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Abstract
Miniaturization of spacecraft has been gaining wide interest in the space industry, given its potential for
reducing space missions’ costs and providing a novel approach to enhancing and facilitating space-
flight, such as allowing efficient distributed space systems. Its focused robotized use is revolutionizing
space technology. Recently, a lot of research has been successfully put into this field along with the
advancements that make it more feasible, though a major obstacle to achieving the new generation of
spacecraft is the technical challenge of fitting a suitable propulsion system. Useful chemical propellants
are usually corrosive, flammable, and/or toxic, so alternatives need to be found. The aerospace indus-
try is shifting towards green and nontoxic propulsion systems, so water could be used as an effective
propellant, considering its relatively high mass density and low molecular mass. New microelectrome-
chanical systems (MEMS) technologies show promising opportunities for the integration of miniaturized
propulsion systems, due to their versatility and robustness. The propulsion system can then properly
fit alongside microsensors, microactuators, microelectronics, and other technologies on small space-
craft, though its functionality is to be researched and improved. Certain numerical analysis methods
can be implemented to study its thruster’s applicability. In this thesis, a comparative study of nozzle
flow, heat transfer, and thermodynamics in two different thrusters is conducted. One thruster is based
on MEMS, with a typically quasi-2D geometry, while the second thruster is based on more conventional
technologies and manufacturing techniques, with an axially symmetrical 3D shape.

After briefly introducing micropropulsion and discussing the propellant selection and nozzle fab-
rication along with the background theory related to micropropulsion as well as the analytical and
OpenFOAM numerical (DSMC, continuum, and a hybrid approach containing both to accommodate to
the variation in Knudsen number throughout the computational domain) modeling methods, the used
methodology is based on using OpenFOAM’s DSMC solver (dsmcFoam+) following the mesh creation
using blockMesh and snappyHexMesh and developed analytical model (using MATLAB and CoolProp)
along with an additional VLM ANSYS Fluent CFD model prepared in advance at TU Delft, where their
(steady state as well as transient with very quick backward forming shock diamonds detected from
the throat for DSMC) results (including the same conventional and MEMS nozzles) are processed and
discussed. The nozzles are simulated for inlet pressures of 5 and 7 bar at inlet temperatures of 550
and 773 K for a total of four cases for each nozzle. To note, many of dsmcFoam+’s functionalities
(mass flow rate measurements, inlet pressure boundary condition, axisymmetric capabilities, statistical
error measurements, and dynamic load balancing) are implemented and described along with the full
methodology, as Blender (with add-ons) and ParaView with a Python script to extract averaged data
(along the nozzle and plume region) along with sampleDict are also used in pre and post-processing
respectively and the simulations are carried out on a computer cluster. Furthermore, a quite interesting
theoretical project on the side has been independently worked on in parallel. It started as a noticed
idea that was decided to be explored using equations, which led to extended continuum/kinetic dimen-
sionless numbers for diffusivity (𝐷𝑁) and rarefaction intensity relative to the studied object’s timescale
(𝑉𝐷𝑁). 𝐷𝑁 represents the continuum advective transport rate to intrinsic kinetic diffusive transport rate
ratio of an object/particle in its fluid medium (ideal gas) defining how efficiently an object or particle with
a constant interface can blend or diffuse into the fluid medium and between the fluid’s own molecules
at the instant of evaluation, as a larger and faster or smaller and slower object/particle will experience
relatively greater resistance as determined by the fluid medium, which seeks optimal balance with its
own properties. 𝑉𝐷𝑁 is analogous to the Mach number with an average molecular speed term instead
of speed of sound (as found within 𝐷𝑁 along with the Knudsen number), where a faster object/particle
will observe a relatively slower flow medium average molecular speed leading to a greater rarefac-
tion intensity and vice versa. See Appendix A for the theory derivation and its general implementation
along with the explanation and evaluation. It is also tested in the present study and shows promising
results, including that 𝐷𝑁 is capable of approximately detecting the flow regime within its assumptions
and could be more helpful when thermodynamic data (such as dynamic viscosity) for calculating the
Reynolds number is difficult to obtain and 𝑉𝐷𝑁’s approach becomes rather different compared to the
Mach number in flows such as the initially vacuum plume region, as the Mach number could vary sig-
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nificantly (increase), which allows for potential applications for 𝑉𝐷𝑁 and its understanding in highly
rarefied flows.

Concerning the conventional and MEMS nozzle comparisons, it is quite clear that the conical 3D
conventional nozzle (simulated as a wedge with single cell thickness using axial symmetry) is superior
in performance realistically, due to the quasi-2D MEMS nozzle’s (simulated as 3D) significant boundary
layer considering the viscous dissipation of flow kinetic energy from shear on the walls, especially after
the throat in the diverging section. However, it reaffirms that the MEMS nozzle’s geometry provides
easier heat transfer with proper exterior insulation mitigating undesired heat rejection, which could be
an advantage with the propellant heating involved, as the heat for these thrusters is not coming from
chemical reactions, but from resistive microheaters instead, along with the possible uses for (regener-
ative along with potential film, curtain, transpiration, and radiation) cooling to avoid melting (in different
conditions considering that the (stored) inlet microresistojet temperature considered is 283.16 K if it
were to be used [27]), or decreasing viscosity, as gas viscosity generally increases as temperature
increases due to the gas molecular collisions increase, contrary to the liquid viscosity decrease with
a temperature increase, considering that it decreases the dominant cohesive force between the liquid
molecules. Ultimately, there are tradeoffs to choosing either thruster, where it is impractical to fault one
nozzle for not performing better than the other, as it comes back to the desired features and nature of
the mission each is undertaking, where compromises have to be made.
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𝑠𝑔𝑛 Sign function

𝑇 Temperature

𝑡 Time



xx Nomenclature

𝑡 Residence time

𝑢 Local velocity or stream-wise velocity as applicable

𝑉 Volume or voltage as applicable

𝑣 Velocity or tangential velocity as applicable

𝑣 Root mean square speed

𝑉𝐷𝑁 Velocity-based dimensionless number

𝑤 Depth or width as applicable

𝑍 Rotational relaxation probability
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Introduction

1.1. The Need for Small Spacecraft
The technological spacecraft set to embark humankind’s journey beyond Earth made history in the mid-
1900s. On October 4, 1957, the first artificial satellite, the USSR’s SPUTNIK 1, was launched into low
Earth orbit (LEO), sparking the Space Age [20]. Within the first few months of 1958, the United States
launched its first two satellites, Explorer 1 and Vanguard 1 with masses of 15 kg and 1.5 kg respectively
[11]. The Soviet Union followed by sending a 1.5-ton ”flying laboratory” into orbit to counter the first
true small satellites launched by the United States, which marked the dawn of the Space Race [20].

In addition to the spike in larger multifunctional satellite developments over the following years with
advances in space technology, satellite pointing requirements and orbital precision were achieved using
on-board propulsion systems to counter aerodynamic drag, solar pressure disturbances, and gravity-
well distortions caused by the Earth’s oblateness [11]. The field of micropropulsion was initiated for
smaller satellites, which were suitable for the launch vehicle capacity [11].

In 1959, a famous lecture ”There’s Plenty of Room at the Bottom” was presented by Richard Feyn-
man to acknowledge miniaturized systems, but it was not until the 1990s when micropropulsion was
truly realized using microelectromechanical systems (MEMS), which were developed in the 1960s for
watches using quartz crystal [12]. The small satellites of today are typically under 500 kg and are cat-
egorized based on their mass as shown in Table 1.1, though the main focus will be placed on small
satellites under 100 kg to a minimally applicable limit, which concerns the groups typically associated
with micropropulsion.

Table 1.1: Satellite classification [32]

Group Mass (kg)
Large satellite >1000
Medium satellite 500 to 1000
Mini satellite 100 to 500
Micro satellite 10 to 100
Nano satellite 1 to 10
Pico satellite 0.1 to 1
Femto satellite <0.1

Although small satellites are not yet developed to become individually multifunctional, similar to
much larger satellites, their focused automatic implementation might offer great opportunities. For ex-
ample, cost-effective efficient distributed space systems could replace the general idea of larger space-
craft and open a novel field for accessible space missions. They could also be flying in very low-altitude
orbits. Nowadays, the small satellite field of research and development has grown tremendously and
across many nations. Small unmanned spacecraft, such as satellites and probes, are being launched
in hundreds at once, creating universal communication, navigation, observation, among other feats a
feasible reality within a shorter production time [34]. There has been an approximately 40% annual

1
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rate rise in nano- and microsatellite launches since 2011 and it is projected to continue, as there were
101 nano- and microsatellite global launches in 2013 compared to 320-460 launches in 2016 [34]. For
example, SpaceX plans to achieve a communication system for global internet by launching above four
thousand microsatellites into predefined orbits [34].

CubeSats are U-class spacecraft, which means they can be combined by dimensions of single units
(U), built of multiple 10 cm unit cubes with a maximum mass of 1.33 kg per unit, while PocketQubes,
which are similarly P-class of units (P), are around 5 cm and 250 grams at most. Figure 1.1 shows
a typical CubeSat and small satellites’ launch history and projection and Figure 1.2 shows nanosallite
launches with projections.

Figure 1.1: CubeSats and their launches: (a) A 2U 2.5 kg
electrically-propelled CubeSat. (b) Launch history and projec-
tion of small satellites (1-50 kg) from 2014, proving relatively ac-
curate results as explained for 2016 [34]. Figure 1.2: Nanosatellite launches with forecasts from 2018 [2]

Small satellites allow the commercial and academic sectors to join the well-established space sec-
tor players to possibly become vastly common among them. It was only the major space organizations
that were capable to produce, enhance, insure, deploy, and operate spacecraft with costs typically over
a hundred million USD. With the advent of small satellites, the general cost of producing a communi-
cations satellite starts at twenty-five thousand USD, with an estimated outlay of one million USD. In
addition, dedicated small launch vehicles and other newer rocket families with larger payload capacity
such as SpaceX Falcon or Arianescape Ariane make space more accessible for small satellites, even
as additional payload [34]. Small spacecraft are usually deployed as piggyback launches from launch
vehicles, such as carrier rockets or aircraft for air launch to orbit. Some difficulties arise with current ca-
pabilities on managing positioning, autonomous operation, and final decommissioning in regions with
wide temperature differences, trapped and transient radiation, and bombardment by dust and debris
[34].

However, the need for small spacecraft is mainly limited by the need for micropropulsion. Generally,
the efficiency and reliability of propulsion systems for small spacecraft need improvements to last for
longer periods of deployment. In short, miniaturization of propulsion systems might not be as direct as
downscaling the larger ones used, but might require inventing new concepts and integration techniques.

1.2. State-Of-The-Art Micropropulsion
Smaller, lighter, cheaper, and often more functional space technologies have been becoming more
possible with the great progress in the fields of microelectronics and miniaturized space robotics [34].
Generally within the solar system closer to the Sun, spacecraft rely on photovoltaic (PV) solar panels
as the main electric power source, but as the Sun gets further away, radioisotope thermoelectric gen-
erators (RTGs) become more effective [7]. Figure 1.3 considers the different propulsion systems for
their desired application. Delta-v (Δ𝑣) is summed linearly for several maneuvers, which provides an
indication for propulsion system selection as shown in Figure 1.3 along with the desired thrust. It is
important to note that the desired maximum thrust is accompanied by the desired minimum thrust to
allow for precise maneuvers. Additional pioneering propulsion technologies are to follow in this section.

Figure 1.4 shows the four prominent types of electric propulsion thrusters used today [34]. The solid
and liquid propellant rocket engines in the center of the figure, which use chemical propulsion systems,
have a significant thrust-to-weight ratio up to 200 andmaximum exhaust velocity of around 5000m

s
using

optimal fuels, such as liquid hydrogen and liquid oxygen [34]. On the other hand, electric propulsion
systems provide larger exhaust velocities up to 10 m

s
without physical limitation for improvement below
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Figure 1.3: Propulsion modes with different properties for various applications [11]. Electric propulsion appears to be more
suitable for higher , but this does not account for all of the innovative propulsion systems of today.

the speed of light, though the thrust is much lower with thrust-to-weight ratio up to 0.01. The energy
efficiency achieved by gridded ion and Hall thrusters, which are electrostatic thrusters, is considered
highest of all at 75%. Plasmadynamic thrusters are continuously operated and allow for larger thrust-
to-weight ratio, while pulsed plasmadynamic thrusters prove highly efficient with low thrust pulses for
increasedmaneuvering precision [34]. Electric propulsion systems’ lifetime and device power efficiency
are limited due to their reliance on electric energy to speed up the ionized propellant, though they
provide high low-thrust efficiency and specific impulse [34]. Chemical propulsion systems are usually
energy limited [16]. To note, there are many other impressive candidates for electric propulsion systems
in [34], but only some are discussed for the sake of introduction to miniaturized electric space propulsion
systems.

Figure 1.4: Main state-of-the-art electric propulsion systems [34]

Table 1.2 shows a comparison of different notable small satellite propulsion systems based on cur-
rent capabilities which might be enhanced, though the list is far from being comprehensive considering
the popularity of developing the optimal small spacecraft propulsion system [42]. Each criteria is given
a weight which is multiplied by the assigned expected comparative value for the criteria from zero to
ten, where higher is better.
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Table 1.2: Small satellite propulsion systems comparison table [42]

Propulsion System
Criterion (Weight) Mass (7) TRL (6) Power (8) Manufacturability (7) Safety (8) Cost (8) Storability (7) Total Rank

Cold Gas 1 6 8 5 7 6 7 295 1
Resistojet 2 5 5 6 7 7 7 287 2

Monopropellant Chemical 3 4 9 4 5 6 4 271 3
Arcjet 4 5 3 4 7 7 7 261 4

Solid Chemical 1 5 8 2 4 5 8 243 5
Solar Thermal 2 4 8 1 7 3 7 238 6

Bipropellant Chemical 1 4 9 2 4 5 5 224 7

Although Table 1.2 shows that the first place goes to cold gas propulsion systems, which are the
most experimented with and flight qualified, they typically provide low specific impulse, which negatively
affects their volume and mass, as safety complications arise due to their propellant pressurization. The
latest satellites are tending towards the more volume and Δ𝑣 efficient resistojets, which are electrother-
mal and ranked second, and electric propulsion systems, even though their technology readiness level
(TRL) is still low [42]. The typical liquid propellant of a resistojet needs more energy for vaporiza-
tion compared to a single phase cold/hot gas thruster, but resistojets offer lower pressure and lighter
storage tanks and considering the valve quality and propellant amount, resistojets can be operated
discontinuously compared to solid propellant thrusters [15]. Table 1.3 provides a summary for the In-
ternational Organization for Standardization (ISO) TRL summary [1]. The purpose of mission plays a
significant role in choosing the desirable propulsion system, as the performance, thrust, and Δ𝑣 need
to be considered directly in Table 1.2.

Table 1.3: ISO technology readiness levels and their description [1]

TRL Level Description
1 Basic principles observed and reported
2 Technology concept and/or application formulated
3 Analytical and experimental critical function and/or characteristic proof-of-concept
4 Component and/or breadboard functional verification in laboratory environment
5 Component and/or breadboard critical function verification in relevant environment
6 Model demonstrating the critical functions of the element in a relevant environment
7 Model demonstrating the element performance for the operational environment
8 Actual system completed and accepted for flight (”flight qualified”)
9 Actual system ”flight proven” through successful mission operations

Table 1.4 indicates the typical characteristics of different small satellite propulsion systems [42]. Just
like Table 1.2, it does not contain a comprehensive list of all propulsion systems. Electric propulsion
provides high specific impulse and Δ𝑣, but low thrust due to its power limitations. Chemical propul-
sion provides high thrust, but has temperature limitations. Cold gas, microresistojet, and monopropel-
lant propulsion provide high thrust, though they have a relatively low specific impulse. Microresistojet
propulsion systems ultimately show their relative superiority to cold gas propulsion systems in power,
thrust-to-power ratio, temperature, simplicity, scalability, and specific impulse [42].

Table 1.4: Small satellite propulsion systems’ characteristics [42]

Propulsion System
Characteristic Thrust (mN) Specific Impulse (s) Application Power (W)

Cold and Warm Gas 0.0001-100 30-100
Station Keeping and Attitude Control

(Suitable for Small Δ𝑣: 4-5 ) 2-6

Microresistojet
TU Delft’s VLM
TU Delft’s LPM

0.1-10
1.7-4.2
0.5-3.0

80-200
110-130
80-120

Station Keeping and Attitude Control
(Δ𝑣 > 10 ) 4-10

0-2
Pulse Plasma Thrusters 0.0001-0.001 300-3000 Station Keeping, Attitude Control, and Slow Orbit Transfer 2-10

Electrospray 0.005-0.05 1000-5000 Accurate Orbit Control and Slow Orbital Transfer 1-15
Chemical 100-1000 150-350 Orbit Transfer 10-20

Water Electrolysis 50-500 110-300 Accurate Orbit Control
(However, Difficult in Controllability) -

Ion/Hall Effect 0.1-5 1000-4000 Precise Pointing, Slow Orbit Transfer and Maneuvers 10-30

With the different mission requirements and restrictions considered, thrust level, specific impulse,
and minimum impulse bit are typically the most important parameters for performance [16]. When
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variously different methods of propulsion are considered, the system specific impulse can provide better
insight into the suitable micropropulsion system. Additionally, current CubeSat technologies reach a
minimum of 5 mmmisalignment between the thrust vector and satellite center of mass, which results in
a torque that needs to be adjusted for using attitude control, so attitude control maximum disturbance
torque level requirements need to be complied with using a more limited thrust level [16].

In addition to propulsion systems that boost by shooting out particles, Newton’s third law, which
states that every action has an equal and oppose reaction, can be applied in different ways. Other
compelling propulsion systems that also require further development include solar sails, which use
radiation pressure, as photons are reflected on their large and highly reflective sail, to move similar to
using the wind for a sailboat. The radiation could be obtained from the Sun, or more interestingly, by
shooting guided lasers at the spacecraft, providing a potentially effective means for deep space travel.

1.3. Micropropulsion at Delft University of Technology
Themain contemporary micropropulsion technologies at Delft University of Technology consist of a sec-
ond generation vaporizing liquidmicroresistojet (VLM) and low-pressuremicroresistojet (LPM) thrusters
[42]. The first generation microresistojet developments began around 2010 [42]. Both thrusters are
based on microelectromechanical technologies, where the performance can be improved at lower vol-
ume andmass, and currently use water as propellant. Microresistojets have been realized to be promis-
ing for small spacecraft applications, considering their fast response, low required volume and mass,
high thrust-to-mass ratio and reliability, and ease of integration, especially in a thruster array [27]. This
thesis focuses on the VLM, where the propellant is fed through an inlet channel for vaporization in a
heating chamber to be followed by acceleration to supersonic velocities in an inplane de Laval noz-
zle [49]. The heating element’s geometry and material are essential for optimization, as it is the main
section with heat transfer and the energy transfer is not typically efficient [49]. The VLM’s liquid propel-
lant needs to be slightly pressurized by a gas, which in some cases could be a constraint considering
the elaborate two phase mixing caused by microgravity, along with that the LPM then contains slightly
less wet mass and equivalent initial propellant mass due to its lower operational pressure [16], though
that also poses challenges in the valve and tank designs [49]. As the thrust level is typically high for
the required minimum impulse bits, the propulsion system might need to be rapidly operated for short
periods of time with a fast response time around one or two orders of magnitude less than a second,
which might cause complications taking into account the heat transfer processes [16]. It is important
to note that the performance of both thruster systems is generally similar, but can be compared on
an operational basis, such as the required temperature and pressure conditions for propellant storage
[16]. Considering the VLM and LPM’s complementary operating conditions of temperature and pres-
sure, a dual thruster model could be used, where both thrusters share a propellant tank, feed system,
and sensing and control electronics. Table 1.5 includes a rough approximation for the micropropulsion
system mass considering the effective masses of its components.

Table 1.5: Approximate mass of TU Delft micropropulsion system payload

Items Mass (g) Minimum # of Components
Thruster and Housing (VLM and LPM) 20 2

Feed System (Valves, Connectors, and Tubing) 20 2
Storage Tank and Sensors 10 1

Electronic Board with Microcontroller 13 1
Pressurant/Propellant 12 N/A

Total 75

Figure 1.5 shows a block diagram of TU Delft’s micropropulsion system model, while Figure 1.7
displays its components’ placement inside a small satellite. The propulsion system is desirably installed
in the middle for precise and slow attitude control and drag compensation. As shown, the propellant
tank is based on rolled tubes for maximum volume usage and preventing propellant sloshing, which
might undesirably cause the liquid and gas phases to mix. Also, Figures 1.6 and 1.8 represent the
concept VLM and LPM thrusters respectively.

The main idea of the model could be reshaped, where each of the thrusters can be used individually.
Then, the VLM operates at pressures of 1-5 bar under two-phase flow, with a liquid flow at the inlet
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Figure 1.5: TU Delft micropropulsion system schematic [34]

and gaseous flow at the nozzle, and the LPM operates at pressures of 0.01-1 mbar using the gaseous
flow from stored sublimating ice at low pressure below the triple point, where the molecules of the
ice sublimate to maintain the tank’s vapor pressure. TU Delft complies with the propulsion system’s
set design constraints, such as on mass, volume, and power. Table 1.6 shows TU Delft’s CubeSat
VLM and LPM micropropulsion target performance using an equal amount of propellant and subject to
similar operational conditions [6].

Table 1.6: TU Delft CubeSat VLM and LPM micropropulsion target performance at comparable operational conditions and
equivalent propellant amount [6]

Parameter Chamber/Channel
Temperature (K)

Chamber/Plenum
Pressure (Pa)

Propellant Mass
Flow Rate (mg/s)

Power transferred
to water (W)

Thrust
(vacuum) (mN)

Specific impulse
(vacuum) (s)

Total
impulse (Ns)

Propellant
mass (g)

Propellant
mass (g)

VLM 550 5 × 10 1.63 5.25 1.52 94.9 46.4 50 <360
LPM 573 150 1.32 4.51 1.14 88.1 43.2 50 <330

The research group at TU Delft is also working on a solar thermal micropropulsion concept, where
electric/thermal power and propulsion can be achieved concurrently using solar concentrators trans-
ferring energy to a high-temperature organic Rankine cycle (ORC) turbogenerator and thruster(s) [6].

1.3.1. Propellant Selection
The choice of propellant has a significant impact on the propulsion system’s performance. The aerospace
industry is leaning towards green and nontoxic propellants, which are commonly very active chemicals
resulting in being corrosive, flammable, or toxic [6]. Inert gases could be used, but they require large
storage tanks or undesirably high storage pressures. On the other hand, water (H O), in its liquid and
solid ice forms, has high mass density and low molecular mass, which is suitable for micropropulsion
applications, especially the VLM and LPM.

The reasoning behind this decision is based on a TU Delft study on 95 different fluids with diverse
properties for microresistojet green propellant selection and characterization considering the necessary
safety requirements on pressure, corrosivity, flammability, and toxicity [27]. The selection methodology
used consists of subsequently collecting data on the fluids, assessing their feasibility for storage and
usage, considering an analytic hierarchy process (AHP) with a decision-matrix Pugh method to rank
the fluids based on safety, performance, and system density, and finally making a selection considering
the optimal thermal properties, propulsive performance, and safety from the third step to be applied to
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Figure 1.6: VLM thruster concept (flow di-
rection is towards de Laval nozzle)

Figure 1.7: TU Delft micropropulsion sys-
tem concept [34]

Figure 1.8: LPM thruster concept (flow di-
rection is perpendicularly up)

VLM and LPM [27].
To summarize the work done after the first step, the feasibility check step includes filtering the fluids

based on criteria for the required storage pressure and propellant mass, which are considered to be
liquids and solids, excluding gases due to their lower density [27]. Step three’s Pugh matrix classifies
the criteria into first (FL) and second (SL) levels. FL includes safety and design, while SL for safety
includes flammability, instability, and health hazard and SL for design includes performance and system
density [27]. They are set a weighting factor (𝑊𝐹) based on a pairwise comparison for ranking their
increasing importance from 1 to 6 and the weight ratio (WR) from the AHP [27]. The criteria were
characterized and scored by +, -, or 0 indicating positive, negative, or neutral respectively. The final
results for each fluid included an average score and standard deviation, as the weighting factors are
based on the evaluations of five experts from TU Delft [27]. The main factors considered to accomplish
the final step are the thrust, specific impulse, and required propellant heating power. To calculate the
thrust and specific impulse, the ideal rocket theory is applied [27]. Only 63 fluids were selected from
the feasibility assessment and the resultant Pugh matrix is shown in Figure 1.9 as a boxplot [27].

It is noticeably that the nine most suitable fluids were acetone, ammonia, butane, cyclopropane,
ethanol, isobutane, methanol, propene, and water, where their score ranges are exclusive from the
score ranges of other fluids. After comparing their properties at operational conditions, ammonia and
water shows the optimal performance with higher specific impulse, though ammonia requires less
power as water would undergo phase change for VLM and similarly for LPM, in which case they would
show similar required power to other fluids [27]. However, performance is not solely the determining
factor, as safety and cost play a significant role, especially for academic or commercial applications,
where water becomes the fluid of choice compared to ammonia, because it is slightly flammable and
highly hazardous, which produces handling complications. From data in [27], acetone and butane
present the highest thrust, while ammonia and water present the lowest thrust for VLM, while the fluid
thrusts are equivalent for LPM, though this is generally less important than specific impulse and required
power. Also, water, which is typically the most abundant fluid, presents the highest density under stor-
age conditions resulting in the optimal case for maximal volumetric efficiency. Using Equation 2.97,
the rocket equation linearized approximation for Δ𝑣 is calculated under certain applicable conditions
and water proves to favorably provide the highest Δ𝑣 per volume. Certainly, different propellants could
be potential candidates for different missions, but water shows generally promising aspects, though
ammonia is a less safe competitor for VLM, as it shows higher Δ𝑣 and lower power consumption. Wa-
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Figure 1.9: Pugh matrix results of propellant choice by score, where higher is better (for every box: internal line represents
the median, upper and lower box borders represent the upper and lower quartiles respectively, top and bottom external lines
represent the maximum and minimum values, and crosses represent outliers). [27]

ter’s main limitations as a propellant are due to its high specific heat and latent heat of vaporization
[16]. Specific impulse is simply approximated to be inversely proportional to the square root of the pro-
pellant’s molecular mass, but a molecular mass that is too low would need a greater storage volume
due to its lower density [16]. At 18 , water’s molecular mass proves to be just right to fulfill both
requirements [16]. Water is currently the most suitable candidate, considering that both VLM and LPM
are often considered jointly in the propulsion system. Also, note that nitrogen could be easier to use
experimentally than water, which is a reason for its popularity.

1.3.2. Fabrication
Some applications for MEMS components include ink cartridges and car accelerometers. They are
typically fabricated simultaneously in batches and allow for the integration of multiple components in
one module [12], which does not apply to conventionally manufactured components. However, it is
common to use the rapidly-increasing available commercially off-the-shelf (COTS) products, which are
suitable for spaceflight applications, especially for academic or commercial purposes, because they
lead to relatively shorter development times and lower costs [27]. In the future, some micropropulsion
systems might become available as COTS components.

Lithography is used to define the structure on a wafer to be etched out. These structures can
then be sandwiched to create fluid channels, for example in the case of the two silicon or ceramic
wafers of a generic VLM, where only one contains the channels, nozzle, and heater at the present
time [49]. Generally, MEMS gas channels have a width smaller than 0.1 mm [12]. The materials used
to manufacture the resistive microheaters are either silicon carbide or molybdenum. The only COTS
component in the TU Delft’s thrusters is the valve [16]. Currently, the microvalves used are COTS
solenoid electromagnetic-operated valves with quick response time and can withstand the required
application pressure. As shown in Table 1.7, the 1960s bulk manufacturing technologies uses wet or
dry etching of typically silicon substrate, the more intricate surface manufacturing forms structures by
deposition and etching of sacrificial and structural thin films, and the more expensive and effective
LIGA forms 3D structures by the sequential process of mold fabrication and then injection molding
or electroplating are the MEMS fabrication technologies to be compared to conventional machining,
which might use drilling, milling, forging, welding, etc. [39], though the axisymmetric nozzles could
also be constructed using more advanced methods such as semi-isotopic etching with an array mask
using microloading and reactive ion etching lag as in [43] or microsystem technology (MST/MEMS)
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such as DRIE, and more promisingly, femtosecond laser machining (FLM) or a powder blasting and
heat treatment combination as in [36], but their resulting dimensions are still different from the quasi-2D
(extruded) MEMS nozzles, especially due to its possible relatively smaller throttle diameter.

Table 1.7: Comparison of MEMS fabrication technologies and conventional machining [39]

Capability LIGA Bulk Micromachining Surface Micromachining Conventional Machining
Feature size Around 3 to 5 𝜇m Around 3 to 5 𝜇m 1 𝜇m Around 10 to 20 𝜇m

Device thickness > 1 mm > 1 mm 13 𝜇m Very Large
Lateral dimension > 2 mm > 2 mm 2 mm > 10 m
Relative tolerance Around 10 Around 10 Around 10 > 10

Materials Electroplated Metals or
Injection Molded Plastics

Very Limited
Material Suite

Very Limited
Material Suite

Extremely Large
Material Suite

Assembly Requirements Assembly Required Assembly Required Assembled as Fabricated Assembly Required
Scalability Limited Limited Yes Yes

Microelectronic
Integratability No Yes for Silicon-On-Insulator

(SOI) Bulk Processes Yes No

Device Geometry Two-Dimensional
High Aspect Ratio

Two-Dimensional
High Aspect Ratio

Multi-Layer
Two-Dimensional

Very Flexible
Three-Dimensional

Processing Parallel Processing
at the Wafer Level

Parallel Processing
at the Wafer Level

Parallel Processing
at the Wafer Level Serial Processing

VLM and LPM are manufactured in a collaboration with TU Delft’s Else Kooi Laboratory, formerly
known as Delft Institute for Microsystems and Nanoelectronics (DIMES) [16]. The LPM contains a
storage tank, plenum chamber, and expansion slots, which sometimes act as heated microchannels.
The VLM contains the inlet, heater, and nozzle. The VLM is modular, where each of the inlet section,
heating chamber, and nozzle can be swapped for applying a multitude of experiments [6]. Figures 1.10
and 1.11 show the scales of TU Delft’s VLM and LPM thrusters respectively, as well as their physical
images.

Figure 1.10: Left: MEMS wafer with various VLM design con-
cepts. Right: Two VLM heating sections’ SEM-microscope de-
tails compared to a human hair (straight dark stripe). [6] Figure 1.11: LPM prototype with the circular (not visible) expan-

sion slots in the green area [6]

The heating chamber’s design requires the consideration of a variety of factors concerning its ge-
ometry and internal features, which are limited by the fabrication precision [16]. The main considered
options include multiple different shapes and structures for pillars, fins, and plain channels. The re-
sistive heaters are centered in the chamber’s channel to reduce the undesired heat transfer to the
environment [16]. The etched wafer channels are mirrored with the heating layer in the middle [16].
The heating chamber length significantly influences the design, considering that the flow velocity is low
leading to a highly laminar flow, so to achieve complete fluid vaporization, the modular design provides
the ability to extend the length of the heating chamber as needed in case the heating efficiency is lower
than initially designed for [16]. It is also recommended that the geometry insures that the stochastic
water vaporization is complete, otherwise liquid water could make it to the nozzle.

Geometry, boundary layers, and surface roughness greatly influence micronozzles, where flow sep-
aration can reduce the effective throat area, which in turn leads to lower actual performance [16]. Water
condensation at the nozzle exit is to be prevented. A constant current mode is used due to its lower
required power compared to a constant voltage mode, as the increasing temperatures leads to the
decreasing resistance of silicon carbide (SiC), which is the selected material for the resistive heating
elements because of its inertness, relatively low density, and high strength and maximum operating
temperature [16].
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For simplicity and cheapness, the channels are etched in silicon, although low temperature co-fired
ceramic (LTCC) could also be simpler and cheaper [49], with less than 10% channel depth inaccuracy
[16]. An anodically bonded layer of glass for insulating conduction confines both of the thruster’s sides,
with a second layer of reflecting metal to serve as a radiation shield, and a final layer of around 1 cm
consisting of a protective encasing resin compound for extra rigidity and insulation [16]. A silicon dioxide
layer is also deposited on the silicon wafer, below and above the heating layer, for electrically insulating
between the heating layer and conductive silicon [16]. Etching is applied for the heating structure first,
where an anisotropic deep reactive-ion etching (DRIE) is carried out followed by isotropic DRIE without
passivation in all directions to suspend the heating elements by etching the structure below them [16].
This procedure is to be applied for both faces of the thruster, but with a pocket where the heating
elements should be in the other face, before their silicon fusion bonding. For power connections, 1
by 1 mm holes are etched on the silicon wafer’s topside until reaching the SiC heating layer in the
middle [16]. A thin aluminum layer is deposited on the exposed SiC topside for bonding the electrical
wires to it due to their incompatibility with direct SiC bonding [16]. For testing and operation, a custom
printed circuit board (PCB) is bonded to the thruster to be followed by electrically connecting it to the
thruster’s bond pads using golden bond wires, where the bond cavities are then hermetically sealed
using a sealant with low viscosity [16].

Molybdenum has also been used as a heating element, considering its endurance to temperature
with its 2693 ∘C melting point and linearly proportional resistivity up to 700 ∘C for accurate measure-
ments of temperature [50]. The fabrication using molybdenum at TU Delft consists of slightly different
steps. Figure 1.12 presents the fabrication process, which is briefly discussed as:

a) Low pressure chemical vapor deposition (LPCVD) silicon nitride (SiN) deposited on both faces
for isolation between the heating elements and the substrate [50]

b, c, and d) Molybdenum (Mo) is deposited by sputtering on the top side to be masked with photoresist and
plasma-enhanced chemical vapor deposition tetraethoxysilane (PECVD TEOS) before being pat-
terned [50]

e and f) Wafer with heaters is cleaned and masked with silicon dioxide (SiO ) [50]

g and h) DRIE etching of cavities anisotropically and then isotropically [50]

i) Wafer is masked with silicon dioxide and photoresist [50]

j) Anisotropic etching of inlet hole [50]

k and l) Wafer is cleaned and bonded to glass wafer for convenient visualization [50]

Figure 1.12: VLM fabrication process, where the thrusters become ready for testing after dicing the wafer [50]
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1.4. Thesis Scope
The main scope of this (mostly analytical/numerical) thesis is to evaluate the advantages and draw-
backs of using amicroelectromechanical systems (MEMS) solution compared to a conventional solution
for two micropropulsion thrusters considering the Department of Space Engineering at Delft University
of Technology’s (TU Delft) set performance targets and requirements. The MEMS thruster has a typ-
ically quasi-2D geometry and the conventionally developed and manufactured thruster has an axially
symmetrical 3D shape. Since a more rarefied flow is expected in certain regions, such as in the diverg-
ing section of the nozzle and especially due to expansion into vacuum, resulting in a higher Knudsen
number, where a molecule’s mean free path is significant compared to the flow’s representative phys-
ical length scale, Direct Simulation Monte Carlo (DSMC) is needed as compared to continuum flow
modeling.

The comparative study involves the two thrusters’ nozzle flows, heat transfer, and thermodynam-
ics. After a comprehensive literature review related to the project, the modeling process is conducted
and optimized for both thrusters, to be followed by the results and discussion as well as the final sec-
tion with conclusions and recommendations. The open-source C++ toolbox for numerical solvers and
pre/post-processing utilities that incorporates computational fluid dynamics (CFD), OpenFOAM (Open-
source Field Operation and Manipulation), includes a DSMC solver, dsmcFoam(+), which is used for
the required flow simulations.

The MEMS thruster studied is a TU Delft VLM thruster, while the conventional thruster studied is
based on the technological possibilities for taking on the role of a MEMS VLM thruster. The main
differences between MEMS and conventional thrusters is in the manufacturing and geometry. The
manufacturing process for conventional thrusters uses conventional machining techniques, with a min-
imum throttle diameter size larger than MEMS nozzle miniaturization capabilities. MEMS thrusters will
be checked for feasibility and applicability compared to conventional thrusters. The second difference
is in the geometry, as explained above, and detailed in this work. The nozzles are simulated for inlet
pressures of 5 and 7 bar at inlet temperatures of 550 and 773 K for a total of four cases for each nozzle.
The models will be checked outside the nozzle in the plume regions as well, as the pressure immedi-
ately after the nozzle exit in the plume region could affect the nozzle flow. Particle dissociation will be
considered negligible at the expected speeds. The Reynolds number is expected to remain lower for
the MEMS thruster, while higher for the conventional thruster, with the MEMS and conventional nozzles
based on geometries with comparable performances. To put this into perspective, the flow gets closer
for a rectangular cross section than a circular one for the same area and this could have significant
impacts on the performance. Generally, a more unconventional de Laval nozzle flow is expected for the
MEMS thruster versus a more conventional de Laval nozzle flow for the conventional thruster. Simply
flat/straight sides will be used throughout the nozzle, even though it is not ideally optimal compared to
the more elaborate (at such small scale) parabolic shapes.
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2.1. Scaling Analysis for Micropropulsion
The mass reduction leads to faster dynamic and thermal response times, which lowers the minimum
impulse bit [11]. The square-cube law can define performance, where the area-dependent properties
decreases slower than volume-dependent properties [11]. Their ratio might be seen proportional to
different properties such as the power-to-mass and thrust-to-mass ratios, though the thrust-to-mass
ratio might be proportional to the inverse of the tank pressure instead of being scale-dependent, as
the engine mass is small compared to the propulsion system including the stored propellant [11]. The
Reynolds number (𝑅𝑒) can define the frictional losses:

𝑅𝑒 = 𝜌𝑣𝐷
𝜇 = �̇�

𝜇ℎ , 2.1

where 𝜌 is the density of the chamber, which is proportional to the chamber pressure, 𝑣 is velocity, 𝐷
is throat width, 𝜇 is viscosity, ℎ is the height, in case of an extruded nozzle, considering the evaluation
of these values at the throat [11]. Thrust is proportional to the product of the mass flow rate and exit
velocity, which is ideally determined from the nozzle expansion ratio, but is reduced by 𝑅𝑒 as viscous
effects rise [11]. Exit pressure is also a function of the nozzle expansion ratio, so it is not considered for
thrust scaling. Therefore, by using the proportionality relationship 2.1, and substituting the mass flow
rate into the thrust proportionality:

𝐹 ∝ �̇�𝑣 ∝ 𝑅𝑒ℎ 𝜇 𝑣 2.2

𝑅𝑒 is found to desirably increase with decreasing scale for constant thrust, which reduces frictional
losses and increases specific impulse, so higher thrust-to-mass ratio can be achieved with scale re-
duction, as less propellant is needed because of the increase in specific impulse even though the tank
mass does not directly scale [11].

However, with these downscaling advantages comes drawbacks such as the reduction of the par-
ticle residence time in the channel resulting in the flow energy’s partial equilibration [11]. While the
relaxation time is greater than the residence time, the flow’s thermal energy undergoes incomplete
conversion to kinetic energy leading to lower performance and it is termed frozen losses, which might
also refer to the energy for breaking molecular bonds, where in this case it would not be converted
to fluid kinetic energy as molecular recombination time is insufficient in the nozzle [11]. Over the noz-
zle, the flow is then at a lower energy state fixed/frozen composition [11]. As the collision frequency
depends on the gas density and residence time or scale, the mentioned losses depend on 𝑅𝑒 [11].
As heat transfer is enhanced from the heating elements, the flow is just as likely to transfer the heat
at another colder location downstream [11]. Fabrication complications also arise, as the local surface
roughness becomes relatively larger than for larger geometries [11], which adds insight into the differ-
ences between MEMS and conventional thrusters.

Considering the greater influence of wall roughness, it should be considered to avoid inducing shock
waves, which lead to a pressure spike followed by less momentum [11]. By generalizing shock forma-
tion through viscosity:

13



14 2. Theory

𝜇 ∼ 𝜌𝑐𝜆, 2.3

where 𝑐 is the molecular speed [11]. Then, nondimensionalize by roughness height, 𝑙:

𝜇
𝜌𝑢𝑙 ∼

𝑐
𝑢
𝜆
𝑙 or 𝑀𝑎 ∼ 𝑅𝑒𝐾𝑛, 2.4

where 𝑀 is the Mach number, 𝑢 is the local velocity, and 𝜌 is the local density. The Mach number
needs to be kept less than one to avoid shock formation, which would also require the roughness
height not to enter the flow’s supersonic region and remain inside the subsonic boundary layer [11].
Heat transfer also becomes more significant with the larger surface area to volume ratio at this small
scale. Therefore, due to the thermal, viscous, and rarefied effects, directly miniaturizing macroscale
propulsion systems would be rather inexpedient.

2.2. Rarefied Flow Modeling
To find the degree of rarefaction, the dimensionless Knudsen number needs to be evaluated:

𝐾𝑛 = 𝜆
𝐿 = 𝜆

|∇𝜌|
𝜌 = √𝛾𝜋2

𝑀
𝑅𝑒 , 2.5

where 𝜆 is the molecules’ mean free path, 𝐿 is the flow’s representative physical length scale, which
is often considered the thermal or mass transport gap length, 𝛾 is the specific heat ratio, 𝑀 is the Mach
number, 𝑅𝑒 is the Reynolds number, and 𝜌 is density and is often used to clarify the characteristic
dimension, though density can be proven to be related to velocity and temperature and they are also
less commonly used [17, 23]. The mean free path is calculated as:

𝜆 = 1
√2𝜋𝐷 𝑁

= 𝑅 𝑇
√2𝜋𝐷 𝑁 𝑝

= 𝜇
𝑝√

𝜋𝑘𝑇
2𝑀 , 2.6

where 𝐷 is the gas molecular diameter, 𝑁 is the number density [11], 𝜇 is the viscosity, 𝑝 is the
pressure, 𝑇 is the temperature,𝑀 is the molecular mass, 𝑘 is the Boltzmann constant, 𝑅 is the univer-
sal gas constant, and 𝑁 is Avogadro’s number. Along with using the Knudsen number as a breakdown
parameter, continuum approach applicability could evaluated using its breakdown parameter (𝐵), which
is considered critical at a value of 0.05 though wall-slip and proper boundary conditions could still be
needed below that, as it is derivable from the relation of Boltzmann and Navier-Stokes equations:

𝐵 = 𝑀√𝜋𝛾8
𝜆
𝜌 |
𝑑𝜌
𝑑𝑠 | , 2.7

where 𝑀 is the Mach number, 𝜌 is the density, 𝜆 is the local mean free path, 𝑠 is the distance along
the streamline, and 𝛾 is the ratio of specific heats at constant pressure (𝐶 ) and volume (𝐶 ) respectively
[29]:

𝛾 =
𝐶
𝐶 2.8

The maximum value for the magnitudes of normalized stress tensor (𝜏∗ ) and heat flux (𝑞∗) can also
be considered for the equilibrium breakdown parameter, which is considered to occur at 0.1, evaluated
using:

𝐵 =max(|𝑞∗||𝜏∗ |), 2.9

𝑞∗ = (𝐾𝑝 )(
2𝑚
𝑘𝑇 )

.
∇𝑇, 2.10

𝜏∗ = (𝜇𝑝) (V , + V , − V , 𝛿 ), 2.11
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where, the indices 𝑖, 𝑗, and 𝑘 represent the three velocity components, 𝑘 is the Boltzmann constant,
𝜇 is the dynamic viscosity, 𝑇 is the temperature, 𝑚 is the mass, 𝛿 is the Kronecker delta, and V is the
velocity [18]. A typical value for considerable flow rarefaction is at 𝐾𝑛 ∼ 0.01, which is when the con-
ventional Navier-Stokes equations become noticeably less accurate [47]. The Boltzmann equation can
be used fundamentally, though its implementation is generally time-consuming and complex. Figure
2.1 demonstrates the Knudsen number’s effect on the flow regime [52].

Figure 2.1: Flow regimes rarefaction by Knudsen number [52]

The flow is considered to be inviscid and in thermodynamic equilibrium around 𝐾𝑛 ∼ 0, where
intermolecular collisions are dominant. The degree of rarefaction increases with increasing Knud-
sen number due to fewer molecular collisions. At high Knudsen numbers, namely free molecule flow
regime, molecular collisions become negligible, which along with molecule-surface interactions lead
to non-equilibrium. Note that velocity slip, temperature jump, and thermal diffusion/transpiration are
considerable nonequilibrium effects along with noticed internal flow nonlinear pressure gradients [54].

Euler fluid equations are the most suitable numerical method for the inviscid flow regime, Navier-
Stokes-Fourier (NSF) fluid equations for the continuumand slip (as well as velocity-slip and temperature-
jump boundary conditions) flow regimes, and Boltzmann equation or particle methods (DSMC) for tran-
sition and free molecule (collisionless) flow regimes [52].

Continuum and Inviscid Flow Regime
The NSF equations for continuum-fluids prove to be highly accurate near thermodynamic equilibrium,
as local macro-properties are assumed to be averaged over portions that are considered large com-
pared to the fluid’s microscopic structure and small for macroscopic phenomena allowing for the appli-
cation of differential calculus. In other words, the macroscopic time scale is considerably greater than
the time of dominant intermolecular collisions, which lead to local thermodynamic equilibrium. Around
𝐾𝑛 ∼ 0, the NSF equations’ molecular diffusion is considered negligible along with the continuum
momentum and energy equations’ transport terms [52].

Slip Flow Regime
Non-equilibrium regions emerge near surfaces as their interactions with molecules decrease with an
increasing Knudsen number. Macroscopically, the gas and surface’s velocities and temperatures do
not become equal, which translates to velocity-slip and temperature-jump respectively [52]. Certain
methods can be used to study this non-equilibrium, with extended NSF equations using Maxwell’s
velocity-slip and Von Smoluchowski’s temperature-jump boundary conditions [52].

Transition and Free Molecule Flow Regimes
At higher Knudsen numbers in transition and freemolecule flow regimes, the linear constitutive relations
of NSF equations become invalid due to the inaccurate assumptions of continuum and local equilibrium.
Therefore, the need for solving the Boltzmann equation arises. For a single-species monatomic non-
reacting gas, the Boltzmann equation is as follows:

𝜕(𝑛𝑓)
𝜕𝑡 + c𝜕(𝑛𝑓)𝜕r + F𝜕(𝑛𝑓)𝜕c = 𝐽(𝑓, 𝑓∗), 2.12

where 𝑛 is the number density, 𝑓 is the normalized molecular velocity distribution function, r is a
molecule’s position vector, c is a molecule’s velocity vector, F is the external force, 𝐽(𝑓, 𝑓∗) describes
binary collisions as a nonlinear integral, and ∗ stands for post-collision properties [52]. In addition, the
collision integral is:
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𝐽(𝑓, 𝑓∗) = ∫ ∫ 𝜋 (𝑓∗𝑓∗ − 𝑓𝑓 )𝑐 𝜎 𝑑Ω𝑑c , 2.13

where 𝑓 and 𝑓 are the velocity distribution functions at c and c respectively, 𝑐 is two colliding
molecules’ relative speed, 𝜎 is the molecular cross section, and Ω is the solid collision angle [52]. To
note, numerical modeling of the transition regime is most challenging, as the mean free path is consid-
erable compared to the characteristic length scale and molecular collisions are still highly applicable
[54].

2.3. From Boltzmann to Navier-Stokes
Without time-averaged equations like Reynolds-averaged Navier-Stokes equations (RANS) and turbu-
lence models, it is difficult to numerically solve the Navier-Stokes equations for turbulent flows consid-
ering the large variation in turbulent mixing-length scales, which would need an unfeasibly fine mesh.
Based on kinetic theory and molecular chaos, DSMC is a powerful tool that can simulate molecular to
hydrodynamic length scales including turbulence and its decay [21]. Turbulence is a time-dependent
chaotic phenomenon with the idea that it happens due to the inertial forces dominating the viscous
forces in the Reynolds number, where time-dependent and convective acceleration is significant, and
considering the expected dominance of the viscous forces for the flow at this small scale micropropul-
sion application, the flow regime is expected to be laminar. The previous information is provided as
an example of DSMC capabilities. To further elaborate on kinetic theory and its applicability for the
flow in microthrusters, the Navier-Stokes equations can be derived from the Boltzmann equation in an
approach unlike the Navier-Stokes derivations usually studied in engineering fluid mechanics courses.
The derivation will explain the reasoning and conditions behind the estimations of the Boltzmann equa-
tion using Navier-Stokes equations.

The Boltzmann equation for an ideal monatomic gas assumedly dilute enough for the dominance
of binary collisions and without external forces is:

𝜕(𝑛𝑓)
𝜕𝑡 + 𝑐 𝜕(𝑛𝑓)𝜕𝑥 = [𝜕(𝑛𝑓)𝜕𝑡 ]

coll
, 2.14

where 𝑛 is the number density, 𝑓 is the velocity distribution function, 𝑐 is the molecular velocity in an
inertial frame, the subscript 𝑘 represents a sum, and the subscript coll represents the collision integral
[8]. The Boltzmann equation is multiplied by any function of molecular velocity 𝑄(𝑐 ) and integrated
over velocity space to find the moment equations:

𝜕 (𝑛 < 𝑄 >)
𝜕𝑡 + 𝜕

(𝑛 < 𝑐 𝑄 >)
𝜕𝑥 = Δ[𝑄], 2.15

where < 𝑄 > and Δ[𝑄] are operators determined by:

< 𝑄 >= ∫ ∫ ∫ 𝑄𝑓d𝑐 d𝑐 d𝑐 2.16

Δ[𝑄] = ∫ ∫ ∫ 𝑄 [𝜕(𝑛𝑓)𝜕𝑡 ] d𝑐 d𝑐 d𝑐 2.17

By selecting one of the five collisional invariants:

𝑄 = 𝑚{1, 𝑐 , 𝑐 /2}, 2.18

where 𝑚 is the molecular mass and 𝑐 is the velocity magnitude squared, as the arbitrary function
of the molecular velocity 𝑄(𝑐 ), the relative moment of the collision integral is similarly equal to zero,
as Δ[𝑄] = 0, which is applicable to any distribution function and molecular interaction law [8]. The gas
dynamics conservation laws can then be determined:

𝜕 (𝑛 < 𝑄 >)
𝜕𝑡 + 𝜕 (𝑛 < 𝑐 𝑄 >)

𝜕𝑥 = 0 2.19
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Then, with the collisional invariants from Equation 2.18:

𝜕 (𝜌)
𝜕𝑡 + 𝜕

(𝜌 < 𝑐 >)
𝜕𝑥 = 0, 2.20

𝜕 (𝜌 < 𝑐 >)
𝜕𝑡 + 𝜕

(𝜌 < 𝑐 𝑐 >)
𝜕𝑥 = 0, 2.21

𝜕 (𝜌 < 𝑐 /2 >)
𝜕𝑡 + 𝜕 (𝜌 < 𝑐 𝑐 /2 >)𝜕𝑥 = 0, 2.22

where 𝜌 is the mass density given as:

𝜌 = 𝑚𝑛 2.23

For the thermal velocity components:

𝐶 = (𝑐 − 𝑢 ), 2.24

where the mean or fluid velocity is:

𝑢 =< 𝑐 > 2.25

The central moments are then:

𝑃 = 𝜌 < 𝐶 𝐶 >, 2.26

𝑝 = 𝑃 /3, 2.27

𝜏 = −𝑃 + 𝑝𝛿 , 2.28

𝑒 =< 𝐶 /2 >, 2.29

𝑞 = 𝜌 < 𝐶 𝐶 /2 >, 2.30

where 𝑃 is the stress tensor, 𝑝 is the pressure, 𝜏 is the viscous stress tensor, 𝛿 is the Kronecker
delta, which is equal to one for 𝑖 = 𝑗 and zero for 𝑖 ≠ 𝑗, and for a monoatomic gas, 𝑒 and 𝑞 are the
internal energy (translational) and heat flux vector respectively [8]. Then for Equations 2.20 to 2.22,
substitute Equations 2.26 to 2.30 to obtain the gas dynamics conservation laws:

𝜕 (𝜌)
𝜕𝑡 + 𝜕

(𝜌𝑢 )
𝜕𝑥 = 0, 2.31

𝜕 (𝜌𝑢 )
𝜕𝑡 + 𝜕

(𝜌𝑢 𝑢 − 𝜏 + 𝑝𝛿 )
𝜕𝑥 = 0, 2.32

𝜕 [𝜌 (𝑒 + )]
𝜕𝑡 +

𝜕 [𝜌𝑢 (𝑒 + ) − 𝜏 𝑢 + 𝑝𝛿 𝑢 + 𝑞 ]
𝜕𝑥 = 0, 2.33

Furthermore, Equations 2.31 to 2.33 can be reformulated for axisymmetric flows in cylindrical coor-
dinators (𝑟, 𝜃, 𝑧) and considering 𝑢 = = 0:

𝜕 (𝜌)
𝜕𝑡 + 𝜕

(𝜌𝑢 )
𝜕𝑟 + 𝜌𝑢𝑟 + 𝜕(𝜌𝑢 )𝜕𝑧 = 0 2.34

𝜕 (𝜌𝑢 )
𝜕𝑡 + 𝜕 (𝜌𝑢 + 𝑝 − 𝜏 )

𝜕𝑟 + 𝜌𝑢 − 𝜏
𝑟 + 𝜕(𝜌𝑢 𝑢 − 𝜏 )

𝜕𝑧 + 𝜏𝑟 = 0 2.35
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𝜕 (𝜌𝑢 )
𝜕𝑡 + 𝜕

(𝜌𝑢 𝑢 − 𝜏 )
𝜕𝑟 + 𝜌𝑢 𝑢 − 𝜏

𝑟 + 𝜕(𝜌𝑢 + 𝑝 − 𝜏 )
𝜕𝑧 = 0 2.36

𝜕 [𝜌 (𝑒 + )]
𝜕𝑡 +

𝜕 [𝜌𝑢 (𝑒 + ) + 𝑝𝑢 − 𝜏 𝑢 − 𝜏 𝑢 + 𝑞 ]
𝜕𝑟 +

[𝜌𝑢 (𝑒 + ) + 𝑝𝑢 − 𝜏 𝑢 − 𝜏 𝑢 + 𝑞 ]
𝑟 +

𝜕 [𝜌𝑢 (𝑒 + ) + 𝑝𝑢 − 𝜏 𝑢 − 𝜏 𝑢 + 𝑞 ]
𝜕𝑧 = 0 2.37

The model presented above needs to be adjusted before being applied to polyatomic gases, which
requires changing Equation 2.14with an applicable substitute [8]. The collisional invariants also changes
as the 𝑚𝑐 /2 energy term becomes inaccurate for a particle that has an internal structure:

𝑄 = {𝑚,𝑚𝑐 , (𝑚𝑐 /2 + 𝜖)}, 2.38

where 𝜖 is the additional internal energy, over which another integral is needed when applying
Equation 2.14, which is assumed to remain valid for the extended distribution function 𝑓(𝑐 , 𝜖), to Equa-
tions 2.16 and 2.17 [8]. Therefore, Equation 2.19 is still applicable considering that in a collision, Equa-
tion 2.38’s quantities are still conserved, which results in an equivalent value of zero for Equation 2.17.
As the integration over 𝜖 is independent of the 𝑐 integration, the quantities that only include 𝑐 yield
the same results from Equation 2.17 to Equations 2.20 and 2.21 and their subsequent Equations 2.31
and 2.32. In a similar way as applied previously, Equation 2.22 can be found:

𝜕 (𝜌 < 𝑐 /2 > +𝑛 < 𝜖 >)
𝜕𝑡 + 𝜕 (𝜌 < 𝑐 𝑐 /2 > +𝑛 < 𝑐 𝜖 >)𝜕𝑥 = 0 2.39

The unknown additional internal energy is designated as 𝑚𝑒 =< 𝜖 >, where 𝑒 = 0 for a
monoatomic gas [8]. As a relatively straightforward method, the internal molecular energy modes are
all assumed to be in equilibrium internally and with the translational degrees of freedom. 𝑒 is then
represented by the equilibrium relation using the translational temperature 𝑇:

𝑒 = 1
2 (

5 − 3𝛾
𝛾 − 1 )𝑅𝑇, 2.40

where 𝑅 is the gas constant and 𝛾 is the ratio of specific heats, through which the additional inter-
nal energy is considered [8]. Substituting Equations 2.26 to 2.30 into Equation 2.19 results in Equa-
tions 2.31 and 2.32 and:

𝜕 [𝜌 (𝑒 + 𝑒 + )]
𝜕𝑡 +

𝜕 [𝜌𝑢 (𝑒 + 𝑒 + ) + 𝑃 𝑢 + 𝑞 + (𝑛 < 𝐶 𝜖 >)]
𝜕𝑥 = 0, 2.41

which could have resulted in Equation 2.33 if the these two equations substituted Equations 2.29
and 2.30 respectively:

𝑒 = (< 𝐶 /2 > +𝑒 ), 2.42

𝑞 = 𝜌 < 𝐶 𝐶 /2 > +𝑛 < 𝐶 𝜖 >, 2.43

which means that for a gas with internal structure and state of equilibrium between the internal
modes and translation degrees of freedom, Equations 2.31 to 2.33 are applicable when Equations 2.42
and 2.43 are respectively substituted in the respective central moments [8].

The kinetic theory derivation approach is to be further used, as the more general conservation
Equations 2.31 to 2.33 are phenomenologically derivable for any basic fluid. Considering the case
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of an ideal gas flow, kinetic theory is needed, as it proves that the resulting equations apply for any
degree of translational nonequilibrium, such as any translational velocity distribution function [8]. For
an equilibrium distribution such as the Maxwellian distribution 𝑓 [2; 42], the set of equations results
in the Euler equations, while for a Chapman-Enskog distribution, which is an approximate Boltzmann
equation solution for a simple gas, 𝑓 [39; 43; 44], the set of equations results in the Navier-Stokes
equations. The CE distribution is represented by a local Maxwellian and thermal velocity components
𝐶 polynomial function:

𝑓 = 𝑓 (1 + 𝜙 + 𝜙 ), 2.44

where

𝑓 = (2𝜋𝑅𝑇) / exp(−𝐶 /2𝑅𝑇), 2.45

𝜙 = −( 𝜌𝑝 )(𝐾( ) 𝜕𝑇𝜕𝑥 )𝐶 (𝐶 /5𝑅𝑇 − 1), 2.46

𝜙 = −( 𝜌𝑝 )(𝜇( )
𝜕𝑢
𝜕𝑥 )(𝐶 𝐶 −

𝐶 𝛿
3 ) , 2.47

where 𝛿 is the Kronecker delta, which is equal to one for 𝑗 = 𝑘 and zero for 𝑗 ≠ 𝑘, 𝐾( ) is the thermal
conductivity coefficient, and 𝜇( ) is the viscosity coefficient found from the first-order Champan-Enskog
procedure (𝐶 = 𝐶 𝐶 ) [8]. The stress and heat flux can be determined by their relative Chapman-
Enskog expressions upon the selection of 𝑓 :

𝑞 = −𝐾( ) 𝜕𝑇𝜕𝑥 , 2.48

𝜏 = 𝜇( ) (𝜕𝑢𝜕𝑥 +
𝜕𝑢
𝜕𝑥 ) −

2
3𝜇

( ) (𝜕𝑢𝜕𝑥 ) 𝛿 , 2.49

where Equation 2.49 can be reformulated for axisymmetric flows in cylindrical coordinators (𝑟, 𝜃, 𝑧):

𝜏 = 𝜇( ) [2𝜕𝑢𝜕𝑟 −
2
3 (

𝜕𝑢
𝜕𝑟 +

𝑢
𝑟 +

𝜕𝑢
𝜕𝑧 )] 2.50

𝜏 = 𝜇( ) [2𝑢𝑟 −
2
3 (

𝜕𝑢
𝜕𝑟 +

𝑢
𝑟 +

𝜕𝑢
𝜕𝑧 )] 2.51

𝜏 = 𝜇( ) [2𝜕𝑢𝜕𝑧 −
2
3 (

𝜕𝑢
𝜕𝑟 +

𝑢
𝑟 +

𝜕𝑢
𝜕𝑧 )] 2.52

𝜏 = 𝜇( ) (𝜕𝑢𝜕𝑟 +
𝜕𝑢
𝜕𝑧 ) 2.53

For a fully specified 𝑓, any translational velocity distribution function in Equation 2.19, Equations 2.20
to 2.22, and Equations 2.31 to 2.33 can be selected due to set closure [8]. For a general 𝑓, 𝜏 and 𝑞
become unknown quantities due to a problem with closure. The obtained Navier-Stokes equations are
only valid for low Knudsen numbers, as 𝑓 is an 𝒪(𝐾𝑛) expansion of 𝑓’s solution. At higher 𝐾𝑛, the
Navier-Stokes equations are incapable of explaining real gas behavior, as they do not show wall-slip
and wall-temperature jumps.
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2.4. Direct Simulation Monte Carlo (DSMC)
In the 1960s, Bird initially developed today’s main method to solve for rarefied flow numerically, Di-
rect Simulation Monte Carlo, to avoid the Boltzmann equation’s direct application with a probabilistic
approach [52]. Bird’s 1994 and 2014 monographs clearly explain the DSMC method, as in 1992, the
DSMC method was proven to mathematically solve the Boltzmann equation for a monatomic gas lim-
ited by an infinite particle number [52]. It is considered a particle method, where many real molecules
or atoms are represented by fewer simulation particles. Conventional computational grid cells are gen-
erated for the studied geometry. The particles’ motion is uncoupled from their collisions boosting the
computational efficiency for capturing the flow physics. Following the evaluation of their free motion
considering their independent velocities and the local time step, the collisions are then probabilistically
simulated per grid cell.

