruct an arbitrary signal from an incomplete set
of linear measurements. To enable reconstruction under CS, the signals are constrained
to be sparse in some basis, i.e., those signals that only have a few non-zero coordinates
in some basis (the sparsifying basis).

Sparse signals lie in a lower dimensional subspace, which may be represented by a
few linear measurements. However, it is difficult to determine which lower dimension
subspace the signal lies in. In other words, we may know the signal has a few non-zero
coordinates, but the locations of these coordinates are not known. This makes the
sparse recovery techniques more complex. To aid the sparse recovery, CS techniques
rely on the incoherence between the measurement basis and the sparsifying basis. The
following subsection presents the mathematical formulation of the CS problem.

!Non-adaptive means the measurement process does not depend on the signal being measured.
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2.2.1 Problem formulation

The CS framework relies on the sparsity of the signal. Hence, first we need to quantify
the sparsity of a vector.

Definition 2.1. Sparsity [22]. An N-dimensional vector, s € CV is said to be K -sparse
if it has K or fewer non-zero coordinates, i.e.,

1
Isllo =T (Jsaf” + [saf- -+ fsn]")” < K < N, s €CY (2.1)

where, || - ||, denotes the ly-norm which just counts the number of non-zero components
in the vector and p is a constant that is traditionally used to parameterize the standard
ly-norm.

In practice, the signals often encountered are not exactly sparse, but are compress-
ible (close to being sparse).

Definition 2.2. Compressibility [23]. A vector is called compressible if its entries obey
a power decay law
[l < Rei ™" (2.2)

where, |s|;) is the ith largest value of s, i.e., (|s] ) = [s|g =+ = [s|n)), r > 1, and
R, is a positive constant which depends only on r.

This means only a few entries of a compressible vector are large while most of them
are small. It should be noted that sparse signals are compressible.

Let us consider a discrete-time signal x € CV, which we can expand in terms of an
N x 1 orthonormal basis (e.g. wavelet, Fourier) vectors v, withi=1... N as

N
x=3 s, 23)
i=1
where, s; with ¢ = 1... N are the entries of the coefficient sequence of x. Alternatively,
stacking 1, for ¢ = 1... N as columns results in an N x N sparsifying basis matrix
U, = [, ¥, -t,y]. Then (2.3) can be rewritten in matrix-vector form as

x =W,s (2.4)

In case of the Fourier basis, ¥, = F¥, where F is be the Discrete Fourier Transform
(DFT) matrix, i.e. F = exp(—zz’xm), with k,n =0,...,N — 1 and + = /—1. Hence,
the vector s = x; will be the frequency response of x. In this thesis, the Fourier basis

is used as a sparsifying basis with the notation

x = W, xy (2.5)

Sensing, i.e. of the time domain signal x is done by collecting measurements by
correlating x with some sensing vectors ¢, (waveforms in case of the continuous-time
domain), i.e.,

Z=(x,¢), i=12... M. (2.6)
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Depending on the sensing vectors the entries &; of the vector X € CV will be the
Fourier coefficients (if the sensing vectors are sinusoids), or a subsampled vector (for
Dirac delta sensing vectors). Stacking the sensing vectors ¢, as columns results in a
sensing matriz', ® € RM*N_ In that case, (2.6) can be rewritten in matrix-vector form
as

X=&&x=®V¥ x; =¥, x/ (2.7)

where W, € CM*N is the new basis of the signal X. In the case of CS the number
of available measurements M is much smaller than the dimension N of the signal
X, resulting in an under-determined system. However, the sparsity constraint helps
recovering the signal exactly with high probability (w.h.p.).
The sparse vector s can be recovered w.h.p. (for some € > 0) by solving the opti-
mization problem
msin Isll, st [|®W,s — X[ <e (2.8)

Even though the non-convex f{y-optimization problem in (2.8) works perfectly in
theory, it is not numerically feasible and is NP-Hard (non-deterministic polynomial-
time hard) in general [24]. An extensive research on CS has resulted in numerous
alternatives to this problem.

Assuming the coefficient vector x; (or s) is K-sparse, then x; and, hence x = ¥, xy,
can be recovered from X, if the matrices ®, ¥,, and W, satisfy certain properties. For
exact signal recovery, it is clear that the measurement process should not damage the
information content in the signal, and should just reduce the dimensionality of the
signal (x : C¥ — CM). In addition to the sparsity constraint, CS relies on incoherence
between the sensing matrix and the sparsifying basis.

Definition 2.3. Mutual coherence [22]. The mutual coherence between two orthonor-
mal bases (e.g., the sensing matriz ® and the sparsifying basis ¥, ) of RY is

(P, 0,) = sup{[{¢; ¥,;)| : ¢; € 2,9, € ¥, }
e [1,VN]

The mutual coherence between two bases is quantified using the parameter p. The
two bases are said to be mutually incoherent if they have small values of i (closer to 1),
which further guarantees the possibility of signal recovery [25]. One more very useful
tool called the Restricted Isometry Property (RIP) is used for determining the sufficient
condition that guarantees sparse signal recovery w.h.p., and also to study the general
robustness of CS [26], [22].

(2.9)

Definition 2.4. Restricted isometry property [22]. For each integer K = 1,2, ..., the
isometry constant dx of a matriz W,, is defined as the smallest number such that

~ 2
(1= i) [sl12 < sy < (14 35 s (2.10)

holds for all K-sparse vectors s.

! Although similar results hold for the sensing matrix ® € CM*¥ | for simplicity we consider measurements
taken over R-space and also assume that the measurement process is noise free.
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It can be loosely said that a matrix X obeys the RIP of order K if dx is not too
close to 1. When RIP holds, the Euclidean length of K-sparse signals is approximately
preserved by W,. This means that the K-sparse vectors cannot be in the nullspace of
¥,. Some of the matrices that satisfy the RIP (of order 2), i.e. matrices with column
vectors taken from arbitrary subsets being nearly orthogonal [10], [22], [26] are :

1. Gaussian: Matrix whose elements are drawn independently and identically dis-
tributed (i.i.d.) from a random Gaussian distribution of zero mean and variance
1

M

2. Bernoulli: Matrix whose elements are drawn i.i.d. from a symmetric Bernoulli

distribution (Pr(¢;; = :tﬁ) =1).

3. Random selection: Matrix constructed by selecting M columns uniformly at ran-

dom from Iy and multiplied with a normalization factor of 4/ %

4. Toeplitz Gaussian: A Toeplitz structured matrix with elements drawn from the
same distribution as the Gaussian matrix above.

If the above conditions are met, the {y-norm in (2.8) can be relaxed and instead can

be reformulated as )
msin [sll, st [|[®Ps—X[;<e (2.11)

Ridge regression [27] (i.e. Tikhonov regularization) uses p = 2, while basis pursuit
[17] and LASSO [28] use p = 1, to solve this optimization problem. The other ap-
proaches include greedy algorithms such as Orthogonal Matching pursuit [13], Stage-
wise Orthogonal Matching pursuit [29], or Iterative re-weighted algorithms [30]. Most
of these algorithms calculate the support of the signal iteratively, and work for a specific
number of measurements

M = cKlog (%) (2.12)

where ¢ is the over-measuring factor (¢ > 0, varies between 2 and 20 [10] depending on
the recovery algorithm).

To practically realize the CS and mitigate the high sampling rate problems sub-
Nyquist rate sampling architectures have been proposed. These are more often referred
to as Analog-to-Information Convertors (AICs) by the CS research community. The
sampling from these architectures could be modeled by a sensing matrix ®. In [31] and
[32] an AIC architecture based on random sampling, for signals sparse in the Fourier
basis was proposed. This consists of a bank of parallel low-rate Analog-to-Digital Con-
verters (ADCs), which were enabled at random. This can be viewed as a random
selection compression matrix. An AIC based on random filtering was proposed in [33].
In this architecture the signal is convolved with a random-tap filter (of certain length),
and then the filtered signal is downsampled by a factor [2£|. The filter taps were
drawn either from a Gaussian or Bernoulli distribution. In [34], [35], and [36] AICs
were realized by pseudo-random demodulation. Here, the signals were initially spread
with a high-rate pseudo-random sequence. The spread signal is low-pass filtered, and
sampled at a relatively lower rate. In [16], sub-Nyquist sampling based on multicoset
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sampling was proposed for the case of multiband signals (similar to the signal shown in
Fig. 1.3). Similarly, a non-uniform sampling for multiband analog signals called Mod-
ulated Wideband Converter (MWC) was proposed in [37]. This architecture consists of
multiple channels, each consisting of different demodulating mixing functions followed
by low-pass filtering and low-rate uniform sampling. Unlike [16], the architecture in
[37] does not impose any limitation on the knowledge of the band locations for recovery
of multiband signals.

The following section presents the hypothesis testing problem that is used for com-
pressed detection.

