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A B S T R A C T

The design and pricing of services are two of the most important decisions faced by any
intermodal transport operator. The key success factor lies in the ability to meet the needs
of the shippers. Therefore, making full use of the available information about the demand
helps to come up with good design and pricing decisions. With this in mind, we propose a
Choice-Driven approach, incorporating advanced choice models directly into a Service Network
Design and Pricing problem. We evaluate this approach considering both deterministic and
stochastic choice models. To reduce the computational time for the stochastic instances, we
propose a predetermination heuristic. The proposed models are compared to a benchmark,
where shippers are solely cost-minimizers. Results show that the operator’s profits can be
significantly improved, even with deterministic models. The stochastic versions further increase
the realized profits: in particular, considering shippers’ heterogeneity allows a better estimation
of the demand.

. Introduction

In intermodal freight transport, planning at the tactical level is of key importance to make the best use of existing infrastructure
nd available assets and to ensure reliable transport plans. An appropriate way of managing this task is through Service Network
esign (SND) problems, as they cover most of the tactical decisions (Crainic, 2000). They can support the decisions of intermodal
perators about the itineraries to be served, the offered frequencies, and how demand should be assigned to these services.

Until recently, pricing was not explicitly covered in most SND models although it plays a crucial role in the success of the
lanning (Tawfik and Limbourg, 2018; Li et al., 2015). As pointed out by Macharis and Bontekoning (2004), intermodal transport
ricing is a difficult task as costs must be accurately computed and some knowledge of the market situation has to be gained.
ndeed, the costs faced by an intermodal operator are various (Li and Tayur, 2005): some of them, e.g. crew costs or contracts with
nfrastructure manager, are perfectly known by the operator but other variable costs are set by external companies, such as terminal
perators for the handling costs or energy suppliers for the fuel costs. For the latter, not only do they depend on external actors,
ut also on the transport demand as they increase together with the carried load. Although transport operators have some control
ver the quantity of transported freight (via contract binding, for example), demand remains mostly stochastic in nature (Combes,
013). As a result, variable costs can only be estimated from the expected transport demand.

Regarding the pricing decision itself, some knowledge about the targeted demand, such as the willingness to pay or the transport
equirements, is also of key importance. Indeed, the cost of transportation is among the main drivers of shippers’ mode choice. It
ould, however, be inadequate to consider that shippers are purely ‘‘cost-minimizers’’ as other factors (e.g., transport time, offered
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Fig. 1. Illustrative example with two shippers and two available transport modes.

quality, service frequency) play a role in the decision process, see for example Arencibia et al. (2015) or Ben-Akiva et al. (2013).
On top of that, these factors and their importance can vary from shipper to shipper and the final decision of choosing a mode also
depends on the available alternatives, hence making the planning and pricing process even more complex. On the other hand, there
exists a great variety of mode choice models (see de Jong (2014) for a comprehensive review) that can be used to support the
planning of intermodal operators. For example, Duan et al. (2019) include values of time and reliability, that are estimated from a
stated preference survey, within the cost minimization of an SND model. This represents a step towards the integration of shippers’
preferences within the planning process.

Our work aims at leveraging further the advantages of including a detailed mode choice model within this tactical decision-
making setting. Therefore, we develop a Choice-Driven Service Network Design and Pricing (CD-SNDP) model, which includes an
existing mode choice model to consider shippers’ behavior directly in the decision-making of the transport operator. In the rest of
this paper, we first emphasize the potential of our approach through an illustrative example. In Section 2, we review the existing
literature on SNDP. Then, the proposed methodology is described in Section 3, where deterministic and stochastic formulations are
covered. In Section 4, the proposed methodology is applied to a case study and several variations of the model are compared with
each other. Finally, we conclude the paper in Section 5 and share some insights for future research.

1.1. Illustrative example

To highlight the benefits of using a mode choice model for the pricing decision, we consider the case in Fig. 1, where two
shippers, S1 and S2, want to send 200 Twenty-foot Equivalent Units (TEUs) each. To do so, they have two alternatives: Road and
Inland Waterway Transport (IWT). Each mode has the following utility function for each shipper 𝑖:

{

𝑉 IWT
𝑖 = 𝛽𝑓𝑓 + 𝛽𝑐,𝑖𝑝IWT = 1 × 5 + 𝛽𝑐,𝑖 × 𝑥,
𝑉 Road
𝑖 = 𝛼Road + 𝛽𝑐,𝑖𝑝Road = 15 + 𝛽𝑐,𝑖 × 15,

where 𝛼Road is the Alternative Specific Constant (ASC) for Road, equal to 15, and the ASC for IWT is normalized to 0. 𝑝Road is the
cost of the Road alternative, set to 15 e/TEU, and 𝛽𝑐,𝑖 represents the cost sensitivity of each shipper 𝑖: we assume that it is −5 for
S1 and −2 for S2. 𝛽𝑓 is the weight associated to the frequency of IWT services 𝑓 , and assumed to be 1 for both shippers.

In this example, the decision-maker is the IWT operator that wants to set up a transport service running each working day
(hence: 𝑓 = 5) and to optimize their price 𝑥. The operator faces a fixed cost, 𝑐f ix, of 100 e per round trip and a variable cost, 𝑐var , of
1 e/TEU. Assuming that the transport demand of shippers is split according to a logit model, the operator aims at setting a unique
price to maximize their profits, expressed as:

𝛱(𝑥) =
∑

𝑖
(200 × 𝑒𝑉

IWT
𝑖

𝑒𝑉
IWT
𝑖 + 𝑒𝑉

Road
𝑖

)(𝑥 − 𝑐var ) − 𝑓 × 𝑐f ix =
∑

𝑖
(200 × 𝑒𝑉

IWT
𝑖

𝑒𝑉
IWT
𝑖 + 𝑒𝑉

Road
𝑖

)(𝑥 − 1) − 500

The operator does not necessarily know the full utility specifications of the shippers. Therefore, it can opt for various demand
models, here we consider three of them:

(A) Assume that shippers are homogeneous and purely cost-minimizers, the considered utilities may then be: 𝑉 IWT
𝑖 = −1𝑥 and

𝑉 Road
𝑖 = −1 × 15 ∀𝑖;

(B) Make more market study to come up with the same utility functions as above, but consider that shippers are homogeneous
with a mean cost sensitivity, thus: 𝛽𝑐,𝑖 = −3.5 ∀𝑖;

(C) Consider also the heterogeneity regarding the cost sensitivity (ground truth model), thus: 𝛽𝑐,1 = −5 and 𝛽𝑐,2 = −2.

Finally, let us assume that the operator has a fixed vessel capacity of 20 TEUs. The resulting profits 𝛱(𝑥) associated with price
𝑥 are depicted in Fig. 2, together with the profits stemming from each individual shipper. Before the price reaches 10 e/TEU, the
2
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Fig. 2. Resulting profits for models A (pure cost minimization), B (homogeneous shippers), C (heterogeneous shippers), and individual profits for S1 and S2.

profits grow linearly. Indeed, IWT is much cheaper than Road so the demand assigned to IWT exceeds the capacity (only 100 TEUs
per direction) and the profits only depend on the price.

The highest expected profits are reached with model A with a price of 15 e/TEU. Indeed, when only considering costs, the
IWT operator can charge a higher amount as the cost of Road is relatively high. If the price exceeds 15 e/TEU, IWT becomes more
expensive than Road and the IWT operator faces a rapid decrease in their demand, and thus their profit. Nevertheless, when shippers
S1 and S2 will face a price of 15 e/TEU, they will both turn to Road as it has a higher utility. This will then end up in losses for
the IWT operator.

The maximal expected profits with model B occur at 12 e/TEU. This is because the cost sensitivity of S2 is overestimated. With
model B, it is as if the cost of Road was still too high for S2 despite the other advantages of this transport mode. But in reality,
the profits stemming from S2 reach zero for a price of 12 e/TEU because Road advantages (included in 𝛼Road) overcome the higher
cost, thus making Road much more attractive. Therefore, it will result in profits reduced by half when the price of 12 e/TEU is
charged to the actual heterogeneous shippers.

Applying model C returns the highest profits, as it considers the true cost sensitivity of each shipper. In reality, it will of course
not be the case. But the purpose of this example is to showcase the potential consequences of using simplifying assumptions in the
planning and pricing process of a transport operator. In this example, if they consider that their customers are purely cost-minimizers,
then the optimal price under this assumption will eventually cause losses to the operator. When they consider a more detailed
representation of shippers (as in model B), the optimal price is still overestimated but, at least, positive profits are achieved. So
even if the exact parameters are not known, it is beneficial for the operator to incorporate more information about their customers.

Note that a revenue management strategy would be trivial to implement in this example with only two shippers and simple
utility functions, then the optimal solution would be to set different prices for S1 and S2. However, segmentation may be difficult
to identify when many more shippers are considered and less detailed information is available. In the remainder of this work, we
will not consider revenue management, although we recognize that it can be an effective tool to optimize pricing decisions.

2. Literature review

In order to develop our CD-SNDP approach, we make use of ‘‘choice-driven (or choice-based) optimization’’. Although it has
not been applied to SNDP models yet, choice-driven optimization is already used for other types of problems. Therefore, we first
review the state of the literature on SNDP in intermodal transport, then investigate the existing choice-driven methods in related
transportation fields, and finally present the main contributions of the present work.

2.1. Service network design and pricing problems in intermodal transport

The majority of existing studies on SND are formulated as a cost minimization of the transport operator and do not include the
revenues of fulfilling the transport orders (Elbert et al., 2020; Wieberneit, 2008). Nevertheless, two models using cost minimization
have addressed the pricing decision. Li et al. (2015) determine the price charged by an intermodal operator using a pre-defined
profit margin, expressed as a given percentage of the operational costs. The price is the addition of the costs and the margin and
cannot exceed a given market price. Dandotiya et al. (2011) include a target for the minimal profit (per transported unit) to be
achieved by an intermodal operator: this translates into a constraint assuring that the applied rate is greater or equal to that target
added to the operating costs. The authors also include a cost sensitivity factor representing the willingness to pay for intermodal
transport rather than road and enforce that the rate difference between road and intermodal transport has to be greater or equal to
this factor.

For the works applying a profit maximization, some of them do not include the pricing decision but rather assume fixed tariffs that
are included as parameters in the model. Andersen and Christiansen (2009) apply an SND model to explore new rail services along a
3

Polish freight corridor. The demand is represented as contracts generating a given revenue when served. The operator then decides
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to serve or not the contracts in order to maximize their profit. It also decides on the services’ frequency and the vehicles and demand
assignment to these services under vehicle balancing and capacity constraints. Braekers et al. (2013) are interested in designing a
barge transport service along a Belgian canal considering empty container repositioning. Their SND model decides at which inland
ports to stop and in which sequence as well as the fulfillment of transport demand from different clients. Bilegan et al. (2022) also
apply an SND model to barge transport with detailed fleet management and revenue management considerations. Different customer
segments are considered as well as two different service levels (standard or express) with a given fare. The operator then decides
which services to operate, what percentage of the demand to serve, and how to assign the vessels and demand to the services to
maximize their profits. The model has been developed further to include the possibility of bundling services and penalties for early
and late distribution (Taherkhani et al., 2022). Teypaz et al. (2010) treat similar models and propose decomposition algorithms for
computational efficiency. Zetina et al. (2019) capture demand elasticity using a gravity model, where the demand is considered
inversely proportional to the transport costs faced by the transport operator. The decisions are whether or not an arc (or a path) is
used and in which sequence to visit the demand nodes. Finally, Scherr et al. (2022) use SND to conceive a new platooning service
of autonomous vehicles. They come up with a two-stage stochastic model considering scenarios to represent the demand variation.
The first stage designs the services performed by ‘‘manually operated vehicles’’ and assigns rates to the different customers over all
scenarios, whereas the second sets the flow of autonomous vehicles for each particular scenario.