2.4.1. DSMC Models Overview
A brief overview of different DSMC models is presented in this subsection, as intermolecular collision
simulations’ accuracy is highly dependent on the collision model used. The hard-sphere model is the
simplest molecular model, but the variable hard-sphere, variable soft-sphere, generalized hard-sphere,
generalized soft-sphere and variable sphere models were more elaborate models also developed to en-
hance the simulation accuracy [45]. Additionally, the statistical inelastic cross section (SICS) models
for continuous and discrete internal energy, dynamic molecular collision (DMC) model, and Larsen-
Borgnakke (LB) model were introduced for polyatomic molecules, where energy transfer can occur
over translational, rotational, and vibrational degrees of freedom [45]. None of the mentioned models
are effectively universal, as models are application-specific and their beneficial accuracy could be coun-
tered by a larger computational load and limitations [45]. Considering their lone translational degree of
freedom, monoatomic flows are relatively easier for DSMC to simulate, applying useful molecular mod-
els such as variable hard-sphere and variable soft-sphere [45]. Phenomenological energy exchange
models, such as Larsen-Borgnakke, are useful for polyatomic molecules [45].

The models are introduced in order based on their relative level of intricacy. The hard-sphere
model’s simplicity is drawn back by its unrealistic representation [45]. Based on the inverse power
law (IPL) potential, where the intermolecular repulsive force is solely accounted for, the variable hard-
sphere model involves a variable collision cross section, though it abides by the hard-sphere model’s
isotropic scattering law [45]. The variable soft-sphere model, which is also based on the IPL potential,
was developed to make up for the variable hard-sphere’s disadvantages [45]. At lower temperatures,
the intermolecular attractive force is very important, though it is ignored due to its added computational
and mathematical complexity [45].

Therefore, more accurate models including both intermolecular attractive force and intermolecular
repulsive force were developed based on intermolecular potentials [45]. The generalized hard-sphere
model, which is based on the Lennard-Jones (LJ) attractive-repulsive potential in a similar way to how
the conventional variable hard-sphere and variable soft-sphere relate to the IPL potential, uses the
hard-sphere model’s scattering law, though the total cross section variation as a function of relative
translational energy is represented by approximated parameters by the measured real gas transport
properties’ least-square curve data fitting [45]. The generalized soft-sphere model, which is closest
to a universal collision model, computes the collision cross section as in the generalized hard-sphere
model, though it uses a soft-sphere model’s scattering law and is based on the Stockmayer potential,
which is based on the LJ potential, but can handle polar molecules’ polarization in addition to the
nonpolar molecules in rarefied flows [45]. The generalized hard-sphere model and generalized soft-
sphere model involve a significant computational load, so they are not too commonly applied, but
more computationally efficient modifications exist and could be promising with development [45]. The
variable sphere model, which has been proven efficient for rarefied flow DSMC, employs a generally
different strategy assuming that instead of every molecular collision’s scattering law, the diffusion and
viscosity cross sections influence the macroscopic transport phenomena and properties [45]. The
variable sphere model is also more general, as the total collision cross section and deflection angle
expressions could in theory be derived by using any realistic intermolecular potential [45].

For polyatomic molecules, the most common DSMC energy exchange scheme is of the LB model,
as it has been further developed to work with the discrete vibrational levels and electronic excitations
using a quantum approach [45]. The macroscopic chemistry method has been developed to become
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the most used method in chemical-reaction modeling for DSMC rarefied flows with chemistry in near
equilibrium and nonequilibrium [45].

The above methods have been used in DSMC simulations with success, though the variable hard-
sphere and variable soft-sphere models in addition to the LB model for energy exchange are the main
models implemented, as they provide relatively convenient numerical computations with practical accu-
racy [45]. For the scope of work considered, the DSMCmodel used, as part of dsmcFoam, is explained
in Subsection 2.4.2.

2.4.2. OpenFOAM dsmcFoam(+) Solver
OpenFOAM is an open-source C++ toolbox for numerical solvers and pre/post-processing utilities that
incorporates computational fluid dynamics (CFD). For achieving the comparison between MEMS and
conventional thrusters for small spacecraft micropropulsion, dsmcFoam, which is a popular DSMC
solver designed in object-oriented C++ for OpenFOAM, will be used and modified as needed, though
other DSMC software is also available. It is a solver that can handle transient multi-species flows. The
main unique features of this explicit time-stepping stochastic particle-based solver include its comple-
mentary open-source nature, practical ability to run unlimited parallel simulations, and freedom of 2D
and 3D geometrical application. The dsmcFoam solver is based on adjustments from a relatively more
computationally expensive pre-existing deterministic molecular dynamics (MD) OpenFOAM solver for
the individual particles’ classical (Newton’s) equations of motion and works similarly to other solvers
despite the uncommon Lagrangian nature of DSMC in OpenFOAM. In addition to the MD solver’s main
capabilities, arbitrary geometries can be used for particle initialization and unstructured arbitrary poly-
hedral meshes for particle tracking [47]. Its explicit time-stepping model including stochastic molecular
collisions is suitable for rarefied flows [52]. The solver’s code is structured hierarchically with the cod-
ing block ability for derived classes to directly inherit base classes. It can also be combined with other
solvers. Some of dsmcFoam’s features include:

• Steady and transient models [47].

• Unlimited parallel simulations [47].

• Arbitrary 2D and 3D geometries [47].

• Sub-cell generation promoting nearest neighbor collisions automatically [47].

• Arbitrary gas species number [47].

• Variable hard sphere (VHS) collision and Larsen–Borgnakke internal energy redistribution models
[47].

• Freestream flow, diffuse/specular wall reflection, and periodic boundaries [47].

dsmcFoam+ (dsmcFoamPlus), a newer version of the same dsmcFoam solver, but is not included in
the standard updated OpenFOAM package and needs to be installed additionally, includes all the func-
tionalities of the original one plus subsonic pressure boundary conditions, chemical reactions, molec-
ular vibrational and electronic energy modes, arbitrary axisymmetric geometries, gravitational force
controller, mass flow rate measurement, simulation quality reports, and dynamic load balancing, which
is controlled in [case]/system using balanceParDict and loadBalanceDict and allowing the computation
of the maximum present level of parallel load imbalance 𝐿 [52]. To clarify, dsmcFoam has been
available with the official release of OpenFOAM for a while (since OpenFOAM version 1.7), but addi-
tional and dsmcFoam related developers (Micro & Nano Flows Group) separately improved the solver
under the name of dsmcFoam+ and did not include it in any of the official OpenFOAM releases yet.
The scope of this thesis focuses on generally sufficient features already available and attainable in
dsmcFoam, though dsmcFoam+, which is fundamentally based on dsmcFoam, allows using the latest
and most useful techniques to achieve higher quality results, so it is ultimately used.

The directory structure of dsmcFoamwith the submodel source code locations is shown in Figure 2.2
[47]. Concerning the general solution, the mesh is generated for the given geometry. From experience
with DSMC, the grid cell (Δ𝑥 ) and time step (Δ𝑡 ) sizes should generally be fractions of the mean
free path and mean collision time respectively [47]. Their approximations could be found as:
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Figure 2.2: dsmcFoam directory structure [47]

Δ𝑥 ≤ 𝜆
3 , 2.54

Δ𝑡 = 𝜉𝜆
�̄� , 2.55

where 𝜉 is a fraction for the time step size to be a fraction of the calculated mean free time, which
is the mean time between collisions, at mean stream conditions and �̄� is the mean thermal speed [26].
To obtain the mean free path (𝜆) for the variable hard sphere (VHS) molecules used, Equation 2.56 is
used, while Equation 2.57 is used for the mean thermal speed.

𝜆 = 2(5 − 2𝜔)(7 − 2𝜔)
15 ( 𝑚

2𝜋𝑘𝑇) (𝜇𝜌) 2.56

�̄� = √8𝑘𝑇𝜋𝑚 2.57

Here, 𝜔 is the temperature coefficient of viscosity, 𝑚 is the atomic mass given by dividing the molar
mass (𝑀) by Avogadro’s number (𝑁 ), 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 𝜇 is the
dynamic viscosity, and 𝜌 is the density [47]. For proper movement and collision steps decoupling, the
time step size should be smaller than the mean collision time, which is the successive particle collision
time on average [54]. The time step size must not allow the DSMC particles to skip grid cells at the
most probable molecular speed for sufficient interaction with other particles. The Courant-Friedrichs-
Lewy number (𝐶𝐹𝐿) can be defined in DSMC to physically provide a time step size allowing particles to
remain within their grid cell ensuring sufficient interaction for accuracy rather than CFD’s general usage
for stability [35]:

𝐶𝐹𝐿 =
𝑐 Δ𝑡
Δ𝑥 < 1, 2.58

where 𝑐 is the most probable molecular speed given as:

𝑐 = √2𝑅 𝑇𝑀 , 2.59
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where 𝑅 is the universal gas constant and 𝑀 is the molecular mass. Then, the boundary condi-
tions and flow properties are set. The utilities for dsmcFoam are the pre-processing tool dsmcInitialise
generating the initial DSMC particle configurations in the geometry, DSMC solver dsmcFoam, and post-
processing tool dsmcFieldsCalc that evaluates the intensive and extensive fields, which can also be
run in parallel [47].

Initialization
First, the pre-processing and setting the geometries, particle velocities and types, such as species,
mass, and internal energy parameters is performed. Then, the macroscopic parameters, temperature,
velocity, and density, are defined with the possibility to assign different values along a nonuniform
mesh. The dsmcFoam solver then places pre-located particles with energies and positions that macro-
scopically return the user’s set parameters [52].

DSMC Model Algorithm

Figure 2.3: DSMC time-integration scheme flow chart [52]

Using an explicit time-stepping scheme, the particles position can be computed over time. For a
𝑡 → 𝑡 + Δ𝑡 single time-step, all DSMC solvers use the algorithm shown in Figure 2.3 and explained
below [52]:

1. OpenFOAM’s built-in particle tracking algorithm, which manages the particle movements over
the mesh faces and boundaries, is used to update the positions for all 𝑁 particles in the domain,
where the move step for the 𝑖th particle is determined from its equation:

𝑟 (𝑡 + Δ𝑡) = 𝑟 (𝑡) + �⃗� (𝑡)Δ𝑡 = 𝑟 (𝑡) + Δ𝑟 , 2.60

where 𝑡 is time and �⃗� is the velocity vector.

2. Every computational cell’s list of particles is updated in preparation for the collision computations.

3. Calculate the number of collisions to apply for every computational cell.

4. Using the set binary collision model, the collisions are executed.
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5. Particle positions, velocities, internal energies, etc. are sampled to provide the set macroscopic
parameters.

6. Iterate from the first step using the new 𝑡 = 𝑡 + Δ𝑡 until 𝑡 is achieved.

Particle Tracking
OpenFOAM’s built-in particle tracking algorithm determines when the discrete particles transfer be-
tween the mesh’s cells and manages their interactions with the boundaries, securing that particles stay
within the domain and allowing different elaborate boundaries. Instead of using Δ𝑟 on particles im-
mediately, the mesh’s number of faces that are probably traversed is computed first. Afterwards, the
particle tracking is applied to every face and cell index in order, where the properties of every face
are evaluated after every intersection for checking the subsequent step. The particle moves on to the
following position with no extra steps in the case of an internal face, but an additional action is done
midstream of the move step if the face is a section of a boundary. For instance, the particle’s normal
velocity component direction is flipped if it touches a specular wall boundary and then it proceeds on
its path [52].

Binary Collisions
Following the particle motion computations and their updated tracked positions, they are reindexed due
to the collision and sampling routines’ informational dependence on every cell’s present occupancy.
Next, the collisions are probabilistically evaluated. For maintaining an accurate number of collisions,
one of the available methods mainly used in dsmcFoam is the no-time-counter (NTC) scheme devel-
oped by Bird [52]. The sub-cell techniques including newer transient-adaptive methods are utilized for
stimulating near-neighbor collisions. The following equation for a given cell determines the probability
(𝑃collision) of a particle 𝑖 to collide with particle 𝑗:

𝑃collision[𝑖, 𝑗] =
|c − c |

∑ ∑ |c − c |
, 2.61

where 𝑁 is the instantaneous number of DSMC particles in a cell [52]. However, an acceptance-
rejection scheme is utilized to pick the colliding pairs, as computing it for every pair is inefficient . The
NTC scheme chooses pairs in a cell at a given time step as:

1
2𝑉 𝐹 𝑁(𝑁 − 1)(𝜎 𝑐 )maxΔ𝑡, 2.62

where 𝑉 is the volume of the cell, max represents the maximum value of all potential particle pairs
in a cell, Δ𝑡 is the time step size, and 𝐹 is the corresponding number of actual atoms or molecules
represented by individual DSMC particles [52]. For establishing near-neighbor collisions, particle 𝑖 is
picked randomly from all of the cell’s particles and 𝑗 is picked from the corresponding sub-cell. The
acceptance-rejection method is then applied to every collision pair 𝑖𝑗 to check if their collision is ap-
proved under the requirement:

(𝜎 𝑐 )
(𝜎 𝑐 )max

> 𝑅 , 2.63

where 𝑅 is a uniform random number picked between 0 and 1 [52]. When the colliding particle pair
is determined, the collision takes place. Possible reactions are checked for the determined colliding
particle pair in a chemical reaction model. The quantum-kinetic (QK) chemical reaction framework is
performed for dsmcFoam+, permitting the occurrence of dissociation, exchange, and ionization reac-
tions. Both velocities of the colliding particles in the pair are reset to simulate the collisions at their
unchanged position. Considering elastic collisions, where particles do not transfer rotational or vibra-
tional energy, the conservation of linear momentum occurs with a constant center of mass velocity,
c :

c =
𝑚 c +𝑚 c
𝑚 +𝑚 =

𝑚 c∗ +𝑚 c∗

𝑚 +𝑚 = c∗ , 2.64
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where 𝑚 stands for mass [52]. The conservation of energy occurs with retaining a constant relative
velocity magnitude:

𝑐 = |c − c | = |c∗ − c∗| = 𝑐∗ 2.65
c∗ could be solved for using a scattering angles equation along with Equations 2.64 and 2.65. The

scattering angles 𝜃 and 𝜙 are uniformly distributed over a unit sphere in a VHS gas. The elevation angle
𝜃 is uniformly distributed within an interval of [-1,1] and can be found using the following equations:

cos(𝜃) = 2𝑅 − 1 and sin(𝜃) = √1 − cos (𝜃) 2.66
The azimuthal angle 𝜙 is uniformly distributed between 0 and 2𝜋 and can be found using the fol-

lowing equation:

𝜙 = 2𝜋𝑅 2.67
The post-collision relative velocity’s three components can be calculated using:

c∗ = 𝑐∗ [(cos(𝜃))x̂+ (sin(𝜃) cos(𝜙))ŷ+ (sin(𝜃) sin(𝜙))ẑ] 2.68
Therefore, the post-collision velocities can be found:

c∗ = c∗ + (
𝑚

𝑚 +𝑚 )c∗ and c∗ = c∗ − ( 𝑚
𝑚 +𝑚 )c∗ 2.69

Inelastic collisions should be considered as well for the energy exchange between translational
and rotational modes in diatomic molecules with rotational energy. The phenomenological Larsen-
Borgnakke model is prevalent in DSMC for rotational energy exchange. A particular fraction of colli-
sions is assessed inelastically to find the rotational relaxation rate. Specifically, dsmcFoam+ allows
a user-defined rotationalRelaxation-CollisionNumber in [case]/constant/dsmcProperties as a constant
rotational relaxation probability, 𝑍 , where the rotational relaxation is checked as a collision is to occur
and is accepted and a new rotational energy is set for the particle under the following condition [52]:

1
𝑍 > 𝑅 2.70

For energy conservation, a relative decrease in the collision pair’s overall translational energy is
performed and the post-collision relative speed 𝑐∗ is updated using the equation:

𝑐∗ = √2𝜖𝑚 , 2.71

where 𝜖 is the particle pair’s overall translational energy following the rotational relaxation mod-
ification. The rest of the collision continues similarly from Equation 2.66 [52]. Additionally for energy
exchange between vibrational and electronic to translational modes, dsmcFoam+ employs the quantum
Larsen-Borgnakke model [52].

Sampling
After evaluating the collisions, the particle properties are sampled for time-averaging to then find the
macroscopic flow properties, which is generally the main purpose of DSMC simulations. The compu-
tational cell number density (n) is evaluated as:

𝑛 = 𝐹 𝑁
𝑉 , 2.72

where𝑁 is the time-averaged DSMC particle number in the cell within the measurement interval and
𝑉 is the volume of the cell. For a more elaborate explanation of finding the macroscopic fields from
specific measurements, refer to Bird’s 2013 book [13]. For a steady flow, a steady state simulation
is permitted with properties evaluated across a sufficiently large sample size to reach an acceptable
smaller statistical error, which is achievable using approximations from relations found in [28]. However,
repeating the simulation is required until a sufficiently large sample size is reached for a transient flow,
so that ensemble averaging can be done to obtain the results [52].
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2.5. OpenFOAM Continuum Compressible Flow Solvers
This section is intended to provide a brief overview of applicable OpenFOAM continuum compressible
flow solvers in case using dsmcFoam for the full model requires considerable improvement in compu-
tational time.

2.5.1. Governing Equations
For the continuum compressible flow solvers concerned, which differ in their numerical approach, the
general governing fluid equations solved in an Eulerian frame of reference include mass conservation:

𝜕(𝜌)
𝜕𝑡 + ∇ ⋅ (𝜌V) = 0, 2.73

Conservation of momentum (neglecting body forces):

𝜕(𝜌V)
𝜕𝑡 + ∇ ⋅ (𝜌VV) = ∇𝑝 + ∇ ⋅ 𝜏, 2.74

where 𝜌 is the mass density, V is the fluid velocity, 𝑝 is the pressure, and 𝜏 is the viscous stress
tensor from Boussinesq:

𝜏 = 2𝜇dev(D), 2.75

where 𝜇 is the dynamic viscosity, D is the deformation gradient tensor, and dev(D) is its deviator
component:

D = 1
2[∇𝑉 + (∇𝑉) ], 2.76

dev(D) = D− 13 tr(D)I, 2.77

where I is the unit tensor [37]. The conservation of energy equations include balance equations
using the sensible energy (𝑒 ) and total nonchemical energy (𝐸):

𝑒 = ℎ − 𝑝𝜌 = ∫ 𝐶 𝑑𝑇 − 𝑅𝑇 /𝑊, 2.78

𝐸 = 𝐻 − 𝑝𝜌 = 𝑒 +
1
2V ⋅ V, 2.79

where ℎ is the sensible enthalpy (ℎ = ∫ 𝐶 𝑑𝑇) and 𝐻 is the total enthalpy (𝐻 = ℎ + V ⋅ V), so
the energy balance equations are:

𝜕(𝜌𝑒 )
𝜕𝑡 + ∇ ⋅ [V(𝜌𝑒 )] + ∇ ⋅ q+ (𝑝I− 𝜏)∇ ⋅ V = 0 2.80

𝜕(𝜌𝐸)
𝜕𝑡 + ∇ ⋅ [V(𝜌𝐸)] + ∇ ⋅ q+ ∇ ⋅ [(𝑝I− 𝜏)V] = 0 2.81

The working gas is assumed to act as a one component (frozen mixture composition) calorically
perfect gas, which allows using the equations:

𝑒 = (𝐶 − 𝑅𝑊 )𝑇 = 𝐶 𝑇, 2.82

𝑇 = 1
𝐶 [(𝜌𝑅)𝜌 − 12V ⋅ V, ] , 2.83

𝑝 = 𝜌𝑅𝑊 𝑇 = 𝜌
𝜓 , 2.84
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where 𝜓 is the fluid compressibility, 𝑅 is the universal gas constant, and 𝐶 and 𝐶 are the specific
heats at constant pressure and volume respectively [37]. Fourier’s law can be used for the heat flux
(q):

q = −𝐾𝑇, 2.85

where 𝐾 is the conductivity and 𝑇 is the temperature. The conservation equations reduce to Euler’s
equations when the flow is inviscid for 𝜏 = q = 0 [37].

In compressible flow Reynolds-averaged Navier-Stokes (RANS) equations, Favre’s mass weighted
averages are utilized for mean quantity conservation equations, where any dependent variable 𝑓 can
be divided into mean and fluctuating components as 𝑓 = �̃�+𝑓 . Favre specifically averages the product
as 𝜌𝑓 = 0 instead of 𝑓 = 0, resulting in a mean value of:

�̃� = 𝜌𝑓
𝜌 2.86

Therefore, this averaging method can be used for the instantaneous conservation equations. The
mass and momentum conservation equations respectively become:

𝜕(𝜌)
𝜕𝑡 + ∇ ⋅ (𝜌Ṽ) = 0, 2.87

𝜕(𝜌Ṽ)
𝜕𝑡 + ∇ ⋅ [(Ṽ(𝜌Ṽ)] + ∇𝑝 − ∇ ⋅ (𝜏 + 𝜏 ) = 0, 2.88

where 𝜏 = 2𝜇 dev(D̃) [37]. Also, 𝜇 = 𝜇 + 𝜇 can be used when the mean deformation gradient
tensor D̃ is used for the molecular viscous stress tensor along with the turbulent dynamic viscosity
(𝜇 ) for building the turbulent Reynolds stresses [37]. The conservation of energy equations neglecting
molecular viscous heating become:

𝜕(𝜌�̃� )
𝜕𝑡 + ∇ ⋅ [Ṽ(𝜌�̃� )] − ∇ ⋅ (𝛼 ∇ℎ̃ ) + 𝑝∇ ⋅ Ṽ = 0, 2.89

𝜕(𝜌�̃�)
𝜕𝑡 + ∇ ⋅ [Ṽ(𝜌�̃�)] − ∇ ⋅ (𝛼 ∇ℎ̃ ) + ∇ ⋅ (𝑝Ṽ) = 0 2.90

where 𝛼 = 𝛼 + 𝛼 is the effective thermal diffusivity considering its the turbulent and local mean
molecular quantities [37]. The sensible enthalpy is ℎ̃ = �̃� + = �̃� + − Ṽ ⋅ Ṽ [37].

2.5.2. Solver Selection
OpenFOAM is also chosen due to its versatility. In OpenFOAM, pressure (e.g. sonicFoam) or density
(e.g. rhoCentralFoam) based solvers with segregated or coupled solutions for their governing equa-
tions are applied for compressible flow finite volume numerical solutions [37]. OpenFOAM applies
coupled equations through a segregated method, which is an applicable method as long as the com-
ponent coupling is not significant, as every dependent variable has an equation that is consecutively
solved, so scalar equations are used for every component in solving vector equations which allows for
convergence iterations [37].

sonicFoam, which is a transient solver that can handle transonic/supersonic turbulent compressible
gas flow, uses a non-iterative approach for implicitly discretized time-dependent flow equations coupling
[37]. The pressure implicit with splitting of operators (PISO) method, which works for incompressible
and compressible forms of the transport equations, considers pressure and velocity as dependent vari-
ables [37]. The PISO method essentially divides the solution process into a series of steps with the
decoupling of pressure and velocity operations, which would lead to equation sets that can be solved
by standard methods. Following every PISO step, the fields become more accurate estimates of the
difference equations’ actual solution based on a general order of accuracy considering the operation-
splitting number [37]. As the errors decrease and the general scheme’s stability is only slightly reduced
by the splitting procedure, iterations could be lowered, yet the implicit differencing advantage of allowing
greater time steps is maintained [37]. Numerical methods for high-speed compressible flow should be
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able to evaluate discontinuities like shocks and contact surface without misleading oscillations, which
is applied by many effective methods that employ Riemann solvers, characteristic decomposition, and
Jacobian evaluation for numerical flux determination, though it is challenging on a mesh of polyhedral
cells with an arbitrary number of faces [37]. Therefore, central schemes, such as the central-upwind
scheme in the rhoCentralFoam transient solver which can also handle turbulence, heat transfer, and
compressible flow, are used for accurate solutions without Riemann solvers. A finite volume discretiza-
tion is involved in rhoCentralFoam, which uses semidiscrete nonstaggered central schemes for colo-
cated (defined at the same set of discrete locations, such as the cell centers) variables prescribed on
a mesh of polyhedral cells with an arbitrary number of faces [24].

rhoCentralFoam proved better than sonicFoam in supersonic flow simulations in [37], considering
its simplicity, up to three times fewer computational grid cells, lower computational time, and adequacy
in interpolating flux for compressible flows where wave-transported properties are well accounted for
along with velocity-transported properties. rhoCentralFoam’s Minmod and van Albada limiters were
outperformed by the van Leer limiter, which allowed for optimal balance for oscillation-free fields, shock
capture, and needed computational grid cell number and cost. In the PISO loop, sonicFoam, which is
developed from an initially incompressible approach, uses the equation of state to couple pressure and
density leading to the need for the energy equation and applies decoupling of pressure and velocity,
though supersonic flows are dominated by the local quantities’ interactions [37]. However, these density
based solvers become less accurate for more incompressible flows at 𝑀 < 0.3, where the extended
PISO method could become more accurate, even with compressibility effects from quick temperature
distribution changes and large density variations possibly from chemical reactions [37].

Therefore, considering that the decision to use another solver is to reduce the computational load
and since the modeled flow is mostly expected in the compressible subsonic regime mainly in the
treated region from the inlet to the throat of the nozzle, the density based solver, rhoCentralFoam,
would be chosen.

The rhoCentralFoam compressible flow Navier-Stokes solver algorithm is presented below, where
v is the fluid velocity, v̂ = 𝜌v is the momentum density, 𝐸 is the total energy, �̂� = 𝜌𝐸 is the total energy
density, S is a vector perpendicular to the face surface pointing outwards of the owner cell and its
magnitude denotes the face’s area with 𝑓+ and 𝑓− being the directions of +S and −S respectively,
𝐾 is the conductivity, 𝑝 is the pressure, 𝑇 is the temperature, 𝛾 is the specific heat ratio, and 𝜏 is
the viscous stress tensor, where explicit treatment is applied for its terms with intercomponent coupling
(𝜏 = 𝜇 [(∇u) − ( ) tr(∇v)𝐼]) [24]. The overall computational method is more elaborately described
in [24].

rhoCentralFoam Compressible Flow Solver Algorithm [24]

while 𝑡 < 𝑡 do
Set 𝑡: = 𝑡 + Δ𝑡
Evaluate 𝜌 ±, v̂ ±, and 𝑇 ± from 𝜌, v̂, and 𝑇 using van Leer limiter
Calculate: v ± = v̂ ±/𝜌 ±; 𝑝 ± = 𝜌 ±𝑅𝑇 ±; 𝜙 ± = S ⋅ 𝑣 ±; 𝑐 ± = √𝛾𝑅𝑇 ±
Calculate convective derivatives and ∇𝑝 from 𝑓± interpolates
Update 𝜏 , 𝜇, and 𝐾
Solve for 𝜌 using density equation
Solve for v̂ using inviscid momentum prediction
Update v from v̂ and 𝜌
Solve for v using diffusive velocity correction
Solve for �̂� using inviscid energy prediction
Update 𝑇 using �̂�, v, and 𝜌
Solve for 𝑇 using diffusive temperature correction
Update 𝑝 by 𝑝 = 𝜌𝑅𝑇

end while

2.6. Analytical Model
General parameter manipulations from the equations provided in this section can provide further basic
insight into propulsion and micropropulsion theory and the effects of different parameter alterations.
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2.6.1. Rocketry
The micropropulsion system analysis follows the same principles of larger propulsion systems, though
the assumptions might differ, such as in the inability to neglect friction forces [50]. The propellant
used for each thruster firing for maintaining attitude about a deadband, �̇� , in the case of a uniaxial
undisturbed rotation of a constant mass vehicle is:

�̇� = 𝑙 (Δ𝐼 )
4𝐽𝐼 Θ , 2.91

where 𝑙 is the moment arm, 𝐼 is the minimum impulse from thruster firing, 𝐽 is the moment of
inertia, and Θ is the angular position limit [11]. For attitude control, it is recommended to focus more
on decreasing 𝐼 than increasing the specific impulse, 𝐼 , where higher is better, as it measures
the propellant usage effectiveness in units of seconds, though it is a thrust per propellant unit weight
measurement and not time [50]:

𝐼 = 𝐹
�̇�𝑔 = 𝐼

𝑚𝑔 = √ 2𝛾𝑅𝑇
𝑔 (𝑘 − 1) , 2.92

where 𝐹 is the thrust, �̇� is the fuel consumption, 𝑔 is the surface gravitational acceleration [11], 𝛾
is the specific heat ratio, 𝑇 is the chamber temperature [17], and 𝐼 is the total impulse:

𝐼 = ∫ 𝐹𝑑𝑡 = Δ𝑝 = 𝑚𝑣 −𝑚𝑣 , 2.93

where 𝑝 is momentum. Often, the system-specific impulse, 𝐼 , is considered for evaluating propul-
sion performance:

𝐼 = 𝐼
𝑚 , 2.94

where 𝑚 is the system mass. The Tsiolkovsky rocket equation is used for self-propelled vehicles
that make use of the conservation of momentum to apply thrust by jetting part of its mass:

Δ𝑣 = 𝑣 ln(𝑚𝑚 ), 2.95

where delta-𝑣 (Δ𝑣) is a measure of impulse to perform a maneuver in the form of the maximum
velocity change under the absence of other acting external forces, 𝑚 is the wet mass (initial mass
including propellant), 𝑚 is the dry mass (final mass without propellant), and 𝑣 is the effective exhaust
velocity:

𝑣 = 𝐼 𝑔 , 2.96

When the consumed propellant mass is outstandingly smaller than the spacecraft’s overall mass
( << 1), Δ𝑣 can be evaluated through the ideal rocket equation’s (Equation 2.95) linearized approx-
imation [27]:

Δ𝑣 = 𝑔 𝐼
𝑚
𝑚 , 2.97

where 𝑚 is the spacecraft’s initial mass and 𝑚 is the propellant mass.
The basic rocket thrust equation is:

𝐹 = �̇�𝑣 + (𝑝 − 𝑝 )𝐴 , 2.98

where �̇� is the mass flow rate, 𝑣 is the exit velocity, 𝑝 is the exit pressure, 𝑝 is the external
pressure (assumed zero for vacuum in space), and 𝐴 is the exit area. The Mach number (𝑀) can be
evaluated as:

𝑀 = 𝑣
𝑐 , 2.99
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where 𝑣 is the velocity and 𝑐 is the speed of sound in the medium:

𝑐 = √
𝛾𝑝
𝜌 = √𝛾𝑅𝑇𝑀 , 2.100

where 𝑀 is the molar mass. For a uniform supersonic stream expansion around a corner to deter-
mine the flow characteristics, it is also possible to use continuum equations to calculate the angle after
which vacuum occurs, as it results in an infinite Mach number for the region with vacuum. A molecular
Mach number 𝑆 can also be defined as:

𝑆 = 𝑣
�̃� , 2.101

where 𝑣 is the flow speed and �̃� is the randommolecular motion’s approximated thermal speed [23].

2.6.2. Continuum Flow Equations
The following equations mainly apply to the continuum flow regime. The classical relationships for
continuum flow regime, energy conservation, and ideal gas consider the mass flow rate as:

�̇� = 𝑝 𝐴∗

√ 𝑇
Γ = 𝜌𝑣𝐴, 2.102

where 𝑝 is the pressure of the chamber, 𝐴∗ is the area of the nozzle throat, 𝑅 is the universal gas
constant, 𝑀 is the molecular mass, 𝑇 is the temperature of the chamber, and Γ is the Vandenkerck-
hove function of the specific heat ratio (𝛾) [27]:

Γ = √𝛾 (1 + 𝛾2 ) 2.103

The nozzle expansion ratio, which is the exit area (𝐴 ) to throat area ratio, is related to the pressure
ratio, which is the exit pressure (𝑝 ) to chamber pressure ratio [27]:

𝐴
𝐴∗ =

Γ

√ ( ) [1 − ( ) ]

2.104

The nozzle exit jet velocity (𝑣 ) is [27]:

𝑣 = √ 2𝛾
𝛾 − 1

𝑅
𝑀 𝑇 [1 − (𝑝𝑝 ) ] 2.105

The exhaust velocity can also be calculated as:

𝑣 = 𝑀 √𝛾𝑅𝑇 , 2.106

where 𝛾 equals [50];

𝛾 = 𝑐
𝑐 , 2.107

where 𝑐 is the specific heat capacity at constant pressure and volume with 𝑃 and 𝑉 as subscripts
respectively. Some of the parameters and their relative locations chosen might be based on assump-
tions and are not ideal, so it would be best to reach a more accurate solution using the most relevant
parameters possible as considered in the calculations to follow in the next chapters.

The expansion ratio can be used to determine the Mach number at the exit:
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𝐴
𝐴 = (𝛾 + 12 )

( )
𝑀 (1 + 𝛾 − 12 𝑀 )

( )
, 2.108

which can then be used to compute the temperature, pressure, and density at the exit or throughout
the nozzle [50]:

𝑇 = 𝑇 (1 + (𝛾 − 1)2 𝑀 ) 2.109

𝑝 = 𝑝 (1 + (𝛾 − 1)2 𝑀 ) 2.110

𝜌 = 𝜌 (1 + (𝛾 − 1)2 𝑀 ) 2.111

If the fully expanded Mach number (𝑀 ) is equal to 𝑀 , then the exit pressure equals ambient
pressure, otherwise the performance will be decreased due to shocks in the exhaust or nozzle [43]:

𝑀 = 2
𝛾 − 1 [(

𝑝
𝑝 ) − 1] 2.112

The residence time (𝑡 ) can be found as:

𝑡 = 𝑉
𝑄 , 2.113

where 𝑉 is the chamber’s volume and 𝑄 is the volumetric flow rate [33]:

𝑄 = 𝑣𝐴 2.114

The power needed to vaporize the water is:

𝑃 = �̇�Δ𝐻, 2.115

where 𝑃 is power, 𝐻 is enthalpy, and the change in enthalpy needed is equivalent to:

Δ𝐻 = 𝐻 − 𝐻 , 2.116

where 𝐻 and 𝐻 refer to the enthalpies of water at boiling temperature for vapor and initial temper-
ature for liquid respectively [50].

In a more elaborate approach, assuming that all the supplied energy heats the propellant, the total
energy (𝑄 ) is:

𝑄 = 𝑄 + 𝑄 + 𝑄 + 𝑄 , 2.117

where 𝑄 is the needed energy to reach vaporization temperature and 𝑄 is the needed energy
for vaporization upon reaching vaporization temperature considering the liquid propellant with mass 𝑚
[38]:

𝑄 = 𝑚𝑐Δ𝑇 = 𝑚𝑐(𝑇 − 𝑇 ), 2.118

𝑄 = 𝑚𝐿 , 2.119

where 𝑇 is the vaporization temperature in the chamber, 𝑇 is the initial temperature of propellant at
inlet, 𝑐 is the liquid’s specific heat, and 𝐿 is the latent heat of vaporization [38]. Considering the nonuni-
form temperature distribution in the chamber, it is challenging to analytically determine 𝑄 , which is the
needed energy for heating the remaining liquid in the chamber (𝜌𝑉 − 𝑚) to less than the vaporization
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temperature, where 𝜌 is the liquid’s density and 𝑉 is the volume of the chamber [38]. Finally, 𝑄 is the
heat for raising the vapor’s temperature after the liquid propellant is completely vaporized:

𝑄 = 𝜌𝑉 𝐶 (𝑇 − 𝑇 ), 2.120

where 𝐶 is the specific heat of gas at constant volume and 𝑇 is the chamber temperature at com-
plete vaporization [38]. The water entering the chamber’s temperature slowly rises when the heater
power is low, so 𝑄 will be high compared to 𝑄 and 𝑄 along with 𝑄 = 0 [38]. A larger amount of
liquid is vaporized for medium heater power, as 𝑄 and 𝑄 increase, 𝑄 decreases, and 𝑄 is still zero.
At the vaporization point of the chamber’s liquid (𝑚 = 𝜌𝑉 ), 𝑄 becomes zero and 𝑄 remains as zero
until the liquid undergoes complete vaporization, after which it increases for higher heater power, which
would result in constant 𝑄 and 𝑄 [38]. Considering �̇� as the chamber’s liquid mass flow rate that also
becomes vapor and exits the nozzle, the fluid leaves over time 𝜏:

𝜏 = 𝜌𝑉
�̇� , 2.121

which leads to the average power (𝑃 .):

𝑃 . =
𝑄
𝜏 = 𝑚

𝜌𝑉 �̇�(𝑐Δ𝑇 + 𝐿 ) +
�̇�
𝜌𝑉 (𝑄 + 𝑄 ), 2.122

However, realistic undesired heat transfer which does not heat the propellant has not been ac-
counted for. For the conduction rates (𝑞) on the top (𝑡) and bottom (𝑏) sides of the thruster considering
1D heat flow:

𝑞 = 𝐾 𝐴
𝑑 (𝑇 − 𝑇 ), 2.123

𝑞 = 𝐾 𝐴
𝑑 (𝑇 − 𝑇 ), 2.124

where 𝐴 is the average conduction cross sectional area, 𝑑 is the thickness, 𝑇 is the thruster’s
outside surface temperature, and 𝐾 is the thermal conductivity of the thruster material [38]. Convec-
tion, which would possibly be negligible in space, and radiation from the outside of the thruster (𝑡𝑜) are
expressed as:

𝑞 . = ℎ 𝐴(𝑇 − 𝑇 ), 2.125

𝑞 . = 𝜎𝐴(𝑇 − 𝑇 .), 2.126

where ℎ is the average convective heat transfer coefficient, 𝜎 is the Stefan-Boltzmann constant,
and 𝐴 is the effective convection and radiation surface area [38]. For steady state:

𝑞 = 𝑞 . + 𝑞 . 2.127

The heater power (𝑃) is:

𝑃 = 𝑉𝐼 = 𝐼 𝑅 = 𝑉
𝑅 , 2.128

where 𝑉 is the applied voltage, 𝐼 is the current, and 𝑅 is the resistance [38]. Considering the rejected
heat and Equation 2.122, the remaining power to vaporize the liquid is:

𝑃 . = 𝑃 − 𝑞 − 𝑞 , 2.129

Furthermore, Equation 2.129 can be reformulated as:

𝑃 − 𝑞 − 𝑞
�̇� = 𝑚

𝜌𝑉 [𝑐Δ𝑇 + 𝐿 ] + 𝐶 (𝑇 − 𝑇 ) + 1
𝜌𝑉 𝑄 , 2.130

where 𝐻 and �̇� are controllable and 𝑞 and 𝑞 are dependent on the chamber temperature 𝑇
on the left hand side (LHS). On the right hand side (RHS), 𝑚 and 𝑄 are unknown. increases as
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more liquid is vaporized. It becomes equal to one and Δ𝑇 saturates at Δ𝑇 = 𝑇 − 𝑇 , as complete
vaporization occurs at an input power level [38]. When the power is higher, 𝑄 becomes greater than
zero and all variables in Equation 2.130 become known to find 𝑇 , which by using thermodynamic
principles leads to the chamber pressure 𝑃 [38]. This means that the thrust can be approximated
using the heater power and liquid flow rate through Equation 2.98.

Compared to macroscale flow, the fluidic resistance (𝑅) is larger for microchannel flow because of
the channels’ small cross sectional area [33]. The resistance (𝑅) for a low aspect ratio rectangular
microchannel, where the width (𝑤) is comparable to the height (ℎ), is:

𝑅 = 12𝜇𝐿
𝑤ℎ [1 − ℎ

𝑤 (
192
𝜋 ∑

, ,

1
𝑛 tanh (𝑛𝜋𝑤2ℎ ))] , 2.131

where 𝐿 is the length of the microchannel [33]. The fluid resistance considering a high aspect ratio
rectangular microchannel is estimated as:

𝑅 = 12𝜇𝐿
𝑤ℎ 2.132

Additionally, the channel’s surface roughness should also be taken into consideration, as it relates
to 𝑅𝑒 through the Darcy friction factor (𝑓), which would be relatively large due to the low 𝑅𝑒 in this
small hydraulic diameter (𝐷 ) microfluidic flow resulting in large fluidic resistance [33], where 𝐴 is cross
sectional area, and 𝑃 is perimeter:

𝑓 = 64
𝑅𝑒 2.133

𝐷 = 4𝐴
𝑃 2.134

Therefore, the pressure drop could be lowered by adjusting the geometry as well. It is observable
by plotting 𝑓 against 𝐷 that 𝑓 asymptotically becomes low enough beyond 𝐷 = 500𝜇m and grows
quickly below this value [33]. The Darcy-Weisbach equation can be used to evaluate the pressure drop
(𝑝 ):

𝑝 = 𝜆 ( 𝐿𝐷 )(𝜌𝜇2 ) , 2.135

where 𝜆 is the friction coefficient [33]. Furthermore, a function based on molar mass dependency of
Knudsen-dependent correcting function coefficients has been developed in [22] to correct the pressure
drop of continuum flow numerical models with no slip boundary conditions in the slip flow and transition
regimes along the nozzle for their different studied gases (Xenon, Krypton, Argon, Neon) using four
gas-independent accommodation coefficients:

𝑆∗ = 𝑆

1 + ( . kg/kmol
)
.

𝐾𝑛 [1 + ( . kg/kmol
)

.
𝐾𝑛 ]

2.136

where 𝐾𝑛 is the numerical Knudsen number, 𝑀 is the propellant gas molar mass, and 𝑆∗ and
𝑆 refer to the gas-independent coefficient based corrected and numerical dimensionless pressure
drops based on a dimensionless number respectively:

𝑆 = Δ𝑝𝑤ℎ
𝑄𝜇𝐿 , 2.137

where Δ𝑝 is the nozzle pressure drop, 𝑄 is the volumetric flow rate, 𝑤 is the depth, ℎ is the height, 𝜇
is the dynamic viscosity, and 𝐿 is the nozzle length. When the collision cross section, which is the area
surrounding a particle in which the presence of another particle’s center would cause a collision, of the
gas is small, it leads to a greater deviation from the experimental results and can be better corrected
using a second degree polynomial and the function becomes more linear with large collision cross
sections [22]. Gas-dependent coefficients can also be determined for more accurate results and its
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procedure is explained in [22], though it basically involves an experimental reference for plotting 𝑓(𝐾𝑛)
as a function of 𝐾𝑛 and fitting the data using polynomial function coefficients (𝐴 and 𝐴 ), where:

𝑓(𝐾𝑛) = 𝑆
𝑆 − 1, 2.138

𝑓(𝐾𝑛) = 𝐴 𝐾𝑛 + 𝐴 𝐾𝑛, 2.139

Then, Knudsen function coefficients (𝐶 and 𝐶 ) are determined to solve for 𝑆 :

𝐶 = 1
𝐴 and 𝐶 = 𝐴

𝐴 , 2.140

𝑆 = 𝑆
1 + (1 + 𝐶 𝐾𝑛 )

, 2.141

To reach the gas-independent coefficients, a power function of the form 𝐶 = ( ∗ ) is used for 𝐶
and 𝐶 by plotting them against the molar mass and fitting the data to determine the constants 𝑀∗, 𝑀∗,
𝛽 , and 𝛽 , so Equation 2.136 becomes:

𝑆∗ = 𝑆

1 + ( ∗ ) 𝐾𝑛 [1 + ( ∗ ) 𝐾𝑛 ]
2.142
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Methodology

3.1. General Modeling Properties and Procedure
Blender, the open-source 3D multiuse computer graphics creation suite software, is used to design
the model and create the geometry for OpenFOAM, as it allows for exporting as ASCII or binary and
Stereolithography (STL) file format input for meshing with STL regions, naming, refinement, and qual-
ity, such as in skewness, triangulation creation, and overlapping edges. The models are done using
the DSMC solver, dsmcFoam+, within OpenFOAM, which is an open-source C++ toolbox for numeri-
cal solvers and pre/post-processing utilities that incorporates computational fluid dynamics (CFD). Note
that OpenFOAM uses lower camel (Dromedary) case with an initial lowercase letter and capitalized first
letters of subsequent attached words. It is recommended to use dsmcFoam+ on Linux (Ubuntu) for a
more direct installation and native usage, as has been done in this work using the latest dsmcFoam+
version, which was downloaded and rather straightforwardly built on a supercomputer and personal
workstation following the links provided in [52]. Note that dsmcFoam+ slightly differs in its case setup
from OpenFOAM 6’s dsmcFoam. The converging section of the nozzle is generally expected to be
in the continuum flow regime, so rhoCentralFoam, which is a Navier-Stokes (NS) solver, could be
employed for that section to decrease the computational load which would incur from exclusively ap-
plying a DSMC solution, which would be more useful for the rarefied flow sections, though this option is
found to be unnecessary and a full DSMC simulation is used to provide more comprehensive results.
Data obtained from the numerical simulation including pressure, velocity, and temperature fields is to
be used to calculate the model’s properties, such as thrust and related performance efficiency terms,
among other parameters in Chapter 4. ParaView (from the additionally installed newer OpenFOAM 6
from the OpenFOAM Foundation and not dsmcFoam+’s OpenFOAM 2.4.0), the open-source program
for interactive and scientific visualization and data analysis qualitatively and quantitatively, is used as
OpenFOAM’s main post-processing tool. The methodology including the pre/post-processing work is
intended to be mainly comprehensive.

To reference, a Dirichlet-Dirichlet boundary condition state-based coupling would be used to share
the properties between both continuum and kinetic based models. Instead of using the continuum
based model for the converging section of the nozzle and kinetic based model for the rest of the model
as usually expected, equilibrium breakdown parameters (Equations 2.7 and 2.9) including the Knudsen
number would be considered to realize when continuum based models become no longer accurate.
If the interface considered between the models is chosen further upstream of its optimal conditions,
it might significantly increase the computational load, whereas it might not give the most accurate
solutions further downstream. A small overlap region solved using both solvers might also be applied to
split the models for a safer result. First, the Navier-Stokes model would be applied to the whole model,
which would result in less accurate results in the nonequilibrium regions. Second, the breakdown
parameters would be evaluated to determine the location of the interface dividing the DSMC andNavier-
Stokes regions. Third, the DSMC solver would be applied to the determined rarefied flow and possible
overlap regions and the Navier-Stokes to the continuum flow and possible overlap regions. Fourth, an
iteration would be used by evaluating the breakdown parameter in both regions and possibly adjusting
the interface multiple times to determine the final solution. A similar approach is taken in [18].

35
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The model studied is based on TU Delft’s VLM. The design will follow the referenced results of TU
Delft VLM models in Subsection 4.2.2, which would become especially helpful for further comparison,
as the referenced models are full continuum simulations done using ANSYS Fluent with an SST 𝑘 −𝜔
model and low Reynolds numbers and compressibility effects corrections. The thrusters are typically
made of seven heating sections in series that are 1.28 mm long in the direction of the flow, 3 mm wide
along the thruster’s cross section, and with 1 W of power each [16]. The satellite bus supplies 5 V
of voltage, so a current of 200 mA can provide the required heater power [16]. The heater might be
activated to reach the desired temperature, though that lowers its efficiency, or it could be reaching
the desired temperature during firing, which lowers the specific impulse [11]. Firing at a particular
time during heating might provide an optimal outcome, though it will add complexity to the design.
It is desirable to increase the velocity throughout the nozzle, so a de Laval nozzle is used, where
the subsonic gas speeds up in the converging section until reaching sonic speed at the throat, which
it continues accelerating from with supersonic speed in the diverging section. This requires careful
design considerations to obtain the desired flow. If a bend is included in the geometry (for the inlet), it
might result in an intrinsically modeled backflow (could also be due to rarefaction), which would need
to be further analyzed. The nozzles’ throats will have a sharp corner, which would lead to a wider
boundary layer decreasing thrust, though the results will remain comparable since it will be applied to
both MEMS and conventional thrusters. An angle of 30∘ is most common for the converging section
of a conventional nozzle, though it is not as important as the diverging section’s angle for performance
[36]. Along with the diverging half angle, throat and exit diameters mainly constitute the most important
parameters of de Laval nozzles, as the mass flow rate can be set by the throat area and the ratio of
throat and exit areas can set the outlet velocity and pressure [36]. A choked flow with 𝑀 = 1 is desired
at the throat. The throat’s radius of curvature is usually set as the throat’s diameter [36]. Figure 3.1
shows a generic de Laval nozzle and some of its properties [36].

Figure 3.1: Generic de Laval nozzle ( and are the converging and diverging half angles respectively and is the throat’s
radius of curvature) [36]

As the MEMS VLM is quasi-2D, it has to be simulated as 3D to capture significant flow features
that would not be captured in a 2D simulation, while the axial symmetry will be benefitted from to re-
duce the simulations’ running time for the conventional convergent-divergent (CD) conical 3D nozzle
to be simulated as a 5∘ wedge. dsmcFoam+ simulations are set in a 3D Cartesian coordinate system
[52]. Since OpenFOAM uses the finite volume method for 3D simulations and needs special treatment
for lower dimensions, the conical de Laval nozzle is modeled as a wedge that can be rotated during
post-processing, as the dsmcFoam+ solver’s axisymmetric capabilities incorporate the unique consid-
erations for axisymmetric DSMC simulation particles in wedges with single cell thickness (in a similar
way to 2D) due to the increasing number of molecules along the normal to the axis of symmetry. Con-
sidering the relatively small angle of the 5∘ wedge, its outer curvature could be negligible, as it will be
rotated to 360∘. The transient phase in these nozzles occurs very rapidly, though both transient and
steady-state simulations would be useful to consider. Since this project mainly concerns the nozzle,
the following Table 3.1 summarizes the dimensional features of the nozzle models. It also includes the
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dimensions for the additional relative rectangular region outwards of the nozzle exit to study the plume,
where one of the rectangle’s shorter sides and the nozzle exit’s centers coincide. The nozzles are sim-
ulated for inlet pressures of 5 and 7 bar at inlet temperatures of 550 and 773 K for a total of four cases
for each nozzle. Notice that the ratio of higher pressure/temperature to lower pressure/temperature is
around 1.4.

Table 3.1: Modeling dimensions for nozzles including plume region

Nozzle
Inlet

Diameter
(mm)

Converging
Half

Angle (∘)

Throat
Diameter
(mm)

Diverging
Half

Angle (∘)

Outlet
Diameter
(mm)

Rectangle Length to
Nozzle Length Ratio
from Outlet Center

Rectangle Height/Width to
Nozzle Exit Height/Width
Ratio from Outlet Center

MEMS (Quasi-2D,
Simulated as 3D

With Rectangular Section
Depth of 0.1 mm)

2 45 0.025 30 0.8 3 5

Conventional (Conical 3D,
Simulated as Wedge

Using Axial Symmetry)
0.3 15 0.06 20 0.3 3 5

Using the properties from Table 3.1, the geometries of both MEMS and conventional nozzles and
their plume regions have been created in Blender and shown in Figures 3.2 to 3.4 and Figures 3.5 to
3.7 respectively. A perspective view is additionally presented in Figures 3.4 and 3.7 considering the 3D
MEMS and conventional nozzles and their plume region geometries, while the rest of the geometries
in the mentioned figures are shown in orthographic view. To note, as Blender is not generally used
for CFD modeling and may need tricks to attain some specifically desired results, a set of add-ons
are used to help create the used models and integrate practical modeling functionalities. MeasureIt is
used to present the mentioned rendered figures and their details. Mesh Align Plus is used to help in
accurately rotating the conventional nozzle’s wedge model. Snap Utilities Line is used to ease making
lines and snapping them. tinyCAD Mesh tools is used to allow the creation of vertices at lines’ points
of intersection. Rheologic STL export is used to allow exporting all objects as separate STL files with
readily desired file content.
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Figure 3.2: MEMS nozzle geometry

Figure 3.3: MEMS nozzle and plume region geometry

Figure 3.4: Perspective view of MEMS nozzle and plume region geometry
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Figure 3.5: Conventional nozzle geometry

Figure 3.6: Conventional nozzle and plume region geometry

Figure 3.7: Perspective view of conventional nozzle and plume region geometry
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3.2. OpenFOAM/dsmcFoam+
As commonly done in OpenFOAM, dsmcFoam+ usage starts with a new DSMC case, which has a
standard file structure with a case directory containing the system and constant directories, which con-
sist of most of the running parameters and physical domain data controlling dictionaries respectively
[52]. dsmcFoam+ problems are often considered N-body simulations, where a number of objects and
their interactions are simulated over time [52]. Usually, problems have less data to store for every dis-
crete system body, such as particle position, though the DSMC particle data amount could be higher
and composed non-homogeneously, as it might include velocity and rotational, vibrational, and elec-
tronic energy among others possibly depending on whether the particles considered are for atoms or
molecules [52]. An individual dsmcCloud class extended from Cloud, the base OpenFOAM Lagrangian
class, contains most of the memory data stored in dsmcFoam+, where its instantiation creates a doubly-
linked list with stored pointers to parcels (particle collection), which are mutable class instantiations
extended from Particle, the base OpenFOAM class [52]. In fact, most of dsmcFoam+’s classes are
derived from existing (especially Lagrangian) OpenFOAM classes with specialized classes developed
for certain functionalities [52].

3.2.1. blockMesh
The grid generation follows the geometry creation. First, a background mesh needs to be created,
which is achieved using blockMesh. blockMesh is a basic OpenFOAM mesh generator similar to
GAMBIT, though it generates the grid from its blockMeshDict dictionary in constant/polyMesh and not
natively using a graphical user interface (GUI). To note, the current version of dsmcFoam+ uses Open-
FOAM 2.4.0 and not OpenFOAM 6, which is why blockMeshDict is not in the system folder. blockMesh
decomposes the domain into a user specified number of 3D hexahedral blocks with possible grading,
straight edges, arcs, or splines [3]. Along with selecting the number of grid cells in each direction,
hexahedral blocks of 8 corner vertices each need to be specified for the domain. Vertices can be col-
lapsed to create the wedge blocks with under 8 vertices needed for the conventional nozzle’s geometry
by repeating them in the block vertices. To explain the upcoming code sections related to the mesh
generation, the points specified are simply on the right-handed local coordinate system (𝑥 ,𝑥 ,𝑥 ). It
is advised to be consistent in numbering as applied due to the importance of orientation in the block
section, so sketching and planning it beforehand would be helpful. The convertToMeters option is set
to 0.001 to scale from meters to millimeters for consistency with the work in Blender.

Starting with the conventional nozzle, the vertices (obtainable from the Blender STL ASCII files) and
their corresponding commented (//) numbers from 0 to 19 are (-0.447846 0 0) //0, (2.66233 0 0) //1,
(2.66233 0 0.065375) //2>1, (-0.447846 0.75 0) //3, (-0.447846 0 0.065375) //4>0, (-0.447846 0.747146
0.065375) //5, (2.66233 0.75 0) //6, (2.66233 0.747146 0.065375) //7, (-0.05 0 0) //8, (-0.05 0 0.065375)
//9>8, (-0.05 0.75 0) //10, (-0.05 0.747146 0.065375) //11, (0.329697 0 0) //12, (0.329697 0 0.065375)
//13>12, (0.329697 0.75 0) //14, (0.329697 0.747146 0.065375) //15, (0.05 0 0) //16, (0.05 0 0.065375)
//17>16, (0.05 0.75 0) //18, and (0.05 0.747146 0.065375) //19. OpenFOAM’s C++ convention applies
as counting starts from 0. Note that vertices 2, 4, 9, 13, and 17 are replaced with their repeated
collapsed vertices 1, 0, 8, 12, and 16 respectively. The created wedge blocks are hex (0 8 10 3 0 8
11 5) (80 180 1) simpleGrading (0.5 1.5 1), hex (8 16 18 10 8 16 19 11) (30 180 1) simpleGrading
(1 1.5 1), hex (16 12 14 18 16 12 15 19) (50 180 1) simpleGrading (2 1.5 1), and hex (12 1 6 14 12
1 7 15) (220 180 1) simpleGrading (1.2 1.5 1). To elaborate, the vertices defining the blocks and its
bottom and top planes follow the word hex (hexahedra), while considering the axes as specified in
(𝑥 ,𝑥 ,𝑥 ), which in this case have the axis of symmetry 𝑥 in the axial direction, 𝑦 in the radial direction,
and 𝑧 in the circumferential direction. For reference, the 𝑥𝑦 plane is the bottom side of the wedge,
though the conventional nozzle’s geometry could also be rotated so that the 𝑥𝑦 plane symmetrically
splits the geometry, where the positive and negative 𝑧 coordinate values are each related to 2.5∘ of
the geometry. In addition to initially creating the background mesh to exactly fit the extremities of
the geometry, the 𝑧 maxima were very slightly increased from 0.065367 to 0.065375 to allow better
snapping using snappyHexMesh, as that increase provides applicable space for snapping to both the
top and radial faces of the wedge. There are four blocks, which in order are the nozzle’s split converging,
throat, and diverging sections along with the plume region. The second entry of the structured grid
created includes a varying number of grid cells in the 𝑥 direction concentrated in the nozzle region and
specifically around the throat. The number of grid cells in the 𝑦 (180) and 𝑧 (1) directions is constant,
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as the structured grid is one cell thick in the circumferential direction for axisymmetric application.
Additionally, to improve the quality of the simulations while being mindful of the computational time, cell
expansion ratios in the form of simple grading are used, where refinement is applied in their respectively
defined directions to preserve the number of grid cells specified in the second entry while setting the
direction length ratio between the last and first grid cells. The axial grading is applied in the converging
and diverging blocks with an expansion ratio progressively halving the cell’s length towards the throat
along with the plume region’s weaker grading towards the nozzle. Additionally, radial grading is used
to boost the number of grid cells at the nozzle and 𝑥 flow axis, considering that the plume regions has
been preemptively made larger than expected necessary and the throat region’s smaller size needs
the extra refinement. Mainly, a smaller mean free path should have a respectively smaller grid cell size.

