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Dynamic elastography uses an imaging system to visualize the propagation of elastic
waves, the speed of which is directly related to the elasticity felt by palpation. Very few
studies have focused on X-ray elastography because of the technical challenges it poses: a
planar image of an integration volume at a very slow sampling rate. We demonstrate that
tracking a slow elastic wave guided along a one-dimensional structure could provide
a possible solution. The recently discovered flexural pulse wave, which is naturally
generated by heartbeats and propagates along arteries, is the perfect candidate for
X-ray elastography. As it reflects the cardiovascular health of patients, arterial elasticity
is a biomarker of high clinical interest. We first validate the method by measuring
the elasticity in artery phantoms using X-ray. We then move on to data obtained in
vivo on coronary arteries during a routine angiography examination. During coronary
angiography, a catheter is used to inject an X-ray contrast dye into the patient’s aorta.
X-rays are then taken as the dye spreads through the coronary arteries. It shows the
movement of the coronary arteries for a few seconds and provides an opportunity to
follow the natural flexural pulse waves. The obtained Young’s moduli for two patients
are E = 38 ± 30 kPa and E = 36 ± 28 kPa, respectively. These preliminary results
are expected to pave the way for X-ray elastography.

X-ray elastography | arterial elasticity | pulse wave velocity | coronary angiography |
quantitative angiography

Elastography aims to quantify the mechanical properties of tissues for diagnosis purposes.
Dynamic elastography uses an imaging system to visualize the propagation of elastic
shear waves, whose speed is directly related to the elasticity of the tissue. Different
imaging systems are used depending on the size, the depth, and the resolution required
for a specific clinical application. For historical reasons, elastography using ultrasound
imaging and MRI have been the main areas of development (1–3). Then, elastography
has been developed using optical imaging, thanks in particular to techniques such as
optical coherence tomography (4), which provides a high resolution (5). Studies using
photoacoustics and microscopes have also been reported (6, 7).

Despite its high spatial resolution and penetration depth, very few studies have focused
on X-ray elastography. Indeed, the use of X-ray imaging for elastography presents two
major challenges. First, X-ray is a planar imaging technique, the absorption obtained in
a scan corresponds to the entire depth traversed by the rays. It is therefore an integrated
image where depth has been lost, making it difficult to track longitudinal or shear waves.
Second, X-ray is a slow imaging modality, most acquisitions being done between 7
and 15 frames/s (fps) (8). This sampling rate is not adapted to the characteristic times
of mechanical waves in biological tissues. However, a few studies have been carried
out. Most of them use static constraints to overcome the low sampling rate (9–11).
Nevertheless, this static approach does not allow a quantitative estimation of elasticity.
More recently, Kamezawa et al made a first attempt into dynamic X-ray elastography
(12). As far as the first obstacle is concerned, they used a plane wave in a shallow medium.
To overcome the second challenge, they used a stroboscopic approach, with a shear wave
source synchronized with the X-ray acquisitions. This approach seems difficult to apply
in vivo because of the difficulty of generating plane waves whose propagation axis is
contained in the imaging plane.

We propose a quantitative dynamic elastography measurement compatible with the
planar aspect of X-ray imaging and its slow imaging rate. To cope with the first difficulty,
we choose to study an elastic wave constrained by the geometry of the medium, i.e., a
guided wave, which allows propagation to be contained in a plane. X-ray imaging enables
deep structures to be seen with good resolution. In particular, it is the gold standard to
image deep arteries, where natural guided waves propagate, the so-called pulse waves.
Indeed, as a result of the interaction between the heart ejection volume and the arterial
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tree resistance, a mechanical wave propagates along the arteries,
well-known as the pulse wave. In fact, blood ejection during
the systolic phase imposes a high pressure at the aorta entry and
distends the wall of this artery. This deformation then propagates
along the aorta, and being guided by the vessels, will later reach
all the arteries of the body. We choose to study these guided pulse
waves to estimate arterial elasticity. Estimating arterial elasticity
is of great clinical interest. It is a biomarker of atherosclerosis, the
phenomenon of hardening of the arteries, which has been shown
to be a risk factor for cardiovascular accidents (13, 14).

To tackle the second difficulty, we choose to image a slow
elastic wave, slower than both the shear waves and the pulse
waves conventionally used. Two types of pulse waves have been
observed in the arteries. Indeed, at physiological frequencies (1 to
20 Hz)(15), only a few modes of propagation can exist. The
axisymmetric mode, that has been extensively studied (16–18),
has a speed which depends on the elasticity according to Moens–
Korteweg’s formula (19, 20). It is too fast to be followed with
X-ray. The flexural mode has been recently observed in the carotid
and in the retinal arteries (15). The source of this flexural mode
is the heartbeat. It can come both from the heart itself, which
is a nonperfectly symmetrical source, and also from the mode
conversion of the axisymmetric pulse wave due to symmetry
breaking along the wave path. In addition, vibrations due to
heartbeat occurring in the surrounding soft tissues can be guided
along the blood vessels in the form of flexural waves. It has a speed
which depends on the elasticity according to a dispersive law (21)
and is around ten times slower than the axisymmetric mode at
physiological frequency. Because of its guided nature and slow
speed, it is the perfect candidate for dynamic X-ray elastography.