2.3 Multiple hypothesis testing

In case of occupancy detection, we are interested in detecting the presence or absence
(event) of a primary user (PU) signal in a particular band. Often in detection theory
this is formulated as a hypothesis testing problem to decide which event is more likely
to occur. The absence of the signal (noise-only case) is referred to as the null hypothesis
denoted by Hy and the presence of the signal (signal-plus-noise case) as the alternative
hypothesis denoted by H;. This problem is known as the binary hypothesis test, since
we must choose between two hypotheses.

A multiband spectrum will have all possible combinations of the frequency bands
being free (indicated by “0”) and the frequency bands being occupied (indicated by
“1”). The detection of spectrum occupancy for multiband signals all at once, would
require solving multiple alternative hypotheses. To illustrate such a scenario we consider
the toy example described in Table 2.1. For two channels, there are 4 possible states of
them being free and/or busy as indicated by hypotheses Hg, H1, Hz, and Hsz. Similarly
a channel length of N would result in one null hypothesis Hgy, and m = 2V — 1,
alternative hypotheses indicated by Hq, Ho, . .., H,,. Such a hypothesis testing problem
is referred to as a Multiple Hypothesis Testing (MHT) problem. Solving the MHT
problem would give the occupancy of all the N channels at once, and would avoid
solving a binary hypothesis problem on every channel.

Table 2.1: A toy example to illustrate MHT for multiband sensing

Hypotheses | Channel 1 | Channel 2
Ho 0 0
Hq 0 1
Ho 1 0
Hs 1 1

The MHT problems arises in various applications including wireless communica-
tions, radar, pattern recognition, classification, etc. The optimal Bayesian detector for
MHT is a well-known result in classical detection theory [38], [39]. In [40], MHT was
tackled sequentially in the context of multiple resolution element radar. The prob-
lem of classifying non-stationary Gaussian signals using MHT with a constraint on the
probability of incorrect classification of one class was studied in [41].
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In the Bayesian framework, one typically assigns probabilities to various hypothe-
ses. This means, there is a prior belief in the likelihood of the hypotheses. This is a
reasonable assumption for e.g. digital communications where the transmission of a “0”
is equally likely as the transmission of a “1”. However, this is not a valid assumption
in case of impulsive event detection which happens with radars or occupancy detec-
tion. Hence people often resort to the Neyman-Pearson criterion, where there is no
assumption on the prior probabilities of a certain hypothesis.

Theorem 2.1 (Neyman-Pearson approach to the binary hypothesis problem).

max P’I“(Hl; 7‘[1)

2.13
s.t. PT(Hl;Ho) = Q. ( )

where the notation Pr(H;; H;) indicates the probability of deciding hypothesis H; when
hypothesis H; 1is true.

The classical Neyman-Pearson approach to binary hypothesis testing suggests to
maximize Pr(Hy; H,) with an upper-bound constraint on Pr(Hi; Hg). The Pr(Hi; Ho)
can be constrained by choosing an appropriate threshold for the decision [39]. We now
define the Likelihood Ratio (LR), which is required to understand the MHT.

Definition 2.5. Likelihood ratio [39]. Let y € CV be an observed vector of i.i.d.
random variables from a certain distribution. The likelihood ratio is then given by

. PT(Y|H1)
= Priy|H) (2.14)

The function A indicates for each value of y the likelihood of H; versus the likelihood
of Hy. The logarithm of the function A is referred to as the Log-Likelihood Ratio (LLR).

Although MHT can be formulated in the Neyman-Pearson sense [42] it is seldom
used in practice. The proposed extension of the classical Neyman-Pearson approach
for binary hypothesis testing to MHT is discussed in Chapter 3.

As discussed in Section 2.1, the classical approaches for detection based on CS,
recover the signal first by solving the optimization problem given in equation (2.11).
Once the signal is estimated (either coarse or fine) detection is performed. For example
this could be a simple threshold to just detect the presence or the absence of a signal.
We try to avoid this two-step approach with redundant estimation of the signal, and
do a direct detection on the reduced dimensionality signal. We formulate this as a
MHT problem. This could be seen as an N-dimensional signal classifier with respect
to a reference signal (noise). This problem becomes more interesting when only M-
dimensional observations (M < N) are available.

The conclusions of this chapter are presented in the following section.

2.4 Conclusions

In this chapter, we provided a brief literature survey of existing approaches to wideband
spectrum sensing, which could be categorized based on the signal acquisition technique.
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Typically, high-rate Nyquist rate ADCs consume a lot of power, and the requirements
on the ADCs could be relaxed, by acquiring the signal at the information rate rather
than the Nyquist rate. This is often formulated as a CS problem. The necessary
background on CS has been provided. However, CS constrains the signals to be sparse
and demands the knowledge of the sparse support for recovery. The algorithms for
sparse recovery are in general complex and the classical approach includes estimation
of the signal even for detection. With the motivation to perform direct detection on
compressed samples, the necessary background required for the MHT problem under
the Neyman-Pearson criterion has been discussed in this chapter.
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Wideband sensing through
multiple hypothesis testing

3.1 Introduction

Efficient spectrum sharing can be achieved in wireless sensor networks through wide-
band spectrum sensing, by identifying available channels within a large frequency range.
In order to sense large bandwidths, in the order of a few hundred MHz, high-rate
Analog-to-Digital Converters (ADC) or complex receiver front-ends are required. Al-
ternatively, the wideband channel can be seen as a train of narrowband channels, where
detection can be performed on the individual channels. Depending on the channel oc-
cupancy, this may increase the latency in finding a free channel and also consume more
power, as the full receiver chain has to be powered each time a channel is sensed.

Currently, there is a great interest in reducing the sampling rate for sparse signals
and relax the requirements on the ADCs. These are often casted as a Compressive
Sensing (CS) problem, where the data is acquired at a rate significantly lower than
the Nyquist rate. The signal can be recovered with one of the many available sparse
recovery algorithms with a little or no loss of information. However, an important
aspect is that in order to solve a detection problem the signal or its statistical measures
need not be reconstructed. Instead, the detection can be performed directly on the
reduced set of data samples. Such detection problems appear in various fields such as
event detection in radar, Multi-User (MU) detection in communications, imaging, and
spectrum sensing for Cognitive Radios (CRs).

Here, we consider a multiband occupancy detection problem. In a multiband spec-
trum, each band could be either busy or free. The multiband occupancy is combinato-
rial in the number of channels N. We formulate this detection problem as a Multiple
Hypothesis Testing (MHT) problem, with each hypothesis describing one possible com-
bination of all the channels being busy and/or free. This is explained with an example
in Table. 2.1 of Chapter 2. Solving the MHT problem gives the occupancy of N
channels all at once.

In this chapter, we develop a detector for two cases:

e When the signal is acquired using Nyquist rate sampling, i.e., M = N, where M
is the number of available measurements.

e When the signal is acquired using sub-Nyquist rate sampling, i.e., M < N (re-
duced dimension).

The detector for M = N is of linear complexity, but still would require Nyquist rate
sampling. The detector for the case M < N is of more practical interest, resulting in
a Compressed Detector (CD).

An optimal algorithm for M = N case is proposed. For the M < N case, the
optimal detector is of complexity order O(2"). Hence, we propose a sub-optimal greedy
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algorithm. The performance of these detectors is analyzed through simulations in terms
of the detection probability, the false alarm probability and the compression rate, which
is defined as the ratio of the number of the available measurements to total number of
Nyquist rate measurements, i.e., %

In the following section, we present the detection model considered for the MHT

problem.

3.2 Detection model

In this chapter, we propose a detector based on the MHT problem for multiband
sensing. Before presenting the MHT using the Neyman-Pearson approach, we define
the probability of detection, Py, and the probability of false alarm, P4, which are used
to analyze the detection performance for wideband sensing.

Definition 3.1. Probability of detection and probability of false alarm. Consider a
wideband spectrum of B Hz segmented into N channels, such that each channel has
a bandwidth % Hz. The channels are indexed from 1,..., N. These channels can be
either busy or free, depending on whether there is or there is no Primary User (PU)
signal transmission, respectively. The indices of such Ny,s, busy channels are collected

m a vector
T

b — [bl b2 st bNbusy]
with |b| = Nyysy. The complement of the set b is denoted by be,

(3.1)

b® = [b§ bgmbymf (3.2)

with |b’| = N — Nyysy = Npree. The detected busy channel set, B, is determined by
solving the hypothesis testing problem. The probability of detection is then defined as

Nbusy
1 A
Pi= " Pr(b; € blb; € b) (3.3)
usy i

and the probability of false alarm as

Nf'ree
1 c C17.c c
Py = N ; Pr(bS € b|b; € b°) (3.4)

For example consider the following channel occupancy [O 0 1 1 0 O]T, with
N = 6. Here the busy channel set will be b = [3 4}T
b°=[1 2 5 6], with Ny =2 and Ny = 4.