The MEMS nozzle’s blockMeshDict follows a very similar approach with vertices (obtainable from
the Blender STL ASCII files) and their corresponding commented (//) numbers of (-1 -2.1 -0.3) //0, (5.7
-2.1 -0.3) //1, (5.7 -2.1 0.4) //2, (-1 2.1 -0.3) //3, (-1 -2.1 0.4) //4, (-1 2.1 0.4) //5, (5.7 2.1 -0.3) //6, (5.7
2.1 0.4) //7, (-0.05 -2.1 -0.3) //8, (-0.05 -2.1 0.4) //9, (-0.05 2.1 -0.3) //10, (-0.05 2.1 0.4) //11, (0.67117
-2.1 -0.3) //12, (0.67117 -2.1 0.4) //13, (0.67117 2.1 -0.3) //14, (0.67117 2.1 0.4) //15, (0.05 -2.1 -0.3)
//16, (0.05 -2.1 0.4) //17, (0.05 2.1 -0.3) //18, and (0.05 2.1 0.4) //19. The created blocks are hex (0 8
10 3 4 9 11 5) (15 34 13) simpleGrading (0.5 ((0.5 0.5 0.32)(0.5 0.5 3.125)) 1), hex (8 16 18 10 9 17
19 11) (2 34 13) simpleGrading (1 ((0.5 0.5 0.32)(0.5 0.5 3.125)) 1), hex (16 12 14 18 17 13 15 19)
(9 34 13) simpleGrading (2 ((0.5 0.5 0.32)(0.5 0.5 3.125)) 1), and hex (12 1 6 14 13 2 7 15) (42 34
13) simpleGrading (1.2 ((0.5 0.5 0.32)(0.5 0.5 3.125)) 1). The axes as specified in (𝑥 ,𝑥 ,𝑥 ) in this
case similarly have 𝑥 in the flow direction, 𝑦 towards the converging and diverging sides of the nozzle,
and 𝑧 towards the flat top and bottom sides of the nozzle. For reference, the 𝑥𝑦 plane is the bottom
side of the nozzle and the 𝑥 axis is centered, though the 𝑥𝑦 plane could also be raised to intuitively
symmetrically split the geometry. The background mesh is a slightly larger fit than the extremities of the
geometry. Just like for the conventional nozzle, there are four blocks, which in order are the nozzle’s
split converging, throat, and diverging sections along with the plume region. The second entry of the
structured grid created includes a varying number of grid cells in the 𝑥 direction concentrated in the
nozzle region and specifically around the throat. The structured grid’s number of grid cells in the 𝑦 (34)
and 𝑧 (13) directions is constant. Furthermore, simple and multi-grading are used, where multi-grading,
which can be found nested within simple grading, can comparably preserve the number of grid cells
specified in the second entry while setting the direction length ratio between the last and first grid cells
applied in their respectively defined split regions and multiple directions, as the first number represents
the automatically normalized scale (fraction/percentage/absolute length) of the desired region, second
number represents the region’s automatically normalized scale (fraction/percentage) of grid cells, and
third number represents the region’s expansion ratio. The 𝑥 axis grading is applied in the converging
and diverging sections’ blocks with an expansion ratio progressively halving the cell’s length towards
the throat along with the plume region’s weaker grading towards the nozzle. Due to the significantly
small size of the throat, the ability to have multiple grid cells along its width becomes challenging, so
the multi-grading tool is used to increase the number of grid cells in that region by splitting at the 𝑥𝑧
plane with an identical number of grid cells on each side and grading in the 𝑦 direction towards it. The
reason why the section expansion ratios 0.32 and 3.125 are used is because they are reciprocals and
attain the desired grading identically on both sides.

To note, both conventional and MEMS nozzles’ 𝑥 and 𝑦 axes gradings applied towards the throat
desirably lead to more uniform squarish rectangles at the throat and extended sides. Since snappy-
HexMesh is used, one way to proceed is through specifying the boundary section outer patch faces with
vertices externally counterclockwise (right-hand rule), though then they will simply need to be erased
from the constant/polyMesh/boundary file along with similarly decreasing the number of boundaries by
the number of erased boundaries before running the simulation. Note that for the geometry used, it
might have been more time efficient to only use blockMesh for the simulations, though it is ultimately
done using the methodology mentioned as that would be easier and more flexible to use for more elab-
orate geometries in possible future optimization work. As for much of this chapter, further information
can be found in the OpenFOAM User Guide, which is easily obtainable online at [3]. It would also be
more convenient to use or modify reference, tutorial, or master dictionary files instead of writing them
from scratch. Following running blockMesh, the mesh can be visualized in ParaView (as explained in
Subsection 3.4). Respectively, Figures 3.8 and 3.9 show the conventional nozzle’s blockMesh from
the front and back. Similarly, Figures 3.10 and 3.11 do the same for the MEMS nozzle.
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Figure 3.8: Conventional nozzle blockMesh (front)

Figure 3.9: Conventional nozzle blockMesh (back)



3.2. OpenFOAM/dsmcFoam+ 43

Figure 3.10: MEMS nozzle blockMesh (front)

Figure 3.11: MEMS nozzle blockMesh (back)
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3.2.2. snappyHexMesh (with surfaceFeatureExtract)
snappyHexMesh, in comparison with blockMesh and its the structured grids, is a 3D hybrid mesh
generator with hexahedra and split-hexahedra automatically created from STL or Wavefront Object
(OBJ) files’ triangulated surface geometries (tri-surfaces) [3]. The grid roughly fits to the surface through
iterations starting from a background mesh. Cell layers can also be added, though they were not used
in this work, due to satisfactory resolution for capturing the expected turbulence phenomena and the
potentially added computational time. It can also run in parallel with iterating load balancing. After
the creation of the background base mesh using blockMesh and using the separate STL files for the
geometry previously created using Blender by placing them in the case directory’s constant/triSurface
sub-directory, snappyHexMesh is used to snap to the geometry and refine the MEMS nozzle’s grid, as
the conventional nozzle’s grid refinement using snappyHexMesh would cause an undesired refinement
in the 𝑧 direction, which is why it is preliminarily more refined in its base level mesh of blockMeshDict
compared to the MEMS nozzle’s grid. It is important to note that before running snappyHexMesh -
overwrite (to overwrite existing mesh/results files), surfaceFeatureExtract is run, where it extracts sharp
edges from STL file surfaces and is read from its dictionary at system/surfaceFeatureExtractDict. After
entering all the STL file names, both nozzles use extractionMethod, which defines how raw features
are extracted, of extractFromSurface and writeObj (OBJ write format options) set to yes, though the
extractFromSurfaceCoeffs, which marks features from edges with adjacent surface normals at an angle
below the set includedAngle, for the conventional nozzle have an includedAngle of 180, which selects
all edges, while 100 is used for the MEMS nozzle.

To explain the process for snappyHexMesh, the castellatedMesh and snap options are set to true
while addLayers is set to false in the system/snappyHexMeshDict dictionary file, followed by listing the
STL files with a triSurfaceMesh type in the geometry sub-dictionary. For the conventional nozzle, they
are inlet, converging, diverging, exterior (outlet), exteriorSides (extended from the nozzle exit), back-
Wedge, and frontWedge, while for the MEMS nozzle, inlet, converging, throat, diverging, exterior, and
exteriorSides (extended from the nozzle exit) are used. For Blender’s STL files, the MEMS nozzle is
also split with a separate throat region as the extra snappyHexMesh refinement is only done for the
MEMS nozzle’s grid in addition to the added need for refinement at the MEMS nozzle’s throat region
due to its smaller width, while the conventional nozzle’s throat region is not separated to maintain a
single cell thick mesh in the circumferential direction without snappyHexMesh refinement. A simply
castellated mesh will result in a Lego-like mesh, where an expected oblique line is decomposed into
jagged blocks like stairs rather than a ramp, before being smoothened by the snap option. The castel-
latedMeshControls sub-dictionary for both are standardly set, though the nCellsBetweenLevels, which
is the different refinement levels’ number of connecting buffer layers, is set to 1 for the conventional noz-
zle in contrast with 4 for the MEMS nozzle, which is mainly and simply due to the lesser need for it in the
conventional nozzle’s grid. As a recommended precaution, the approximate overall cell limit, maxGlob-
alCells, can be modestly set to prevent filling up the random-access memory (RAM) by stopping the
process if the refinement is overkill. No explicit feature edge refinements, which define the refinement
level for intersecting edge cells, are set, though the eMesh files of each of the geometry sub-dictionary
STL files are listed. This section also concerns the splitting of cells based on the set refinement levels
starting with the specified edge features. The surface based refinement’s first level number describes
the minimum level of refinement for every cell intersecting a surface, while the second maximum level
is for multiple surface intersecting cells with an angle greater than the resolveFeatureAngle, which re-
solves sharp angles and is standardly set at 30 for both nozzles. For the conventional nozzle, the levels
are all set to 0 to avoid refining in the circumferential direction as mentioned, considering that the refine-
ment of a 3D cell divides it in each direction into 8 smaller cells, with the inlet and exterior’s patchInfo
types set to patch, converging, diverging, and exteriorSides’ patchInfo types set to wall, considering
the potential outside of the spacecraft for evaluation, and backWedge and frontWedge patchInfo types
set to symmetry (specular walls or wedge types are also equivalent). However, for the MEMS nozzle,
the inlet with patchInfo type patch has level (2 2), converging and diverging with patchInfo types wall
have level (2 2), throat with patchInfo wall has (3 3) on the other hand, to boost the number of cells
and resolution along the small width of the throat, exterior with patchInfo type patch has level (0 0), and
exteriorSides with patchInfo type wall, considering the potential outside of the spacecraft for evaluation,
has level (0 0). Also, it is noticeable that the nozzle region is desired to be more refined than the plume
region, as implemented, to focus on the important regions for accuracy along with that the Lagrangian
nature of DSMC simulations which recommend a minimum number of particles to achieve for each grid
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cell and having a refined larger plume region will make it more difficult to accomplish that while keep-
ing the simulations achievable within a feasible time. Afterwards, the mesh selection entry includes a
locationInMesh point to specify which part of the mesh to keep after refinement while the rest of the
cells (with around less than 50% of their volume in the region) are removed, as in inside or outside the
refinementSurfaces. Since the locationInMesh point should be inside a cell and not on a face, it has
been calculated for the nozzles in meters where it is placed at the center of the throat’s geometry for
the MEMS nozzle (0 0 0.00005) due to its smaller scale and in the middle of the conventional nozzle’s
geometry by dividing its dimensions by 2 to result in (0.0015550875 0.000375 0.0000326835), though
other points could be chosen as well.

After the cell removal, the surface snapping is initiated, where cell vertex points are transferred
to the STL surface geometry to remove the castellation followed by internal mesh relaxation solving,
determining if any new vertices create mesh quality complications based on the set parameters to
then have their displacement decreased with a repeating process until the mesh quality is accepted.
Interestingly, the snapping settings (snapControls sub-dictionary) using implicit wrapping to preserve
features for these particular geometries with sharp edges prove to be much more effective in snapping
using a smaller number of iterations, where for the conventional nozzle, the nSmoothPatch, which is
the patch’s number of smoothing iterations to be followed by the projection onto the surface, tolerance,
which is the points’ relative distance to be attracted by the surface feature point/edge using the true
distance as its factor multiplied by the local maximum edge length, nSolveIter, which is the interior
snapped mesh displacement relaxation iterations number, nRelaxIter, which is the maximum snapping
relaxation iterations number limiting the scaling back iterations for reducing errors to stop prior to the
attaining correct mesh, and feature snapping nFeatureSnapIter, which is the eMesh files’ feature edge
snapping iterations number, are all set to 1. For the MEMS nozzle, nSmoothPatch of 2, identical toler-
ance of 1.0, nSolveIter of 25, nRelaxIter of 3, and nFeatureSnapIter of 10 are set. Both nozzles’ feature
snapping settings have implicitFeatureSnap, which finds geometric features through surface sampling,
set to false, since the explicitFeatureSnap and surfaceFeatureExtract are being used, and explicitFea-
tureSnap, which as the name implies enables explicit feature snapping, and multiRegionFeatureSnap,
which finds points on more than one surface to be used for explicitFeatureSnap, are set to true.

The mesh quality settings (meshQualityControls sub-dictionary), which specify when to undo to a
former accepted version, as the mesh quality is continuously checked during the snappyHexMesh run,
are set to generally standard values with maximum allowed non-orthogonality, which is the normal-
ized dot product of the face area vector with the connecting cell to adjacent cell centroids vector [30],
maxNonOrtho of 90, maximum allowed skewness, which is found as the distance from the face center
to the cell centers’ face intersection point normalized by the connecting cell to adjacent cell centroids
distance [30], maxBoundarySkewness of 20 and maxInternalSkewness of 4, maximum allowed con-
caveness, which inspects the interior face angles [30], maxConcave of 80, minimum pyramid volume,
which is an absolute pyramid cell volume and typically defined as a fraction of the expected smallest
cell volume as it is found from the face area vector and cell to face centers vector dot product [30],
minVol of 1e-13, minimum tetrahedral cells quality, which is obtained from cell decomposition deter-
mined from the face center, cell center, and variable base point minimum decomposition triangles as
it is found using the circumferential radius and tetrahedral volume [30], minTetQuality of 1e-30, which
is set as positive for applicable tracking such as for streamlines, minimum face area minArea of -1
(disabled), minimum face twist, in which the faces are split from the face center using triangles and it
is found as the cell to adjacent cell centers vector and triangular face area vector normal dot product
[30], minTwist of 0.02, minimum normalized cell determinant, which is found as the determinant of the
tensor of the evaluated face area vectors [30], minDeterminant of 0.001, face weight metric, which is
evaluated as the lesser of the projected owner or neighbor cell to face centers lengths divided by their
sum [30], minFaceWeight of 0.02, minimum face volume ratio metric, which is evaluated as the owner
and neighbor volumes’ ratio of their minimum divided by their maximum [30], minVolRatio of 0.01, and
face triangle twist, in which the faces are split from the face center using triangles and it is found as the
neighboring triangular element unit normals’ dot product [30], minTriangleTwist of -1. In its advanced
settings, the displacement scaling smoothing error distribution iteration number nSmoothScale is set
at 4 and error point scaling back displacement amount errorReduction of 0.75. The mergeTolerance,
which is the starting mesh’s total bounding box fraction, is set at 1e-6, as the write tolerance needs
to exceed its value as set by the ASCII data files’ writeFormat written to a writePrecision (write float-
ing point precision) of 7 significant figures in controlDict (Subsection 3.2.7). To note, especially with a
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starter’s lower sensibility of the algorithms and due to the edges’ sharpness, a lot of trial and error is
expected to be involved in this section.

After execution and as explained using ParaView (Subsection 3.4), the mesh can be visualized.
Figures 3.12 and 3.13 show the conventional nozzle’s final mesh from the front and back respectively,
while Figure 3.14 is a magnified shot of the nozzle section’s mesh. Furthermore, the patch names used
as colored differently are shown in Figure 3.15 and the Extract Cells By Region Filter is used to show
the (Y Normal (outside extraction side with extract intersected cells) at the geometrical throat radius
midpoint) cross section of the mesh and single cell thickness as shown in Figure 3.16. Respectively in
order, Figures 3.19, 3.20, 3.21, 3.22, and 3.23 show the same for the MEMS nozzle, though the Extract
Cells By Region Filters use the Y along with the Z Normal (inside extraction side with extract intersected
cells) at the respective throat dimensions’ midpoints to show the cross sections of the mesh. Also, the
conventional nozzle’s Figures 3.17 and 3.18 respectively show its rotated final mesh from the front and
back with the Angular Periodic Filter using a 5∘ Rotational Angle on Axis X.

Figure 3.12: Conventional nozzle final mesh (front)
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Figure 3.13: Conventional nozzle final mesh (back)

Figure 3.14: Conventional nozzle final mesh with magnified nozzle section
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Figure 3.15: Conventional nozzle final mesh with patch names (correspondingly differently colored)

Figure 3.16: Conventional nozzle final mesh with the Extract Cells By Region Filter used to show the (Y Normal (outside extraction
side with extract intersected cells) at the geometrical throat radius midpoint) cross section of the mesh and single cell thickness



3.2. OpenFOAM/dsmcFoam+ 49

Figure 3.17: Conventional nozzle rotated final mesh with the Angular Periodic Filter using a 5∘ Rotational Angle on Axis X (front)

Figure 3.18: Conventional nozzle rotated final mesh with the Angular Periodic Filter using a 5∘ Rotational Angle on Axis X (back)
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Figure 3.19: MEMS nozzle final mesh (front)

Figure 3.20: MEMS nozzle final mesh (back)
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Figure 3.21: MEMS nozzle final mesh with magnified nozzle section

Figure 3.22: MEMS nozzle final mesh with patch names (correspondingly differently colored)
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Figure 3.23: MEMS nozzle final mesh with the Extract Cells By Region Filters used to show the Y along with the Z Normal (inside
extraction side with extract intersected cells) at the respective throat dimensions’ midpoints to show the cross sections of the
mesh
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3.2.3. createCellZones and createFaceZones
From the microScaleTestCase tutorial in dsmcFoam+ (which is the initial source of many case files),
zonesDict can be obtained to run createCellZones and createFaceZones after creating the mesh. The
cellZones are used to set zoneNames for dsmcInitialise and fieldPropertiesDict’s dsmcMassFluxSur-
face fieldModel, which are discussed in Subsections 3.2.8 and 3.2.9 respectively. The faceZones are
used for dsmcFoam+’s valuable mass flow rate measurements functionality and fieldPropertiesDict,
which are more statistically accurate than calculating the mass flow rate using macroscopic velocity
and density values due to the significant number of particles crossing their faces [52]. It computes the
macroscopic fluxes for mesh faces from the particles passing them per time step, where OpenFOAM’s
particle tracking algorithm is utilized for this purpose [52]. To elaborate, consider the 𝑃 (owner) and 𝑄
(neighbor) to be cells sharing face 𝑓, where n is directed positive from 𝑃 to 𝑄. For every particle 𝑖
crossing any face 𝑓, an evaluation using 𝑠𝑔𝑛(c ⋅n ), where 𝑠𝑔𝑛 is a sign function as shown in Equation
3.1, is done to compute the direction of movement as positive (1), negative (-1), or neutral (0) referring
to movement along the relative face. With summing for face 𝑓, the average mass flow rate (⟨�̇� ⟩) can
be calculated (Equation 3.2). The mass flux is evaluated by dividing (⟨�̇� ⟩) by 𝐴 , the face 𝑓’s area.

𝑠𝑔𝑛(c ⋅ n ) = {
−1 if c ⋅ n < 0
0 if c ⋅ n = 0
1 if c ⋅ n > 1

, 3.1

⟨�̇� ⟩ = 1
𝑡

( → )

∑ 𝐹 𝑚 𝑠𝑔𝑛(c ⋅ n ), 3.2

where 𝑡 is themass flow rate averaging’s physical time, 𝐹 is every representative DSMC particle’s
real number of atoms or molecules, 𝑚 is the molecular mass, and Δ𝑁 (𝑡 → 𝑡 ) is the overall number
of computational particles passing face 𝑓 from time 𝑡 to 𝑡 + 𝑡 [52]. Note that face flux files for the
number of particles and their mass are generated along with the face mass flow rate measurements.

Both nozzles have similar layouts of cellZones and faceZones in their respective zone entries, where
four regions are created, region1, region 2, region 3, and regionAll representing the converging, diverg-
ing, plume, and combined sections respectively using option boundBox with each of their geometrical
extremities written in startPoint and endPoint as minimums and maximums respectively. For the con-
ventional nozzle, region1’s startPoint is (-0.447846e-3 0 0) and endPoint is (0 0.75e-3 0.065367e-3),
region2’s startPoint is (0 0 0) and endPoint is (0.329697e-3 0.75e-3 0.065367e-3), region3’s startPoint
is (0.329697e-3 0 0) and endPoint is (2.66233e-3 0.75e-3 0.065367e-3), regionAll’s startPoint is (-
0.447846e-3 0 0) and endPoint is (2.66233e-3 0.75e-3 0.065367e-3). The MEMS nozzle’s region1
startPoint is (-0.9875e-3 -2e-3 -0.2e-3) and endPoint is (0 2e-3 0.3e-3), region2 startPoint is (0 -2e-3
-0.2e-3) and endPoint is (0.67117e-3 2e-3 0.3e-3), region3 startPoint is (0.67117e-3 -2e-3 -0.2e-3) and
endPoint is (5.64717e-3 2e-3 0.3e-3), regionAll startPoint is (-0.9875e-3 -2e-3 -0.2e-3) and endPoint
is (5.64717e-3 2e-3 0.3e-3). For the faceZones, three faces are created for each of the two nozzles,
where face1 represents the outlet face of the first inlet cells, since the inlet face would result in null data,
face2 represents the face at the throat, and face3 represents the face at the nozzle’s outlet. The option
pointToPoint is used for both face1 and face2, though boundBox is needed for face3, as it needs to be
limited to the nozzle’s outlet and not extending to the exteriorSides, which would occur when pointTo-
Point’s planar method is used. Concerning the conventional nozzle, face1’s startPoint is (-0.441e-3 0
0 ) and endPoint is (-0.44e-3 0 0 ), face2’s startPoint is (-0.0001e-03 0 0 ) and endPoint is (0.0001e-
03 0 0 ), and face3’s startPoint is (0.329685e-3 -0.001e-03 -0.001e-03 ) and endPoint is (0.32985e-3
0.1501e-03 0.01307301e-03 ). Furthermore, the MEMS nozzle’s face1 startPoint is (-0.9645e-03 0 0 )
and endPoint is (-0.953e-03 0 0 ), face2 startPoint is (-0.001e-03 0 0 ) and endPoint is (0.001e-03 0 0
), and face3 startPoint is (0.665e-03 -0.4001e-03 -0.001e-03 ) and endPoint is (0.675e-03 0.4001e-03
0.101e-03 ). Note that the values are in meters. The numbers, which could be obtained manually and
iteratively, are based on values that would exactly capture the desired regions or faces.

The visualization can be done in ParaView (Subsection 3.4) after their respective command execu-
tions. Respectively for the conventional and MEMS nozzles, the cellSet, cellZone, and faceZone are
overlapping for the regions (Figures 3.24 and 3.26), as the faceSet and faceZones are for the faces
(Figures 3.25 and 3.27). Note that regionAll corresponds to region1, region2, and region3 combined.
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Figure 3.24: Conventional nozzle final mesh created cellZones (region1, region2, and region3 correspond to red, green, and
blue respectively)

Figure 3.25: Conventional nozzle final mesh created faceZones (face1, face2, and face3 correspond to red, green, and blue
respectively)
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Figure 3.26: MEMS nozzle final mesh created cellZones (region1, region2, and region3 correspond to red, green, and blue
respectively)

Figure 3.27: MEMS nozzle final mesh created faceZones (face1, face2, and face3 correspond to red, green, and blue respec-
tively)
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3.2.4. checkMesh
Executing checkMesh creates a general report about the mesh’s quality and properties, as its metrics’
details are explained in the mesh quality settings of the snappyHexMesh (with surfaceFeatureExtract)
Subsection 3.2.2. To generally note, a failure in mesh, multiply connected surfaces patch topology,
boundary openness, non-orthogonality, minimum volume, and face pyramids failures are more detri-
mental than skewness, aspect ratio, and minimum face area failures [30]. Cell and face sets worthy of
attention are written to constant/polyMesh/cells. To provide a more detailed validity report, checkMesh
-allGeometry -allTopology is additionally run where all (including non-finite-volume specific) geometry
and addressing are checked due to the respectively added options. Executing checkMesh in parallel is
also possible. First, checkMesh -allGeometry -allTopology is discussed as it is more comprehensive.
The conventional and MEMS nozzles’ mesh statistics are presented in Table 3.2.

Table 3.2: checkMesh statistics for conventional and MEMS nozzles, where ∶ ∶ refers to a vector of numbers from to
with constant increments of

Mesh
Statistics Points Internal

Points Edges Internal
Edges Faces Internal

Faces Cells Faces per Cell Overall Number
of Cell Types

Conventional
Nozzle 87491 0 217729

42750
(All Using Two

Boundary Points)
173581 86091 43342 5.991233 42962 (Hexahedra)

380 (Prisms)

MEMS
Nozzle 51343 N/A N/A N/A 130465 114188 39702 6.162234

38309 (Hexahedra)
1393 (Polyhedra with 6:3:18

Faces in Generally Decreasing Order
and Maximum at 12 Faces)

It is may be unexpected to have both axisymmetric conventional wedge and 3D MEMS nozzles’
grid cell numbers to be of the same order of magnitude, but it is important to note that the Lagrangian
nature of DSMC simulations lays great emphasis on the computationally expensive number of sim-
ulation particles. A high level of optimization is performed to determine the best feasible simulation
settings. Basically, 20 or more particles are recommended for the no-time-counter method to allow the
recovery of more precise collision statistics and possibly less are needed when the Knudsen number
is sufficiently high and collisions become less relevant [52]. This certainly presents a greater challenge
for both nozzles, and especially the MEMS nozzle, where greater rarefaction is expected beyond the
throat generally due to the geometry and constricting size of the throat. Therefore, this calls for a much
higher number of simulation particles along with relatively and acceptably larger grid cells past the
throat as necessarily attempted to be able to accurately represent the flow, the former of which leads
to a larger computational load. Considering this work’s goals, the numbers of grid cells used following
many iterations starting from well crafted finer meshes has proven to be adequate. Nevertheless, the
single cell thick mesh of the axisymmetric conventional nozzle allows for a significant particle number
decrease compared to when simulating its conical 3D shape.

In the topology section, both of the conventional and MEMS nozzle meshes’ metrics are OK with
one region. To note, the boundary definition evaluates the boundary mesh for uniform patch face
addressing, point usage checks for points that are unused, upper triangular ordering checks are done
for the internal faces, and face vertices checks tell whether the face vertices are unique and within
point range [30]. Note that 71 cells with two non-boundary faces written in the twoInternalFacesCells
set (located at the converging/diverging sides and mesh corners) for the conventional nozzle’s mesh.
In the patch topology for multiply connected surfaces, the used patches have ok surface topology and
are non-closed singly connected. In the geometry check, the values obtained for the conventional
nozzle’s mesh are a boundary openness of (-2.003388e-18 -9.382614e-17 -3.096731e-15), maximum
cell openness of 2.5483e-16, maximum aspect ratio of 78.86849, minimum face area of 4.975064e-13,
maximum face area of 7.593534e-10, minimum cell volume of 1.658353e-18, maximum cell volume
of 4.166844e-15, and total cell volume of 5.750106e-11, mesh non-orthogonality with maximum of
20.01674 and average of 0.6380222, maximum skewness of 2.420073, coupled point location match
average of 0, minimum/maximum edge lengths of 2.947834e-07/6.543724e-05, face flatness, where 1
is flat and 0 is butterfly, with minimum of 0.9684396 and average of 0.9999998, face interpolation weight
withminimumof 0.3113614 and average of 0.497019, and face volume ratio withminimumof 0.3316159
and average of 0.9767763. All meshmetrics areOK, except for 2 failedmesh checks concerning the cell
determinant (wellposedness) with a minimum of 1.092612e-22 and average of 1.261654e-07 to result
in 43340 underdeterminedCells with small determinant (< 0.001) found (relatively similar to checkMesh
-allGeometry -allTopology on blockMesh (Subsection 3.2.1) for the conventional nozzle along with a few
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twoInternalFacesCells on the mesh corners, as it and checkMesh return Mesh OK for both conventional
and MEMS nozzle meshes otherwise) and concave cells (using face planes) totaling 38 concaveCells
(located at converging/diverging sides). The data is given as is, considering its self-explanatory units.

For the MEMS nozzle’s mesh, a boundary openness of (-3.577964e-17 1.369116e-17 -3.558038e-
17), maximum cell openness of 3.582136e-16, maximum aspect ratio of 12.49687, minimum face area
of 6.446744e-12, maximum face area of 2.240224e-08, minimum cell volume of 7.683789e-17, max-
imum cell volume of 1.283997e-12, and total cell volume of 1.007964e-08, mesh non-orthogonality
with maximum of 50.4801 and average of 9.949445, maximum skewness of 3.663984, coupled point
location match average of 0, minimum/maximum edge lengths of 1.972777e-07/0.000189699, face
flatness, where 1 is flat and 0 is butterfly, with minimum of 0.8899717 and average of 0.9998181, cell
determinant (wellposedness) with minimum of 0.01403129 and average of 8.707453, face interpolation
weight with minimum of 0.1407596 and average of 0.4798149, and face volume ratio with minimum of
0.06509031 and average of 0.8949648 are found. All mesh metrics are OK, except for 1 failed mesh
check concerning the concave cells (using face planes) totaling 1948 concaveCells (located mainly in
the nozzle section). Additionally, with only one asterisk for attention instead of three, there are 88 faces
with concave angles between consecutive edges with a maximum concave angle of 68.99542 degrees
written to set concaveFaces (located at converging/diverging sides and around the throat section’s
connection). The conventional and MEMS nozzles at this point have non-constrained vector mesh
(non-empty, non-wedge) directions (1 1 1) and mesh (non-empty) directions (1 1 1). None of the given
errors resulted in an unfixable crashing simulation. A word of advice, a mesh check error in face tets
(low quality or negative volume decomposition tets (tetrahedrons) written as lowQualityTetFaces set
and checkable with checkMesh -allGeometry -allTopology) compared to OK face tets might result in
these Lagrangian simulations to indefinitely hang/freeze along with warnings/errors when running dsm-
cInitialise. Also, running checkMesh without the additional options shows no failures or written sets, as
all of the mesh quality metrics for both conventional and MEMS nozzle meshes are adequate. With the
proper judgement and attention to detail, ParaView should secondarily be used to check the mesh with
the rule of thumb that, if the mesh also looks good, then it probably is (to start with), noting that it also
has a Mesh Quality Filter for measuring geometrical cell fitness. Generally speaking, the meanings of
the mesh quality metrics and their preferred values for the grid are describable by each of their own
term’s self-explanatory relation with more intuitively balanced cells. Also, note that the evolution of the
mesh should also be preferably smooth.

For evaluation, the grid cell (Δ𝑥 ) and time step (Δ𝑡 ) sizes are calculated in Table 3.3 for the
four considered cases of pressure and temperature combinations of both conventional and MEMS noz-
zles. The pressure and temperature values are chosen for comparison with ANSYS Fluent results in
Chapter 4. As done in the Analytical Model Subsection 4.2.1, water’s density and dynamic viscosity
values are obtained at the selected inlet pressure and temperature from the US National Institute of
Standards and Technology’s (NIST) publicly accessible database of thermodynamic data. Then, Equa-
tion 2.56 is used to calculate the mean free path with a temperature coefficient of viscosity of 1.0855
obtained from a report by Sandia National Laboratories [10] to be discussed under dsmcProperties
Subsection 3.2.6, mass of a single water molecule as 2.991 ⋅10 kg found by dividing the molar mass
(𝑀 = 18.015 g

mol
) by the Avogadro constant (𝑁 = 6.022140857 ⋅ 10 mol ), and Boltzmann constant

(𝑘 = 1.38064852 ⋅ 10 J ⋅ K = 1.38064852 ⋅ 10 kg ⋅m ⋅ s ⋅ K ) followed by the maximum of
the inequality Equation 2.54 for the maximum recommended grid cell size. Afterwards, a rough method
to compute the used average grid cell size for the conventional and MEMS nozzles is implemented by
calculating the cube root (to obtain the meters dimension instead of volumetric cubic meters assum-
ing that the grid cell is a cube) of the total cell volume obtained from checkMesh divided by the total
number of cells in the mesh. Using this conservative method, the grid cell sizes used are a few orders
of magnitude larger than recommended, though this does not account for the greater concentration
of grid cells around the more important nozzle region and that larger grid cells are needed past the
throat, where the flow is more rarefied and the pressure is lower, to maintain a feasible simulation
runtime. Next, the mean thermal speed is calculated using Equation 2.57 to be used by the recom-
mended time step size calculation (Equation 2.55) along with the mean free path and a 𝜉, which is
a fraction for the time step size to be a fraction of the calculated mean free time, that is the average
time between collisions at mean stream conditions, of 1 for relative scaling. Note that the values of
the used parameters are repeated as used for Equation 2.56. In a different approach and perspective
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concerning the used grids, the mean free path can be recalculated from the used average grid cell
size for the conventional and MEMS nozzle meshes as the maximum grid cell size in the inequality
Equation 2.54 and then used in Equation 2.55 for the expected time step size. However, note that the
grid is nonuniform with a finer mesh at the nozzle region. The used time step size could be considered
close to the recalculated time step size multiplied by a fraction 𝜉 and an order of magnitude larger than
the recommended time step size before multiplying it by the fraction 𝜉. Its application and usage are
explained in the boundariesDict Subsection 3.2.5 and controlDict Subsection 3.2.7, as it has to do with
the stability of the simulation using a pressure boundary condition, especially when the grid cell size
used is not the recommended grid cell size. Also, the flow is expected to become cooler and more
rarefied along the nozzle. Note that the time step size should be smaller than the mean collision time,
which is the successive particle collision time on average, for proper movement and collision steps de-
coupling [54]. Furthermore, the grid cell and time step size calculations’ results for all four cases with
different pressures/temperatures are relatively comparable for the intended purposes in this section.
The Courant-Friedrichs-Lewy number (𝐶𝐹𝐿) number is also calculated using Equation 2.58 following
the most probable molecular speed (𝑐 ) calculation (Equation 2.59) using the universal gas constant
(𝑅 = 8.3144598J ⋅ K ⋅ mol = 8.3144598kg ⋅ m ⋅ s ⋅ K ⋅ mol ) and water molecular mass
(𝑀 = 0.018kg ⋅mol ). The 𝐶𝐹𝐿 number proves to be acceptable below one for the used average grid
cell and time step sizes compared to the maximum recommended grid cell and time step sizes due to
the relative smallness of the time step size, which means that the time step size can keep the DSMC
particles in their grid cells for a sufficient period at the most probable molecular speed for accuracy in
their physical interaction with other particles rather than CFD’s general usage for stability.

3.2.5. boundariesDict
Next, the setup for the cases after creating the meshes and before running the simulations is ex-
plained. In system/boundariesDict, the dsmcPatchBoundaries entry, which concerns immediate ac-
tions for patch boundary collisions, for both conventional and MEMS nozzle cases includes boundary
for the walls, where patchBoundaryProperties and its patchName used applies for converging, diverg-
ing, and exteriorSides along with the throat for the MEMS nozzle, due to the separated section used, as
it is correlated to mesh creation, and boundaryModel of dsmcDiffuseWallPatch is used, where the wall
interaction uses the Maxwellian distribution for a defined temperature to set a random microscopic ve-
locity. The impermeable solid surface wall boundary makes molecules rebound, though it is not ideal,
such as a pool ball bouncing off the rail cushion as in specular scattering. The transfer of momentum
and energy between a gas flow and solid surface is attributed to collisions of which’s process is named
gas-surface interaction [40]. To elaborate on this gas-surface interaction’s theoretical approach and its
implementation as a boundary condition in kinetic theory analysis, its modeling concepts of interaction
parameters and scattering kernel are described. The interaction parameters for gas-surface interaction
models greater in scale than a nanometer are applicable macroscopically as accommodation coeffi-
cients, which numerically explains the gas flow’s degree of kinetic or thermal accommodation with an
interacting solid surface and given for a molecular property (𝑄) (e.g. total energy or normal/tangential
momentum) as:

𝑎 = Φ −Φ
Φ −Φ

, 3.3

where Φ , Φ , and Φ refer to the incident, reflected, and full accommodation reflected fluxes of 𝑄
respectively [40].

Furthermore, the scattering kernel is described for the gas-surface interaction modeling concept of
which its formulation is a formal mathematical construct [40]. Consider that 𝐾(𝜉 , 𝜉 ) is a scattering
kernel for the probability density that an incident molecule with velocity 𝜉 reflects with velocity 𝜉 under
the same circumstances, as it links the incident (𝑓(𝜉 )) and reflected (𝑓 (𝜉 )) velocity distribution func-
tions as shown in the integral transform Equation 3.4 with independent gas-surface interactions and a
temporal evolution of 𝑓 relatively greater than the average interaction time [40].

𝜉 , 𝑓 (𝜉 ) = ∫
,

|𝜉 |𝑓 (𝜉 )𝐾(𝜉 , 𝜉 )𝑑𝜉 , 3.4
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Table 3.3: Grid cell ( ) and time step ( ) size calculations

𝑃 (bar) 5 5 7 7
𝑇 (K) 550 773 550 773

𝜇 (Pa ⋅ s) 0.000019269 0.000028573 0.00001924 0.000028576
𝜌 ( kg

m ) 1.9984 1.4069 2.8145 1.9726
𝜆 (m) 1.3906E-08 2.47063E-08 9.85889E-09 1.76229E-08

Maximum Recommended
Grid Cell Size (Δ𝑥 ) (m) 4.63532E-09 8.23545E-09 3.2863E-09 5.87431E-09

Total Volume from checkMesh
Geometry (Conventional Nozzle) (m ) 5.75E-11 5.75E-11 5.75E-11 5.75E-11

Total Number of Cells (Conventional Nozzle) 43342 43342 43342 43342
Used Average Grid Cell Size (Δ𝑥 )

(Conventional Nozzle) (m) 1.10E-05 1.10E-05 1.10E-05 1.10E-05

Total Volume from checkMesh
Geometry (MEMS Nozzle) (m ) 1.00796E-08 1.00796E-08 1.00796E-08 1.00796E-08

Total Number of Cells (MEMS Nozzle) 39702 39702 39702 39702
Used Average Grid Cell Size (Δ𝑥 )

(MEMS Nozzle) (m) 6.33E-05 6.33E-05 6.33E-05 6.33E-05

�̄� (ms ) 804.0531565 953.2200384 804.0531565 953.2200384
Recommended Δ𝑡 Using 𝜆

and 𝜉 of 1 (s) 1.72948E-11 2.59188E-11 1.22615E-11 1.84878E-11

𝜆 Recalculated
from Used Average Grid Cell Size (Δ𝑥 )

(Conventional Nozzle) (m)
3.30E-05 3.30E-05 3.30E-05 3.30E-05

Δ𝑡 Using Recalculated 𝜆
from Used Average Grid Cell Size (Δ𝑥 )

and 𝜉 of 1 (Conventional Nozzle) (s)
4.10E-08 3.46E-08 4.10E-08 3.46E-08

Used Δ𝑡 (Conventional Nozzle) (s) 5E-10 5E-10 5E-10 5E-10
𝜆 Recalculated

from Used Average Grid Cell Size (Δ𝑥 )
(MEMS Nozzle) (m)

1.90E-04 1.90E-04 1.90E-04 1.90E-04

Δ𝑡 Using Recalculated 𝜆
from Used Average Grid Cell Size (Δ𝑥 )

and 𝜉 of 1 (MEMS Nozzle) (s)
2.36E-07 1.99E-07 2.36E-07 1.99E-07

Used Δ𝑡 (MEMS Nozzle) (s) 5E-10 5E-10 5E-10 5E-10
𝑐 (ms ) 712.8154577 845.0560419 712.8154577 845.0560419

𝐶𝐹𝐿 Using Maximum Recommended
Grid Cell (Δ𝑥 ) and Time Step (Δ𝑡 ) Sizes 2.66 2.66 2.66 2.66

𝐶𝐹𝐿 from Used Average Grid Cell (Δ𝑥 ) and
Time Step (Δ𝑡 ) Sizes (Conventional Nozzle) 3.24E-02 3.85E-02 3.24E-02 3.85E-02

𝐶𝐹𝐿 from Used Average Grid Cell (Δ𝑥 )
and Time Step (Δ𝑡 ) Sizes (MEMS Nozzle) 5.63E-03 6.67E-03 5.63E-03 6.67E-03

Respectively, the conditions of positivity, normalization, and reciprocity are to be validated by the
formulation, where the reciprocity criterion represents the gas flow and solid surface interaction equi-
librium condition to be satisfied:

𝐾(𝜉 , 𝜉 ) ≥ 0, 3.5

∫
,

𝐾(𝜉 , 𝜉 )𝑑𝜉 = 1, 3.6

|𝜉 , |𝑓 (𝜉 )𝐾(𝜉 , 𝜉 ) = |𝜉 , |𝑓 (𝜉 )𝐾(−𝜉 ,−𝜉 ), 3.7

where 𝑓 is the Maxwellian velocity distribution at solid surface equilibrium, similar to Equation 2.45,
as 𝑓(𝜉)𝑑𝜉 is a molecule’s probability of having velocity 𝜉 inside the bounds of 𝑑𝜉:

𝑓 (𝜉)𝑑𝜉 = (2𝜋𝑅𝑇 ) exp(− 𝜉
2𝑅𝑇 )𝑑𝜉, 3.8
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The Maxwell model is the oldest and most popular kinetic theory gas-surface interaction model used
for DSMC and it applies to specular and diffuse interactions resulting frommolecular collisions with ideal
reflecting and accommodating surfaces respectively [40, 41]. Scattering distributions are probability
plots representing the gas-surface reflection or scattering angle between the surface and reflected
molecular velocity [41]. Figure 3.28 shows the Maxwell model scattering distribution polar plots for
a molecular beam with a set surface incident angle, where specular and diffuse reflections appear
as a relatively more protruding sharp oval and circle respectively, which means that the composite
distribution has a circular shape with an extended peak [41]. At identical beam molecular velocities,
the specular reflection angle peak becomes a line [41]. To note, other models also exist, as Maxwell’s
model, which became more prominent during the Space Age, becomes less accurate for high speed
molecular beam experiments, which result in uncentered petal shaped scattering distributions [41].

Figure 3.28: Molecular beam with a set surface incident angle Maxwell model scattering distribution [41]

Incident molecules reflect elastically from an ideally flat solid surface’s molecular structure for spec-
ular reflections, as it is assumed to happen for collisions of gas molecules, as rigid elastic spheres,
and surface peaks, with the solid molecules as rigid elastic spheres, where the molecule’s velocity sur-
face normal and tangential components are inverted and unaltered respectively, angles of reflection
and incidence are equal, and molecule thermal energy is assumedly kept unchanged [40]. Specular
reflections can provide information about the normal stress on the surface, but not the heat flux and
shear stress. For diffuse reflections, the incident molecule reflects/evaporates from the solid surface’s
molecular structure based on the local surface temperature Maxwellian velocity distribution after reach-
ing thermal equilibrium [40, 41]. For a short time, the surface absorbs an incident molecules’ fraction
(𝑎 ), which can describe the diffuse reflection probability and does not describe a flux ratio, to diffusely
reflect them afterwards, while the rest of the incident molecules interact through specular reflections
[40]. The criteria of positivity, normalization, and reciprocity are satisfied by its scattering kernel:

𝐾 (𝜉 , 𝜉 ) = (1 − 𝑎 )𝛿(𝜉 − 𝜉 , ) + 𝑎 𝑓 (𝜉 )|𝜉 ⋅ n|, 3.9

where 𝜉 , is the specular reflection molecular velocity and n is the solid surface’s local normal
unit vector [40].

Note that the following logic is valid for a variable initial wall/possible (regenerative along with poten-
tial film, curtain, transpiration, and radiation) cooling (to avoid melting in different conditions consider-
ing that the (stored) inlet microresistojet temperature could be assumed as 283.16 K [27]) temperature
along with decreasing viscosity (before the throat, while still being increased beyond it considering the
de Laval nozzle temperature behavior), as gas viscosity generally increases as temperature increases
due to the gas molecular collisions increase, contrary to the liquid viscosity decrease with a tempera-
ture increase, considering that it decreases the dominant cohesive force between the liquid molecules,
though in this case it is also used for analyzing the heat transfer as discussed (with alternatives and
next step recommendations) in Chapter 4’s Pressure and Temperature Subsection 4.1.4. The dsm-
cDiffuseWallPatchProperties have a set velocity of (0 0 0) and temperature of 300 (K), which is in
reference to an approximate average of the varying surface temperatures of the International Space
Station (ISS) in low Earth orbit due to similar operating conditions, where the Sun-facing side gets as
hot as 121 ∘C/394 K and drops to -157 ∘C/116 K on the dark side in the absence of thermal controls
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along with partial considerations for the thrusters’ possibly expected warmer operating conditions due
to the vessel [46]. Figure 3.29 shows the significant variation in surface temperatures on the ISS (-250
∘F/-157 ∘C/116 K to 250 ∘F/121 ∘C/394 K) compared to a normal house on Earth (-15 ∘F/-26 ∘C/247 K
to 110 ∘F/43 ∘C/316 K) [46].

Figure 3.29: International Space Station’s varying surface temperature range due to the Sun’s view factor compared to a normal
house on Earth [46]

Moreover, using patchName inlet and exterior in patchBoundaryProperties while separately set as
boundary for both conventional and MEMS nozzles, their boundaryModel is set as dsmcDeletionPatch
with dsmcDeletionPatchProperties as true for allSpecies. The dsmcDeletionPatch can act as an im-
mediate full deletion boundary patch for dsmcParcels (collection of particles) colliding with a boundary
face. It is applicable as a vacuum boundary condition as used for the exterior. As an additional note, se-
lectively erasing certain species while others undergo specular reflection can be done, so this boundary
can be used for different purposes as well. The flow for the outlet is assumed to exit only due to its high
speed (external particle thermal velocities are predictably not sufficiently high for reentering the compu-
tational domain) and otherwise vacuum conditions, while the stochastic flow at the inlet can realistically
go both ways, so for the boundary in the dsmcGeneralBoundaries entry, which concerns boundary
molecules time dependent actions, the generalBoundaryProperties patchName is inlet, the boundary
model is dsmcWangPressureInlet, and the dsmcWangPressureInletProperties include the typeIds of
(H2O), which is discussed in the dsmcProperties Subsection 3.2.6, moleFractions with H2O of 1.0, and
inletPressure and inletTemperature each independently set for all four combinations of 500000 (Pa) or
700000 (Pa) and 550 (K) or 773 (K) respectively.

Subsonic flow pressure driven implicit boundary conditions are available and applicable for rarefied
micro gas flows [53]. Of the various developed forms, the initially common particle flux conserva-
tion’s large statistical noise causes inaccuracies [53]. Recently, the theory of characteristics based
boundary condition forms, which is considered the most popular and efficient method, employs time
averaged macroscopic properties derived from boundary cells [53]. Note that the boundary conditions
are adapted for DSMC, but originate from continuum CFD boundary conditions, which do not account
for possible rarefied gas flow phenomena unobserved in continuum flows [53]. Usually, conventional
DSMC boundaries could be hypersonic and for typical MEMS flows, the particle thermal velocities are
expected to be greater than the stream velocity considering the boundary condition’s location, which
leads to the possibility of particles entering and leaving the boundary [53]. The macroscopic velocity,
temperature, and density must be known in DSMC to find the accurate boundary number flux, as the
equilibrium Maxwell-Boltzmann distribution (Equation 3.10), along with using Equations 3.11 and 3.12,
is used to compute the imposed particle flux (�̇�) at a surface normal angle (𝜃) for a boundary area (𝐴):

�̇�
𝐴 =

𝑛𝑉 {exp (−𝑞 ) + √𝜋𝑞[1 + erf(𝑞)]}
2√𝜋

, 3.10

𝑞 = 𝑉
𝑉 cos𝜃, 3.11
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𝑉 = √2𝑘𝑇𝑚 , 3.12

where 𝑉 is the local stream velocity, 𝑉 is the local most probable thermal velocity, 𝑛 is the bound-
ary number density, 𝑇 is the boundary macroscopic temperature, 𝑚 is the molecular mass, and 𝑘 is the
Boltzmann constant [53]. Note that the Maxwellian form boundary condition is assumed due to the dif-
ficulty of determining the boundary velocity distribution function form, as it may not be Maxwellian [54].
Additionally, the overall temperature generally derives the added particles’ translational and kinetic
energies, as the pressure can be found from the translational temperature, considering its exclusive
translational kinetic particle motion dependence, where ideal thermodynamic equilibrium, which could
be more difficult to achieve throughout the nozzle in this higher inlet to outlet pressure ratio and lower
aspect ratio compressible case, suggests that the gas has an overall temperature that is equivalent to
the translational and rotational temperatures [53]. Note that for typical MEMS applications, a pressure
driven gas flow results in expansion, cooling, and density drop, where the drop in thermal energy first
happens in the translational mode to be balanced with the rotational mode by intermolecular collisions
following a relative relaxation time, which is not high as a rotational relaxation [53]. However, the de-
crease of molecular collisions in more rarefied flows may cause the translational and rotational energies
to remain different, which would lead to a local translational energy and pressure drop relative to an
equilibrium gas with an identical density and total energy [53]. The used boundary condition assumes
rotational equilibrium at the inlet [53].

The upstream inlet boundary is based on theory of characteristics, where the gas pressure (𝑃 ) and
temperature (𝑇 ) are set and the ideal gas law is employed for computing the number density at the
inlet (𝑛 ):

𝑛 = 𝑃
𝑘𝑇 3.13

The boundary face (𝑓) at the inlet’s stream-wise (𝑢 ) and tangential (𝑣 ) velocities are computed
using the theory of characteristics:

(𝑢 ) = 𝑢 +
𝑃 − 𝑃
𝜌 𝑎 , 3.14

(𝑣 ) = 𝑣 , 3.15

where 𝑢 and 𝑣 are the associated boundary face cells’ first order extrapolations of stream-wise
and tangential velocities respectively, 𝜌 is the mass density, 𝑎 is the local speed of sound, and boundary
cell values are designated by the subscript 𝑗 [53].

Therefore, considering that the subsonic flow at the inlet is expected to be in the continuum regime
in contrast to the flow downstream, the pressure boundary condition for internal flows is used, which is
especially useful in microfluidics, where pressure boundary conditions at the inlet and outlet are usu-
ally provided, along with the temperature, considering them being easier to measure experimentally
compared to the typical DSMC velocity and determinable number density Dirichlet boundary condi-
tions usually employed for external flows using a farther outlet. To note, both boundary conditions
provide relatively comparable results when preliminarily tested, as the number density can be ob-
tained from the ideal gas law (Table 3.4 using Equation 3.13, where the Boltzmann constant 𝑘 =
1.38064852 ⋅ 10 J ⋅ K = 1.38064852 ⋅ 10 kg ⋅m ⋅ s ⋅ K ) and velocity from Table 4.5 as cal-
culated in the Analytical Model Subsection 4.2.1, though the pressure boundary condition is ultimately
used for the sake of possible accuracy and novelty. As an example of the dsmcFreeStreamInflowPatch
boundary model, it uses the typeIds of (H2O) and translationalTemperature, rotationalTemperature, vi-
brationalTemperature, and electronicTemperature possibly as the inletTemperature or 0 (K) as applica-
ble in order, and the 𝑥 velocity and numberDensities (for H2O) to be determined as mentioned and set.
Note that the inlet number density in Table 3.4 shows an increase with higher pressure and decrease
with higher temperature as expected.
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Table 3.4: Calculated inlet number density ( ) for the applied simulation cases using Equation 3.13

Inlet Temperature (𝑇 ) (K)
Inlet Pressure (𝑃 ) (bar) 5 7

550 𝑛 = 6.58452 ⋅ 10 molecules 𝑛 = 9.21833 ⋅ 10 molecules

773 𝑛 = 4.68498 ⋅ 10 molecules 𝑛 = 6.55897 ⋅ 10 molecules

3.2.6. dsmcProperties
The dsmcProperties dictionary can be found in the constant directory. Its general properties section in-
cludes setting a value for nEquivalentParticles, which defines the number of real gas atoms/molecules
represented by each DSMC simulation particle. Typically, a value is set to reach an expected mini-
mum of 20 particles per grid cell as explained in the checkMesh Subsection 3.2.4 [52]. In some cases
with generally uniform Knudsen number (rarefaction) and grid cell sizes, the average grid cell size as
found in Table 3.3 from the checkMesh Subsection 3.2.4 and molecule number density found from the
ideal gas law (Equation 3.13 for the simulation domain) can predict the maximum nEquivalentParticles
number by multiplying the average grid cell size in cubic meters per grid cell by the molecule number
density in molecules per cubic meter and then dividing the resulting molecules per grid cell value by
nEquivalentParticles in molecules per particle to obtain the final particle per grid cell value to be set
as 20 or above [52]. However, in the case of the simulated de Laval nozzles, their grid cell sizes vary
along with the Knudsen number (rarefaction) due to the accelerating flow and throat section, which
additionally results in the diverging section having less particles per grid cell compared to the converg-
ing section, along with the initially vacuum and larger plume region. Therefore, nEquivalentParticles
is ultimately set based on iterations with 3e4 and 1e9 for the conventional and MEMS nozzles respec-
tively. The general guidelines followed are through iteratively checking the grid cells’ DSMC particle
count after the throat in the diverging section, which makes it one of the major challenges for decreas-
ing computational time considering the Knudsen number increase along the nozzle. Additionally, the
chargedParticles and adsorption settings are set to false. Considering the axisymmetric properties, the
axisymmetricSimulation flag is set to false for the MEMS nozzle, while it is true for the conventional noz-
zle along with a radialExtentOfDomain, which is the maximum radial extremity of the wedge geometry,
of 0.00075 (m) and maxRadialWeightingFactor of 10000.0. As DSMC particles represent a number
of real atoms/molecules, radial weighting factors based on the radial position of grid cell centers are
used for the conventional nozzle’s axisymmetric simulation, where particles moving radially away from
or towards the radial center could probabilistically (depending on the old and new weighting factor ra-
tio) be discarded (due to the new larger weighting factor) or cloned (due to the new smaller weighting
factor) respectively. Particle duplication is relatively less straightforward in application than particle
deletion [14]. Typically for a steady flow, a global flow field duplication buffer and its internally randomly
located duplicate molecule appearance time delay are used to make it less probable for the coincident
duplicated molecules to collide with each other, where the copied molecule is put in the duplication
buffer and another molecule initially at its address is added to the flow following a random delay based
on the buffer size’s average value [14]. Since the weighting factors are cell-based, which depend on
the particle’s respective grid cell radius, a molecule traveling parallel to the axis of symmetry can en-
ter a grid cell that has a different height leading to a different associated weighting factor along with
that its usage has shown complications in retaining normal to the axis of symmetry flow gradients that
are smooth [14]. In addition to the typical scatter effects of axially symmetric flows and recommended
higher reference to innermost cell radii ratio, the generally recommended molecule-based weighting
factors, which depend on the molecule’s radius, might inefficiently need more intricate collision coding,
so that the grid cell’s model molecules constitute a varying real atom/molecule number [14]. Neverthe-
less, an average grid cell weighting factor for its respective molecules has shown a negligible flow effect
concerning the collision routines, where the number of molecular choices is multiplied by the average
weighting factor, though every collision is considered as the number of selfsame collisions equivalent
to the average weighting factor without needing to alter the collision procedures [14]. Locally, the radial
weighting factor (𝑅𝑊𝐹) is determined as:

𝑅𝑊𝐹 = 1.0 + 𝑚𝑎𝑥𝑅𝑎𝑑𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ( 𝑟
𝑟𝑎𝑑𝑖𝑎𝑙𝐸𝑥𝑡𝑒𝑛𝑡𝑂𝑓𝐷𝑜𝑚𝑎𝑖𝑛) , 3.16

where 𝑟 is the respective grid cell center radius from the axis of symmetry. Therefore, a higher
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maxRadialWeightingFactor or lower radialExtentOfDomain leads to a higher 𝑅𝑊𝐹 resulting in a greater
radial particle variance. Particles very close to the axis of symmetry (𝑟 ∼ 0) have an 𝑅𝑊𝐹 of approxi-
mately one and as 𝑟 increases, 𝑅𝑊𝐹 increases and fewer DSMC particles represent the real atoms/-
molecules. This is employed to rebalance the grid cell size’s particle per grid cell number difference,
where the wedge’s grid cells increase in size (volume) along the radial direction leading to more parti-
cles per grid cell away from the axis of symmetry, while a minimum of 20 particles per grid cell number
is required (as explained in checkMesh Subsection 3.2.4), which would result in a much more computa-
tionally expensive simulation due to the significantly higher number of particles needed if done without
the particle radial weighting factors [52]. As the radialExtentOfDomain option is based on the geome-
try, the maxRadialWeightingFactor needs to be calibrated to achieve a relatively uniform radial particle
number density by realistically checking the radial DSMC particle number density (dsmcRhoN) along
the geometry iteratively, where a higher maxRadialWeightingFactor is set if there are fewer particles
close to the axis of symmetry and vice versa. Note that for the conventional nozzle’s mesh, there is
a greater number of grid cells in the radial direction, which means that the smallest and largest grid
cells close to and away from the axis of symmetry becomes relatively smaller and larger with more grid
cells respectively, as the smallest and largest grid cells’ larger and smaller sections are respectively
allocated to other grid cells leading to a relatively greater size ratio between them and the need for a
greater maxRadialWeightingFactor. Also, the plume region’s larger size (radialExtentOfDomain) leads
to a smaller effect for 𝑅𝑊𝐹 inside the more important nozzle region, as shown in Equation 3.16, and
relatively larger grid cells in the radial direction, which are additional motives for setting a relatively
higher maxRadialWeightingFactor. Furthermore, the number of grid cells at the axis of symmetry is in-
creased by radial grading, considering the preemptively larger than expected necessary plume region
created and that the additional refinement is useful for the throat region’s smaller size, which leads to
relatively smaller grid cells near the axis of symmetry and larger needed maxRadialWeightingFactor.

Then, the suitable and widely used BinaryCollisionModel selected for accepted dual particle col-
lisions is LarsenBorgnakkeVariableHardSphere using generally standard LarsenBorgnakkeVariable-
HardSphereCoeffs with Tref of 300 (K) (as related to moleculeProperties), rotationalRelaxationCol-
lisionNumber of 5.0, and electronicRelaxationCollisionNumber of 500.0. The Larsen-Borgnakke (LB)
and variable hard sphere (VHS) models are introduced in the DSMCModels Overview Subsection 2.4.1
and generally discussed along with the noTimeCounter collisionPartnerSelectionModel used, which
can determine the collision attempt number per computational cell, in the OpenFOAM dsmcFoam(+)
Solver Subsection 2.4.2. To note, the LarsenBorgnakkeVariableHardSphere BinaryCollisionModel has
LB internal energy redistribution and originates from the INELRS subroutine in Bird’s DSMC0R.FOR
program. The overall methods are more elaborately described in [14].

In addition, the thrusters’ water propellant molecular species are introduced with typeIdList (H2O)
using (DSMC) data from a Sandia National Laboratories report’s Chemical Species Database [10].
The moleculeProperties entry for H2O has a set mass (𝑚) of 0.2991e-25 (kg) (also obtainable by divid-
ing water’s molar mass (𝑀 = 18.015 g

mol
) by the Avogadro constant (𝑁 = 6.022140857 ⋅ 10 mol )),

diameter (reference molecular diameter (𝑑 )) of 0.4387e-9 (m), rotationalDegreesOfFreedom of 0,
vibrationalModes of 0, omega (viscosity index (𝜔)) of 1.0855 (viscosity coefficient fit using default at
273-500 K with (coefficient of viscosity) 𝜇 ∼ 𝑇 ), alpha (variable soft sphere (VSS) molecular model
parameter (𝛼)) of 1.0 (for VHS molecular model), and an extremely high ionisationTemperature for
preventing ionization, though it is inapplicable, as there are not any defined reactions, charge of 0,
numberofElectronicLevels of 1, electronicEnergyList of (0), and degeneracyList of (1) along with the
rest of the data for characteristicVibrationalTemperature, charDissQuantumLevel, dissociationTemper-
ature, Zref (relaxation vibrational number at reference temperature), and referenceTempForZref left as
() due to their extraneousness. From [10], the calculated effective diameter’s reference temperature
(𝑇 ) is 300 K and can be calculated as [14]:

𝑑 = ⎛

⎝

5(𝛼 + 1)(𝛼 + 2) ( )
4𝛼(5 − 2𝜔)(7 − 2𝜔)𝜇

⎞

⎠

3.17

Here, 𝜇 is a viscosity coefficient with temperature exponent 𝜔, which can be inversely calculated
using the Boltzmann constant (𝑘 = 1.38064852 ⋅ 10 J ⋅ K = 1.38064852 ⋅ 10 kg ⋅m ⋅ s ⋅ K )
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to result in 0.000017913N ⋅ s ⋅m .

3.2.7. controlDict
The controlDict dictionary in the system directory is fundamental in setting the input parameters for
the OpenFOAM solver database, which manage the input (I)/output (O), where output data may be
desired during the requisitely set runtime over intervals [3]. In all cases for the conventional and MEMS
nozzles, the application set is dsmcFoamPlus. Then, the startFrom starting time chosen is latestTime,
which relates to the time directories’ newest time step including 0, so that the simulation could be
directly rerun to continue from where it stops possibly due to the simulation being killed due to the high-
performance computing (HPC) cluster time limit or other viable simulation changes. The dsmcFoam+
nTerminalOutputs, which at its set interval writes out information to the terminal, is standardly set at
1, though it could be increased, as it does take time. The simulation’s startTime is 0 (s), which is the
value that dsmcInitialise generates an initial time folder for. The simulation stopAt time is endTime,
where endTime in this case is simply set as a predicted higher value knowing that the thruster firing
transient phase normally happens very quickly, as the simulations are monitored and stopped manually
after reaching steady state and time averaging using the discussed method in Running and Managing
Simulations (Section 3.3) and fieldPropertiesDict (Subsection 3.2.9).