A controlled set-up is first used to follow flexural waves with
an X-ray imaging system in artery phantoms of known elasticity.
The results obtained are compared with a similar optical set-up

used at a higher sampling rate. Then, in order to observe the
propagation of flexural pulse waves in vivo, we used data from
a routine clinical examination: coronary angiography. During
coronary angiography, an X-ray contrast dye is injected in the
patient’s aorta using a catheter. X-ray images are recorded as
the contrast dye flows into the coronary arteries. Contrast dye
highlights potential luminal narrowing indicating stenosis. If
necessary, stenting is performed using X-ray guidance (22).
We propose to provide a costless additional measurement: the
average elasticity of the patient’s coronary arteries. In other
words, flexural pulse waves imaging allows us to perform in vivo
quantitative X-ray elastography, on deep internal structures: the
coronary arteries. Coronary angiographies from two patients are
studied and quantitative global measurement of coronary arteries
elasticity is performed.

Results

Phantoms Experiments. First of all, we want to ensure in a
controlled set-up that by imaging flexural waves using X-rays,
we are able to determine elasticity. The experimental set-up is
displayed in Fig. 1A. A polyvinyl alcohol (PVA) artery phantom
is immersed in water and filled with X-ray contrast dye. A shaker is
placed in contact with the phantom edge. A radiography dynamic
system is used. A water tank containing the filled tube is placed
on a flat panel detector below an X-ray source. X-ray images are
acquired at 15 fps. Fig. 1D is an example of a frame, the contrast
dye inside the tube is revealed in white. To have a comparison, a
similar optical set-up previously used to study flexural wave (21)
is used at higher frame rate to assess ground truth. This twin set-
up as shown in Fig. 1A, uses a CMOS camera at 45 fps to register
the same artery phantom placed in a water tank upon a lighting
table. Fig. 1B is an example of a frame, the external edges of

A

B

C

D

E

Fig. 1. (A) Schematic diagram of experimental set ups. An artery phantom is immersed in water and filled with X-ray contrast dye. A shaker, driven by a
waveform generator, is placed in contact with the artery phantom. Depending on the set-up considered, an X-ray source and its image intensifier are used at
15 fps, or a CMOS camera at 45 fps and a lighting table. (B) Raw optical image and (C) the corresponding field of displacements. (D) Raw X-ray image and (E) the
corresponding field of displacements. Black arrows indicate the direction of the wavefronts.
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the artery phantom in black contrast with the background light.
Details can be found in Materials and Methods.

To compute the displacement field from the raw image stack,
we use the Lukas and Kanade differential approach (23) to
estimate the optical flow. It allows us to retrieve the displacement
field in X and Y direction for each time step, as displayed for the
Y direction at an exemplary time in Fig. 1C for optical data and
Fig. 1E for X-ray data. Black arrows indicate the displacement
direction; several wave fronts can be distinguished. X-ray and
optical raw data movies and their corresponding displacement
videos are given in SI Appendix. In both cases, the guided flexural
wave can be seen meandering along the tube. Only displacements
in the Y direction are considered and displacements along the
tube are averaged over the normal to the tube axis. We obtain a
displacement field dependent on a single spatial coordinate, X.

To compute the phase velocity of the flexural waves in the
artery phantom, we use an approach derived from seismology
and passive elastography (24–27). For each frequency, the cross-
correlation of the Fourier transform of the field is computed. It
can be interpreted as the point spread function of the medium.
Correlation measurement enables to measure the wave velocity
using the complex wave field composed of the incident wave and
its potential reflections (28). Details can be found in Materials
and Methods. The cross-correlations C(f, x) map, where each
line corresponds to averaged spatial cross-correlation at one
frequency, is displayed in Fig. 2A for optical data and Fig. 2B
for X-ray data. We expect the wavelength to diminish as the
frequency increases. This trend can be clearly seen in the X-ray
and optical data. To obtain a dispersion curve, we calculate the
cross-correlations over all the frequencies generated by the shaker.

The wavelength (�) at each frequency (f ) is estimated by taking
the maximum of the spatial Fourier transform of each cross-
correlationC(f ). The product gives the phase velocityV� = �f .
The obtained dispersion curves for X-ray data and optical data are
plotted Fig. 2C. Red and black crosses are experimental values.
There is a rather good agreement between the velocities derived
from the X-ray data and those derived from the optical data.