We next present the proposed extension of the classical Neyman-Pearson approach
for binary hypothesis testing to MHT.

and its complement set is

Proposition 3.1. MHT under the Neyman-Pearson-like criterion. Let y € CV be an
observed vector of independently and identically distributed (i.i.d.) random variables
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from a certain distribution. Let the null hypothesis be denoted by, Ho, and the alternate
hypotheses by, H,;, with i = 1,...,2Y — 1. Then the MHT detector in the Neyman-
Pearson sense is the most likely hypothesis with respect to the null hypothesis, that would
optimize the probability of detection, Py, of (3.3) with a constraint on the probability of
false alarm, Py, (as defined in (3.4)). However, this detector is complicated to derive.
The simplified MHT detector under the Neyman-Pearson-like criterion is

it = arg max A(i) =In (%) with i€ {l,...,m=2Y —1}. (3.5)
Hi

AG*) Z v (3.6)
Ho

In case of multiple alternative hypotheses, it is not required to consider H, as a
hypothesis to be explicitly tested, but, rather used as a reference or a dummy hypothesis
[43]. Hence testing H; against Hy can be accomplished by comparing the Likelihood
Ratios (LRs)

Pr(y|H1) < Pr(y|Hs)
Pr(y[Ho) = Pr(y[Ho)

This can be generalized to i-hypotheses [44]. The optimization problem (3.5) will result
in the most likely hypothesis with respect to the null hypothesis. We choose a threshold,
Yih, based on simulations, to maintain a certain Py, of (3.4), and achieve the desired
Py, defined in (3.3).

In the next section, we present the signal model considered to solve the detection
problem.

(3.7)

3.3 Signal model

Let the time domain signal representing N frequency channels be denoted by the N x 1
vector x € CV and the noise by the N x 1 vector v € CV. The signal x can be written
in terms of its frequency response x; € CV as x = Ff'x;, where F € CV*V is the
normalized Discrete Fourier Transform (DFT) matrix. Similarly, the noise v can be
written in terms of its frequency response v; € C as v = F#v,. The Fourier basis is
denoted using the matrix ¥,, = F#. The passband signal at the receiver can be written
as

y =¥, (x;+vy) (3.8)

We acquire the received signal through a linear measurement process modeled by
the sensing matriz, ® € RM*N_ where M is the number of available measurements.
The acquired signal is denoted by the M x 1 vector

y =®y =@V, (x; +vy) (3.9)
=W, (x; +vy)

where, lily = ®W, is the new basis of the signal y, often referred to as the holographic
basis.
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The occupancy of these N channels are detected all at once using the MHT ap-
proach. It should be noted that these N frequency channels could have all possible
combinations of each channel being busy and/or free. This results in one null hypoth-
esis denoted by Hy, with all channels being signal-free (noise-only). All the remaining
combinations of each channel being busy (signal and noise) or free will result in 2V — 1
alternative hypotheses denoted by H,, withi = 1,...,m = 2% —1. Let the combination
of N frequency bands being free (indicated by “0”) and the frequency bands being oc-
cupied (indicated by “1”) for the ith hypothesis be denoted by the N x 1 vector ¢y, .
Such that

i =0 Coppy —[0o 0 - 0 0
i=1:cp —[0 0o - 0o 1"
i =2 Cappy —[0 o0 - 10" (3.10)
i=2" ~licyy,  =[1 1 - 1 1]

The number of non-zero entries of the vector c,jy, is denoted by its fy-norm, i.e.,
l|caia, |l,- The variance of any active channel is modeled as o2, and the variance of the
noise in each channel as o2. It is assumed that the channels are uncorrelated. The

v

covariance matrices X3, € RV*Y and 3, € RV*V are defined as

3, =Elv,;v{] =oly (3.12)

We model both the signal and noise as i.i.d. Gaussian random variables. Hence,
for the ith hypothesis, the signal can be written as x¥ ~ CA/(0, \IlyEx‘Hi\Ilf) and the
noise as v ~ CN (0, 02Iy). We define the matrix Cyjp, = diag(cun;)-

In the following section, we develop a multiband occupancy detector based on the
MHT problem.

3.4 Optimization problem
The solution to the MHT problem will decide on one of the following hypotheses

Ho : }N’ = \ilny
(i) — G (WD - N (3.13)
Hi: ¥y =Yu(x; +vy) for i=1,....m=2" -1

We develop a detector under the Neyman-Pearson-like criterion by solving the op-
timization problems (3.5) and (3.6). In the following subsections, this is done for two
cases

1. When the number of available measurements M = N. This means the complete
frequency information is available.
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2. Compressed detection problem: When the number of available measurements
M < N, for e.g., compressed samples obtained using sub-Nyquist rate sampling.
The frequency information is incomplete in such cases.

3.4.1 Multiple hypothesis testing with complete frequency information
(M =N)

We consider N samples obtained using Nyquist rate sampling, with the number of
available measurements M = N. Taking an N-point DFT, we obtain a frequency
domain signal of length N, each representing one channel. In other words, the complete
frequency information about the signal is available. To realize such a measurement
process, we consider the sensing matrix ® = Iy. Therefore, ¥, = ¥, and y =y. We
can rewrite (3.13) as

H(]: y:\I’ny
@) (i) L N (3.14)
Hi: y :\Ily(xf +vy) with i=1,.... m=2" — 1L

Let the objective function A of (3.5) for the Nyquist rate sampling case be denoted
by Ay, which is given by

N Pr(y\’Hi) .
An(i) =In (W) ., 1e{l,....,m}. (3.15)

From (3.11), (3.12) and (3.13) we can write

|2 1 _

Pr(y|Ho) = |(27r|)¥ exp <—§yH\Ify2v1xI:fy) (3.16)
S, + 5|72 1 _

Pr(y|H;) _ | 'T%)g | exp <—§yH\py(zxmi+zv) 1\I:§fy) (3.17)

Substituting (3.16) and (3.17) in (3.15), and scaling appropriately will result in

35|

An(i) =In (m) + yH\Ily<E;1 — (B, + Ev)_l)\Ilfy , ie{l,...,m}.

PN _ -
o (é) YIS = (S + 30y

|2x\Hi + Ev|
(3.18)
where, y; = \Ilf y is the frequency response of y.
Using the matrix inversion lemma
(A+BCD)' =A~' — A"'BY(DA'B+C!) 'DA"!
we can then write
S (S + 20 = 2 (B, + 20) 7 (3.19)
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From (3.19) we can write

: 3, - :
Ay(i) =1In <#) + vy TS, (B, + 20) i, de{l,...,m}.

|Em|7-[z + 2v|
(3.20)
To simplify the determinant and the inverse, we define v = % The objective function
(3.20) can be written as "
Ay(i) =1In b + LyHC y ie{l,...,m}. (3.21)
(1 yleaally | 7 02(1 )7 o

We define the matrix Y = diag(y; ©® yy). Here the N x 1 vector a ® b denotes the
element-wise product of vectors a and b. In terms of the matrix Y, (3.21) can be
written as

, 1 ol _
Ay(i) =1In <(1 n V)IICJCHZ.II()) + 201+ V)CQHZ‘YC“%’ , ied{l,...,m}.  (3.22)

We can then write the optimization problem (3.5) as

i* = arg miax (||Y20xml ) (3.23)

o2 (1+7) In(1+7)
g
non-convex, and naive strategies involves sifting through all the 2V possibilities. This

gets impractical for large values of N.
Next, we use some of the properties of the vector c,y,, to reduce the complexity of
this problem. For c,p3;, € {0,1}", we know that

where, \ = . The optimization problem (3.23) is highly non-linear and

Using (3.24), (3.23) can be written as
i* = arg max (CZ‘H (Y — My)cqm,) (3.25)

Since (Y — M) is a diagonal matrix, the optimization problem (3.25) can be written
as

2

i* = arg max (cf‘%@cmm Z jilCepil; (3.26)

Jj=1

where, ® = (Y — My). It should be noted that [c,pp,]5 = [Cajn,]; as the elements of
the vector c,j3;, will have only the binary values, i.e. either 0 or 1. This will result in

N
i =arg max > [Ol5lcaml; (3.27)

=1
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Thus the optimization problem (3.27) is linear in [cy3,];, with a computational com-
plexity of O(N). The optimal solution to the problem is given by

1 if [®];; >0,
[Caprer {o it [©],; < 0. (3:28)
Alternatively,
1 if [Y]; > A,

After the vector cgjy,. is obtained using (3.28) or (3.29), the corresponding i* or
simply Ay(i*) can be determined using

oy 1 2 T
=i ((1 e Ho) A ) St Y (3:30)

And finally, we decide on a hypothesis H;« based on

An (i) E Vth,N (3.31)
Ho

where v, v (N in the subscript denotes the threshold for Nyquist rate sampling) is a
certain threshold used to achieve a certain Py,. We term this algorithm as MHT based
wideband sensing for the Nyquist rate (MHT-WS:N). The entries along the diagonal
of the matrix Y, [Y];; = (abs([yf]j))z, where abs(-) denotes the absolute value. The
detection is based on the energy of the received signal per frequency bin, (abs([y f]j>>2'
Hence, the optimal detector, for the M = N case is the energy detector. The detector

developed is summarized in Table. 3.1.