Other works include demand functions in the profit maximization to capture the influence of prices on transport volumes. Li and
ayur (2005) design a railroad network using a concave inverse demand function. In this case, the demand for each service and each

tinerary are the decision variables and the corresponding prices are computed using the inverse demand function. Mozafari and
arimi (2011) represent two competitive road carriers within a non-cooperative game model. Each carrier has to set their price to
aximize their own profit and the demand is represented as a linear function of the carrier’s price and the competitor’s price. Shah

nd Brueckner (2012) also investigate competition between carriers: each of them fixes their price, frequency, and capacity. The
emand of shippers for a given carrier is represented as a function of price and frequency. The inconvenience of demand functions
s that they become hard to obtain when the number of shippers or alternatives increase (Li and Tayur, 2005), thus requiring a
umerical estimation or some simplifying assumptions.

An increasingly common way to model SNDP problems is using Stackelberg game or bilevel programming. This formulation was
irst proposed in intermodal freight transport by Tsai et al. (1994). The intermodal operator is the leader and sets the price of their
ervices to maximize their profit. Truck carriers are followers that will adjust their prices based on the leader’s decision and the
xogenous demand is split between the carriers using a logit model, where the considered attributes are the prices, travel times, and
eliability. A general formulation for the Joint Design and Pricing (JDP) on a network has been proposed by Brotcorne et al. (2008).
he network operator decides on the network design and prices to maximize their profits. The network and rates of the competitors
re assumed known and exogenous. The followers are the network users who seek to minimize their costs by selecting the services of
he operator or those of the competitors. The authors propose an iterative procedure to solve the JDP. Crevier et al. (2012) propose
similar formulation, with the addition of capacity constraints and revenue management considerations. Ypsilantis and Zuidwijk

2013) extend the JDP formulation to include time constraints, as well as capacity constraints. Their model is used to design and price
he hinterland barge services of an extended gate operator. In their work, Tawfik and Limbourg (2019) include some level-of-service
ttributes in the JDP formulation. In particular, the lower level costs are more detailed as they not only consider transport costs
ut also the cost of capital: each cost component is weighted by a coefficient estimated using a random utility model. An iterative
euristic is later proposed to solve large instances of the JDP (Tawfik et al., 2022). A similar formulation is adopted by Zhang and
i (2019) to design and price rail container transport. The lower level objective is to minimize the generalized costs, made of price,
ransport time, convenience, and security. Only the price is endogenous to the model. The same authors also propose a time-varying
odel (Zhang et al., 2019; Li and Zhang, 2020). A single-level formulation is used and the demand follows a logit model with
rice as a single attribute. The model proposed by Wang et al. (2023) extends the JDP of Tawfik and Limbourg (2019) with the
ntroduction of additional cost components. The transport operator faces some waiting costs and penalties for an under-utilization of
heir capacity, while the lower level costs also embed heterogeneous shipper classes through different values of time and reliability.

Finally, there also exist a few different versions of Stackelberg game. A monopoly setting is proposed by Qiu et al. (2021) where a
interland carrier sets services and prices in multiple planning horizons. The followers are represented by a set of captive consignees
hat minimize their transport and storage costs. Lee et al. (2014b) consider three different actors as leaders and all shippers as
ollowers. The upper level itself is represented as a three-level program where ocean carriers are leaders of terminal operators
hich, in turn, are leaders of land carriers (Lee et al., 2014a). At the lower level, shippers set their production, consumption, and

ransportation demand using ‘‘spatial price equilibrium’’.
The relevance of bilevel models is questioned by Martin et al. (2021), especially because of the simplifying assumptions regarding

emand modeling (pure cost minimizers and homogeneous preferences). They propose an SNDP model applied to an express shipping
ervice by airplanes and trucks. In their profit maximization problem, the transport operator has to set prices for some given service
imes that can be selected by their customers. The service time chosen by each customer is the one providing a welfare greater or
qual to all the other options.

The novelty of our CD-SNDP is that it includes a stochastic demand model considering heterogeneity, within a bilevel
ptimization setting. The proposed formulation is inspired by the work of Tawfik and Limbourg (2019), where the cost minimization
f shippers is replaced by the maximization of their utility. In our work, besides the costs, the utility functions also consider the
ransport time, the accessibility of a mode, and the frequency of intermodal services. This last element implies that now, both the
rice and frequency decisions of the transport operator influence the shippers. This CD-SNDP formulation then allows for a more
etailed and realistic representation of the shippers’ characteristics and behavior towards the prices and services designed by the
perator. To include stochasticity and heterogeneity in our model, we make use of choice-based optimization: hereafter are presented
ome applications of this method to other transportation problems.
4
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Table 1
Summary of existing bilevel models for intermodal Service Network Design and Pricing problems.

Reference Fleet
constraints

Deterministic
or Stochastic

Demand
function 𝐹 (⋅)a

Hetero-geneity Cross-level variables

Tsai et al. (1994) ✓ D 𝐹 (𝑐) Price
Brotcorne et al. (2008) D 𝐹 (𝑐) Price
Crevier et al. (2012) ✓ D 𝐹 (𝑐, 𝐿𝑜𝑆) ✓ Price
Ypsilantis and Zuidwijk (2013) ✓ D 𝐹 (𝑐) Price
Lee et al. (2014b) ✓ D 𝐹 (𝑐, 𝑉 𝑜𝑇 ) ✓ Price
Tawfik and Limbourg (2019) D 𝐹 (𝑐, 𝑉 𝑜𝑇 ) Price
Zhang and Li (2019) ✓ D 𝐹 (𝑐, 𝑉 𝑜𝑇 , 𝐿𝑜𝑆) Price
Qiu et al. (2021) ✓ D 𝐹 (𝑐) Price
Wang et al. (2023) D 𝐹 (𝑐, 𝑉 𝑜𝑇 , 𝑉 𝑜𝑅) ✓ Price & Freq.
Proposed CD-SNDP ✓ S 𝐹 (𝑐, 𝑓 , 𝑢) ✓ Price & Freq.

a 𝑐 = costs, 𝐿𝑜𝑆 = level of service, 𝑉 𝑜𝑇 = value of time, 𝑉 𝑜𝑅 = value of reliability, 𝑓 = frequency, 𝑢 = unobserved attributes.

.2. Choice-based optimization in transportation

The term ‘‘choice-based (or choice-driven) optimization’’ refers to optimization problems that explicitly include a discrete choice
odel into their formulation (Pacheco Paneque, , 2020). That is why works decoupling the optimization from the demand, using

terative procedures such as simulation–optimization, are not considered here (e.g., Liu et al. (2019)).
Although not for freight, choice-based optimization has been used in a few works to model passenger SND problems. Wang

nd Lo (2008) propose a profit maximization problem to support the design of ferry services, where the operator decides on the
tineraries and schedules of the ferries. They assume that the passenger demand is split according to a logit model including two
ttributes: a given price, and the travel time, which is dependent on the decision variables. Huang et al. (2018) also include a logit
odel into a profit maximization problem to design a car-sharing network. Among other things, the operator decides on the number

f car-sharing stations to open. The utility function of car-sharing is composed of given rental costs and walking access costs. The
atter are directly dependent on the number of opened stations. A drawback of these two models is that they are non-linear due
o the exponential terms inherent to the logit model. A Mixed-Integer Linear Programming (MILP) including a logit mode choice
odel is proposed by Hartleb et al. (2021) to design passenger rail services. The main decision is the selection of lines to open. To

et rid of the exponential terms of the logit model, the authors precompute the modal shares of rail for each possible solution. This
recomputation technique is useful when only binary or integer variables are included in the choice model. However, as mentioned
y the authors, the model can become intractable when the instance size increases.

Choice-based optimization has also been applied to facility location and pricing problems. It is used by Lüer-Villagra and
arianov (2013) to set up hubs and prices for an airline company. The demand is split between companies using a logit model
ith price as a unique attribute. A similar modeling approach is adopted by Zhang (2015) to locate retail stores and set selling
rices. Zhang et al. (2018) study an intermodal dry port location and pricing problem where the route choice of shippers is
etermined using a logit model including six attributes, where only transport cost depends on the decision variables. The common
oint of these three models is that they are all non-linear: therefore, heuristics are required to solve them.

In most of the aforementioned models, the inclusion of discrete choice into an optimization problem results in a non-linear
odel. In their work, Paneque et al. (2021) propose a general framework to deal with more advanced choice models. In particular,

he authors rely on the Sample Average Approximation (SAA) principle to deal with the non-linearities of the choice model and,
herefore, come up with a MILP model. The proposed model is then applied to the pricing of parking services using a Mixed logit
o represent the demand. The latter comprises price as an endogenous attribute and other exogenous attributes. Bortolomiol et al.
2021) develop this framework further to model oligopolistic competition, whereas Schlicher and Lurkin (2022) present a non-linear
ooperative game to model collaborative pricing of urban mobility.

The present CD-SNDP is inspired by the work of Paneque et al. (2021) to integrate an existing Mixed logit model within a
ilevel setting. Specifically, error terms are included in the utilities to account for the attributes that are not captured by the model
ut still play a role in the mode choice. Moreover, the coefficient representing cost sensitivity is considered randomly distributed
o consider the heterogeneous preferences of shippers. It is assumed that the probability distributions of the error terms and the
ost coefficient are known and the resulting CD-SNDP problem is solved using stochastic optimization. The addition of these more
etailed behavioral attributes within SND models aims at providing a more realistic representation of shippers’ reaction to the
roposed services, ultimately helping intermodal operators to make more informed design and pricing decisions.

The following section provides a recap of the main characteristics of the previously reviewed bilevel SNDP models and sums up
he contributions of our work.

.3. Contributions

The existing bilevel models for SNDP presented in Section 2.1 are sorted in Table 1. In particular, it shows whether some
onstraints regarding the fleet are included (e.g., size limit). It also indicates how the transport demand is modeled: most works
5
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unobserved attributes that play a role in the choices of shippers. In addition, only three studies embed shippers’ heterogeneity
through distinct values of time (or reliability). Finally, only one work considers that frequencies also influence the demand alongside
the prices endogenously in the optimization model.