The time step size (deltaT) specified is 5e-10 (s). The right time step choice is imperative here, as a
smaller time step size increases computational time, while a larger time step size could create unrealis-
tic collision routine mass, momentum, and energy transfer and move function particle travel distances
along with molecules entering the domain in pulses rather than relatively continuously [52]. To explain,
the pressure boundary condition is extremely sensitive to the appropriate time step size (high or low)
eventually determined iteratively following the calculations in Table 3.3 from the checkMesh Subsection
3.2.4, as it might otherwise provide unphysical results, which might also be affected by dynamic load
balancing as explained in the decomposeParDict, balanceParDict, and loadBalanceDict Subsection
3.2.10. As an interesting mention, the generally less stable inlet pressure boundary conditions have
been compared to train locomotion with its engine pushing it rather than pulling, where upstream obsta-
cles have a greater likelihood of causing a crash. The writeControl for controlling the output to file write
timing is set to runTime, where data is written per writeInterval specified at 5e-8 (s), so that the data can
still be feasibly (considering time and memory) stored with the usage of run-time load balancing, as it
basically keeps the information for every time step it is activated at, and using a purgeWrite of 3, which
defines the saved time directories’ number limit by cyclically overwriting the oldest time directory. To
add to the writeInterval and purgeWrite considerations, the commonly desired simulation data are time
averages instead of instantaneous particle data [52]. Note that the startTime, endTime, deltaT, and
writeInterval are chosen such that deltaT constitutes an integer factor of time steps from startTime to
endTime and writeInterval constitutes an integer factor of deltaT time steps and write intervals of time
from startTime to endTime. One way to ensure this is by dividing the endTime by deltaT, writeInterval
by deltaT, endTime by writeInterval to obtain an integer considering that the startTime is 0 (s), otherwise
endTime would be replaced by the time from startTime to endTime. Here, the writeInterval divided by
deltaT is 100 time steps per write interval.

As exported in Blender, the default data files’ writeFormat is set as ascii, which is written to 7 signifi-
cant figures as set by writePrecision (write floating point precision) to be more than the mergeTolerance
of 1e-6 in snappyHexMeshDict (Subsection 3.2.2). The file gzip compression switch (writeCompres-
sion) is set to off. The timeFormat is general (default), where the time directories are named using the
scientific format with ±𝑚.𝑑𝑑𝑑𝑑𝑑𝑑e±𝑥𝑥 for an exponent below -4 or higher than or equal to 6 (default,
specified for the timePrecision), which is the number of 𝑑s, otherwise it is fixed with ±𝑚.𝑑𝑑𝑑𝑑𝑑𝑑. The
runTimeModifiable switch is true, so that dictionaries (especially fieldPropertiesDict discussed in Sub-
section 3.2.9) are reread at the start of every time step during runtime for possible modifications. Also,
the adjustTimeStep switch, which could modify the time step during runtime, is set to no. The dictionary
of functions loaded at runtime is left unspecified as ().

3.2.8. dsmcInitialiseDict
The dsmcInitialiseDict dictionary in the system directory can set pre-processing initialization data within
specified zones to evolve the simulation from by running the dsmcInitialise executable. In the consid-
ered conventional and MEMS nozzles’ cases, the configurations entry’s configuration includes the type
set to the dsmcZoneFill initialization algorithm class, which recovers the set density, temperature, and
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velocity on average by using properties from particles the zones are filled with (dsmcMeshFill without
zoneName could be used for the whole computational domain too), followed by the zoneName defined
separately for region1, region2, and region3, referring to the converging, diverging, and plume sections
respectively (or a single regionAll for their combined sections) as explained in the createCellZones and
createFaceZones Subsection 3.2.3. The simulations start from vacuum, so the numberDensities is
set to 0 (molecules) for H2O (from dsmcProperties (Subsection 3.2.6)). The translationalTemperature,
rotationalTemperature, and vibrationalTemperature are negligibly set to 1 (K) to exhibit collisions along
with the electronicTemperature and velocity set to 0 (K) and (0 0 0) (m

s
) respectively.

As explained in the dsmcProperties Subsection 3.2.6, note that at times with mainly constant rar-
efaction and grid cell sizes, multiplying the average grid cell size (obtainable from Table 3.3 in the
checkMesh Subsection 3.2.4) in cubic meters per grid cell by the molecule number density (obtain-
able from the ideal gas law Equation 3.13 for the simulation domain and set in dsmcInitialiseDict) in
molecules per cubic meter and then dividing the resulting molecules per grid cell value by nEquiva-
lentParticles in molecules per particle can obtain the final particle per grid cell value to be 20 or above
(random fractions are used to result in consecutively lower or higher integers in case the value is a
decimal number) as recommended to allow the recovery of more precise collision statistics for the no-
time-counter method, though possibly less are needed for a sufficiently high Knudsen number due to
less relevant collisions [52].

Usually, mesh generation and more importantly, particle initialization, are the main problems to
more complex DSMC simulations [52]. A potential strategy for creating a larger mesh could involve
generating a coarse mesh first typically using OpenFOAM’s blockMesh capability to then be possibly
refined in parallel with the snappyHexMesh utility. Also, refineMesh, among others, is another option
for mesh refinement, though parallel operation might be needed over various nodes for sufficient mem-
ory access. For a large number of particles, such as over hundreds of millions, the initialization should
be done in parallel using the available processors and the command: mpirun -np #ofProcessors dsm-
cInitialise -parallel [52]. Prior to populating the domain with particles using dsmcInitialise in parallel, the
decomposePar command must be used to decompose the domain.

3.2.9. fieldPropertiesDict
The fieldPropertiesDict dictionary located in the system folder holds the dsmcFields for computation.
Differences between the conventional and MEMS nozzle inputs are noted, though the dictionaries
are identical otherwise. One of the fields set contains the dsmcBinsMethod set as a fieldModel and
timeProperties timeOption of write and resetAtOutput initially set to on (explained below) along with
the dsmcBinsMethodProperties with fieldName of H2O in reference to the dsmcProperties Subsection
3.2.6, zoneName set to regionAll as described in the createCellZones and createFaceZones Subsec-
tion 3.2.3, typeIds of (H2O) (similar to fieldName), averagingAcrossManyRuns set to no, binModel of
uniformBins, and uniformBinsProperties with startPoint and endPoint which in this case are set as start-
ing with the point in the middle (or perhaps centroid for a wedge) of the inlet face to the orthogonally
projected point at the outlet face. The number of bins (nBins) is set to 300, which is based on an ac-
ceptable number of 𝑥 axis averaged slice planes to obtain sufficient representative flow data along the
nozzles. Furthermore, the area is based on the cross sectional areas of the conventional and MEMS
nozzles’ plume regions, which are the greatest cross sectional areas in the simulation domain. Now,
this method is not ultimately used, as the bins are uniform and the actual cross sectional area is not.
Therefore, it will result in some values being related to the larger area of the plume region rather than
the variable area of the nozzle. Besides working on the source code, one way to solve this is by writing
a (MATLAB) code with an if statement for the converging, diverging, or plume region based on the 𝑥
coordinate. It would work by multiplying the wrongly divided data by the plume region cross sectional
area used and then redividing it by a computed cross sectional area based on geometric and trigono-
metric relations. This is an inefficient quick-and-dirty coding solution, as it is basically inextensible and
would only work for the specific problem at hand. Therefore, another flexible method using the Python
shell in ParaView is employed and explained in its Section 3.4.

Furthermore, the dsmcVolFields fieldModel fills for another field entry. Its timeProperties include
a timeOption of write and resetAtOutput set to on at the start (explained below). dsmcVolFields is a
measurement class for returning macroscopic fields of the molecular species as volume scalar fields
to be visualized using ParaView, as it also identifies the boundary faces’ surface normal vector and



3.2. OpenFOAM/dsmcFoam+ 67

finds pressure and shear stress components from the evaluated force density [52]. The dsmcVolField-
sProperties contain the fieldName H2O and typeIds of (H2O) related to dsmcProperties (Subsection
3.2.6), measureMeanFreePath set to true with a mean free path reference temperature (mfpRefer-
enceTemperature) of 300 (K) in reference to moleculeProperties in dsmcProperties Subsection 3.2.6,
and measureErrors set to true. The statistical errors are approximated from relationships in [28], which
can be appropriately reduced for a steady flow with a property measurement using a great enough sam-
ple size or a transient flow with ensemble average results through repeated simulations providing an
acceptable sample [52]. The finite sampling statistical errors in molecular simulation algorithms with
thermal fluctuations are predicted [28]. As done in [28] and the source code, The volume-averaged
quantities of velocity, density, temperature, and pressure use approximations based on a number of
independent samples (𝑀) referring to sequential time steps for steady state simulations [28]. The fluid
velocity (𝑢), density (𝜌), temperature (𝑇), and pressure (𝑝) fractional errors (𝐸) are calculated using the
following equations:

𝐸 = 1
√𝑀𝑁

1
𝑀𝑎√𝛾

, 3.18

𝐸 = 1
√𝑀𝑁

, 3.19

𝐸 = 1
√𝑀𝑁

√ 𝑘𝑐 , 3.20

𝐸 = √𝛾
√𝑀𝑁

, 3.21

where 𝑁 is average statistical cell particle number, 𝛾 is the specific heat ratio, 𝑘 is the Boltzmann
constant,𝑀𝑎 is the local Mach number, and 𝑐 is the particle heat capacity at constant volume [28]. Al-
though water vapor has strong intermolecular forces that may result in a considerable deviation from an
ideal gas, ideal gas conditions are assumed for measureErrors, considering that the fluid’s intermolec-
ular forces are expected to become less relevant and the ideal gas relations become more applicable
at higher rarefaction (relatively lower pressure and higher temperature). Also, the required number
of time steps (𝑀) to attain a certain fractional error percentage can be inversely calculated [28]. An
increased Mach number would require less independent samples for a fixed estimated fluid velocity
fractional error [28]. Moreover, a higher particle heat capacity at constant volume leads to a lower
estimated temperature fractional error due to smaller fluctuations [28]. To note, the temperature re-
lated different degrees of freedom (translational, rotational, vibrational) can be independently defined
and computed [28]. For additional related theoretical derivation, refer to [28]. This work’s section is
intended to provide an idea about the statistical particle simulation errors.

The next three fields have a fieldModel of dsmcMassFluxSurface. As elaborately explained in the
createCellZones and createFaceZones Subsection 3.2.3, the dsmcMassFluxSurface class is a mass
flux measurement tool. The time properties have a timeOption of write and resetAtOutput of on at
first (explained below). The dsmcMassFluxSurfaceProperties include the H2O fieldName and (H2O)
typeIds in reference to dsmcProperties (Subsection 3.2.6). The only variable in the three fields is the
faceZoneName, which in three separate fields is set to face1, face2, or face3 referring to the faces at the
outlet of the first inlet cells (as the inlet face results in null data), throat, and nozzle outlet respectively.
Further information on this is also available in the createCellZones and createFaceZones Subsection
3.2.3. The flow’s fluxDirection is set as (1 0 0).

When steady state is reached, time averaging should be activated, considering the run-time mod-
ifiable capability by setting resetAtOutput to off, which will halt new write intervals from resetting their
averaged accumulated information [52]. It is certainly preferable to average for numerous time steps.
Steady state solution is assumed when the overall DSMC particle population and system’s average lin-
ear kinetic energy are considered relatively constant over time (or the inlet and outlet mass flow rates
are relatively equal) [47].
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3.2.10. decomposeParDict, balanceParDict, and loadBalanceDict
The subsection concerns the implemented parallel computing methodology with its dictionaries in the
system directory. With access to two of TU Delft’s computer clusters at the Faculty of Mechanical,
Maritime, and Materials Engineering (3mE), the simulations are run on the newer Reynolds HPC cluster
running a Linux operating system (OS). For the purposes of this work, it consists of many Slurm compute
nodes with 28 cores (2x Intel Xeon E5-2680 v4) and 64 GB of memory each along with an interactive
(no queue) node with the same number of central processing units (CPUs) and 256 GB of memory
and a head node. Slurm Workload Manager is the job scheduler used with a FairShare limited first-
come first-served priority algorithm, where this work is completed using one node per job with four
jobs running simultaneously and maximum wall clock time of 24 hours before rerunning if needed.
Therefore, the conventional and MEMS nozzles with four simulations each are run separately at a
time. To note, hyper threading technology is not benefitted from in OpenFOAM, which mainly uses it
for multitasking enhancement, so it would be faster to run on physical cores only than combined with
virtual cores (additional threads per core) [25].

OpenFOAMuses domain decomposition for parallel computing, where the geometry and associated
fields are divided and allocated to be solved by different processors in parallel [3]. The parallel envi-
ronment Message Passing Interface (MPI) for distributed-memory machines from the public domain
openMPI is used as standard for running applications in parallel [3]. Often, CFD parallel computations
are based on the number of grid cells and their fields being evenly and maximally distributed (minimum
processor workload) with their processor domain boundary numbers and sizes minimized to decrease
the need for communication/data sharing among them. As a very rough scaling, each core in a general
parallelized CFD program should handle above 50000 grid cells and needs 1000 bytes for every grid
cell. Therefore, an increase in computational time (slowdown) would be seen with an excessive num-
ber of CPUs for example contrary to a typical prediction of the speedup reaching an asymptote using
Amdahl’s law. However, DSMC simulations are also especially dependent on the number of particles
per grid cell, which would make needing a smaller overall number of particles through fewer grid cells
than in general CFD simulations more preferable for decreasing computational time due to DSMC’s
greater computational load, as explained in the checkMesh Subsection 3.2.4. An iterative solution with
appropriate expectations is used to optimally choose the number of distributed processors for running
the conventional and MEMS nozzle simulations in parallel. Note that it might seem as though less pro-
cessors are better at the beginning of the simulation, yet more processors become a superior option
as time goes on and more particles enter the domain.

Before starting the simulation in parallel, the mesh and fields are decomposed using the decom-
posePar (pre-processing) utility, which reads its dictionary, decomposeParDict. The numberOfSub-
domains the mesh is decomposed to corresponds to the number of cores the simulation will run on.
For each of the conventional nozzle simulations, a total numberOfSubdomains of 14 is considerately
chosen, so that only half a node for each simulation and two nodes in total are used at a time, while
28 is chosen for each of the more computationally expensive MEMS nozzle simulations resulting in
one node per simulation and a total of four nodes used at a time. The method of domain decomposi-
tion chosen is scotch, as it does not need manual geometric input, which makes using its algorithm for
minimizing the number of processor boundaries convenient for automatic implementation for many pro-
cessors, iterations, and less straightforward geometries and fields. Further information about scotch’s
static (done exclusively before running) mapping (minimizing a parallel program with communicating
processes and machine’s execution time by combinatorial optimization) through source process and
target architecture graphs dual recursive bipartitioning can be found in [44]. Note that since the proces-
sors are identical, processor decomposition weighting concerning cell allocation (processorWeights) is
not used. After running decomposePar, a subdirectories set each named as processor followed by its
respective number is generated in the case directory containing a time directory (in processor0) and
constant/polyMesh with the decomposed field and mesh descriptions respectively along with initializa-
tion/simulation generated directories [3].

The recommended grid cell and time step sizes were prepared for, though following numerous iter-
ations were determined unfeasible in providing results within a reasonable time on the computer cluster
while restricted to a single node per simulation and having multiple simulations to run, so they were
changed and dynamic load balancing is additionally used, which is another dsmcFoam+ exclusive fea-
ture that proves to be very effective considering the evolving density gradients, as it rebalances each
processor’s computational load by accounting for the number of particles it handles over the simu-
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lation’s duration. Its decomposition settings are in balanceParDict, where the numberOfSubdomains
and method for both conventional and MEMS nozzles are identical to balanceParDict for consistency
and straightforward application. There is an added weightField entry set as dsmcRhoN_H2O, which
considers the water DSMC particles number density as a weighting factor to decompose the domain in
a better balanced way accounting for DSMC’s computational load dependency on the number of parti-
cles per grid cell. Also, loadBalanceDict is the dictionary where enableBalancing is set to true for both
conventional and MEMS nozzles. The dictionary files for run-time load balancing can be found in the
system directory. However, the maximumAllowableImbalance is set to relatively normal value of 0.1
(10%) for the MEMS nozzle, while it is set to 0.001 (0.1%) for the conventional nozzle, as it appeared
to help in stability when the decomposition occurs more often for the conventional nozzle simulations.
Again, the maximumAllowableImbalance is optimally determined iteratively.

The computational domain mesh is divided into the number of available processor cores that will run
the simulation. OpenFOAM’s inbuilt parallel computing process includes domain decomposition. As
dsmcFoam’s move function for particle movements from Particle Tracking in Subsection 2.4.2 causes
the greatest computational load, a similar number of particles, 𝑁 , is recommended on each core
for efficiently balancing the overhead. Ideally, 𝑁 would be:

𝑁 = 𝑁
𝑛 , 3.22

where 𝑁 is the total DSMC simulation particle number and 𝑛 is the number of activated sim-
ulation processors. In dsmcFoam+, every processor’s number of particles, 𝑁 , is checked with
𝑁 at every write interval within± of a customizable tolerance, which exceeding causes the sim-
ulation to be paused for automatic load rebalancing by applying domain decomposition again through
the reconstruction of mesh and field data generating the usual full domain and fields using reconstruct-
Par -latestTime, which merges the (latest) time directory sets of each processor directory into one time
directory set to be followed by the decomposition using decomposeDSMCLoadBalancePar -force (to
remove all processor directories before decomposition) before continuing using a bash script for the
user to adjust and match the final time directory with the one in [case]/system/controlDict as shown in
Section 3.3 [52]. Figure 3.30 demonstrates an example of final particle distributions colored per associ-
ated processor at the end of the simulation, as using dynamic load balancing can be seen to detect the
flow’s stagnation region next to the cylinder, where processor power is focused lowering computational
time including recomposition and decomposition time [52].

Figure 3.30: Left: Final particle distributions without dynamic load balancing. Right: Final particle distributions with dynamic load
balancing. Note that processor numbers are colored. [52]

The maximum imbalance in parallel load is calculated at every writeInterval, which means that once
its limit is exceeded, it will remove all but the latest time directory before continuing the simulation. Set-
ting a too high parallel load maximum imbalance value might result in insufficient transient data, as time
directories might not be saved often enough. It is ultimately dependent on balancing the simulation set-
tings to obtain the desired data, considering that it would also depend on the writeInterval set in the
controlDict Subsection 3.2.7. It is important to note that a handy code is additionally created to save
the transient mass flow rate/flux (for particle numbers and their masses) measurements along with the
transient solution, as the transient data per time step (fieldMeasurements in the processor0 directory)
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was originally being deleted whenever load balancing was activated. This is done in consideration of
the accuracy needed for space technology micropropulsion and to transiently study how the propellant
flows when the thruster fires. The code is run before the dynamic load balancing script, as shown in
Section 3.3. To elaborate, it contains a while true indefinite loop doing a watch command, which detects
changes, set to run with -n every 1 second. Note that -d is set to highlight the changes between itera-
tions, -t turns the header off, and -g importantly exits when output from command changes. The watch
command is applied for ls, which is used to list information about the directory, with -l for long listing
format containing data relevant to the changes applied as calculated and written per time step, such as
size and last-modified date, and -R for recursively listing subdirectories (all files). The ls command acts
on the generated processor0/fieldMeasurements/ directory containing the desired data that is deleted
upon load balancing activation due to decomposeDSMCLoadBalancePar -force. The && logical and
boolean operator is used to proceed with executing commands/shell functions when the previous com-
mand’s exit status is true. Then, when the first command is successful, a cat (concatenate) command is
used for each face’s mass flow rate and particle number and mass fluxes files referenced starting from
processor0/fieldMeasurements/. Using a pipe (|), the cat command’s read output data is transferred to
the input of the tail command, which typically shows the last 10 lines of a file, where -n 1 is used for tail
to output only the last line. Afterwards, the append operator (») is used to append (write at the bottom
of the designated existing file avoiding unintended erasure) the new time step data to respective initially
empty files in the [case]/fM (fieldMeasurements) directory before finishing the while loop with done and
the & operator for running the process in the background. Note that the fM (fieldMeasurements) direc-
tory and its initially empty files are created before running the code. In short, every newly written time
step data is transferred to another file in a directory that is not deleted due to load balancing.

In case of duplicated time steps, use uniq (File) > (File), where the file’s duplicate lines are merged
to the first occurrence (uniq) using the redirection operator (>) to make a new file or overwrite the file
data if it is existent. Furthermore, cat (File) or * (for concatenating/stringing together all files inside fM)
| cut -d ’CTRL+V Tab’ -f 1 | uniq -D could be used to check if there still are any duplicated time steps
(regardless of the computed data) with cat’s read output data piped (|) as the input of cut, which is used
for extracting sections from text lines, with the field separator/delimiter -d of Tab, which could be entered
after pressing CTRL+V, before piping (|) the value in the first field (-f 1) to the input of uniq, which will
print all duplicate lines (-D). Note that uniq filters adjacent lines, which proves to be convenient for this
application.

3.2.11. fvSchemes, fvSolution, controllersDict, and chemReactDict
Note that standard dsmcFoam+ fvSchemes, fvSolution, controllersDict, and chemReactDict dictionar-
ies should also be in the system directory. They are identical for the conventional and MEMS nozzles.
For typical OpenFOAM usage, the fvSchemes dictionary defines the simulation’s numerical schemes
[3]. In this case for dsmcFoam+, its ddtSchemes (time schemes), gradSchemes (gradient schemes),
divSchemes (divergence schemes), laplacianSchemes (Laplacian schemes), interpolationSchemes
(interpolation schemes), and snGradSchemes (surface normal gradient schemes) entries are all set to
default none along with the fluxRequired entry as default no. Generally in OpenFOAM, the fvSolution
dictionary sets the simulation’s solution and algorithm control with equation solvers, tolerances, and al-
gorithms [3]. Like fvSchemes, for this case the other dictionaries are basically empty, as fvSolution only
contains solvers {}, chemReactDict (chemical reactions dictionary) has reactions (), and controllersDict
is made up of dsmcStateControllers () and dsmcFluxControllers ().

3.2.12. sampleDict
For post-processing, the sampleDict dictionary is set up in the system directory and called in the case
directory using sample (-latestTime for the latest time step), where it writes into a new postProcessing
directory containing its time step data sets. For both conventional andMEMS nozzles, the interpolation-
Scheme is set to the mixed linear weighted/cell-face cellPointFace (each polyhedral cell is decomposed
into tetrahedra for interpolation using their vertices including the polyhedron cell center inheriting the
field value at the cell center along with face vertices with values from cell center interpolations, where
a vertex is also coincident with a face center inheriting field values through conventional interpolation
schemes from the intersected face cell center values) using cell center, vertex (from neighboring cell
center values), and face (from present face interpolation scheme such as linear or gamma) values [4].
The setFormat is csv to output data as CSV (comma-separated values). The surfaceFormat is left as
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raw. The (1D line-sampled field domain locations) sets are inlet, converging, throat, diverging, and out-
let, though they are separate as axis (set write ordinate) y (coordinate only) and axis (set write ordinate)
z (coordinate only) for the MEMS nozzle due to it not being axisymmetric. For the sets, the sampling
definition type chosen is uniform as evenly distributed points on a line. The axis (set write ordinate)
for the conventional nozzle is set as distance (from the start) with the start and end points respectively
being ( -0.447846e-3 increased to -0.447790e-3 0 0 ) and ( -0.447846e-3 increased to -0.447790e-3
0.75e-03 0.0326835e-03 ), ( -0.223925e-3 0 0 ) and ( -0.223925e-3 0.75e-03 0.0326835e-03 ), ( 0 0 0
) and ( 0 0.75e-03 0.0326835e-03 ), ( 0.16485e-03 0 0 ) and ( 0.16485e-03 0.75e-03 0.0326835e-03
), and ( 0.32970e-03 decreased to 0.32964e-03 0 0 ) and ( 0.32970e-03 decreased to 0.32964e-03
0.75e-03 0.0326835e-03 ). For the MEMS nozzle, the y axis (middle of 𝑧-axis) start and end points
respectively are ( -0.98750e-03 increased to -0.98749e-03 -1e-03 0.05e-03 ) and ( -0.98750e-03 in-
creased to -0.98749e-03 1e-03 0.05e-03 ), ( -0.49375e-03 -1e-03 0.05e-03 ) and ( -0.49375e-03 1e-03
0.05e-03 ), ( 0 -1e-03 0.05e-03 ) and ( 0 1e-03 0.05e-03 ), ( 0.335585e-03 -1e-03 0.05e-03 ) and (
0.335585e-03 1e-03 0.05e-03 ), and ( 0.67117e-03 decreased to 0.67116e-03 -1e-03 0.05e-03 ) and
( 0.67117e-03 decreased to 0.67116e-03 1e-03 0.05e-03 ). Note that the MEMS nozzle’s z axis sets
have 0 for the second entry (middle of 𝑦-axis) and start point of the third entry, though its end point
is set as 0.1e-03. Also, as described during mesh creation (Methodology Chapter 3), the 𝑥𝑦 plane
is the bottom of the nozzle/wedge for both MEMS and conventional nozzles, so the MEMS nozzle 𝑧
axis values’ center is 0.05e-03 between 0 and 0.1e-03. The number of points (nPoints) is set at 20000
(overkill for some sets) for sufficient representation of all considered lengths, considering that the same
𝑦 start and end points are used for all sets of the respective conventional or MEMS nozzles. The (2D
surface-sampled field domain locations) surfaces are left as (), though the sampled fields (scalar) could
contain (UMean_H2O overallT_H2O p_H2O rhoN_H2O) to obtain the velocity, temperature, pressure,
and particle number density data respectively for the desired set. The velocity (vector) magnitude is
calculated afterwards as the square root of the sum of its individual 𝑥, 𝑦, and 𝑧 components squared.
Since the conventional nozzle is simulated as a wedge, its data is duplicated, flipped, and prepended
with negated distances to resemble its fully rotated conical shape in plots. The inlet (considering the
Blender STL ASCII files) and outlet start and end point 𝑥 values are slightly perturbed to fit within the
nozzle, as their respective converging and diverging section lengths are halved to determine the 𝑥 lo-
cations for the converging and diverging section sets as obtained from Table 4.1. The 𝑦 extrema values
of the respective computational domains (MEMS nozzle region only) are used (Table 3.1), as the data
is extracted where applicable and the conventional nozzle is simulated as a wedge with single cell
thickness. The maximum 𝑧 value is given for the MEMS nozzle (Table 3.1), though it is calculated as
the maximum 𝑧 (considering the Blender STL ASCII files) value of the computational domain divided by
two for the conventional nozzle. The minimum 𝑧 value is 0 for both conventional and MEMS nozzles.

3.3. Running and Managing the Simulations
In continuation from the OpenFOAM/dsmcFoam+ Section 3.2 after preparing the dictionaries and the
mesh creation and case initialization are done for pre-processing, a serial run as a single process can
be immediately started by calling dsmcFoamPlus (or runApplication ’getApplication’ & from a file like
Allrun (containing the executables to run) to directly run all commands from the case directory base
after loading dsmcFoam+’s OpenFOAM alias setting the paths, where the & operator is used to run the
process in the background). However, regarding the significant computational load, the simulation is
run in parallel on many processors. To run in parallel without dynamic load balancing, mpirun -np #of-
Processors dsmcFoamPlus -parallel can be used. The domain needs to be decomposed beforehand.
The scripts actually used to run the simulations with dynamic load balancing are shown below. Note
that using runApplication before the OpenFOAM command automatically writes log.(Application) files
in the case directory rather than displaying the output in the terminal, though another way is to use >
log.(Application) on the same line after the OpenFOAM command. Also, ./(File) is used for calling from
the current working directory. The conventional and MEMS nozzle simulations are run separately at a
time each with four simulations. Further information about the commands and topics can be found in
their respective subsections of the OpenFOAM/dsmcFoam+ Section 3.2.

Before submitting the Slurm job script as explained in Subsection 3.2.10, the following pre-processing
and domain decomposition script is run (the first shebang (#!) interpreter directive line executes the file
using the Bourne or compatible shell with /bin/sh as an absolute path/interpreter):



72 3. Methodology

1 #!/bin/sh
2 cd ${0%/*} || exit 1 # run from this directory
3
4 # Source tutorial run functions
5 . $WM_PROJECT_DIR/bin/tools/RunFunctions
6
7 runApplication surfaceFeatureExtract
8 runApplication blockMesh
9 runApplication snappyHexMesh -overwrite
10 runApplication createCellZones
11 runApplication createFaceZones
12 runApplication checkMesh
13 checkMesh -allGeometry -allTopology > log.checkMeshAll
14 runApplication dsmcInitialise
15 runApplication decomposePar

The following Allrun script is in the current working directory with its first section containing the code
for saving the every newly written time step data for each face’s mass flow rate and particle number and
mass fluxes to another file in a directory that is not deleted due to the second section’s dynamic load
balancing code as explained in Subsection 3.2.10. Also, notice that np #ofProcessors is not needed for
mpirun via Slurm. Lines with options preceded by #SBATCH are Slurm directives and echo displays
the strings passed as arguments. In bash, fi is used to end if statements and the script in this case
exits at the end with 0 for success. An important note is that mpirun works in this case when called as
/usr/bin/X11/mpirun on the Reynolds computer cluster.

1 #!/bin/sh
2 cd ${0%/*} || exit 1 # run from this directory
3
4 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&

cat processor0/fieldMeasurements/faceFlux_face1_H2O_M.xy | tail -n 1
>> fM/faceFlux_face1_H2O_M.xy; done &

5 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&
cat processor0/fieldMeasurements/faceFlux_face1_H2O_N.xy | tail -n 1

>> fM/faceFlux_face1_H2O_N.xy; done &
6 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&

cat processor0/fieldMeasurements/faceFlux_face2_H2O_M.xy | tail -n 1
>> fM/faceFlux_face2_H2O_M.xy; done &

7 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&
cat processor0/fieldMeasurements/faceFlux_face2_H2O_N.xy | tail -n 1

>> fM/faceFlux_face2_H2O_N.xy; done &
8 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&

cat processor0/fieldMeasurements/faceFlux_face3_H2O_M.xy | tail -n 1
>> fM/faceFlux_face3_H2O_M.xy; done &

9 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&
cat processor0/fieldMeasurements/faceFlux_face3_H2O_N.xy | tail -n 1

>> fM/faceFlux_face3_H2O_N.xy; done &
10 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&

cat processor0/fieldMeasurements/faceMassFlowRate_face1_H2O.xy | tail
-n 1 >> fM/faceMassFlowRate_face1_H2O.xy; done &

11 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&
cat processor0/fieldMeasurements/faceMassFlowRate_face2_H2O.xy | tail

-n 1 >> fM/faceMassFlowRate_face2_H2O.xy; done &
12 while true; do watch -n 1 -d -t -g ls -lR processor0/fieldMeasurements/ &&

cat processor0/fieldMeasurements/faceMassFlowRate_face3_H2O.xy | tail
-n 1 >> fM/faceMassFlowRate_face3_H2O.xy; done &
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13
14 while :
15 do
16 ### Check that the final time directory does not exist ###
17 if [ ! -d ”processor0/1” ]
18 then
19 echo ”Directory processor0/1 DOES NOT exist, ”\
20 ”restart from the latest time.”
21 /usr/bin/X11/mpirun dsmcFoamPlus -parallel
22 else
23 echo ”Directory processor0/1 DOES exist, ”\
24 ”killing the script.”
25 break ### exit the loop
26 fi
27 done
28 exit 0

Then, with a customized Slurm job script (jobscript file) also in the current working directory, it is
submitted to call ./Allrun using sbatch jobscript (the first shebang (#!) interpreter directive line
executes the file using the Bash shell with /bin/sh as an absolute path/interpreter):

1 #!/bin/bash
2 #SBATCH -D ./ # ”.” is the working folder submitted from on the Reynolds

computer cluster
3 #SBATCH -J my_job # Job name
4 #SBATCH --mem=32000 or 64000 # Job needs (an expected) 32000 or 64000 MB

of real memory for the conventional or MEMS nozzle simulations
respectively (one node has 64 GB of memory)

5 #SBATCH --time=1-0:0:0 # Job runs for 1 day, after which Slurms kills it
6 #SBATCH -n 14 or 28 # Number of cores requested (14 or 28 for the

conventional or MEMS nozzle simulations respectively) (one node has 28
cores)

7 #SBATCH -N 1 # Number of nodes requested
8 #SBATCH -o slurm-%N-%j.out # Output file in working directory (%N is the

node## and %j is the associated job ID)
9 #SBATCH -e slurm-%N-%j.err # File with error messages in working

directory (%N is the node## and %j is the associated job ID #)
10 ./Allrun # Submitted job in working directory

The command-line graphing program, gnuplot, that can produce 2D and 3D plots of functions, data,
and data fits is used to recurrently monitor the simulations in realtime through a customized monitor file
(also available with dsmcFoam+ tutorials and called using gnuplot monitor) in the case directory
and generally containing the following contents:

1 set ytics nomirror
2 set y2tics nomirror
3
4 set xlabel ”Time Step”
5 set ylabel ”Number of DSMC Particles”
6 set y2label ”Average Linear Kinetic Energy/[J]”
7
8 set grid
9
10 plot \
11 ”< cat slurm-%N-%j.out | grep ’Number of DSMC particles’ | cut -d ’=’ -f 2

” w l axis x1y1 t ”Number of DSMC Particles”, \
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12 ”< cat slurm-%N-%j.out | grep ’Average linear kinetic energy’ | cut -d ’=’
 -f 2” w l axis x1y2 t ”Average Linear Kinetic Energy”

13 pause 10 # Seconds
14 reread

To note, nomirror simply does not mirror the axes tick marks (tics). Also for the plotting, < is used
to pipe the datafile through a shell command starting with cat (concatenate) to view the files with its
output piped (|) as the input of grep, which finds its succeeding phrase (pattern) with its line output to
be piped (|) to the input of cut, which extracts sections from text lines, with the field separator/delimiter
-d of = following grep’s mentioned pattern (variable name) outputting the value in the second field (-f
2). The plots are with lines (w l) using the same 𝑥-axis but consecutive 𝑦-axes (x1y1 for bottom and
left axes and x1y2 for bottom and right axes) with a respective key/legend title (t) of the variable.

Note that steady state solution is assumed for turning off resetAtOutput to activate time averaging
(stopping new write intervals from resetting their averaged accumulated information) in fieldProperties-
Dict (Subsection 3.2.9) when the number of DSMC particles and average linear kinetic energy become
relatively constant over time (or the inlet and outlet mass flow rates are comparatively equal) [47]. When
rerunning the simulations, additional slurm-%N-%j.out files are generated, so one way to directly moni-
tor them is by listing the newer file names after the older file names for concatenation (stringing together)
resulting in a single plot for all files. The further the simulation’s time step is from the last write time
step based on the writeInterval set in controlDict (Subsection 3.2.7), the more time steps will overlap
if the simulation is stopped and the simulation is rerun from the latest write time step. Therefore, only
the newer of the overlapping time steps data should ultimately be used to generate the final results.
One way to do that (even for the (final) file to remove unwritten time step data) is by using vi (editor)
on the file, command (:) using the search backwards (?) from the first line (1) for the last written time
step ending with its Maximum imbalance calculation using :1?Maximum and then deleting the following
lines using dG before saving and quitting (:wq).

To cleanly stop the process without killing it, stopAt in controlDict (Subsection 3.2.7) can be changed
to writeNow, which is upon finishing with the time step being simulated, though since it does not work
with dynamic load balancing, simply scancel job ID # can be used to cancel the job along with removing
it from the queue (call squeue for the running and waiting jobs list, sinfo for checking the availability
for running jobs, and sacct to view information about submitted jobs). Locally however, top can be
used to interactively (unlike the snapshots of ps (process status)) monitor the processes and kill them
by typing k (compared to kill process identification number (PID) for ps), while q can be used to quit.
Furthermore, the default tail command can be used to show the last 10 lines, though -f log.(Application)
can in realtime follow the output of the log.(Application) file bottom’s changes, while CTRL+C can be
used to exit.

As a few additionally helpful notes for guidance, ssh (secure shell) can be used to login into the HPC
computer systems and navigate between their nodes. If desired, remember to use -X for X11 forwarding
of graphical clients. To transfer and retrieve data between different (local/remote) hosts, scp -r (secure
copy protocol recursively) can be used. Also, to empty the swap space into the random-access memory
(RAM) if available during testing by restarting, sudo swapoff -a && sudo swapon -a could be
used with sudo, which allows executing commands as superuser, the && logical and boolean operator
for continuing with executing commands/shell functions subsequent to a true exit status for the previous
command, and -a for all.

Lossless archiving and compressing could be helpful to transfer or store such large amounts of
data. On the side, some desktop computer benchmarking for a sample folder that is around 29.1 GB in
size shows that using .zip (ZIP) takes 30 minutes to archive and compress it to about 8.2 GB, while it
can be extracted in 14 minutes. Using .tar.gz (tape archive gzip) takes around 34 minutes for a similar
size result. Comparably resulting in around 6.8 GB of data, .tar.bz2 (tape archive bzip2) takes around
77 minutes, while .tar.xz (tape archive xz for Linux and macOS) and .7z (tape archive 7-Zip needs
installation on Microsoft Windows and macOS) take slightly over 5 hours. Also, note that .tar (tape
archive) is used to archive followed by .compressor and the numbers provided are mainly used for a
rough comparison. For native compatibility with all operating systems and time convenience, .zip is a
competitive option.

Moreover, it might be helpful to check if all the files are transferred. Since the simulation folders
contain some symbolic links, use find -L . | wc -l to help in searching (find) and returning the
files in the working directory (.) including following the symbolic links (-L) with its line output to be piped



3.4. ParaView 75

(|) to the input of wc (word count), which prints the newline count (-l) returning the working directory’s
number of items. For file space usage estimation of the working directory (./), du -shlL ./ can be
used, with -s to summarize using a total for each argument, l allowing for hard link size counting, L for
dereferencing (following) all symbolic links, and optionally h for printing the size in a simpler (human-
readable) format.

3.4. ParaView
The open-source application for qualitative and quantitative interactive and scientific visualization and
data analysis, ParaView, is mainly used to post-process OpenFOAM’s cases. The additionally installed
newer OpenFOAMFoundation’s OpenFOAM6ParaView is used after loading its alias setting the paths,
rather than dsmcFoam+’s OpenFOAM 2.4.0. OpenFOAM’s helpful post-processing and result visual-
ization tools include paraFoam, which is a wrapper around/script launching ParaView (a visualization
environment) to automatically prepare the applicable OpenFOAM data using its reader module. It can
even be used to visualize the mesh and initialization (dsmcInitialise in Subsection 3.2.8) data for pre-
processing and is recommended to do so [52]. For post-processing a case run in parallel, the domain
is divided between the processor folders as explained in the decomposeParDict, balanceParDict, and
loadBalanceDict Subsection 3.2.10, so every decomposed domain segment can be post-processed
separately and automatically with every processor directory being treated as an individual case using
ParaView (.foam) (with Case Type set as Decomposed Case instead of Reconstructed Case under
Properties) or the mesh and field data can be reconstructed to generate the usual full domain and
fields using reconstructPar, which merges the time directory sets of each processor directory into one
time directory set [3].

Using paraFoam creates a (Case).OpenFOAM to run from compared to paraFoam -builtin (for VTK
builtin OpenFOAM reader) with a (Case).foam or simply execute touch (File).foam to create an empty
file to run paraview (File).foam. The open-source Visualization Toolkit (VTK) is used for manipulating
and visualizing data. Typically, the files created in the case directory using paraFoam are temporary.
For checking the mesh, paraFoam is used, as it allows easier access to Include Sets and Include Zones
under Properties to visualize sets related to checkMesh (Subsection 3.2.4) and createCellZones and
createFaceZones (Subsection 3.2.3) along with zones. To note, .foam is used to load lagrangian/dsmc
from Mesh Regions in Properties, though in some cases it might be desirable to exclude it due to its
demanding computational requirements, so the generally faster .OpenFOAM could be used instead,
such as when rotating the conventional nozzle wedge mesh or extensively post-processing the MEMS
nozzle (end) results. Note that .foam and .OpenFOAM without changing their settings at launch might
have visual differences, especially regarding waterproofing, though they could often be ignorable within
reason.

As a reference to some of the ParaView Figures shown in different parts of this report, the White
Background palette from Color Palette under Settings is loaded. Camera Parallel Projection and Axes
Grid with Include Sets and Include Zones under Properties are used. ShowPlane is eventually switched
off, when applicable. Solid Color or vtkBlockColors (for showing different Mesh Parts) along with Sur-
face or Surface With Edges (Mesh) could be used. The Adjust Camera can be utilized to achieve the
desired viewpoint. Zoom to Data could also be used to focus on the object before further magnification.
Opacity could be lowered to make the object translucent between 1 for solid and 0 for invisible. Show
Patch Names is also a possible option. Notice that there is a gearwheel to toggle advanced properties,
which could be helpful for some settings. To discuss some applicable filters:

• The Extract Cells By Region Filter uses its input dataset to extract cells fully (or optionally not
fully) inside or outside the set region (implicit function) for an unstructured grid [5].

• The Angular Periodic Filter is used to rotate the conventional nozzle’s 5∘ wedge mesh (similar to
a 3D pie slice) around an axis of rotation, as it generates a periodic multiblock dataset [5].

• The Slice Filter applies on input dataset with any type to result in an extracted specified plane with
polygonal data output, similar to a contour, where surfaces and lines are made from volumes and
surfaces respectively [5]. The Crinkle slice (PreserveInputCells) is set for extracting the complete
(sliced) cells or a triangulated surface of the region, while Triangulate slice can be set to produce
triangles in the output [5].
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• The Integrate Variables Filter integrates cell and point attributes along with calculating the line
length, surface area, or volume [5]. The Divide Cell Data By Volume is a parameter to control
whether the cell data output is divided by the integrated cells’ calculated surface area/volume.

• The Clip Filter works by cutting part of the input data (sets of all types) with an implicit function/de-
scription for unstructured grid data [5]. Crinkle clip is used for either extracting the complete
(clipped) cells or clip them to remain on one side of the clipping plane [5]. Invert selects the part
to be clipped.

• The Contour Filter calculates isolines/isosurfaces from any input data set type using a point-
centered scalar (single-component) array with polygonal data output [5]. To note, Generate Tri-
angles can be set to produce triangles in the output compared to non-triangular polygons to have
better compatibility with some filters [5]. For 3D case modules, the constant value is represented
by a 2D surface set, though it can be used in combination with the Slice Filter to create the cutting
plane first resulting in contour plot lines across a plane if desired [3].

• The Calculator Filter uses existing (scalar or vector) arrays to calculate extra attribute (data or
point) arrays as their function [5]. Point-centered and cell-centered arrays remain in the same
format, though point coordinate functions result in three-component vector functions [5]. The
Calculator is like a scientific calculator and works on any input data set type with a scalar or vector
array resulting in a similar output data set type [5]. To note, the scalar menu shows the scalar
array names along with the vector array component names of data that is either point-centered
or cell-centered, while the vector menu shows the point-centered or cell-centered vector array
names [5].

• For data (set of any type) attribute sampling on a line of points, the Plot Over Line Filter can be
used to result in graphs, where the line’s point-centered variable values are shown in an XY Plot,
as it uses interpolation to output polygonal data (line) [5].

• The StreamTracer Filter could be used to generate streamlines as it integrates vector field stream-
lines using tracer lines with seed points, where the streamline stops upon crossing the input data
set’s exterior boundary or due to its set parameters (somemight need to be determined iteratively)
or initialization/computational issues. It works for any data set type with point-centered vectors
producing polygonal data output with polylines. Compute Vorticity is also a possible option.

The filters could be combined to achieve desired results with selectable graphics enabling/disabling
of modules in the Pipeline Browser. For some filters, a range of values can be set (with steps) under
Properties. To note, as the data range might not automatically update to the maximum and minimum
field limits, the color map can be rescaled over time by setting the Transfer Function Reset Mode under
Color/Opacity Map Range Options in General (Settings) (or simply Automatic Rescale Range Mode
in Color Map Editor) to update at every time step, though it is generally undesirable/misleading. A
specified or automatically determined (even for all time steps) color range can be set using the Rescale
options under Coloring in Properties (or Color Map Editor). The color map can also be changed or
modified using Edit Color Map. Often, standard colors are changeable.

Images can be output to file using Save Screenshot. The images’ pixel resolutions (with a possibly
locked aspect ratio) could be raised for better visualization. The same can be done for animation output
using Save Animation. When creating animations, the number of frames per time step could be set.
Although choosing 1 frame per time step initially sounds most intuitive, it might be desirable to artificially
add frames obtaining a slower andmore controllable videowhile playing [3]. The named file root ”image”
and its associated image number along with the chosen file format extension are saved in a series
before the image set can be converted into a movie. To note, the executable foamCreateVideo can use
a PNG (Portable Network Graphics) image sequence to create an MPEG-4 compressed (.mp4) video
file, where options exist and the video codec is high resolution with 10 frames per second (adjustable
(typically lowered) using -f #fps for frame rate) by default. Also, avconv or MEncoder for converting
(transcoding) different (video/audio) formats need to be installed (for OpenFOAM 6). Furthermore,
Save and Load State could be used to return back to a ParaView state file. Note that other ParaView
options are used as standard in general.
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3.4.1. Python Shell
As the saying goes, if you are going to do something more than ten times, then you might as well code
it. Due to the possible inflexibility of using dsmcBinsMethod as explained in the fieldPropertiesDict
Subsection 3.2.9, the Python Shell is used to provide averaged data instead of centerline data using
the Plot Over Line Filter. The Python Shell in ParaView is used to achieve incremental slicing (Slice
Filter) along the X Normal (changing X Origin) and integrating the data (Integrate Variables Filter) using
the Divide Cell Data By Volume option before the Cell Data (Attribute) is exported as a CSV (comma-
separated values) file into a pre-made empty (Python) folder inside the working directory for each filter
combination separately and consecutively as shown in the Python script below. Note that the Start
Trace tool in ParaView is used at startup to record the application’s work in Python and serve as a
guideline for the Python script. Notice that integers are used for the range, though the values are not
divided by an integer (by adding .0) to result in the desired floating point number values and not expect
an integer result. The range numbers start and stop respectively with the minimum and maximum 𝑥-
axis extremities (obtainable from the Blender STL ASCII files, though they are increased (or decreased
respectively) when 𝑥 is undesirably at the boundaries without data) using a step to obtain sufficient
representative flow data along the domains, especially the converging and diverging nozzle sections.
Also, note that interpolation errors are introduced.

Each CSV file contains a header row before the data row and it is desirable to concatenate them. So,
find ./ | sort -V | xargs cat > all.csv ; sed -i ’3~2d’all.csv is used for search-
ing (find) and returning the files in the working (Python) directory (./) with its line output to be piped (|)
as the input of sort to be numerically sorted by their filenames’ text with a natural sort of (version/-V)
numbers and its line output to be piped (|) to the input of xargs (converting standard input to arguments)
for cat (concatenation/stringing together) before using the redirection operator (>) to output the data
in a new CSV file. This results in the CSV files being sorted based on their (X Normal/Origin) values
and concatenated, though the identical file headers would still be repeated. Therefore, ; is used to
run another following command (sed, which parses and transforms text) using in place file editing (i)
to delete every other line starting from the third line (’3∼2d’) of the concatenated file to retain the first
header along with the data values.

It is mainly used for the chosen final time step (Last Frame) with Apply under Properties. Note that
for the conventional nozzle wedge, the extensive properties could be multiplied by 360∘ (full rotation)
/ 5∘ (wedge) as applicable to result in values for the whole conventional nozzle. A column represent-
ing the range for X Origin can be manually input into the CSV files by sequentially adding the step to
the starting X per iteration. Other parameters could be studied as well. As the area is given in the
data, the representative physical length scale can be determined from depth (given as 0.1 mm for noz-
zle) multiplied by the desired width (typical representative physical length scale as hydraulic diameter
equaling four times the cross sectional area divided by the cross sectional wetted perimeter, consider-
ing that it reduces to an equivalent diameter for a circular cross section) value equaling the area for the
MEMS nozzle, while the conventional nozzle’s wedge area could be multiplied by 360∘ (full rotation) /
5∘ (wedge) to equal the rotated area (𝜋𝑟 , where 𝑟 is the radius and 2𝑟 is the diameter (𝐷)), from which
the radius can be obtained to find the desired diameter (representative physical length scale) value.

The following Python script, which could be adjusted for other uses as well, is run using the Python
Shell in ParaView with the respective (possibly increased 𝑥) range for the conventional and MEMS
nozzles:

1 #### import the simple module from the paraview
2 from paraview.simple import *
3
4 # get active source.
5 foamfoam = GetActiveSource()
6
7 i = 1
8
9 for x in range(-447846 increased to -447840,2662330,8000) or range(-987500

increased to -987490,5647170,17000):
10
11 # create a new ’Slice’
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12 slice1 = Slice(Input=foamfoam)
13 slice1.SliceType = ’Plane’
14 slice1.SliceOffsetValues = [0.0]
15
16 # init the ’Plane’ selected for ’SliceType’
17 # Properties modified on slice1.SliceType
18 slice1.SliceType.Origin = [x/1000000000.0, 0.0, 0.0]
19 slice1.UpdatePipeline()
20
21 # create a new ’Integrate Variables’
22 integrateVariables1 = IntegrateVariables(Input=slice1)
23
24 # Properties modified on integrateVariables1
25 integrateVariables1.DivideCellDataByVolume = 1
26 integrateVariables1.UpdatePipeline()
27
28 writer = CreateWriter(”Python/” + str(i) + ”.csv”,

integrateVariables1)
29 writer.FieldAssociation = ”Cells”
30 writer.UpdatePipeline()
31 del writer
32
33 # Increase i by 1
34 i += 1



4
Results and Discussion

In this chapter, the results of the DSMC simulations along with an analytical model and its method-
ology for the same nozzle cases are presented and discussed. In addition to comparing the conven-
tional and MEMS thrusters using the DSMC simulation data, DSMC/continuum model comparisons
are made generally using the same nozzle cases in the developed analytical model and an additional
VLM CFD model prepared in advance at TU Delft. A comprehensive collection of literature papers with
DSMC/continuum numerical and experimental results on relevant conventional and MEMS de Laval
micronozzles has been compiled for potential help.

4.1. MEMS vs. Conventional Thrusters (DSMC)
Each of the conventional and MEMS nozzles is simulated for all four inlet pressure and temperature
combinations with 5 bar and 550 K, 5 bar and 773 K, 7 bar and 550 K, and 7 bar and 773 K. For possible
referencing abbreviations, the cases are ordered by number from 1 to 4 respectively andwritten after the
first letter of their respective nozzle. The simulations are run following the Running and Managing the
Simulations Section 3.3, where the conventional nozzle simulations took 24 hours (1 day) to complete
with assumed steady state time averaging activated (resetAtOutput off in fieldPropertiesDict) after 21
hours, while the MEMS nozzle simulations took 96 hours (4 days) to complete with assumed steady
state time averaging activated (resetAtOutput off in fieldPropertiesDict) after 84 hours (3.5 days) to
result in around 181 GB and 185 GB of data for the conventional and MEMS nozzles respectively
(C1: 54 GB, C2: 60 GB, C3: 29 GB, C4: 38 GB, M1: 34 GB, M2: 36 GB, M3: 58 GB, M4: 57 GB,
Total: 366 GB). Note that more data is saved for the conventional nozzle simulations mainly due to
the lower dynamic load balancing maximumAllowableImbalance (decomposeParDict, balanceParDict,
and loadBalanceDict Section 3.2.10).

When rerunning a simulation (as explained in Running and Managing the Simulations Section 3.3
and decomposeParDict, balanceParDict, and loadBalanceDict Section 3.2.10) it is usually directly rerun
using the Slurm job script, though in some cases the simulation might end on the write time step, so
it would be safer to first delete the time directory/directories using rm -rf processor*/(TimeStep), which
removes (rm) the potentially incomplete time step directories possibly from all (*) processor directories
recursively (-r) to remove the contents by force (f), where nonexistent files/arguments are neglected, as
confirmation prompts are overridden. It might be helpful to note that decomposeDSMCLoadBalancePar
-force > log.(Application) could be used to decompose the latest reconstructed time directory before
rerunning too, when it is desirable to remove all processor directories before decomposition or the
latest time directory has been reconstructed. Also, purgeWrite in controlDict (Subsection 3.2.7) does
not delete the old decomposed time directories when rerunning the simulation. Another issue related
to rerunning with the implicit boundary condition is missing the addition of particles for the first time
step, while particles can still leave the domain. This effect is amplified with dynamic load balancing
due to the frequent rerunning after the recomposition and decomposition. Therefore, it would be useful
to have a time step size that is reasonably smaller than the greater writeInterval, as set in controlDict
(Subsection 3.2.7) (also due to the lesser significance of a smaller time step size considering the fewer
missed entering particles), and use a higher dynamic load balancing maximumAllowableImbalance
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(decomposeParDict, balanceParDict, and loadBalanceDict Section 3.2.10).
To note, the MEMS nozzle simulations were backed up after the third 24 hour run using recon-

structPar -latestTime > log.(Application). Also, reconstructPar -newTimes > log.(Application) was run
to reconstruct the time steps that have not been reconstructed (-newTimes) at the end of all simulations,
as applicable.

The scatter plots in many of the subsections below originate from methodology in Chapter 3. The
variable names from ParaView are left as is on the 𝑦-axis for clarity. A logarithmic scale is used when
it is necessary to show largely varying data. The Python script is used for approximate data at all
locations along the simulation domains, such as at the nozzle throat and outlet, as the resolution is
sufficient to extract data from the cells themselves or ones very close to (right before) them.

Notice that in terms of both converging and diverging section lengths, lateral surface areas, and
volumes, the MEMS nozzle is longer/larger than the conventional nozzle with a greater total lateral
surface area to total volume ratio resulting in possibly greater losses and enhanced heat transfer. Most
of the data presented is generally for the more important nozzle section, though the plume region
is also included and noted in some cases, as it is also noticeable from the 𝑥-axis dimension. Both
conventional and MEMS nozzle throats are at 𝑥 of 0 m. The following geometric and trigonometric
relations can be used to determine the length of the converging and diverging sections in the nozzles,
where for the conventional nozzle, the converging section length is ((((Inlet Diameter of 0.0003 m) -
(Throat Diameter of 0.00006 m)) / 2) / tan(Converging Half Angle of 15∘)) and diverging section length
is ((((Outlet Diameter of 0.0003 m) - (Throat Diameter of 0.00006 m)) / 2) / tan(Diverging Half Angle
of 20∘)), while for the MEMS nozzle, the converging section length is ((((Inlet Diameter of 0.002 m) -
(Throat Diameter of 0.000025 m)) / 2) / tan(Converging Half Angle of 45∘)) and diverging section length
is ((((Outlet Diameter of 0.0008 m) - (Throat Diameter of 0.000025 m)) / 2) / tan(Diverging Half Angle
of 30∘)). Table 4.1 shows the lengths, surface areas, and volumes of the conventional and MEMS
nozzles’ converging and diverging sections. The lateral surface areas of the converging and diverging
sections are calculated using the conical frustum lateral surface area formula (Equation 4.2) for the
conical 3D conventional nozzle, while the quasi-2D MEMS nozzle’s respective trapezoid area sections
are calculated using Equation 4.3 before being multiplied by 2 (accounting for both sides of each of the
converging and diverging sections) and adding both sides of the converging or diverging lateral areas
obtained as the given height of 0.1 mmmultiplied by the slant line length obtained from the Pythagorean
theorem as the square root of ((((Inlet (2 mm) or Outlet (0.8 mm) Diameter) - (Throat (0.025 mm)
Diameter))/ 2) + (Respective Calculated Converging or Diverging Length) ). To calculate the volume
of the conical 3D conventional nozzle’s converging and diverging frustum sections, Equation 4.1 is
used, while the quasi-2D MEMS nozzle’s respective trapezoid area sections are found using Equation
4.3 before being multiplied by their extrusion of 0.1 mm to result in the volumes. Note that 𝑉 is the
volume, 𝐿 is the respectively calculated length, 𝑟 is the radius at the inlet, throat (repeated for both
converging and diverging sections), or outlet, 𝐴 is the area, and 𝐷 is the diameter at the inlet, throat
(repeated for both converging and diverging sections), or outlet.

𝑉 = 𝜋
3𝐿(𝑟 + 𝑟 + 𝑟 𝑟 ) 4.1

𝐴 = 𝜋(𝑟 + 𝑟 )√(𝑟 − 𝑟 ) + 𝐿 4.2

𝐴trapezoid =
𝐷 + 𝐷
2 𝐿 4.3

Also, it might be necessary to readily extract thermodynamic properties using a tool such as the
MATLAB wrapper for CoolProp, which is a C++ library for thermodynamic data, as in obtaining the
dynamic viscosity for 𝑅𝑒 with the temperature and pressure data preloaded as respective columns in
tables into MATLAB. The following MATLAB code could be used, while noting that try and catch are
used for executing the statements and catching errors overriding the default error handling to continue
after the thermodynamic data becomes unavailable for one variable due to the temperature(/pressure)
drop:

1 t ry
2 f o r a=1: l ength ( ( Table ) . ( Column) )
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Table 4.1: Conventional and MEMS nozzles’ converging and diverging section lengths, lateral surface areas, and volumes

Conventional Nozzle MEMS Nozzle
Converging Section/Frustum Length (mm) 0.44785 0.98750
Diverging Section/Frustum Length (mm) 0.32970 0.67117

Total Length (mm) 0.77755 1.65867
Converging Section/Frustum Lateral Surface Area (mm ) 0.26219 2.27899
Diverging Section/Frustum Lateral Surface Area (mm ) 0.19841 0.70872

Total Lateral Surface Area (mm ) 0.4606 2.98771
Converging Section/Frustum Volume (mm ) 0.013085 0.099984
Diverging Section/Frustum Volume (mm ) 0.0096328 0.027686

Total Volume (mm ) 0.022718 0.12767
Total Lateral Surface Area (mm ) to Total Volume (mm ) Ratio 20.27467 23.40182

3 ( Var iab le ) ( a ) = CoolProp . PropsSI ( 'V ' , 'T ' , ( Table ) . overallT_H2O ( a ) ,
'P ' , ( Table ) .p_H2O( a ) , ' Water ' ) ; %Pa . s − Dynamic V i s c o s i t y

4 end
5 catch
6 end
7 ( Var iab le ) = transpose ( ( Var iab le ) ) ;

4.1.1. Steady State Convergence and General Final Simulation Data
Considering the simulation times including steady state time averaging as explained above and in
Chapter 3 and using gnuplot to monitor the simulations as shown in the Running and Managing the
Simulations Section 3.3, the final steady state convergence plots for all conventional and MEMS nozzle
simulations with fixed none overlapping data due to rerunning are shown in Figures 4.1 to 4.8. They
show the number of DSMC particles and average linear kinetic energy vs. time step.

Some simulations appear to have been run longer while converged than others due to the conven-
tional and MEMS nozzle simulations being run separately with each of their four simulations having the
same runtime until all running simulations converge (first) and time average sufficiently before conclud-
ing the simulations. As explained earlier in the fieldPropertiesDict Subsection 3.2.9 and Running and
Managing the Simulations Section 3.3, the convergence line (horizontal asymptote) is reached when
the number of DSMC particles and average linear kinetic energy become relatively constant over time
(or the mass flow rates at the inlet and outlet are comparatively equal) [47].

Table 4.2 summarizes the general final simulation data obtained, especially from the simulation
output file. To note, the total time steps is calculated by simply dividing the final time step by the time
step size of 5e-10 s (for all simulations) set in controlDict (Subsection 3.2.7). Also, the average energy
is the respective energy divided by the number of molecules (final number of DSMC/free particles
multiplied by nEquivalentParticles (from dsmcProperties Subsection 3.2.6) for the number of real gas
atoms/molecules represented by each DSMC simulation particle), while total energy is the sum of the
applicable energies. The assumed (roughly) estimated steady state convergence time step data are
respectively obtained visually from Figures 4.1 to 4.8. The equivalent time for assumed estimated
steady state convergence time step is obtained by multiplying the time step size of 5e-10 s set in
controlDict (Subsection 3.2.7) by the assumed estimated steady state convergence time step.

It is interesting to note that the simulations with lower final number of DSMC/free particles (lower
pressures with constant temperature and higher temperatures with constant pressure) appear to run
faster. The final time step inserted parcels is determined from the inlet pressure boundary condi-
tion, which is dependent on many factors as shown in the boundariesDict Subsection 3.2.5 along with
nEquivalentParticles in the dsmcProperties Subsection 3.2.6. The final collisions relatively scale with
the final number of DSMC/free particles in the computational domain. For the conventional nozzle,
the final average linear kinetic energy increases with increasing temperature at constant pressure and
decreases with increasing pressure at constant temperature, though the MEMS nozzle’s final average
linear kinetic energy slightly increases with increasing pressure at constant temperature, yet also in-
creases with increasing temperature at constant pressure. Furthermore, the conventional nozzle’s final
total energy increases with increasing temperature at constant pressure and increases with increas-
ing pressure at constant temperature, though the MEMS nozzle’s final total energy decreases with
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increasing temperature at constant pressure, yet also increases with increasing pressure at constant
temperature, which starting from the final average linear kinetic energy is due to the varying number
of molecules (final number of DSMC/free particles multiplied by nEquivalentParticles (from dsmcProp-
erties Subsection 3.2.6) for the number of real gas atoms/molecules represented by each DSMC sim-
ulation particle) as mentioned in its definition. Much of the mentioned trends can be extracted from
the ideal gas law relations, with 𝑝 as pressure, 𝑉 as volume (might be taken as 1 m for comparison),
𝑛 is the number of moles in the gas, 𝑅 the ideal gas constant, 𝑇 the temperature, 𝑁 the number of
molecules, and 𝑘 the Boltzmann constant:

𝑝𝑉 = 𝑛𝑅 𝑇 = 𝑁𝑘𝑇 4.4

The conventional and MEMS nozzles seem to reach steady state at around the same physical time
with higher temperatures at constant pressures and lower pressures at constant temperatures taking
longer due to the number of molecules being directly proportional to the pressure and inversely propor-
tional to temperature. The equivalent time for the assumed estimated steady state convergence time
step is determined to be generally in the order of some microseconds. However, the typical response
time of these thrusters is in milliseconds, so the fact that steady state is achieved within microseconds
makes the transient solution less significant.