Table 3.1: MHT-WS:N detector for M = N

Objective: Decide on a hypothesis H;, with i € {0,...,m =2V — 1}

Given: Received signal y of length N, power of an active channel o2,
2
noise power per channel 02, v = %5", Ytn,N corresponding to a certain Pp,,

and the number of channels N.
o Compute:
oy;=0ly.
o )\ — Zu(ldy) In(i+y)
v
e Update: for j=1,..., N

S (R O (7R
il 0 if (abs([yf]j))2 <A
e Compute:
AN (i*) as specified in (3.30)
o if An(7*) > v N then choose H; otherwise choose Hg

In the following subsection, we discuss the performance of this detector through
simulations.
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3.4.1.1 Simulation results

The proposed MHT-WS:N detector is tested for an example with the following param-
eters. The number of channels N = 10, the number of available measurements M = 10,
and for two cases of the number of active channels (or K-sparse): i)Np,s = K =1
and i) Npysy = K = 2. The simulation results are averaged over 1000 trials. In each
trial, the vector x; is randomly generated with i.i.d. Gaussian distributed entries of
zero mean and variance according to a certain static channel occupancy (o2 for busy
channels and zero for free channels). The vector v, is generated with i.i.d. Gaussian
distributed entries of zero mean and variance ¢ in each trial. The time domain vector
is then obtained using the DFT matrix ¥,. The variances are set according to the

Signal-to-Noise Ratio (SNR), which is given by 10 log,, (]Kv—ﬁ) dB.

Fig. 3.1 and Fig. 3.2 show the normalized Log-Likelihood Ratios (LLRs) for the
busy channel set (specified in (3.1)) b= [3] and b = [3 4], respectively. An SNR of
10 dB is considered here. In Fig. 3.1, the maximum LLR is obtained for the hypothesis
index ¢ = 128 corresponding to the channel occupancy vector considered. Similarly,
the maximum LLR is obtained for index ¢ = 192 in Fig. 3.2, where the two channels
are active. By looking at the simulation results, it can be noticed that, the hypotheses
which have small Hamming distance between the channel occupancy vectors, results
in close values for the LLRs. We make use of this property, to develop a sub-optimal
detector when M < N, discussed in the next subsection.

The performance of the detector is measured in terms of the probability of detection,
P;, and the probability of false alarm, Py,, for different SNRs. The P; and the Py,
are defined in (3.3) and (3.4), respectively. In Fig. 3.3, a static channel occupancy
with b = [3] is considered, and the threshold ~, y is chosen, based on simulations, to
keep the values of Py, below 10%. In Fig. 3.4, we consider two channels to be active
with b =[3 4]7. The simulations based on both exhaustive search to solve (3.23) and
the MHT-WS:N detector as described in Table. 3.1 are shown in Fig. 3.3 and Fig.
3.4. Tt can be seen that the curves of the exhaustive search based detector and the
MHT-WS:N detector overlap.

It should be noted that the detector is based on the energy of the received signal
per frequency channel. Therefore, as any energy detector it suffers from the SNR wall
and noise uncertainty issues, with a poor performance in the low-SNR regime.

In the following subsection, we extend the MHT based wideband sensing detector
for the case where the number of available measurements is significantly smaller than
the number of Nyquist rate samples.

3.4.2 Multiple hypothesis testing with incomplete frequency information
(M < N)

In Section 2.1, we provided an overview of techniques for multiband occupancy detec-
tion, some of which use the classical Compressive Sensing (CS) framework discussed
in Section 2.2. In these techniques, either the entire signal or its statistical measures
are reconstructed first. Then, in the second stage, detection is performed on this com-
pressive estimate. This reduces the complexity by avoiding Nyquist rate sampling, but
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still requires high complexity sparse recovery algorithms. Here, we avoid this two stage
estimation-detection approach, and instead perform a direct detection on the com-
pressed samples obtained using sub-Nyquist rate sampling. The sampling rate could
be reduced by using the architectures reported in the literature, such as multi-coset
sampling, or modulated wideband converters, as discussed in Section 2.2. These are
often referred to as Analog-to-Information Converters (AICs). This linear measure-
ment process is modeled using the sensing matrix, ® € RM*V with M < N. For the
sub-Nyquist rate sampling, ® is a fat matrix, resulting in an under-determined system.
In this case, the hypothesis testing problem is the same as in (3.13), given by

Ho : S’ = \i’ny

A 3.32
Hi: 39 =0,x +v;) with i=1,...,2" 1. (3:32)

where, the M x 1 vector y is the observation of reduced dimensionality.

The acquired signal can be written in terms of the compressed signal denoted by
x0) = \Ilyxﬁf), and the compressed noise’ v = W, v;. Since, the measurement process
is linear, the compressed vectors will be Gaussian random variables. The covariance

matrix of the signal x for the ¢th hypothesis is given by
Yo = B[&X") ] = U, 2,5, T with 3,5, € CM*M (3.33)

and the noise v is given by

>, =EFv] =¥, 5,0 with ¥, e RMM

_ paH (3.34)

Hence, the covariance matrix of the acquired signal is given by
Sy = BIFYIH] = U,300, ¥ + 02007 with 3, € CM  (3.35)

The objective function A in (3.5) for the compressed case is denoted by A¢, and is
given by
Ac(i) =In| =———= , 1e{l,...,m}. 3.36
oli) =t (ot (L) (3.36)

The vector to be recovered c,y, has length N. In other words, the number of hypotheses
to be tested is 2V, similar to the case M = N. The only difference is that, we have
fewer number of observations.

From (3.33), (3.34) and (3.35) we can write

Pr(3|Ho) = < 1~H2‘1~) (3.37)
r = exp | —= :
o) = Sy e (¥

|2y\7'li

-3 1 ~ ~ ~ -1
Pr(y|H;) = exp <——}7H(lIlyEx|Hi\I’f +3,) 5/) (3.38)

(27)(%) 2

Tt should be noted that the noise is not sparse in either basis. The word compressed noise is used to
maintain the notational consistency.
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Substituting (3.37) and (3.38) in (3.36), and scaling appropriately we get

>, 1 s e
Ac(i) =1In (%) +y" (zvl — (U, 5, ¥ +3,) 1) y , ie{l,...,m}.
(3.39)
Using the matrix inversion lemma
(0,8, O +3,) =5 -5 0, (2L, + 008, el (3.40)
Further factorizing (3.40) we have
(‘i’yzmmi\i’f + f]v)_l
N . I N (3.41)
= Ev - Ev \Ilyzmr}-[i (IN + z):E|’}-Li\:[ly Ev \Ilyzxﬁ-[l) z):E|’}-Li\:[ly Ev

Using (3.41) and simplifying the determinant, we can rewrite the objective function
(3.39) as

~_1 ~ 1 1 ~ ~_1 ~ 1 1 ~ ~
AC(Z) = S’sz 1\I’yzxz|7'li(IN + EE\HL‘I,ZI/{EU l‘I,yEE\HL)_12x2|Hz\I’£{EU ly_ch‘Hi ||0 hl(l + 7)’
ie{l,...,m}.
(3.42)
where v = Z—% as defined before.

Similar to the previous case of M = N, for M < N also, the exhaustive search would
require O(2") computations, and is practically not feasible for larger N. We term
this algorithm based on exhaustive search as MHT-WS:CD (MHT based Compressed
Detection (CD) for Wideband Sensing (WS)). Alternatively, (3.42) can be written as

. He-1 S _ e
AC(Z) = Ungzv ‘I,ycw\ﬂz(IN + 092CC$|7{1\I’52U \I’ycw\ﬂz) 1Cm|7{i\1’52v y

. (3.43)
on(l+7), ie{l,...,m}.

- ||C90\7'lz

It is mathematically intricate to factor out the matrix C,3, from the matrix in-
verse in (3.43). This makes the optimization an involved non-convex non-linear integer
programming problem of high complexity. Therefore, we propose a sub-optimal greedy
algorithm to solve this optimization problem, based on certain heuristics.

Before presenting the proposed greedy algorithm, we provide some definitions.

Definition 3.2. Neighborhood. For V¢, € {0,1}Y, the neighborhood of Cqy, with
a size S 1s defined as the set

No(eape) = {eapt, € {013 | e, — e I, = S} (3.44)
where, ||Copp, — o, ll, denotes the Hamming distance between ¢y, and Cqppy; -

This means, the vectors c,p; and cgy, differs by S bits V5, € Ng(cgpy,). For
any c,y, the total number of vectors in Ng(c,p,) will be |Ng(cgp,)| = (g), with

S o [N (o) = S0 () = 27
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Definition 3.3. Local Maximum LLR (LML) point. Consider cq3;, € {0, 1} with a
neighborhood Ng(czj3,), and the LLR Ac(i) as specified in (3.43). If Ac(i*) > Ac())
Vo, € Ns(Copn,), then cupy,. results in the local mazimum LLR point, A*C\S(i) within
the neighborhood size S.

