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Uniaxial optical anisotropy in the geometrical-optics approach is a classical problem, and most of the theory
has been known for at least fifty years. Although the subject appears frequently in the literature, wave propa-
gation through inhomogeneous anisotropic media is rarely addressed. The rapid advances in liquid-crystal
lenses call for a good overview of the theory on wave propagation via anisotropic media. Therefore, we present
a novel polarized ray-tracing method, which can be applied to anisotropic optical systems that contain inho-
mogeneous liquid crystals. We describe the propagation of rays in the bulk material of inhomogeneous aniso-
tropic media in three dimensions. In addition, we discuss ray refraction, ray reflection, and energy transfer at,
in general, curved anisotropic interfaces with arbitrary orientation and/or arbitrary anisotropic properties. The
method presented is a clear outline of how to assess the optical properties of uniaxially anisotropic media.
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1. INTRODUCTION
The optical properties of uniaxially anisotropic media are
essential for many applications such as liquid-crystal dis-
plays [1], switchable lenticulars for autostereoscopic
2D/3D displays [2,3], anisotropic gradient-index lenses
[4], or liquid-crystal spatial light modulators for beam
steering [5]. Therefore, it is desired to understand and
predict the propagation of light in optical systems con-
taining optically anisotropic elements. The problem of op-
tical anisotropy in the geometrical-optics approach is clas-
sical, and most of the theory has been known for more
than fifty years. During the past few decades, optical an-
isotropy has often been studied in the literature [6-30].
However, the literature is nearly silent about wave propa-
gation through inhomogeneous anisotropic media. At the
same time, the rapid advances in liquid-crystal applica-
tions call for a good exposition of the theory on wave
propagation via anisotropic media. Therefore, we present
a general polarized ray-tracing method for inhomoge-
neous uniaxially anisotropic media in three dimensions.
In addition, we describe how to assess the optical proper-
ties of anisotropic interfaces with arbitrary orientation
and/or anisotropic properties. In order to support a gen-
eral approach, we apply vector notation. We will derive
vector equations that are compact and simple. Hence, the
method presented in this article is also a clear overview of
how (and under which conditions) to apply the classical
theory to anisotropic optical systems that can be found in
the type of applications mentioned above.

A general approach would be to model biaxial aniso-
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tropy. Unfortunately, biaxial anisotropy is more complex
to model than uniaxial anisotropy. As a result, the step
from uniaxial to biaxial anisotropy is not a trivial one. In
addition, uniaxial anisotropy is more frequently applied
in practice than biaxial anisotropy, and biaxial anisotropy
can often be neglected.

In general, the optical properties of an anisotropic me-
dium are defined by two regions. These are the boundary,
which forms the interface between the anisotropic me-
dium and the surrounding medium, and the bulk mate-
rial. Locally, the interface region has homogeneous aniso-
tropic properties. In general, the bulk region has
inhomogeneous anisotropic properties. Similarly, the
theory presented in this article is divided into two parts.
One part applies to the interface, and one part applies to
the bulk region.

In the definition of the electromagnetic wave field, we
apply the quasi-plane-wave approximation [31-33]. For
inhomogeneous media, the quasi-plane-wave approxima-
tion applies in the case where the optical properties of the
medium change slowly with respect to the wavelength. If
the properties of the medium change rapidly with respect
to the wavelength, we need to take into account the wave
character of light. In that case, we leave the domain of va-
lidity of geometrical optics, which is beyond the scope of
this article.

When polarized ray tracing is applied to an optical sys-
tem, we are interested mainly in the energy flux, repre-
sented by the Poynting vector. In anisotropic media, the
Poynting vector and wave vector are not parallel in gen-
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eral, since the electric field vector E and the electric flux
density vector D are not parallel. For this reason, we de-
fine a ray as the trajectory of the Poynting vector rather
than the orthogonal trajectory of the wavefront (i.e., the
trajectory of the wave vector).

This article is set up in the following way. We begin
with a summary of the classical theory on geometrical op-
tics in Section 2 [32]. In Section 3, we derive the equation
for the optical indicatrix [34], also known as Fresnel’s sur-
face of wave normals or the normal surface [35]. This sur-
face determines the mutual orientation of an individual
wave vector and its corresponding Poynting vector. In ad-
dition, each Poynting vector has corresponding electric
and magnetic field vectors. In Section 4, we derive vector
equations for the directions of these electric and magnetic
field vectors in terms of the corresponding wave vector.
The concise notation presented here cannot be found in
the literature.

Next, we discuss the optical properties of the bulk ma-
terial of anisotropic media. Here we describe a powerful
method for the calculation of a ray path through an inho-
mogeneous anisotropic medium. We call this method the
Hamiltonian method. An important conclusion is that the
Hamiltonian method incorporates the fact that ray paths
inside inhomogeneous media are curved. The Hamil-
tonian method is based on the theory introduced by Kline
and Kay [30]. In Kraan et al. [4], this theory is worked out
for a two-dimensional liquid-crystal profile in a gradient-
index lens. In Section 5 of this article, we derive the
Hamiltonian method for arbitrary liquid-crystal profiles
in three dimensions. In particular, we introduce novel ray
equations in terms of the position-dependent optical axis
(the director) and the position-dependent index of refrac-
tion.

Then we focus on the optical properties of an interface
between two (an)isotropic media. In Section 6, we derive
an expression for the wave vector as a function of the
Poynting vector for arbitrary indices of refraction. In ad-
dition, we derive vector equations for reflected and re-
fracted wave vectors at anisotropic interfaces. In Section
7, we discuss the energy transfer of reflected and re-
fracted rays when light crosses the interface between two
anisotropic transparent media with different orientation
and/or anisotropic properties. The Fresnel coefficients are
calculated with the help of the Fresnel equations [17,18]
and the vector equations from Sections 4 and 6. The en-
ergy transfer is described in terms of intensity transmit-
tance and reflectance factors 7' and R, respectively. Al-
though this procedure is known in the literature, it is
significantly simplified by the use of the vector equations
derived in Sections 4 and 6.

In Section 8, we summarize the polarized ray-tracing
method. To this end, we apply the method to an aniso-
tropic medium and discuss the procedure for the calcula-
tion of the optical properties. In Subsection 8.A, we dis-
cuss the procedure at an anisotropic interface, and in
Subsection 8.B, we discuss the procedure for an aniso-
tropic bulk material. These procedures form a clear out-
line of how to apply our method in practice.