The proposed CD-SNDP is a generalization of the model by Tawfik and Limbourg (2019). Firstly, it generalizes the network
tructure as cycles and services with multiple stops are now allowed. Secondly, the shippers’ objective is also generalized as they
o not only proceed to a minimization of their costs but instead maximize their utilities. These utilities contain other attributes
esides the costs, such as frequency, accessibility, etc. Thirdly, our formulation generalizes the representation of shippers as it can
ccommodate some unobserved attributes (via randomly distributed error terms) and shippers’ heterogeneity (through the Mixed
ogit formulation). Because of these features, the proposed CD-SNDP becomes a stochastic problem, as opposed to the previous
orks that all assumed a deterministic setting. Finally, the service frequency is made endogenous to the optimization model along
ith the price. A summary of the aforementioned features can be found on the last row of Table 1.

The contributions of this paper are summarized as follows:

1. Inclusion of shippers’ heterogeneity and unobserved attributes within an SNDP model, which leads to a stochastic optimization
model;

2. Consideration of realistic features (service frequency as a cross-level variable alongside the price, fleet constraints, cycle-based
formulation), which increases the problem’s complexity;

3. Application to a real logistics network, whose data have also been used to estimate and validate the choice model integrated
into the SNDP.

. Methodology

The service network design and pricing problem is represented by a bilevel formulation. The upper level represents the decisions
f the transport operator aiming at maximizing their profit and the lower level corresponds to the utility maximization of the
hippers. The latter brings additional complexity to the problem as the two decision variables of the upper level (price and frequency)
re now included in the lower level, unlike the JDP of Tawfik and Limbourg (2019) where only the price is included but not the
requency.

Concerning the upper level, it differs from the JDP in two aspects. Firstly, the arc-based formulation of services is replaced
y a cycle-based formulation. The latter is deemed more accurate to represent realistic decision-making. Indeed, most intermodal
ransport services go back and forth on an itinerary with a defined schedule. The cycle-based representation also enables a more
laborate representation of services as multiple intermediary stops can be added in both directions. In addition, it simplifies the asset
anagement of the operators. In an arc-based formulation, they may need to re-balance the vehicles at the end of the planning
orizon; whereas a cycle-based representation ensures that each vehicle ends up at its starting point. It is noteworthy that the
rc-based pricing representation is not changed compared to the JDP. Indeed, shippers will pay only for the transport of their cargo
rom its origin to its destination, and not for the whole cycle. The second difference is the addition of fleet size and cycle time
easibility constraints. The former restricts the actions of the transport operator as they do not have an infinite number of vehicles
t their disposal to satisfy the demand. The latter determines, for each service, the number of cycles that can be performed by one
ehicle during the planning horizon given the cycle’s duration. Moreover, a heterogeneous fleet is considered.

In the remainder of this paper, the JDP with fleet constraints will be used as Benchmark. The benchmark with cycle-based
ormulation (instead of path-based) will be further referred to as SNDP. Finally, the proposed choice-driven model, which considers
tility maximization of shippers, is denoted CD-SNDP. The notations for the CD-SNDP are described in the following paragraphs.

.1. Problem formulation

We consider a transport operator as the decision-maker: they have a potential demand made of multiple shippers and face the
ompetition of several other carriers/transport modes. The operator and their competitors operate on a multimodal network. The
ompetition’s services are assumed known by the operator, who has to decide which terminals to serve and at which frequency.
n addition, the operator has to set a single price for each Origin–Destination (OD) pair that they will charge the shippers. The
ransport network is represented as a directed graph  = ( ,), where  is the set of terminals and  = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗}
he set of arcs (OD pairs) between these terminals.

.1.1. Upper level
The operator’s fleet is heterogeneous, therefore the different vehicle types are denoted by set . The number of available vehicles

er type is 𝑉𝑘 and their capacity is 𝑄𝑘.
The set  includes all transport services that can be run by the operator. Unlike the benchmark, where each service corresponds

o a single arc of , a service is composed of a sequence of arcs. Each arc in this sequence is called a leg and the whole sequence
f legs for a given service 𝑠 is denoted 𝑠. The cycle-based formulation of the problem implies that the sequence starts and ends at
he same node. This set of services  has to be generated prior to the optimization. For small networks, it can contain all possible
ervices; but for large networks, decision rules have to be implemented to restrict the size of this set (e.g.: enforce minimal/maximal
umber of stops or travel time per service).

The maximum number of cycles of service 𝑠 that can be performed by vehicle type 𝑘 is named 𝑊𝑠𝑘: it typically consists of the
FIX
6

aximum operating time divided by the cycle time (sum of travel time and time at terminals). Each service 𝑠 has a fixed cost 𝑐𝑠𝑘
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Table 2
Notation.
Sets:
 Set of terminals (indices: 𝑖, 𝑗)
 Set of arcs (𝑖, 𝑗)
 Set of vehicle types (index: 𝑘)
 Set of potential services (index: 𝑠)
𝑠 Set of legs of service 𝑠 ∈  (index: 𝑙𝑠)
 Set of competing alternatives (index: ℎ)

Parameters:
𝑉𝑘 Number of vehicles of type 𝑘 in the operator’s fleet
𝑄𝑘 Capacity of vehicle type 𝑘 [TEUs]
𝑊𝑠𝑘 Maximum number of cycles of service 𝑠 that can be performed by vehicle type 𝑘
𝑐FIX𝑠𝑘 Fixed cost of operating service 𝑠 with vehicle type 𝑘 [e]
𝑐VAR𝑖𝑗𝑠𝑘 Variable cost of transport between 𝑖 and 𝑗 with service 𝑠 and vehicle type 𝑘 [e/TEU]
𝛿𝑖𝑗𝑙𝑠 Dummy parameter equal to 1 if container traveling from 𝑖 to 𝑗 uses service leg 𝑙𝑠, 0 otherwise
𝐷𝑖𝑗 Aggregated transport demand of shippers between 𝑖 and 𝑗 [TEUs]
𝑈𝑂
𝑖𝑗 Utility of using the operator’s services between 𝑖 and 𝑗

𝑈ℎ
𝑖𝑗 Utility of using competing alternative ℎ between 𝑖 and 𝑗

Variables:
𝑣𝑠𝑘 Number of vehicles of type 𝑘 assigned to service 𝑠 by the operator
𝑓𝑠𝑘 Frequency of service 𝑠 operated with vehicle type 𝑘
𝑝𝑖𝑗 Price charged by the operator to shippers wanting to transport goods from 𝑖 to 𝑗 [e/TEU]
𝑥𝑖𝑗𝑠𝑘 Cargo volume using service 𝑠 operated with vehicle type 𝑘 between 𝑖 and 𝑗 [TEUs]
𝑧ℎ𝑖𝑗 Cargo volume using competing alternative ℎ between 𝑖 and 𝑗 [TEUs]

of operating it with vehicle type 𝑘 and a variable cost 𝑐VAR𝑖𝑗𝑠𝑘 per container transported between terminals 𝑖 and 𝑗. Moreover, we
introduce the parameter 𝛿𝑖𝑗𝑙𝑠 , which equals one if a container traveling from 𝑖 to 𝑗 uses the service leg 𝑙𝑠 and zero otherwise.

The transport operator has three decision variables in the upper level problem:

• 𝑣𝑠𝑘 is the number of vehicles of type 𝑘 that the operator allocates to each service 𝑠;
• 𝑓𝑠𝑘 is the frequency of each service 𝑠 per vehicle type 𝑘;
• 𝑝𝑖𝑗 is the price per container charged to shippers requesting to transport goods from 𝑖 to 𝑗.

3.1.2. Lower level
The shippers are represented as a whole, i.e. their demand is aggregated. The container transport demand between terminals 𝑖

and 𝑗 is denoted 𝐷𝑖𝑗 . Shippers decide to assign demand to the transport operator or their competitors by the maximization of their
utility. The utility function of using the services proposed by the transport operator between 𝑖 and 𝑗 is denoted 𝑈𝑂

𝑖𝑗 and is dependent
on 𝑝𝑖𝑗 and 𝑓𝑠𝑘, whereas the utility of using a competing alternative ℎ is given as 𝑈ℎ

𝑖𝑗 . Finally, the decision variables of the lower
level consist of the number of containers that are assigned to the operator’s services (𝑥𝑖𝑗𝑠𝑘) and to every competing alternative (𝑧ℎ𝑖𝑗).

hen some demand from 𝑖 to 𝑗 is assigned to the transport operator, it is assumed that the operator will determine the services
o which the containers will be assigned. Of course, the chosen services have to pass through both 𝑖 and 𝑗 and to have enough
emaining capacity.

All the aforementioned sets, parameters, and decision variables are listed in Table 2.

.1.3. Mathematical model
The proposed SNDP is expressed as a Bilevel Problem (BLP):

(𝐁𝐋𝐏) max
𝑣,𝑓 ,𝑝,𝑥,𝑧

∑

(𝑖,𝑗)∈

∑

𝑠∈

∑

𝑘∈
𝑝𝑖𝑗𝑥𝑖𝑗𝑠𝑘 −

∑

𝑠∈

∑

𝑘∈
𝑐FIX𝑠𝑘 𝑓𝑠𝑘 −

∑

(𝑖,𝑗)∈

∑

𝑠∈

∑

𝑘∈
𝑐VAR𝑖𝑗𝑠𝑘 𝑥𝑖𝑗𝑠𝑘 (1)

.t.
∑

𝑠∈
𝑣𝑠𝑘 ≤ 𝑉𝑘 ∀𝑘 ∈  (2)

𝑠𝑘 ≤ 𝑊𝑠𝑘𝑣𝑠𝑘 ∀𝑠 ∈  , ∀𝑘 ∈  (3)
∑

(𝑖,𝑗)∈
𝛿𝑖𝑗𝑙𝑠𝑥𝑖𝑗𝑠𝑘 ≤ 𝑄𝑘𝑓𝑠𝑘 ∀𝑙𝑠 ∈ 𝑠, ∀𝑠 ∈  , ∀𝑘 ∈  (4)

𝑥𝑖𝑗𝑠𝑘 ≤
∑

𝑙𝑠∈𝑠

𝛿𝑖𝑗𝑙𝑠𝐷𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈  (5)
7

𝑝𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈  (6)
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𝑣𝑠𝑘, 𝑓𝑠𝑘 ∈ N ∀𝑠 ∈  , ∀𝑘 ∈  (7)

where 𝑥 and 𝑧 solve:

max
𝑥,𝑧

∑

(𝑖,𝑗)∈

(

∑

𝑠∈

∑

𝑘∈
𝑈𝑂
𝑖𝑗 𝑥𝑖𝑗𝑠𝑘 +

∑

ℎ∈
𝑈ℎ
𝑖𝑗𝑧

ℎ
𝑖𝑗

)

(8)

s.t.
∑

𝑠∈

∑

𝑘∈
𝑥𝑖𝑗𝑠𝑘 +

∑

ℎ∈
𝑧ℎ𝑖𝑗 = 𝐷𝑖𝑗 ∀(𝑖, 𝑗) ∈  (9)

𝑥𝑖𝑗𝑠𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈  (10)

𝑧ℎ𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (11)

At the upper level, the objective function of the transport operator (1) is to maximize their profit. It is computed as the revenues
from the transported containers minus the fixed and variable costs of the offered services. Constraint (2) is the fleet size constraint
for each vehicle type. Constraint (3) ensures that the service’s frequency is inferior to the maximum number of cycles that can be
performed by the assigned vehicles. Constraint (4) assures that the total number of containers transported on each leg of every
service does not exceed the available capacity of the service, whereas constraint (5) ensures that no container can be assigned to a
service that does not go through the origin or destination terminal of the container. The domains of the operator’s decision variables
are defined by constraints (6)–(7).