Property 3.1. Consider ¢, € {0, 1} with a neighborhood Ns(cyy,) and LML point
Agys(@). Then Agy (i) < Agypp(i) -+ < Agyn ().

As the neighborhood size increases, the distance between the LML points increases.
For cgy3, € {0,1}" with a neighborhood Ng(c;,), the LLR values between ¢,z and
Ng(czjp,) are closer to each other for smaller S. As S — N, the difference between
the LLR values increases. This property is used in the proposed sub-optimal greedy
algorithm. Due to the compression, the LLRs are distorted as can be seen in Fig. 3.5a
and Fig. 3.5b (these plots are described in more detail in the next subsection). To
increase the performance of the algorithm, we choose higher neighborhood size (of 3 in
this case, to achieve the desired performance). Next, we present the algorithm based
on the property discussed above. Since this algorithm is based on the LML and used
to perform CD, we call it LML-CD.

A similar approach is proposed in the literature for Maximum Likelihood (ML) MU
detection for Code Division Multiple Access (CDMA) communications systems [45] and
[46]. This approach is extended to LLRs for the considered MHT problem.

Table 3.2: LML-CD algorithm for MHT problem for WS (M < N)

Objective: Decide on a hypothesis H;, with i € {1,...,2V — 1}
Initialization: Start with the initial vector ¢z, € {0,1}" uniformly at
random.
e Generate N wvectors:
e ¢, €10, 1}V, for uw = 1,..., N, choosing each vector uniformly
at random from Ny(cgz, )-
e Observation space:
o U] = {C:c|7-li U Cype, |lu=1,...,N}, with |U;| =N +1
e Compute: A¢ as specified in (3.43)

o i* = arg ie{lrf?l}\{f—i-l} Ac(i), with Ci, € U1 (3.45)

e Update observation space:
o Uy = {Nys=1y(Cap) U Nys=ap(Crpp) U Nis=s}(Cqip,. )}, with
3 (N
’UQ‘ = ZT:I (7")

e Compute: A¢ as specified in (3.43)

o " =arg max Ac(i), with cypy, € Uz (3.46)
1e{1,...,N}

o if Ac(i*) > o then choose H;+ otherwise choose Hg

The algorithm LML-CD is initialized with a vector cgy,, at random out of 2N
possible vectors. Next, we choose N vectors uniformly at random, such that, the N
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vectors have all possible Hamming distances from 1 to /N, with the initial vector. An
observation space with these N vectors and the initial vector is formed. The maximum
LLR, and hence the hypothesis H;«, is determined within this observation space. Next,
the observation space is updated with all the possible vectors that are at a Hamming
distance of 1, 2, and 3 from ¢, i.e. neighborhood Ng(c,p,.), with a size S €
{1,2,3}. The LML point is computed with the new *. If the LLR value A¢(i*) exceeds
the pre-determined threshold 7, ¢ (C in the subscript denotes the threshold for the
CS case) then we decide on hypothesis H;+ otherwise we choose Hy. The threshold is
determined to achieve a certain Py,. The algorithm LML-CD is summarized in Table
3.2.

The algorithm LML-CD requires %(N 3 + 11N + 6) computations, with complexity
order of O(N?). In other words, if the neighborhood size S is increased from one , two,
etc., up to N, the computational complexity is linear, quadratic, etc., up to exponential
in the number of channels (the performance also increases with the complexity). Note
that, these algorithms can also be used for the M = N case. Since, the optimal
algorithm for M = N case is of linear complexity, we do not consider these sub-optimal
algorithms in that case. The complexity of these algorithms is summarized in Table
3.3.

Table 3.3: Complexity of MHT based wideband sensing algorithms

Algorithms Complexity order
MHT-WS:N O(N)
MHT-WS:CD o(2V)
LML-CD O(N?)

In the following section, we analyze the performance of the proposed MHT detector
for wideband sensing, with M < N through simulations.

3.4.2.1 Simulation results

The proposed MHT-WS:CD detector based on an exhaustive search and the proposed
sub-optimal LML-CD based on a greedy search are tested in this section. For the
simulations, the following parameters are considered: the number of channels N = 10,
and two fixed sensing matrices, ®, i) Gaussian and ii) Random selection (these matrices
are generated as described in Chapter 2). The Gaussian and random selection matrices
are used in the simulations, as these are the standard favorable sensing matrices (that
satisfy the Restricted Isometry Property (RIP), discussed in section 2.2) used in the CS
framework for recovery with ¢;-norm optimization. However, for the direct detection,
the properties that the sensing matrices should satisfy have to be analyzed and this is
subject of future work. The simulations are averaged over 1000 trials. In every trial, the
vector Xy is randomly generated with i.i.d. Gaussian distributed entries of zero mean
and variance according to a certain static channel occupancy (o2 for busy channels and
zero for free channels). The vector vy is generated with ii.d. Gaussian distributed
entries of zero mean and variance o2 in each trial. The time domain vectors x and v
are then obtained using the DFT matrix ¥,. The variances are set according to the
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required SNR, given by 10 log;, (ﬁ—z’z) dB. A static channel occupancy is considered,

with a busy channel set b = [3 4]T, number of free channels Ng... = 8 and busy
channels Ny,s, = 2. The threshold v, ¢ is chosen so as to keep the Py, below 10%.
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Figure 3.5: Normalized LLR for % = 0.6 with K = 2, SNR = 10 dB, and a static channel
occupancy of [0011000000], corresponding to i = 192.

Fig. 3.5a and Fig. 3.5b show the normalized LLRs for Gaussian and Random se-
lection compression matrices, respectively. The Normalized LLRs without compression
are also shown in both figures. It can be seen that the compression distorts the LLR
values, with the most likely and less likely hypothesis getting much closer compared
to the case when M = N. It should also be noted that, the LLRs are very sensitive
to noise. Here a compression rate of 0.6 is considered, where the compression rate is
defined as % The maximum LLR is obtained for the hypothesis index ¢ = 192, which
corresponds to the channel occupancy considered in this example.

Next, the performance of the MHT-WS:CD for different compression rates for an
SNR of 10 dB and 30 dB, is shown in Fig. 3.6a and Fig. 3.6b, respectively. For
detection with high probability (w.h.p.), we can say that an over-measuring factor ¢
(M := cK) of 2 to 3 would be required at high SNRs. And, at a relatively low SNR of
10 dB, an over-measuring factor of 4 is needed to achieve a P; ~ 0.9.

The proposed MHT based wideband sensing for M < N is compared with the
conventional approach for CS based spectrum sensing of [20]. In this conventional
approach, the signal is first acquired using sub-Nyquist rate sampling. The acquired
signal is recovered by solving the optimization problem

min [lysfl, st ®¥y;=y (3.47)
Y
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Figure 3.6: Performance of MHT based wideband sensing (exhaustive search) for (M < N),
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Figure 3.7: Comparison of conventional estimation-detection two stage approach of CS with
MHT based wideband sensing for (M < N), with N =10, K = 2, and SNR = 30 dB.

Then the detection is performed on the frequency response estimate (power or ampli-
tude). We make use of the Regularized Orthogonal Matching Pursuit (ROMP) [47] to
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solve the convex program in (3.47), and then perform energy detection to determine
the occupancy. We make use of ROMP, as it has the speed of the greedy iterative
methods (matching pursuits) and robustness of ¢;-minimization. The complexity order
of ROMP is O(NMK)?. Additionally, in the second stage, threshold based detection

has a complexity order of O(N).

The comparison is shown in Fig. 3.7a and Fig. 3.7b for Gaussian and random
selection compression matrices, respectively. The detector MHT-WS:CD based on ex-
haustive search performs better than the classical two-stage approach. The P, of 0.9
is achieved for a compression rate of ~ 0.3 with the MHT-WS:CD. Using the classical
two-stage approach, the P; of 0.9 is achieved for a compression rate of ~ 0.6 and ~ 0.5
with Gaussian and random selection compression matrices, respectively.

Using a small size of N in the simulation reveals an important aspect of CS. In
the CS literature, Gaussian or any other random matrices are suggested as a favorable
choice for signal recovery with ¢;-norm optimization, but this choice holds mostly for
N — oo [10]. Structured matrices like random selection matrices perform better in
cases of smaller N [48], which could be used more often in digital communications, as
can be seen in Fig. 3.7b. The performance of the proposed MHT-WS:CD is better
than the classical two-stage approach.
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Figure 3.8: Performance of the sub-optimal LML-CD algorithm for (M < N), with N = 10,
K =2, and SNR = 30 dB.