Finally, as a demonstration, we apply the model to an
air—calcite interface in Subsection 9.A and to an artificial
inhomogeneous anisotropic structure in Subsection 9.B.
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2. QUASI-PLANE WAVES AND
GEOMETRICAL OPTICS

The macroscopic Maxwell equations for the electric field
E combined with the macroscopic material equations for
isotropic media without dispersion can be transformed
into
e R
V2E—c—2§+(vmm XVXE+VE-Vine) =0,

1)

with a similar expression for the magnetic field H
(cf. [32], p. 10). If the medium is homogeneous, VIn u=0
and VIne=0. Hence, Eq. (1) reduces to the Helmholtz
equation

e ’E

2wl @

2

Equation (2) is a standard equation of wave motion and
suggests the existence of electromagnetic waves propa-
gating with a velocity v=%. One of the solutions of
Eq. (2) is the time-harmonic plane wave. In regions far
away from light sources, we may define a more general
type of wave field. Here the wave field may locally be rep-
resented by a time-harmonic quasi—plane wave (cf. [32],
p. 111) given by

E(r,t) = E(r)e/ o), 3)

with i](r) a complex vector and ¢(r) the optical path-
length function, which is also called the eikonal function.
For anisotropic media, we are looking for solutions of the
wave field of the form given by Eq. (3). In general, the
complex amplitude vector can be written as

Er)=A(r)e!™E, (4)

where E is a unit vector, the amplitude A(r) is real, and
the phase term &(r) is real. We assume that there is no
absorption and no scattering of the wave field inside a me-
dium. Therefore, we can say that the amplitude A and
phase & are constant throughout the medium. Only when
a wave is refracted or reflected at an interface are the am-
plitude and phase terms changed. For this reason, we cal-
culate the entire wave field only at an (an)isotropic inter-
face. In the bulk material of an (an)isotropic medium, it is
sufficient to calculate the light path of the propagating
wave.

The type of wave field given by Eq. (3) is suggested by
Sommerfeld and Runge (cf. [33], p. 291) and is also re-
ferred to as the Sommerfeld—-Runge ansatz. Assuming
that Eq. (2) yields, as a solution, a quasi—plane wave, we

imply that the local amplitude |E| and wave vector |k|
=ko|Vy| vary insignificantly over the distance of one
wavelength, i.e.,

1 V|E|
ko |E|

1 VK|

, o<1 (5)
ko [kl

The optical properties of the interface and bulk mate-
rial of a medium with electrical anisotropy are deter-
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mined by the Maxwell equations. When we substitute the
quasi—plane wave of Eq. (3) into the Maxwell equations,
we obtain (we consider only nonmagnetic media: u=1)

~ ~ 1 ~
VX H+cegeE=-—V X H,
- lko

~ ~ 1 ~
VyxE-cuH=-—VxE,
lko

~ 1 ~
Vi-eE=-—-V-cE,
g iy &

1
Vy-H=-—V-H. (6)

lko
In the geometrical-optics approach, we are interested in
solutions of the wave field for large values of k,. As long
as the right-hand side terms in Eq. (6) are small with re-
spect to one, they may be neglected. However, rapid
changes in the optical properties of the medium could

lead to large values of the divergence of gf*] Hence, we
demand that

V- K|
ko

<1. (7

This condition implies that the elements of the dielectric
tensor (i.e., the material properties) should change very
slowly over the distance of a wavelength. In addition, the
wave amplitude should change very slowly over the dis-
tance of a wavelength, as we concluded earlier.

3. UNIAXIAL OPTICAL INDICATRIX

In Eq. (6), we can confine our attention to the first two
equations, since the last two follow from them on scalar
multiplication with V. By introducing the vector p=Vy

(wave normal) and eliminating H from Eq. (6), we obtain
the “eikonal equation” for media with electrical
anisotropy

pX(pXxE)+eE=0. (8)

The wave normal p is equivalent to the wave vector k
scaled by a factor k(. The elements of the dielectric tensor
are constants of the medium determined by the choice of
our Cartesian coordinate system. Since g is a real sym-
metric matrix, it is always possible to find a coordinate
system in which the off-diagonal elements of the dielectric
tensor are zero. The dielectric tensor can then be written
as

&y 0 0
g: 0 Sy 0 , (9)
0 0 €,

where ¢,, ¢,, and &, are the relative principal dielectric
constants and the x, y, and z axes are the principal dielec-
tric axes of the medium. These axes form the principal co-

ordinate system. The relative principal dielectric con-

Sluijter et al.

Ho

Mo A py

o
by ~n.

Fig. 1. Octant of the uniaxial optical indicatrix in the principal
coordinate system. The two surfaces, sphere and ellipsoid, touch
each other in their common points of intersection with the z axis.
Here we assumed positive birefringence, i.e., n,>n,.

stants are related to the principal indices of refraction n,,
ny, and n, by ei=ni2, with i=x,y,z. A medium is called
uniaxially anisotropic if two of the principal indices of re-
fraction are equal. Then the principal indices of refraction
are defined as n,=n,=n, and n,=n,, where n, is the ordi-
nary and n, is the extraordinary index of refraction. If we

solve Eq. (8) for the eigenvectors E and the corresponding
eigenvalues n, we obtain the electromagnetic eigenmodes:
the ordinary and extraordinary waves.

We can write Eq. (8) as a matrix equation according to

APE-=0, (10)

with A a 3 X3 matrix. Equation (10) has only nontrivial

solutions for the eigenvector E if the determinant of the
matrix A vanishes. This demand leads to a quadratic
equation H(pz,pf,pg)zo, and its solution represents a
three-dimensional surface in p space. This surface is
called the optical indicatrix (cf. [34], p. 20) and, in the
principal coordinate system, is given by

pi+p, Dl p|?
H= —2+—2—1 —2—1 =0. (11)
n

n’e nO o

The uniaxial optical indicatrix consists of two concentric
shells: a sphere with radius n, and an ellipsoid with semi-
axes n, and n,. The ordinary wave is represented by the
sphere (H,), and the extraordinary wave is represented
by the ellipsoid (*,). The two shells have two points in
common, namely, p=(0,0,+n,). The line that goes
through the origin and these points is the z axis and is
called the optical axis. Figure 1 shows one octant of the
optical indicatrix in the principal coordinate system. In
the principal coordinate system, the optical axis is in the z
direction.

4. GEOMETRICAL ANALYSIS OF
POLARIZATION VECTORS

As discussed in Section 2, the electric field vector can be
written as E=aE, with E a unit vector and a the complex
amplitude. The unit vector E is called the electric polar-
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ization vector. In anisotropic media, the polarization vec-
tors depend on the direction of propagation, the optical
axis, and the direction of the Poynting vector. In this sec-
tion, we derive concise expressions for the electric and
magnetic polarization vectors. The complex amplitude a
of an electric or magnetic field vector is discussed in
Section 7.