Regarding the lower level, shippers seek to maximize their utility (8) by assigning their containers either to the operator’s services
or to the competition. Moreover, constraint (9) enforces the total transport demand to be met. Finally, constraints (10)–(11) define
the domain of the decision variables of the shippers.

3.2. Model transformation

The proposed bilevel problem can be reformulated as a single level problem and then linearized, for more details on these
procedures the reader is referred to Tawfik and Limbourg (2019). For the reformulation, additional variables 𝜆𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 
are introduced: they represent the dual variables related to constraints (9). The model can then be transformed using the
Karush–Kuhn–Tucker conditions. After this process, the following constraints appear:

𝜆𝑖𝑗 ≤ −𝑈𝑂
𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (12)

𝜆𝑖𝑗 ≤ −𝑈ℎ
𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (13)

(−𝑈𝑂
𝑖𝑗 − 𝜆𝑖𝑗 )

∑

𝑠∈

∑

𝑘∈
𝑥𝑖𝑗𝑠𝑘 = 0 ∀(𝑖, 𝑗) ∈  (14)

(−𝑈ℎ
𝑖𝑗 − 𝜆𝑖𝑗 )𝑧

ℎ
𝑖𝑗 = 0 ∀(𝑖, 𝑗) ∈  (15)

Note that constraints (14) and (15) are non-linear. To address these, the big M technique is used and binary variables are
introduced: 𝑦I𝑖𝑗 and 𝑦II𝑖𝑗 for constraint (14); 𝑦Iℎ𝑖𝑗 and 𝑦IIℎ𝑖𝑗 for constraint (15).

The only remaining non-linear expression is the first term of the operator’s objective function (1). To remedy it, the strong duality
theorem can be applied to the lower level problem (8)–(11), as in the work of Tawfik and Limbourg (2019). At optimality, we have:

−
∑

(𝑖,𝑗)∈

(

∑

𝑠∈

∑

𝑘∈
𝑈𝑂
𝑖𝑗 𝑥𝑖𝑗𝑠𝑘 +

∑

ℎ∈
𝑈ℎ
𝑖𝑗𝑧

ℎ
𝑖𝑗

)

=
∑

(𝑖,𝑗)∈
𝐷𝑖𝑗𝜆𝑖𝑗 (16)

In addition, the following form is considered for the utility function of the transport operator:

𝑈𝑂
𝑖𝑗 = �̄�𝑂

𝑖𝑗 + 𝛽𝑐𝑝𝑖𝑗 + 𝛽𝑓𝑓𝑖𝑗 = �̄�𝑂
𝑖𝑗 + 𝛽𝑐𝑝𝑖𝑗 + 𝛽𝑓

∑

𝑠∈

∑

𝑘∈
𝜙𝑖𝑗𝑠𝑓𝑠𝑘 (17)

where �̄�𝑂
𝑖𝑗 is the part of utility depending on attributes exogenous to the model (e.g., accessibility, presence of a seaport, value of

time), 𝛽𝑐 and 𝛽𝑓 are the coefficients respectively weighting the importance of price and frequency in the utility function, and 𝜙𝑖𝑗𝑠 is
a dummy equal to one if both terminals 𝑖 and 𝑗 are contained in service 𝑠 and zero otherwise. Then, using Eqs. (16) and (17), the
first term in (1) can be expressed as:

∑

𝑠∈

∑

𝑘∈
𝑝𝑖𝑗𝑥𝑖𝑗𝑠𝑘 = − 1

𝛽𝑐

(

𝐷𝑖𝑗𝜆𝑖𝑗 +
∑

ℎ∈
𝑈ℎ
𝑖𝑗𝑧

ℎ
𝑖𝑗 +

∑

𝑠∈

∑

𝑘∈
𝑥𝑖𝑗𝑠𝑘

(

�̄�𝑂
𝑖𝑗 + 𝛽𝑓

∑

𝑠∈

∑

𝑘∈
𝜙𝑖𝑗𝑠𝑓𝑠𝑘

))

(18)

Because we now have 𝑥𝑖𝑗𝑠𝑘 multiplying the sum of 𝑓𝑠𝑘, we still did not completely eliminate non-linearity. This new term is
nevertheless more convenient as the order of magnitude of the frequency is more limited than that of the price. Let us first define
the frequency per OD pair: 𝑓𝑖𝑗 =

∑

𝑠∈
∑

𝑘∈ 𝜙𝑖𝑗𝑠𝑓𝑠𝑘. This term can then be represented in base 2 conveniently: 𝑓𝑖𝑗 =
∑𝐵𝑖𝑗−1
𝑏=0 2𝑏𝑓𝑖𝑗𝑏,

where 𝑓𝑖𝑗𝑏 are binary variables and 𝐵𝑖𝑗 an upper bound of log2 𝑓𝑖𝑗 . The product term in (18) can ultimately be linearized using the
well-known technique for the product of binary and continuous variables. The variable representing the product is referred to as
8

𝑎𝑖𝑗𝑠𝑘𝑏.
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𝑎

The final MILP is then formulated as follows:

(𝐌𝐈𝐋𝐏) max
𝑣,𝑓 ,𝑝,𝑥,𝑧

∑

(𝑖,𝑗)∈
− 1
𝛽𝑐

⎛

⎜

⎜

⎝

𝐷𝑖𝑗𝜆𝑖𝑗 +
∑

ℎ∈
𝑈ℎ
𝑖𝑗𝑧

ℎ
𝑖𝑗 +

∑

𝑠∈

∑

𝑘∈
�̄�𝑂
𝑖𝑗 𝑥𝑖𝑗𝑠𝑘 +

∑

𝑠∈

∑

𝑘∈
𝛽𝑓

𝐵𝑖𝑗−1
∑

𝑏=0
2𝑏𝑎𝑖𝑗𝑠𝑘𝑏

⎞

⎟

⎟

⎠

−
∑

𝑠∈

∑

𝑘∈
𝑐FIX𝑠𝑘 𝑓𝑠𝑘 −

∑

(𝑖,𝑗)∈

∑

𝑠∈

∑

𝑘∈
𝑐VAR𝑖𝑗𝑠𝑘 𝑥𝑖𝑗𝑠𝑘

(19)

s.t. constraints (2)–(7) & (9)–(11)

𝑖𝑗𝑠𝑘𝑏 ≤ 𝐷𝑖𝑗𝑓𝑖𝑗𝑏 ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈ , ∀𝑏 ∈  (20)

𝑎𝑖𝑗𝑠𝑘𝑏 ≤ 𝑥𝑖𝑗𝑠𝑘 ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈ , ∀𝑏 ∈  (21)

𝑎𝑖𝑗𝑠𝑘𝑏 ≥ 𝑥𝑖𝑗𝑠𝑘 −𝐷𝑖𝑗 (1 − 𝑓𝑖𝑗𝑏) ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈ , ∀𝑏 ∈  (22)

∑

𝑠∈

∑

𝑘∈
𝜙𝑖𝑗𝑠𝑓𝑠𝑘 =

𝐵𝑖𝑗−1
∑

𝑏=0
2𝑏𝑓𝑖𝑗𝑏 ∀(𝑖, 𝑗) ∈  (23)

𝜆𝑖𝑗 ≤ −(�̄�𝑂
𝑖𝑗 + 𝛽𝑐𝑝𝑖𝑗 + 𝛽𝑓

𝐵𝑖𝑗−1
∑

𝑏=0
2𝑏𝑓𝑖𝑗𝑏) ∀(𝑖, 𝑗) ∈  (24)

− (�̄�𝑂
𝑖𝑗 + 𝛽𝑐𝑝𝑖𝑗 + 𝛽𝑓

𝐵𝑖𝑗−1
∑

𝑏=0
2𝑏𝑓𝑖𝑗𝑏) − 𝜆𝑖𝑗 ≤ 𝑀 I

𝑖𝑗𝑦
I
𝑖𝑗 ∀(𝑖, 𝑗) ∈  (25)

∑

𝑠∈

∑

𝑘∈
𝑥𝑖𝑗𝑠𝑘 ≤ 𝑀 II

𝑖𝑗𝑦
II
𝑖𝑗 ∀(𝑖, 𝑗) ∈  (26)

𝑦I𝑖𝑗 + 𝑦
II
𝑖𝑗 ≤ 1 ∀(𝑖, 𝑗) ∈  (27)

𝜆𝑖𝑗 ≤ −𝑈ℎ
𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (28)

− 𝑈ℎ
𝑖𝑗 − 𝜆𝑖𝑗 ≤ 𝑀 Iℎ

𝑖𝑗 𝑦
Iℎ
𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (29)

𝑧ℎ𝑖𝑗 ≤ 𝑀 IIℎ
𝑖𝑗 𝑦

IIℎ
𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (30)

𝑦Iℎ𝑖𝑗 + 𝑦
IIℎ
𝑖𝑗 ≤ 1 ∀(𝑖, 𝑗) ∈ , ∀ℎ ∈  (31)

𝑓𝑖𝑗𝑏 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ , ∀𝑏 ∈  (32)

𝑎𝑖𝑗𝑠𝑘𝑏 ∈ N ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈ , ∀𝑏 ∈  (33)

𝑦I𝑖𝑗 , 𝑦
II
𝑖𝑗 , 𝑦

Iℎ
𝑖𝑗 , 𝑦

IIℎ
𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈  (34)

𝜆𝑖𝑗 ∈ R ∀(𝑖, 𝑗) ∈  (35)

3.3. Stochastic formulation

In Eq. (17), we set the generic form of the utility function 𝑈𝑂
𝑖𝑗 . In particular, it was assumed to be fully deterministic, but this is not

the case in reality. Firstly, the utility traditionally contains a random term (also called ‘‘error term’’), representing the unobserved
attributes playing a role in the mode choice. Secondly, one or several 𝛽 coefficients can be assumed as randomly distributed, to
account for heterogeneous preferences. Note that these remarks also hold for 𝑈ℎ

𝑖𝑗 . The probability distributions of the random terms
need to be assumed or estimated a priori: in our setting, we consider that the distributions are given.

With these considerations, the CD-SNDP model becomes a stochastic optimization problem. We then come up with a SAA
formulation to solve it. In this formulation, shippers are not represented as a whole anymore; on the contrary, the population
is represented as a sample  composed of 𝑅 individual shippers. The total demand per OD pair (𝑖, 𝑗) is equally divided among
the shippers, so that term 𝐷𝑖𝑗 is replaced by 𝐷𝑖𝑗∕𝑅 in the MILP formulation above. For every shipper 𝑟, the utility function of the
transport operator becomes:

𝑈𝑂
𝑖𝑗𝑟 = �̄�𝑂

𝑖𝑗𝑟 + 𝛽
𝑟
𝑐𝑝𝑖𝑗 + 𝛽

𝑟
𝑓𝑓𝑖𝑗 + 𝜖

𝑂
𝑟 (36)

where 𝜖𝑂𝑟 is the error term representing unobserved attributes influencing the choice of shipper 𝑟 toward the transport operator.
ℎ ℎ𝑟 ℎ
9

Similarly, the utility of competing modes also becomes shipper-dependent: 𝑈𝑖𝑗𝑟(𝛽 , 𝜖𝑟 ). For each shipper’s random 𝛽 and 𝜖, a draw
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is performed in the parameter’s distributions and the corresponding utility functions are computed. Since utility functions now differ
per shipper 𝑟, this impacts the mode choice such that the decision variables 𝑥𝑖𝑗𝑠𝑘𝑟 and 𝑧ℎ𝑖𝑗𝑟 become dependent on the sampling. This
s also true for the dual variables 𝜆𝑖𝑗𝑟. It means that all constraints dependent on these variables need to hold for each shipper 𝑟.