X-ray imaging at 15 fps seems to be able to measure the velocity
of flexural waves, in the same way as a camera.

To link the propagation of guided flexural waves to the
elasticity of the phantom, one needs a propagation model linking
the velocity of the waves to the Young modulus of the phantom.
At the physiological frequencies naturally present in arteries (1 to
20 Hz) (15), it has been shown that the propagation of flexural
waves in arteries can be approached by a new model derived
from the Euler Bernoulli beam theory (21). This model is only
valid if the propagation frequency is below the ring frequency
of the phantom, 15 Hz, which is our case. According to this
model, the phase velocity of the flexural pulse wave, vF , states
as Eq. 1 where f is the frequency, h the thickness of the arterial
walls, r its radius, E its Young modulus and � its volumetric
mass. The dependence of speed on the square root of frequency
explains why speed tends toward zero at low frequencies. Thanks
to this model, measurements of the phase velocity of the flexural
pulse wave allow the elasticity to be estimated if the geometrical
parameters are known.

vF ≈

√√√√2�f
√

hr

√
E
�

. [1]

In order to estimate the elasticity of the tube with both datasets,
we fit this model to the dispersion curves acquired experimentally.
The plain red and black curves in Fig. 2C are the fits to optical and
X-ray data of the new model derived from Euler–Bernoulli beam
theory. Experimental velocities and the theoretical propagation
model seem to follow a similar trend. For X-ray data, the Young
modulus obtained by the fit is EX = 58±8kPa. For optical data,
the Young modulus obtained by the fit is Eoptic = 50 ± 7 kPa.

In vivo, arteries are curved and pulse wave propagation takes
place along this curved axis. To check that our measurement
was robust to curvature, a second, longer, and softer tube was
studied in a similar way. The results can be found in SI Appendix,
Figs. S1 and S2. The propagation axis of this phantom is curved,

A B

C

Fig. 2. Cross-correlation of the displacement field in the artery phantom , C(f ), for all frequencies for (A) optical imaging, (B) X-ray imaging. (C) Dispersion
curves derived from the cross-correlations with optical imaging (red crosses) and X-ray imaging (black crosses). Solid lines represent the fit of the data with
Eq. 1, the flexural wave propagation model developed in article (21). Eoptic = 50 ± 7 kPa is obtained via data acquired in optical imaging and EX = 58 ± 8 kPa
in X-ray imaging.
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A B

Fig. 3. (A) Frame acquired after 0.27 s (Left) and 1.33 s (Right) of the postoperation angiogram of case study (29). White arrows indicate the propagation
direction of the dye. (B) Spatiotemporal representation of the experimental displacements using normalized correlation. Black line corresponds to the wave
velocity measurement using the time-of-flight technique.

so propagation does not take place along X or Y. At each point on
the propagation axis, the normal to this axis is found. Then the X
and Y displacements are projected onto this normal. Finally, the
normal displacements obtained in the tube section are averaged.
The dispersion curves are calculated using the same correlation
method described above. Eoptic = 21 ± 5 kPa is obtained via
data acquired in optical imaging and EX = 16 ± 5 kPa in X-ray
imaging. By comparing the moduli obtained by X-ray on the 2
phantoms studied with the optical reference data, we obtain an
average error of 20%.

This experiment demonstrates on a controlled set-up the
possibility of quantitative X-ray elastography. Due to their guided
nature and low-frequency dispersion, flexural waves can be used
for X-ray elastography. With a view to applying this method
in vivo, it should be remembered that flexural waves have been
observed in the carotid artery and even in the microcirculation of
the retinal arteries (15). They are thus also present in the coronary
arteries. Therefore, at this stage, we are seeking to apply the same
method in vivo, to quantify the elasticity of the coronary arteries,
using X-ray imaging at 15 fps. To do so, we use data acquired
during a routine examination, coronary angiography.

X-Ray Elastography of Coronary Arteries. During coronary an-
giography, an X-ray contrast dye is injected into the patient’s aorta
using a catheter. Scans are acquired as the fluid spreads through
the coronary arteries. It allows the artery to be visualized and the
displacement on its surface to be estimated for a few seconds.
Our aim is to extract from these displacements the propagation
velocity of flexural pulse waves.