The polarization vectors for the ordinary and extraor-
dinary waves can be obtained from Eq. (10). In addition, it
is convenient to use the geometrical properties of the op-
tical indicatrix to derive the expressions for the polariza-
tion vectors: For ordinary waves, the wave normal is de-
fined p,=n,p, with p a unit vector. Then Eq. (10) yields

A9 A A A A

Dy DDy PP

J 2 Dyb.

P P n A2 A2

pbx. DDy, —-Pi-D,
nO

with E, the direction of the ordinary electric field vector.
Equation (12) implies that E, is given by

by
E,=|-p.|. (13)

Apparently, in the principal coordinate system, E, is per-
pendicular to the optical axis 6=(0,0,1) and the direction
of propagation p,. These properties of E, are generalized,
since they are independent of the choice of the coordinate
system. As a result, the ordinary electric polarization
vector can be written as the unit vector

. p, X 6

- . 14
*= b, X 4] (1

According to the Maxwell equations, the corresponding
magnetic polarization vector is (apart from a factor cug)

H,=p, X Eo. Hence, the magnetic polarization vector is by
definition not a unit vector.

The electric polarization vector of the extraordinary
wave can be written as

R (p, X 0) X V,H,

=T T (15)
(P X 8) X V,H,|
where p, is the extraordinary wave normal, V,
=(d/dp,,d/dpy,d/dp,), and H, represents the ellipsoid
surface (not necessarily in the principal coordinate sys-
tem). In addition, the corresponding magnetic polariza-

tion vector is defined as H,=p, X ﬁe. Apparently, the elec-

tric polarization vector E, is perpendicular to both p, X 6
and V,H,. In what follows, we will prove this.

By using the vector identity AX(BXC)
=B(A:-C)-C(A-B), Eq. (8) can be transformed into gf*]

—(\p|21~§—(]~*3-p)p)=0. Hence, the vector components of E
can be written as
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~ (E'p)Pi .
Eizg—’ L=X,Y,2. (16)
) e

Obviously, Eq. (16) applies only if |p|?#¢;. For ordinary
waves, Eq. (14) requires that E,'po=0. Then Eq. (16)
yields EO=0. However, we are not interested in trivial so-
lutions. For extraordinary waves, the inner product E,-p,
does not necessarily vanish. In this case, we can conclude
from Eq. (16) that (pexé)'fie=0, since, in the principal
coordinate system, p, X 6=(p,y,—Pex,0). When (p,x0)- E,
vanishes in the principal coordinate system, it also
vanishes in another coordinate system.

Next, we show that VpHe~1~§e=0. When we expand the

inner product with the help of Egs. (11) and (16), we
obtain

2(E, - p.)lp./?
2 e’

V,H, E,=
¢ ¢ (|pe‘2_n¢27)(|pe|2_ne)

p

17

with H, defined in the principal coordinate system. For
extraordinary waves, H,=0. As a result, the inner product
of Eq. (17) vanishes. If |p,|=n, or |p.|=n.,, we apply
I'Hopital’s rule to Eq. (17) and still conclude that the

inner product VpHe-Ee vanishes. Similar to the conclu-

sions mentioned above, we conclude that VpHe-fEe=0 in
any arbitrary coordinate system.

We conclude that Ee is perpendicular to both p, X 6 and
V,H,, and therefore Eq. (15) is proved.

The optical indicatrix is depicted again in Fig. 2, but
now with the electric polarization vectors of the ordinary
waves and the extraordinary waves indicated. Appar-
ently, both the magnetic and electric polarization vectors
are tangent to the optical indicatrix. As a result, the time-
averaged Poynting vector, given by

P

X

Fig. 2. Octant of the optical indicatrix in the principal coordi-
nate system. The electric polarization vectors of the ordinary
waves are indicated by the arrows on the sphere surface. The
electric polarization vectors of the extraordinary waves are indi-
cated by the arrows on the ellipsoid surface. The polarization vec-
tors of both the ordinary and extraordinary waves are tangent to
the optical indicatrix.
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1
(S)= 3 Re(E X H¥), (18)

where H* is the complex conjugate of H, is perpendicular
to the optical indicatrix. Consequently, the direction of (S)
is the same as the direction of V,H, yielding

(S) =V, H. (19)

5. HAMILTONIAN METHOD FOR
INHOMOGENEOUS MEDIA

We define a ray as the trajectory of the Poynting vector,
given by the integral curve of the Poynting vector field in
terms of the parameter 7 according to

dr
—— =C(S(x()), (20)
dr

where C is a proportionality constant. In a homogeneous
medium, the light rays will propagate along a straight
line. However, light rays are curved in the bulk of an in-
homogeneous medium, due to a gradient in the refractive
index. In what follows, we describe a method to calculate
the curved trajectory of the Poynting vector in the bulk of
an anisotropic medium.

Sluijter et al.

Inside an inhomogeneous uniaxial anisotropic medium,
the direction of the optical axis depends on position. We
call the position-dependent optical axis the director. The
director is indicated by a unit vector &:(&x,&y,az) and is
parallel to the local optical axis 6. The component of the
electric field in the direction of the director is (E- (1)(1, and
the dielectric permittivity in this direction is eqg), with
e‘|=nez. The component perpendicular to the director is E
—(E-&)&, and the dielectric permittivity in this direction
is goe, with & | =n§. The product of the dielectric permit-
tivities and the electric field vector components yields the
electric flux density vector D according to

D = gg)(E - d)d + 92, (E - (E - d)d). (21)
This is the macroscopic material equation in terms of the
director d. With Ne=gj—¢g, Eq. (21) reads
D=¢oe, E+ey/ e(E-d)d. (22)
On the Cartesian basis (x,y,z), the components of D read
Di= 808ijEj, where

sj=e. 8+ Msdid;, ij=xy.z, (23)

with g;; the Kronecker delta. Given the dielectric tensor of
Eq. (23), Eq. (8) can be written in terms of the director
vector components according to the matrix equation

e, + Aed?+p?—|pl A s&xdy +D.Dy Aedd,+p.p,
Aedyd, +pyp, e, + Aed2+p2 - |p|? Aedyd,+pp, |E=0. (24)
Asglzz;lx+psz Asc;lchly+pzpy e+ A s&§+p22— Ip|?

Like Eq. (10), this equation has nontrivial solutions if the
determinant of the matrix vanishes. The determinant
reads

H(x,y,2,Px:DysP2)

=(e,[p]*+ Ae(p-d)?-&,(s, + Ae)(p|>-5.)=0,
(25)

where the vector components of d depend on the coordi-

~

nates x, y, and z. If we take d=(0,0,1), we obtain the op-
tical indicatrix in the principal coordinate system as de-
fined in Eq. (11). In addition, Eq. (25) can be written as
H=H,H,=0, where H, corresponds to extraordinary
waves and H, corresponds to ordinary waves.