Fig. 3.8a and Fig. 3.8b show the performance of the proposed sub-optimal al-
gorithms for Gaussian and random selection compression matrices, respectively. The
P; = 0.9 is obtained for a compression rate of ~ 0.5 and ~ 0.6 for random selection
and Gaussian sensing matrices, respectively. The performance of the cubic complexity
LML-CD algorithm is similar to that of the classical two-stage approach.

2When the exact sparsity level is known.
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3.5 Conclusions

In this chapter, we considered wideband spectral sensing in the multiple hypothesis
sense. Each hypothesis corresponds to one of the possible combinations of all channels
being busy and/or free. To solve this detection problem, the extension of the classical
Neyman-Pearson approach for binary hypothesis testing to MHT has been proposed.
The motivation to formulate multiband occupancy detection as an MHT problem was
to reduce the latency involved in solving multiple binary hypothesis test on each fre-
quency channel. An optimal detector was developed for observations with complete
frequency information. The energy detector is the optimal detector for Nyquist rate
sampling, and is of linear complexity. However, it would still require a high-rate ADC
to acquire the samples. To further reduce the complexity and capitalize on the sparsity
of the spectrum, the sampling rate is reduced as in the CS framework with observations
having incomplete frequency information. Here, we avoid the conventional CS based
sensing, which usually involves reconstruction of the compressed signal before detection.
Instead a direct detection based on the compressed samples is performed, resulting in a
CD. The optimal detector MHT-WS:CD was developed and requires O(2") computa-
tions. The optimal detector MHT-WS:CD performs better than the classical two-stage
approach, but is impractical for larger N. Hence, we proposed a sub-optimal greedy al-
gorithm, LML-CD, based on the properties of the local maximum LLRs. The LML-CD
is of complexity order O(N?), and has a performance comparable to that of the con-
ventional two-stage approach (of complexity order O(KMN)). The exact knowledge
of the sparsity level is not required for direct detection.
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Low-power architecture for
wideband spectrum sensing

4.1 Introduction

The frequency spectrum is a scarce resource and has to be utilized efficiently to fos-
ter innovations in wireless communications. Cognitive radio technology enables this
by supporting secondary spectrum usage, coexistence, and Dynamic Spectrum Access
(DSA) by sensing the spectrum for the occupancy and adaptively using the free fre-
quency band for a certain duration without affecting the performance of the licensed
Primary User (PU) [6]. In case of low-power radios, spectrum sensing is usually an
overhead for the radio to enable co-existence or secondary spectrum usage and should
consume minimal power.

Wideband spectrum sensing poses serious challenges for low-power cognitive radios
which cannot afford to use high-rate Analog-to-Digital Converters (ADCs) to sample
the signals at Nyquist rate and process them digitally thereby spending a lot of power.
On the other hand, typical narrowband sensing requires the full receiver chain to be
powered each time a channel is sensed. In addition, it has an associated latency de-
pending on the spectrum occupancy, since the local oscillator needs to be locked at
a new frequency for every channel search. As discussed in Chapter 2, the minimum
average sampling rate required for the perfect reconstruction of a multiband signal is
same as the spectral occupancy [16]. For scenarios where the spectrum is not so sparse
as in Fig. 1.5b, the sampling rate cannot be reduced significantly than the Nyquist
rate. In this chapter, an alternative approach to wideband spectrum sensing to re-
duce the complexity (power consumption) at the architecture level is proposed for such
scenarios.

A closer look at the developments in ADC [49] indicate that the state-of-the-art
ADCs are ultra low-power and are not major contributors to the power consumption of
the radio. Digital processing and Phase-Lock Loops (PLLs) consume a major portion
of the power [50]. However, it should be noted that high-rate ADCs output many
samples that have to be processed.

The idea of analog FFT processors was initially proposed for low-power Orthogo-
nal Frequency Division Multiplexing (OFDM) receivers operating at giga-samples per
second [51], [52], to reduce the total information processed by the ADCs, and make
them power efficient. This motivates the proposed architecture, pushing the conven-
tional ADC and digital processing to the analog domain, at the same time saving a
considerable amount of power. In addition, a periodogram can be reconstructed in
the analog domain using envelope detectors, which in turn provides averaging for each
energy estimate and reduces the effect of fading.

Here we propose an analog/mixed signal topology that replaces the conventional
Nyquist ADCs and digital Fast Fourier Transform (FFT) core with a bank of Sam-
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Figure 4.1: Architecture for low-power wideband spectrum reconstruction and channel selec-

tion using an analog FFT.
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ple and Hold (S/H) circuits, each operating at sub-Nyquist rate, and an all-analog
FFT processor. The proposed low-power cross-layered system architecture is used for
wideband coarse spectrum reconstruction and free channel selection.

Typically in wideband spectrum sensing, to detect weak and strong signals (for e.g.,
separated by 50 dB) requires a large dynamic range for the ADCs, to accommodate
strong signals while still providing sufficient quantization performance for the weak
signals (low-power cognitive radio itself that performs sensing for instance). The power
consumption of an ADC increases linearly with sampling frequency and exponentially
with the resolution [53]. This makes the front-end circuitry more complex (or high-
power) for sensing signals with large dynamic range. The dynamic range issues in
cognitive radios are addressed in [54], where a single high resolution ADC is substituted
with low-resolution low-rate ADCs to cancel the strong signal (or interference) in the
first stage, and another low-resolution ADC to acquire the weak signals. Processing in
the analog domain, using S/H circuits offers a low-complexity solution to mitigate the
ADC resolution issues associated with the multiband occupancy detection.

In this work, meaningful scenario of 86 MHz in the 2.4 GHz ISM band is considered
for analysis of the proposed architecture. The proposed architecture is based on a bank
of S/H circuits, analog FFT processing, envelope detectors for spectrum reconstruction,
and analog decision thresholds for channel selection.

4.2 Proposed system architecture

The block diagram of the proposed architecture is illustrated in Fig. 4.1. The archi-
tecture comprises of two stages, stage 1 for course spectrum reconstruction and stage 2
for channel selection. The analog input baseband signal after the Low-Noise Amplifier
(LNA) is discretized using a bank of S/H circuits indicated by S/H bank 1 in the block
diagram. The S/H bank 1, consists of N S/H circuits respectively operating at clkl,
clk2, ..., clkN. Each S/H circuit should operate at a rate, % to monitor a spectrum
of B Hz. The second bank of S/H indicated by S/H bank 2, also consists of N S/H
circuits and re-samples the data from the S/H bank 1, at clk(N + 1). The two banks
of S/Hs are used to achieve a serial to parallel conversion, which is required for the
N-FFT analog processor. The output of the S/H bank 2 is scaled to realize a time
domain windowing (e.g., Hamming) to reduce spectral leakage. The N-FFT analog
processor is an analog implementation of an N-point FFT. More details regarding the
implementation of an analog FFT processor can be found in [51], [52], and [55]. The
outputs of the N-FFT analog processor are an evolution of N discrete frequency bins
in time. Each of these N branches, are fed to N envelope detectors to compute the
energy in each frequency bin. An envelope detector can be modeled as a squaring
function followed by a low-pass filter. The N branches viewed together would result
in a coarse spectrum reconstruction based on a modified periodogram [56]. It should
be noted that the low-power envelope detector after the analog FFT output helps in
reducing the multi-path and fading effects [57] associated with spectrum sensing.

To find an empty channel in the spectrum, the output of the branches of the envelope
detectors are compared to a threshold computed on the basis of a noise power estimate.
The thresholds are set to achieve a maximum probability of detection P, (to detect a
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channel as busy, when the channel is indeed busy) subject to a probability of false alarm
Py, (decision that a channel is occupied, when the channel is in fact free) constraint.
The definitions of Pj, and P, for wideband sensing are given in Chapter 3. The noise
power estimation and threshold updates are controlled via digital logic and could be
performed during the initialization stage. When the threshold has to be updated, the
output of the envelope detector is quantized whenever a channel is detected as free.
This quantized output is used in the digital logic to compute a new threshold. The
threshold can be different or can be the same for all the frequency bins. The blocks
used to set the threshold are i) S/H + quantize and ii) Digital-to-Analog Converter
(DAC), which can be reused in a time interleaved manner for all the N branches to
conserve power. The output of the digital logic at stage 2 will be the indices of the free
channels.

4.3 Detection

4.3.1 System model

Wkm ~WV(0, 521\')
k4

Ideal N- E 3
Input FFT Qutput

Figure 4.2: Mismatch model for CMOS based analog FFT [51].