Nevertheless, the decision variables of the transport operator (𝑝𝑖𝑗 , 𝑣𝑠𝑘, 𝑓𝑠𝑘, 𝑓𝑖𝑗𝑏) are fixed once and for all, independently of the
sampling. Finally, the objective function is modified to maximize the sum of the profits over all shippers 𝑟 in the sample .

3.4. Predetermination heuristic

To speed up the solution time of the stochastic formulations, we propose a ‘‘predetermination heuristic’’. As its name suggests,
it consists of determining the operator’s utility based on given price and frequency values before the optimization. To compute the
operator’s utility, discrete sets of predefined prices  and frequencies  are considered. It is also assumed that the sampling of
the shippers’ population is already performed so that the utilities of competing alternatives 𝑈ℎ

𝑖𝑗𝑟 can be computed. Along with the
predefined prices 𝑝 and frequencies 𝜓 , it allows to pre-compute the demand faced by the operator 𝑑𝜓𝑝𝑖𝑗 for each OD pair.

To compute the resulting profit on an OD pair 𝑖𝑗, the fixed and variable costs per vehicle type 𝑘 are needed. However, the
available cost parameters are expressed per service 𝑠 and not directly per OD pair. Therefore, only the direct service between
terminals 𝑖 and 𝑗 is considered. Since the variable cost is also dependent on 𝑖 and 𝑗, we simply select the variable cost of the direct
service for each vehicle type 𝑐VAR𝑖𝑗𝑘 . For the fixed cost 𝑐FIX𝑖𝑗𝑘 , we select the fixed cost of the direct service for each vehicle type and
divide it by two (to get the cost for only one service leg). For a given frequency 𝜓 and OD pair 𝑖𝑗, we further consider the set 𝛯𝜓𝑖𝑗
of all the possible combinations of frequencies per vehicle type 𝜓𝑖𝑗𝑘, such that ∑𝑘∈ 𝜓𝑖𝑗𝑘 = 𝜓 and that the fleet size and cycle time
easibility constraints are respected. Algorithm 1 shows the steps to compute the resulting profit for a given combination of 𝜓𝑖𝑗𝑘
nd a specific price 𝑝 knowing the demand 𝑑𝜓𝑝𝑖𝑗 .

Algorithm 1: Profit computation per OD pair 𝑖𝑗
Rank the vehicle types in increasing order of 𝑐VAR𝑖𝑗𝑘 to form the set ′;
for 𝑘′ ∈ ′ do

Define the capacity 𝛩𝑖𝑗𝑘′ = 𝜓𝑖𝑗𝑘′𝑄𝑘′ ;
Define the payload per vehicle type 𝑞𝑖𝑗𝑘′ = min(𝑑𝜓𝑝𝑖𝑗 , 𝛩𝑖𝑗𝑘′ );
Update the demand left to assign 𝑑𝜓𝑝𝑖𝑗 = 𝑑𝜓𝑝𝑖𝑗 − 𝑞𝑖𝑗𝑘′

end
Return the profit: ∑𝑘′∈′ (𝑝𝑞𝑖𝑗𝑘′ − 𝜓𝑖𝑗𝑘′ 𝑐FIX𝑖𝑗𝑘′ − 𝑞𝑖𝑗𝑘′ 𝑐

VAR
𝑖𝑗𝑘′ )

For each combination 𝜉 ∈ 𝛯𝜓𝑖𝑗 , it is then possible to determine the price 𝑃 𝜉𝑖𝑗𝜓 generating the most profit. The steps to obtain this
value for every OD pair 𝑖𝑗 and predefined frequency 𝜓 are given in Algorithm 2.

Algorithm 2: Price determination method
for (𝑖, 𝑗) ∈ , 𝑟 ∈  do

Determine 𝑈 ′
𝑖𝑗𝑟 = maxℎ∈ 𝑈ℎ

𝑖𝑗𝑟, and ℎ′𝑖𝑗𝑟 = argmaxℎ∈ 𝑈ℎ
𝑖𝑗𝑟;

end
for (𝑖, 𝑗) ∈ , 𝜓 ∈  do

for 𝑝 ∈  do
𝑑𝜓𝑝𝑖𝑗 = 0;
for 𝑟 ∈  do

Compute 𝑈𝑂
𝑖𝑗𝑟(𝜓, 𝑝) according to (36);

if 𝑈𝑂
𝑖𝑗𝑟(𝜓, 𝑝) ≥ 𝑈 ′

𝑖𝑗𝑟 then
𝑑𝜓𝑝𝑖𝑗 = 𝑑𝜓𝑝𝑖𝑗 + 𝐷𝑖𝑗

||

;
end

end
for 𝜉 ∈ 𝛯𝜓𝑖𝑗 do

Compute the associated profit 𝜋𝜉𝑝𝑖𝑗𝜓 using Algorithm 1;
end

end
for 𝜉 ∈ 𝛯𝜓𝑖𝑗 do

𝑃 𝜉𝑖𝑗𝜓 = argmax𝑝∈ 𝜋
𝜉𝑝
𝑖𝑗𝜓 ;

end
end
10
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Once Algorithm 2 has been used to compute demand values 𝑑𝜓𝑝𝑖𝑗 and price values 𝑃 𝜉𝑖𝑗𝜓 , they can then be used as parameters to

olve an auxiliary optimization problem (AP). This problem consists in determining, for a given sample , the optimal frequencies

or fixed prices �̃�𝑖𝑗 :

(𝐀𝐏) max
𝑣,𝑓 ,𝑔,𝑥,𝑧

1
||

∑

𝑟∈

(

∑

(𝑖,𝑗)∈

∑

𝑠∈

∑

𝑘∈
�̃�𝑖𝑗𝑥𝑖𝑗𝑠𝑘𝑟 −

∑

𝑠∈

∑

𝑘∈
𝑐FIX𝑠𝑘 𝑓𝑠𝑘 −

∑

(𝑖,𝑗)∈

∑

𝑠∈

∑

𝑘∈
𝑐VAR𝑖𝑗𝑠𝑘 𝑥𝑖𝑗𝑠𝑘𝑟

)

(37)

s.t.
∑

𝑠∈
𝑣𝑠𝑘 ≤ 𝑉𝑘 ∀𝑘 ∈  (38)

𝑓𝑠𝑘 ≤ 𝑊𝑠𝑘𝑣𝑠𝑘 ∀𝑠 ∈  , ∀𝑘 ∈  (39)
∑

𝑟∈

∑

(𝑖,𝑗)∈
𝛿𝑖𝑗𝑙𝑠

𝑥𝑖𝑗𝑠𝑘𝑟
||

≤ 𝑄𝑘𝑓𝑠𝑘 ∀𝑙𝑠 ∈ 𝑠, ∀𝑠 ∈  , ∀𝑘 ∈  (40)

𝑥𝑖𝑗𝑠𝑘𝑟 ≤
∑

𝑙𝑠∈𝑠

𝛿𝑖𝑗𝑙𝑠𝐷𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈ , ∀𝑟 ∈  (41)

∑

𝑠∈

∑

𝑘∈
𝑥𝑖𝑗𝑠𝑘𝑟 + 𝑧𝑖𝑗𝑟 = 𝐷𝑖𝑗 ∀(𝑖, 𝑗) ∈ , ∀𝑟 ∈  (42)

∑

𝜓∈
𝑔𝑖𝑗𝜓 ≤ 1 ∀(𝑖, 𝑗) ∈  (43)

∑

𝑠∈

∑

𝑘∈
𝜙𝑖𝑗𝑠𝑓𝑠𝑘 =

∑

𝜓∈
𝜓𝑔𝑖𝑗𝜓 ∀(𝑖, 𝑗) ∈  (44)

∑

𝑟∈

∑

𝑠∈

∑

𝑘∈

𝑥𝑖𝑗𝑠𝑘𝑟
||

≤
∑

𝜓∈
𝑔𝑖𝑗𝜓𝑑

𝜓�̃�
𝑖𝑗 ∀(𝑖, 𝑗) ∈  (45)

𝑠𝑘 ∈ N ∀𝑠 ∈  , ∀𝑘 ∈  (46)

𝑓𝑠𝑘 ∈ N ∀𝑠 ∈  , ∀𝑘 ∈  (47)

𝑔𝑖𝑗𝜓 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝜓 ∈  (48)

𝑥𝑖𝑗𝑠𝑘𝑟 ≥ 0 ∀(𝑖, 𝑗) ∈ , ∀𝑠 ∈  , ∀𝑘 ∈ , ∀𝑟 ∈  (49)

𝑧𝑖𝑗𝑟 ≥ 0 ∀(𝑖, 𝑗) ∈ , ∀𝑟 ∈  (50)

This auxiliary problem contains additional elements that deserve some discussion. First, the objective (37) is now formulated as

a SAA function and the decision variables 𝑥 and 𝑧 are now dependent on 𝑟. Constraints (40) to (42) are modified accordingly. A new

binary variable 𝑔𝑖𝑗𝜓 is introduced: it is equal to one if the predefined frequency 𝜓 is chosen for OD pair (𝑖, 𝑗), and zero otherwise.

Constraint (43) ensures that at most one frequency 𝜓 is chosen per OD pair. The value of 𝜓 is then linked to the decision variable of

services frequency 𝑓 through constraint (44). Finally, constraint (45) aggregates the decision variables 𝑥𝑖𝑗𝑠𝑘𝑟 of cargo assigned to the

operator over the whole sample and bounds it with the precomputed demand 𝑑𝜓𝑝𝑖𝑗 defined in Algorithm 2. This last constraint allows

to keep the utility functions out of the optimization problem. As a result, the variable 𝑧𝑖𝑗𝑟 is now independent of the competing

modes ℎ. Once the optimization is performed, the corresponding value of 𝑧∗𝑖𝑗𝑟 can be assigned to the competing mode ℎ′𝑖𝑗𝑟 with the

maximum utility as computed in Algorithm 2.

Getting rid of the utilities and the pricing decision in the optimization allows to considerably decrease the solving time. Indeed,

the variables 𝑝𝑖𝑗 , 𝑓𝑠𝑘𝑏, 𝑎𝑖𝑗𝑠𝑘𝑏, 𝜆𝑖𝑗 and 𝑦𝑖𝑗 ’s are not used anymore, and only the variables 𝑔𝑖𝑗𝜓 are added. The number of constraints is

also drastically reduced. The idea of the heuristic is to exploit this advantage to solve the auxiliary problem iteratively, as described

in Algorithm 3.
11
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Fig. 3. Network of the case study: the Rhine part of the RA corridor (Rivermap, 2024) together with the considered terminals.