In order to find an expression for the ray path of a light
ray, we will use Eq. (25). A light ray can be denoted by the
parametric equations x=x(7), y=y(7), and z=z(7), where
the parameter 7 can be considered as time. Since we are
interested primarily in the energy transfer of a light ray,
we define a ray to be the trajectory of the Poynting vector,
given by Eq. (20). According to Eq. (19), the direction of

[
the Poynting vector (S) is the same as the direction of
V,H. Hence, we can write a set of equations for the ray
path given by

di IH
T =a T, | = INEL 26
T a&pi i=x,y,2 (26)

where the factor « is an arbitrary function of 7 and influ-
ences only the parametric presentation of the ray posi-
tion. As we move along the ray, the wave normal also
changes. Hence, the vector components of the wave nor-
mal are also functions of 7. Likewise, we can derive a set
of equations for the wave normal (cf. [30], p. 110) reading

e a P i=x,5,2. 27)
The next step is crucial, since we apply a classical-
mechanical interpretation to the light rays: A mathemati-
cal light ray is considered a particle with coordinates
r=(x,y,z) and generalized momentum p=(p,,p,,p.)
(cf. [30], p. 115), which satisfy Eqs. (26) and (27), respec-
tively. Moreover, this particle has the energy
H(x,y,2,Px,Py,P;)=0. With this mechanical interpreta-
tion of a light ray, Eq. (25) represents a Hamiltonian



Sluijter et al.

system with canonical equations given by

d(x,y,2)
Tar vt =8
d(py,py.p2)
— — =_aV,H, (29)
dr

where the ray position r(7) and momentum p(7) are func-
tions of the parameter 7. Equations (28) and (29) are also
called the Hamilton equations. Equation (28) describes
the ray path of the Poynting vector. For each position r(7),
there is a corresponding momentum p(7), determined by
Eq. (29).

The gradients with respect to the wave normal and the
position of the Hamiltonian in Eq. (25) can be written as

V,H =H,V,H, + HV,H,, (30)
V,H = H,V,H, + HV,H,. (31)

For ordinary waves, H,=0. As a result, the Hamilton
equations for ordinary waves reduce to

d(x,y,2)
T = anHO, (32)
d(pompo ’pOZ)
— 2 = aV,H,, (33)
dr

where the term H, is incorporated in the factor a. For ex-
traordinary waves, we obtain the same set of equations,
except that the index o is replaced with the index e. By
using Eq. (25), we will introduce novel expressions for the

gradients of Eqgs. (28) and (29) in terms of the director d.

In general, the Hamiltonian allows inhomogeneous di-
electric constants. When the dielectric constants are inho-
mogeneous, their values are position dependent. Then the
partial derivatives of H, read

IH, de, IH, 340
=——, =2p,i, 1=x,9,2. 34
i i Ipy; Poi Y

The partial derivatives of H, are less trivial and yield

IH, . ad, ad, od, de,
=2(g - -d x— * Doy + Do | +E,—
9i (SH SL)(pe ) DPe i Pey 9i DPe Ji €1 i
9 de |
+ (g1 + [p)—,
ai
oM, .
=28 ,p,+2(g—g )P, - d)d;, i=x,y,z. (35)
‘9pei

However, for many liquid-crystal applications, ¢, and g
are position-independent. Only the director d depends on
position. Then H, is independent of position and the par-
tial derivatives of H, read

Vol. 25, No. 6/June 2008/J. Opt. Soc. Am. A 1265

IH, M,
—=0,
2z IPoi

= 2poi’ i =X,Y,2. (36)

As a result, p, is constant [see Eq. (33)] and x(7), y(7), and
z(7) represent a straight line. Likewise, the partial deriva-
tives of H, reduce to

M, B ad,, ad, ad,
—=2 - . —_— + — + —,
9i (eH 8L)(pe ) Pex Ji Pey Ji Pez Ji
IH, .
(9_=28Lp2i+2(8\|_8L)(pe'd)di7 i=x7yaz‘ (37)
Pei

We conclude that, in contrast with ordinary waves, the
ray paths of extraordinary waves are curved.

For a homogeneous isotropic medium, i.e., ¢, =g, the
Hamilton equations reduce to

d(@.,py.02)

= 9. ). z2/ —=0’ 38
a(py,DysP>) 1, (38)

d(x,y,2)
dr

where « incorporates any residual terms. Hence, for ho-
mogeneous isotropic media, the ray paths are straight
lines.

Although the properties of the medium are allowed to
change slowly over the wavelength, we conclude that the
ray paths of the ordinary wave are straight lines. Appar-
ently, the director may change along the ray path while
the wave remains ordinary. Effectively, the ordinary wave
behaves as if it is a wave in an isotropic medium with in-
dex of refraction n=n,,.

The equations of this section suggest that inside an in-
homogeneous uniaxial anisotropic medium, the ordinary
wave and extraordinary wave remain ordinary and ex-
traordinary, respectively. In other words, the light is not
scattered and propagates “adiabatically.” Moreover, Eq.
(25) suggests that the ordinary and extraordinary waves
are mutually independent, since H="H,H,=0. This result
is also known as mode independency. However, the mode
independency is valid only to some approximation. Imag-
ine that An=|n,—n,| —0. Under these circumstances, the
ordinary and extraordinary waves can interact after be-
ing refracted at an anisotropic interface. In this case, the
anisotropy can be considered as a weak disturbance of the
isotropic properties of the medium. The latter is called a
quasi-isotropic approximation [31]. However, we will as-
sume the ordinary waves and extraordinary waves propa-
gate independently.

6. GEOMETRICAL ANALYSIS OF THE
WAVE NORMALS AT THE INTERFACE

In the bulk material of an inhomogeneous medium, we
are now able to calculate the ray paths of light rays by us-
ing the Hamiltonian method. In order to calculate the op-
tical properties at an anisotropic interface, it is necessary
to calculate the wave field at an interface, according to
Eq. (3). In Section 4, we have already derived the vector
equations for the electric and magnetic polarization vec-
tors. In order to calculate the polarization vectors of the
electric and magnetic field vectors at an anisotropic inter-
face, we must know the corresponding wave normals. In
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this section, we derive the vector equations for reflected
and refracted wave normals at an anisotropic interface.
In Section 7, we will calculate the complex amplitudes a
of the field vectors E and H with the help of the results
obtained in the current section.