For a full conventional nozzle as compared to the 5∘ wedge, the extensive values could be multiplied
by 360∘ (full rotation) / 5∘ (wedge), though it would not be ideal to compare the conventional and MEMS
nozzles from this aspect here due to the different plume regions and their lesser importance.

Table 4.2: General final simulation data

Total
Time
Steps

Final
Time
Step
(s)

Final
Time Step
Inserted
Parcels

Final
Collisions

Final
Number of
DSMC/Free
Particles

Final Average
Linear
Kinetic

Energy/[J]

Final
Total

Energy/[J]

Assumed Estimated
Steady State
Convergence
Time Step

Equivalent Time for
Assumed Estimated

Steady State Convergence
Time Step (s)

C1 49400 2.47e-05 225 7398479 780145 9.096855e-21 2.12906e-10 15000 7.5e-06
M1 43200 2.16e-05 1360 163606403 11465895 6.52231e-21 7.478412e-05 15000 7.5e-06
C2 67800 3.39e-05 199 4838243 623769 1.147856e-20 2.14799e-10 25000 1.25e-05
M2 45900 2.295e-05 1151 155624401 11133070 6.682069e-21 7.439194e-05 20000 1e-05
C3 17800 8.9e-06 322 16587249 1170928 8.417093e-21 2.956743e-10 12000 6e-06
M3 22900 1.145e-05 1902 319410940 16020465 6.538048e-21 0.0001047426 14000 7e-06
C4 30200 1.51e-05 276 9789462 888932 1.117359e-20 2.979768e-10 15000 7.5e-06
M4 26300 1.315e-05 1633 303906828 15557852 6.696452e-21 0.0001041824 15000 7.5e-06
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Figure 4.1: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for C1

Figure 4.2: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for M1

Figure 4.3: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for C2

Figure 4.4: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for M2

Figure 4.5: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for C3

Figure 4.6: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for M3

Figure 4.7: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for C4

Figure 4.8: Number of DSMC particles and average linear kinetic
energy vs. time step steady state convergence plot for M4
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4.1.2. Number of Simulation Particles per Grid Cell, Mass Density, Particle Num-
ber Density, Aspect Ratio, and Perimeter to Cross Sectional Area Ratio

Referencing Chapter 3 and the checkMesh Subsection 3.2.4, the reason for the difficulty of maintaining
20 or more particles per grid cell as recommended for the no-time-counter method to allow the recovery
of more precise collision statistics with possibly less particles per grid cell needed when the Knudsen
number is sufficiently high and collisions become less relevant can be seen in Figure 4.9, where the
nozzle mean DSMC particle number density per grid cell is plotted vs. 𝑥 for all simulations [52]. The
drop from the significantly high number of particles per grid cell before the throat to a much lower and
relatively acceptable number of particles per grid cell after the throat is clear and challenging to feasi-
bly achieve for these DSMC simulations. To add, the comparably plotted nozzle mass density (Figure
4.10) and particle number density (Figure 4.11) also follow similar expected trends with generally higher
densities (particles) for higher pressures at constant temperature and lower temperatures at constant
pressures and an initially relative increase before the nosedive at the throat along with a relative de-
crease before and after the throat. The MEMS nozzle’s larger dip past the throat is relatively amplified
due to the slightly extended throat section’s smaller grid cell size, as explained in the Methodology
Chapter 3’s mesh creation. Although the conventional nozzle appears to follow the expected trends
throughout, the MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure and Temper-
ature Subsection 4.1.4) causes a relative sharp increase at the inlet, as it can be seen to make the
temperature difference at constant pressure very small towards the throat resulting in very similar flows
past the throat along with its following increasing to decreasing behavior due to the temperature arch
as explained in the Pressure and Temperature Subsection 4.1.4 along with the geometrical features
(quasi-2D with smaller throat and (less than 1) throat aspect ratio inverting from rectangular horizontal
flow to rectangular vertical flow at the throat and then back to a rectangular horizontal flow (Number of
Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perime-
ter to Cross Sectional Area Ratio Subsection 4.1.2)) of the MEMS nozzle (see Boundary Layers and
Rarefaction Phenomena Subsection 4.1.13) leading to its flow beyond the throat becoming relatively
more rarefied at the lateral sides acting in a way like a channel with comparatively more faster particles
traveling in straight line trajectories beaming out of the aperture center as rays considering the notably
thick (cross sectional) boundary layer at the sides from the throat (viscous dissipation of flow kinetic
energy from shear on the walls), ultimately leading to a slowdown at the front prompting its expansion
(especially towards the sides) and following speedup as a velocity arch (Velocity, Root Mean Square
Speed, and Most Probable Speed Subsection 4.1.5). The mentioned densities are generally relatively
higher for the MEMS nozzle simulations compared to the conventional nozzle simulations. To note,
the particle number density can be found as the mass density multiplied by the Avogadro constant
(𝑁 = 6.022140857 ⋅ 10 mol ) divided by the molar mass for water (𝑀 = 18.015 g

mol
).

Even though none of the nozzle cases exceed the slip flow regime (spoiler from the Knudsen Num-
ber Subsection 4.1.10), in a 2D micro channel flow DSMC accuracy study, the slip flow regime is
determined to need at least 20 particles per cell for a comparably acceptable accuracy with sufficient
intermolecular collisions compared to 10 particles per cell for the transition flow regime due to its molec-
ular motion mechanism with a smaller intermolecular collision rate [48]. However, the real to simulated
molecules’ scaling factor (nEquivalentParticles) as considerately set in dsmcProperties (Subsection
3.2.6) could be acceptably higher for the slip flow regime (10 ) compared to the transition flow regime
(10 ) with a more significant individual molecular motion [48].

For the conventional and MEMS nozzles’ geometric analysis, the aspect ratio (width/height) vs. 𝑥
is shown in Figure 4.12 along with the perimeter to cross sectional area ratio vs. 𝑥 in Figure 4.13. Note
that the conventional nozzle’s area is multiplied by 360∘ (full rotation) / 5∘ (wedge) to obtain the full
conventional nozzle values. The aspect ratio is constant at a value of 1 throughout the conventional
nozzle due to its conical shape, though the MEMS nozzle’s aspect ratio drops sharply from around
20 at the inlet to approximately 0.25 at the throat before increasing back to around 8, which is likely
disruptive, as the rectangular horizontal flow becomes a rectangular vertical flow before returning to
a previously higher aspect ratio. Furthermore, considering the quasi-2D shape of the MEMS nozzle
with the larger total lateral surface area to total volume ratio (Table 4.1) in this case compared to the
conical 3D shape of the conventional nozzle, the perimeter to cross sectional area ratio, which peaks
at the throat for both conventional and MEMS nozzles, is considerably higher for the MEMS nozzle in
general, which leads to effects including higher friction losses and enhanced heat transfer. Note that
the widths of the conventional and MEMS nozzle are determined from their mentioned methods in the
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Python Script Subsection 3.4.1, while the height for the MEMS nozzle is given. The MEMS nozzle’s
perimeter is found as the sum of the twice width and height, while the conventional nozzle’s perimeter
is 2𝜋𝑟. Also, the fully rotated cross sectional area of the conventional nozzle is used.

Figure 4.9: Nozzle mean DSMC particle number density per grid cell vs. for all simulations

4.1.3. Mean Collision Time, Mean Collision Rate, Mean Collision Separation, (Lo-
cal) Variable Hard Sphere Mean Free Path, Separation of Free Paths, and
Courant-Friedrichs-Lewy Number

The nozzle mean collision time vs. 𝑥 for all simulations is shown in Figure 4.14 and the ratio found
by dividing the mean collision time by the time step size (5e-10 s from controlDict Subsection 3.2.7)
is shown in Figure 4.15. Higher temperatures at constant pressures and lower pressures at constant
temperatures lead to a higher mean collision time, with the plots showing an initially relative decrease
before the rise at the throat along with a relative increase before and after the throat. Notably, as men-
tioned in Chapter 3 (checkMesh Subsection 3.2.4 and controlDict Subsection 3.2.7) and OpenFOAM
dsmcFoam(+) Solver Subsection 2.4.2, the time step size should be a fraction of the mean collision
time, which is the successive particle collision time on average, for more accurate movement and col-
lision steps decoupling, as DSMC particles must not be allowed to skip grid cells at the most probable
molecular speed for sufficient interaction with other particles. This generally becomes more difficult to
apply before the throat considering the sharp increase in mean collision time following it. The values
scale with the calculations made and explained in the checkMesh Subsection 3.2.4. In consideration
of simulation feasibility as explained in Chapter 3, the mean collision time to time step size ratio is
applicable with its acceptable results. The nozzle mean collision rate (collision frequency) vs. 𝑥 for all
simulations plotted in Figure 4.16 shows higher mean collision rates for higher pressures at constant
temperature and lower temperatures at constant pressures and an initially relative increase before the
nosedive at the throat along with a relative decrease before and after the throat. Although the conven-
tional nozzle appears to follow the expected trends throughout, the MEMS nozzle’s wall temperature
with enhanced heat transfer (Pressure and Temperature Subsection 4.1.4) causes a relative sharp in-
crease in mean collision rate or decrease in mean collision time at the inlet, as it can be seen to make
the temperature difference at constant pressure very small towards the throat resulting in very similar
flows past the throat as explained in the Pressure and Temperature Subsection 4.1.4. The mean col-
lision time is relatively higher for the conventional nozzle simulations compared to the MEMS nozzle
simulations, which have a relatively higher mean collision rate.

Figure 4.18 shows the nozzle variable hard sphere mean free path vs. 𝑥 for all simulations. The
trends show higher mean free path values for higher temperatures at constant pressures and lower
pressures at constant temperatures along with a general decrease towards the throat before a sharp
and then gradual increase. Again, the MEMS nozzle’s wall temperature with enhanced heat transfer
(Pressure and Temperature Subsection 4.1.4) causes a relative sharp decrease at the inlet, as it can be
seen to make the temperature difference at constant pressure very small towards the throat resulting in
very similar flows past the throat. The variable hard sphere mean free path is relatively slightly higher
for the conventional nozzle compared to the MEMS nozzle, which is discussed in more depth in the
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Figure 4.10: Nozzle mass density vs. for all simulations
Figure 4.11: Nozzle particle number density vs. for all simula-
tions

Figure 4.12: Conventional and MEMS nozzles’ width/height (as-
pect ratio) vs.

Figure 4.13: Conventional and MEMS nozzles’ perimeter to
cross sectional area ratio vs.

Knudsen Number Subsection 4.1.10. The same behavior is seen in Figure 4.20 showing the variable
hard sphere mean free path/largest cell dimension vs. 𝑥 for all simulations, where it can be seen
that the mean free path is constantly smaller than the largest cell dimension, as has been previously
calculated in the checkMesh Subsection 3.2.4. While it is certainly desirable to follow Equation 2.54 for
the grid cell size to be at least three times smaller than the mean free path, the simulations’ feasibility
remaining applicable with its acceptable results has been a priority. The MEMS nozzle’s larger bump
past the throat is relatively amplified due to the slightly extended throat section’s smaller grid cell size,
as explained in the Methodology Chapter 3’s mesh creation.

Figure 4.17 shows the nozzle mean collision separation vs. 𝑥 for all simulations and it appears to
have an anomaly (high value) for C2, which will be assumedly treated as a plume region value in the
analysis. It is still slightly visible, as noticed in the data, that the mean collision separation values dip
almost identically for the conventional or MEMS nozzle cases at the throat, where the lower pressure
at constant temperature values results become slightly higher than their higher pressure at constant
temperature counterparts. Then, the nozzle separation of free paths representing the respective ratio
of mean collision separation to variable hard sphere mean free path vs. 𝑥 for all simulations is plotted in
Figure 4.19. Except for the carried anomaly from the mean collision separation data, the results show
higher separation of free paths values for lower temperatures at constant pressure and higher pressure
at constant temperature with a general increase towards the throat before a sharper and then gradual
decrease. Note that the MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure and
Temperature Subsection 4.1.4) causes a relative sharp increase at the inlet, as it can be seen to make
the temperature difference at constant pressure very small towards the throat resulting in very similar
flows past the throat. The mean collision separation and separation of free paths are higher for the
MEMS nozzle compared to the conventional nozzle.

As explained in the OpenFOAM dsmcFoam(+) Solver Subsection 2.4.2 with the Courant-Friedrichs-
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Lewy number (𝐶𝐹𝐿) being defined in DSMC to physically provide a time step size allowing particles to
remain within their grid cell guaranteeing sufficient interaction for accuracy rather than CFD’s general
usage for stability [35], the nozzle Courant-Friedrichs-Lewy number (𝐶𝐹𝐿) vs. 𝑥 for all simulations is
calculated (Equation 2.58) and plotted in Figure 4.21. To obtain the grid cell size along 𝑥, the Python
script (Python Shell Subsection 3.4.1) data is used, where the variable hard sphere mean free path
is divided by the variable hard sphere mean free path to largest cell dimension ratio resulting in the
used largest cell dimension. Furthermore, the most probable molecular speed is calculated using
Equation 2.59 with the universal gas constant (𝑅 = 8.3144598J ⋅ K ⋅ mol = 8.3144598kg ⋅ m ⋅
s ⋅ K ⋅ mol ) and water molecular mass (𝑀 = 0.018kg ⋅ mol ). As similarly determined in the
checkMesh Subsection 3.2.4 calculations, the 𝐶𝐹𝐿 number proves to be acceptable below one (lower
for MEMS nozzle than conventional nozzle) for the used average grid cell and time step sizes due to
the relative smallness of the time step size compared to the grid cell size, which means that the time
step size can maintain the DSMC particles in their grid cells for a sufficient period at the most probable
molecular speed for accuracy in their physical interaction with other particles rather than stability as in
CFD’s general usage. It can be noted that the values peak at the throat with the higher temperature at
constant pressure and lower pressure at constant temperature values maintaining a higher 𝐶𝐹𝐿 before
the throat, though they become rather similar beyond it. Also, the MEMS nozzle’s throat peak is more
prominent mostly due to the relatively finer throat region grid cell sizes, as explained in the Methodology
Chapter 3’s mesh creation.
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Figure 4.14: Nozzle mean collision time vs. for all simulations Figure 4.15: Nozzle mean collision time/time step size vs. for
all simulations

Figure 4.16: Nozzle mean collision rate vs. for all simulations Figure 4.17: Nozzle mean collision separation vs. for all sim-
ulations

Figure 4.18: Nozzle variable hard sphere mean free path vs.
for all simulations

Figure 4.19: Nozzle separation of free paths vs. for all simu-
lations

Figure 4.20: Nozzle variable hard sphere mean free path/largest
cell dimension vs. for all simulations

Figure 4.21: Nozzle Courant-Friedrichs-Lewy number ( ) vs.
for all simulations
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4.1.4. Pressure and Temperature
Figures 4.22 and 4.23 respectively show the nozzle pressure and temperature vs. 𝑥 for all simulations.
Beginning with the pressure, both conventional and MEMS nozzles follow the expected conventional
de Laval nozzle pressure drop at the throat, though the conventional nozzle’s higher pressure’s drop
is greater compared to its MEMS nozzle counterpart, while the MEMS nozzle’s lower pressure’s drop
is smaller compared to its conventional nozzle’s counterpart. The pressures then plateau with little dif-
ference between the higher and lower pressures past the throat. To add, there are some requirements
on the design of the propulsion system and what is typically required for such satellites, for example
related to operational parameters, where the pressure should not exceed 10 bar.

On the other hand, the temperature is arguably the source for the least realistic results, especially
for the MEMS nozzle, though it identifies the significance of heat transfer in the comparison between
the conventional and MEMS nozzles. First, the temperature before the throat is higher for higher tem-
peratures at constant pressures and lower pressures at constant temperatures before the temperature
difference becomes minimal after the pressure drop at the throat, though the MEMS nozzle has a mini-
mal difference due to pressures at constant temperatures before and after the throat. It becomes imme-
diately noticeable that the MEMS nozzle’s temperature is strongly influenced by the wall heat transfer
compared to the conventional nozzle, which generally follows a conventional de Laval nozzle temper-
ature drop, even though it is also affected by the wall temperatures. The walls are set at 300 K in the
boundariesDict Subsection 3.2.5, which would ideally be realistic for a variable initial wall temperature,
possible (regenerative along with potential film, curtain, transpiration, and radiation) cooling to avoid
melting (in different conditions considering that the (stored) inlet microresistojet temperature is 283.16
K if it were to be used [27]), or decreasing viscosity (before the throat, while still being increased beyond
it (especially in the increasing section of the temperature arch)), as gas viscosity generally increases as
temperature increases due to the gas molecular collisions increase, contrary to the liquid viscosity de-
crease with a temperature increase, considering that it decreases the dominant cohesive force between
the liquid molecules. Although the conventional nozzle’s temperature drop remains rather realistic at
steady state, the MEMS nozzle’s temperature drops quickly at the inlet before reaching a temperature
stagnation region all the way leading to the throat. This is largely due to the enhanced heat transfer
in the MEMS nozzle due to its greater total lateral surface area to total volume ratio (as calculated in
Table 4.1) and perimeter to cross sectional area ratio (Figure 4.13). Due to the smaller area (especially
the width) of the MEMS nozzle’s throat (0.0025 mm compared to 0.0028274 mm for the conventional
nozzle) along with that the perimeter to cross sectional area ratio is much higher at the throat and its
quasi-2D shape has a less than 1 throat aspect ratio inverting from rectangular horizontal flow to rect-
angular vertical flow at the throat and then back to a rectangular horizontal flow (Number of Simulation
Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perimeter to Cross
Sectional Area Ratio Subsection 4.1.2 and Boundary Layers and Rarefaction Phenomena Subsection
4.1.13), the throat (geometry) chokes the flow enough to develop a temperature stagnation region to-
wards the inlet. Also, since the wall temperatures are lower than the set inlet temperatures, the flows
actually start from a lower inlet temperature, where it is actually amplified for the MEMS nozzle due to
its enhanced heat transfer geometrical properties. Then, the MEMS nozzle’s temperature beyond the
throat becomes arch shaped (and remains higher than the conventional nozzle’s temperature), where
it increases slightly due to the relatively higher wall temperature (and still relatively higher perimeter to
cross sectional area ratio) before decreasing due to the expansion (relatively lower perimeter to cross
sectional area ratio, since its flow beyond the throat becomes relatively more rarefied at the lateral
sides acting in a way like a channel with comparatively more faster particles traveling in straight line
trajectories beaming out of the aperture center as rays considering the notably thick (cross sectional)
boundary layer at the sides from the throat (viscous dissipation of flow kinetic energy from shear on
the walls), ultimately leading to a slowdown at the front prompting its expansion (especially towards
the sides) and following speedup as a velocity arch (Velocity, Root Mean Square Speed, and Most
Probable Speed Subsection 4.1.5) (refer to Boundary Layers and Rarefaction Phenomena Subsection
4.1.13)). To mention, the MEMS nozzle velocity arch along with the temperature arch from the shear
on the walls are also seen in [9] (and [51] for the velocity arch).

Therefore, this comparison is quite important in determining the impact of the geometrical char-
acteristics of the conventional and MEMS nozzles on heat transfer. Although the temperatures at
the throat and outlet have been calculated in the Analytical Model Subsection 4.2.1 and shown in its
MATLAB Workspace Results Subsection B.1.2, an advantage for using a single temperature along the
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conventional and MEMS nozzles is that it shows how they handle a heat transfer wall with an identical
temperature (indirect insight for studying the heat transfer mechanism along with shape optimization in
the used micro heat exchanger for these thrusters and possible consideration of nozzle heat transfer
as done for the low-pressure microresistojet) and provides a suitable starting point for further research
on more specific conventional vs. MEMS nozzles’ wall heat transfer models along with that a single
temperature for all simulations allows a clear comparison of the effects of wall heat transfer on the
conventional and MEMS nozzles (converging and diverging sections) at different operating conditions,
while partially accounting for the nozzle material’s thermal conduction in the diverging section.

At first glance, this might seem like a disadvantage for the MEMS nozzle. However, it reaffirms that
the MEMS nozzle’s geometry provides easier heat transfer with proper exterior insulation mitigating
undesired heat rejection, which could be an advantage with the propellant heating involved (even with
a lower mass flow rate), as the heat for these thrusters is not coming from chemical reactions, but from
resistive microheaters instead. If the spacecraft happens to become warmer (or cooler), especially
at the (possibly more exposed) diverging section of the nozzle, for any reason during its mission, the
MEMS nozzle will be significantly affected by this temperature change compared to the conventional
nozzle. The methodology used highlights the importance of insulation for the MEMS nozzle’s thrust, as
a material with a lower thermal conductivity (higher thermal resistivity) is desired for the MEMS nozzle,
so that the heat before the throat and converging section (from the heater) does not easily conduct
heat towards the outlet. This also depends on the resistive heaters’ placement, considering that their
unobtrusive placement in the center could provide the conventional nozzle an advantage.

In reality, the wall temperatures would vary significantly from the firing time (assumed 300 K)
to steady state. Using Table 4.3 (with data from the Analytical Model Subsection 4.2.1’s MATLAB
Workspace Results Subsection B.1.2) for future simulations of conventional and MEMS nozzles, con-
verging and diverging sections’ different approximated wall temperatures could be set based on Equa-
tion 2.109 (assuming that the analytical model’s expected flow temperature at steady state equals the
wall temperature), where the Mach number is 1 at the throat and could be calculated from Equation
2.108 at the exit as done in the Analytical Model Subsection 4.2.1 along with an assumed constant
𝛾 from the inlet, as it is difficult to find thermodynamic data for the resulting exit temperature and the
specific heat ratio is not expected to vary significantly for the considered analysis, as proven by the
difference between inlet and throat specific heat ratios in the Analytical Model Subsection 4.2.1, even
though their difference with the exit specific heat ratio is expected to be greater, the specific heat ratio
at the inlet is still used. Also, instead of just setting the respective approximated average temperatures
at the converging and diverging (and throat for the MEMS nozzle since it has been separated during
mesh creation as explained in the Methodology Chapter 3), the geometry could easily be subdivided
into sufficient subdivisions using Blender (with the suggested add-ons in the General Modeling Prop-
erties and Procedure Section 3.1) and prepared for the simulations again using further temperature
averaging estimates, which would ideally lead to a more accurate representation of the wall temper-
ature gradient, though this method (inaccurately for de Laval nozzles) assumes that the temperature
gradient is linear, which would generally be acceptable. Otherwise, a fixed zero (adiabatic) wall heat
flux (using different wall boundary models) could be ideally set or the wall temperature could automat-
ically be adjusted for using Equation 2.109 (ignoring wall radiation in assumed vacuum and material
thermal conduction) based on the Mach number and 𝛾 in the source code for the cells adjacent to the
walls’ boundary faces, so that there is potentially no need to account for material thermal conductivity.
Some additional simulations run using respectively allocated temperatures confirm the expectations
that the MEMS nozzle’s wall heat transfer remains highly effective and that even when the temperature
is set to a considerably lower relative temperature in the diverging section, its velocity still behaves
in the same way, while the temperature drops following expected de Laval nozzle behavior with the
lower set temperature. This is observed better in the Boundary Layers and Rarefaction Phenomena
Subsection 4.1.13, as it relates to the geometrical features of the MEMS nozzle, where the flow beyond
the throat (quasi-2D with smaller throat and (less than 1) throat aspect ratio inverting from rectangular
horizontal flow to rectangular vertical flow at the throat and then back to a rectangular horizontal flow
(Number of Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio,
and Perimeter to Cross Sectional Area Ratio Subsection 4.1.2)) becomes relatively more rarefied at
the lateral sides acting in a way like a channel with comparatively more faster particles traveling in
straight line trajectories beaming out of the aperture center as rays considering the notably thick (cross
sectional) boundary layer at the sides from the throat (viscous dissipation of flow kinetic energy from
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shear on the walls), ultimately leading to a slowdown at the front prompting its expansion (especially
towards the sides) and following speedup as a velocity arch (Velocity, Root Mean Square Speed, and
Most Probable Speed Subsection 4.1.5). As Table 4.3 shows the conventional and MEMS nozzles’ an-
alytical model expected flow temperatures at the inlet, throat, and outlet, where they are to be assumed
equal to the wall temperature at steady state, only the lower inlet temperatures’ averaged values in the
diverging region (not far from the center) could make 300 K more representative of the realistic flow. It
might initially seem that the diverging section’s rise in temperature after the throat is unintuitive consid-
ering that the set wall temperature is generally lower than the wall temperature from Table 4.3, but the
converging section’s previous temperature drop influences the increase in temperature following the
throat’s temperature drop that leads to a relatively lower temperature compared to the wall temperature
from Table 4.3’s throat temperature drop. Generally, the wall temperature should be respectively higher
for the converging section and varying from higher to lower in the diverging section.

While it would be more realistic to accommodate for the wall temperature along the nozzle, it must
be noted that even with different inlet temperatures for the MEMS nozzle, the temperature is and would
have still been significantly influenced by the enhanced wall heat transfer, especially if the average
value from Table 4.3 is directly assigned for the converging section. Generally, the conventional noz-
zle’s temperature profile is more applicable as a typical de Laval nozzle, while the MEMS nozzle is
quite affected by the wall heat transfer. Note that using multiply averaged converging and diverging
sections’ wall temperature values (starting from Table 4.3) would make the direct comparison of heat
transfer more difficult, while using the averaged converging and diverging sections’ wall temperature
values might yield relatively more accurate results compared to the ones presented, though with similar
plateauing behavior.

By comparing these simulations to an Analytical Model (Subsection 4.2.1) and ANSYSFluent results
from a TU Delft VLM CFD Continuum Model (Subsection 4.2.2) using the Thrust, Specific Impulse,
Specific Impulse Quality, Effective Exhaust Velocity, and Discharge Coefficient (Subsection 4.1.12)
results in the Discussion Subsection 4.2.3, it turns out that the DSMC models follow similar trends that
are comparably correct, although with negatively impacted performance. Therefore, the comparison
between the conventional and MEMS nozzles is still valid. Also, notice that some varying temperature
and pressure dependent variables could relatively start at the same point in the plots before different
behavior is observed since the ratio of higher pressure/temperature to lower pressure/temperature is
around 1.4.

Table 4.3: Conventional and MEMS nozzles’ analytical model temperatures at the inlet, throat, and outlet

Inlet
Temperature

(K)

Throat
Temperature

(K)

Outlet
Temperature

(K)

Average of
Inlet and Throat
Temperatures (K)

(Converging Section)

Average of
Throat and Outlet
Temperatures (K)
(Diverging Section)

C1 550 474.0893 128.5235 512.04465 301.3064
M1 550 474.0893 118.2996 512.04465 296.1945
C2 773 677.6507 213.5426 725.32535 445.5967
M2 773 677.6507 198.4676 725.32535 438.0592
C3 550 472.5628 124.4658 511.2814 298.5143
M3 550 472.5628 114.3515 511.2814 293.4572
C4 773 677.0628 211.7167 725.0314 444.3898
M4 773 677.0628 196.6731 725.0314 436.8680

4.1.5. Velocity, Root Mean Square Speed, and Most Probable Speed
The nozzle velocity vs. 𝑥 for all simulations is shown in Figure 4.24. The velocity magnitude is cal-
culated as the square root of the sum of its individual 𝑥, 𝑦, and 𝑧 components squared. The velocity
is higher for higher temperatures at constant pressures, though the difference is minimal due to vary-
ing pressures at constant temperatures. It gradually increases before the throat, where it increases
rapidly. The conventional nozzle’s velocity proceeds to increase after the throat, though the MEMS
nozzle’s wall temperature with enhanced heat transfer (Pressure and Temperature Subsection 4.1.4)
causes a decreasing to increasing behavior due to the temperature arch along with the geometrical
features (quasi-2D with smaller throat and (less than 1) throat aspect ratio inverting from rectangular
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Figure 4.22: Nozzle pressure vs. for all simulations Figure 4.23: Nozzle temperature vs. for all simulations

horizontal flow to rectangular vertical flow at the throat and then back to a rectangular horizontal flow
(Number of Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio,
and Perimeter to Cross Sectional Area Ratio Subsection 4.1.2)) of the MEMS nozzle (see Boundary
Layers and Rarefaction Phenomena Subsection 4.1.13) leading to its flow beyond the throat becoming
relatively more rarefied at the lateral sides acting in a way like a channel with comparatively more faster
particles traveling in straight line trajectories beaming out of the aperture center as rays considering
the notably thick (cross sectional) boundary layer at the sides from the throat (viscous dissipation of
flow kinetic energy from shear on the walls), ultimately leading to a slowdown at the front prompting
its expansion (especially towards the sides) and following speedup as a velocity arch (Velocity, Root
Mean Square Speed, and Most Probable Speed Subsection 4.1.5). The velocity is relatively higher for
the conventional nozzle simulations compared to the MEMS nozzle simulations.

Figures 4.25 and 4.26 show the nozzle and plume region root mean square speed and nozzle most
probable speed vs. 𝑥 for all simulations respectively. The most probable speed is calculated using
Equation 2.59, while the relatively higher root mean square speed is calculated using the following
equation using the temperature (𝑇) (with the universal gas constant (𝑅 = 8.3144598J ⋅ K ⋅mol =
8.3144598kg ⋅m ⋅ s ⋅ K ⋅mol ) and water molecular mass (𝑀 = 0.018kg ⋅mol )):

𝑣 = √3𝑅 𝑇𝑀 , 4.5

The trends in Figures 4.25 and 4.26 expectedly follow the temperature trends, with higher molec-
ular speeds for higher temperatures at constant pressures. The molecular speeds are slightly higher
with higher pressures at constant temperatures before the throat. They gradually decrease before the
throat for the conventional nozzle, while there is a plateauing sharp decrease at the inlet for the MEMS
nozzle leading to the throat due to the temperature stagnation region from the wall temperature with the
MEMS nozzle’s enhanced heat transfer (Pressure and Temperature Subsection 4.1.4). At the throat,
the molecular speeds drop rapidly. The conventional nozzle’s molecular speeds proceed to decrease
after the throat, though the MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure and
Temperature Subsection 4.1.4) causes an increasing to decreasing behavior due to the temperature
arch. The molecular speeds are relatively higher for the conventional nozzle simulations compared to
the MEMS nozzle simulations before the throat and relatively lower after the throat. The root mean
square speed drops at the outlet before a gradual decrease in the plume region.

4.1.6. Mass Flow Rate, Mass Flux, and Particle Flux
The nozzle mass flow rate (with the fully rotated conventional nozzle) as plotted vs. 𝑥 for all simulations
in Figure 4.27 is calculated using the latter part of Equation 2.102 with data from the Python script
(Python Shell Subsection 3.4.1). Note that the conventional nozzle’s mass flow rate is multiplied by
360∘ (full rotation) / 5∘ (wedge) to obtain the full conventional nozzle values. Although the mass flow
rates are relatively constant, a general slight decrease can be seen throughout the nozzle (especially
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Figure 4.24: Nozzle velocity vs. for all simulations

Figure 4.25: Nozzle and plume region root mean square speed
vs. for all simulations

Figure 4.26: Nozzle most probable speed vs. for all simula-
tions

at the inlet) most likely due to numerical artifacts. Mainly, cases with higher pressures at constant
temperatures have higher mass flow rate with the conventional nozzle simulations’ mass flow rates
being greater than their counterparts in the MEMS nozzle simulations.

The next figures will be listed for their respective inlet, throat, or outlet faces as explained in cre-
ateCellZones and createFaceZones Subsection 3.2.3 and fieldPropertiesDict Subsection 3.2.9. The
data is obtained using the additional steps from the decomposeParDict, balanceParDict, and loadBal-
anceDict Subsection 3.2.10 and Running and Managing the Simulations Section 3.3. Figures 4.28,
4.29, and 4.30 show the nozzle inlet, throat, and outlet mass flow rates (with full conventional nozzle)
respectively vs. time for all simulations. It can be seen that the greater starting pressure ratio allows
for a larger mass flow rate at the inlet, though it decreases gradually to a steady state asymptote over
time. The nozzle throat and outlet mass flow rates start with a lower mass flow rate rapidly increasing
and overshooting before decreasing to a steady state asymptote over time. The (positive) overshoot
also occurs due to the higher starting pressure ratio, which is balanced over time. To note, the MEMS
nozzle’s does not exactly overshoot at the outlet as expected possibly due to the geometry and throat
choking leading to an earlier effective balancing. Eventually, the conventional nozzle simulations have
a higher mass flow rate than their counterparts in the MEMS nozzle simulations along with that higher
pressures at constant temperatures result in higher mass flow rates as seen in Figure 4.27. Figures
4.31, 4.33, and 4.35 show the nozzle inlet, throat, and outlet mass fluxes respectively vs. time for all
simulations, while Figures 4.32, 4.34, and 4.36 show the nozzle inlet, throat, and outlet particle fluxes
respectively vs. time for all simulations. They follow the same behavior as their respective mass flow
rates as the mass flux multiplied by the respective cross sectional area or the particle flux multiplied
by the respective cross sectional area and the molar mass for water (𝑀 = 18.015 g

mol
) divided by the
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Avogadro constant (𝑁 = 6.022140857 ⋅ 10 mol ) lead to the mass flow rate.
The mass flow rate and mass and particle fluxes over time could be helpful in extracting time-

sensitive data in consideration of the accuracy needed for space technology micropropulsion and to
transiently study how the propellant flows when the thruster fires. For consistency, the mass flow
rates from the Python script (using macroscopic velocity and density values) (Python Shell Subsection
3.4.1) are mainly used for calculations, as they respectively appear to be acceptably close to the more
statistically accurate (due to the significant number of particles crossing their faces) face data.

Knudsen Paradox
The following is inapplicable to the studied cases, as they do not exceed the slip flow regime (spoiler
from the Knudsen Number Subsection 4.1.10). Nevertheless, it is still useful information for different
conditions.

The Knudsen Paradox represents the phenomenon arising in channels with varying width or pres-
sures, where a minimum mass flux occurs at around 𝐾𝑛 = 0.8, as can be seen when the channel’s
normalized mass flux is plotted against 𝐾𝑛 with the channel width as the characteristic length scale
[31]. It seems unusual since the Navier-Stokes equations would tell that a higher 𝐾𝑛 would lead to
a lower mass flux, but it can be better explained by considering two Knudsen numbers, where one is
significantly high and the other is significantly low [31]. The significantly low 𝐾𝑛 would have negligible
viscosity, where infinite flux would be found for a fully developed steady state channel flow, while the
significantly high 𝐾𝑛 would result in negligible particle interaction and infinite flux would also be found
as constant acceleration is developed from the external force [31]. This analysis can provide insight into
the physical accuracies of the models. A possible normalized mass flow rate (𝑚 ) could be evaluated
as:

𝑚 = 𝐿√2𝑅𝑇
(𝑝 − 𝑝 )ℎ 𝑤�̇�, 4.6

where 𝐿 is the channel length, ℎ is the channel height, and 𝑤 is the channel depth, assumed to be
one for 2D geometries [19].

Figure 4.27: Nozzle mass flow rate (with full conventional noz-
zle) vs. for all simulations

Figure 4.28: Nozzle inlet mass flow rate (with full conventional
nozzle) vs. time for all simulations
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Figure 4.29: Nozzle throat mass flow rate (with full conventional
nozzle) vs. time for all simulations

Figure 4.30: Nozzle outlet mass flow rate (with full conventional
nozzle) vs. time for all simulations

Figure 4.31: Nozzle inlet mass flux vs. time for all simulations Figure 4.32: Nozzle inlet particle flux vs. time for all simulations

Figure 4.33: Nozzle throat mass flux vs. time for all simulations Figure 4.34: Nozzle throat particle flux vs. time for all simulations

Figure 4.35: Nozzle outlet mass flux vs. time for all simulations Figure 4.36: Nozzle outlet particle flux vs. time for all simulations
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4.1.7. 𝐷𝑁 and 𝑉𝐷𝑁
The following analysis assumes basic prior understanding of the introduced Extended Continuum/Ki-
netic Dimensionless Numbers for Diffusivity and Rarefaction Intensity in Appendix A. Equation A.12 is
used to calculate 𝑉𝐷𝑁 in the nozzle and plume region and plot it against 𝑥 for all simulations in Figure
4.37. The root mean square speed multiplied by the variable hard sphere mean free path result in
the intrinsic diffusive transport rate, which is plotted for the nozzle and plume region against 𝑥 for all
simulations in Figure 4.38. Next, the variables depend on a representative physical length scale, which
is the hydraulic diameter equaling four times the cross sectional area divided by the cross sectional
wetted perimeter, considering that it reduces to an equivalent diameter for a circular cross section, for
the MEMS nozzle and diameter for the conventional nozzle (Python Shell Subsection 3.4.1). Therefore,
the nozzle advective transport rate (𝑣𝐿) vs. 𝑥 for all simulation is plotted in Figure 4.39. The nozzle 𝐷𝑁
as calculated from Equation A.10 vs. 𝑥 for all simulations is also plotted in Figure 4.40.

Figure 4.37 shows that 𝑉𝐷𝑁 increases from below to above one. The conventional nozzle’s 𝑉𝐷𝑁
is constantly higher than the MEMS nozzle’s 𝑉𝐷𝑁. 𝑉𝐷𝑁 is generally rising from the inlet towards
the throat, where it rapidly ascents and gradually plateaus afterwards in the diverging section for the
conventional nozzle, while the MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure
and Temperature Subsection 4.1.4) causes a decreasing to increasing behavior due to the temperature
arch along with the geometrical features (quasi-2D with smaller throat and (less than 1) throat aspect
ratio inverting from rectangular horizontal flow to rectangular vertical flow at the throat and then back
to a rectangular horizontal flow (Number of Simulation Particles per Grid Cell, Mass Density, Particle
Number Density, Aspect Ratio, and Perimeter to Cross Sectional Area Ratio Subsection 4.1.2)) of the
MEMS nozzle (see Boundary Layers and Rarefaction Phenomena Subsection 4.1.13) leading to its flow
beyond the throat to become relatively more rarefied at the lateral sides acting in a way like a channel
with comparatively more faster particles traveling in straight line trajectories beaming out of the aperture
center as rays considering the notably thick (cross sectional) boundary layer at the sides from the throat
(viscous dissipation of flow kinetic energy from shear on the walls), ultimately leading to a slowdown at
the front prompting its expansion (especially towards the sides) and following speedup as a velocity arch
(Velocity, Root Mean Square Speed, and Most Probable Speed Subsection 4.1.5). There is a relatively
smaller drop in 𝑉𝐷𝑁 right at the outlet, where it continues to gradually increase and plateau afterwards.
The rarefaction intensity rises above 1 for the diverging section and plateauing plume region in the
conventional nozzle along with the plateauing plume region of the MEMS nozzle, while it is less than 1
for all other respective 𝑥 values. Also, 𝑉𝐷𝑁 is generally slightly higher for cases with higher pressures
at constant temperatures. The rarefaction intensity’s lowness at the sections below 1 mean that the
flow experiences relatively more collisions (higher collision frequency/mean collision rate and lower
relative rarefaction) relative to the continuum timescale at the instant of evaluation, while it generally
increases in some sections afterwards due to the enhanced individual molecular motion, where the
respective flow velocity to root mean square molecular speed ratio increases due to a relatively more
directed flow with less probable collisions in the continuum timescale (lower collision frequency/mean
collision rate and higher relative rarefaction). The nozzle mean collision rate vs. 𝑥 for all simulations
can also be seen in Figure 4.16. The relative collisions are compared to neutral rarefaction intensity of
1, where the (bulk) flow velocity is the same as the root mean square molecular speed, such as for the
case of the probabilistically average fluid molecule irrespective of direction.

Figure 4.38’s intrinsic diffusive transport rate relatively decreases at the inlet, before a sharp and
following gradual increase around the throat. Note that there is a plateauing sharper decrease at the
inlet for the MEMS nozzle leading to the throat due to the temperature stagnation region from the wall
temperature with the MEMS nozzle’s enhanced heat transfer (Pressure and Temperature Subsection
4.1.4). At the outlet, the intrinsic diffusive transport rate is significantly higher, while it gradually de-
creases plateauing, though the MEMS nozzle follows greater variation with a comparable trend. The
conventional nozzle’s intrinsic diffusive transport rates are relatively higher than their MEMS nozzle
counterpart. Lower pressures at constant temperatures and higher temperatures at constant pressures
allow for a higher intrinsic diffusive transport rate. As the intrinsic diffusive transport rate increases, the
adaptability with relatively higher and lower advective transport rates increases and decreases respec-
tively, and vice versa.

Speaking of the advective transport rate plots, the conventional nozzle shows higher advective
transport rate generally all throughout compared to the MEMS nozzle. The advective transport rate
slightly decreases before increasing around the throat, where it grows steeply. For the conventional
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nozzle, the advective transport rate continues to gradually increase beyond the throat. To note, a
plateauing sharper decrease at the inlet is seen for the MEMS nozzle leading to the throat due to
the temperature stagnation region from the wall temperature with the MEMS nozzle’s enhanced heat
transfer (Pressure and Temperature Subsection 4.1.4). It also causes a slightly decreasing to increasing
behavior in the diverging section of the MEMS nozzle due to the temperature arch as explained in the
Pressure and Temperature Subsection 4.1.4 along with the geometrical features (quasi-2D with smaller
throat and (less than 1) throat aspect ratio inverting from rectangular horizontal flow to rectangular
vertical flow at the throat and then back to a rectangular horizontal flow (Number of Simulation Particles
per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perimeter to Cross Sectional
Area Ratio Subsection 4.1.2)) of the MEMS nozzle (see Boundary Layers and Rarefaction Phenomena
Subsection 4.1.13) leading to its flow beyond the throat to become relatively more rarefied at the lateral
sides acting in a way like a channel with comparatively more faster particles traveling in straight line
trajectories beaming out of the aperture center as rays considering the notably thick (cross sectional)
boundary layer at the sides from the throat (viscous dissipation of flow kinetic energy from shear on
the walls), ultimately leading to a slowdown at the front prompting its expansion (especially towards
the sides) and following speedup as a velocity arch (Velocity, Root Mean Square Speed, and Most
Probable Speed Subsection 4.1.5). As the advective transport rate increases, the adaptability with
relatively higher and lower intrinsic diffusive transport rate increases and decreases respectively, and
vice versa.

From the previously calculated advective transport rate and intrinsic diffusive transport rate, 𝐷𝑁
could be calculated using Equation A.10. The 𝐷𝑁 plot shows a higher 𝐷𝑁 value for higher pressures at
constant temperatures alongwith lower temperatures at constant pressures (mainly for the conventional
nozzle), where there is a considerable peak at the throat, reminiscent of 𝐷𝑁’s direct relation to 𝑅𝑒. The
conventional nozzle’s peak is relatively higher compared to the MEMS nozzle, along with that it starts
(increases from the throat) and ends (decreases from the throat) at respectively higher 𝐷𝑁 values.
The outlet 𝐷𝑁 is slightly greater than at the inlet 𝐷𝑁. The 𝐷𝑁 values are consistently greater than 1,
which indicates that the advective transport rate or 𝑉𝐷𝑁 is relatively greater than the intrinsic diffusive
transport rate or 𝐾𝑛 respectively. Therefore, the flow is relatively faster than it should be relative to its
greater representative physical length scale and its rarefaction intensity is greater than its rarefaction,
where the respective values of 𝑉𝐷𝑁 and the advective transport rate are greater than 𝐾𝑛 and the
intrinsic diffusive transport rate, also considering Equation A.13.

4.1.8. Reynolds Number
Using the first part of Equation 2.1 with a representative physical length scale of the hydraulic diameter
equaling four times the cross sectional area divided by the cross sectional wetted perimeter, consid-
ering that it reduces to an equivalent diameter for a circular cross section, for the MEMS nozzle and
diameter for the conventional nozzle (Python Shell Subsection 3.4.1) along with a constant respective
inlet dynamic viscosity due to the difficulty of finding thermodynamic data throughout the nozzle for the
resulting temperatures, Figure 4.41 shows the nozzle 𝑅𝑒 (with MEMS nozzle 𝐿 as hydraulic diameter)
vs. 𝑥 for all simulations. Furthermore, Equation A.9 is used to calculate the nozzle 𝑅𝑒 using 𝐷𝑁 (with
MEMS nozzle 𝐿 as hydraulic diameter) vs. 𝑥 for all simulations in Figure 4.42. Like 𝐷𝑁, plots show
a higher 𝑅𝑒 value for higher pressures at constant temperatures, though a clearly higher 𝑅𝑒 can also
be seen for lower temperatures at constant pressures for both conventional and MEMS nozzles. The
gradual increase from the inlet leads to a sharp increase at the throat, before a sharp then gradual
decrease towards the outlet, where 𝑅𝑒 is found to be slightly greater than at the inlet. The conventional
nozzle’s peak is relatively higher compared to the MEMS nozzle (which is a better sign in de Laval
nozzles), along with that it starts (increases from the throat) and ends (decreases from the throat) at
respectively higher 𝐷𝑁 values. Although the 𝑅𝑒 using 𝐷𝑁 plot follows the same trends, its values are
generally higher, especially after the inlet, along with that the greater 𝑅𝑒 due to lower temperatures at
constant pressures is difficult to recognize for the MEMS nozzle compared to the conventionally de-
termined 𝑅𝑒, considering that the difference between the different temperatures at constant pressures
becomes relatively smaller. To note, 𝐷𝑁 becomes relatively closer to 𝑅𝑒 moving away from the inlet,
also considering that the 𝑅𝑒 calculation uses a constant respective inlet dynamic viscosity.

Therefore, 𝐷𝑁 is capable of approximately detecting the flow regime within its assumptions for this
application and could be more helpful when thermodynamic data for calculating 𝑅𝑒 is difficult to obtain,
such as here with the dynamic viscosity. The throat flow is transient (transitional flow between laminar
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Figure 4.37: Nozzle and plume region vs. for all simula-
tions

Figure 4.38: Nozzle and plume region intrinsic diffusive transport
rate ( ̄ ) vs. for all simulations

Figure 4.39: Nozzle advective transport rate ( ) (with MEMS
nozzle as hydraulic diameter) vs. for all simulations

Figure 4.40: Nozzle (with MEMS nozzle as hydraulic di-
ameter) vs. for all simulations

and turbulent with 2300 < 𝑅𝑒 < 4000) for the conventional nozzle at 550 K and both pressures, while
laminar (𝑅𝑒 < 2300) for the other cases. To explain, the viscosity of the gas generally increases with
increasing temperature, because of the increase in molecular collisions in the gas, contrary to the de-
crease of a liquid viscosity with an increase in temperature, which decreases the dominant cohesive
force between the liquid molecules. Furthermore, the transient flow in the mentioned cases is also
influenced by the density increase with lower temperature. Viscous losses are greater in MEMS noz-
zles compared to conventional nozzles generally and higher temperature and lower pressure nozzles
specifically, as the Reynolds numbers are lower in these cases indicating viscous force dominance.
As seen in [11], lower Reynolds numbers mainly in quasi-2D nozzle flows (MEMS nozzle) could cause
mentionable inaccuracies using 2D CFD simulations due to the 3D endwall (flat walls capping the side
flow channel walls) effects.

4.1.9. Mach Number
The nozzle𝑀𝑎 and𝑀𝑎 using 𝑉𝐷𝑁 (Equation A.15 using a constant inlet 𝛾 due to the difficulty in finding
thermodynamic data along the nozzle for the resulting temperatures and considering that the specific
heat ratio is not expected to vary significantly for the considered analysis) vs. 𝑥 for all simulations are
plotted in Figures 4.43 and 4.44 respectively. The conventional nozzle’s𝑀𝑎 is consistently higher than
theMEMS nozzle’s𝑀𝑎, where a higher pressure at constant temperature leads to a slightly higher𝑀𝑎 in
general. The𝑀𝑎 gradually increases from the inlet towards the throat, where it rapidly rises to a value of
1 (sonic) and gradually continues to rise afterwards for the (supersonic) conventional nozzle, while the
MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure and Temperature Subsection
4.1.4) causes a decreasing to increasing dip due to the temperature arch as explained in the Pressure
and Temperature Subsection 4.1.4 along with the geometrical features (quasi-2D with smaller throat
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Figure 4.41: Nozzle (with MEMS nozzle as hydraulic diam-
eter) vs. for all simulations

Figure 4.42: Nozzle using (with MEMS nozzle as hy-
draulic diameter) vs. for all simulations

and (less than 1) throat aspect ratio inverting from rectangular horizontal flow to rectangular vertical
flow at the throat and then back to a rectangular horizontal flow (Number of Simulation Particles per
Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perimeter to Cross Sectional
Area Ratio Subsection 4.1.2)) of the MEMS nozzle (see Boundary Layers and Rarefaction Phenomena
Subsection 4.1.13) leading to its flow beyond the throat to become relatively more rarefied at the lateral
sides acting in a way like a channel with comparatively more faster particles traveling in straight line
trajectories beaming out of the aperture center as rays considering the notably thick (cross sectional)
boundary layer at the sides from the throat (viscous dissipation of flow kinetic energy from shear on
the walls), ultimately leading to a slowdown at the front prompting its expansion (especially towards the
sides) and following speedup as a velocity arch (Velocity, Root Mean Square Speed, andMost Probable
Speed Subsection 4.1.5). One difference to mention about using 𝑉𝐷𝑁 to calculate 𝑀𝑎 is at the outlet,
where the conventional nozzle’s conventionally calculated 𝑀𝑎 appears to be higher. Therefore, 𝑀𝑎
using 𝑉𝐷𝑁 is quite an accurate representation of the conventionally calculated 𝑀𝑎. The Mach number
could vary significantly (increase) in the initially vacuum plume region, while 𝑉𝐷𝑁’s approach becomes
rather different in such flows (𝐷𝑁 and 𝑉𝐷𝑁 Subsection 4.1.7), which allows for potential applications
for 𝑉𝐷𝑁 and its understanding in highly rarefied flows.

Figure 4.43: Nozzle vs. for all simulations Figure 4.44: Nozzle using vs. for all simulations

4.1.10. Knudsen Number
Figure 4.45 shows the nozzle 𝐾𝑛 (with MEMS nozzle 𝐿 as hydraulic diameter) vs. 𝑥 for all simulations.
The 𝐾𝑛 is calculated using Equation 2.5 with a representative physical length scale of the hydraulic
diameter equaling four times the cross sectional area divided by the cross sectional wetted perimeter,
considering that it reduces to an equivalent diameter for a circular cross section, for the MEMS nozzle
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and diameter for the conventional nozzle (Python Shell Subsection 3.4.1). A decreasing to increasing
𝐾𝑛 can be seen at the inlet, though the decrease is more rapid for the MEMS nozzle due to the temper-
ature stagnation region from the wall temperature considering its enhanced heat transfer (Pressure and
Temperature Subsection 4.1.4) A sharp increase can be seen at the throat, before the gradual plateau-
ing. The Knudsen number remains slightly rarefied within the slip flow regime at the outlet (Figure 2.1),
while at continuum flow with normal density levels at the inlet (Figure 2.1), which presents a consider-
able challenge for DSMC simulations, as the number of particles before and after the throat needs to
be optimized. Although the converging section 𝐾𝑛 is generally higher for the conventional nozzle, the
inlet and outlet 𝐾𝑛 are comparable with the MEMS nozzle’s 𝐾𝑛. This is contrary to expectations, where
the MEMS nozzle’s 𝐾𝑛 is expected to be greater, but that is attributed to the MEMS nozzle’s diverging
section slightly increasing to decreasing temperature arch as explained in the Pressure and Tempera-
ture Subsection 4.1.4 considering its enhanced wall heat transfer along with the geometrical features
(quasi-2D with smaller throat and (less than 1) throat aspect ratio inverting from rectangular horizontal
flow to rectangular vertical flow at the throat and then back to a rectangular horizontal flow (Number of
Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perime-
ter to Cross Sectional Area Ratio Subsection 4.1.2)) of the MEMS nozzle (see Boundary Layers and
Rarefaction Phenomena Subsection 4.1.13) leading to its flow beyond the throat becoming relatively
more rarefied at the lateral sides acting in a way like a channel with comparatively more faster particles
traveling in straight line trajectories beaming out of the aperture center as rays considering the notably
thick (cross sectional) boundary layer at the sides from the throat (viscous dissipation of flow kinetic
energy from shear on the walls), ultimately leading to a slowdown at the front prompting its expansion
(especially towards the sides) and following speedup as a velocity arch (Velocity, Root Mean Square
Speed, and Most Probable Speed Subsection 4.1.5). It also slightly increases the variable hard sphere
mean free path and 𝐾𝑛 dipping after the throat for the MEMS nozzle. Furthermore, lower pressures at
constant temperatures along with higher temperatures at constant pressures (mainly before the throat)
lead to higher 𝐾𝑛.

Figure 4.45: Nozzle (with MEMS nozzle as hydraulic diameter) vs. for all simulations

4.1.11. Statistical Errors
Figures 4.46, 4.47, 4.48, and 4.49 show the nozzle and plume region density, pressure, temperature,
and velocity fractional errors respectively vs. 𝑥 for all simulations (see Subsection 3.2.9). The fractional
errors are generally higher for the conventional nozzle compared to the MEMS nozzle. The fractional
errors decrease (increase for velocity) at the beginning of the conventional nozzle’s converging section,
while there is a sharper drop (rise for velocity) at the the inlet of theMEMS nozzle due to the temperature
stagnation region from the wall temperature with the MEMS nozzle’s enhanced heat transfer (Pressure
and Temperature Subsection 4.1.4). Towards the throat, the fractional errors increase rapidly (de-
crease rapidly for velocity). The conventional nozzle’s fractional errors proceed to increase (decrease
for velocity) in the diverging section, though the MEMS nozzle’s wall temperature with enhanced heat
transfer (Pressure and Temperature Subsection 4.1.4) causes a decreasing to increasing (increasing
to decreasing for velocity) behavior due to the temperature arch along with the geometrical features
(quasi-2D with smaller throat and (less than 1) throat aspect ratio inverting from rectangular horizontal
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flow to rectangular vertical flow at the throat and then back to a rectangular horizontal flow (Number of
Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perime-
ter to Cross Sectional Area Ratio Subsection 4.1.2)) of the MEMS nozzle (see Boundary Layers and
Rarefaction Phenomena Subsection 4.1.13) leading to its flow beyond the throat becoming relatively
more rarefied at the lateral sides acting in a way like a channel with comparatively more faster particles
traveling in straight line trajectories beaming out of the aperture center as rays considering the notably
thick (cross sectional) boundary layer at the sides from the throat (viscous dissipation of flow kinetic
energy from shear on the walls), ultimately leading to a slowdown at the front prompting its expansion
(especially towards the sides) and following speedup as a velocity arch (Velocity, Root Mean Square
Speed, and Most Probable Speed Subsection 4.1.5). Also, a drop followed by a plateauing rise is seen
for the conventional nozzle after the outlet, while a rise (drop for velocity) followed by a plateauing
drop is seen for the MEMS nozzle. The sudden variances are mainly due to the average statistical cell
particle number term in the statistical error calculations considering the mesh creation (Methodology
Chapter 3). Since the fractional errors generally do not generally exceed a value considerably higher
than 0.1 (especially in the more important nozzle section for the density, pressure, and temperature
fractional errors), they are considered acceptable to maintain the simulations’ feasibility with acceptable
results.

Figure 4.46: Nozzle and plume region density fractional error vs.
for all simulations

Figure 4.47: Nozzle and plume region pressure fractional error
vs. for all simulations

Figure 4.48: Nozzle and plume region temperature fractional er-
ror vs. for all simulations

Figure 4.49: Nozzle and plume region velocity fractional error
vs. for all simulations

4.1.12. Thrust, Specific Impulse, Specific Impulse Quality, Effective Exhaust Ve-
locity, and Discharge Coefficient

The DSMC model general results at the exit using data from the Python script (Python Shell Subsec-
tion 3.4.1) are shown in Table 4.4. The thrust is calculated using Equation 2.98 with the predetermined
(outlet) mass flow rate (Subsection 4.1.6 with full conventional nozzle) and X (0) component of (axial)
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velocity (Subsection 4.1.5) and assuming vacuum ambient pressure. At the outlet, the axial velocity
is only slightly lower than the velocity magnitude calculated as the square root of the sum of its indi-
vidual 𝑥, 𝑦, and 𝑧 components squared and they are more similar for the MEMS nozzle compared to
the conventional nozzle, as the MEMS nozzle’s flow is more directed due to the smaller throat size
(geometry) along with its lower Reynolds number towards the outlet. Note that the conventional noz-
zle’s area is multiplied by 360∘ (full rotation) / 5∘ (wedge) to obtain the full conventional nozzle value.
Afterwards, the specific impulse can be found using the Equation 2.92 to be followed by the specific
impulse quality, which is the specific impulse divided by the ideal specific impulse obtained from the
Analytical Model Subsection 4.2.1 and multiplied by 100 for percentage, where 100% is considered
ideal. Then, Equation 2.96 is used to compute the effective exhaust velocity. Note that Earth’s gravity
is used as 9.81 . The outlet mass flow rate is then divided by the ideal mass flow rate from the
Analytical Model Subsection 4.2.1 to determine the discharge coefficient, where 1 is considered ideal.
Notice that the conventional nozzle’s thrust and specific impulse (specific impulse quality and effective
exhaust velocity) are higher (better) in general. Although the performance of the MEMS nozzle could be
more affected by the set wall temperature considering its enhanced heat transfer (Pressure and Tem-
perature Subsection 4.1.4), the conventional nozzle’s generally better performance is also expected
for assumed adiabatic nozzle walls in both conventional and MEMS nozzles, considering that it is also
(less) impacted by the wall heat transfer. Also, the outlet mass flow rate is higher for the conventional
nozzle, though the discharge coefficient is closer to 1 for the conventional nozzle at lower temperatures
at constant pressures and the MEMS nozzle at higher temperatures at constant pressure, as the mass
flow rate is smaller due to the enhanced wall heat transfer and boundary layers. To note, the discharge
coefficient of the conventional nozzle at lower pressure is above 1, while it is below 1 for the rest of the
cases. Furthermore, higher pressures at constant temperatures and lower temperatures at constant
pressures increase the thrust, though the opposite occurs for specific impulse and effective exhaust
velocity. The specific impulse quality decreases as pressures at constant temperatures and temper-
atures at constant pressures increase. The outlet mass flow rate is higher for higher pressures at
constant temperatures and lower temperatures at constant pressures. A greater discharge coefficient
is determined for higher temperatures at constant pressures for both conventional and MEMS nozzles
along with lower pressures at constant temperatures for the conventional nozzle and its inverse for the
MEMS nozzle due to the the enhanced wall heat transfer effects on the MEMS nozzle resulting in a
less variant mass flow rate due to temperature.

