

Delft University of Technology

Declarative Syntax Definition for Modern Language Workbenches

de Souza Amorim, Eduardo

DOI
10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d07f
Publication date
2019
Document Version
Final published version
Citation (APA)
de Souza Amorim, E. (2019). Declarative Syntax Definition for Modern Language Workbenches.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:43d7992a-7077-47ba-
b38f-113f5011d07f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d07f
https://doi.org/10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d07f
https://doi.org/10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d07f

Declarative Syntax Definition
for Modern Language

Workbenches

DISSERTATION

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Wednesday 19 June 2019 at 12:30 o’clock

by

Luis Eduardo DE SOUZA AMORIM

MSc Computer Science, Universidade Federal de Viçosa, Brazil
born in Unaí, Brazil

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof.dr. E. Visser Delft University of Technology, promotor
Prof.dr. S. T. Erdweg Johannes Gutenberg University Mainz, promotor

Independent members:
Dr. E. van Wyk University of Minnesota, United States
Prof.dr. R. Lämmel University of Koblenz-Landau, Germany
Prof. E. Scott Royal Holloway, University of London, United Kingdom
Prof.dr. M.G.J. van den Brand Eindhoven University of Technology
Prof.dr. K.G. Langendoen Delft University of Technology
Prof.dr. A. van Deursen Delft University of Technology, reserve member

The work in this thesis has been carried out at the Delft University of Technol-
ogy, under the auspices of the research school IPA (Institute for Programming
research and Algorithmics).

Copyright © 2019 Luis Eduardo DE SOUZA AMORIM

Cover by: Lonely tree on a green hill, Peter Heeling (https://skitterphoto.
com/photos/394/lonely-tree-on-a-green-hill) CC0 1.0 Universal
(CC0 1.0) Public Domain Dedication

Printed and bound in The Netherlands by:
ProefschriftMaken || www.proefschriftmaken.nl.

ISBN 978-94-6366-171-3

https://skitterphoto.com/photos/394/lonely-tree-on-a-green-hill
https://skitterphoto.com/photos/394/lonely-tree-on-a-green-hill
www.proefschriftmaken.nl

Contents

Samenvatting v

Summary vii

1 Introduction 1
1.1 Programming Languages . 1

1.2 Language Definition . 1

1.3 Language Workbenches . 4

1.4 The Thesis in More Detail . 6

1.5 Research Overview and Contributions 7

1.6 Origin of Chapters . 9

I Declarative Disambiguation 11

2 Declarative Disambiguation of Expression Grammars 13
2.1 Introduction . 13

2.2 Grammars and Ambiguities . 19

2.3 Infix Expression Grammars . 30

2.4 Prefix Expression Grammars . 44

2.5 Postfix Expressions . 53

2.6 Distfix Expressions . 60

2.7 Indirect Recursion . 66

2.8 Grammar Transformation . 74

2.9 Implementation . 81

2.10 Evaluation . 89

2.11 Related Work . 94

2.12 Conclusion . 97

3 Deep Priority Conflicts in the Wild: A Pilot Study 99
3.1 Introduction . 99

3.2 A Primer on Declarative Disambiguation 101

3.3 Reasoning about Deep Priority Conflicts 105

3.4 Evaluation . 109

3.5 Threats to Validity . 117

3.6 Related Work . 118

3.7 Conclusion and Future Work . 120

iii

4 Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 121
4.1 Introduction . 121

4.2 Disambiguating Priority Conflicts 123

4.3 Data-dependent Contextual Grammars 129

4.4 Evaluation . 136

4.5 Related Work . 139

4.6 Conclusions . 142

II Declarative Syntax Definition 145

5 Declarative Specification of Layout-Sensitive Languages 147
5.1 Introduction . 147

5.2 Background . 149

5.3 Layout Declarations . 151

5.4 Layout-Sensitive Parsing . 155

5.5 Layout-Sensitive Pretty-Printing 159

5.6 Evaluation . 165

5.7 Related Work . 168

5.8 Future Work . 169

5.9 Conclusion . 170

6 Principled Syntactic Code Completion 171
6.1 Introduction . 171

6.2 State of the Art of Syntactic Completion 174

6.3 Completion by Rewriting Placeholders 176

6.4 Code Expansion by Placeholder Inference 182

6.5 Code Completion for Incorrect Programs 188

6.6 Evaluation . 192

6.7 Related Work . 193

6.8 Future Work . 195

6.9 Conclusion . 195

7 Conclusion 197
7.1 The Thesis Revisited . 197

7.2 Suggestions for Future Work . 199

Bibliography 201

Curriculum Vitae 219

List of Publications 221

iv

Samenvatting

Programmeertalen zijn een belangrijk onderdeel van de informatica, waarmee
programmeurs het gedrag van computersystemen kunnen beheersen, bepalen
en veranderen. Maar het ontwerpen, implementeren en onderhouden van
programmeertalen vereist ook een behoorlijke inspanning. Gelukkig zijn er
declaratieve aanpakken voor het definiëren van programmeertalen, die de
ontwikkeling en implementatie ervan vergemakkelijken.