First, we consider a normalized incident Poynting vec-
tor <§i> of an incident extraordinary wave. This vector de-
fines the direction of the energy transfer of a wave inci-
dent at an interface between two anisotropic media. By
using the properties of the ellipsoid surface H, and the
unit vector (éi), we will derive an expression for the cor-
responding incident extraordinary wave normal p;.. Ac-
cording to Eq. (19), (éi) has the same direction as V,H,.
Therefore, we obtain

S Vote 39
<i>—|vae|- (39)

Together with the condition that H,=0, Eq. (39) results in
four equations with three unknowns: the three vector
components of p;,. This set of equations is solvable. As a
result, we obtain an expression for the incident extraordi-
nary wave normal in terms of the vector components of

<éi) and, in the principle coordinate system, it reads
(n2(810,n2(S1,),n5(S:2))

V2 + (2 = n2)(S,.)°

Pie (40)

If n,=n,=n, Eq. (40) reduces to pi=n(éi), which applies
for ordinary waves and waves in isotropic media. Hence,
for arbitrary values of n, and n,, we can apply Eq. (40) to
both isotropic and anisotropic media in the principal co-
ordinate system.

For a proper determination of the reflected and re-
fracted wave normals at the interface, we apply Snell’s
law in vector notation given by

p;XA=p XA, (41)

where n is the local normal vector to the boundary, p; is
an incident wave normal, and p is the corresponding
transmitted or reflected wave normal. Snell’s law de-
mands that the tangential component of the wave normal
(P;,) be continuous across the boundary. Given the inci-
dent wave normal p;, the tangential wave normal p,, can
be calculated by subtracting the normal component from
the incident wave normal, yielding

P, =P;— (p;-R)N. (42)

At this point, the waves can be either reflected or re-
fracted. In the case of reflection, we define the n, and n, of
the incident medium. In the case of refraction, we define
the n, and n, of the second medium. In what follows, we
derive general expressions for the reflected and refracted
wave normals for which n, and n, can be chosen arbi-
trarily.

For ordinary waves, the wave normal is determined by
the intersection of the vector p,=p,,+ & with the surface
'H,=0, where ¢ is a variable. Since H,=0 represents a
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sphere with radius n,, £ must satisfy the condition [p,,|?
+§2=n§. Therefore, we conclude that the transmitted or
reflected ordinary wave normal reads

2 1. 12a
Po=Pu * \”n'g - |ptn|2n7 (43)

where the plus sign applies to transmitted waves and the
minus sign applies to reflected waves. In isotropic media,
we can apply Eq. (43) if n, is replaced with n.

Similarly, the extraordinary wave normal is given by

Pe = Pin + gﬁ (44)

The constant ¢ is determined by the condition that the
end point of the wave normal p, lies on the ellipsoid sur-
face H,=0. Therefore, in the principal coordinate system,
¢ is now given by

-B+\B2-4AC

2p tnzllz 2p tnallx + 2p tnyny
= +
2 2 ’
o n,

n

2 2 2
ptnz ptnx +ptny

—+———— - 1. (45)
(] n,

n

Again, the plus sign applies to transmitted waves, and
the minus sign applies to reflected waves. If n,=n,=n, A
=1/n2, B=2/n?(p,,-1)=0, and C=|p,,/?/n%2-1. Then &
=++n%—|p,,|?, which applies for isotropic media and ordi-
nary waves (see Eq. (43)).

In this section, we have derived concise vector equa-
tions in order to calculate the incident, reflected, and re-
fracted wave normals of both ordinary and extraordinary
waves at an anisotropic interface. These equations apply
to arbitrary values of n, and n,. The reflected and re-
fracted normalized Poynting vectors are defined in Eq.
(39). The vector equations derived in this section apply
only in the principal coordinate system. In addition, it can
be concluded that all wave normals, together with n, are
in the same plane: the plane of incidence.

7. FRESNEL COEFFICIENTS AT THE
INTERFACE

Since we now can calculate the polarization vectors with
the corresponding wave propagation vectors, we are left
with the calculation of the complex amplitudes a of the

electric and magnetic field vectors E and H, respectively.

Consider a plane boundary that forms the interface be-
tween two different transparent media. Locally, these me-
dia either have homogeneous isotropic or homogeneous
uniaxially anisotropic properties. This gives rise to four
different kinds of interfaces, namely, isotropic—isotropic,
isotropic—anisotropic, anisotropic—isotropic, and
anisotropic—anisotropic. In order to calculate the electro-
magnetic fields at both sides of an interface, we apply
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boundary conditions. The boundary conditions (derived
from Maxwell’s equations) demand that across the bound-

ary, the tangential components of the field vectors E and

H should be continuous (cf. [36], p- 18). In an isotropic
medium, these boundary conditions are applied to two in-
dependent modes. One mode is s polarized, with the elec-
tric polarization vector component perpendicular to the
plane of incidence. The other mode is p polarized, which
means that the electric polarization vector component is
in the plane of incidence. In anisotropic media, the bound-
ary conditions are applied to the ordinary wave and the
extraordinary wave separately.

For a general approach, we consider the case for an
anisotropic—anisotropic interface. Figure 3 shows the re-
fracted and reflected waves at an anisotropic—anisotropic
interface. In general, there are two reflected waves,
namely, an ordinary wave and an extraordinary wave, in-
dicated by R, and R,, respectively. Similarly, there is a
transmitted ordinary wave and a transmitted extraordi-
nary wave, indicated by T, and T, respectively.

In order to apply the boundary conditions, we define
two orthogonal vectors t; and t, tangential to the inter-
face given by

tszpiXﬁ’ tp=ﬁ><ts. (46)

The boundary conditions are applied to both the s compo-
nents and the p components of the electromagnetic field
vectors. Application of the boundary conditions yields four
linear equations given by (cf. [18], p. 2391)

t, - (ato]::to + ateﬁ-“te) =t,- (Ez + aroﬁ:ro + areﬁre):
tp : (atoﬁto + ateﬁte) = tp : (Ez + aroﬁro + areﬁre) ’
ts : (atoHto + atthe) = ts . (ﬁl + aroHru + areHre) ’

tp : (attho + atthe) = tp . (ﬁz + aroHro + areHre)a (47)

where fEi and ﬁi are the incident electric and magnetic

field vectors, respectively. The vectors E and H are the
electric and magnetic polarization vectors defined in Eqgs.
(14) and (15), respectively. The indices r and ¢ denote re-

T
T,

— =

Re

R,

Fig. 3. Refraction and reflection at an anisotropic—anisotropic
interface. The transmitted ordinary wave and extraordinary
wave are indicated by T, and T, respectively. The reflected ordi-
nary wave and extraordinary wave are indicated by R, and R,,
respectively.