Table 4.4: DSMC model general results

Chamber Pressure = 5 bar
Chamber Temperature = 550 K

Thrust
(mN)

Specific
Impulse

(s)

Ideal
Specific
Impulse

(s)

Specific
Impulse

Quality (%)
(100% Is Ideal)

Effective
Exhaust
Velocity
(m/s)

Outlet Mass Flow
Rate (mg/s) (Full
Conventional

Nozzle)

Ideal Mass
Flow
Rate
(mg/s)

Discharge
Coefficient
(1 Is Ideal)

MEMS Nozzle 0.8747 67.0694 134.9964 49.6823 657.9506 1.3294 1.6645 0.7987
Conventional Nozzle 1.4418 73.9577 133.8721 55.2451 725.5254 1.9872 1.8825 1.0556

Chamber Pressure = 5 bar
Chamber Temperature = 773 K

MEMS Nozzle 0.8745 67.2568 164.4151 40.9067 659.7897 1.3255 1.3894 0.9540
Conventional Nozzle 1.2513 74.0582 162.8660 45.4719 726.5108 1.7223 1.5713 1.0961

Chamber Pressure = 7 bar
Chamber Temperature = 550 K

MEMS Nozzle 1.2604 66.6355 134.3234 49.6083 653.6945 1.9282 2.3349 0.8258
Conventional Nozzle 1.6013 67.2088 133.2313 50.4452 659.3180 2.4287 2.6408 0.9197

Chamber Pressure = 7 bar
Chamber Temperature = 773 K

MEMS Nozzle 1.2598 66.8433 164.1816 40.7130 655.7325 1.9212 1.9462 0.9871
Conventional Nozzle 1.5340 72.1548 162.6444 44.3636 707.8390 2.1671 2.2011 0.9846

4.1.13. Boundary Layers and Rarefaction Phenomena
The figures presented are obtained using methodology in sampleDict Subsection 3.2.12. Figures 4.50
to 4.59, 4.60 to 4.69, 4.70 to 4.79, and 4.80 to 4.89 represent the nozzle inlet, converging section,
throat, diverging section, and outlet (in twos) vs. distance (with full conventional nozzle) or y or z (of
MEMS nozzle in every other figure) vs. temperature, velocity, pressure, and particle number density
respectively for all simulations. Note that some insignificant anomalies are disregarded in the analysis,
where the general trends are mainly considered.

The temperature is higher for the cases at higher temperatures at constant pressures. At the inlet,
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the gradient is larger for the conventional nozzle leading to higher maxima, with the longer dimension
cases (y compared to distance and distance compared to z) having a flatter front due to the geometry,
which is still to be more impacted by the MEMS nozzle’s wall temperature with enhanced heat transfer
(Pressure and Temperature Subsection 4.1.4) considering its quasi-2D geometry. In the temperature
stagnation region of the converging section caused by the wall temperature with the MEMS nozzle’s
enhanced heat transfer (Pressure and Temperature Subsection 4.1.4), the MEMS nozzle’s temperature
is rather uniform, compared to a consistently lower temperature at the sides along with greater maxima
for the conventional nozzle. At the throat, the shape is inverted for the MEMS nozzle, with higher
temperatures at the sides of the geometry, though the conventional nozzle maintains a peak at the
front, even with a decreasing to increasing temperature profile from the sides towards the center. In
the diverging section, the conventional and MEMS nozzles have the fully inverted profile with higher
temperatures at the sides, with the conventional nozzle having generally lower temperatures. At the
outlet, the conventional nozzle maintains the higher temperatures at the sides and lower temperatures
compared to the MEMS nozzle, though the MEMS nozzle exhibits a flatter profile on the y axis, but an
increasing to decreasing temperature profile at the sides on the z axis.

The velocity is higher for the cases at higher temperatures at constant pressures. At the inlet, the
gradient is larger for the conventional nozzle leading to higher maxima, with flatter fronts for the MEMS
nozzle due to the geometry (though the z axis exhibits a relative decreasing to increasing velocity
profile), which is still to be more impacted by the MEMS nozzle’s wall temperature with enhanced
heat transfer (Pressure and Temperature Subsection 4.1.4) considering its quasi-2D geometry. In the
temperature stagnation region of the converging section caused by the wall temperature with theMEMS
nozzle’s enhanced heat transfer (Pressure and Temperature Subsection 4.1.4), the MEMS nozzle’s
velocity is still rather uniform on the y axis, compared to a consistently lower velocity at the sides along
with greater maxima for the conventional nozzle along with the MEMS nozzle on the z axis to a lesser
extent. At the throat, the profiles are developed with higher velocities at the sides of the geometry for
both conventional and MEMS nozzles. In the diverging section, the conventional and MEMS nozzles
profiles remain consistent with their respective throat profiles. At the outlet, the conventional nozzle
along with the MEMS nozzle on the z axis maintain the higher velocity at the sides and lower velocities
compared to the MEMS nozzle, though the MEMS nozzle exhibits a flatter profile on the y axis. Note
that this reiterates the importance of using the Python script (Python Shell Subsection 3.4.1) for a more
global representation along the nozzle, considering that parameters like the velocity (which the Mach
number trends mainly follow) could considerably vary between the lateral sides and center while using
the local Plot Over Line Filter (ParaView Section 3.4).

The pressure is higher for the cases at higher pressures at constant temperatures. Initially at the
inlet and converging section, the conventional and MEMS nozzle pressures are comparable and rela-
tively flat. At the throat, the conventional nozzle profile holds lower pressures at the sides and higher
pressures at the front, though the y axis MEMS nozzle profile exhibits reverse features and the z axis
MEMS nozzle profile remains comparably flat. In the diverging section, the MEMS nozzle pressures
are higher with a sharper front on the y axis compared to the conventional nozzle pressures, though
the z axis MEMS nozzle pressures remain flat. At the outlet with greater rarefaction, the MEMS nozzle
holds lower pressures at the sides and higher pressures at the centers compared to the conventional
nozzle, which also exhibits such features to a lesser extent with lower pressures.

The particle number density is higher for the cases at higher pressures at constant temperatures
and lower temperatures at constant pressures. At the inlet, the gradient is relatively larger for the con-
ventional nozzle leading to lower minima, with the longer dimension cases (y compared to distance and
distance compared to z) having a flatter front due to the geometry, which is still to be more impacted by
the MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure and Temperature Subsec-
tion 4.1.4) considering its quasi-2D geometry. In the temperature stagnation region of the converging
section caused by the wall temperature with the MEMS nozzle’s enhanced heat transfer (Pressure and
Temperature Subsection 4.1.4), the MEMS nozzle’s particle number density is rather uniform, com-
pared to a consistently higher particle number density at the sides along with lower minima for the
conventional nozzle. At the throat, the profiles start inverting from the sides towards a higher particle
number density at the center and lower particle number density at the sides, as the conventional noz-
zle maintains a smaller lower particle number density peak at the front. In the diverging section, both
conventional and MEMS nozzles have the fully inverted profile with lower particle number density at the
sides and higher particle number density in the center, with the conventional nozzle generally having
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a smaller particle number density. At the outlet, the shapes of the profiles are maintained from the
diverging section, though the conventional nozzle now relatively exceeds the MEMS nozzle’s particle
number density due to the nozzles’ geometrical shapes and the MEMS nozzle’s front particle number
density flattening. Note that the DSMC particles at the conventional nozzle’s axis of symmetry would
appear to be greater in number when visualized in ParaView due to the DSMC axisymmetric simulation
properties (dsmcProperties Subsection 3.2.6).

Boundary layer growth depends on the nozzle length or expansion divergence angle. Boundary
layer thickness decreases with increasing expansion divergence angle resulting in lower blockage and
improved performance, but to a limit, as increased angles also lead to lower useful thrust due to the
increased momentum component perpendicular to the thrust axis [11]. The boundary layer thickness’
prominence is also seen as the flow becomes more rarefied towards the outlet. Considering the bound-
ary layer, the temperature near the diverging section wall is higher compared to at the center consid-
ering the wall boundary layer and temperature (Pressure and Temperature Subsection 4.1.4), as the
flow at the sides is also slower than at the center. Regarding the velocity profile at the outlet, it is clear
that the MEMS nozzle’s performance is significantly more affected by its geometry’s boundary layers
with the flatter (dominant flat top and bottom wall boundary layers also considering its generally higher
perimeter to cross sectional area ratio peaking at the throat (Number of Simulation Particles per Grid
Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perimeter to Cross Sectional Area
Ratio Subsection 4.1.2) and total lateral surface area to total volume ratio (Table 4.1)) and slower outlet
front compared to the conventional nozzle that has a conical 3D shape. Simulating the quasi-2D MEMS
nozzle as 3D shows its importance in capturing the 3D flow features compared to a 2D simulation.

Notice that the particles accumulate (especially for the conventional nozzle, as the MEMS nozzle’s
throat choking diminishes this effect) at the converging lateral sides towards the throat, after which the
MEMS nozzle’s flow with different geometrical features (quasi-2D with smaller throat and (less than 1)
throat aspect ratio (Number of Simulation Particles per Grid Cell, Mass Density, Particle Number Den-
sity, Aspect Ratio, and Perimeter to Cross Sectional Area Ratio Subsection 4.1.2)) becomes relatively
more rarefied at the lateral sides acting in a way like a channel with comparatively more faster particles
traveling in straight line trajectories beaming out of the aperture center as rays considering the notably
thick (cross sectional) boundary layer at the sides from the throat (viscous dissipation of flow kinetic
energy from shear on the walls), ultimately leading to a slowdown at the front prompting its expansion
(especially towards the sides) and following speedup as a velocity arch (Velocity, Root Mean Square
Speed, and Most Probable Speed Subsection 4.1.5). Furthermore, the MEMS nozzle’s aspect ratio
inversion (rectangular horizontal flow to rectangular vertical flow at the throat back to a rectangular hor-
izontal flow) at the throat appears to mainly affect the flow beyond the throat, contributing to the front
center tips becoming generally suddenly sharper relative to the profile compared to the conventional
nozzle. Additionally, the MEMS nozzle’s wall temperature with enhanced heat transfer (Pressure and
Temperature Subsection 4.1.4) is also relatively greater at the lateral sides due to the closeness with
the walls, which also increases this effect. Also, the pressure at the throat lateral sides (and beyond) is
higher for the MEMS nozzle, which raises the need for material strength considerations. To mention,
the MEMS nozzle velocity arch along with the temperature arch from the shear on the walls are also
seen in [9] (and [51] for the velocity arch).

After the flow develops, the temperature of the fluid at the wall becomes more similar to the wall
temperature in the converging section along with having closer to a no-slip condition, though the tem-
perature jump and velocity slip become more noticeable as the flow becomes more rarefied towards
the outlet, while considering that the 𝐾𝑛 is expected to have been greater for the MEMS nozzle, which
is impacted by its diverging section’s slightly increasing to decreasing temperature arch as explained
in the Pressure and Temperature Subsection 4.1.4 considering its enhanced wall heat transfer and
velocity arch. Knudsen layers (kinetic boundary layers) with thickness of the order of mean free path
also occur in rarefied flows.

Now, paraFoam is used with the conventional (X Normal with plane Origin at 0.00032969) and
MEMS (X Normal with plane Origin at 0.00067116) nozzles clipped using the Clip Filter right before
the outlet (using data from Table 4.1) along with Z and Y Normal clippings for the MEMS nozzle to
visualize inside the domain (ParaView Section 3.4). The internalMesh is chosen from the Mesh Parts
along with variableHardSphereMeanFreePath_H2O from the Volume Fields. Feature Edges is set for
the clipped nozzle to visualize its boundaries. It is also set for the conventional nozzle’s contours, as
it has been simulated as a 5∘ wedge with single cell thickness and the contour Surface becomes less
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noticeable as it thins towards the axis of symmetry, though the domain could have also been symmet-
rically sliced using the Slice Filter beforehand to create contour plot lines. At the final time step, the
Contour Filter with Contour By variableHardSphereMeanFreePath_H2O and Compute Scalars (color
by variableHardSphereMeanFreePath_H2O points) is used with an added value range with 350 Steps
for the MEMS nozzle and 100 Steps for the conventional nozzle with Use Logarithmic Scale checked
to show the largely varying data with enough contours along the nozzle after removing all previous
entries. In the Color Map Editor using rescale to custom range, the maximum value is set to 3.0e-07
for the desired visualization. Refer to ParaView Section 3.4 for more information on the settings. Then,
Figures 4.90 to 4.97 are generated with nozzle variable hard sphere mean free path contour plots for
C1, M1, C2, M2, C3, M3, C4, and M4 respectively.

There is a recurring difference between the variable hard sphere mean free path contour plots
of the conventional and MEMS nozzles. The conventional nozzle’s variable hard sphere mean free
path contours generally extend all the way to the outlet from the throat maintaining the shape of the
nozzle with greater values at the diverging section’s sides, while the MEMS nozzle’s variable hard
sphere mean free path contours have more of a straight shape from the throat to the outlet (before
further expansion), which leads to relatively greater variable hard sphere mean free paths at the sides
along with the front, considering the velocity arch and its causes. More information to compliment this
subsection is available in the Pressure and Temperature Subsection 4.1.4, Velocity, Root Mean Square
Speed, andMost Probable Speed Subsection 4.1.5, Number of Simulation Particles per Grid Cell, Mass
Density, Particle Number Density, Aspect Ratio, Perimeter to Cross Sectional Area Ratio Subsection
4.1.2, Mean Collision Time, Mean Collision Rate, Mean Collision Separation, (Local) Variable Hard
Sphere Mean Free Path, Separation of Free Paths, and Courant-Friedrichs-Lewy Number Subsection
4.1.3, and Transient Solution (Animation Videos) Subsection 4.1.15.
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Figure 4.50: Nozzle inlet distance (with full conventional nozzle)
or y (of MEMS nozzle) vs. temperature for all simulations

Figure 4.51: Nozzle inlet distance (with full conventional nozzle)
or z (of MEMS nozzle) vs. temperature for all simulations

Figure 4.52: Nozzle (middle of) converging section distance
(with full conventional nozzle) or y (of MEMS nozzle) vs. tem-
perature for all simulations

Figure 4.53: Nozzle (middle of) converging section distance
(with full conventional nozzle) or z (of MEMS nozzle) vs. tem-
perature for all simulations

Figure 4.54: Nozzle throat distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. temperature for all simulations

Figure 4.55: Nozzle throat distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. temperature for all simulations

Figure 4.56: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or y (of MEMS nozzle) vs. temperature
for all simulations

Figure 4.57: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or z (of MEMS nozzle) vs. temperature
for all simulations
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Figure 4.58: Nozzle outlet distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. temperature for all simulations

Figure 4.59: Nozzle outlet distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. temperature for all simulations

Figure 4.60: Nozzle inlet distance (with full conventional nozzle)
or y (of MEMS nozzle) vs. velocity for all simulations

Figure 4.61: Nozzle inlet distance (with full conventional nozzle)
or z (of MEMS nozzle) vs. velocity for all simulations

Figure 4.62: Nozzle (middle of) converging section distance
(with full conventional nozzle) or y (of MEMS nozzle) vs. velocity
for all simulations

Figure 4.63: Nozzle (middle of) converging section distance
(with full conventional nozzle) or z (of MEMS nozzle) vs. velocity
for all simulations

Figure 4.64: Nozzle throat distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. velocity for all simulations

Figure 4.65: Nozzle throat distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. velocity for all simulations
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Figure 4.66: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or y (of MEMS nozzle) vs. velocity for
all simulations

Figure 4.67: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or z (of MEMS nozzle) vs. velocity for
all simulations

Figure 4.68: Nozzle outlet distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. velocity for all simulations

Figure 4.69: Nozzle outlet distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. velocity for all simulations

Figure 4.70: Nozzle inlet distance (with full conventional nozzle)
or y (of MEMS nozzle) vs. pressure for all simulations

Figure 4.71: Nozzle inlet distance (with full conventional nozzle)
or z (of MEMS nozzle) vs. pressure for all simulations

Figure 4.72: Nozzle (middle of) converging section distance
(with full conventional nozzle) or y (of MEMS nozzle) vs. pres-
sure for all simulations

Figure 4.73: Nozzle (middle of) converging section distance
(with full conventional nozzle) or z (of MEMS nozzle) vs. pres-
sure for all simulations



4.1. MEMS vs. Conventional Thrusters (DSMC) 109

Figure 4.74: Nozzle throat distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. pressure for all simulations

Figure 4.75: Nozzle throat distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. pressure for all simulations

Figure 4.76: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or y (of MEMS nozzle) vs. pressure for
all simulations

Figure 4.77: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or z (of MEMS nozzle) vs. pressure for
all simulations

Figure 4.78: Nozzle outlet distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. pressure for all simulations

Figure 4.79: Nozzle outlet distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. pressure for all simulations

Figure 4.80: Nozzle inlet distance (with full conventional nozzle)
or y (of MEMS nozzle) vs. particle number density for all simu-
lations

Figure 4.81: Nozzle inlet distance (with full conventional nozzle)
or z (of MEMS nozzle) vs. particle number density for all simu-
lations
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Figure 4.82: Nozzle (middle of) converging section distance
(with full conventional nozzle) or y (of MEMS nozzle) vs. par-
ticle number density for all simulations

Figure 4.83: Nozzle (middle of) converging section distance
(with full conventional nozzle) or z (of MEMS nozzle) vs. par-
ticle number density for all simulations

Figure 4.84: Nozzle throat distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. particle number density for all
simulations

Figure 4.85: Nozzle throat distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. particle number density for all
simulations

Figure 4.86: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or y (of MEMS nozzle) vs. particle num-
ber density for all simulations

Figure 4.87: Nozzle (middle of) diverging section distance (with
full conventional nozzle) or z (of MEMS nozzle) vs. particle num-
ber density for all simulations

Figure 4.88: Nozzle outlet distance (with full conventional noz-
zle) or y (of MEMS nozzle) vs. particle number density for all
simulations

Figure 4.89: Nozzle outlet distance (with full conventional noz-
zle) or z (of MEMS nozzle) vs. particle number density for all
simulations
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Figure 4.90: C1 nozzle variable hard sphere mean free path contour plot

Figure 4.91: M1 nozzle variable hard sphere mean free path contour plot
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Figure 4.92: C2 nozzle variable hard sphere mean free path contour plot

Figure 4.93: M2 nozzle variable hard sphere mean free path contour plot
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Figure 4.94: C3 nozzle variable hard sphere mean free path contour plot

Figure 4.95: M3 nozzle variable hard sphere mean free path contour plot
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Figure 4.96: C4 nozzle variable hard sphere mean free path contour plot

Figure 4.97: M4 nozzle variable hard sphere mean free path contour plot
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4.1.14. Centerline Data
Figures 4.98, 4.99, 4.100, and 4.101 show the nozzle centerline pressure, temperature, axial velocity,
and𝑀𝑎 respectively vs. 𝑥 for all simulations at the final time step. The data is obtained using ParaView’s
Plot Over Line Filter with the conventional (probed along X Axis with Point2 at 0.00032969) and MEMS
(probed along X Axis with Point2 at 0.00067116) nozzles until right before the outlet using data from
Table 4.1 (ParaView Section 3.4). Note that since the conventional nozzle is simulated as a wedge due
to axial symmetry, the Y and Z coordinates for both Point1 and Point2 are set to 0 (at the centerline).
Afterwards, Save Data is used with the Files of Type Comma or Tab Delimited Files(*.csv *.tsv *.txt).

The purpose of the centerline data is to obtain differently interpretable results, which could also
be more realistically expectable depending on the approach considered. While referring to the Pres-
sure and Temperature (4.1.4), Velocity, Root Mean Square Speed, and Most Probable Speed (4.1.5),
and Mach Number (4.1.9) Subsections with the axial averaged data, all profiles still follow comparable
trends. However, it is clear that the temperature and velocity arching effects on the MEMS nozzle are
less effective at the centerline along with that the inlet temperature is closer to the set temperature, as
the wall temperatures are lower than the set inlet temperatures, where this effect is actually amplified
for the MEMS nozzle due to its enhanced heat transfer geometrical properties. Also, the MEMS noz-
zle’s temperature and (axial) velocity arches’ peaks are delayed more towards the outlet mainly due to
the delayed reach of the boundary layer (and shockwaves) at the centerline. The (axial) velocity and
Mach numbers at the centerline are considerably higher than when using axial averaged data, where
the Mach number of the MEMS nozzle actually becomes sonic at the throat and briefly continues to
accelerate to supersonic speeds afterwards. It actually only slightly drops below Mach 1 for the MEMS
nozzle simulations at lower pressures due to the velocity arch, considering its different geometrical fea-
tures (quasi-2D with smaller throat and (less than 1) throat aspect ratio (Number of Simulation Particles
per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perimeter to Cross Sectional
Area Ratio Subsection 4.1.2)), where it becomes relatively more rarefied at the lateral sides acting in a
way like a channel with comparatively more faster particles traveling in straight line trajectories beam-
ing out of the aperture center as rays considering the notably thick (cross sectional) boundary layer at
the sides from the throat (viscous dissipation of flow kinetic energy from shear on the walls), ultimately
leading to a slowdown at the front prompting its expansion (especially towards the sides) and following
speedup as a velocity arch (Velocity, Root Mean Square Speed, and Most Probable Speed Subsection
4.1.5 and Boundary Layers and Rarefaction Phenomena Subsection 4.1.13). This reaffirms that there
is incomplete expansion in the MEMS nozzle.

4.1.15. Transient Solution (Animation Videos)
As explained in ParaView Section 3.4, the animation videos (at 3 fps using foamCreateVideo) are cre-
ated with their final time step images shown in Figures 4.108 to 4.115, 4.116 to 4.123, 4.124 to 4.131,
and 4.132 to 4.139 for the nozzle and plume region temperature, pressure, velocity, and density re-
spectively with each group containing figures of C1, M1, C2, M2, C3, M3, C4, and M4 respectively.
Also, lagrangian/dsmc is unselected from Mesh Regions for both conventional and MEMS nozzles and
Z and Y Normal Clip Filters are applied for the MEMS nozzle to visualize inside the domain. The range
is set for the final time step and the temperature, pressure, and velocity are colored by cells, while
the mass density is colored by points. In the Color Map Editor, the use log scale when mapping data
to colors is chosen for the pressure and mass density to show the largely varying data, while the jet
present is chosen for the velocity. To note, very small negative value minima are negligibly shown on
the color legend in the computational domains for temperature most likely due to numerical inaccura-
cies. Note that the time steps for the video are not consecutive as set (at 5e-10 with writeInterval of
5e-8), as the data is saved from the dynamic load balancing and reconstructPar (after the third 24 hour
run for MEMS nozzle simulations as a backup and at the end of all simulations for the new time steps
as applicable), which means that the dynamic load balancing can automatically save the writeInterval
time steps with more significant changes considering that it does that when there is sufficient (as set)
parallel load imbalance detected (especially for the MEMS nozzle with higher maximumAllowableIm-
balance, as the conventional nozzle’s saved time steps are much more consecutive with the lower
set maximumAllowableImbalance) (refer to decomposeParDict, balanceParDict, and loadBalanceDict
Subsection 3.2.10).

Although the transient solution is deemed less significant as steady state is achieved within mi-
croseconds, considering that the typical response time of these thrusters is in milliseconds (Steady
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Figure 4.98: Nozzle centerline pressure vs. for all simulations Figure 4.99: Nozzle centerline temperature vs. for all simula-
tions

Figure 4.100: Nozzle centerline axial velocity vs. for all simu-
lations Figure 4.101: Nozzle centerline vs. for all simulations

State Convergence and General Final Simulation Data Subsection 4.1.1), it is still investigated in this
subsection. The temperature profiles prove the MEMS nozzle wall’s enhanced heat transfer (Pressure
and Temperature Subsection 4.1.4), as it is relatively greater at the lateral sides due to the closeness
with the walls. The pressure and mass density (except for the temperature stagnation region of the
converging section caused by the wall temperature with the MEMS nozzle’s enhanced heat transfer
(Pressure and Temperature Subsection 4.1.4)) profiles are respectively comparable. The velocity pro-
files for the conventional nozzle generally extend to the outlet from the throat maintaining the shape of
the nozzle with lower values at the diverging section’s sides, while the MEMS nozzle’s velocity profiles
have more of a straight shape from the throat to the outlet (before further expansion), which leads to
a relatively greater velocity at the sides along with the front, considering that the MEMS nozzle flow’s
different geometrical features (quasi-2D with smaller throat and (less than 1) throat aspect ratio (Num-
ber of Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and
Perimeter to Cross Sectional Area Ratio Subsection 4.1.2)) make it become relatively more rarefied
at the lateral sides acting in a way like a channel with comparatively more faster particles traveling in
straight line trajectories beaming out of the aperture center as rays considering the notably thick (cross
sectional) boundary layer at the sides from the throat (viscous dissipation of flow kinetic energy from
shear on the walls), ultimately leading to a slowdown at the front prompting its expansion (especially
towards the sides) and following speedup as a velocity arch (Velocity, Root Mean Square Speed, and
Most Probable Speed Subsection 4.1.5) (see Boundary Layers and Rarefaction Phenomena Subsec-
tion 4.1.13). Therefore, the flow appears to mainly separate earlier and more so for the MEMS nozzle
compared to the conventional nozzle with a better performance. Furthermore, the quasi-2D MEMS
nozzle with a larger diverging half angle (Table 3.1) appears to spread the flow at a wider angle from
the outlet compared to the conical 3D conventional nozzle, which could have a greater impact on the
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outer walls (relatively lower performance, possible heat transfer, greater mass, and propellant contam-
ination, though water is not quite corrosive, flammable, or toxic, but freezing might pose a problem).
For more information on the steady state solution, see Pressure and Temperature Subsection 4.1.4,
Velocity, Root Mean Square Speed, and Most Probable Speed Subsection 4.1.5, Number of Simulation
Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio, and Perimeter to Cross
Sectional Area Ratio Subsection 4.1.2, and Boundary Layers and Rarefaction Phenomena Subsection
4.1.13.

To briefly discuss the transient solution, considering some of the more interesting flows’ behav-
iors, Figures 4.102 and 4.103, 4.104 and 4.105, and 4.106 and 4.107 respectively show snapshots
of the transient solution represented differently before, during, and after the backward forming shock
diamonds for different conventional and MEMS nozzle cases. To explain, very quick (within a fraction
of a microsecond) backward forming shock diamonds starting from the sides and taking the overall
shape of the respective nozzle is detected in both conventional (Figure 4.104) and MEMS (Figure
4.105) nozzles’ converging sections after firing, as the accumulation at the sides causes an increased
(back) pressure at the throat (where some of the kinetic energy is converted back into thermal energy
momentarily within less than microseconds, which could still raise the need for material strength con-
siderations) after the typical converging section de Laval nozzle behavior (temperature and pressure
drop as well as velocity rise) (Figures 4.102 and 4.103) starting from the initially vacuum (relatively
larger pressure gradient) domain with the MEMS nozzle relatively less affected by its enhanced wall
heat transfer (Pressure and Temperature Subsection 4.1.4) and velocity arch (Boundary Layers and
Rarefaction Phenomena Subsection 4.1.13). Also considering the inlet pressure boundary condition
used (boundariesDict Subsection 3.2.5), a second wave of higher pressure and temperature flow com-
ing from the inlet is noticeable afterwards in the conventional nozzle (at the inlet in Figure 4.106), which
is not exactly seen in the MEMS nozzle (Figure 4.107) (as found in Steady State Convergence and
General Final Simulation Data 4.1.1), before the higher pressure at the throat is fully balanced out (es-
pecially typically starting from the sides as can be seen in the figures) throughout the nozzle and steady
state is reached. Note that the thrusters are assumed to be firing when the gas is fully at the desired
temperature and pressure, which might not be exact as a transient solution representation, consider-
ing that the flow starts to develop from way back while passing the resistive microheaters section in
application. Notice that the heat transfer is still enhanced at the lateral sides in the converging section,
though its effect is diminished by the accumulation at the beginning (Boundary Layers and Rarefaction
Phenomena Subsection 4.1.13). For the simulations’ equivalent time for assumed estimated steady
state convergence time steps, refer to Table 4.2 in the Steady State Convergence and General Final
Simulation Data Subsection 4.1.1.
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Figure 4.102: C3 nozzle and plume region pressure at 1.5e-7 s Figure 4.103: M1 nozzle and plume region pressure at 4e-7 s

Figure 4.104: C2 nozzle and plume region mass density at 2e-7
s Figure 4.105: M1 nozzle and plume region velocity at 9e-7 s

Figure 4.106: C4 nozzle and plume region temperature at 1.45e-
6 s

Figure 4.107: M4 nozzle and plume region temperature at 1.3e-6
s
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Figure 4.108: C1 nozzle and plume region temperature at final
time step

Figure 4.109: M1 nozzle and plume region temperature at final
time step

Figure 4.110: C2 nozzle and plume region temperature at final
time step

Figure 4.111: M2 nozzle and plume region temperature at final
time step

Figure 4.112: C3 nozzle and plume region temperature at final
time step

Figure 4.113: M3 nozzle and plume region temperature at final
time step

Figure 4.114: C4 nozzle and plume region temperature at final
time step

Figure 4.115: M4 nozzle and plume region temperature at final
time step
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Figure 4.116: C1 nozzle and plume region pressure at final time
step

Figure 4.117: M1 nozzle and plume region pressure at final time
step

Figure 4.118: C2 nozzle and plume region pressure at final time
step

Figure 4.119: M2 nozzle and plume region pressure at final time
step

Figure 4.120: C3 nozzle and plume region pressure at final time
step

Figure 4.121: M3 nozzle and plume region pressure at final time
step

Figure 4.122: C4 nozzle and plume region pressure at final time
step

Figure 4.123: M4 nozzle and plume region pressure at final time
step
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Figure 4.124: C1 nozzle and plume region velocity at final time
step

Figure 4.125: M1 nozzle and plume region velocity at final time
step

Figure 4.126: C2 nozzle and plume region velocity at final time
step

Figure 4.127: M2 nozzle and plume region velocity at final time
step

Figure 4.128: C3 nozzle and plume region velocity at final time
step

Figure 4.129: M3 nozzle and plume region velocity at final time
step

Figure 4.130: C4 nozzle and plume region velocity at final time
step

Figure 4.131: M4 nozzle and plume region velocity at final time
step
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Figure 4.132: C1 nozzle and plume region mass density at final
time step

Figure 4.133: M1 nozzle and plume region mass density at final
time step

Figure 4.134: C2 nozzle and plume region mass density at final
time step

Figure 4.135: M2 nozzle and plume region mass density at final
time step

Figure 4.136: C3 nozzle and plume region mass density at final
time step

Figure 4.137: M3 nozzle and plume region mass density at final
time step

Figure 4.138: C4 nozzle and plume region mass density at final
time step

Figure 4.139: M4 nozzle and plume region mass density at final
time step
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4.2. DSMC vs. Continuum Modeling
The final DSMC results are compared to the results obtainedwhen taking amore conventional approach
to solving the problem using continuum flow modeling.

4.2.1. Analytical Model
An analytical analysis has been conducted for the both MEMS and conventional nozzle geometries
from Table 3.1 at all considered cases of temperatures and pressures to mainly estimate the throat
Reynolds number and ideal vacuum thrust with no losses using basic simplified equations. A MATLAB
code provided in Subsection B.1.1 is created to obtain the results, which are based on equations from
Section 2.6.

As shown in the MATLAB code (Subsection B.1.1) for all models, the required quantities needed
for the calculations are input, as the areas of the inlet, throat, and exit are calculated. The density,
dynamic viscosity, and specific heat capacities at constant pressure and volume are obtained for water
at the selected inlet pressure and temperature from the US National Institute of Standards and Tech-
nology’s (NIST) publicly accessible database of thermodynamic data. The NIST database is used to
compare the variation of the thermodynamic properties for the decrease in temperature and pressure
along the nozzle as expected with the increase of Mach number in Equations 2.109 and 2.110, as
the equations apply along the nozzle and not just at the exit, and it has been determined that using
inlet values throughout the converging part of the nozzle for the properties obtained using the NIST
database to roughly evaluate the analytical model is an invalid assumption, as compressibility effects
must be considered near the throat considering that the Mach number becomes close to one, where
the density change becomes close to the velocity change. Then, the ratio of specific heats (Equation
2.107), Vandenkerckhove function (Equation 2.103), and the mass flow rate along the nozzle (Equation
2.102) are sequentially calculated from inlet values.

The inlet velocity can then be calculated inversely using Equation 2.102 with the density and area at
the inlet already specified. Next, to consider compressibility effects on density in the converging section
of the nozzle, Equations 2.109 to 2.111 are used to calculate the temperature, pressure, and density
at the throat using 𝑀 = 1, as done for the choked mass flow rate equation used. Then, a MATLAB
wrapper for CoolProp, which is a C++ library for thermodynamic data, is used for readily extracting ther-
modynamic properties, so the density (reevaluated to double-check), dynamic viscosity, and specific
heat capacities at constant pressure and volume at the throat are found leading to the ratio of specific
heats (Equation 2.107), speed of sound (Equation 2.100), velocity (Equation 2.102), and ultimately the
Reynolds number (Equation 2.1) at the throat, with the throat height as the characteristic linear dimen-
sion for the conventional nozzle and the hydraulic diameter equaling four times the cross sectional area
divided by the cross sectional wetted perimeter, considering that it reduces to an equivalent diameter
for a circular cross section, for the MEMS nozzle.

To calculate the thrust, Equation 2.108 is inversely applied using the expansion ratio to calculate the
Mach number at the exit. To note, a symbolical solution is attempted in solving the equation inversely,
though in some cases it is unable to solve it symbolically and switches to find a numerical solution
where it might return an incorrect value, so this is manually spotted and fixed to expect the solution
within a correct range as a supersonic Mach number. Then, the exit temperature (Equation 2.109),
pressure (Equation 2.110), and speed of sound (Equation 2.100) are calculated. Since it is difficult to
find thermodynamic data for the resulting exit temperature and the specific heat ratio is not expected
to vary significantly for the considered analysis, as proven by the difference between inlet and throat
specific heat ratios even though their difference with the exit specific heat ratio is expected to be greater,
the specific heat ratio at the inlet is still used. Afterwards, the exit velocity can be computed using
Equation 2.99 using the Mach number and speed of sound along with Equation 2.105 mainly using the
exit and inlet pressure ratio and inlet temperature, which result in equivalent values as a confirmation
of the used formulas. Lastly, the thrust is computed using the basic rocket thrust Equation 2.98 to also
lead to the specific impulse (Equation 2.92) with the calculated mass flow rate and Earth’s gravity as
9.81 .

Furthermore, the mean free path (Equation 2.6 with a water molecular diameter of 2.75 ⋅ 10 m
and Avogadro constant of 6.022140857 ⋅ 10 mol ) is calculated at the inlet, throat, and exit followed
by the respective the Knudsen number (Equation 2.5 with the same respective characteristic linear
dimensions used for the throat Reynolds number). The 𝐷𝑁 and 𝑉𝐷𝑁 analysis assumes basic prior
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understanding of the introduced Extended Continuum/Kinetic Dimensionless Numbers for Diffusivity
and Rarefaction Intensity in Appendix A. The root mean square speed (Equation 4.5) at the inlet, throat,
and outlet is obtained leading to the respective 𝑉𝐷𝑁 (Equation A.12) and Mach number using 𝑉𝐷𝑁
(Equation A.15 with the inlet specific heat ratio as explained above). It is compared to the conventionally
determined respective Mach numbers (Equation 2.99), where the speed of sound (Equation 2.100) is
also calculated at the inlet. The inlet, throat, and exit 𝐷𝑁 (Equation A.10 with the same respective
characteristic linear dimensions used for the throat Reynolds number) values are also determined as
the ratio of advective transport rate to intrinsic diffusive transport rate before using them to find the
respective Reynolds numbers (Equation A.9) and comparing them with the conventionally determined
respective Reynolds numbers (Equation 2.1 with the same respective characteristic linear dimensions
used for the throat Reynolds number and the inlet dynamic viscosity for similar reasons for the usage
of the inlet specific heat ratio as explained above, even though the difference is expected to be greater,
along with its usage in the DSMC model results). Note that the the exit Reynolds number uses the exit
density determined from Equation 2.111 with the inlet specific heat ratio as explained above. The main
results are shown below in Table 4.5 and the complete MATLABWorkspace results along with the code
are available in Subsection B.1.2.

Table 4.5: Analytical model general results

Chamber Pressure = 5 bar
Chamber Temperature = 550 K

Chamber Pressure = 5 bar
Chamber Temperature = 773 K

Chamber Pressure = 7 bar
Chamber Temperature = 550 K

Chamber Pressure = 7 bar
Chamber Temperature = 773 K

MEMS
Nozzle

Conventional
Nozzle

MEMS
Nozzle

Conventional
Nozzle

MEMS
Nozzle

Conventional
Nozzle

MEMS
Nozzle

Conventional
Nozzle

Mass Flow Rate (mg/s) 1.6645 1.8825 1.3894 1.5713 2.3349 2.6408 1.9462 2.2011
Inlet Velocity (m/s) 4.1646 13.3267 4.9377 15.8005 4.1481 13.2738 4.9330 15.7856
Throat Velocity (m/s) 529.7669 529.7669 630.6352 630.6352 527.2577 527.2577 629.9085 629.9085

Throat Speed of Sound (m/s) 539.1125 539.1125 635.6329 635.6329 539.7785 539.7785 635.8076 635.8076
Throat Reynolds Number 1645.8747 2468.8120 902.3439 1353.5159 2323.4565 3485.1848 1265.3402 1898.0103
Exhaust Velocity (m/s) 1281.7170 1266.4486 1553.9678 1533.4452 1276.3645 1261.4611 1552.1420 1531.7506
Exhaust Mach Number 4.7740 4.5256 4.5358 4.3150 4.8217 4.5677 4.5476 4.3255

Thrust (mN) 2.2043 2.4723 2.2409 2.5105 3.0768 3.4515 3.1345 3.5119
Specific Impulse (s) 134.9964 133.8721 164.4151 162.8660 134.3234 133.2313 164.1816 162.6444

Inlet Knudsen Number 2.3730e-04 1.5067e-04 3.3352e-04 2.1176e-04 1.6950e-04 1.0762e-04 2.3823e-04 1.5126e-04
Throat Knudsen Number 0.001797 0.001199 0.002536 0.001690 0.001282 8.5498e-04 0.001811 0.001207
Exit Knudsen Number 0.03085 0.01411 0.04481 0.02047 0.02190 0.01002 0.03195 0.01460

Inlet 𝑉𝐷𝑁 0.004772 0.01527 0.004773 0.01527 0.004753 0.01521 0.004768 0.01526
Inlet Mach Number Using 𝑉𝐷𝑁 0.007194 0.02302 0.007303 0.02337 0.007145 0.02286 0.007290 0.02333

Inlet Mach Number 0.007194 0.02302 0.007303 0.02337 0.007145 0.02286 0.007290 0.02333
Inlet 𝐷𝑁 20.1109 1.0136e+02 14.3104 72.1246 28.0434 1.4134e+02 20.0157 1.0088e+02

Inlet Reynolds Number Using 𝐷𝑁 43.6568 2.2003e+02 31.0651 1.5657e+02 60.8766 3.0682e+02 43.4501 2.1899e+02
Inlet Reynolds Number 82.2694 4.1464e+02 46.3094 2.3340e+02 1.1558e+02 5.8252e+02 64.8617 3.2690e+02

Throat 𝑉𝐷𝑁 0.6539 0.6539 0.6511 0.6511 0.6518 0.6518 0.6506 0.6509
Throat Mach Number Using 𝑉𝐷𝑁 0.9857 0.9857 0.9962 0.9962 0.9798 0.9798 0.9947 0.9947

Throat Mach Number 0.9827 0.9827 0.9921 0.9921 0.9768 0.9768 0.9907 0.9907
Throat 𝐷𝑁 3.6391e+02 5.4586e+02 2.5677e+02 3.8516e+02 5.0827e+02 7.6240e+02 3.5930e+02 5.3895e+02

Throat Reynolds Number Using 𝐷𝑁 7.8997e+02 1.1850e+03 5.5740e+02 8.3610e+02 1.1033e+03 1.6550e+03 7.7996e+02 1.1699e+03
Exit 𝑉𝐷𝑁 3.1670 3.0022 2.9644 2.8201 3.2077 3.0387 2.9744 2.8291

Exit Mach Number Using 𝑉𝐷𝑁 4.7740 4.5256 4.5358 4.3150 4.8217 4.5677 4.5476 4.3255
Exit 𝐷𝑁 1.0265e+02 2.1273e+02 66.1515 1.3775e+02 1.4646e+02 3.0323e+02 93.0844 1.9379e+02

Exit Reynolds Number Using 𝐷𝑁 2.2284e+02 4.6179e+02 1.4360e+02 2.9903e+02 3.1794e+02 6.5826e+02 2.0207e+02 4.2067e+02
Exit Reynolds Number 43.8193 84.1330 24.4058 46.8592 61.9298 1.18905e+02 34.2342 65.7298

Based on the throat Reynolds number data in Table 4.5, the throat flow is transient (transitional flow
between laminar and turbulent with 2300 < 𝑅𝑒 < 4000) for the conventional nozzle at 550 K and both
pressures along with the MEMS nozzle at 550 K and 7 bar, while laminar (𝑅𝑒 < 2300) for all other
cases considered, as the viscosity of the gas generally increases with increasing temperature due to
the increase in molecular collisions in the gas, contrary to the decrease of a liquid viscosity with an
increase in temperature, as it decreases the dominant cohesive force between the liquid molecules.
Another combined reason for the transient flow in thementioned cases is the density increase with lower
temperature. Viscous losses are more significant in MEMS nozzles compared to conventional nozzles
generally and higher temperature and lower pressure nozzles specifically, as the Reynolds numbers
are lower in these cases indicating the dominance of viscous forces (which is a negative sign in CD
nozzles). At lower Reynolds numbers especially in quasi-2D nozzle flows in MEMS devices, the 3D
endwall (flat walls that cap the side flow channel walls) effects could cause considerable inaccuracies
using 2D CFD simulations, as shown in [11].

The Knudsen number remains slightly rarefied within the slip flow regime at the outlet, while at
continuum flow with normal density levels at the inlet. This presents a significant challenge to simulate
using DSMC, as the number of particles behind and beyond the throat needs to be optimized. 𝐷𝑁 and
𝑉𝐷𝑁 also show consistent results compared to the Reynolds and Mach numbers respectively, though
the deviation becomes relatively greater at the outlet for 𝐷𝑁, where thermodynamic data may become
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more difficult to obtain for the Reynolds number, so assumptions have to be made. This makes using
𝐷𝑁 an attractive kinetic theory solution for the Reynolds number with possibly enhanced accuracy in
certain situations within its assumptions.

4.2.2. TU Delft VLM CFD Continuum Model
As the ideal rocket theory does not provide accurate insight into the performance of the thruster due to
phase change, computational fluid dynamics (CFD) simulations were done for different nozzles using
ANSYS Fluent [16]. An SST 𝑘 − 𝜔 model with low Reynolds numbers and compressibility effects
corrections was applied. Figure 4.140 shows the four considered nozzle options for the CFD simulation
[16].

Figure 4.140: Nozzle geometries considered using ANSYS Fluent in mm. Only Nozzle 4 is a slit 2D nozzle with rectangular
section length of 0.1 mm and relatively higher expansion ratio of 32 compared to 25 in the other three axisymmetric nozzles [16].

Table 4.6 shows the ANSYS Fluent CFD results of the different VLM nozzles at a chamber temper-
ature of 550 K, where the expansion occurs to vacuum [16]. The one-dimensional ideal rocket theory
provides the discharge coefficient, which is the ratio of actual to ideal mass flow rate, and specific im-
pulse quality, which is the ratio of actual specific impulse to ideal specific impulse [16]. The results
indicate that Nozzle 1 (also used as DSMC conventional nozzle) provides best performance at ideal
conditions considering the specific impulse quality, where the other nozzles show lower performance,
even though Nozzle 4 (also used as DSMC MEMS nozzle) has a higher expansion ratio.

Table 4.6: ANSYS Fluent results for VLM nozzles with water propellant at chamber temperature of 550 K [16]

At Chamber Pressure of 7 bar Nozzle 1 Nozzle 2 Nozzle 3 Nozzle 4 Ideal
Mass Flow Rate (mg

s ) 2.65 2.43 2.18 2.28 2.62
Discharge Coefficient 1.010 0.926 0.831 0.869 1
Exhaust Velocity (ms ) 1147.7 1107.1 1069.6 970.9 1328.0

Thrust (mN) 3.04 2.69 2.33 2.22 3.48
Specific Impulse (s) 117.0 112.9 109.0 99.0 135.4

Specific Impulse Quality (%) 86.4 83.3 80.5 73.1 100
At Chamber Pressure of 5 bar

Mass Flow Rate (mg
s ) 1.88 1.72 1.55 1.63 1.87

Discharge Coefficient 1.003 0.918 0.827 0.870 1
Exhaust Velocity (ms ) 1135.8 1092.8 1065.3 930.4 1328.0

Thrust (mN) 2.13 1.88 1.65 1.52 2.49
Specific Impulse (s) 115.8 111.4 108.6 94.9 135.4

Specific Impulse Quality (%) 85.5 82.3 80.2 70.0 100

The results showed that Nozzle 4 did not achieve the highest performance, yet it will still be con-
sidered as the main thruster considering its MEMS modular manufacturability. Table 4.7 shows the
approximated thruster performance, where the set nozzle inlet pressure and temperature are equiva-
lent to the heating chamber outlet values [16]. Overall, a chamber temperature of 773 K provides a
higher specific impulse and lower required power, as the mass flow rate is lower at a higher temperature
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and constant pressure [16]. The power transferred to water increases with increasing chamber pres-
sure, which increases the mass flow rate leading to more required power for an equivalent increase
in fluid temperature [16]. A maximum chamber pressure of 6 bar is required to completely vaporize
the water using the set thruster properties, as vaporization uses over 60 % of the power transferred to
water, which has a high latent heat of evaporation [16].

Table 4.7: Nozzle 4 microresistojet estimated performance at different propellant temperatures in heating chamber at pressure
of 5 bar and propellant consumption totaling 50 g [16]

Case 1 Case 2
Chamber Temperature (K) 550 773

Thrust (mN) 1.52 1.48
Mass Flow Rate (mg

s ) 1.63 1.36
Power Transferred to Water (W) 5.25 5.06

Specific Impulse (s) 94.9 111
Total Impulse (Ns) 46.4 54.7

To note, a current TU Delft VLM design also considers a nozzle expansion ratio ( ∗ ) of 11, chamber
pressure (𝑃 ) from 200 kPa to 500 kPa, and accordingly varied chamber temperature depending on the
fluid, as for water at 200 kPa, it is 400-550 K with a mass flow rate of 1.56-1.33 (mg

s
) and thrust of 1.69

mN, and at 500 kPa, it is 430-550 K with a mass flow rate of 3.76-3.33 (mg
s
) and thrust of 4.22 mN [27].

The inlet microresistojet temperature is 283.16 K [27].

4.2.3. Discussion
A comparison between MEMS vs. Conventional Thrusters (DSMC) Section 4.1 and DSMC vs. Con-
tinuum Modeling Section 4.2’s Analytical Model Subsection 4.2.1 and TU Delft VLM CFD Continuum
Model Subsection 4.2.2 is conducted to provide an overall image of the different methodologies along
with a final conventional vs. MEMS nozzle comparison. Mainly, the data discussed is retrieved from
the DSMC and Analytical model general results Tables 4.4 and 4.5 respectively along with TU Delft
VLM CFD Continuum Model Subsection 4.2.2’s Tables 4.6 and 4.7.

For all models, the mass flow rate drops with increasing temperature at constant pressure and de-
creasing pressure at constant temperature. Although a general increase in thrust is seen with increas-
ing temperatures (at constant pressures) and pressures (at constant temperatures) in the analytical
model, the inverse applies for increasing temperatures at constant pressures in the DSMC and NS
models. Note that the thrust variables are related to Equation 2.98. Furthermore, the specific impulse
(Equation 2.92) increases with increasing temperatures for the analytical and DSMC models, while it
decreases for the NS model. On the other hand, it decreases with higher pressures at constant tem-
peratures for the analytical and DSMC models, while it increases for the NS model. This places the
DSMC model’s variation somewhat in between the analytical and NS models. Note that the data at the
bottom of the TU Delft VLM CFD Continuum Model Subsection 4.2.2 follows general data trends. The
𝐷𝑁, 𝑉𝐷𝑁, 𝑅𝑒, and 𝐾𝑛 trends for the analytical and DSMCmodels are generally comparable, though 𝐾𝑛
and 𝑉𝐷𝑁 along with𝑀𝑎 (at the exit as well as the velocity even compared to the NS model) are gener-
ally lower for the DSMC models, where especially the MEMS nozzle’s wall temperature with enhanced
heat transfer (Pressure and Temperature Subsection 4.1.4) causes a greater deviation from realistic
expectations, along with 𝐷𝑁 being higher at the throat. Furthermore, the MEMS nozzle’s geometrical
features (quasi-2D with smaller throat and (less than 1) throat aspect ratio inverting from rectangular
horizontal flow to rectangular vertical flow at the throat and then back to a rectangular horizontal flow
(Number of Simulation Particles per Grid Cell, Mass Density, Particle Number Density, Aspect Ratio,
and Perimeter to Cross Sectional Area Ratio Subsection 4.1.2)) lead to its flow beyond the throat be-
coming relatively more rarefied at the lateral sides acting in a way like a channel with comparatively
more faster particles traveling in straight line trajectories beaming out of the aperture center as rays
considering the notably thick (cross sectional) boundary layer at the sides from the throat (viscous dis-
sipation of flow kinetic energy from shear on the walls), ultimately leading to a slowdown at the front
prompting its expansion (especially towards the sides) and following speedup as a velocity arch (Ve-
locity, Root Mean Square Speed, and Most Probable Speed Subsection 4.1.5) (see Boundary Layers
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and Rarefaction Phenomena Subsection 4.1.13).
Concerning the conventional and MEMS nozzle performances, the conventional nozzle has higher

(better) thrust for all models, but its specific impulse is only higher (better) for the DSMC and NSmodels,
which realistically portray a more accurate representation of the MEMS nozzle’s geometrical limitations.
This enables the conventional nozzle to surpass the MEMS nozzle, when only perceiving the end result.
However, as proven by theMEMS nozzle’s enhanced wall heat transfer in the DSMCmodel (even with a
lower mass flow rate), the resistive microheaters embedded in the MEMS nozzle’s geometry supplying
the power needed to vaporize/heat the water are expected to be considerably more efficient (assuming
proper insulation and depending on the resistive heaters’ placement). Thus, there is a tradeoff, which
needs to be further investigated in the heater section. It is also important to note that the performance
of the MEMS nozzle is more negatively affected by the wall temperature set, though the resulting trends
for both conventional and MEMS nozzles are applicable.

Table 4.8 contains the power transferred to water for all model results evaluated using Equations
2.116 and 2.115 with the enthalpy data obtained for water at the mentioned pressures and temperatures
from the US National Institute of Standards and Technology’s (NIST) publicly accessible database
of thermodynamic data along with the thrust to power ratio, which is useful for small spacecraft with
limited power generation capabilities. Based on information in the TU Delft VLM CFD ContinuumModel
Subsection 4.2.2, the inlet microresistojet temperature is 283.16 K [27]. Since the enthalpy does not
change much within the applicable pressure range, the applicable nozzle inlet pressure is used. Note
that the power transferred to water depends on the enthalpies alongwith themass flow rate, which drops
by increasing the temperature at constant pressure, explaining the variation difference for the DSMC
model. The power transferred to water is higher for the conventional nozzle due to the greater mass
flow rate, which could also enhance the heat transfer, though the MEMS nozzle’s quasi-2D geometry
is expected to surpass that heat transfer enhancement assuming proper insulation and depending
on the resistive heaters’ placement. If the resistive heaters are unobtrusively placed in the center,
the conventional nozzle could have an advantage. Furthermore, the thrust to power ratio results are
lowest for the DSMC model followed by the NS model, mainly due to their respectively lower thrusts
compared to the analytical model. The conventional nozzle has a lower thrust to power ratio compared
to the MEMS nozzle in the analytical model, though it is higher for both DSMC and NS (with a relatively
larger difference between the conventional and MEMS nozzle thrust to power ratio values) models.

Table 4.8: Power transferred to water and thrust to power ratio for the analytical, DSMC, and NS model results

Chamber Pressure = 5 bar
Chamber Temperature = 550 K

Chamber Pressure = 5 bar
Chamber Temperature = 773 K

Chamber Pressure = 7 bar
Chamber Temperature = 550 K

Chamber Pressure = 7 bar
Chamber Temperature = 773 K

Conventional
Nozzle

MEMS
Nozzle

Conventional
Nozzle

MEMS
Nozzle

Conventional
Nozzle

MEMS
Nozzle

Conventional
Nozzle

MEMS
Nozzle

Mass Flow Rate (mg/s) (Analytical Model) 1.8825 1.6645 1.5713 1.3894 2.6408 2.3349 2.2011 1.9462
Mass Flow Rate (mg/s) (DSMC Model) 1.9872 1.3294 1.7223 1.3255 2.4287 1.9282 2.1671 1.9212
Mass Flow Rate (mg/s) (NS Model) 1.88 1.63 N/A 1.36 2.65 2.28 N/A N/A

Enthalpy at 283.16 K and 5 or 7 bar (kJ/kg) 42.550 42.550 42.550 42.550 42.745 42.745 42.745 42.745
Enthalpy at 550 or 773 K (kJ/kg) 3016.7 3016.7 3484.1 3484.1 3010.8 3010.8 3482.0 3482.0

Power Transferred to Water (W) (Analytical Model) 5.5988 4.9505 5.4077 4.7817 7.8380 6.9301 7.5701 6.6935
Power Transferred to Water (W) (DSMC Model) 5.9102 3.9538 5.9274 4.5618 7.2085 5.7230 7.4532 6.6075
Power Transferred to Water (W) (NS Model) 5.5914 4.8479 N/A 4.6805 7.8653 6.7672 N/A N/A

Thrust (mN) (Analytical Model) 2.4723 2.2043 2.5105 2.2409 3.4515 3.0768 3.5119 3.1345
Thrust (mN) (DSMC Model) 1.4418 0.8747 1.2513 0.8745 1.6013 1.2604 1.5340 1.2598
Thrust (mN) (NS Model) 2.13 1.52 N/A 1.48 3.04 2.22 N/A N/A

Thrust to Power Ratio (mN/W) (Analytical Model) 0.44157 0.44527 0.46424 0.46864 0.44035 0.44398 0.46391 0.46829
Thrust to Power Ratio (mN/W) (DSMC Model) 0.24395 0.22123 0.21110 0.19170 0.22214 0.22023 0.20582 0.19066
Thrust to Power Ratio (mN/W) (NS Model) 0.38094 0.31354 N/A 0.31620 0.38651 0.32805 N/A N/A
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Conclusions and Recommendations

5.1. Conclusions
After briefly introducing micropropulsion and discussing the propellant selection and nozzle fabrication
along with the background theory related to micropropulsion as well as the analytical and OpenFOAM
numerical (DSMC, continuum, and a hybrid approach containing both to accommodate to the varia-
tion in Knudsen number throughout the computational domain) modeling methods, the used method-
ology is based on using OpenFOAM’s DSMC solver (dsmcFoam+) following the mesh creation using
blockMesh and snappyHexMesh and developed analytical model (using MATLAB and CoolProp) along
with an additional VLM ANSYS Fluent CFD model prepared in advance at TU Delft, where their (steady
state as well as transient with very quick backward forming shock diamonds detected from the throat
for DSMC) results (including the same conventional and MEMS nozzles) are processed and discussed.
The nozzles are simulated for inlet pressures of 5 and 7 bar at inlet temperatures of 550 and 773 K for
a total of four cases for each nozzle. To note, many of dsmcFoam+’s functionalities (mass flow rate
measurements, inlet pressure boundary condition, axisymmetric capabilities, statistical error measure-
ments, and dynamic load balancing) are implemented and described along with the full methodology,
as Blender (with add-ons) and ParaView with a Python script to extract averaged data (along the noz-
zle and plume region) along with sampleDict are also used in pre and post-processing respectively
and the simulations are carried out on a computer cluster. Furthermore, a quite interesting theoretical
project on the side has been independently worked on in parallel. It started as a noticed idea that
was decided to be explored using equations, which led to extended continuum/kinetic dimensionless
numbers for diffusivity (𝐷𝑁) and rarefaction intensity relative to the studied object’s timescale (𝑉𝐷𝑁).
𝐷𝑁 represents the continuum advective transport rate to intrinsic kinetic diffusive transport rate ratio
of an object/particle in its fluid medium (ideal gas) defining how efficiently an object or particle with a
constant interface can blend or diffuse into the fluid medium and between the fluid’s own molecules
at the instant of evaluation, as a larger and faster or smaller and slower object/particle will experience
relatively greater resistance as determined by the fluid medium, which seeks optimal balance with its
own properties. 𝑉𝐷𝑁 is analogous to the Mach number with an average molecular speed term instead
of speed of sound (as found within 𝐷𝑁 along with the Knudsen number), where a faster object/particle
will observe a relatively slower flow medium average molecular speed leading to a greater rarefac-
tion intensity and vice versa. See Appendix A for the theory derivation and its general implementation
along with the explanation and evaluation. It is also tested in the present study and shows promising
results, including that 𝐷𝑁 is capable of approximately detecting the flow regime within its assumptions
and could be more helpful when thermodynamic data (such as dynamic viscosity) for calculating the
Reynolds number is difficult to obtain and 𝑉𝐷𝑁’s approach becomes rather different compared to the
Mach number in flows such as the initially vacuum plume region, as the Mach number could vary sig-
nificantly (increase), which allows for potential applications for 𝑉𝐷𝑁 and its understanding in highly
rarefied flows.

Concerning the conventional and MEMS nozzle comparisons, it is quite clear that the conical 3D
conventional nozzle (simulated as a wedge with single cell thickness using axial symmetry) is superior
in performance realistically, due to the quasi-2D MEMS nozzle’s (simulated as 3D) significant boundary
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layer considering the viscous dissipation of flow kinetic energy from shear on the walls, especially after
the throat in the diverging section. However, it reaffirms that the MEMS nozzle’s geometry provides
easier heat transfer with proper exterior insulation mitigating undesired heat rejection, which could be
an advantage with the propellant heating involved, as the heat for these thrusters is not coming from
chemical reactions, but from resistive microheaters instead, along with the possible uses for (regener-
ative along with potential film, curtain, transpiration, and radiation) cooling to avoid melting (in different
conditions considering that the (stored) inlet microresistojet temperature considered is 283.16 K if it
were to be used [27]), or decreasing viscosity, as gas viscosity generally increases as temperature
increases due to the gas molecular collisions increase, contrary to the liquid viscosity decrease with
a temperature increase, considering that it decreases the dominant cohesive force between the liquid
molecules. To note, the DSMC and NS simulation results better resemble the significant impact of the
viscous dissipation of flow kinetic energy from shear on the walls on the MEMS nozzle compared to
the analytical model. If the spacecraft happens to become warmer, especially at the diverging section
of the nozzle, for any reason during its mission, the MEMS nozzle will be significantly affected by this
temperature change compared to the conventional nozzle. The power transferred to water and thrust
to power ratio are generally higher for the conventional nozzle, as it has a greater mass flow rate that
could also enhance the heat transfer, though the MEMS nozzle’s quasi-2D geometry is expected to
surpass that heat transfer enhancement assuming proper insulation and depending on the resistive
heaters’ placement. If the resistive heaters are unobtrusively placed in the center, the conventional
nozzle could have an advantage. The methodology used highlights the importance of insulation for the
MEMS nozzle’s thrust, as a material with a lower thermal conductivity (higher thermal resistivity) would
be desired for the MEMS nozzle, so that the heat before the throat and converging section (from the
heater) does not easily conduct heat towards the outlet. Furthermore, the pressure at the throat lateral
sides (and beyond) is higher for the MEMS nozzle, which raises the need for material strength consid-
erations. From the rarefaction phenomena investigation considering the Knudsen number, the flows
become slightly rarefied within the slip flow regime after the throat towards the outlet, which means that
non-equilibrium regions emerge near surfaces as their interactions with molecules decrease leading
to nonequivalent macroscopic gas and surface velocities and temperatures respectively translating to
velocity-slip and temperature-jump. Some of the causes are the MEMS nozzle’s smaller throat and
(less than 1) throat aspect ratio inverting from rectangular horizontal flow to rectangular vertical flow at
the throat and then back to a rectangular horizontal flow along with its greater total lateral surface area
to total volume and perimeter to cross sectional area ratios.

MEMS components could allow for economical and technical advantages [12]. The lower volume
(relatively flatter with potentially easier stacking, though not near a sensitive element of the spacecraft
without sufficient thermal insulation due to the MEMS nozzle’s enhanced heat transfer) and mass of the
systems allow for cheaper access to space with better qualifications considering the set constraints.
MEMS are highly multifunctional, where modular and integrated components can allow for multiple
uses within the same chip, comparable to the MEMS ”lab-on-a-chip”, which is not feasible using con-
ventional methods. Integrated fabrication allows for a more feasible, though less flexible, way to qualify
components for space, as the whole module is then treated as a ”black box” [12]. MEMS can also pro-
vide smaller components for better performance, such as decreasing the 𝐼 and relatively increasing
the thrust-to-power ratio.