Two case studies are considered (29, 30). They were selected
because coronary angiographies are acquired at high frame
rates, 15 fps. In case study (29) two coronary angiograms were
performed, before and after angioplasty. Specifications can be
found in Materials and Methods. The three coronary angiograms
studied are available as SI Appendix of articles (29, 30). Fig. 3A
displays two frames acquired on the angiograms of patient (29)
after his operation.* Many objects can be seen in the frames. The
vertebral column can be seen on the left, as well as two ribs. The
thoracic diaphragm can be seen on the right. It illustrates the
difficulty of working with an imaging device that provides an
integrated quantity on a volume. The contrast dye filled catheter

* To make it easier for the reader to find these data, possible links to these
resources are given here. For ref. 29, https://www.icrjournal.com/video-index/coronary-
angiography-left-coronary-artery, https://www.icrjournal.com/video-index/post-
procedural-angiography. For ref. 30, https://www.youtube.com/watch?v=HKXTZUYTxkA.

appears on the upper left part of the frame. The contrast dye
makes the artery stand out from other structures. The white
arrows indicate the direction of its spreading. An artery of interest
is selected and highlighted in red. Breathing and heart muscle
movements cause the artery to move within the X-ray field of
view. These overall movements need to be filtered out from the
artery displacements. To do so, the artery of interest is isolated in
each frame using a semiautomatic detection algorithm previously
used in other work (15). A curvilinear abscissa is defined along
the artery of interest, originating at the junction with the catheter.
Thus, each point is identified by its distance from the catheter.
This allows us to locate a point along the artery even if it moves
in the field of view from frame to frame. For each frame, the
normal to the curvilinear abscissa is calculated for each point
of the curvilinear axis. Then, the displacements of the arteries
are calculated using the same optical flow method used for the
phantom experiment. For each point of the curvilinear axis,
the displacements are projected onto the normal to the axis at
that point. Finally, normal displacements are averaged along the
cross-section of the artery. This procedure is repeated for each
frame. The result is a displacement signal with a single spatial
dependency. Fig. 3B is a spatiotemporal representation of the
displacements using normalized correlation shifted in time. A
slope, indicating propagation, is clearly visible, allowing us to
make an initial estimate of the wave’s speed using the time-of-
flight method. Using a linear fit, the group velocity of this wave is
estimated at v = 0.19 m/s. This is a first approximation of a group
velocity, which gives us an order of magnitude of the observed
speeds. However, because of the dispersion of the guided flexural
wave, we prefer to use a spectro-correlation approach rather than
time-of-flight measurements. Indeed, the issue is similar to the
phantom experiment presented above: we want to characterize
waves with a 1D in space signal and a frame rate of 15 fps.

The spectrum of the temporal correlation of the displacement
field of the postoperation angiogram of the case study (29) is
shown in Fig. 4A. As the heart emits a temporal signal that
is periodic at the heart rate, this has a sampling effect on its
spectrum. A dirac comb at the heart rate is applied to the
spectrum, which explains the peaks observed in Fig. 4A. The
patient had therefore a heart rate of 1.3 Hz (78 bpm). To ensure
a good signal-to-noise ratio, as well as to avoid potential spectrum
aliasing effects, only the four dominant peaks are considered. The
cross correlation C(f ) is only computed at the four frequencies
circled in Fig. 4A; results are displayed in Fig. 4B. Once again, the
cross-correlation can be interpreted as the point spread function

4 of 9 https://doi.org/10.1073/pnas.2419060122 pnas.org
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A

B

C

Fig. 4. (A) Spectrum of the temporal correlation of the displacement field obtained from the post operation coronary angiogram of case study (29). The
four circled peaks correspond to the first heart rate multiples. (B) Cross-correlation C(f ) of the displacement field, only heart rate multiples are studied. (C)
Crosses are experimental phase velocities derived from the cross-correlations. The plain blue curve is the corresponding fit of the new model of flexural wave
propagation derived from the Euler–Bernoulli beam theory (Eq. 1).

of the medium. For a 1D signal, it is a sinusoid whose wavelength
is that of the wave in the medium. We observe that the cross-
correlation becomes narrower as the frequency increases. The
wavelength decreases with increasing frequency, as expected.
For the four cross-correlation profiles C(f ), a sinusoidal fit is
performed to obtain the wavelengths at each frequency. The
phase velocities V�(f ) are then computed. Results are displayed
as crosses in Fig. 4C. More details about the error bars can be
found in Materials and Methods.

The magnitude of the velocity observed in Fig. 4C is too
small to correspond to longitudinal or shear waves as well as
axisymmetric pulse waves. Indeed, longitudinal or shear waves
are traveling above 1 m/s in soft tissue. In particular, shear waves
in the myocardium travel at speeds greater than 1 m/s (31, 32). It
cannot be an axisymmetric pulse wave either. To our knowledge,
it has never been measured in the coronary arteries, but in the
carotid artery, it travels at a speed largely above 1 m/s (33). What’s
more, if these were axisymmetric waves, the order of magnitude
of the elasticity found would be far too low. At last, a dispersive
behavior is clearly observed in Fig. 3C. This dispersive behavior
on a narrow frequency band excludes both longitudinal and shear
waves as well as axisymmetric pulse waves (15). All these elements
suggest that we are indeed detecting a flexural wave.