Vol. 25, No. 6/June 2008/J. Opt. Soc. Am. A 1267

flected and transmitted waves, respectively. The indices o
and e denote ordinary and extraordinary waves, respec-
tively. These equations are the Fresnel equations and can
be written as a linear matrix equation given by

t, - Eta t, - Ete -t Ero -t,- Ere Ay
t, B, t,E, -t E, -t E,| %
t, - Hto tg Hte -t Hro -t Hre @ro
t,-H, t,-H, -t,-H,, —-t,-H,,/ \Cre
ts * Ei
t * Ei
=7 . (48)
ts * Hi
tp * Hi

The only unknowns in this matrix equation are the com-
plex amplitudes ay,, as, @,,, and a,,. These complex am-
plitudes are the Fresnel coefficients. The matrix equation
can be solved analytically and by any of the standard

methods as, e.g., described in [37]. Note that Ei should
represent a polarization eigenmode of the incident me-

dium. For this type of interface, this means that Ei rep-
resents either an ordinary wave or an extraordinary

wave. In an isotropic medium, E; is always a polarization

eigenmode of the medium so that 1~3i can be chosen arbi-
trarily.

The advantage of Eq. (48) is that it is also applicable to
the remaining types of interfaces. Consider for example
an isotropic—anisotropic interface. For this type of inter-
face, a,, and a,, need to be replaced with a,; and a,,, re-
spectively. In addition, I:],.o, ]:]re, H,,, and H,, are replaced
with E,s, Erp, H,;, and H,,, respectively. Of course, Eqs.
(14) and (15) no longer apply for the reflected waves. In-
stead, we define the electric polarization vector of the
s-polarized wave component

A

R P Xn
= —A‘, (49)

lp, X B

rs

and the electric polarization vector of the p-polarized
wave component is defined as

I:]rs X pr
= —. (50)
|E,; X p,|

For an anisotropic—isotropic interface, Eqs. (49) and (50)
apply as well, provided that the index r is replaced with
the index ¢, resulting in the set of Fresnel coefficients a,,
@y, Qro, and a,,. For isotropic—isotropic interfaces, Egs.
(49) and (50) apply for both the index r and the index ¢,
yielding ay, ayp, @y, and a,,,.

As a result, the electromagnetic field of, e.g., a reflected
wave in an isotropic medium is given by
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Er = (arsErs + arpErp)ei(kowr_wt)s

1 .
Hr = _(arers + arpHrp)el(kO%_wt)a (5 1)
)

while the electromagnetic field of a transmitted extraor-
dinary wave is given by

A 1 ,
E;.= ateEteel(kol/Ite_wt)y H, = _attheel(kol/fte_wt) . (52)
Clbo

From the electromagnetic field, we can calculate the time-
averaged Poynting vector using Eq. (18). Moreover, we
can determine the phase and the polarization state.

Finally, for an arbitrary type of interface, we can apply
the law of conservation of energy flow in the direction of
the normal vector fi. For an anisotropic—anisotropic inter-
face, this yields

n-(Sy,)+n-(S,)-h-(S,)-n-(S,)=n-(S). (53)
The minus sign appears since, for reflected waves,

n-(S,)<0. By dividing both sides of Eq. (53) by n-(S;), we
obtain

A-(S,) A-(S.) A-(S.) RS,
A-(S)  A(S) A(S) B (S)

1. (54)

The electromagnetic field at an anisotropic—anisotropic
interface has to satisfy Eq. (54). Each term on the left-
hand side of Eq. (54) represents either an intensity trans-
mittance factor 7' or an intensity reflectance factor R.
Consequently, Eq. (54) can be written as

T,+T,+R,+R,=1, (55)
with
RERC RO
Tlasy T Ay |
n- <Sro> n- <Sre>
0= | A s e= | & . (56)
n-(S;) n-(S;)

For the remaining types of interfaces, we obtain similar
results. The difference is that for an isotropic—anisotropic
interface, we obtain T,, T,, and R. For an anisotropic—
isotropic interface, we obtain R,, R,, and T'. For isotropic—
isotropic interfaces, we simply obtain R and 7.

The procedure described in this section is known in the
literature. However, the main conclusion of this section is
that the calculation of the Fresnel coefficients is signifi-
cantly simplified with the help of the vector equations de-
rived in Sections 4 and 6.

8. GENERAL PROCEDURE FOR SLOWLY
VARYING ANISOTROPIC MEDIA

In this section, we will discuss a general procedure that
can be applied when we are interested in the optical prop-
erties of the interface and the bulk of an anisotropic me-
dium. In practice, one usually begins the process of ray
tracing outside an anisotropic medium. Hence, we first
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discuss the optical properties of an anisotropic interface.
Then we describe how to proceed in the anisotropic bulk
material.

A. Optical Properties of an Anisotropic Interface
In general, an anisotropic interface is locally defined by
the surface normal i and the optical properties of the in-
cident medium (medium 1) and the second medium (me-
dium 2). In order to maintain a general approach, we will
assume that both medium 1 and medium 2 are aniso-
tropic. The optical properties of medium 1 are defined by
the local optical axis at the interface 6; and the local in-
dices of refraction n,; and n,;. Likewise, the optical prop-
erties of medium 2 are defined by 09, 1,9, and n.,,. With
this information, the configuration is specified.

Then we need to define an incident wave field with nor-

malized Poynting vector <éi> and electric polarization vec-

tor E;. This electric polarization vector should be a polar-
ization eigenmode of the medium. For anisotropic media,

this means that Ei either represents an ordinary wave or
an extraordinary wave. For the moment, we assume an
extraordinary wave.

With Egs. (40) and (42), we calculate the incident ex-
traordinary wave normal p,, and the tangential wave nor-
mal p,,. However, Eq. (40) applies only in the principal
coordinate system. Therefore, the optical axis 04, the sur-

face normal n, and the incident Poynting vector <§i>
should be transformed to a local coordinate system in
which the optical axis 6;=(0,0,1). Consider a matrix A,
that represents a linear orthogonal transformation that
transforms the optical axis 6 to .4,;6;=(0,0,1). Then the
“new input” is given by <é§-’)=A1(§,~>and n’=A4;n, where
the index p denotes the principal coordinate system.
These vectors can be applied to Eqs. (40) and (42). As a
result, we know p?, and pf, in the local principal coordi-
nate system of medium 1. In addition, we can calculate
the reflected wave normals p?, and p?, in the principal co-
ordinate system of medium 1 by applying Eqgs. (43)—(45).
Obviously, we apply the minus sign in Eq. (45).
Subsequently, we need to transform the calculated

wave normals p?,, p?,, p?,, and p?, and the vectors <é§’>,
1n”, and 64 back to the original coordinate system of me-
dium 1. To this end, we apply the inverse of the matrix
A1, denoted by AIl.

Next, we calculate the refracted wave normals p;, and
P:. by using Eqgs. (43)—(45). Since Eq. (45) applies only in
the principal coordinate system, n and p,, need to be
transformed to the principal coordinate system of medium
2. Similar to the considerations mentioned above, we de-
fine a matrix A, that transforms the optical axis 6, to
Ay09=(0,0,1). In this case, the new vectors in the princi-
pal coordinate system of medium 2 are defined as n” and
p},- These vectors are applied to Egs. (43)-(45). This time,
we apply the plus sign in Eq. (45). Finally, the vectors n?,
p},. 65,p},, and p}, are transformed back to the original
coordinate system of medium 2 by applying the inverse
matrix A;'.