The novel MEMS micropropulsion drawbacks might include compatibility complications between
the MEMS material or thin film and the usually conventionally manufactured storage tank, propellants
used, or possibly module sandwiching issues. The MEMS materials, such as silicon, are also likely
to be undesirably conductive or brittle. At TU Delft however, a silicon dioxide layer is deposited on
the silicon wafer below and above the heating layer for electrical insulation between the heating layer
and conductive silicon [16]. MEMS manufacturing is also generally highly expensive compared to
conventional manufacturing [49].

There are tradeoffs to choosing either thruster. So in some ways, it is like comparing apples and
oranges, where it is impractical to fault one nozzle for not performing better than the other, as it ultimately
comes back to the desired features and nature of the mission each is undertaking, where compromises
have to be made.
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5.2. Recommendations and Ideas for Future Work
• After referring to related literature, a geometrical optimization study on the viscous dissipation
of flow kinetic energy from shear on the walls and enhanced heat transfer effects on the MEMS
nozzle compared to the conventional nozzle could be performed. Note that a longer diverging
section for the MEMS nozzle might not result in a continuously increasing velocity (expansion)
along with that it leads to a heavier system and more friction/viscous losses, while larger diverging
half angles could have potential performance benefits in general. Furthermore, a comparative
study between MEMS and conventional resistive micro heat exchangers with two-phase flow to
evaluate the heat transfer mechanism and optimize the geometry would be useful, where the
nozzles’ mass flow rates and performances are taken into consideration along with the power
needed to vaporize/heat the stored liquid propellant. It would also be informative to consider the
wall heat transfer (conduction/convection/radiation), as thermal insulation could be crucial for the
MEMS nozzle. Also, the wall material strength could be studied, as it could play an important
factor in consideration of the operating conditions.

• Implement a more elaborate DSMC model (considering the internal energy modes and inter-
molecular forces, as the water vapor propellant used has strong intermolecular forces, for exam-
ple), referring to the DSMC Models Overview Subsection 2.4.1, along with different gas-surface
interaction wall models.

• For dsmcFoam+, in a similar fashion to the solver’s existing axisymmetric simulation considera-
tions (used for the conventional nozzle simulated as a wedge with single cell thickness), which
allow DSMC particles (representing a number of real atoms/molecules) to have radial weighting
factors based on the radial position, where particles moving radially away from or towards the
radial center could probabilistically (depending on the old and new weighting factor ratio) be dis-
carded (due to the new larger weighting factor) or cloned (due to the new smaller weighting factor)
respectively, a method for discarding and duplicating DSMC particles along the nozzle could be
developed to combat the large difference in flow regime rarefaction with evolving density gra-
dients behind (more molecules) (deletion) and beyond (less molecules) (duplication) the throat,
which would result in a much less computationally expensive simulation due to the significantly
higher number of particles needed to maintain a sufficient number of particles per grid cell when
done without the particle weighting factors (refer to dsmcProperties Subsection 3.2.6). Another
method is to automatically convert the output of a solution using a continuum solver as the in-
put of the DSMC solver (and vice versa) using a method similar to the one described in General
Modeling Properties and Procedure Section 3.1.

• Devise 𝐷𝑁 and 𝑉𝐷𝑁 experiments by varying their relative terms and studying the results on
different objects/particles, where they could also be tested to respectively find related properties
to the Reynolds and Mach numbers, especially when thermodynamic data is difficult to obtain or
there is a large difference in rarefaction (refer to Appendix A).





A
Extended Continuum/Kinetic Dimensionless

Numbers for Diffusivity and Rarefaction Intensity

A.1. Summary
A new dimensionless number (𝐷𝑁) based on continuum and kinetic theory is introduced. It initiates as a
derivable extension of the Reynolds numbers, which might additionally allow the dimensionless number
to predict the flow transition from laminar to turbulent and account for the relative intensity of rarefaction
using another introduced velocity-based dimensionless number (𝑉𝐷𝑁), which is analogous to the Mach
number (𝑀) with an average molecular speed term instead of speed of sound, as found within 𝐷𝑁 along
with the Knudsen number (𝐾𝑛). In a sentence, 𝐷𝑁 represents the ratio of an object/particle’s continuum
advective transport rate to the intrinsic kinetic diffusive transport rate in its fluid medium (ideal gas),
which simply defines how efficiently an object or particle with a constant interface can blend or diffuse
into the fluid medium and between the fluid’s own molecules at the instant of evaluation. A larger and
faster or smaller and slower object/particle will experience relatively greater resistance as determined
by the fluid medium, which seeks optimal balance with its own properties. Alongside the transport
qualities of 𝐷𝑁, 𝑉𝐷𝑁 represents the proposed concept of rarefaction intensity relative to the studied
object’s timescale, where a faster object/particle will observe a relatively slower flow medium average
molecular speed leading to a greater rarefaction intensity and vice versa. The dimensionless numbers
were theoretically tested and provided logical results as shown in this work.

Although this theory could find applications in a wide variety of fields including aerodynamics, it
was developed during a project on spacecraft electrothermal micropropulsion systems, but the water
vapor propellant used has strong intermolecular forces that may result in a considerable deviation from
an ideal gas, which is a main assumption used in the derivation of 𝐷𝑁. However, at higher rarefac-
tion/rarefaction intensity (relatively lower pressure and higher temperature), it is expected that the fluid’s
intermolecular forces become less relevant and the ideal gas relations become more applicable. As a
topic of interest to space engineering, 𝐷𝑁 might also apply in different atmospheres under ideal gas
assumptions.

A.2. Theory
The scaling analysis of the Reynolds number is used as an initial starting point, as this work has been
mainly inspired to explore the noticed abstract idea of “fluid likeness”, which is how much an objec-
t/particle is like the medium it flows in or how much the fluid affects it differently from the fluid’s own
molecules, where an example could be that turbulence transition features are considered out of the
norm of the uniform laminar flow properties, so an object/particle exhibiting such features stands out. It
is related to diffusivity as will be discussed, taking into consideration that the object/particle and its fluid
medium will naturally attempt to reach a balanced situation based on their own properties, where their
interaction will stand out more as their differences increase. It was interestingly noticed in the popular
example comparing the fluid medium flow behavior of a bacterium and human.

To note, the calculations in this work are based on a rough scaling used to mainly compare the
orders of magnitude. Certainly, the solution includes various assumptions, but lays a steppingstone
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directed towards development for more general applications. The used assumptions’ derivation might
not be fully explained in this text, as that can be found from the references, but their applicability is
clear. The word molecule is used to refer to a fluid’s particle, while the word particle is used to refer to
a significantly small object.

A bacterium’s characteristic linear dimension (𝐿) is around 1 ⋅ 10 m and can reach a relative
speed (𝑣), which is the local flow velocity with respect to the internal or external boundaries, of around
30 ⋅ 10 m

s
. The density (𝜌) and dynamic viscosity (𝜇) of water are considered to be 1000 kg

m
and

10 ⋅ 10 Pa⋅s respectively. The flow comparison is based on the Reynolds number (𝑅𝑒):

𝑅𝑒 = 𝜌𝑣𝐿
𝜇 A.1

For a bacterium in liquid water with the mentioned properties, 𝑅𝑒 is around 3 ⋅ 10 , which falls in
the laminar flow regime. The scale becomes different for a human, which for simplicity will have 𝐿 ∼ 2
m and 𝑣 ∼ 2m

s
, resulting in a turbulent flow regime with 𝑅𝑒 ∼ 4 ⋅ 10 . For honey, with 𝜌 ∼ 1420 kg

m
and 𝜇 ∼ 10 Pa⋅s, a human theoretically swimming at the same speed as in water would result in
𝑅𝑒 ∼ 568, which would be more similar to the bacterium swimming in water as it is also laminar. This
represents honey’s naturally larger characteristic length scale acceptance for “fluid likeness”, which is
related to its higher viscosity, as the bacterium is also expected to experience a more laminar flow in
honey than in water. Interestingly, bacteria can travel many times their characteristic linear dimension
compared to humans and that is attributed to their higher “fluid likeness” (diffusivity). In a similar manner
for gas dynamics (ideal gas), the actual fluid particles travel even faster than larger objects within their
medium because they intrinsically advect or diffuse themselves to appear as a bulk fluid while allocating
a relative balanced speed for larger objects.

A.2.1. Derivation
The derivation is based on certain assumptions to result in a final applicable equation. Note that 𝑣
and 𝐿 are still the only properties related to the object/particle, while the rest are properties of the
internal/external fluid medium. Starting from the Reynolds number (Equation A.1), since it hints towards
a more indicative solution, the mean free path (𝜆) equation related to dynamic viscosity (obtained from
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/menfrevis.html) is substituted:

𝜆 = 𝜇
𝑝√

𝜋𝑘𝑇
2𝑀 , A.2

𝜌𝑣𝐿
𝜇 = 𝜌𝑣𝐿

𝜆𝑝 √
𝜋𝑘𝑇
2𝑀 , A.3

where 𝑝 is the pressure, 𝑇 is the temperature, 𝑀 is the molecular mass, and 𝑘 is the Boltzmann
constant. Next, the instantaneous density is simply considered as the number of molecules (𝑁) multi-
plied by their individual (average) molecular mass (𝑀 ) and divided by the total volume (𝑉) occupied
by the fluid:

𝜌 = 𝑁𝑀
𝑉 A.4

𝜌𝑣𝐿
𝜆𝑝 √

𝜋𝑘𝑇
2𝑀 = 𝑁𝑀 𝑣𝐿

𝑉𝜆𝑝 √ 𝜋𝑘𝑇2𝑀 = 𝑣𝐿
𝜆
√𝑁 𝑀 𝜋𝑘𝑇
𝑝 𝑉 2𝑀 , A.5

The equation is then simplified along with substituting the ideal gas law, where 𝑝 is the absolute
pressure, 𝑛 is the number of moles, and 𝑅 is the universal gas constant:

𝑝𝑉 = 𝑛𝑅 𝑇 = 𝑁𝑘𝑇, A.6

𝑣𝐿
𝜆
√𝑁 𝑀 𝜋𝑘𝑇
𝑝 𝑉 2𝑀 = 𝑣𝐿

𝜆 √
𝜋𝑁𝑀
2𝑝𝑉 , A.7
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At this point, the square root of the density can be seen in the equation. The kinetic theory (ambient)
gas pressure as determined in the fluid medium of the object/particle will be applied (modified from
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/kinthe.html), where the fluid medium’s (weighted)
average molecular speed (�̄�) expected to (elastically) interact with the object/particle could be averaged
over the object/particle’s entire surface area, which creates an analogy between internal and external
flows:

𝑝 =
𝐹 .
𝐴 = 𝑁𝑀

𝑙𝐴
(�̄� + �̄� + �̄� )

3 = 𝑁𝑀 �̄�
3𝑙𝐴 = 𝑁𝑀 �̄�

3𝑉 , A.8

𝑣𝐿
𝜆 √

𝜋𝑁𝑀
2𝑝𝑉 = 𝑣𝐿

𝜆 √
3𝑉𝜋𝑁𝑀
2𝑁𝑀 �̄� 𝑉 =

√3𝜋
2
𝑣𝐿
�̄�𝜆 , A.9

𝐷𝑁 = 𝑣𝐿
�̄�𝜆 , A.10

where 𝐹 . is the average force on an object/particle surface, 𝐴 is the fluid’s area, and 𝑙 is the
bulk fluid’s characteristic length. Note that setting the velocity might require accounting for its relative
direction as well, as a wind tunnel approach may need to be considered for determining the velocity
of the object/particle. For fluids other than ideal gases, 𝐷𝑁 is expected to relate to 𝑅𝑒 by using other
additional terms or a modified 𝐷𝑁, yet the equation’s form with a constant is quite convenient in this
case. Different equations based on kinetic theory have also been used resulting in 𝐷𝑁, though some
assumption relations might slightly change the constant term in its relation to 𝑅𝑒, but the version in this
work proved to be more accurate and can also be built upon to match proven relations as shown below.
In addition to its relation to the Reynold’s number, the Knudsen number (𝐾𝑛) is also relatable as it can
be found in the 𝐷𝑁 Equation A.10 along with another dimensionless number (𝑉𝐷𝑁):

𝐾𝑛 = 𝜆
𝐿 A.11

𝑉𝐷𝑁 = 𝑣
�̄� , A.12

𝐷𝑁 = 𝑉𝐷𝑁
𝐾𝑛 , A.13

𝑉𝐷𝑁 is the ratio of the object/particle’s speed to the fluid medium’s average molecular speed,
which would support the idea that as the object/particle’s velocity naturally becomes closer to the fluid
medium’s average molecular speed, then its “fluid likeness” inherently increases. To fully be a fluid
particle, the object/particle’s physical length scale needs to match the fluid’s molecular physical length
scale (mean free path) as well. 𝑉𝐷𝑁 is analogous to the Mach number (𝑀), as it replaces the Mach
number’s speed of sound (wave propagation) with a term for the average molecular speed instead. A
𝐷𝑁 relation with the Mach number can also be established based on the relation between 𝐾𝑛, 𝑅𝑒, and
𝑀, which ultimately becomes related to 𝑉𝐷𝑁:

𝑅𝑒 = 𝑀
𝐾𝑛√

𝛾𝜋
2 = √3𝜋2

𝑣𝐿
�̄�𝜆 =

√3𝜋
2 𝐷𝑁, A.14

𝑀 = √3𝛾𝑉𝐷𝑁 = √
3
𝛾
𝑣
�̄� =

𝑣
𝑐 , A.15

where 𝛾 is the ratio of specific heats and 𝑐 is the speed of sound in the fluid medium. By rearranging,
this actually results in the already established relation between speed of sound and average molecular
speed for an ideal gas:

�̄�
𝑐 = √

3
𝛾 A.16
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Moreover, 𝐷𝑁 can be seen to directly compare with the continuum Péclet number (𝑃𝑒), though 𝑃𝑒
uses a mass diffusion coefficient (𝐷) or thermal diffusivity (𝛼) with a different conceptual approach and
there are other physical features clarified using the kinetic theory based 𝐷𝑁:

𝑃𝑒 = 𝑣𝐿
𝐷 = 𝑣𝐿

𝛼 A.17

A.2.2. Analysis
The fluid medium needs to be an ideal gas, while the object/particle is restricted to maintain its relative
shape against diffusion unless it is divided into smaller elements. The resulting Equation A.9 provides
a handy tool for another physical approach in determining chaotic behavior in ideal gases using kinetic
theory. It is clear that the unit of the product of velocity and distance in both the numerator and denom-
inator of 𝐷𝑁 (Equation A.10) is identical to diffusivity’s unit ( ), which is expectable. To elaborate on
the reasoning behind the 𝐷𝑁 Equation A.10, the product of the object/particle’s instantaneous velocity
and physical length scale determines its rate of advection transport and their magnitudes determine
how the object/particle is advected, where a higher product of its two mentioned properties leads to
a higher advective transport rate. As physical length scale decreases or the velocity increases, the
object/particle is shown to be capable of traveling a greater distance relative to its size, but this obser-
vation is instantaneous and its relative stability is determined by 𝐷𝑁. The product of the fluid medium’s
average molecular speed and mean free path determines the fluid medium’s intrinsic diffusive transport
rate, which could be described as its natural accepted balance of speed and dimension, and their mag-
nitudes affect the object/particle’s advection’s variance, where a higher product of its two mentioned
properties leads to a larger object/particle experiencing less difference with the fluid medium’s flow and
vice versa in smaller conditions.

Therefore, 𝐷𝑁 is high when object/particle advection in the medium is relatively higher and vice
versa, but an interesting feature is noticed at the value of one, where the advective transport rate
matches the intrinsic diffusive transport rate, below which the fluid medium’s intrinsic diffusion transport
rate attempts to restabilize the object/particle’s advective transport rate. In a theoretical sense, either a
larger object at zero velocity is slightly accelerated or an infinitesimally small particle at zero velocity is
extremely accelerated in analogy to momentum with the physical length scale replacing the mass term.
If the object/particle has a relatively higher velocity, it will certainly be decelerated (drag). To rephrase,
particles need to have a physical length scale that is smaller than the medium’s mean free path, which
would mean that they have to be smaller than the fluid medium’s molecules to have a better probabilistic
chance of traveling at speeds faster than the medium’s average molecular speed, while larger objects
probabilistically become slower. An example could be in a ball pit, where a large human can actually
easily move the balls andmake way although being significantly decelerated compared to how an object
significantly smaller than the physical characteristic length of the medium (balls) could probabilistically
go amuch farther distance relative to its own physical length scale, but be required to divert. The system
naturally seeks equilibrium. It is important to note that the kinetic theory analysis is mainly based
on probability, which has derivable meaning. This theory can actually create a directly proportional
relationship between the fluid medium’s intrinsic diffusive transport rate and viscosity divided by density.
It even provides a relation for advection/diffusion and rarefaction (intensity), as Equations A.13 and A.10
provide insight into the effect of rarefaction and rarefaction intensity on advection/diffusion, where as
𝑉𝐷𝑁 and 𝐾𝑛 become closer in value, whether high or low, the object/particle’s advective transport rate
becomesmore stable within the fluid medium considering its intrinsic diffusive transport rate. Therefore,
this provides a different perspective for understanding 𝐷𝑁, where rarefaction and rarefaction intensity
are used to interpret its significance. This can be further understood below, as a more in-depth meaning
for 𝑉𝐷𝑁 is established.

A.3. Testing
To put this theory to the test, a diverse collection of 𝑅𝑒 values was collected for several objects flying in
air (obtained from https://physics.info/turbulence/), which will be assumed to be an ideal gas. Again, the
calculations in this work are based on a rough scaling used to mainly compare the orders of magnitude.
From air’s 𝜇 = 1.81⋅10 Pa⋅s, 𝜌 = 1.225 kg

m
, and the objects’ roughly estimated physical length scales,

the velocity can be calculated using Equation A.1. Then, 𝑉𝐷𝑁 (Equation A.12), 𝐾𝑛 (Equation A.11),
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𝑀 (Equation A.15), advective transport rate/intrinsic diffusive transport rate/𝐷𝑁 (Equation A.10) are
calculated followed by recalculating 𝑅𝑒 and 𝑀 using 𝐷𝑁 (Equation A.9) and 𝑉𝐷𝑁 (Equations A.15)
respectively. For air, the average molecular speed is 500m

s
, speed of sound (𝑐) of air is 343m

s
, specific

heat ratio (𝛾) is 1.4, and mean free path (𝜆) is 70 ⋅ 10 m. Clearly, the average diameter of air’s
molecules is 4 ⋅ 10 m, which is smaller than its fluid medium’s mean free path, so it should be
considered that as the object/particle gets smaller than the mean free path, its physical characteristic
length decreases towards the mean free path, which is reached when the particle is the same size as
the fluid medium’s molecules, though its physical characteristic length keeps decreasing below that as
well. It can be imagined as a molecular channel flow with the mean free path as the transport gap
length (diameter). The results are presented in Table A.1 and discussed below.

A.3.1. Discussion
What is clear from the very beginning (besides how crammed the table looks) is that there is a dis-
cernible pattern in the results. 𝐷𝑁 is directly proportional to 𝑅𝑒 due to the constant term in its relation to
𝑅𝑒 considering it being an ideal gas, but has an interesting quality when it comes to advection, diffusiv-
ity, and the “fluid likeness” concept explained earlier. As the object’s physical length scale and speed
decreases, 𝐷𝑁 also decreases, which indicates that the fluid medium’s intrinsic diffusive transport rate
is resisting the advective transport rate less compared to cases with a higher 𝐷𝑁 for a larger object. To
add an example, when a relatively large high-speed object, such as an airplane, transfers considerable
energy to its opposing flow, it inherently modifies the fluid medium’s properties so that it becomes more
natural within the fluid medium. An average air particle in a fluid medium of air has 𝐷𝑁 = 1, which is
expected, as it is the most common and dominant type of particle with probabilistically averaged prop-
erties in the medium, so its advective transport rate is its own (and its fluid medium’s) diffusive transport
rate. Another thing to note, is that the intensity of rarefaction might not only be measured by length,
but velocity could play a considerable role depending on the situation. Consider a thought experiment
with a box containing a rarefied gas of extremely fast particles at the same density. Their rarefaction
intensity will be observed lower in the relative continuum timescale, even though their theoretical mean
free path is the same, as their high velocities will result in more collisions during the same time period.
𝐾𝑛 determines rarefaction in the flow and its intensity is relatable to 𝑉𝐷𝑁, where a lower 𝑉𝐷𝑁 means
that the rarefaction intensity is lower, considering that a relatively slower object/particle would be expe-
riencing a surrounding higher average molecular speed fluid medium, and vice versa, though the flow
would be considered neutrally rarefied for 𝑉𝐷𝑁 = 1. It is very important to note that in Table A.1, all
𝑉𝐷𝑁 results are based on the same fluid medium average molecular speed and different object/parti-
cle speeds, which results in a seemingly unintuitive relation at first, though explainable by considering
that the rarefaction is relative to the object/particle, similar to the continuum timescale. Rarefaction is
then relative to the considered object/particle timescale, as shown by the direct simulation Monte Carlo
(DSMC) numerical simulations done at TU Delft on the rarefied flow in Low Pressure Microresistojet
(LPM) micropropulsion systems [16], which include a channel wall heater to speed up the water vapor
molecules before exiting through an expansion slot and it was determined that a higher temperature
in the channel wall results in a blockage (thermal barrier) at the inlet due to higher rarefaction, which
would be caused by the inlet’s higher object/particle velocity due to heating leading to a relatively higher
rarefaction intensity (higher 𝑉𝐷𝑁) considering that the volume of the plenum chamber and expansion
slot is the same.

In the last rows of Table A.1, a set of theoretical air particles under different conditions has been
included for analysis. The reason for their inclusion is to mainly visualize 𝐷𝑁 around the value of
one and compare 𝑉𝐷𝑁 to 𝐾𝑛. For the slower, extremely slow, and extremely slower theoretical air
particles, 𝐷𝑁 is below one (and even less so for a very small particle, where its physical length scale is
just smaller than the mean free path for relative data visualization), reasserting the initial expectation
that a slower or smaller particle in a fluid medium of fast molecules has an unstable advective transport
rate, where at the instant of evaluation, it is naturally expected to be accelerated through collisions
to reach the desired “equilibrium” with the other molecules. The results can be easily inferred from
the equation, yet for the faster, extremely fast, and extremely faster theoretical air particles, 𝐷𝑁 is
above one (and even more so for a larger particle or inside a box with a larger physical length scale,
which would probably typically be many orders of magnitude larger, but it is again just an example for
relative data visualization), which indicates that a faster or larger particle in a fluid medium of slower
molecules has an unstable advective transport rate and for the instant of evaluation is expected to be
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decelerated through collisions to reach the desired “equilibrium” with the other molecules. Note that it
is not expected to reach absolute “equilibrium”, as the probabilistic kinetic theory would indicate that
the object/particle would also destabilize the fluid medium and the energy exchange is expected to
continue. For the probably more common cases in nature due to this reason, a theoretical air particle
with a combination of slow and large or fast and small presents variable results depending on the relative
values between its speed and physical length scale. A slow and large or fast and small theoretical
air particle presents a 𝐷𝑁 of 1 (balanced rarefaction and rarefaction intensity), which indicates that it
theoretically is at “equilibrium” and the momentum it gains or loses is expected to be returned through
collisional probability. Therefore, for maximum fluid likeness, not only does the object/particle speed
need to be similar to the fluid medium’s average molecular speed, but the object/particle’s physical
length scale needs to be similar to the fluid medium’s mean free path as well. 𝐷𝑁 also accounts for
faster/larger particles in a fluid mediumwith an identically faster averagemolecular velocity/larger mean
free path resulting in the same value as for slower/smaller particles in a fluid medium with an identically
slower average molecular velocity/smaller mean free path, which means that the studied particle would
ultimately have the same fluid likeness relative to its own fluid medium.

𝐾𝑛 is found to be equal to one for all (theoretical) air particle speeds with the same physical charac-
teristic length, decreases for larger physical characteristic lengths, and increases for smaller physical
characteristic lengths, which is prone to error in determining the fluid’s rarefaction in an enclosed region
with a different timescale for example. Within the assumptions used and most importantly relative to
the object/particle timescale, 𝑉𝐷𝑁 approaches rarefaction in a complementary way, as it indicates the
intensity of rarefaction, with higher values for higher rarefaction intensity when the collisions happen
less often for faster theoretical air particles and lower values for lower rarefaction intensity when the
collisions happenmore often for slower theoretical air particles. Perhaps parameters other than velocity
can also be added for different fluids to characterize rarefaction beyond the used assumptions’ limits.
Also, the recalculated values of 𝑅𝑒 and 𝑀 using 𝐷𝑁 and 𝑉𝐷𝑁 respectively are relatively very accurate
compared to their conventionally calculated values considering the multiple assumptions and rough es-
timate and constant values. A higher intrinsic diffusive transport rate (𝐷𝑁 denominator) with a greater
fluid medium average molecular speed and mean free path would adapt better with objects/particles
that have larger physical characteristic lengths and faster speeds than a lower intrinsic diffusive trans-
port rate would, but then it becomes less adaptive with objects/particles that have smaller scales and
slower speeds and the inverse applies, so it is all relative to the fluid medium’s own average molecular
speed and mean free path.

𝐷𝑁 could be directly related to 𝑅𝑒 as it redefines 𝑅𝑒’s ratio of inertial to viscous forces using kinetic
theory for an ideal gas, which brings new insight from a different perspective. 𝑅𝑒 does not directly and
physically characterize the specific mentioned features without at least the kinetic understanding of
𝐷𝑁 and its related constant term to 𝑅𝑒 for an ideal gas. 𝐷𝑁 also contains the (inverse of the) Knudsen
number and rarefaction intensity dimensionless number (𝑉𝐷𝑁), which resembles an average molecular
speed Mach number. A physical kinetic meaning of turbulence could also be derived, as it can be seen
that a higher 𝐷𝑁 disrupts the flow due to its low “fluid likeness”, so the product of the object’s speed
and physical characteristic length needs to be accounted for relative to the fluid medium’s product of
average molecular speed and mean free path.

This has also been tested for objects in water and the circulatory system (assuming that the molec-
ular diameter is of the same order of magnitude as the mean free path for the fluid medium’s physical
characteristic length) with generally comparably patterened results for 𝐷𝑁 and 𝑉𝐷𝑁, though this work’s
assumptions are based for an ideal gas and to directly apply them for a liquid would be unwise, as its
viscous properties may significantly vary. This hopefully presents an idea for imagining the physical
characteristic length and timescale not only in the continuum scale, but including intuition from kinetic
theory as well. Perhaps the laminar/transitional/turbulent flow regimes can be further explored. There-
fore, this study reaches two powerful suggested dimensionless numbers to characterize rarefaction
intensity and relative advection and diffusion properties within their domains. It would now be pleas-
antly easy to imagine how a dust particle naturally flies in the air and almost becomes part of it with
higher “fluid likeness” compared to a more flow obtrusive tree leaf. In a way, higher “fluid likeness” might
probabilistically resemble the increased flow efficiency while traveling in the direction of the medium’s
flow.



A.3. Testing 139

Table A.1: Testing and Results

(Air) 𝑅𝑒 𝐿 (m) 𝑣 (m/s) 𝑉𝐷𝑁 𝐾𝑛 𝑀
Advective
Transport

Rate
(𝑣𝐿) (m /s)

Intrinsic
Diffusive

Transport Rate
(�̄�𝜆) (m /s)

𝐷𝑁
𝑅𝑒

Using
𝐷𝑁

𝑀
Using
𝑉𝐷𝑁

Boeing 747 2000000000 60 492.5170068 0.985034014 1.16667E-09 1.435909641 29551.02041 0.000035 844314868.8 1832841895 1.441942149
Cumulus Cloud Formation 250000000 2000 1.846938776 0.003693878 3.5E-11 0.005384661 3693.877551 0.000035 105539358.6 229105236.9 0.005407283
Typical Commercial Jet 110000000 35 46.43731778 0.092874636 0.000000002 0.135385766 1625.306122 0.000035 46437317.78 100806304.2 0.135954545

Cessna 6300000 10 9.308571429 0.018617143 0.000000007 0.027138692 93.08571429 0.000035 2659591.837 5773451.969 0.027252707
Light Plane 4700000 10 6.944489796 0.01388898 0.000000007 0.020246326 69.44489796 0.000035 1984139.942 4307178.453 0.020331384

Glider 1600000 8 2.955102041 0.005910204 8.75E-09 0.008615458 23.64081633 0.000035 675451.895 1466273.516 0.008651653
Model Airplane 250000 0.5 7.387755102 0.01477551 0.00000014 0.021538645 3.693877551 0.000035 105539.3586 229105.2369 0.021629132

Seagull 62000 0.5 1.832163265 0.003664327 0.00000014 0.005341584 0.916081633 0.000035 26173.76093 56818.09874 0.005364025
Paper Airplane 47000 0.2 3.472244898 0.00694449 0.00000035 0.010123163 0.69444898 0.000035 19841.39942 43071.78453 0.010165692

Butterfly 3900 0.005 11.52489796 0.023049796 0.000014 0.033600286 0.05762449 0.000035 1646.413994 3574.041695 0.033741446
Honeybee 1000 0.002 7.387755102 0.01477551 0.000035 0.021538645 0.01477551 0.000035 422.1574344 916.4209475 0.021629132
Housefly 120 0.006 0.295510204 0.00059102 1.16667E-05 0.000861546 0.001773061 0.000035 50.65889213 109.9705137 0.000865165

Chalcid Wasp 15 0.003 0.073877551 0.000147755 2.33333E-05 0.000215386 0.000221633 0.000035 6.332361516 13.74631421 0.000216291
Air Particle 2.36878453 0.00000007 500 1 1 1.457725948 0.000035 0.000035 1 2.170803764 1.463850109

(Theoretical Air Particle)
Faster 23.6878453 0.00000007 5000 10 1 14.57725948 0.00035 0.000035 10 21.70803764 14.63850109

(Theoretical Air Particle)
Extremely Fast 23687845.3 0.00000007 5000000000 10000000 1 14577259.48 350 0.000035 10000000 21708037.64 14638501.09

(Theoretical Air Particle)
Extremely Faster 23687845304 0.00000007 5E+12 10000000000 1 14577259475 350000 0.000035 10000000000 21708037637 14638501094

(Theoretical Air Particle)
Slower 0.236878453 0.00000007 50 0.1 1 0.145772595 0.0000035 0.000035 0.1 0.217080376 0.146385011

(Theoretical Air Particle)
Extremely Slow 0.023687845 0.00000007 5 0.01 1 0.014577259 0.00000035 0.000035 0.01 0.021708038 0.014638501

(Theoretical Air Particle)
Extremely Slower 0.002368785 0.00000007 0.5 0.001 1 0.001457726 0.000000035 0.000035 0.001 0.002170804 0.00146385

(Theoretical Air Particle)
Larger or Inside Box 23.6878453 0.0000007 500 1 0.1 1.457725948 0.00035 0.000035 10 21.70803764 1.463850109

(Theoretical Air Particle)
Faster

(Larger or Inside Box)
236.878453 0.0000007 5000 10 0.1 14.57725948 0.0035 0.000035 100 217.0803764 14.63850109

(Theoretical Air Particle)
Extremely Fast

(Larger or Inside Box)
236878453 0.0000007 5000000000 10000000 0.1 14577259.48 3500 0.000035 100000000 217080376.4 14638501.09

(Theoretical Air Particle)
Extremely Faster

(Larger or Inside Box)
2.36878E+11 0.0000007 5E+12 10000000000 0.1 14577259475 3500000 0.000035 1E+11 2.1708E+11 14638501094

(Theoretical Air Particle)
Slower

(Larger or Inside Box)
2.36878453 0.0000007 50 0.1 0.1 0.145772595 0.000035 0.000035 1 2.170803764 0.146385011

(Theoretical Air Particle)
Extremely Slow

(Larger or Inside Box)
0.236878453 0.0000007 5 0.01 0.1 0.014577259 0.0000035 0.000035 0.1 0.217080376 0.014638501

(Theoretical Air Particle)
Extremely Slower

(Larger or Inside Box)
0.023687845 0.0000007 0.5 0.001 0.1 0.001457726 0.00000035 0.000035 0.01 0.021708038 0.00146385

(Theoretical Air Particle)
Very Small 0.236878453 0.000000007 500 1 10 1.457725948 0.0000035 0.000035 0.1 0.217080376 1.463850109

(Theoretical Air Particle)
Faster Very Small 2.36878453 0.000000007 5000 10 10 14.57725948 0.000035 0.000035 1 2.170803764 14.63850109

(Theoretical Air Particle)
Extremely Fast Very Small 2368784.53 0.000000007 5000000000 10000000 10 14577259.48 35 0.000035 1000000 2170803.764 14638501.09

(Theoretical Air Particle)
Extremely Faster Very Small 2368784530 0.000000007 5E+12 10000000000 10 14577259475 35000 0.000035 1000000000 2170803764 14638501094

(Theoretical Air Particle)
Slow Very Small 0.023687845 0.000000007 50 0.1 10 0.145772595 0.00000035 0.000035 0.01 0.021708038 0.146385011

(Theoretical Air Particle)
Extremely Slow Very Small 0.002368785 0.000000007 5 0.01 10 0.014577259 0.000000035 0.000035 0.001 0.002170804 0.014638501

(Theoretical Air Particle)
Extremely Slower Very Small 0.000236878 0.000000007 0.5 0.001 10 0.001457726 3.5E-09 0.000035 0.0001 0.00021708 0.00146385
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B.1.1. MATLAB Code

1 c lo se a l l
2 c l ea r a l l
3 c l c
4 addpath( '/Users/Khamis/Documents/MATLAB/main ' ) ; % CoolProp
5 % set (0 , ' DefaultFigureWindowStyle ' , ' Docked ' ) ;
6 set (0 , ' DefaultAxesFontSize ' ,16) ;
7 set (0 , ' DefaultTextFontSize ' ,16) ;
8 set (0 , ' DefaultLineLineWidth ' ,1 .5 ) ;
9 set (0 , ' DefaultAxesXGrid ' , 'on ' ) ;
10 set (0 , ' DefaultAxesYGrid ' , 'on ' ) ;
11 set (0 , ' DefaultAxesZGrid ' , ' on ' ) ;
12 set (0 , ' DefaultAxesGridLineStyle ' , ' ' ) ;
13 set (0 , ' DefaultLineMarkerSize ' ,8) ;
14
15 %% Estimated Reynolds Number at Throat and Idea l Vacuum Thrust (With No Losses )
16 % load ( ' Analytical_Model ' )
17
18 % MEMS Nozzle Case 1 : Pressure of 5 bar and Temperature of 550 K
19
20 % Data
21 p_c_M1_bar = 5; %bar Chamber Pressure
22 p_c_M1 = p_c_M1_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
23 T_c_M1 = 550; %K Chamber Temperature
24 D = 0.1 ∗ 10^( 3) ; %m Nozzle Depth
25 H_inlet = 2 ∗ 10^( 3) ; %m Nozzle I n l e t Height
26 H_t = 0.025 ∗ 10^( 3) ; %m Nozzle Throat Height
27 H_exit = 0.8 ∗ 10^( 3) ; %m Nozzle Exit Height
28 A_inlet_M1 = H_inlet ∗ D; %m^2 Nozzle I n l e t Area
29 A_t_M1 = H_t ∗ D; %m^2 Nozzle Throat Area
30 A_exit_M1 = H_exit ∗ D; %m^2 Nozzle Exit Area
31 R_A_M1 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
32 M_w_M1_g = 18.01528; %g/mol Molecular Mass
33 M_w_M1 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
34 WP_inlet = ( H_inlet ∗ 2) + (D ∗ 2) ; %m Nozzle I n l e t Wetted Perimeter
35 HD_inlet = 4 ∗ A_inlet_M1 / WP_inlet ; %m Nozzle I n l e t Hydraulic Diameter
36 WP_t = (H_t ∗ 2) + (D ∗ 2) ; %m Nozzle Throat Wetted Perimeter
37 HD_t = 4 ∗ A_t_M1 / WP_t; %m Nozzle Throat Hydraulic Diameter
38 WP_exit = (H_exit ∗ 2) + (D ∗ 2) ; %m Nozzle Exit Wetted Perimeter
39 HD_exit = 4 ∗ A_exit_M1 / WP_exit ; %m Nozzle Exit Hydraulic Diameter
40 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
41 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
42
43 % NIST
44 rho_inlet_M1 = 1.9984; %kg/m^3 I n l e t Density (NIST)
45 mu_inlet_M1 = 1.9269 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
46 C_p_inlet_M1 = 37.269; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
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47 C_v_inlet_M1 = 28.229; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
48
49 % Mass Flow Rate
50 gamma_inlet_M1 = C_p_inlet_M1 / C_v_inlet_M1 ; % I n l e t S p e c i f i c Heat Ratio
51 Gamma_M1 = sqrt (gamma_inlet_M1∗((1+gamma_inlet_M1) /2)^((1+gamma_inlet_M1)/(1 gamma_inlet_M1) )

) ; %Vandenkerckhove Function of gamma
52 mdot_M1 = Gamma_M1 ∗ p_c_M1 ∗ A_t_M1 / ( sqrt (T_c_M1 ∗ R_A_M1 / M_w_M1) ) ; %kg/s Mass Flow

Rate
53
54 % Throat Reynolds Number
55 v_inlet_M1 = mdot_M1 / (rho_inlet_M1 ∗ A_inlet_M1) ; %m/s I n l e t Velocity
56 T_t_M1 = T_c_M1 ∗ (1 + (1^2 ∗ (gamma_inlet_M1 1) / 2) ) ^( 1) ; %K Throat Temperature
57 p_t_M1 = p_c_M1 ∗ (1 + (1^2 ∗ (gamma_inlet_M1 1) / 2) )^( gamma_inlet_M1 / (gamma_inlet_M1

1) ) ; %Pa Throat Pressure
58 rho_t_M1 = rho_inlet_M1 ∗ (1 + (1^2 ∗ (gamma_inlet_M1 1) / 2) )^( 1 / (gamma_inlet_M1 1) ) ;

%kg/m^3 Throat Density
59 rho_t_M1_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_M1, 'P ' , p_t_M1, 'Water ' ) ; %kg/m^3 Throat

Density
60 mu_t_M1 = CoolProp . PropsSI ( 'V' , 'T' , T_t_M1, 'P ' , p_t_M1, 'Water ' ) ; %Pa . s Throat Dynamic

Viscos i ty
61 C_p_t_M1 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_M1, 'P ' , p_t_M1, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
62 C_v_t_M1 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_M1, 'P ' , p_t_M1, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Volume
63 gamma_t_M1 = C_p_t_M1 / C_v_t_M1; % Throat S p e c i f i c Heat Ratio
64 c_t_M1 = sqrt (gamma_t_M1 ∗ R_A_M1 ∗ T_t_M1 / M_w_M1) ; %m/s Throat Speed of Sound
65 v_t_M1 = mdot_M1 / (A_t_M1 ∗ rho_t_M1) ; %m/s Throat Velocity
66 Re_t_M1 = rho_t_M1 ∗ v_t_M1 ∗ HD_t / mu_t_M1; % Throat Reynolds Number
67
68 % Thrust
69 syms M_exit_M1
70 M_exit_M1 = solve ((A_exit_M1 / A_t_M1) == ((gamma_inlet_M1 + 1) /2)^( (gamma_inlet_M1 + 1) /(2

∗ (gamma_inlet_M1 1)) ) ∗ M_exit_M1^( 1) ∗ (1 + (M_exit_M1^2 ∗ (gamma_inlet_M1 1) / 2) )
^((gamma_inlet_M1 + 1) / (2 ∗ (gamma_inlet_M1 1) ) ) , M_exit_M1) ;

71 M_exit_M1 = double (M_exit_M1) ; % Exit Mach Number
72 T_exit_M1 = T_c_M1 ∗ (1 + (M_exit_M1^2 ∗ (gamma_inlet_M1 1) / 2) ) ^( 1) ; %K Exit

Temperature
73 p_exit_M1 = p_c_M1 ∗ (1 + (M_exit_M1^2 ∗ (gamma_inlet_M1 1) / 2) )^( gamma_inlet_M1 / (

gamma_inlet_M1 1) ) ; %Pa Exit Pressure
74 c_exit_M1 = sqrt (gamma_inlet_M1 ∗ R_A_M1 ∗ T_exit_M1 / M_w_M1) ; %m/s Exit Speed of Sound
75 v_exit_Mach_M1 = M_exit_M1 ∗ c_exit_M1 ; %m/s Exit Velocity Using Mach Number
76 p_0_M1 = 0; %Pa External Pressure
77 v_exit_M1 = sqrt ((1 (p_exit_M1 / p_c_M1) ^((gamma_inlet_M1 1) / gamma_inlet_M1) ) ∗ (2 ∗

gamma_inlet_M1 ∗ R_A_M1 ∗ T_c_M1 / (M_w_M1 ∗ (gamma_inlet_M1 1) ) ) ) ; %m/s Exit
Velocity

78 F_M1 = mdot_M1 ∗ v_exit_M1 + (p_exit_M1 p_0_M1) ∗ A_exit_M1; %N Rocket Thrust Equation
79 I_sp_M1 = F_M1 / (mdot_M1 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
80
81 % Knudsen Number
82 MFP_inlet_M1 = R_A_M1 ∗ T_c_M1 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_M1) ; %m I n l e t Mean

Free Path
83 Kn_inlet_M1 = MFP_inlet_M1 / HD_inlet ; % I n l e t Knudsen Number
84 MFP_t_M1 = R_A_M1 ∗ T_t_M1 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_M1) ; %m Throat Mean

Free Path
85 Kn_t_M1 = MFP_t_M1 / HD_t; % Throat Knudsen Number
86 MFP_exit_M1 = R_A_M1 ∗ T_exit_M1 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_M1) ; %m Exit

Mean Free Path
87 Kn_exit_M1 = MFP_exit_M1 / HD_exit ; % Exit Knudsen Number
88
89 % DN and VDN
90 V_rms_inlet_M1 = (3 ∗ R_A_M1 ∗ T_c_M1 / M_w_M1) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
91 VDN_inlet_M1 = v_inlet_M1 / V_rms_inlet_M1 ; % I n l e t VDN
92 ATR_inlet_M1 = v_inlet_M1 ∗ HD_inlet ; %m^2/s I n l e t Advective Transport Rate
93 IDTR_inlet_M1 = V_rms_inlet_M1 ∗ MFP_inlet_M1; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
94 DN_inlet_M1 = ATR_inlet_M1 / IDTR_inlet_M1 ; % I n l e t DN
95 M_VDN_inlet_M1 = (3 / gamma_inlet_M1) ^(0 .5) ∗ VDN_inlet_M1; % I n l e t Mach Number Using VDN
96 Re_DN_inlet_M1 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_M1; % I n l e t Reynolds Number Using DN
97 c_inlet_M1 = sqrt (gamma_inlet_M1 ∗ R_A_M1 ∗ T_c_M1 / M_w_M1) ; %m/s I n l e t Speed of Sound
98 M_inlet_M1 = v_inlet_M1 / c_inlet_M1 ; % I n l e t Mach Number
99 Re_inlet_M1 = rho_inlet_M1 ∗ v_inlet_M1 ∗ HD_inlet / mu_inlet_M1 ; % I n l e t Reynolds Number
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100 V_rms_t_M1 = (3 ∗ R_A_M1 ∗ T_t_M1 / M_w_M1) ^(0 .5) ; %m/s Throat Root Mean Square Speed
101 VDN_t_M1 = v_t_M1 / V_rms_t_M1; % Throat VDN
102 ATR_t_M1 = v_t_M1 ∗ HD_t; %m^2/s Throat Advective Transport Rate
103 IDTR_t_M1 = V_rms_t_M1 ∗ MFP_t_M1; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
104 DN_t_M1 = ATR_t_M1 / IDTR_t_M1; % Throat DN
105 M_VDN_t_M1 = (3 / gamma_inlet_M1) ^(0 .5) ∗ VDN_t_M1; % Throat Mach Number Using VDN
106 Re_DN_t_M1 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_M1; % Throat Reynolds Number Using DN
107 M_t_M1 = v_t_M1 / c_t_M1; % Throat Mach Number
108 V_rms_exit_M1 = (3 ∗ R_A_M1 ∗ T_exit_M1 / M_w_M1) ^(0 .5) ; %m/s Exit Root Mean Square Speed
109 VDN_exit_M1 = v_exit_M1 / V_rms_exit_M1; % Exit VDN
110 ATR_exit_M1 = v_exit_M1 ∗ HD_exit ; %m^2/s Exit Advective Transport Rate
111 IDTR_exit_M1 = V_rms_exit_M1 ∗ MFP_exit_M1; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
112 DN_exit_M1 = ATR_exit_M1 / IDTR_exit_M1; % Exit DN
113 M_VDN_exit_M1 = (3 / gamma_inlet_M1) ^(0 .5) ∗ VDN_exit_M1; % Exit Mach Number Using VDN
114 Re_DN_exit_M1 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_M1; % Exit Reynolds Number Using DN
115 rho_exit_M1 = rho_inlet_M1 ∗ (1 + (M_exit_M1^2 ∗ (gamma_inlet_M1 1) / 2) )^( 1 / (

gamma_inlet_M1 1) ) ; %kg/m^3 Exit Density
116 Re_exit_M1 = rho_exit_M1 ∗ v_exit_M1 ∗ HD_t / mu_inlet_M1 ; % Exit Reynolds Number
117
118 % MEMS Nozzle Case 2 : Pressure of 5 bar and Temperature of 773 K
119
120 % Data
121 p_c_M2_bar = 5; %bar Chamber Pressure
122 p_c_M2 = p_c_M2_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
123 T_c_M2 = 773; %K Chamber Temperature
124 D = 0.1 ∗ 10^( 3) ; %m Nozzle Depth
125 H_inlet = 2 ∗ 10^( 3) ; %m Nozzle I n l e t Height
126 H_t = 0.025 ∗ 10^( 3) ; %m Nozzle Throat Height
127 H_exit = 0.8 ∗ 10^( 3) ; %m Nozzle Exit Height
128 A_inlet_M2 = H_inlet ∗ D; %m^2 Nozzle I n l e t Area
129 A_t_M2 = H_t ∗ D; %m^2 Nozzle Throat Area
130 A_exit_M2 = H_exit ∗ D; %m^2 Nozzle Exit Area
131 R_A_M2 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
132 M_w_M2_g = 18.01528; %g/mol Molecular Mass
133 M_w_M2 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
134 WP_inlet = ( H_inlet ∗ 2) + (D ∗ 2) ; %m Nozzle I n l e t Wetted Perimeter
135 HD_inlet = 4 ∗ A_inlet_M2 / WP_inlet ; %m Nozzle I n l e t Hydraulic Diameter
136 WP_t = (H_t ∗ 2) + (D ∗ 2) ; %m Nozzle Throat Wetted Perimeter
137 HD_t = 4 ∗ A_t_M2 / WP_t; %m Nozzle Throat Hydraulic Diameter
138 WP_exit = (H_exit ∗ 2) + (D ∗ 2) ; %m Nozzle Exit Wetted Perimeter
139 HD_exit = 4 ∗ A_exit_M2 / WP_exit ; %m Nozzle Exit Hydraulic Diameter
140 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
141 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
142
143 % NIST
144 rho_inlet_M2 = 1.4069; %kg/m^3 I n l e t Density (NIST)
145 mu_inlet_M2 = 2.8573 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
146 C_p_inlet_M2 = 38.714; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
147 C_v_inlet_M2 = 30.212; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
148
149 % Mass Flow Rate
150 gamma_inlet_M2 = C_p_inlet_M2 / C_v_inlet_M2 ; % I n l e t S p e c i f i c Heat Ratio
151 Gamma_M2 = sqrt (gamma_inlet_M2∗((1+gamma_inlet_M2) /2)^((1+gamma_inlet_M2)/(1 gamma_inlet_M2) )

) ; %Vandenkerckhove Function of gamma
152 mdot_M2 = Gamma_M2 ∗ p_c_M2 ∗ A_t_M2 / ( sqrt (T_c_M2 ∗ R_A_M2 / M_w_M2) ) ; %kg/s Mass Flow

Rate
153
154 % Throat Reynolds Number
155 v_inlet_M2 = mdot_M2 / (rho_inlet_M2 ∗ A_inlet_M2) ; %m/s I n l e t Velocity
156 T_t_M2 = T_c_M2 ∗ (1 + (1^2 ∗ (gamma_inlet_M2 1) / 2) ) ^( 1) ; %K Throat Temperature
157 p_t_M2 = p_c_M2 ∗ (1 + (1^2 ∗ (gamma_inlet_M2 1) / 2) )^( gamma_inlet_M2 / (gamma_inlet_M2

1) ) ; %Pa Throat Pressure
158 rho_t_M2 = rho_inlet_M2 ∗ (1 + (1^2 ∗ (gamma_inlet_M2 1) / 2) )^( 1 / (gamma_inlet_M2 1) ) ;

%kg/m^3 Throat Density
159 rho_t_M2_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_M2, 'P ' , p_t_M2, 'Water ' ) ; %kg/m^3 Throat

Density
160 mu_t_M2 = CoolProp . PropsSI ( 'V' , 'T' , T_t_M2, 'P ' , p_t_M2, 'Water ' ) ; %Pa. s Throat Dynamic

Viscos i ty
161 C_p_t_M2 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_M2, 'P ' , p_t_M2, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
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162 C_v_t_M2 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_M2, 'P ' , p_t_M2, 'Water ' ) ; %J/(mol .K) Throat
S p e c i f i c Heat Capacity at Constant Volume

163 gamma_t_M2 = C_p_t_M2 / C_v_t_M2; % Throat S p e c i f i c Heat Ratio
164 c_t_M2 = sqrt (gamma_t_M2 ∗ R_A_M2 ∗ T_t_M2 / M_w_M2) ; %m/s Throat Speed of Sound
165 v_t_M2 = mdot_M2 / (A_t_M2 ∗ rho_t_M2) ; %m/s Throat Velocity
166 Re_t_M2 = rho_t_M2 ∗ v_t_M2 ∗ HD_t / mu_t_M2; % Throat Reynolds Number
167
168 % Thrust
169 syms M_exit_M2
170 % M_exit_M2 = solve ((A_exit_M2 / A_t_M2) == ((gamma_inlet_M2 + 1) /2)^( (gamma_inlet_M2 + 1)

/(2 ∗ (gamma_inlet_M2 1)) ) ∗ M_exit_M2^( 1) ∗ (1 + (M_exit_M2^2 ∗ (gamma_inlet_M2 1) /
2) ) ^((gamma_inlet_M2 + 1) / (2 ∗ (gamma_inlet_M2 1) ) ) , M_exit_M2) ;

171 % M_exit_M2 = double (max(M_exit_M2) ) ; % Exit Mach Number
172 eqn = (A_exit_M2 / A_t_M2) == ((gamma_inlet_M2 + 1) /2)^( (gamma_inlet_M2 + 1) /(2 ∗ (

gamma_inlet_M2 1)) ) ∗ M_exit_M2^( 1) ∗ (1 + (M_exit_M2^2 ∗ (gamma_inlet_M2 1) / 2) ) ^((
gamma_inlet_M2 + 1) / (2 ∗ (gamma_inlet_M2 1) ) ) ;

173 M_exit_M2 = double ( vpasolve (eqn , M_exit_M2, [1 10 ] ) ) ; % Exit Mach Number
174 T_exit_M2 = T_c_M2 ∗ (1 + (M_exit_M2^2 ∗ (gamma_inlet_M2 1) / 2) ) ^( 1) ; %K Exit

Temperature
175 p_exit_M2 = p_c_M2 ∗ (1 + (M_exit_M2^2 ∗ (gamma_inlet_M2 1) / 2) )^( gamma_inlet_M2 / (

gamma_inlet_M2 1) ) ; %Pa Exit Pressure
176 c_exit_M2 = sqrt (gamma_inlet_M2 ∗ R_A_M2 ∗ T_exit_M2 / M_w_M2) ; %m/s Exit Speed of Sound
177 v_exit_Mach_M2 = M_exit_M2 ∗ c_exit_M2 ; %m/s Exit Velocity Using Mach Number
178 p_0_M2 = 0; %Pa External Pressure
179 v_exit_M2 = sqrt ((1 (p_exit_M2 / p_c_M2) ^((gamma_inlet_M2 1) / gamma_inlet_M2) ) ∗ (2 ∗

gamma_inlet_M2 ∗ R_A_M2 ∗ T_c_M2 / (M_w_M2 ∗ (gamma_inlet_M2 1) ) ) ) ; %m/s Exit
Velocity

180 F_M2 = mdot_M2 ∗ v_exit_M2 + (p_exit_M2 p_0_M2) ∗ A_exit_M2; %N Rocket Thrust Equation
181 I_sp_M2 = F_M2 / (mdot_M2 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
182
183 % Knudsen Number
184 MFP_inlet_M2 = R_A_M2 ∗ T_c_M2 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_M2) ; %m I n l e t Mean

Free Path
185 Kn_inlet_M2 = MFP_inlet_M2 / HD_inlet ; % I n l e t Knudsen Number
186 MFP_t_M2 = R_A_M2 ∗ T_t_M2 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_M2) ; %m Throat Mean

Free Path
187 Kn_t_M2 = MFP_t_M2 / HD_t; % Throat Knudsen Number
188 MFP_exit_M2 = R_A_M2 ∗ T_exit_M2 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_M2) ; %m Exit

Mean Free Path
189 Kn_exit_M2 = MFP_exit_M2 / HD_exit ; % Exit Knudsen Number
190
191 % DN and VDN
192 V_rms_inlet_M2 = (3 ∗ R_A_M2 ∗ T_c_M2 / M_w_M2) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
193 VDN_inlet_M2 = v_inlet_M2 / V_rms_inlet_M2 ; % I n l e t VDN
194 ATR_inlet_M2 = v_inlet_M2 ∗ HD_inlet ; %m^2/s I n l e t Advective Transport Rate
195 IDTR_inlet_M2 = V_rms_inlet_M2 ∗ MFP_inlet_M2; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
196 DN_inlet_M2 = ATR_inlet_M2 / IDTR_inlet_M2 ; % I n l e t DN
197 M_VDN_inlet_M2 = (3 / gamma_inlet_M2) ^(0 .5) ∗ VDN_inlet_M2; % I n l e t Mach Number Using VDN
198 Re_DN_inlet_M2 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_M2; % I n l e t Reynolds Number Using DN
199 c_inlet_M2 = sqrt (gamma_inlet_M2 ∗ R_A_M2 ∗ T_c_M2 / M_w_M2) ; %m/s I n l e t Speed of Sound
200 M_inlet_M2 = v_inlet_M2 / c_inlet_M2 ; % I n l e t Mach Number
201 Re_inlet_M2 = rho_inlet_M2 ∗ v_inlet_M2 ∗ HD_inlet / mu_inlet_M2 ; % I n l e t Reynolds Number
202 V_rms_t_M2 = (3 ∗ R_A_M2 ∗ T_t_M2 / M_w_M2) ^(0 .5) ; %m/s Throat Root Mean Square Speed
203 VDN_t_M2 = v_t_M2 / V_rms_t_M2; % Throat VDN
204 ATR_t_M2 = v_t_M2 ∗ HD_t; %m^2/s Throat Advective Transport Rate
205 IDTR_t_M2 = V_rms_t_M2 ∗ MFP_t_M2; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
206 DN_t_M2 = ATR_t_M2 / IDTR_t_M2; % Throat DN
207 M_VDN_t_M2 = (3 / gamma_inlet_M2) ^(0 .5) ∗ VDN_t_M2; % Throat Mach Number Using VDN
208 Re_DN_t_M2 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_M2; % Throat Reynolds Number Using DN
209 M_t_M2 = v_t_M2 / c_t_M2; % Throat Mach Number
210 V_rms_exit_M2 = (3 ∗ R_A_M2 ∗ T_exit_M2 / M_w_M2) ^(0 .5) ; %m/s Exit Root Mean Square Speed
211 VDN_exit_M2 = v_exit_M2 / V_rms_exit_M2; % Exit VDN
212 ATR_exit_M2 = v_exit_M2 ∗ HD_exit ; %m^2/s Exit Advective Transport Rate
213 IDTR_exit_M2 = V_rms_exit_M2 ∗ MFP_exit_M2; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
214 DN_exit_M2 = ATR_exit_M2 / IDTR_exit_M2; % Exit DN
215 M_VDN_exit_M2 = (3 / gamma_inlet_M2) ^(0 .5) ∗ VDN_exit_M2; % Exit Mach Number Using VDN
216 Re_DN_exit_M2 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_M2; % Exit Reynolds Number Using DN
217 rho_exit_M2 = rho_inlet_M2 ∗ (1 + (M_exit_M2^2 ∗ (gamma_inlet_M2 1) / 2) )^( 1 / (

gamma_inlet_M2 1) ) ; %kg/m^3 Exit Density
218 Re_exit_M2 = rho_exit_M2 ∗ v_exit_M2 ∗ HD_t / mu_inlet_M2 ; % Exit Reynolds Number
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219
220 % MEMS Nozzle Case 3 : Pressure of 7 bar and Temperature of 550 K
221
222 % Data
223 p_c_M3_bar = 7; %bar Chamber Pressure
224 p_c_M3 = p_c_M3_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
225 T_c_M3 = 550; %K Chamber Temperature
226 D = 0.1 ∗ 10^( 3) ; %m Nozzle Depth
227 H_inlet = 2 ∗ 10^( 3) ; %m Nozzle I n l e t Height
228 H_t = 0.025 ∗ 10^( 3) ; %m Nozzle Throat Height
229 H_exit = 0.8 ∗ 10^( 3) ; %m Nozzle Exit Height
230 A_inlet_M3 = H_inlet ∗ D; %m^2 Nozzle I n l e t Area
231 A_t_M3 = H_t ∗ D; %m^2 Nozzle Throat Area
232 A_exit_M3 = H_exit ∗ D; %m^2 Nozzle Exit Area
233 R_A_M3 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
234 M_w_M3_g = 18.01528; %g/mol Molecular Mass
235 M_w_M3 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
236 WP_inlet = ( H_inlet ∗ 2) + (D ∗ 2) ; %m Nozzle I n l e t Wetted Perimeter
237 HD_inlet = 4 ∗ A_inlet_M3 / WP_inlet ; %m Nozzle I n l e t Hydraulic Diameter
238 WP_t = (H_t ∗ 2) + (D ∗ 2) ; %m Nozzle Throat Wetted Perimeter
239 HD_t = 4 ∗ A_t_M3 / WP_t; %m Nozzle Throat Hydraulic Diameter
240 WP_exit = (H_exit ∗ 2) + (D ∗ 2) ; %m Nozzle Exit Wetted Perimeter
241 HD_exit = 4 ∗ A_exit_M3 / WP_exit ; %m Nozzle Exit Hydraulic Diameter
242 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
243 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
244
245 % NIST
246 rho_inlet_M3 = 2.8145; %kg/m^3 I n l e t Density (NIST)
247 mu_inlet_M3 = 1.9240 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
248 C_p_inlet_M3 = 37.932; %%J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
249 C_v_inlet_M3 = 28.569; %%J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
250
251 % Mass Flow Rate
252 gamma_inlet_M3 = C_p_inlet_M3 / C_v_inlet_M3 ; % I n l e t S p e c i f i c Heat Ratio
253 Gamma_M3 = sqrt (gamma_inlet_M3∗((1+gamma_inlet_M3) /2)^((1+gamma_inlet_M3)/(1 gamma_inlet_M3) )

) ; %Vandenkerckhove Function of gamma
254 mdot_M3 = Gamma_M3 ∗ p_c_M3 ∗ A_t_M3 / ( sqrt (T_c_M3 ∗ R_A_M3 / M_w_M3) ) ; %kg/s Mass Flow

Rate
255
256 % Throat Reynolds Number
257 v_inlet_M3 = mdot_M3 / (rho_inlet_M3 ∗ A_inlet_M3) ; %m/s I n l e t Velocity
258 T_t_M3 = T_c_M3 ∗ (1 + (1^2 ∗ (gamma_inlet_M3 1) / 2) ) ^( 1) ; %K Throat Temperature
259 p_t_M3 = p_c_M3 ∗ (1 + (1^2 ∗ (gamma_inlet_M3 1) / 2) )^( gamma_inlet_M3 / (gamma_inlet_M3

1) ) ; %Pa Throat Pressure
260 rho_t_M3 = rho_inlet_M3 ∗ (1 + (1^2 ∗ (gamma_inlet_M3 1) / 2) )^( 1 / (gamma_inlet_M3 1) ) ;

%kg/m^3 Throat Density
261 rho_t_M3_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_M3, 'P ' , p_t_M3, 'Water ' ) ; %kg/m^3 Throat