Algorithm 3: Predetermination heuristic

Use Algorithm 2 to pre-compute 𝑑𝜓𝑝𝑖𝑗 and 𝑃 𝜉𝑖𝑗𝜓 ;
Define the set of visited solutions 𝛺 = ∅;
Set each �̃�𝑖𝑗 with arbitrary prices contained in  ;
Set each 𝑓𝑠𝑘 to zero;
while (�̃�𝑖𝑗 , 𝑓𝑠𝑘) ∉ 𝛺 do

Solve (AP) to get 𝑓 ∗
𝑠𝑘 and 𝑔∗𝑖𝑗𝜓 , i.e. the chosen frequency 𝜓 corresponding to predefined prices �̃�𝑖𝑗 ;

Update each 𝑓𝑠𝑘 with 𝑓 ∗
𝑠𝑘;

for (𝑖, 𝑗) ∈  do
for 𝑘 ∈  do

Compute 𝜓𝑖𝑗𝑘 =
∑

𝑠∈ 𝜙𝑖𝑗𝑠𝑓
∗
𝑠𝑘

end
Find the combination 𝜉 ∈ 𝛯𝜓𝑖𝑗 corresponding to the values 𝜓𝑖𝑗𝑘;
Update �̃�𝑖𝑗 with the value 𝑃 𝜉𝑖𝑗𝜓 ;

end
Add (�̃�𝑖𝑗 , 𝑓𝑠𝑘) to the set 𝛺;

end
Return the solution (�̃�𝑖𝑗 , 𝑓𝑠𝑘);

The performance of the heuristic is highly dependent on the size of sets  and  . The more values they contain, the better the
approximation at the cost of additional computational resources. These sets should then ensure good coverage of the search space
in order for the heuristic to return satisfying solutions.

4. Case study

The proposed CD-SNDP is applied to container transport on a small stretch of the European Rhine-Alpine (RA) corridor consisting
of 3 nodes: Rotterdam (RTM), Duisburg (DUI), and Bonn (BON). The network is further extended to 9 nodes, as depicted in Fig. 3.
We consider an inland vessel operator competing with two other modes (Road and Rail) and another IWT carrier.

4.1. Overview

The operator’s fleet is composed of 2 vessel types: 24 vessels of type M8 and 12 vessels of type M11 with a maximal capacity
of 180 TEUs and 300 TEUs, respectively. Each vessel type has a maximal operation time, 𝑇 𝑚𝑎𝑥, of 120 h per week. The transport
demand inputs are based on the NOVIMOVE project (Majoor et al., 2021), whereas the costs for IWT and the two competing modes
as well as the sailing time 𝑡𝑠𝑎𝑖𝑙 and the time spent in ports 𝑡𝑝𝑜𝑟𝑡 are estimated using the model of Shobayo et al. (2021). Based on
these inputs, the computation of the maximum number of cycles is straightforward: 𝑊 = 𝑇 𝑚𝑎𝑥∕(𝑡𝑠𝑎𝑖𝑙 + 𝑡𝑝𝑜𝑟𝑡).
12
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Regarding demand modeling, the utility functions for each shipper 𝑟 are formulated as follows:

𝑈𝑂
𝑖𝑗𝑟 = 𝛼IWT + 𝛽Inter𝑎 𝑎IWT

𝑖𝑗 + 𝛽IWT
𝑞 𝑞𝑖𝑗 + 𝛽Inter,𝑟𝑐 (𝒑𝒊𝒋 + VoT𝑡IWT

𝑖𝑗 ) + 𝛽Inter𝑓 𝒇 𝒊𝒋 + 𝜖𝑂𝑖𝑗𝑟 (51)

𝑈ℎ=IWT
𝑖𝑗𝑟 = 𝛼IWT + 𝛽Inter𝑎 𝑎IWT

𝑖𝑗 + 𝛽IWT
𝑞 𝑞𝑖𝑗 + 𝛽Inter,𝑟𝑐 (𝑝IWT

𝑖𝑗 + VoT𝑡IWT
𝑖𝑗 ) + 𝛽Inter𝑓 𝑓 IWT

𝑖𝑗 + 𝜖IWT
𝑖𝑗𝑟 (52)

𝑈ℎ=Rail
𝑖𝑗𝑟 = 𝛼Rail + 𝛽Inter𝑎 𝑎Rail𝑖𝑗 + 𝛽Inter,𝑟𝑐 (𝑝Rail𝑖𝑗 + VoT𝑡Rail𝑖𝑗 ) + 𝛽Inter𝑓 𝑓Rail

𝑖𝑗 + 𝜖Rail𝑖𝑗𝑟 (53)

𝑈ℎ=Road
𝑖𝑗𝑟 = 𝛼Road + 𝛽Road𝑎 𝑎Road𝑖𝑗 + 𝛽Road𝑐 (𝑝Road𝑖𝑗 + VoT𝑡Road𝑖𝑗 ) + 𝜖Road𝑖𝑗𝑟 (54)

where, for each mode, 𝛼 is the alternative specific constant, 𝑎 is an accessibility metric, and 𝑞𝑖𝑗 is a dummy equal to one if a seaport
is located at 𝑖 or 𝑗 (these three attributes were grouped under the term �̄� in Eq. (17)). Moreover, 𝑝 is the cost for shippers in
thousands of euros per TEU, 𝑓 is the weekly frequency for intermodal transports (i.e. IWT and Rail), 𝑡 is the total travel time in
hours, and VoT is the Value of Time expressed in 1000e/TEU/hour. Each attribute is weighted by a coefficient 𝛽 and each mode
has a random error term 𝜖. Although they have similarities, it is assumed that the vessel operator and the IWT carrier alternatives
are not correlated. The same assumption holds between all alternatives. Therefore, in the remainder of this work, all the error terms
𝜖𝑖𝑗𝑟 are considered independent and identically distributed (iid).

Within the CD-SNDP context, all the terms contained in the utilities of the competing modes (IWT, Rail, and Road) are exogenous
to the optimization model and are thus treated as parameters. Regarding the utility of the operator, only the terms in bold (𝑝𝑖𝑗 and
𝑓𝑖𝑗) are endogenous while the other terms are also parameters. 𝑝𝑖𝑗 is the decision variable on pricing and 𝑓𝑖𝑗 corresponds to the
term ∑

𝑠∈
∑

𝑘∈ 𝜙𝑖𝑗𝑠𝑓𝑠𝑘, as introduced in Eq. (17).
The model’s coefficients were estimated with aggregate data using a Weighted Logit methodology. It is named ‘‘weighted’’

because, during the estimation, the log-likelihood function is weighted by the yearly cargo flows on each OD pair (Rich et al.,
2009). It thus gives more importance to the OD pairs with high volumes. For more details, the reader is referred to Nicolet et al.
(2022). One noteworthy characteristic of the data on which the coefficients were estimated is that the frequency for IWT does not
exceed 35 services per week. Therefore, the following constraint is added to our CD-SNDP problem to guarantee consistency between
the results and the mode choice model:

𝑓𝑠𝑘 ≤ 35 ∀𝑠 ∈  , ∀𝑘 ∈  (55)

We use this case study to compare the results of 3 deterministic and 2 stochastic models. The former consist of the benchmark,
the SNDP, and the CD-SNDP, which uses only the deterministic part of the utility functions in Eqs. (51) to (54), i.e. without error
terms 𝜖𝑖𝑗𝑟 and with the same cost coefficients 𝛽Inter,𝑟𝑐 for all shippers. The latter two are stochastic variations of the CD-SNDP:

• Multinomial Logit (MNL): with iid error terms 𝜖𝑖𝑗𝑟, following an Extreme Value distribution;
• Mixed Logit: full utility specification as in Eqs. (51) to (54), i.e. with random 𝛽Inter,𝑟𝑐 following a Lognormal distribution of

parameters 𝜇Inter𝑐 and 𝜎Inter𝑐 (representing the heterogeneous cost sensitivity of shippers) together with the iid error terms
𝜖𝑖𝑗𝑟 (Nicolet et al., 2022).

4.2. Evaluation through out-of-sample simulation

To assess the solutions returned by these models, we simulate the demand response using an out-of-sample population. Indeed,
the profit returned by the optimization is the one expected based on the SAA and the model’s assumptions, but it does not indicate
how well the solution will perform with actual shippers. This out-of-sample simulation also allows to compare the different models
with each other. The procedure is as follows:

1. For each OD pair, generate a population of 1000 shippers (i.e. perform 1000 draws of 𝜖𝑖𝑗𝑟 and 𝛽Inter,𝑟𝑐 , note that these draws
are different than the ones used in the SAA) and divide the demand 𝐷𝑖𝑗 equally among the shippers;

2. For each shipper, compute their utilities by plugging the drawn 𝜖𝑖𝑗𝑟 and 𝛽Inter,𝑟𝑐 , as well as the frequencies and prices returned
by the model, into Eqs. (51) to (54);

3. Allocate the shipper’s containers to the alternative with the maximal utility;
4. When all containers have been allocated, compute the resulting modal shares and the actual profit for the inland vessel

operator.

4.3. Coefficients of utility functions

For the out-of-sample simulation, we directly make use of the coefficients of the Weighted Logit Mixture model estimated
in Nicolet et al. (2022). However, these true utility functions of the shippers are not known by the operator. The same coefficients
cannot, therefore, be used in the CD-SNDP. To alleviate this issue, we use the Weighted Logit Mixture to generate synthetic choice
data, from which utility coefficients can be estimated by the operator. This process ensures that the true utility functions remain
hidden from the operator, as they only have access to the choice realizations of shippers.

The available inputs are the OD matrices and the attributes related to IWT, Rail, and Road on each OD pair along the RA
corridor. To generate a choice instance for a given OD pair using the Weighted Logit Mixture, we first draw the value of 𝛽Inter,𝑟𝑐
13

and each mode’s 𝜖𝑖𝑗𝑟 in their respective distributions. Then, they are plugged, along with each mode’s attributes, into Eqs. (52) to
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Table 3
Coefficients of the mode choice models.

Parameter Actual population Synthetic data

Weighted Logit Mixture Mixed Logit MNL

𝛼IWT 0 0 0
𝛼Rail 0.713 0.816 0.338
𝛼Road 2.30 2.35 2.06
𝛽IWT
𝑞 1.63 1.60 1.49
𝛽Inter𝑓 0.0278 0.0262 0.0229
𝛽Road𝑎 0.0530 0.0506 0.0469
𝛽Inter𝑎 0.157 0.173 0.141
𝛽Road𝑐 −8.68 −8.73 −4.81
𝛽Inter𝑐 −5.76

𝜇Inter
𝑐 2.30 2.40
𝜎Inter𝑐 0.690 0.618
𝛽Inter𝑐 −12.65 −13.34 −5.76

Table 4
Solutions of deterministic models with prices of the competing alternatives.