The transformation matrices .4 denote rotation matri-
ces. The rotation matrices used here are 3 X3 matrices
that represent a geometric rotation about a fixed origin in
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three-dimensional space. The exact definition of these
matrices depends on the definition of the optical axis o.
The procedure for finding the right rotation matrices en-
tails straightforward linear algebra. Hence, we will not
discuss this procedure here.

For the calculation of the Fresnel coefficients, we first
need to calculate the electric and magnetic polarization
vectors of the incident, refracted, and reflected waves. By
applying Eqgs. (14) and (15), we obtain

~ Pt X 62

to=7_  _ A |
° |pto><02|’

(pte X 62) X Vp’He P=Py,

A

Ete = N
‘(pte X 02) X Vp’}—le

)
P=P¢, |

A Pro X 61
ro= ~A |
|pro X 01|
(pre X 61) X VpHe

P=Pre

A

e ‘(pre X 61) X VpHe

(57)

P=Pre ‘

Take note of the fact that before V,7, can be applied to
Eq. (57), it needs to be calculated in the principal coordi-
nate system and the resulting vector products on the
right-hand sides of Egs. (57) must than be transformed
back to the original coordinate system. As mentioned be-

fore, the electric polarization vector I:]i of the incident
wave is an input vector. In addition, the incident mag-
netic polarization vector is given by Hi=pie><133i. Like-
wise, we can calculate the magnetic polarization vectors
of the refracted and reflected waves H,,, H,,, H,,,, and H,.,.
Finally, the orthogonal vectors t; and t, are given by
Eq. (46).

In general, it is convenient to define the incident elec-

tric field vector I~4]i=]:]i. Then the Fresnel coefficients can
be obtained from the matrix equation given by Eq. (48).
This matrix equation can be solved analytically or by any
of the standard procedures described in Numerical Reci-
pes (cf. [37], Chapter 2). As a result, the electromagnetic
fields of the incident and refracted waves are given by

~ 1
Ei — Eiei(k0¢i_wt), Hi — _Hiei(k()l//i—wt),
Clo

o ikgy,—ot i(koyo—ot
Eto = atoEtoel( 0to= )7 Htv = JatOHmel( e >’
0

. 1 A
Ete = ateEteel(kowte_wt), Hte = Jattheel(kowte_wt)- (58)
0

The reflected electromagnetic fields are similar, provided
that the index ¢ is replaced with the index r. When we ap-
ply Eq. (18), the phase terms of the corresponding electric
and magnetic fields in Eq. (58) cancel out. Finally, we ap-
ply Egs. (55) and (56) in order to calculate the intensity
transmittance and reflectance factors T,, T,, R,, and R,.
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B. Optical Properties of an Anisotropic Bulk Material
At this point, we can continue with the calculation of the
ray paths r(7) in the bulk of medium 1 and medium 2. The

ray paths can be calculated if the director d= (&x’&y,&z) is
known as a function of position inside the medium. In
other words, we assume that the normalized vector field
&(x ,¥,2) 1s given. In addition, we assume position-
independent refractive indices n, and n,.

As an example, we can determine the ray path of the
refracted extraordinary wave. If we redefine 7 such that
a=1, the corresponding Hamilton equations are

dr(7) 4
FP V,He(d),
dp.(7) R
dr V. H(d), (59)

with V,H, and V. H, as defined in Eq. (37):

IH, ad, ad, ad,
i i)’

7=2(8H_8L)(pe 'd)(pexg"'pey + Dez

IH,
8p el

=26 poi + 2 -5, Dy, =%,z (60)

These equations of Eq. (59) are a set of six coupled first-
order differential equations for the vector components of
r(7) and p,(7). These differential equations can be solved
with, e.g., the first-order Runge-Kutta method, also
known as the Euler method (cf., [37], p. 704). If we start
at the anisotropic interface at “time” 7=, the initial con-
ditions for the set of first-order differential equations are
given by

I‘(’7-0) = (x07y0720) )

pe(TO) = Pee- (61)

By taking steps A7 in the time 7, the Runge-Kutta
method solves the ray path r(7p+NA7) and the corre-
sponding wave normal p,(7g+N A7), with N e N. In this
way, we obtain the ray path of the extraordinary wave in
the bulk material of medium 2. Likewise, we can calculate
the ray paths of the refracted ordinary wave in medium 2
and the reflected waves in medium 1.

We always need to define a director profile before we
can apply the model. This director profile may be specified
by an explicit mathematical formula. This means that the
director is known at all points in space. Then we say that
the director profile is continuous. On the other hand, nu-
merical director profiles define the director only at dis-
crete points in space. Numerical director profiles are pro-
duced by optical analysis software programs, like LCD
Master [38] or 2dimMOS [39]. In that case, the director
profile can be interpolated and the order of the interpola-
tion must be the order of the Runge—Kutta method. Our
model can be applied to both mathematical and numerical
director profiles.

In this section, the vector equations for the polarized
ray tracing of an extraordinary wave are clearly dis-
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played. Altogether, the procedure described here is a clear
outline of how to apply the polarized ray-tracing method
derived in Sections 4-7 in practice.

9. SOME MODELING RESULTS FOR
PRACTICAL GEOMETRIES

In order to establish a link with the real world of aniso-
tropic phenomena, we present two cases to which our
model is applied. First, we apply the model to an air—
calcite interface. Second, we apply the model to an inho-
mogeneous anisotropic director profile in three dimen-
sions.

A. Transmission and Reflection at an Air-Calcite
Interface
The model described in Sections 3-7 can be used to deter-
mine the optical properties of an anisotropic medium at
an interface. As an example, we apply the model to a
plane isotropic—anisotropic interface. We define the iso-
tropic and anisotropic medium to be air and calcite, re-
spectively. We use calcite with an ordinary index of refrac-
tion n,=1.655 and an extraordinary index of refraction
n,=1.485 (negative birefringence) [16]. These values for
the refractive indices are valid for light with a wavelength
of 633 nm. The plane of incidence is the xz plane, and the
optical axis 0 is at 45° with the xz plane. The incident
light has a linear polarization in the plane of incidence (p
polarization). As a function of the angle of incidence 6;, we
calculate the transmittance factor T, for the ordinary
wave. Similarly, we calculate T, R,, and R,,. The results
are depicted in Fig. 4. The sum of T, T, R;, and R, is in-
dicated by T; and should result in 1 for any value of 6,.
It appears that the tilted optical axis generates both ex-
traordinary and ordinary waves. In addition, the reflected
light is mainly p polarized. The Brewster angle 6p is de-
fined as the angle where R, vanishes. From Fig. 4, we can
read a Brewster angle of 59.76°. In Lekner, the Brewster
angle is calculated analytically [22]. There the reflection