As in the phantom approach, we seek to derive a Young’s
modulus using a propagation model for flexural pulse waves.
We are in the frequency domain of validity of the new model of
flexural pulse wave propagation derived from the Euler–Bernoulli
beam theory (Eq. 1). We approximate the geometric parameters
of the artery of interest by calculating the mean radius rm and
by approximating the mean arterial thickness h as 0.8 mm, the
mean in the population (34). By fitting the propagation model
(Eq. 1) to the data, we give an approximation of the Young

modulus. The result is displayed in Fig. 4C, the plain blue curve
is the prediction of the model for an artery of rm = 1 mm,
h = 0.8 mm and E = 18 kPa.

The same method is applied to the other coronary angiogra-
phies. Results are displayed in SI Appendix, Figs. S3–S5. For
patient 1, the two estimations on pre/post operation angiograms
are performed on the same artery (the left anterior descending
artery). For patient 2, two arteries are processed on the same
angiography. We consider only three dominant peaks in the
spectrum, the first being at the heart rate (fheart ). For each
frequency peak, the corresponding phase velocity, V�(f ), is
calculated. The results are displayed in Table 1. For sake of

Table 1. Results of elasticity estimations on patients
of case study (29, 30)

fheart V�[fheart ] rm E
Ref. (Hz) (m/s) (mm) (kPa)

Patient 1 (29) 1.6 0.48± 0.06 1.0± 0.2 58± 46
preoperation
Patient 1 (29) 1.3 0.13± 0.02 0.8± 0.2 18± 14
postoperation
Patient 2 (30) 0.8 0.15± 0.02 0.9± 0.2 15± 12
artery 1
Patient 2 (30) 0.8 0.10± 0.01 1.1± 0.2 56± 45
artery 2

fheart is the heart rate of the patient during examination, it corresponds to the first
frequency selected to compute the phase velocity V� . rm is the mean artery radius. Young
modulus is retrieved by fitting on the data the new model of propagation derived from
Euler–Bernoulli beam theory (Eq. 1) describing the propagation of flexural pulse waves in
arteries.

PNAS 2025 Vol. 122 No. 18 e2419060122 https://doi.org/10.1073/pnas.2419060122 5 of 9
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clarity, only the phase velocity values computed at the heart
rate are shown but complete results are available in SI Appendix,
Table S1. It can be seen that in all the angiograms processed,
the order of magnitude of the phase velocity found is the same.
In the case of patient 1, the measurement was taken before and
just after a stenting operation on the artery. Our results seem to
suggest that the artery softened slightly after the operation, but
our error bars do not rule out constant elasticity. In view of the
short timescales involved, we do not expect any immediate effects
on the elasticity of the artery, and the overall elasticity should not,
in principle, be affected. This highlights that this study gives an
idea of the expected elasticity but does not allow us to conclude
on a possible change in elasticity due to high error bars. Overall,
the estimated Young’s modulus of the coronary arteries of patient
1 is E = 38± 30 kPa that of patient 2 is E = 36± 28 kPa.

Discussion

The experiment on arterial phantoms shows rather good
agreement between X-ray imaging elasticity measurements
and those obtained with an optical setup used as control for
both phantoms studied. We obtain a 20% error per X-ray by
taking the optics as the reference value. Flexural wave imaging
overcomes the difficulties associated with X-ray elastography,
the slow sampling rate and the integration of a volume on an
imaging plane. It demonstrates in phantoms the possibility of
quantitative X-ray elastography.

In vivo, using data not designed for our application, a wave
propagating along the coronary artery is detected. This wave is too
slow to be a longitudinal or shear wave or an axisymmetric pulse
wave but is consistent with that of a flexural wave. Furthermore,
we show a frequency dependence of the phase velocity relevant
for a flexural wave. Thanks to a propagation model developed for
flexural waves in arteries, a quantitative estimate of the elasticity
of coronary arteries is now possible, although the precision still
needs to be improved. This approach to quantitative X-ray
elastography is based on a noninvasive method already used in
clinical practice.