Density
262 mu_t_M3 = CoolProp . PropsSI ( 'V' , 'T' , T_t_M3, 'P ' , p_t_M3, 'Water ' ) ; %Pa. s Throat Dynamic

Viscos i ty
263 C_p_t_M3 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_M3, 'P ' , p_t_M3, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
264 C_v_t_M3 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_M3, 'P ' , p_t_M3, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Volume
265 gamma_t_M3 = C_p_t_M3 / C_v_t_M3; % Throat S p e c i f i c Heat Ratio
266 c_t_M3 = sqrt (gamma_t_M3 ∗ R_A_M3 ∗ T_t_M3 / M_w_M3) ; %m/s Throat Speed of Sound
267 v_t_M3 = mdot_M3 / (A_t_M3 ∗ rho_t_M3) ; %m/s Throat Velocity
268 Re_t_M3 = rho_t_M3 ∗ v_t_M3 ∗ HD_t / mu_t_M3; % Throat Reynolds Number
269
270 % Thrust
271 syms M_exit_M3
272 M_exit_M3 = solve ((A_exit_M3 / A_t_M3) == ((gamma_inlet_M3 + 1) /2)^( (gamma_inlet_M3 + 1) /(2

∗ (gamma_inlet_M3 1)) ) ∗ M_exit_M3^( 1) ∗ (1 + (M_exit_M3^2 ∗ (gamma_inlet_M3 1) / 2) )
^((gamma_inlet_M3 + 1) / (2 ∗ (gamma_inlet_M3 1) ) ) , M_exit_M3) ;

273 M_exit_M3 = double (M_exit_M3) ; % Exit Mach Number
274 T_exit_M3 = T_c_M3 ∗ (1 + (M_exit_M3^2 ∗ (gamma_inlet_M3 1) / 2) ) ^( 1) ; %K Exit

Temperature
275 p_exit_M3 = p_c_M3 ∗ (1 + (M_exit_M3^2 ∗ (gamma_inlet_M3 1) / 2) )^( gamma_inlet_M3 / (

gamma_inlet_M3 1) ) ; %Pa Exit Pressure
276 c_exit_M3 = sqrt (gamma_inlet_M3 ∗ R_A_M3 ∗ T_exit_M3 / M_w_M3) ; %m/s Exit Speed of Sound
277 v_exit_Mach_M3 = M_exit_M3 ∗ c_exit_M3 ; %m/s Exit Velocity Using Mach Number
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278 p_0_M3 = 0; %Pa External Pressure
279 v_exit_M3 = sqrt ((1 (p_exit_M3 / p_c_M3) ^((gamma_inlet_M3 1) / gamma_inlet_M3) ) ∗ (2 ∗

gamma_inlet_M3 ∗ R_A_M3 ∗ T_c_M3 / (M_w_M3 ∗ (gamma_inlet_M3 1) ) ) ) ; %m/s Exit
Velocity

280 F_M3 = mdot_M3 ∗ v_exit_M3 + (p_exit_M3 p_0_M3) ∗ A_exit_M3; %N Rocket Thrust Equation
281 I_sp_M3 = F_M3 / (mdot_M3 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
282
283 % Knudsen Number
284 MFP_inlet_M3 = R_A_M3 ∗ T_c_M3 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_M3) ; %m I n l e t Mean

Free Path
285 Kn_inlet_M3 = MFP_inlet_M3 / HD_inlet ; % I n l e t Knudsen Number
286 MFP_t_M3 = R_A_M3 ∗ T_t_M3 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_M3) ; %m Throat Mean

Free Path
287 Kn_t_M3 = MFP_t_M3 / HD_t; % Throat Knudsen Number
288 MFP_exit_M3 = R_A_M3 ∗ T_exit_M3 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_M3) ; %m Exit

Mean Free Path
289 Kn_exit_M3 = MFP_exit_M3 / HD_exit ; % Exit Knudsen Number
290
291 % DN and VDN
292 V_rms_inlet_M3 = (3 ∗ R_A_M3 ∗ T_c_M3 / M_w_M3) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
293 VDN_inlet_M3 = v_inlet_M3 / V_rms_inlet_M3 ; % I n l e t VDN
294 ATR_inlet_M3 = v_inlet_M3 ∗ HD_inlet ; %m^2/s I n l e t Advective Transport Rate
295 IDTR_inlet_M3 = V_rms_inlet_M3 ∗ MFP_inlet_M3; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
296 DN_inlet_M3 = ATR_inlet_M3 / IDTR_inlet_M3 ; % I n l e t DN
297 M_VDN_inlet_M3 = (3 / gamma_inlet_M3) ^(0 .5) ∗ VDN_inlet_M3; % I n l e t Mach Number Using VDN
298 Re_DN_inlet_M3 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_M3; % I n l e t Reynolds Number Using DN
299 c_inlet_M3 = sqrt (gamma_inlet_M3 ∗ R_A_M3 ∗ T_c_M3 / M_w_M3) ; %m/s I n l e t Speed of Sound
300 M_inlet_M3 = v_inlet_M3 / c_inlet_M3 ; % I n l e t Mach Number
301 Re_inlet_M3 = rho_inlet_M3 ∗ v_inlet_M3 ∗ HD_inlet / mu_inlet_M3 ; % I n l e t Reynolds Number
302 V_rms_t_M3 = (3 ∗ R_A_M3 ∗ T_t_M3 / M_w_M3) ^(0 .5) ; %m/s Throat Root Mean Square Speed
303 VDN_t_M3 = v_t_M3 / V_rms_t_M3; % Throat VDN
304 ATR_t_M3 = v_t_M3 ∗ HD_t; %m^2/s Throat Advective Transport Rate
305 IDTR_t_M3 = V_rms_t_M3 ∗ MFP_t_M3; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
306 DN_t_M3 = ATR_t_M3 / IDTR_t_M3; % Throat DN
307 M_VDN_t_M3 = (3 / gamma_inlet_M3) ^(0 .5) ∗ VDN_t_M3; % Throat Mach Number Using VDN
308 Re_DN_t_M3 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_M3; % Throat Reynolds Number Using DN
309 M_t_M3 = v_t_M3 / c_t_M3; % Throat Mach Number
310 V_rms_exit_M3 = (3 ∗ R_A_M3 ∗ T_exit_M3 / M_w_M3) ^(0 .5) ; %m/s Exit Root Mean Square Speed
311 VDN_exit_M3 = v_exit_M3 / V_rms_exit_M3; % Exit VDN
312 ATR_exit_M3 = v_exit_M3 ∗ HD_exit ; %m^2/s Exit Advective Transport Rate
313 IDTR_exit_M3 = V_rms_exit_M3 ∗ MFP_exit_M3; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
314 DN_exit_M3 = ATR_exit_M3 / IDTR_exit_M3; % Exit DN
315 M_VDN_exit_M3 = (3 / gamma_inlet_M3) ^(0 .5) ∗ VDN_exit_M3; % Exit Mach Number Using VDN
316 Re_DN_exit_M3 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_M3; % Exit Reynolds Number Using DN
317 rho_exit_M3 = rho_inlet_M3 ∗ (1 + (M_exit_M3^2 ∗ (gamma_inlet_M3 1) / 2) )^( 1 / (

gamma_inlet_M3 1) ) ; %kg/m^3 Exit Density
318 Re_exit_M3 = rho_exit_M3 ∗ v_exit_M3 ∗ HD_t / mu_inlet_M3 ; % Exit Reynolds Number
319
320 % MEMS Nozzle Case 4 : Pressure of 7 bar and Temperature of 773 K
321
322 % Data
323 p_c_M4_bar = 7; %bar Chamber Pressure
324 p_c_M4 = p_c_M4_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
325 T_c_M4 = 773; %K Chamber Temperature
326 D = 0.1 ∗ 10^( 3) ; %m Nozzle Depth
327 H_inlet = 2 ∗ 10^( 3) ; %m Nozzle I n l e t Height
328 H_t = 0.025 ∗ 10^( 3) ; %m Nozzle Throat Height
329 H_exit = 0.8 ∗ 10^( 3) ; %m Nozzle Exit Height
330 A_inlet_M4 = H_inlet ∗ D; %m^2 Nozzle I n l e t Area
331 A_t_M4 = H_t ∗ D; %m^2 Nozzle Throat Area
332 A_exit_M4 = H_exit ∗ D; %m^2 Nozzle Exit Area
333 R_A_M4 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
334 M_w_M4_g = 18.01528; %g/mol Molecular Mass
335 M_w_M4 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
336 WP_inlet = ( H_inlet ∗ 2) + (D ∗ 2) ; %m Nozzle I n l e t Wetted Perimeter
337 HD_inlet = 4 ∗ A_inlet_M4 / WP_inlet ; %m Nozzle I n l e t Hydraulic Diameter
338 WP_t = (H_t ∗ 2) + (D ∗ 2) ; %m Nozzle Throat Wetted Perimeter
339 HD_t = 4 ∗ A_t_M4 / WP_t; %m Nozzle Throat Hydraulic Diameter
340 WP_exit = (H_exit ∗ 2) + (D ∗ 2) ; %m Nozzle Exit Wetted Perimeter
341 HD_exit = 4 ∗ A_exit_M4 / WP_exit ; %m Nozzle Exit Hydraulic Diameter
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342 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
343 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
344
345 % NIST
346 rho_inlet_M4 = 1.9726; %kg/m^3 I n l e t Density (NIST)
347 mu_inlet_M4 = 2.8576 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
348 C_p_inlet_M4 = 38.847; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
349 C_v_inlet_M4 = 30.269; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
350
351 % Mass Flow Rate
352 gamma_inlet_M4 = C_p_inlet_M4 / C_v_inlet_M4 ; % I n l e t S p e c i f i c Heat Ratio
353 Gamma_M4 = sqrt (gamma_inlet_M4∗((1+gamma_inlet_M4) /2)^((1+gamma_inlet_M4)/(1 gamma_inlet_M4) )

) ; %Vandenkerckhove Function of gamma
354 mdot_M4 = Gamma_M4 ∗ p_c_M4 ∗ A_t_M4 / ( sqrt (T_c_M4 ∗ R_A_M4 / M_w_M4) ) ; %kg/s Mass Flow

Rate
355
356 % Throat Reynolds Number
357 v_inlet_M4 = mdot_M4 / (rho_inlet_M4 ∗ A_inlet_M4) ; %m/s I n l e t Velocity
358 T_t_M4 = T_c_M4 ∗ (1 + (1^2 ∗ (gamma_inlet_M4 1) / 2) ) ^( 1) ; %K Throat Temperature
359 p_t_M4 = p_c_M4 ∗ (1 + (1^2 ∗ (gamma_inlet_M4 1) / 2) )^( gamma_inlet_M4 / (gamma_inlet_M4

1) ) ; %Pa Throat Pressure
360 rho_t_M4 = rho_inlet_M4 ∗ (1 + (1^2 ∗ (gamma_inlet_M4 1) / 2) )^( 1 / (gamma_inlet_M4 1) ) ;

%kg/m^3 Throat Density
361 rho_t_M4_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_M4, 'P ' , p_t_M4, 'Water ' ) ; %kg/m^3 Throat

Density
362 mu_t_M4 = CoolProp . PropsSI ( 'V' , 'T' , T_t_M4, 'P ' , p_t_M4, 'Water ' ) ; %Pa. s Throat Dynamic

Viscos i ty
363 C_p_t_M4 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_M4, 'P ' , p_t_M4, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
364 C_v_t_M4 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_M4, 'P ' , p_t_M4, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Volume
365 gamma_t_M4 = C_p_t_M4 / C_v_t_M4; % Throat S p e c i f i c Heat Ratio
366 c_t_M4 = sqrt (gamma_t_M4 ∗ R_A_M4 ∗ T_t_M4 / M_w_M4) ; %m/s Throat Speed of Sound
367 v_t_M4 = mdot_M4 / (A_t_M4 ∗ rho_t_M4) ; %m/s Throat Velocity
368 Re_t_M4 = rho_t_M4 ∗ v_t_M4 ∗ HD_t / mu_t_M4; % Throat Reynolds Number
369
370 % Thrust
371 syms M_exit_M4
372 M_exit_M4 = solve ((A_exit_M4 / A_t_M4) == ((gamma_inlet_M4 + 1) /2)^( (gamma_inlet_M4 + 1) /(2

∗ (gamma_inlet_M4 1)) ) ∗ M_exit_M4^( 1) ∗ (1 + (M_exit_M4^2 ∗ (gamma_inlet_M4 1) / 2) )
^((gamma_inlet_M4 + 1) / (2 ∗ (gamma_inlet_M4 1) ) ) , M_exit_M4) ;

373 M_exit_M4 = double (M_exit_M4) ; % Exit Mach Number
374 T_exit_M4 = T_c_M4 ∗ (1 + (M_exit_M4^2 ∗ (gamma_inlet_M4 1) / 2) ) ^( 1) ; %K Exit

Temperature
375 p_exit_M4 = p_c_M4 ∗ (1 + (M_exit_M4^2 ∗ (gamma_inlet_M4 1) / 2) )^( gamma_inlet_M4 / (

gamma_inlet_M4 1) ) ; %Pa Exit Pressure
376 c_exit_M4 = sqrt (gamma_inlet_M4 ∗ R_A_M4 ∗ T_exit_M4 / M_w_M4) ; %m/s Exit Speed of Sound
377 v_exit_Mach_M4 = M_exit_M4 ∗ c_exit_M4 ; %m/s Exit Velocity Using Mach Number
378 p_0_M4 = 0; %Pa External Pressure
379 v_exit_M4 = sqrt ((1 (p_exit_M4 / p_c_M4) ^((gamma_inlet_M4 1) / gamma_inlet_M4) ) ∗ (2 ∗

gamma_inlet_M4 ∗ R_A_M4 ∗ T_c_M4 / (M_w_M4 ∗ (gamma_inlet_M4 1) ) ) ) ; %m/s Exit
Velocity

380 F_M4 = mdot_M4 ∗ v_exit_M4 + (p_exit_M4 p_0_M4) ∗ A_exit_M4; %N Rocket Thrust Equation
381 I_sp_M4 = F_M4 / (mdot_M4 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
382
383 % Knudsen Number
384 MFP_inlet_M4 = R_A_M4 ∗ T_c_M4 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_M4) ; %m I n l e t Mean

Free Path
385 Kn_inlet_M4 = MFP_inlet_M4 / HD_inlet ; % I n l e t Knudsen Number
386 MFP_t_M4 = R_A_M4 ∗ T_t_M4 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_M4) ; %m Throat Mean

Free Path
387 Kn_t_M4 = MFP_t_M4 / HD_t; % Throat Knudsen Number
388 MFP_exit_M4 = R_A_M4 ∗ T_exit_M4 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_M4) ; %m Exit

Mean Free Path
389 Kn_exit_M4 = MFP_exit_M4 / HD_exit ; % Exit Knudsen Number
390
391 % DN and VDN
392 V_rms_inlet_M4 = (3 ∗ R_A_M4 ∗ T_c_M4 / M_w_M4) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
393 VDN_inlet_M4 = v_inlet_M4 / V_rms_inlet_M4 ; % I n l e t VDN
394 ATR_inlet_M4 = v_inlet_M4 ∗ HD_inlet ; %m^2/s I n l e t Advective Transport Rate
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395 IDTR_inlet_M4 = V_rms_inlet_M4 ∗ MFP_inlet_M4; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport
Rate

396 DN_inlet_M4 = ATR_inlet_M4 / IDTR_inlet_M4 ; % I n l e t DN
397 M_VDN_inlet_M4 = (3 / gamma_inlet_M4) ^(0 .5) ∗ VDN_inlet_M4; % I n l e t Mach Number Using VDN
398 Re_DN_inlet_M4 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_M4; % I n l e t Reynolds Number Using DN
399 c_inlet_M4 = sqrt (gamma_inlet_M4 ∗ R_A_M4 ∗ T_c_M4 / M_w_M4) ; %m/s I n l e t Speed of Sound
400 M_inlet_M4 = v_inlet_M4 / c_inlet_M4 ; % I n l e t Mach Number
401 Re_inlet_M4 = rho_inlet_M4 ∗ v_inlet_M4 ∗ HD_inlet / mu_inlet_M4 ; % I n l e t Reynolds Number
402 V_rms_t_M4 = (3 ∗ R_A_M4 ∗ T_t_M4 / M_w_M4) ^(0 .5) ; %m/s Throat Root Mean Square Speed
403 VDN_t_M4 = v_t_M4 / V_rms_t_M4; % Throat VDN
404 ATR_t_M4 = v_t_M4 ∗ HD_t; %m^2/s Throat Advective Transport Rate
405 IDTR_t_M4 = V_rms_t_M4 ∗ MFP_t_M4; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
406 DN_t_M4 = ATR_t_M4 / IDTR_t_M4; % Throat DN
407 M_VDN_t_M4 = (3 / gamma_inlet_M4) ^(0 .5) ∗ VDN_t_M4; % Throat Mach Number Using VDN
408 Re_DN_t_M4 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_M4; % Throat Reynolds Number Using DN
409 M_t_M4 = v_t_M4 / c_t_M4; % Throat Mach Number
410 V_rms_exit_M4 = (3 ∗ R_A_M4 ∗ T_exit_M4 / M_w_M4) ^(0 .5) ; %m/s Exit Root Mean Square Speed
411 VDN_exit_M4 = v_exit_M4 / V_rms_exit_M4; % Exit VDN
412 ATR_exit_M4 = v_exit_M4 ∗ HD_exit ; %m^2/s Exit Advective Transport Rate
413 IDTR_exit_M4 = V_rms_exit_M4 ∗ MFP_exit_M4; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
414 DN_exit_M4 = ATR_exit_M4 / IDTR_exit_M4; % Exit DN
415 M_VDN_exit_M4 = (3 / gamma_inlet_M4) ^(0 .5) ∗ VDN_exit_M4; % Exit Mach Number Using VDN
416 Re_DN_exit_M4 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_M4; % Exit Reynolds Number Using DN
417 rho_exit_M4 = rho_inlet_M4 ∗ (1 + (M_exit_M4^2 ∗ (gamma_inlet_M4 1) / 2) )^( 1 / (

gamma_inlet_M4 1) ) ; %kg/m^3 Exit Density
418 Re_exit_M4 = rho_exit_M4 ∗ v_exit_M4 ∗ HD_t / mu_inlet_M4 ; % Exit Reynolds Number
419
420 % Conventional Nozzle Case 1 : Pressure of 5 bar and Temperature of 550 K
421
422 % Data
423 p_c_C1_bar = 5; %bar Chamber Pressure
424 p_c_C1 = p_c_C1_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
425 T_c_C1 = 550; %K Chamber Temperature
426 H_inlet = 0.3 ∗ 10^( 3) ; %m Nozzle I n l e t Height
427 H_t = 0.06 ∗ 10^( 3) ; %m Nozzle Throat Height
428 H_exit = 0.3 ∗ 10^( 3) ; %m Nozzle Exit Height
429 A_inlet_C1 = ( H_inlet /2)^2 ∗ pi ; %m^2 Nozzle I n l e t Area
430 A_t_C1 = (H_t/2)^2 ∗ pi ; %m^2 Nozzle Throat Area
431 A_exit_C1 = (H_exit/2)^2 ∗ pi ; %m^2 Nozzle Exit Area
432 R_A_C1 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
433 M_w_C1_g = 18.01528; %g/mol Molecular Mass
434 M_w_C1 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
435 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
436 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
437
438 % NIST
439 rho_inlet_C1 = 1.9984; %kg/m^3 I n l e t Density (NIST)
440 mu_inlet_C1 = 1.9269 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
441 C_p_inlet_C1 = 37.269; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
442 C_v_inlet_C1 = 28.229; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
443
444 % Mass Flow Rate
445 gamma_inlet_C1 = C_p_inlet_C1 / C_v_inlet_C1 ; % I n l e t S p e c i f i c Heat Ratio
446 Gamma_C1 = sqrt (gamma_inlet_C1∗((1+gamma_inlet_C1) /2)^((1+gamma_inlet_C1)/(1 gamma_inlet_C1) )

) ; %Vandenkerckhove Function of gamma
447 mdot_C1 = Gamma_C1 ∗ p_c_C1 ∗ A_t_C1 / ( sqrt (T_c_C1 ∗ R_A_C1 / M_w_C1) ) ; %kg/s Mass Flow

Rate
448
449 % Throat Reynolds Number
450 v_inlet_C1 = mdot_C1 / ( rho_inlet_C1 ∗ A_inlet_C1) ; %m/s I n l e t Velocity
451 T_t_C1 = T_c_C1 ∗ (1 + (1^2 ∗ (gamma_inlet_C1 1) / 2) ) ^( 1) ; %K Throat Temperature
452 p_t_C1 = p_c_C1 ∗ (1 + (1^2 ∗ (gamma_inlet_C1 1) / 2) )^( gamma_inlet_C1 / (gamma_inlet_C1

1) ) ; %Pa Throat Pressure
453 rho_t_C1 = rho_inlet_C1 ∗ (1 + (1^2 ∗ (gamma_inlet_C1 1) / 2) )^( 1 / (gamma_inlet_C1 1) ) ;

%kg/m^3 Throat Density
454 rho_t_C1_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_C1, 'P ' , p_t_C1, 'Water ' ) ; %kg/m^3 Throat

Density
455 mu_t_C1 = CoolProp . PropsSI ( 'V' , 'T' , T_t_C1, 'P ' , p_t_C1, 'Water ' ) ; %Pa . s Throat Dynamic

Viscos i ty
456 C_p_t_C1 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_C1, 'P ' , p_t_C1, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
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457 C_v_t_C1 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_C1, 'P ' , p_t_C1, 'Water ' ) ; %J/(mol .K) Throat
S p e c i f i c Heat Capacity at Constant Volume

458 gamma_t_C1 = C_p_t_C1 / C_v_t_C1; % Throat S p e c i f i c Heat Ratio
459 c_t_C1 = sqrt (gamma_t_C1 ∗ R_A_C1 ∗ T_t_C1 / M_w_C1) ; %m/s Throat Speed of Sound
460 v_t_C1 = mdot_C1 / (A_t_C1 ∗ rho_t_C1) ; %m/s Throat Velocity
461 Re_t_C1 = rho_t_C1 ∗ v_t_C1 ∗ H_t / mu_t_C1; % Throat Reynolds Number
462
463 % Thrust
464 syms M_exit_C1
465 M_exit_C1 = solve ((A_exit_C1 / A_t_C1) == ((gamma_inlet_C1 + 1) /2)^( (gamma_inlet_C1 + 1) /(2

∗ (gamma_inlet_C1 1)) ) ∗ M_exit_C1^( 1) ∗ (1 + (M_exit_C1^2 ∗ (gamma_inlet_C1 1) / 2) )
^((gamma_inlet_C1 + 1) / (2 ∗ (gamma_inlet_C1 1) ) ) , M_exit_C1) ;

466 M_exit_C1 = double (M_exit_C1) ; % Exit Mach Number
467 T_exit_C1 = T_c_C1 ∗ (1 + (M_exit_C1^2 ∗ (gamma_inlet_C1 1) / 2) ) ^( 1) ; %K Exit

Temperature
468 p_exit_C1 = p_c_C1 ∗ (1 + (M_exit_C1^2 ∗ (gamma_inlet_C1 1) / 2) )^( gamma_inlet_C1 / (

gamma_inlet_C1 1) ) ; %Pa Exit Pressure
469 c_exit_C1 = sqrt (gamma_inlet_C1 ∗ R_A_C1 ∗ T_exit_C1 / M_w_C1) ; %m/s Exit Speed of Sound
470 v_exit_Mach_C1 = M_exit_C1 ∗ c_exit_C1 ; %m/s Exit Velocity Using Mach Number
471 p_0_C1 = 0; %Pa External Pressure
472 v_exit_C1 = sqrt ((1 (p_exit_C1 / p_c_C1) ^((gamma_inlet_C1 1) / gamma_inlet_C1) ) ∗ (2 ∗

gamma_inlet_C1 ∗ R_A_C1 ∗ T_c_C1 / (M_w_C1 ∗ (gamma_inlet_C1 1) ) ) ) ; %m/s Exit
Velocity

473 F_C1 = mdot_C1 ∗ v_exit_C1 + (p_exit_C1 p_0_C1) ∗ A_exit_C1 ; %N Rocket Thrust Equation
474 I_sp_C1 = F_C1 / (mdot_C1 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
475
476 % Knudsen Number
477 MFP_inlet_C1 = R_A_C1 ∗ T_c_C1 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_C1) ; %m I n l e t Mean

Free Path
478 Kn_inlet_C1 = MFP_inlet_C1 / H_inlet ; % I n l e t Knudsen Number
479 MFP_t_C1 = R_A_C1 ∗ T_t_C1 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_C1) ; %m Throat Mean

Free Path
480 Kn_t_C1 = MFP_t_C1 / H_t; % Throat Knudsen Number
481 MFP_exit_C1 = R_A_C1 ∗ T_exit_C1 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_C1) ; %m Exit

Mean Free Path
482 Kn_exit_C1 = MFP_exit_C1 / H_exit ; % Exit Knudsen Number
483
484 % DN and VDN
485 V_rms_inlet_C1 = (3 ∗ R_A_C1 ∗ T_c_C1 / M_w_C1) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
486 VDN_inlet_C1 = v_inlet_C1 / V_rms_inlet_C1 ; % I n l e t VDN
487 ATR_inlet_C1 = v_inlet_C1 ∗ H_inlet ; %m^2/s I n l e t Advective Transport Rate
488 IDTR_inlet_C1 = V_rms_inlet_C1 ∗ MFP_inlet_C1 ; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
489 DN_inlet_C1 = ATR_inlet_C1 / IDTR_inlet_C1 ; % I n l e t DN
490 M_VDN_inlet_C1 = (3 / gamma_inlet_C1) ^(0 .5) ∗ VDN_inlet_C1 ; % I n l e t Mach Number Using VDN
491 Re_DN_inlet_C1 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_C1 ; % I n l e t Reynolds Number Using DN
492 c_inlet_C1 = sqrt (gamma_inlet_C1 ∗ R_A_C1 ∗ T_c_C1 / M_w_C1) ; %m/s I n l e t Speed of Sound
493 M_inlet_C1 = v_inlet_C1 / c_inlet_C1 ; % I n l e t Mach Number
494 Re_inlet_C1 = rho_inlet_C1 ∗ v_inlet_C1 ∗ H_inlet / mu_inlet_C1 ; % I n l e t Reynolds Number
495 V_rms_t_C1 = (3 ∗ R_A_C1 ∗ T_t_C1 / M_w_C1) ^(0 .5) ; %m/s Throat Root Mean Square Speed
496 VDN_t_C1 = v_t_C1 / V_rms_t_C1; % Throat VDN
497 ATR_t_C1 = v_t_C1 ∗ H_t; %m^2/s Throat Advective Transport Rate
498 IDTR_t_C1 = V_rms_t_C1 ∗ MFP_t_C1; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
499 DN_t_C1 = ATR_t_C1 / IDTR_t_C1; % Throat DN
500 M_VDN_t_C1 = (3 / gamma_inlet_C1) ^(0 .5) ∗ VDN_t_C1; % Throat Mach Number Using VDN
501 Re_DN_t_C1 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_C1; % Throat Reynolds Number Using DN
502 M_t_C1 = v_t_C1 / c_t_C1; % Throat Mach Number
503 V_rms_exit_C1 = (3 ∗ R_A_C1 ∗ T_exit_C1 / M_w_C1) ^(0 .5) ; %m/s Exit Root Mean Square Speed
504 VDN_exit_C1 = v_exit_C1 / V_rms_exit_C1 ; % Exit VDN
505 ATR_exit_C1 = v_exit_C1 ∗ H_exit ; %m^2/s Exit Advective Transport Rate
506 IDTR_exit_C1 = V_rms_exit_C1 ∗ MFP_exit_C1; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
507 DN_exit_C1 = ATR_exit_C1 / IDTR_exit_C1 ; % Exit DN
508 M_VDN_exit_C1 = (3 / gamma_inlet_C1) ^(0 .5) ∗ VDN_exit_C1; % Exit Mach Number Using VDN
509 Re_DN_exit_C1 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_C1; % Exit Reynolds Number Using DN
510 rho_exit_C1 = rho_inlet_C1 ∗ (1 + (M_exit_C1^2 ∗ (gamma_inlet_C1 1) / 2) )^( 1 / (

gamma_inlet_C1 1) ) ; %kg/m^3 Exit Density
511 Re_exit_C1 = rho_exit_C1 ∗ v_exit_C1 ∗ H_t / mu_inlet_C1 ; % Exit Reynolds Number
512
513 % Conventional Nozzle Case 2 : Pressure of 5 bar and Temperature of 773 K
514
515 % Data
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516 p_c_C2_bar = 5; %bar Chamber Pressure
517 p_c_C2 = p_c_C2_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
518 T_c_C2 = 773; %K Chamber Temperature
519 H_inlet = 0.3 ∗ 10^( 3) ; %m Nozzle I n l e t Height
520 H_t = 0.06 ∗ 10^( 3) ; %m Nozzle Throat Height
521 H_exit = 0.3 ∗ 10^( 3) ; %m Nozzle Exit Height
522 A_inlet_C2 = ( H_inlet /2)^2 ∗ pi ; %m^2 Nozzle I n l e t Area
523 A_t_C2 = (H_t/2)^2 ∗ pi ; %m^2 Nozzle Throat Area
524 A_exit_C2 = (H_exit/2)^2 ∗ pi ; %m^2 Nozzle Exit Area
525 R_A_C2 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
526 M_w_C2_g = 18.01528; %g/mol Molecular Mass
527 M_w_C2 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
528 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
529 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
530
531 % NIST
532 rho_inlet_C2 = 1.4069; %kg/m^3 I n l e t Density (NIST)
533 mu_inlet_C2 = 2.8573 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
534 C_p_inlet_C2 = 38.714; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
535 C_v_inlet_C2 = 30.212; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
536
537 % Mass Flow Rate
538 gamma_inlet_C2 = C_p_inlet_C2 / C_v_inlet_C2 ; % I n l e t S p e c i f i c Heat Ratio
539 Gamma_C2 = sqrt (gamma_inlet_C2∗((1+gamma_inlet_C2) /2)^((1+gamma_inlet_C2)/(1 gamma_inlet_C2) )

) ; %Vandenkerckhove Function of gamma
540 mdot_C2 = Gamma_C2 ∗ p_c_C2 ∗ A_t_C2 / ( sqrt (T_c_C2 ∗ R_A_C2 / M_w_C2) ) ; %kg/s Mass Flow

Rate
541
542 % Throat Reynolds Number
543 v_inlet_C2 = mdot_C2 / ( rho_inlet_C2 ∗ A_inlet_C2) ; %m/s I n l e t Velocity
544 T_t_C2 = T_c_C2 ∗ (1 + (1^2 ∗ (gamma_inlet_C2 1) / 2) ) ^( 1) ; %K Throat Temperature
545 p_t_C2 = p_c_C2 ∗ (1 + (1^2 ∗ (gamma_inlet_C2 1) / 2) )^( gamma_inlet_C2 / (gamma_inlet_C2

1) ) ; %Pa Throat Pressure
546 rho_t_C2 = rho_inlet_C2 ∗ (1 + (1^2 ∗ (gamma_inlet_C2 1) / 2) )^( 1 / (gamma_inlet_C2 1) ) ;

%kg/m^3 Throat Density
547 rho_t_C2_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_C2, 'P ' , p_t_C2, 'Water ' ) ; %kg/m^3 Throat

Density
548 mu_t_C2 = CoolProp . PropsSI ( 'V' , 'T' , T_t_C2, 'P ' , p_t_C2, 'Water ' ) ; %Pa . s Throat Dynamic

Viscos i ty
549 C_p_t_C2 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_C2, 'P ' , p_t_C2, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
550 C_v_t_C2 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_C2, 'P ' , p_t_C2, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Volume
551 gamma_t_C2 = C_p_t_C2 / C_v_t_C2; % Throat S p e c i f i c Heat Ratio
552 c_t_C2 = sqrt (gamma_t_C2 ∗ R_A_C2 ∗ T_t_C2 / M_w_C2) ; %m/s Throat Speed of Sound
553 v_t_C2 = mdot_C2 / (A_t_C2 ∗ rho_t_C2) ; %m/s Throat Velocity
554 Re_t_C2 = rho_t_C2 ∗ v_t_C2 ∗ H_t / mu_t_C2; % Throat Reynolds Number
555
556 % Thrust
557 syms M_exit_C2
558 M_exit_C2 = solve ((A_exit_C2 / A_t_C2) == ((gamma_inlet_C2 + 1) /2)^( (gamma_inlet_C2 + 1) /(2

∗ (gamma_inlet_C2 1)) ) ∗ M_exit_C2^( 1) ∗ (1 + (M_exit_C2^2 ∗ (gamma_inlet_C2 1) / 2) )
^((gamma_inlet_C2 + 1) / (2 ∗ (gamma_inlet_C2 1) ) ) , M_exit_C2) ;

559 M_exit_C2 = double (M_exit_C2) ; % Exit Mach Number
560 T_exit_C2 = T_c_C2 ∗ (1 + (M_exit_C2^2 ∗ (gamma_inlet_C2 1) / 2) ) ^( 1) ; %K Exit

Temperature
561 p_exit_C2 = p_c_C2 ∗ (1 + (M_exit_C2^2 ∗ (gamma_inlet_C2 1) / 2) )^( gamma_inlet_C2 / (

gamma_inlet_C2 1) ) ; %Pa Exit Pressure
562 c_exit_C2 = sqrt (gamma_inlet_C2 ∗ R_A_C2 ∗ T_exit_C2 / M_w_C2) ; %m/s Exit Speed of Sound
563 v_exit_Mach_C2 = M_exit_C2 ∗ c_exit_C2 ; %m/s Exit Velocity Using Mach Number
564 p_0_C2 = 0; %Pa External Pressure
565 v_exit_C2 = sqrt ((1 (p_exit_C2 / p_c_C2) ^((gamma_inlet_C2 1) / gamma_inlet_C2) ) ∗ (2 ∗

gamma_inlet_C2 ∗ R_A_C2 ∗ T_c_C2 / (M_w_C2 ∗ (gamma_inlet_C2 1) ) ) ) ; %m/s Exit
Velocity

566 F_C2 = mdot_C2 ∗ v_exit_C2 + (p_exit_C2 p_0_C2) ∗ A_exit_C2 ; %N Rocket Thrust Equation
567 I_sp_C2 = F_C2 / (mdot_C2 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
568
569 % Knudsen Number
570 MFP_inlet_C2 = R_A_C2 ∗ T_c_C2 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_C2) ; %m I n l e t Mean

Free Path
571 Kn_inlet_C2 = MFP_inlet_C2 / H_inlet ; % I n l e t Knudsen Number
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572 MFP_t_C2 = R_A_C2 ∗ T_t_C2 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_C2) ; %m Throat Mean
Free Path

573 Kn_t_C2 = MFP_t_C2 / H_t; % Throat Knudsen Number
574 MFP_exit_C2 = R_A_C2 ∗ T_exit_C2 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_C2) ; %m Exit

Mean Free Path
575 Kn_exit_C2 = MFP_exit_C2 / H_exit ; % Exit Knudsen Number
576
577 % DN and VDN
578 V_rms_inlet_C2 = (3 ∗ R_A_C2 ∗ T_c_C2 / M_w_C2) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
579 VDN_inlet_C2 = v_inlet_C2 / V_rms_inlet_C2 ; % I n l e t VDN
580 ATR_inlet_C2 = v_inlet_C2 ∗ H_inlet ; %m^2/s I n l e t Advective Transport Rate
581 IDTR_inlet_C2 = V_rms_inlet_C2 ∗ MFP_inlet_C2 ; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
582 DN_inlet_C2 = ATR_inlet_C2 / IDTR_inlet_C2 ; % I n l e t DN
583 M_VDN_inlet_C2 = (3 / gamma_inlet_C2) ^(0 .5) ∗ VDN_inlet_C2 ; % I n l e t Mach Number Using VDN
584 Re_DN_inlet_C2 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_C2 ; % I n l e t Reynolds Number Using DN
585 c_inlet_C2 = sqrt (gamma_inlet_C2 ∗ R_A_C2 ∗ T_c_C2 / M_w_C2) ; %m/s I n l e t Speed of Sound
586 M_inlet_C2 = v_inlet_C2 / c_inlet_C2 ; % I n l e t Mach Number
587 Re_inlet_C2 = rho_inlet_C2 ∗ v_inlet_C2 ∗ H_inlet / mu_inlet_C2 ; % I n l e t Reynolds Number
588 V_rms_t_C2 = (3 ∗ R_A_C2 ∗ T_t_C2 / M_w_C2) ^(0 .5) ; %m/s Throat Root Mean Square Speed
589 VDN_t_C2 = v_t_C2 / V_rms_t_C2; % Throat VDN
590 ATR_t_C2 = v_t_C2 ∗ H_t; %m^2/s Throat Advective Transport Rate
591 IDTR_t_C2 = V_rms_t_C2 ∗ MFP_t_C2; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
592 DN_t_C2 = ATR_t_C2 / IDTR_t_C2; % Throat DN
593 M_VDN_t_C2 = (3 / gamma_inlet_C2) ^(0 .5) ∗ VDN_t_C2; % Throat Mach Number Using VDN
594 Re_DN_t_C2 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_C2; % Throat Reynolds Number Using DN
595 M_t_C2 = v_t_C2 / c_t_C2; % Throat Mach Number
596 V_rms_exit_C2 = (3 ∗ R_A_C2 ∗ T_exit_C2 / M_w_C2) ^(0 .5) ; %m/s Exit Root Mean Square Speed
597 VDN_exit_C2 = v_exit_C2 / V_rms_exit_C2 ; % Exit VDN
598 ATR_exit_C2 = v_exit_C2 ∗ H_exit ; %m^2/s Exit Advective Transport Rate
599 IDTR_exit_C2 = V_rms_exit_C2 ∗ MFP_exit_C2; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
600 DN_exit_C2 = ATR_exit_C2 / IDTR_exit_C2 ; % Exit DN
601 M_VDN_exit_C2 = (3 / gamma_inlet_C2) ^(0 .5) ∗ VDN_exit_C2; % Exit Mach Number Using VDN
602 Re_DN_exit_C2 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_C2; % Exit Reynolds Number Using DN
603 rho_exit_C2 = rho_inlet_C2 ∗ (1 + (M_exit_C2^2 ∗ (gamma_inlet_C2 1) / 2) )^( 1 / (

gamma_inlet_C2 1) ) ; %kg/m^3 Exit Density
604 Re_exit_C2 = rho_exit_C2 ∗ v_exit_C2 ∗ H_t / mu_inlet_C2 ; % Exit Reynolds Number
605
606 % Conventional Nozzle Case 3 : Pressure of 7 bar and Temperature of 550 K
607
608 % Data
609 p_c_C3_bar = 7; %bar Chamber Pressure
610 p_c_C3 = p_c_C3_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
611 T_c_C3 = 550; %K Chamber Temperature
612 H_inlet = 0.3 ∗ 10^( 3) ; %m Nozzle I n l e t Height
613 H_t = 0.06 ∗ 10^( 3) ; %m Nozzle Throat Height
614 H_exit = 0.3 ∗ 10^( 3) ; %m Nozzle Exit Height
615 A_inlet_C3 = ( H_inlet /2)^2 ∗ pi ; %m^2 Nozzle I n l e t Area
616 A_t_C3 = (H_t/2)^2 ∗ pi ; %m^2 Nozzle Throat Area
617 A_exit_C3 = (H_exit/2)^2 ∗ pi ; %m^2 Nozzle Exit Area
618 R_A_C3 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
619 M_w_C3_g = 18.01528; %g/mol Molecular Mass
620 M_w_C3 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
621 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
622 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
623
624 % NIST
625 rho_inlet_C3 = 2.8145; %kg/m^3 I n l e t Density (NIST)
626 mu_inlet_C3 = 1.9240 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
627 C_p_inlet_C3 = 37.932; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
628 C_v_inlet_C3 = 28.569; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
629
630 % Mass Flow Rate
631 gamma_inlet_C3 = C_p_inlet_C3 / C_v_inlet_C3 ; % I n l e t S p e c i f i c Heat Ratio
632 Gamma_C3 = sqrt (gamma_inlet_C3∗((1+gamma_inlet_C3) /2)^((1+gamma_inlet_C3)/(1 gamma_inlet_C3) )

) ; %Vandenkerckhove Function of gamma
633 mdot_C3 = Gamma_C3 ∗ p_c_C3 ∗ A_t_C3 / ( sqrt (T_c_C3 ∗ R_A_C3 / M_w_C3) ) ; %kg/s Mass Flow

Rate
634
635 % Throat Reynolds Number
636 v_inlet_C3 = mdot_C3 / ( rho_inlet_C3 ∗ A_inlet_C3) ; %m/s I n l e t Velocity
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637 T_t_C3 = T_c_C3 ∗ (1 + (1^2 ∗ (gamma_inlet_C3 1) / 2) ) ^( 1) ; %K Throat Temperature
638 p_t_C3 = p_c_C3 ∗ (1 + (1^2 ∗ (gamma_inlet_C3 1) / 2) )^( gamma_inlet_C3 / (gamma_inlet_C3

1) ) ; %Pa Throat Pressure
639 rho_t_C3 = rho_inlet_C3 ∗ (1 + (1^2 ∗ (gamma_inlet_C3 1) / 2) )^( 1 / (gamma_inlet_C3 1) ) ;

%kg/m^3 Throat Density
640 rho_t_C3_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_C3, 'P ' , p_t_C3, 'Water ' ) ; %kg/m^3 Throat

Density
641 mu_t_C3 = CoolProp . PropsSI ( 'V' , 'T' , T_t_C3, 'P ' , p_t_C3, 'Water ' ) ; %Pa . s Throat Dynamic

Viscos i ty
642 C_p_t_C3 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_C3, 'P ' , p_t_C3, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
643 C_v_t_C3 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_C3, 'P ' , p_t_C3, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Volume
644 gamma_t_C3 = C_p_t_C3 / C_v_t_C3; % Throat S p e c i f i c Heat Ratio
645 c_t_C3 = sqrt (gamma_t_C3 ∗ R_A_C3 ∗ T_t_C3 / M_w_C3) ; %m/s Throat Speed of Sound
646 v_t_C3 = mdot_C3 / (A_t_C3 ∗ rho_t_C3) ; %m/s Throat Velocity
647 Re_t_C3 = rho_t_C3 ∗ v_t_C3 ∗ H_t / mu_t_C3; % Throat Reynolds Number
648
649 % Thrust
650 syms M_exit_C3
651 M_exit_C3 = solve ((A_exit_C3 / A_t_C3) == ((gamma_inlet_C3 + 1) /2)^( (gamma_inlet_C3 + 1) /(2

∗ (gamma_inlet_C3 1)) ) ∗ M_exit_C3^( 1) ∗ (1 + (M_exit_C3^2 ∗ (gamma_inlet_C3 1) / 2) )
^((gamma_inlet_C3 + 1) / (2 ∗ (gamma_inlet_C3 1) ) ) , M_exit_C3) ;

652 M_exit_C3 = double (M_exit_C3) ; % Exit Mach Number
653 T_exit_C3 = T_c_C3 ∗ (1 + (M_exit_C3^2 ∗ (gamma_inlet_C3 1) / 2) ) ^( 1) ; %K Exit

Temperature
654 p_exit_C3 = p_c_C3 ∗ (1 + (M_exit_C3^2 ∗ (gamma_inlet_C3 1) / 2) )^( gamma_inlet_C3 / (

gamma_inlet_C3 1) ) ; %Pa Exit Pressure
655 c_exit_C3 = sqrt (gamma_inlet_C3 ∗ R_A_C3 ∗ T_exit_C3 / M_w_C3) ; %m/s Exit Speed of Sound
656 v_exit_Mach_C3 = M_exit_C3 ∗ c_exit_C3 ; %m/s Exit Velocity Using Mach Number
657 p_0_C3 = 0; %Pa External Pressure
658 v_exit_C3 = sqrt ((1 (p_exit_C3 / p_c_C3) ^((gamma_inlet_C3 1) / gamma_inlet_C3) ) ∗ (2 ∗

gamma_inlet_C3 ∗ R_A_C3 ∗ T_c_C3 / (M_w_C3 ∗ (gamma_inlet_C3 1) ) ) ) ; %m/s Exit
Velocity

659 F_C3 = mdot_C3 ∗ v_exit_C3 + (p_exit_C3 p_0_C3) ∗ A_exit_C3 ; %N Rocket Thrust Equation
660 I_sp_C3 = F_C3 / (mdot_C3 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
661
662 % Knudsen Number
663 MFP_inlet_C3 = R_A_C3 ∗ T_c_C3 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_C3) ; %m I n l e t Mean

Free Path
664 Kn_inlet_C3 = MFP_inlet_C3 / H_inlet ; % I n l e t Knudsen Number
665 MFP_t_C3 = R_A_C3 ∗ T_t_C3 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_C3) ; %m Throat Mean

Free Path
666 Kn_t_C3 = MFP_t_C3 / H_t; % Throat Knudsen Number
667 MFP_exit_C3 = R_A_C3 ∗ T_exit_C3 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_C3) ; %m Exit

Mean Free Path
668 Kn_exit_C3 = MFP_exit_C3 / H_exit ; % Exit Knudsen Number
669
670 % DN and VDN
671 V_rms_inlet_C3 = (3 ∗ R_A_C3 ∗ T_c_C3 / M_w_C3) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
672 VDN_inlet_C3 = v_inlet_C3 / V_rms_inlet_C3 ; % I n l e t VDN
673 ATR_inlet_C3 = v_inlet_C3 ∗ H_inlet ; %m^2/s I n l e t Advective Transport Rate
674 IDTR_inlet_C3 = V_rms_inlet_C3 ∗ MFP_inlet_C3 ; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
675 DN_inlet_C3 = ATR_inlet_C3 / IDTR_inlet_C3 ; % I n l e t DN
676 M_VDN_inlet_C3 = (3 / gamma_inlet_C3) ^(0 .5) ∗ VDN_inlet_C3 ; % I n l e t Mach Number Using VDN
677 Re_DN_inlet_C3 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_C3 ; % I n l e t Reynolds Number Using DN
678 c_inlet_C3 = sqrt (gamma_inlet_C3 ∗ R_A_C3 ∗ T_c_C3 / M_w_C3) ; %m/s I n l e t Speed of Sound
679 M_inlet_C3 = v_inlet_C3 / c_inlet_C3 ; % I n l e t Mach Number
680 Re_inlet_C3 = rho_inlet_C3 ∗ v_inlet_C3 ∗ H_inlet / mu_inlet_C3 ; % I n l e t Reynolds Number
681 V_rms_t_C3 = (3 ∗ R_A_C3 ∗ T_t_C3 / M_w_C3) ^(0 .5) ; %m/s Throat Root Mean Square Speed
682 VDN_t_C3 = v_t_C3 / V_rms_t_C3; % Throat VDN
683 ATR_t_C3 = v_t_C3 ∗ H_t; %m^2/s Throat Advective Transport Rate
684 IDTR_t_C3 = V_rms_t_C3 ∗ MFP_t_C3; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
685 DN_t_C3 = ATR_t_C3 / IDTR_t_C3; % Throat DN
686 M_VDN_t_C3 = (3 / gamma_inlet_C3) ^(0 .5) ∗ VDN_t_C3; % Throat Mach Number Using VDN
687 Re_DN_t_C3 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_C3; % Throat Reynolds Number Using DN
688 M_t_C3 = v_t_C3 / c_t_C3; % Throat Mach Number
689 V_rms_exit_C3 = (3 ∗ R_A_C3 ∗ T_exit_C3 / M_w_C3) ^(0 .5) ; %m/s Exit Root Mean Square Speed
690 VDN_exit_C3 = v_exit_C3 / V_rms_exit_C3 ; % Exit VDN
691 ATR_exit_C3 = v_exit_C3 ∗ H_exit ; %m^2/s Exit Advective Transport Rate
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692 IDTR_exit_C3 = V_rms_exit_C3 ∗ MFP_exit_C3; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
693 DN_exit_C3 = ATR_exit_C3 / IDTR_exit_C3 ; % Exit DN
694 M_VDN_exit_C3 = (3 / gamma_inlet_C3) ^(0 .5) ∗ VDN_exit_C3; % Exit Mach Number Using VDN
695 Re_DN_exit_C3 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_C3; % Exit Reynolds Number Using DN
696 rho_exit_C3 = rho_inlet_C3 ∗ (1 + (M_exit_C3^2 ∗ (gamma_inlet_C3 1) / 2) )^( 1 / (

gamma_inlet_C3 1) ) ; %kg/m^3 Exit Density
697 Re_exit_C3 = rho_exit_C3 ∗ v_exit_C3 ∗ H_t / mu_inlet_C3 ; % Exit Reynolds Number
698
699 % Conventional Nozzle Case 4 : Pressure of 7 bar and Temperature of 773 K
700
701 % Data
702 p_c_C4_bar = 7; %bar Chamber Pressure
703 p_c_C4 = p_c_C4_bar ∗ 100000; %Pa = kg/(m. s ^( 2) ) Chamber Pressure
704 T_c_C4 = 773; %K Chamber Temperature
705 H_inlet = 0.3 ∗ 10^( 3) ; %m Nozzle I n l e t Height
706 H_t = 0.06 ∗ 10^( 3) ; %m Nozzle Throat Height
707 H_exit = 0.3 ∗ 10^( 3) ; %m Nozzle Exit Height
708 A_inlet_C4 = ( H_inlet /2)^2 ∗ pi ; %m^2 Nozzle I n l e t Area
709 A_t_C4 = (H_t/2)^2 ∗ pi ; %m^2 Nozzle Throat Area
710 A_exit_C4 = (H_exit/2)^2 ∗ pi ; %m^2 Nozzle Exit Area
711 R_A_C4 = 8.3144598; %J/(mol .K) = kg .m^(2) /( s ^( 2) . mol .K) Universal Gas Constant
712 M_w_C4_g = 18.01528; %g/mol Molecular Mass
713 M_w_C4 = 18.0153 ∗ 10^( 3) ; %kg/mol Molecular Mass
714 Water_D = 2.75 ∗ 10^( 10) ; %m Water Molecular Diameter
715 N_A = 6.022140857 ∗ 10^(23) ; %/mol Avogadro Constant
716
717 % NIST
718 rho_inlet_C4 = 1.9726; %kg/m^3 I n l e t Density (NIST)
719 mu_inlet_C4 = 2.8576 ∗ 10^( 5) ; %Pa. s I n l e t Dynamic Viscos i ty (NIST)
720 C_p_inlet_C4 = 38.847; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Pressure (NIST)
721 C_v_inlet_C4 = 30.269; %J/(mol .K) I n l e t S p e c i f i c Heat Capacity at Constant Volume (NIST)
722
723 % Mass Flow Rate
724 gamma_inlet_C4 = C_p_inlet_C4 / C_v_inlet_C4 ; % I n l e t S p e c i f i c Heat Ratio
725 Gamma_C4 = sqrt (gamma_inlet_C4∗((1+gamma_inlet_C4) /2)^((1+gamma_inlet_C4)/(1 gamma_inlet_C4) )

) ; %Vandenkerckhove Function of gamma
726 mdot_C4 = Gamma_C4 ∗ p_c_C4 ∗ A_t_C4 / ( sqrt (T_c_C4 ∗ R_A_C4 / M_w_C4) ) ; %kg/s Mass Flow

Rate
727
728 % Throat Reynolds Number
729 v_inlet_C4 = mdot_C4 / ( rho_inlet_C4 ∗ A_inlet_C4) ; %m/s I n l e t Velocity
730 T_t_C4 = T_c_C4 ∗ (1 + (1^2 ∗ (gamma_inlet_C4 1) / 2) ) ^( 1) ; %K Throat Temperature
731 p_t_C4 = p_c_C4 ∗ (1 + (1^2 ∗ (gamma_inlet_C4 1) / 2) )^( gamma_inlet_C4 / (gamma_inlet_C4

1) ) ; %Pa Throat Pressure
732 rho_t_C4 = rho_inlet_C4 ∗ (1 + (1^2 ∗ (gamma_inlet_C4 1) / 2) )^( 1 / (gamma_inlet_C4 1) ) ;

%kg/m^3 Throat Density
733 rho_t_C4_check = CoolProp . PropsSI ( 'D' , 'T' , T_t_C4, 'P ' , p_t_C4, 'Water ' ) ; %kg/m^3 Throat

Density
734 mu_t_C4 = CoolProp . PropsSI ( 'V' , 'T' , T_t_C4, 'P ' , p_t_C4, 'Water ' ) ; %Pa. s Throat Dynamic

Viscos i ty
735 C_p_t_C4 = CoolProp . PropsSI ( 'CPMOLAR' , 'T' , T_t_C4, 'P ' , p_t_C4, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Pressure
736 C_v_t_C4 = CoolProp . PropsSI ( 'CVMOLAR' , 'T' , T_t_C4, 'P ' , p_t_C4, 'Water ' ) ; %J/(mol .K) Throat

S p e c i f i c Heat Capacity at Constant Volume
737 gamma_t_C4 = C_p_t_C4 / C_v_t_C4; % Throat S p e c i f i c Heat Ratio
738 c_t_C4 = sqrt (gamma_t_C4 ∗ R_A_C4 ∗ T_t_C4 / M_w_C4) ; %m/s Throat Speed of Sound
739 v_t_C4 = mdot_C4 / (A_t_C4 ∗ rho_t_C4) ; %m/s Throat Velocity
740 Re_t_C4 = rho_t_C4 ∗ v_t_C4 ∗ H_t / mu_t_C4; % Throat Reynolds Number
741
742 % Thrust
743 syms M_exit_C4
744 M_exit_C4 = solve ((A_exit_C4 / A_t_C4) == ((gamma_inlet_C4 + 1) /2)^( (gamma_inlet_C4 + 1) /(2

∗ (gamma_inlet_C4 1)) ) ∗ M_exit_C4^( 1) ∗ (1 + (M_exit_C4^2 ∗ (gamma_inlet_C4 1) / 2) )
^((gamma_inlet_C4 + 1) / (2 ∗ (gamma_inlet_C4 1) ) ) , M_exit_C4) ;

745 M_exit_C4 = double (M_exit_C4) ; % Exit Mach Number
746 T_exit_C4 = T_c_C4 ∗ (1 + (M_exit_C4^2 ∗ (gamma_inlet_C4 1) / 2) ) ^( 1) ; %K Exit

Temperature
747 p_exit_C4 = p_c_C4 ∗ (1 + (M_exit_C4^2 ∗ (gamma_inlet_C4 1) / 2) )^( gamma_inlet_C4 / (

gamma_inlet_C4 1) ) ; %Pa Exit Pressure
748 c_exit_C4 = sqrt (gamma_inlet_C4 ∗ R_A_C4 ∗ T_exit_C4 / M_w_C4) ; %m/s Exit Speed of Sound
749 v_exit_Mach_C4 = M_exit_C4 ∗ c_exit_C4 ; %m/s Exit Velocity Using Mach Number
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750 p_0_C4 = 0; %Pa External Pressure
751 v_exit_C4 = sqrt ((1 (p_exit_C4 / p_c_C4) ^((gamma_inlet_C4 1) / gamma_inlet_C4) ) ∗ (2 ∗

gamma_inlet_C4 ∗ R_A_C4 ∗ T_c_C4 / (M_w_C4 ∗ (gamma_inlet_C4 1) ) ) ) ; %m/s Exit
Velocity

752 F_C4 = mdot_C4 ∗ v_exit_C4 + (p_exit_C4 p_0_C4) ∗ A_exit_C4 ; %N Rocket Thrust Equation
753 I_sp_C4 = F_C4 / (mdot_C4 ∗ 9.81) ; %s S p e c i f i c Impulse Using Gravity of 9.81 m/s^2
754
755 % Knudsen Number
756 MFP_inlet_C4 = R_A_C4 ∗ T_c_C4 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_c_C4) ; %m I n l e t Mean

Free Path
757 Kn_inlet_C4 = MFP_inlet_C4 / H_inlet ; % I n l e t Knudsen Number
758 MFP_t_C4 = R_A_C4 ∗ T_t_C4 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_t_C4) ; %m Throat Mean

Free Path
759 Kn_t_C4 = MFP_t_C4 / H_t; % Throat Knudsen Number
760 MFP_exit_C4 = R_A_C4 ∗ T_exit_C4 / ((2) ^(0 .5) ∗ pi ∗ Water_D^2 ∗ N_A ∗ p_exit_C4) ; %m Exit

Mean Free Path
761 Kn_exit_C4 = MFP_exit_C4 / H_exit ; % Exit Knudsen Number
762
763 % DN and VDN
764 V_rms_inlet_C4 = (3 ∗ R_A_C4 ∗ T_c_C4 / M_w_C4) ^(0 .5) ; %m/s I n l e t Root Mean Square Speed
765 VDN_inlet_C4 = v_inlet_C4 / V_rms_inlet_C4 ; % I n l e t VDN
766 ATR_inlet_C4 = v_inlet_C4 ∗ H_inlet ; %m^2/s I n l e t Advective Transport Rate
767 IDTR_inlet_C4 = V_rms_inlet_C4 ∗ MFP_inlet_C4 ; %m^2/s I n l e t I n t r i n s i c Di f fus ive Transport

Rate
768 DN_inlet_C4 = ATR_inlet_C4 / IDTR_inlet_C4 ; % I n l e t DN
769 M_VDN_inlet_C4 = (3 / gamma_inlet_C4) ^(0 .5) ∗ VDN_inlet_C4 ; % I n l e t Mach Number Using VDN
770 Re_DN_inlet_C4 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_inlet_C4 ; % I n l e t Reynolds Number Using DN
771 c_inlet_C4 = sqrt (gamma_inlet_C4 ∗ R_A_C4 ∗ T_c_C4 / M_w_C4) ; %m/s I n l e t Speed of Sound
772 M_inlet_C4 = v_inlet_C4 / c_inlet_C4 ; % I n l e t Mach Number
773 Re_inlet_C4 = rho_inlet_C4 ∗ v_inlet_C4 ∗ H_inlet / mu_inlet_C4 ; % I n l e t Reynolds Number
774 V_rms_t_C4 = (3 ∗ R_A_C4 ∗ T_t_C4 / M_w_C4) ^(0 .5) ; %m/s Throat Root Mean Square Speed
775 VDN_t_C4 = v_t_C4 / V_rms_t_C4; % Throat VDN
776 ATR_t_C4 = v_t_C4 ∗ H_t; %m^2/s Throat Advective Transport Rate
777 IDTR_t_C4 = V_rms_t_C4 ∗ MFP_t_C4; %m^2/s Throat I n t r i n s i c Di f fus ive Transport Rate
778 DN_t_C4 = ATR_t_C4 / IDTR_t_C4; % Throat DN
779 M_VDN_t_C4 = (3 / gamma_inlet_C4) ^(0 .5) ∗ VDN_t_C4; % Throat Mach Number Using VDN
780 Re_DN_t_C4 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_t_C4; % Throat Reynolds Number Using DN
781 M_t_C4 = v_t_C4 / c_t_C4; % Throat Mach Number
782 V_rms_exit_C4 = (3 ∗ R_A_C4 ∗ T_exit_C4 / M_w_C4) ^(0 .5) ; %m/s Exit Root Mean Square Speed
783 VDN_exit_C4 = v_exit_C4 / V_rms_exit_C4 ; % Exit VDN
784 ATR_exit_C4 = v_exit_C4 ∗ H_exit ; %m^2/s Exit Advective Transport Rate
785 IDTR_exit_C4 = V_rms_exit_C4 ∗ MFP_exit_C4; %m^2/s Exit I n t r i n s i c Di f fus ive Transport Rate
786 DN_exit_C4 = ATR_exit_C4 / IDTR_exit_C4 ; % Exit DN
787 M_VDN_exit_C4 = (3 / gamma_inlet_C4) ^(0 .5) ∗ VDN_exit_C4; % Exit Mach Number Using VDN
788 Re_DN_exit_C4 = (3 ∗ pi / 2) ^(0 .5) ∗ DN_exit_C4; % Exit Reynolds Number Using DN
789 rho_exit_C4 = rho_inlet_C4 ∗ (1 + (M_exit_C4^2 ∗ (gamma_inlet_C4 1) / 2) )^( 1 / (

gamma_inlet_C4 1) ) ; %kg/m^3 Exit Density
790 Re_exit_C4 = rho_exit_C4 ∗ v_exit_C4 ∗ H_t / mu_inlet_C4 ; % Exit Reynolds Number
791
792 %%
793 % save ( ' Analytical_Model ' ) ;
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B.1.2. MATLAB Workspace Results
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