1
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Fig. 4. Transmittance and reflectance factors as a function of
the angle of incidence 6; for an air—calcite interface. The optical
axis is at 45° with the plane of incidence; T, and T\, are the ordi-
nary and extraordinary transmittance factors, respectively; R,
and R, are the reflectance factors for s- and p-polarized light, re-
spectively; T, is the sum of these factors and should result in 1
for any value of 6. The Brewster angle 65 is the angle where R,
vanishes and reads 59.76°.
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Fig. 5. Brewster angle 63 for an air—calcite interface as a func-
tion of y2. The optical axis is in the plane of incidence. The pa-
rameter vy is the cosine of the angle I between the optical axis 6
and the surface normal f.

amplitudes result in a quartic equation of which one of
the physical roots determines the Brewster angle. Lekner
predicts a Brewster angle of 59.75° (cf. [22], Table 1, p.
2766). Lekner also calculates the Brewster angle 63 as a
function of the angle I" that the optical axis makes with
the normal f [16]. In this case, the optical axis is defined
in the plane of incidence. Figure 5 shows the Brewster
angle as a function of the square of the cosine of the angle
I', denoted by 2. We can conclude that Lekner’s results
are well reproduced (cf. [16], Fig. 1, p. 2061).

B. Artificial Gradient-Index Lens

In this section, we apply the model to light rays incident
on an artificial three-dimensional inhomogeneous director
profile. With this artificial director profile, we aim to dem-
onstrate the capacity of our method to provide insight into
the optical behavior of such configurations.

Consider a Cartesian coordinate system in which the
plane z=0 is defined as a grounded conducting plate with
electric potential ®=0. Let there be a point charge in
(0,0,a), for some a >0, with positive charge q (see Fig. 6).
Using the method of images [36], we can write the electric
potential due to the charge g for z=0 as

1

D(x,y,2) = ——
4meg \x? +y? + (2 — a)?

q 1

(62)

dmeg 2 +y%+ (z +a)®

Fig. 6. Point charge g at a distance a above the origin. The
plane z=0 is defined as a grounded conducting plate. As a result,
there is an electric field in the half-space z=0.
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The corresponding electric field is then given by
E(x,y,z)=-V®(x,y,z). Let the space z=0 be filled with
an anisotropic medium with the material properties of liq-
uid crystal. We will assume that the field is so high that
all directors follow the field direction. In other words, the
electric energy is considered to be much higher than the
elastic energy between the directors. Hence, the director
profile due to the electric field of the point charge q is

a Bz oo 63
(x,y,2) = m z2=0. (63)

Figure 7 shows the director profile in the xz plane for a
=50, x €[-50,50], and z €[0,100]. The anisotropic me-
dium in the upper half-space z=0 has an ordinary index
of refraction n,=1.5 and an extraordinary index of refrac-
tion n,=1.7. The lower half-space z<0 is assumed to be
glass with an index of refraction ng,.=1.5.

We will use the Hamilton equations to calculate the ray
paths of waves propagating from the glass into the aniso-
tropic medium. In particular, we calculate the ray paths
of extraordinary waves by using Egs. (59) and (60). By
taking small steps in the “time” 7, the position r(7) and
momentum p(7) are calculated using the first-order
Runge—Kutta method.

Figure 8 shows several ray paths of extraordinary
waves at normal incidence to the plane z=0. The plane of
incidence is the xz plane. Apparently, light is absent in
the region above the point charge g, and the ray paths
seem to form a “curtainlike” appearance.

At z=100, a matrix of intervals in x and y is defined,
which is used to bin the x and y coordinates of ray paths.
The number of rays collected by each interval is a mea-
sure for the intensity. Then the spatial intensity distribu-
tion at z=100 should give us an idea of the optical behav-
ior.

We define rays of light propagating in the z direction
incident on the (transparent) conducting plate. The initial
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Fig. 7. Director profile (i.e., the normalized electric field due to
the point charge q) in the xz plane for a=50, x €[-50,50], and
z €[0,100]. The profile has azimuthal symmetry.
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Fig. 8. Ray paths of several extraordinary waves at normal in-
cidence to the plane z=0, where the xz plane is the plane of in-
cidence. Note the “curtainlike” behavior, allowing no light in the
region above the point charge.
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positions of the rays (x(,y9,29) randomly lie inside a
square defined by x, €[-10,10] and y, € [-10,10]. These
rays are refracted at the conducting plate at z=0, where
fl:(0,0,—l). Propagating along the z direction, the rays
would result in ordinary waves after being refracted.
Hence, according to the Hamilton equations, the rays
would not be curved. To overcome this effect, we perturb
the incident angle of the rays to 106 deg in the xz plane.
In addition, we define a linear polarization parallel to the
xz plane. As a result, the refracted waves are extraordi-
nary waves.

Figure 9(a) shows the intensity distribution I at z
=100. The number of rays that is traced is 30.000. The
white square indicates the boundary in which the initial
positions (at z=0) of the incident rays lie. In Figs.
9(b)-9(f), this square is moved along the line x=y. It is
clear that the intensity distribution changes with the po-
sition of the square.

In Fig. 9(f), the distortion of the square light source is
only little, since the square is far away from the point
charge. However, in Fig. 9(a), the square light source at
z=0 is transformed into a circularlike light distribution at
z=100. This is the case when the center of the square is
exactly below the point charge.

Although the anisotropic structure examined here is
fictitious, it brings the application of liquid-crystal mate-
rial in anisotropic gradient-index lenses to mind.

10. CONCLUSIONS

In this article, we have developed a general and complete
ray-tracing method in the geometrical-optics approach.
We can use the model to calculate ray paths with polar-
ized ray tracing in the bulk material of inhomogeneous
anisotropic media in three dimensions, provided the prop-
erties of the medium change slowly over one wavelength.
In addition, this model enables one to calculate the optical
properties of, in general, curved interfaces with arbitrary
orientation and/or anisotropic properties. Finally, we have
derived vector equations that are general, concise, and
easy to apply. In combination with these vector equations,
the ray-tracing method presented in this article becomes
a clear outline of how to apply the classical theory in prac-
tice.
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Fig. 9.
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which the initial positions of the incident rays lie. This boundary is moved along the line x=y.

We have shown that computations to anisotropic inter-
faces in existing literature can be well reproduced by the
model. In addition, the model is applied to an artificial an-
isotropic gradient-index profile in three dimensions. It
has been shown that, given an arbitrary director profile
within defined boundaries, our method can be applied in
order to assess the optical properties of the anisotropic
optical system.
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