The obtained Young’s moduli for the two patients are E =
38 ± 30 kPa and E = 36 ± 28 kPa, respectively. In diseased
and ex vivo coronary arteries, the order of magnitude obtained
varies: in biaxial mechanical testing, Kural et al. (35) obtained
between 50 and 210 kPa; in uniaxial testing, Karimi et al. (36)
obtained 1 MPa. In biaxial testing, Guo et al. (37) obtained
1 MPa, a value they compared with 200 kPa an intravascular
ultrasound-based modeling estimation from a healthy volunteer.
It seems difficult to compare our values with the literature, as
we are not aware of any dynamic in vivo estimates. This is why
we prefer to compare our values with dynamic measurements
taken on the carotid artery, bearing in mind that it is at least
twice as wide. As the carotid artery is easy to image using
ultrasound, its elasticity has been extensively studied. Using shear
wave elastography, Wang et al. (38) found an average elasticity
of 45 kPa in 169 healthy patients. Using the symmetrical pulse
wave, Lou et al. (18) found 50 kPa, and using the flexion pulse
wave our team (15, 21) found 40 kPa. The order of magnitude
of our measurements is consistent with in vivo measurements
taken on a larger artery, the carotid artery. To our knowledge,
no dynamic in vivo elasticity measurements are available on the
coronary arteries. Our estimate leads the way.

The main improvement to be made to the measurement is to
move from a 2D projection of the artery to a 3D visualization.

Indeed, X-ray imaging only provides a planar image of a 3D
structure. Coronary arteries are not contained within the imaging
plane. It induces an error in the distance measurement along the
curvilinear abscissa. The measurement error on the elasticity is
estimated at 50% based on the angle between the actual plane
of the artery and the imaging plane. Main sources of error in
the measurement are the estimation of the thickness of the
artery, the radius of the artery and, above all, the estimation
of the distance traveled by the wave. Taking all the sources of
error together, we estimate the error on the Young’s modulus
to be 80%. The full uncertainty calculation can be found in
Materials and Methods. To know the true length of the coronary,
we need a 3D reconstruction. This is not a major constraint
because angiography is usually repeated in clinic with different
views by rotating the imaging plane (39). Improvements in the
estimation of the geometric parameters of the artery are also
being considered, such as the use of complementary intravascular
ultrasound echography examination to estimate the average
thickness of the artery walls (40).

Other improvements could be envisaged. The number of
frames on which the entire artery is visible could be increased.
This could be achieved by slightly modifying the way radiologists
work. During our phantom experiments, because of a contrast
agent leak in the water tank in which the phantom was immersed,
we observed that we were able to follow waves even with a very
diluted contrast agent. By injecting the same quantity of contrast
agent two or three times more slowly, this could double or triple
the number of frames over which the entire artery is visible.
Increasing the recording length offers many possibilities:

• Longer acquisitions would improve the signal-to-noise ratio. It
would allow phase velocity measurements to be made at more
multiples of heart rate than three. It would thereby increase
the number of points on which the fit of the flexural wave
propagation model is based.

• Longer visualization of the entire artery could allow us to work
with angiograms acquired at lower sampling rates than 15 fps
to better match clinical practice of recording between 7 and 15
fps (8). In fact, with a longer signal at a lower sampling rate,
we may be able to obtain a measurement point at the heart rate
with a sufficient signal-to-noise ratio.

• The flexural wave propagation model (Eq. 1) assumes linearity
between stresses and strains. However, as the flexural wave
passes through the arteries, the heart contracts, stretching and
relaxing the artery. Furthermore, when the symmetrical pulse
wave passes through the artery, the strain imposed onto the
vessels’ walls modulates their elasticity (through the nonlinear
acoustoelastic effect). Longer acquisitions could enable us to
eliminate frames corresponding to nonlinearities to perform
the measurement of flexural wave velocity.

By enabling elasticity to be measured using X-ray imaging,
flexural waves open the door to advances in the field of coronary
angiography. Quantitative coronary angiography (QCA) is a
major research branch in the field of coronary angiography.
It aims to produce quantified indices from the angiographic
examination. QCA was developed because visual estimation
of stenosis severity is unreliable (41, 42). QCA also plays a
major role in the evaluation of interventional techniques (balloon
angioplasty, stenting) and in the development of new devices such
as drug eluting stents. The main parameters studied are lumen
loss and stenosis diameter (22). To assess these parameters, image
processing algorithms have been developed to segment the artery
and reconstruct its shape (43–45). These algorithms could be
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applied in our case to better segment the artery and improve
the signal-to-noise ratio. Another relevant indicator studied in
QCA is the pressure drop before and after stenosis, which is
called angiography derived fractional flow reserve (angio-FFR)
(46). Computational fluid dynamics is used to simulate pressure
profiles associated with angiograms and derive the pressure drop.
These algorithms have the same specifications as those required
for flexural wave elastography. They rely on 3D reconstruction of
the arterial tree geometry based on different angle angiographies,
as well as on a high frame rate of 10 to 15 fps (47). Combined
with 3D QCA, or dataset used in angio-FFR, flexural pulse
waves could provide a costless local elasticity measurement, which
has been proven to be a biomarker of cardiovascular accidents
(13, 14).