Benchmark SNDP CD-SNDP Competition

IWT Road Rail

Prices [e]

RTM-DUI (6500 TEUs) 68 68 120 68 252 203
DUI-RTM (8400 TEUs) 69 69 133 69 251 203
RTM-BON (1900 TEUs) 76 76 88 76 317 214
BON-RTM (1500 TEUs) 74 74 58 74 315 214
DUI-BON (6700 TEUs) 46 46 – 46 136 152
BON-DUI (6500 TEUs) 46 46 – 46 136 152

Weekly
frequencies
[M8 vessels |

M11 vessels]

RTM-DUI 16|12 0|13 0|16
RTM-BON 0|5 0|5 5|2
DUI-BON 32|3 20|0 0|0
RTM-DUI-BON – 19|0 19|0

(54). Finally, the mode with the highest utility is selected and we get one synthetic choice instance. This process is then repeated
for all OD pairs. To remain consistent with the Weighted Logit methodology, the number of generated choice instances per OD pair
is set proportional to its cargo volume. In particular, each OD pair gets at least one choice instance and an additional instance is
generated per 10’000 TEUs circulating yearly on the OD pair. As a result, we end up with a synthetic dataset composed of 8676
choice instances, from which the MNL and Mixed Logit models can be estimated.

The coefficients of the Weighted Logit Mixture model are presented in Table 3, along with the coefficients of the Mixed Logit
nd MNL estimated using the synthetic dataset (note that 𝛼IWT is normalized to zero). The mean value of 𝛽Inter𝑐 is also presented.

.4. 3-node network results

In this section, we present and discuss the results of these various models applied on the 3-node network, starting with the
eterministic ones.

.4.1. CD-SNDP vs. Benchmark and SNDP
The weekly frequencies for both vessel types and the charged prices together with the total demand on each OD pair are reported

n Table 4. In order to better understand the pricing decision, the table also displays the prices of the competing alternatives. For
he benchmark and SNDP, the optimal prices are set at the same level as the cheapest competing alternative (in our case, IWT).
his is because of the assumption that shippers are purely cost-minimizers and the deterministic nature of the models: if the vessel
perator charges just 0.001 e less than the cheapest alternative, then the models will consider that all shippers will choose the
ervices of the vessel operator instead of the competition. In the CD-SNDP, shippers are assumed to consider other attributes besides
ost to perform their mode choice: the optimal prices then differ from the cheapest alternative.

Regarding the optimal frequencies, allowing to visit more than 2 terminals per service provides additional flexibility to the SNDP
ompared to the Benchmark. The SNDP takes advantage of this consolidation opportunity which results in higher expected profits.
ig. 4 displays the expected profits versus the actual ones returned by the out-of-sample simulation: it shows that the SNDP also
eturns higher simulated profits. The reason is that the vessel operator is able to attract more demand with this 3-stop service. This
s seen in Fig. 5, which represents the expected and actual modal shares for each deterministic model.

For the CD-SNDP, the expected profits increase significantly compared to the two other models, although the OD pair DUI-BON is
ot served anymore by the vessel operator. The distance between these two terminals is indeed relatively short so, as the CD-SNDP
akes multiple factors into consideration for the mode choice of shippers, it is evident that Road becomes the preferred option for
his OD pair. Nevertheless, the expected profits are higher because the optimal price on the busiest OD pair (RTM-DUI) is twice as
14
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Fig. 4. Comparison of profits obtained with the deterministic models.

Fig. 5. Comparison of modal shares returned by the deterministic models and simulated ones.

high as in the other two models. Since the choice-driven model also considers frequency in the mode choice, it is able to charge
more on this pair. Indeed, the operator’s utility remains competitive with the one of the IWT alternative due to the higher proposed
frequency (35 services per week) between these two terminals. Although the vessel operator gets smaller market shares than with
the Benchmark and SNDP (See Fig. 5), the CD-SNDP returns actual profits that are almost two times higher.

These deterministic results already suggest that significant gains can be achieved with the Choice-Driven SNDP. More efficient
services and pricing can be designed, thus resulting in considerably increased profits.

4.4.2. Stochastic variants with exact method
In this section, the results of the stochastic versions of the CD-SNDP are described. Two random utility formulations are compared:

MNL (with random error terms 𝜖) and Mixed Logit (with 𝜖 and distributed cost sensitivity 𝛽Inter𝑐 ).
The two versions are solved through SAA with a sample size of 𝑅 = 500, i.e. 500 draws are performed in the distributions of

𝜖 (and of 𝛽Inter𝑐 , for the Mixed Logit). For each variant, we run 20 replications with 20 different random seeds, thus generating 20
different samples. The aggregated statistics of the obtained solutions and computation time are presented in Table 5. Note that a
time limit of 72 h has been applied, that is why the statistics of the optimality gap are also presented.

The pricing decision is very variable from one replication to another. The variation is slightly more pronounced for the MNL case
than for the Mixed Logit, but the main takeaway is that the MNL results in higher prices than the Mixed Logit. Also, both variants
find higher prices than the deterministic CD-SNDP. The frequency decision also varies between replications, but the ranges in the
MNL case are quite similar to the Mixed Logit.

The influence on the expected and actual profits is depicted in the boxplots of Fig. 6. The higher prices set by the MNL lead to
greater expected profits compared to the Mixed Logit. But this difference is canceled out when comparing the simulated profits as
the MNL profits fall at a very slightly lower level than the ones of the Mixed Logit. Nevertheless, the actual profits for both variants
15



Transportation Research Part E 191 (2024) 103740A. Nicolet and B. Atasoy
Table 5
Solutions of stochastic models with exact method (500 draws).

MNL Mixed Logit

Min. Average Max. Min. Average Max.

Weekly
frequencies
[M8 vessels |

M11 vessels]

RTM-DUI 0|11 0|12 0|14 0|0 0|5 1|13
RTM-BON 0|0 0|0 0|0 0|0 0|0 0|0
DUI-BON 0|1 7|2 12|2 0|0 6|2 12|2
RTM-DUI-BON 21|0 22|0 24|0 12|0 21|0 24|0

Prices [e]

RTM-DUI 188 248 302 129 172 239
DUI-RTM 188 247 314 135 167 235
RTM-BON 191 253 316 140 201 284
BON-RTM 166 235 286 146 189 283
DUI-BON 139 202 282 106 175 328
BON-DUI 142 202 282 106 176 328

Computation time [h] 27 58 72 72 72 72

Optimality gap 0% 3% 7% 29% 39% 60%

Fig. 6. Comparison of profits by the stochastic models with exact method and the deterministic CD-SNDP.

Fig. 7. Comparison of average modal shares returned by the stochastic models with the exact method and simulated ones.

are substantially higher than for the deterministic CD-SNDP. They provide an additional 90% gain compared to the deterministic
case. This is because the modal shares can be estimated much better during the optimization due to the more detailed choice models.
Indeed, Fig. 7 shows the average expected modal shares against the actual ones. These shares are close to each other for both the
MNL and the Mixed Logit, whereas the deterministic model highly overestimates the share of the vessel operator.
16
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Table 6
Solutions of stochastic models with predetermination heuristic (500 draws).

MNL Mixed Logit

Min. Average Max. Min. Average Max.

Weekly
frequencies
[M8 vessels |

M11 vessels]

RTM-DUI 0|11 0|12 0|14 0|0 0|7 0|14
RTM-BON 0|0 0|0 0|0 0|0 0|0 0|0
DUI-BON 0|0 4|6 12|2 0|0 8|2 22|0
RTM-DUI-BON 21|0 22|0 24|0 10|0 21|0 24|0

Prices [e]

RTM-DUI 180 248 320 130 166 230
DUI-RTM 190 247 310 120 161 230
RTM-BON 190 251 310 140 199 270
BON-RTM 160 230 290 140 199 320
DUI-BON 140 206 320 110 177 330
BON-DUI 140 207 320 100 181 330

Computation time [h] 0.04 0.05 0.05 0.05 0.05 0.05

Fig. 8. Comparison of profits by the stochastic models with exact method and the heuristic.

Comparing the MNL with the Mixed Logit, the accuracy of their modal share estimation is nearly equivalent, but the MNL tends
to overestimate the operator’s share during the optimization process. The expected profits in Fig. 6 are then significantly higher
than the actual ones, whereas the expected profits with the Mixed Logit are in line with the actual ones. This is because the MNL
used in the CD-SNDP has a much lower cost coefficient 𝛽Inter𝑐 in absolute value than in the actual population (see Table 3). On the
other hand, the Mixed Logit has coefficients that are more in line with the actual population. The cost sensitivity of the shippers is
then underestimated by the MNL, which results in prices that are higher than with the Mixed Logit. The CD-SNDP with MNL then
expects that high profits will be realized, whereas in reality there will be less demand than expected due to the higher prices: thus
resulting in a decrease in profits.

Nevertheless, the large optimality gaps reported for the Mixed Logit in Table 5 prevent any conclusion at this stage. Even though
the addition of stochasticity in the CD-SNDP provides more gains, it is done at the expense of computing time. To remedy this, we
make use of the predetermination heuristic presented in Section 3.4.

4.4.3. Stochastic variants with predetermination heuristic
The two stochastic variants are solved using the same samples as for the exact method. We use the following set of predefined

prices:  = {10𝑘|𝑘 ∈ N ∩ [0, 50]}, and the set of predefined frequencies:  = N ∩ [0, 35] in accordance with (55). The statistics of the
heuristic solutions are reported in Table 6 together with the computation time.

Compared to the exact method, the predetermination heuristic is remarkably faster. When the computation was in the order
of days for the exact method, it is now reduced to a few minutes. Most of these minutes are spent precomputing the demand and
price values with Algorithm 2. With the heuristic, there is also little difference in solving time between the two stochastic variants.
Regarding the quality of the solutions, the prices and frequencies found with the heuristic are not identical but they remain consistent
with the ones returned by the exact method. The comparison between the profits obtained with the exact method and with the
predetermination heuristic is shown in Fig. 8.

The profit ranges found by the heuristic are similar to the ones with the exact method. We still observe a significant gap between
the expected and actual profits in the MNL case, whereas these two values are at a more similar level for the Mixed Logit.

These results serve to validate the performance of the heuristic in comparison to the exact method. Therefore, we can now
evaluate the CD-SNDP on larger instances which will be presented in the next section.
17
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Fig. 9. Optimal weekly frequencies for the Benchmark (top-left), the SNDP (top-right), and the deterministic CD-SNDP (bottom).

Table 7
Ten OD pairs with the most demand.

Rank 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
OD RTM-DUI DUI-BON RTM-NIJ RTM-LUH BON-AND AND-MAI RTM-BON RTM-BSL DUI-AND RTM-MAI

Demand [TEUs] 14’900 13’200 10’600 6’400 4’200 3’600 3’400 2’000 1’800 1’200
Distance [km] 230 120 130 590 40 110 360 850 170 520

RTM = Rotterdam, DUI = Duisburg, BON = Bonn, NIJ = Nijmegen, LUH = Ludwigshafen, AND = Andernach, MAI = Mainz, BSL = Basel.

4.5. 9-node network results

In this section, we present and discuss the results of these various models applied on the 9-node network depicted in Fig. 3,
starting with the deterministic ones.