The signal at the &' branch (indicating the k™ frequency bin) before the envelope
detector during time m is denoted by y,,. These are collected for M time instances in
the M x 1 vector yi given by yr. = [yx1 Va2 - - - Yrm) ", where (-)T denotes the transpose.
At time m and frequency k, the signal is denoted by x,, ~ N(0,02) and the noise by
Vkm ~ N(0,02). The device mismatch for the N-FFT analog processor is modeled as
Additive White Gaussian Noise (AWGN) with a mismatch variance 6% and is denoted
at time m and frequency k by the Random variable (RV) wg,,. For the 128-point FFT
processor 0% is 52.3 [51]. An illustration of the model is provided in Fig. 4.2. The
mismatch model accounts for the noise propagation from stage to stage in the analog
circuitry which is very sensitive to the FFT size, and the device impairments in realizing
the FFT. The mismatch model at the &% branch during time m will result in Wy, Umg
for the noise and in wg,, ., for the signal. These are collected for M time instances in
the M x 1 vectors q and r given by

T
q= [wmvlk W22k * 'wkmvnk}

T
r = (Wt WreTok - WimTnk]
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Let f; be the 1 x N vector indicating the k" row of a Discrete Fourier Transform
(DFT) matrix, F = exp(—22£) with k,n = 0,...,N — 1. Let [X]u; = @y and
[V]mk = Umk, with m =1,...,M and k = 1,..., N, be the M x N signal and noise
matrices, respectively, indicating M (number of time snapshots) vectors of N values
discretized by the S/H bank.

The spectrum sensing engine decides on the occupancy of the channel by solving
the binary hypothesis denoted by Hg indicating the channel is free and hypothesis H;
which indicates that the channel is occupied. The hypothesis testing problem is given

by
’Hoyk:kaT—i-q
leyk:ng—l—Vfg—l—r—l—q

This system model can also be viewed as a detection problem with multiplicative Gaus-
sian noise.

(4.1)

4.3.2 Probability of false alarm and threshold

Here, the Neyman-Pearson criterion is considered, where we set a constraint on the
probability of false alarm Py, and determine the detection threshold ~;,. The cor-
responding probability of detection P, for different Signal-to-Noise Ratios (SNRs) is
shown through simulations. To determine the threshold for a certain Py,, we next
derive the distribution of the signal at the k™ branch after the envelope detector (in-
dicating its energy) under the H, hypothesis.

The probability of false alarm can be written as

Pio = Pr(E > yu|Ho) = /OO fz(2)dz (4.2)
Vth

where, E = > (y;)? is the energy at the output of the envelope detector and 7
denotes the averaging achieved with the low-pass filter. £ can be modeled as a process
defined by the RV, 2 = Y7 (¢; +v;)* ~ Y1, (u; +v;)?, where ¢;, u; and v; are general
RVs with a certain distribution. ,

The entries of q have a normal product distribution [58], i.e., ¢; ~ N(0,6%)-N (0, 3).
To simplify the derivation, we approximate the normal product distribution with a
sum of two Gaussian functions denoted by the Probability Density Function (PDF)
fu. The simulations in Fig. 4.3 show that the sum of two Gaussian functions is a
good approximation for a normal product distribution. The RVs vy, vy,...,v, and
U1, Ug, . . ., u, are independently and identically distributed (i.i.d.) with PDFs fy and
fu respectively. The normal product distribution after approximation with the sum of
two Gaussian functions is given by the PDF

fulu) =

1 U2 U\
Vraor T gy P (G e =20 (43)

and the PDF of the noise is given by

fv(v) = exp —(—)? (4.4)
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Figure 4.3: Normal product distribution vs. the best fit with a sum of two Gaussian functions.

where a; and ay are the weights, and o; and oy are the standard deviations of the
Gaussian functions in (4.3); and o3 = v/20, is just a scaled standard deviation of the
noise.

Next, we derive the PDF f(z). To do this, we first derive the PDF f;(z) for n = 1.
Using the convolution property and square law [59], for n = 1, the PDF f(z) is given
by

frlzln =1) = ! ( D0 exp(———) + —22 exp(—— >>

Vrz(aioy + agoy)  \\/o? + o2 oi +03’ /oI + o2 03 + 03
(4.5)
The characteristic function of the RV, z for n = 1 will be
Qz(win=1) = / exp(izw) fz(z)dz with w € R,

4.6
. 1 a101 i a909 ( )
Vaior + a0y \ \/1 —i(o} + 0w /1 —i(0? +02)w
Hence, the characteristic function of the RV z for a generic n will be, Qz(w) =

i1 Qz(wln = i) = (Qz(wln = 1))".
Using (4.6), the PDF fz(z) can be written as

fz(2) = iﬂ /Oo exp(—izw)Qy(w)dw (4.7)

—00

Substituting (4.6) in (4.7), we have

70 = s | o= (P f2iﬁw)nd°“’ (48)
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where, a101 = 1, 2092 = 2, 0] + 05 =, 05 + 05 = .
Using binomial theorem, we can re-write (4.8) as

n
I20) = oo v o Z ( )(p;]_kgpg

k=0 (4.9)
/ exp(—izw) (1 — iow) T (1 —ifw)® " duw
From [60], and further simplification, the PDF f,(z) is given by
—2),(3-1) 1 n—k k
exp z\2 k — o)z
fz(z) = n ( > ) Z <77> <ﬂ) <ﬂ) 11 <—; Q% 7% ) )
T+ o 2= \k) \va) V5 22" ap
(4.10)
where @) = [°7texp(—7)dr is the Gamma function, and Fi(a;b;z) =

W fo exp“ tla= 1)(1 — t)(t=e=1gt is the confluent hypergeometric function of the

first kind [61].

The integral (4.2) can be solved numerically using a Chebyshev polynomial expan-
sion [62], using standard software packages (e.g., by Mathematica). The threshold for a
certain Py, can be obtained by solving the lower tail probability using Newton’s method
[63].

Fig. 4.4 shows the theoretical value of P, obtained from (4.2) for different SNRs and
the actual Py, for a fixed threshold. Deviations below 5 dB between the theoretical and
actual values are obtained, which are due to the approximation of the normal product
distribution with the sum of two Gaussian functions.

4.4 Performance evaluation and analysis

4.4.1 Simulations

A network in the 2400 MHz ISM band with 86 frequency bins of 1 MHz resolution
centered at f. = 2400, 2401, ..., 2485 MHz is simulated. The simulated scenario has
four WiFi (IEEE 802.11g) nodes centered at 2412, 2432, 2452, 2472 MHz respectively
and one Zigbee (IEEE 802.15.4) node centered at 2440 MHz. An illustration is provided
in Fig. 4.5, which is constructed with a high resolution FFT (FFT length = 183430).
The signals considered are present at all times with fixed transmit power.

The proposed system architecture is simulated such that the resolution of the sam-
ples mimic the analog signal, and the all-analog FFT is realized using the mismatch
model as in Fig. 4.2. The spectrum reconstruction with the conventional (all-digital)
method using a Nyquist rate ADC and a 128-point digital FFT, as well as the spectrum
reconstruction obtained at the stage 1 of the proposed architecture are shown in Fig.
4.6. It can be seen that using the proposed architecture a coarse spectrum estimate
can be obtained, with a reduction in the dynamic range compared to the conventional
method. However, the worse spectrum reconstruction with the proposed architecture
compared to the conventional approaches can be traded for a considerable power sav-
ing. Fig. 4.7 shows the spectrum reconstruction performance in terms of the Mean
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Figure 4.4: Actual and theoretical values of the probability of false alarm Py, for a fixed
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Figure 4.5: Spectrum with four IEEE 802.11g/WiFi nodes and 1 IEEE 802.15.4/Zigbee node

Squared Error (MSE) between the high resolution FFT and the digital 128-point FFT
for the conventional method and between the high resolution FFT and the 128-point
analog FFT for the proposed method. The analog processing results in a deteriora-
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Figure 4.6: Spectrum reconstruction using both the conventional and proposed method with
a 128-point FF'T.
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Figure 4.7: Mean squared error of the spectrum reconstruction.

tion of the signal strength, and introduces noise between the stages. An actual static
channel occupancy of around 80% with a frequency resolution of 1 MHz shown in Fig.
4.8, is used to evaluate the detection performance. The detection performance in terms
of Py, and Py for different SNRs is shown in Fig. 4.9. The threshold is set so as to
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Figure 4.8: Smoothed periodogram indicating 86 frequency bins, with 1 MHz frequency res-
olution.

maintain a Py, below 5%. With the proposed architecture, a detection performance
comparable to that of the conventional method can be achieved, with losses below 1
dB in the observed SNR range.
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Figure 4.9: Detection performance.
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4.4.2 Power consumption comparison: conventional vs. proposed

In this section, we compare the power consumption of the conventional all-digital ap-
proach, which involves sampling at Nyquist rate using a high-rate 8-bit ADC, with the
application of an FFT using an 8-bit 128-point digital FFT processor. An 8-bit ADC
based on 90nm CMOS technology is considered. The power consumption of the ADC
is approximately 27uW/10 Megasamples/second, i.e., 2.7pJ/conversion step [49]. The
8-bit state-of-the-art energy aware digital FFT processor proposed for low-power sensor
nodes [64] consumes around 33nJ/FFT (a scaling factor of (0.66)% [65] for scaling the
energy from 180nm to 90nm CMOS technology is used).