To summarize, this work provides a proof of concept for
quantitative elastography using X-ray imaging. The goal is to
assess a biomarker of cardiovascular accidents, the elasticity of
arteries, using a wave naturally present in blood vessels, the
flexural pulse wave. This wave is both guided, which is compatible
with the property of absorption over a volume of X-rays, and
slow, which is compatible with the slow frame rate of X-ray
imaging. We show that it is possible to recover the elasticity of an
artery phantom using X-ray imaging. A rather good agreement is
obtained with an optical reference set-up. We then apply the same
method in vivo to data from a routine examination, coronary
angiography, carried out during two different clinical case studies.
This allows us to make a quantitative in vivo measurement of
X-ray elasticity, despite a nonnegligible margin of error. We
propose a potential dynamic elastography measurement of the
coronary arteries, which has no equivalent in the literature. This
work opens up many new perspectives. In the field of coronary
imaging research, the prerequisites for X-ray elastography are
the same as those for techniques currently in research (3D
QCA, angio-FFR). There are no limitations to the use of arterial
elasticity as a biomarker of coronary disease. X-ray elastography
using flexural waves also has potential applications outside the
scope of coronary arteries. Slower, guided waves can be followed
in other structures than arteries. Other blood vessels could also
be investigated. For instance, pulmonary angiograms or cerebral
angiograms could be considered. To sum up, the use of flexural
pulse waves opens up great possibilities for the field of coronary
angiography as well as for elastography in general.

Materials and Methods

PVA Phantom. 10% PVA, (Sigma Aldrich, 363146-500G) is heated until
dissolution and mixed with 1 % of graphite powder (Fisher Chemical) under
constant stirring. The mixture is then degassed under a vacuum chamber. It
is poured into a home-designed mold in polyvinyl chloride. The filled mold
is then submitted to two freezing cycles (12 h at room temperature, 12 h in
freezer). Phantoms are removed from the mold and stored into water at room
temperature. The artery phantom of Figs. 1 and 2 is 25 cm long, has an outer
radius of 7 mm and a wall thickness of 3 mm. The second artery phantom
presented in SI Appendix has the same outer radius and wall thickness but is
35 cm long.

X-Ray and Optical Set-Up. In the case of the X-ray set-up, a radiography
dynamic remote-controlled system (Stephanix, D2RS) is used. A water tank
containing a polyvinylalcohol phantom is put on the image intensifier under
the X-ray source. The optical set-up is composed of a camera (Chronos 1.4),
equipped with a zoom lens (Computar M6Z1212-3S), which focuses on the
polyvinylalcohol phantom inside the water tank put on a lighting table (Intimus
2008). The tube is filled with X-ray contrast dye (Visipaque 320 mg I/mL). For

data of Figs. 1 and 2, the shaker (The Modal Shop K2004E01), is controlled by a
waveform generator (RS Pro RSDG805) to send vibrations between 3 to 7.5 Hz.
For the first phantom, the X-ray pixel size is 0.285 mm, the optic pixel size is
0.280 mm. For the second phantom presented in SI Appendix, the shaker sends
vibrations between 3 and 7.5 Hz for X-ray data and between 3 and 20 Hz for
optical data. The optic pixel size is modified due to magnification to 0.260 mm,
the X-ray pixel size remains 0.285 mm.

Displacement Field Estimation. To calculate the displacement field at each
point in space, we use the differential optical flow estimation approach proposed
by Lukas and Kanade (23). The raw data are spatially smoothed by means of an
average filter of 30-pixel for phantom optical data, 20 pixels for phantom X-ray
data and 15 pixels for angiography data. By comparing successive images
in pairs, we obtain the 2D displacement field over time. To estimate the
displacements normal to the propagation of the flexural wave, for each point on
the curvilinear axis, we project the components onto a unit vector normal to that
axis. We start by finding the two contours of the studied artery or phantom and
defining the curvilinear abscissa along these contours. Then, the vector normal
to the contours is calculated at each point and the displacement field is projected
onto this vector. Finally, the average of the projected displacement on the two
contours is calculated for each value of the curvilinear coordinate.

Phase Velocity Estimation. To compute the velocity of the flexural waves, one
first needs to filter out the axisymmetric wave contribution from the displacement
signal. For this purpose, an approach similar to the one used in ref. 15 is used,
consisting in summing the displacement signals of the two vessel walls. Indeed,
the displacement signals of the two vessel walls associated to an axisymmetric
deformation are opposite numbers, whereas they have the same sign in the
case of a flexural deformation. Hence, by summing the displacements over the
vessel cross-section, only the flexural contributions to the displacement signal
are selected. Once the flexural mode selected, we use an approach derived
from seismology and passive elastography to measure the phase velocity. The
displacement field’s cross-correlation is interpreted as the field’s point spread
function (48, 49). The aim is to calculate the dispersion of a guided wave
from its displacements, i.e its phase velocity as a function of frequency. To
obtain frequency-by-frequency information, we use the Fourier transform of the
displacements,�(f, x). The cross-correlation of the Fourier transform of the field,
C(f, x) is calculated using Eq.2, with x being the curvilinear axis, f the frequency,
and � a space shift sweeping along this axis. To whiten the data, only the phase
of cross-correlation is taken into account.