4.5.1. CD-SNDP vs. Benchmark and SNDP
The optimal service design for the three deterministic models is shown in Fig. 9. The solution of the benchmark focuses on busy

OD pairs, as it allows to serve eight out of the ten pairs with the most demand in the network (see Table 7). Allowing cycles in the
SNDP enables to redeploy some vessels: in particular, a service to Strasbourg and Basel is added and the frequency on the OD pairs
RTM-DUI and AND-MAI is increased.

While the benchmark and SNDP serve as many high-demand OD pairs as possible, the CD-SNDP only serves two out of the ten
pairs with the most demand (RTM-DUI and RTM-LUH). These two pairs are also the ones with the most TEU-kilometers, far ahead
of the others: this indicates that the CD-SNDP proceeds to a trade-off between the potential demand that can be attracted and the
distance on the OD pair. Indeed, water transport tends to become more attractive to shippers for long-distance transport. Regarding
the pricing decisions, the observations remain similar to the 3-node results.

The expected and actual profits resulting from the three deterministic models are illustrated in Fig. 10. Similarly to the 3-node
case, the CD-SNDP returns higher profits (both from the optimization and the out-of-sample simulation). This is due to the more
18
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Fig. 10. Comparison of profits obtained with the deterministic models.

Fig. 11. Comparison of modal shares returned by the deterministic models and simulated ones.

accurate estimation of the demand, as depicted in Fig. 11. Indeed, the benchmark assumes that the whole demand will go to IWT
(be it the operator or the competitor), as it is the cheapest mode; but after simulation, it turns out that only 44% of the demand
was assigned to IWT. On the other hand, the CD-SNDP estimates that only 39% of the demand will be assigned to IWT, whereas the
simulated IWT share is 38%. For the sake of comparison, the observed shares on these OD pairs are 38% for IWT, 55% for Road,
and 7% for Rail.

A better demand estimation allows to charge a higher price than the models using the cost-minimization assumption because
the other factors influencing the mode choice are also considered. It is also able to target more adequately the OD pairs to serve in
priority as it can proceed to a trade-off between the total demand and the attractiveness of water transport on a given OD pair. This
allows the operator to make better decisions as the resulting profits are increased by a factor of ten compared to the benchmark.

4.5.2. Stochastic variants
Table 8 presents the minimum, maximum, and average service frequencies on the ten OD pairs with the most demand along

with the computation time of the 20 replications. On average, both stochastic models return very similar solutions. The first and
third busiest OD pairs have frequencies set at (or close to) the maximum of 35. The rest of the vessels are mostly deployed on
the RTM-BON and DUI-BON OD pairs as well as the RTM-LUH OD pair, while a frequency of one service per week is set on the
remaining OD pairs. For each model, the differences in maximum and minimum frequencies are explained by the small number of
draws (500) relative to the size of the model. This difference is also visible in the computation times, which range from three to
fourteen hours. However, the time does not change significantly between the two models.

Regarding the pricing decisions, the observations remain similar to the 3-node results. The resulting profits obtained with the two
stochastic models are shown in Fig. 12, together with the profits of the deterministic CD-SNDP. The expected profits (resulting from
the optimization) are decreased compared to the deterministic case, whereas the actual ones (obtained through the out-of-sample
19
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Table 8
Frequencies on OD pairs with most demand of stochastic models (500 draws).

MNL Mixed Logit

Min. Average Max. Min. Average Max.

Weekly frequencies

RTM-DUI 34 35 35 5 33 35
DUI-BON 0 14 28 1 12 31
RTM-NIJ 34 35 35 2 31 35
RTM-LUH 3 5 16 3 5 6
BON-AND 0 1 3 0 1 1
AND-MAI 0 1 3 0 1 1
RTM-BON 0 14 28 1 12 31
RTM-BSL 1 1 2 0 1 2
DUI-AND 0 1 3 1 1 1
RTM-MAI 0 1 3 1 1 2

Computation time [h] 4.0 8.8 13.8 3.3 8.3 13.7

Fig. 12. Comparison of profits obtained with the two stochastic models against the deterministic CD-SNDP.

Fig. 13. Comparison of modal shares returned by the two stochastic models and the deterministic CD-SNDP and simulated ones (observed shares are: 38% for
IWT+O, 55% for Road and 7% for Rail).

simulation) are 60% higher. This is once again because the stochastic models can estimate better the modal split, hence the potential
demand of the transport operator. This is particularly true for the model with Mixed Logit, where the expected profits almost match
the actual ones. The modal shares estimated by the models are shown in Fig. 13 together with the ones obtained through the
simulation.
20
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4.5.3. Discussion
Compared to the 3-node network, this 9-node instance is more realistic: indeed, most IWT operators do not have more than 10

erminals to serve along the Rhine (Hutchison Ports, 2024; DP World, 2024; Danser, 2024). A notable exception is Contargo (2024)
ith their 17 terminals along the Rhine. To apply the proposed CD-SNDP to their network, some pre-processing rules have to be

mplemented to restrict the size of the set of potential services . For the 9-node network, we still considered all possible services
such that || = 502. But if the same approach is used on a 17-node network, then we reach || = 131054. To reduce the size of this
et, the following rules can be applied:

• Consider terminals that are close to each other as a single node (for example, if the network goes down to 13 nodes, then
|| = 8178);

• Only consider services originating from the seaport of Rotterdam (applying this criterion on top of the previous one, we get
|| = 4095);

• Enforce that a service can contain at most one inland terminal, whose demand from/to the seaport of Rotterdam is higher
than 2000 TEUs (see Table 7).

pplying these three pre-processing rules together allows to decrease the problem size to || = 767. On top of that, the operator may
ave additional rules, which decrease even more the size of . In the end, the set of potential services reaches a size of the same
rder of magnitude as in the 9-node network and the results above show that the proposed method can deal with such instances.

.6. Key insights

Several takeaways can be gathered from the results presented above. First, a cycle-based formulation (with multiple stops
llowed) of the SND problem is more efficient in terms of asset usage as the operator can use consolidation opportunities. This
esults in both reduced costs and increased demand. The mathematical expression of services is less straightforward than with a
ath-based formulation due to the addition of service legs, but the improved results justify this effort.

Secondly, it is highly beneficial for the transport operator to include the information they have about the demand during the
esign of their services. The CD-SNDP results have shown that, even with a simple deterministic model, the solution of the SNDP
roblem is able to generate actual profits that are nearly three times higher than the benchmark. This is because the benchmark’s
ssumption that shippers are purely cost-minimizers neglects other attributes that still play a role in the decision-making of shippers,
uch as the service frequencies. The utility functions also include the arbitrage between these attributes through the weighting
oefficients. As a result, the estimation of modal shares during the optimization stage is much more accurate. Indeed, the cost-
inimizing assumption used in the benchmark overestimates the demand assigned to the operator. This can also be observed in the
ail shares obtained in the paper presenting the benchmark (Tawfik and Limbourg, 2019).

Thirdly, making use of stochastic CD-SNDP exploits further the potential of the model. Indeed, perfect and complete information
bout the shippers is not available to the operator, so their demand model will miss some aspects that play a role in the shippers’
hoices. These aspects can indirectly be accounted for by adding random error terms in the model. Including this uncertainty into the
odel enables gains exceeding 50% compared to the deterministic CD-SNDP. Therefore, the stochastic formulation of the CD-SNDP

s one convenient way to account for imperfect information endogeneously to the model.
Finally, quantifying and incorporating the heterogeneous preferences of shippers allows for a more accurate estimation of the

rofits. Indeed, except for the stochastic CD-SNDP with Mixed Logit, all models presented above substantially overestimate the
rofits. This can lead to very bad surprises for the operator if they expect a given amount of profit in their budget, but end up
ealizing much less. On the other hand, the formulation with Mixed Logit expects profits in line with the ones that are realized.
onsidering heterogeneity then allows to get a better prevision of the profits.

It should be noted that the decisions (pricing and frequency) of the choice-driven SNDP highly depend on the underlying
epresentation of the shipper’s behavior. Namely, the range of improvement is closely linked to the elasticity of demand. Therefore,
he utility functions need to be carefully studied for the context at hand. In our case, we base them on a study that makes use of
eal aggregate data on the same network to estimate the parameters and validates the results against real market shares.

. Conclusion

This work proposes a Service Network Design and Pricing problem that incorporates the mode choice behavior of shippers.
herefore, we develop a so-called Choice-Driven Service Network Design and Pricing problem that directly includes utility-based
ode choice models into a bilevel optimization problem, which can then be reformulated as a single level linear problem. The

andom nature of utility-based models, such as the Multinomial Logit, allows to account for missing information about attributes
laying a role in the mode choice. Opting for a Mixed Logit formulation further allows to consider the heterogeneous preferences of
hippers, thus getting a more realistic representation of the shippers’ population. Due to the randomness, the problem becomes
tochastic, which makes it computationally expensive to solve with an exact method. To overcome this issue, we develop a
redetermination heuristic that computes utilities prior to the optimization.

The results show that the heuristic can considerably reduce the computational time while finding solutions of similar quality to
he exact method. Regarding the proposed model itself, it is compared to a benchmark where shippers are assumed purely cost-
inimizers. We show that the profits achieved by our model are substantially higher, even if the embedded mode choice model

s simply deterministic. All in all, including more information about the shippers while designing and pricing the services suggests
21



Transportation Research Part E 191 (2024) 103740A. Nicolet and B. Atasoy

o
p
R
a
t
p
b
t
m
a

I
c
i
i
T
m
d

C

F
I

D

t

D

A

M
g

R

A
A

B
B

B

B

B
C
C
C
C

D

D
d

considerable gains for the transport operator. Even if the exact model or parameters are not known, it is still far better than not
using the available information.

Nevertheless, several assumptions made in this work deserve to be challenged. Firstly, in the mode choice models, the utilities
f the vessel operator and of the competing IWT carrier are considered independent from each other. However, since they are both
roposing inland waterway services, these two options are correlated with each other. This could also apply to a lesser extent to the
ail alternative, which also proposes scheduled intermodal services. Further work should consider this correlation between choice
lternatives. Secondly, it is assumed that the utilities of the competing alternatives can be computed by the operator, implying that
hey have full information about their competitors. Some attributes can indeed be found, e.g., the frequency or travel times, but the
rice that the competitors are applying cannot be known perfectly: at best it can be estimated. The choice-driven model should then
e developed further to account for this imperfect information. Thirdly, the competition is assumed exogenous and fixed meaning
hat they will not react to the operator’s new services. But the competitors will also seek to improve their services and profits, even
ore so if they lose market share to the operator. These dynamics can be covered, for example, through an Agent-Based Model

ccounting for the reactions of the different parties involved.
Another dynamic aspect that can be included is about the pricing, particularly in the context of inland waterway transport.

ndeed, the frequent low water levels on the Rhine reduce the capacity of the vessels, thus increasing the transportation costs per
ontainer. The operators then have to increase the price they charge to compensate for the losses. A time dimension could be
ncluded in the optimization model to deal with dynamic pricing. Finally, our formulation implies that a single price per OD pair
s set for all shippers. However, revenue management techniques can be used to improve the performance of the proposed model.
his will provide the operator with additional gains because they can tailor the prices offered to specific customers. A revenue
anagement setting would also develop the full potential of the formulation with Mixed Logit, as the prices can be adapted to the
ifferent cost sensitivities of shippers.
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