The proposed method uses S/H circuits which on average can be estimated to con-
sume 10% of the ADC’s power [66]. The analog 128-point FFT processor requires 512
differential inputs and 7 stages for a radix-2 implementation of the butterfly structure,
and the number of multipliers from the 128-FFT stage to 8-FFT stage would be about
576 [55]. With a bias current of 100nA and V; = 1.2V (for 90nm CMOS technology),
the power consumption would be of the order of (512x7+576)(0.12uW) = 0.5mW , and
considering the FFT processor speed of 1 MHz, the energy/FFT will be 500 pJ/FFT.
A summary of the comparison of the estimated power between the proposed and con-
ventional method is given in Table 4.1.

Table 4.1: Estimated energy and power consumption for 128-point FFT systems

Estimated Conventional Proposed
pJ/conversion (ADC) 2.7 (S/H) 2x 0.27 = 0.54

pJ/FFT (Digital) 33000 (Analog) ~500
Power (mW) | (ADC + Digital FFT) 33.7 | (S/H + Analog FFT) ~0.64

In the proposed architecture, to realize the periodogram estimate and channel se-
lection, additional power is consumed. Envelope detectors can consume a power below
1.5uW for state-of-the-art designs [67]. On the other hand, for the conventional method,
these steps are done digitally using different algorithms with different complexity order,
as discussed in section 2.1.1 of Chapter 2.

In the proposed architecture we choose energy detector, since it simple and of low-
complexity. As any energy detector, this system also suffers from noise uncertainty
and SNR wall issues. To enhance the performance in the low-SNR regimes, a two-stage
sensing can be performed as suggested in the literature [68]. Typically, the second stage
performs feature detection (e.g., cyclostationarity, pilot-tone detection) on the detected
free narrowband channels, to improve the performance in low SNRs.

4.5 Conclusions

In this chapter, we have proposed an architecture for low-power wideband spectrum
sensing. With the proposed architecture a large portion of the spectrum (e.g., 128 MHz)
can be sensed at once to obtain a coarse estimate of the spectrum and/or search for an
empty channel. The major high-power consuming processes are pushed to the analog
domain which include the high-rate ADC and the digital FFT operations, which are
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replaced by a bank of S/H circuits and an analog FET processor, respectively. The sim-
ulation results show that even though analog processing leads to lower performance in
spectrum reconstruction with respect to the conventional approaches, a good detection
performance can still be achieved with a considerable reduction in power consumption.
A closed-form expression for the probability of false alarm is also provided, as well as
the threshold needed to achieve a target false alarm rate.
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Conclusions

5.1 Conclusions

With the large portions of the usable spectrum being under-utilized and the ever in-
creasing innovations of wireless devices, there is a need to efficiently utilize the scarce
frequency spectrum. Cognitive Radios (CRs) or spectrum sharing radios have been
identified as one of the solutions to the spectrum scarcity problem. These radios adap-
tively utilize the vacant frequency bands without causing interference to licensed Pri-
mary Users (PUs), and vacate these bands on sensing the PU activity. To realize this
efficiently with low-latency, these radios should be capable of sensing a wide spectral
range, in the order of a few hundred MHz. This requires wideband Radio-Frequency
(RF) front-ends with high-rate Analog-to-Digital Converters (ADCs), followed by dig-
ital processing. This typically consumes high power. In case of sparse spectrum, the
sampling rates can be reduced significantly depending on its sparse support and the
requirements on the ADCs can be relaxed. These are often formulated as Compressive
Sensing (CS) problems, where the conventional detection is done on the compressive
estimate of the signal. Unfortunately, recovery of such compressed samples are compu-
tationally expensive.
In this thesis, we addressed two parallel techniques for wideband spectral sensing:

1. Algorithmic approach: To determine the occupancy of a sparse spectrum, we
perform a direct detection on the compressive samples, termed as Compressed
Detection (CD), and avoid the classical estimation-detection two-stage approach.

2. Architectural approach: When the spectrum is not necessarily sparse, the sam-
pling rate cannot be relaxed much. In such cases (irrespective of the spectrum
sparsity), a low-power architecture to reduce the complexity (power consumption)
has been proposed.

In Chapter 3, we formulated the multiband occupancy detection as a Multiple Hy-
pothesis Testing (MHT') problem under the Neyman-Pearson-like criterion. We devel-
oped the detector for two types of the acquired signals (observations). In the first case,
the signals were acquired at the Nyquist rate. A linear complexity optimal detector
MHT-WS:N (MHT based wideband sensing for Nyquist rate samples) has been devel-
oped for Nyquist rate observations. The optimal detector is the energy detector for
M = N case with double threshold for the Neyman-Pearson-like approach. Next, the
detector was developed for the reduced dimensionality observations, i.e., the signals
acquired at sub-Nyquist rate, as in the CS framework. The optimal detector MHT-
WS:CD (MHT based wideband sensing: compressed detector) has a complexity of the
order of O(2") and outperforms the conventional CS two-stage approach. However,
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the complexity gets impractical with larger N. Hence, we proposed a sub-optimal algo-
rithm (LML-CD) to perform CD based on observed properties of the Local Maximum
Log-likelihood (LML) ratio test points. The performance of the LML-CD algorithm
is comparable to that of the classical two-stage approach. The complexity order of
LML-CD algorithm is O(N?), and does not require the exact knowledge of the sparsity
level.

In Chapter 4, an alternative low-power technique for wideband spectral sensing at
the architecture level has been proposed. For scenarios where the spectrum is not so
sparse, we cannot capitalize on the sub-Nyquist rate sampling approaches, but there is
still need for low-power and low-complexity technique for wideband occupancy detec-
tion. For this purpose, we proposed an analog/mixed signal topology that replaces the
conventional Nyquist rate ADCs and digital Fast Fourier Transform (FFT) core with
a bank of Sample and Hold (S/H) circuits, each operating at sub-Nyquist rate, and
an all-analog FF'T processor. The results show that even though sub-optimal analog
processing leads to lower performance in spectral reconstruction with respect to the
conventional approaches, good detection performances can be achieved along with a
substantial reduction in the power consumption.

In the next section, we conclude this thesis with some suggestions for future research.

5.2 Suggestions for future research

e Generalized Likelihood Ratio Test (GLRT) approach for MHT-WS de-
tector:
In Chapter 3, while deriving the detector for wideband sensing based on multiple
hypothesis, we assumed that the active channel powers o2 were known. Alter-

natively, the unknown active channel powers can be replaced by their maximum
likelihood estimates 62 as in the GLRT approach, and then develop a detector.

e Distributed detection: In this thesis, we considered a non-cooperative setup,
where only a single node was involved in performing the detection. To improve
the detection under unfavorable channel conditions, and capitalize on the spatial
diversity gain, a collaborative setup can be considered. In such distributed sensing
schemes, a number of radios cooperate to improve the sensing performance. Each
of these radios perform sensing locally and send either a hard or a soft value to
a Fusion Center (FC) and the FC computes a global spectrum occupancy based
on these local values. It is interesting to look at the performance gains when the
radio solves the MHT problem locally, and a global decision is taken at the FC.
Alternatively, a joint detection can be performed on (compressive) measurements
obtained from the cooperating radios.

e Properties of the sensing matrices for compressed detection: It is well-
known from the CS theory that for perfect reconstruction of signals sampled at
sub-Nyquist rate using ¢;-norm optimization, the sensing matrices should satisfy
certain properties such as restricted isometry and incoherence. In order to perform
a direct detection on the compressive measurements, it is important to study the
properties that the sensing matrices have to satisfy. And also, it is interesting to
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analyze the sensitivity to the measurement noise, and techniques to increase the
robustness to the measurement noise.

Optimal and sub-optimal reduced complexity algorithms and perfor-
mance guarantees for the sub-optimal algorithm: In this thesis, we pro-
posed sub-optimal algorithms based on certain heuristics. The performance of
these sub-optimal algorithms was studied through simulations. More investiga-
tion and mathematical analysis is required on the convergence and stability of
these sub-optimal algorithms. It is important to further look into the optimal
algorithm with more effective techniques and/or approximations to solve (3.43).
It is important to also look into other sub-optimal greedy algorithms with low-
complexity that will approach the performance of the proposed optimal wideband
sensing algorithm, MHT-WS:CD.

Architecture extension to CS framework: In Chapter 4, the proposed ar-
chitecture acquires the signal at the Nyquist rate, by periodically and uniformly
enabling the sample and hold (S/H) circuits. The emerging interests in CS, moti-
vates to extend and explore this low-power architecture for compressed detection.
One intuitive way is to enable the S/H circuits in a pseudo-random manner. This
results in a low-power realization of the structured sensing matrix (or an Analog-
to-Information converter).
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