The cross-correlation C(f, x) is computed for each point x and a spatial mean
C(f) is computed for each frequency. Calculations are therefore performed using

Re(C(f, �)) = Re
[
〈
�(f, x + �)∗�(f, x)
|�(f, x)||�(f, x + �)|

〉x

]
, [2]

which yield for one-dimensional propagation with a wave vector k, to

Re(C(f, x)) ≈ cos [k�]. [3]

This spatial mean of cross-correlations can be interpreted as the point spread
function of the medium. For a wave guided in a 1D structure, such as a pulse
wave in an artery, the point spread function is a sinusoid whose wavelength is
that of the wave in the medium (28).

For phantom experiments, the wave vector is estimated for each frequency as
the maximum of the spatial Fourier transform of the correlation. A zero padding
of 1,000 points is used. To avoid potential spectrum aliasing in X-ray data,
a low-pass filter is applied in the k-space to filter out the folded high spatial
frequency by removing high wave number. We use the well-sampled optical
data to determine the cut-off frequency.

For in vivo data, the spatial Fourier transform method is not feasible due to
the low number of frames per acquisition. A nonlinear least square regression
using a cosine function is performed on the correlation at each frequency to
obtain the wavelength at each frequency. Before the fit, we apply a low-pass
filter with a normalized cut-off frequency of 0.01 �rad/sample to smooth out
spatial correlations.
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The Young’s modulus is obtained by a nonlinear fit of Eq. 1 to the dispersion
curves. For the experimental data, the error bar is approximated as the 95% CI
of this fit.

Time-of-Flight Velocity Measurement. The usual time-of-flight method uses
a spatiotemporal representation of the experimental displacements and
computes the slope to retrieve the wave velocity (50). In this work, the
spatiotemporal representation is based on the temporal correlation of each
space line with increasing time delay; a full description can be found in ref. 15.
Then, each temporal signal is upsampled up to 100 times using “spline cubic”
interpolation. The maxima of each time-series are then determined and then
processed using a linear regression. The slope yields the group velocity as shown
with a black-dashed line in Fig. 3B.

Estimation of theMeanRadius of the Arteries. In all the angiographies con-
sidered, the 2 mm wide catheter is used as a spatial scale. To estimate the mean
radius (rm) of the artery, the first part of the artery is considered significant, as it
is always illuminated by the contrast agent. The radius is calculated in each point
of the artery using the cross-sections of the arteries. The values obtained are then
averaged over the part of the artery illuminated by the contrast agent throughout
the angiography, in a window of comparable size to the wavelengths of the
flexural wave. The SD of this value is around 20% in all the angiographies studied.

Clinical Case Study Specifications. In case study (29) the patient is a 47-y-old
woman with recurrent chest pain. Two coronary angiograms were performed,
the first revealing a stenosis, the second acquired after placement of a stent on
this stenosis. In case study (30) the patient is a 32-y-old man experiencing acute
chest pain. The coronary angiography was made during the diagnosis process
of a chronic inflammation of the gallbladder.

Uncertainty on In Vivo Estimation. The main error in measuring the
wavelength at one frequency comes from the error on the distance. X-rays
produce an image of a volume, so the artery may not be contained within the

plane. An error is therefore made on the curvilinear abscissa measured. During
an angiography, the radiologist chooses an imaging plane in order to have
a good view of a specific artery. Given the different views possible (51), we
estimate that there is a maximum angle of �/6 between the plane of the artery
and the imaging plane. This results in an error of 1 − cos�/6 between the
real curvilinear abscissa of the artery and the apparent one. The error in the
wavelength measurement, and therefore in the phase velocity, is therefore 13%.

According to the new model of propagation derived from the Euler Bernoulli
beam theory (21), the Young modulus E states as Eq. 4, with vf the flexural wave
phase velocity, f the frequency, h the thickness of the artery, r its mean radius.

E =
�v4

f
4�2f 2hr

. [4]

The main source of error comes from the distance estimate, contained in
the phase velocity error. This induces an error of 50% on the Young modulus.
We then estimate an error of 10% on the thickness due to the variation in the
population. We also estimate an error of 20% on the radius due to local variation
along the artery of interest. The error on the frequency is considered negligible
compared with the other sources of error. The overall error on Young’s modulus
is estimated at 80%.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. Previously published data were used
for this work (29, 30).
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