Om een programmeertaal te definiëren is de eerste stap meestal het speci-
ficeren van de syntax (of notatie). Syntaxdefinitieformalismen zijn gebaseerd
op grammatica’s: sets van regels die bepalen welke woorden tot de taal be-
horen, en hoe deze woorden moeten worden gestructureerd om geldige pro-
gramma’s te construeren. Grammatica’s zijn multifunctioneel, omdat ze een
begrijpbare documentatiebron zijn en tegelijkertijd kunnen worden gebruikt
om taalimplementaties van af te leiden. Taalontwikkelomgevingen (language
workbenches) helpen de taalontwikkelaars om (prototypen van) programeer-
talen te ontwikkelen door syntactische functionaliteiten af te leiden uit een
syntaxdefinitieformalisme.

Het gebruik van declaratieve syntaxdefinities in een taalontwikkelomgeving
levert nog steeds veel uitdagingen op. Om een volledig declaratieve syn-
taxdefinitie mogelijk te maken moeten parsers en andere gereedschappen
ondersteuning bieden voor grammatica’s in hun natuurlijke vorm. Oftewel, ze
moeten dubbelzinnige grammatica’s kunnen accepteren. Parsers die dubbelzin-
nige grammatica’s aanvaarden hebben vaak geen duidelijke semantiek voor
het ondubbelzinnig maken, en dit reduceert de parseerprestaties en beperkt
de talen die succesvol kunnen worden geïmplementeerd. Aanvullend op het
parseren moeten editorfunctionaliteiten zoals pretty-printing en codevoltooiing
(code completion) vaak met de hand worden geïmplementeerd, waardoor de
kosten van het onderhouden en evolueren van de taal oplopen.

Ons doel is om declaratieve syntaxdefinities te gebruiken om doelmatig de
syntax van programmeertalen te definiëren en efficiënte gereedschappen te
genereren. Om de bovenstaande problemen aan te pakken introduceren we
een nieuwe semantiek voor het ondubbelzinnig maken van contextvrije gram-
matica’s, en dan specifiek de subgroep van grammatica’s voor het definiëren
van expressies. We onderzoeken hoe vaak deze dubbelzinnigheden zich vo-
ordoen in programma’s in de praktijk, en tonen de noodzaak aan voor het
efficiënt ondubbelzinnig kunnen maken. Ten slotte implementeren we deze
semantiek, waarbij we een parser genereren die vrijwel zonder overhead met
dubbelzinnige grammatica’s overweg kan.

Daarnaast ontwikkelen we een techniek om automatisch parsers en pretty-
printers voor opmaakgevoelige talen af te leiden uit de syntaxdefinitie. De
mogelijkheid om opmaakgevoelige talen declaratief te specificeren laat ons
belangrijke vraagstukken aanpakken, waaronder bruikbaarheid, prestaties, en

v

gereedschapsondersteuning, die de opname van dit soort talen in gereedschap-
pen zoals taalontwikkelomgevingen verhinderen.

Ten slotte stellen we een principiële aanpak voor waarmee syntactische
codevoltooiing uit de syntaxdefinitie kan worden afgeleid. De huidige imple-
mentaties van voltooiingsfunctionaliteiten zijn vaak ad hoc, ondeugdelijk, en
incompleet. Door een principiële aanpak te gebruiken kunnen we redeneren
over de deugdelijkheid en compleetheid van codevoltooiing, waardoor een
pad wordt onthuld naar rijkere editorfunctionaliteiten in taalimplementaties.

vi

Summary

Programming languages are one of the key components of computer science,
allowing programmers to control, define, and change the behaviour of com-
puter systems. However, programming languages require considerable effort
to design, implement, and maintain. Fortunately, declarative approaches can
be used to define programming languages facilitating their development and
implementation.

Commonly, the first step to define a programming language consists of
specifying its syntax. Syntax definition formalisms are based on grammars,
defining rules that specify the words that belong to a language and how
these words must be structured to construct valid programs. Grammars are
multipurpose, i.e., they provide an understandable source of documentation,
and can also be used to derive language implementations. Language workbenches
assist language engineers to develop and prototype programming languages
by deriving syntactic services from a syntax definition formalism.

Many challenging problems still exist when using declarative syntax defini-
tions in a language workbench. To enable truly declarative syntax definitions,
parsers and other tools must support grammars in their natural form, i.e., they
must be able to handle ambiguous grammars. Parsers that support ambiguous
grammars lack a clear semantics for disambiguation, restricting their parsing
performance and the languages they can successfully implement. Complemen-
tary to parsing, editor services such as pretty-printing and code completion,
often need to be implemented by hand, increasing the cost of maintaining and
evolving a language.

Our goal is to use declarative syntax definitions to effectively define the
syntax of programming languages and generate efficient tools. To address the
above problems, we propose a new semantics for disambiguating context-free
grammars, particularly the subset of grammars that define expressions. We
study how often these ambiguities occur in real programs, showing the need
for efficient disambiguation. Finally, we implement this semantics, generating
a parser that performs disambiguation with near-zero performance overhead.

Moreover, we develop a technique to automatically derive parsers and pretty-
printers for layout-sensitive languages from the syntax definition. By enabling
the declarative specification of layout-sensitive languages, we tackle important
issues, including usability, performance, and tool support, which prevent the
adoption of these languages in tools such as language workbenches.

Finally, we propose a principled approach to derive syntactic code comple-
tion from the syntax definition. The current implementation of completion
services is often ad-hoc, unsound, and incomplete. By using a principled
approach, we are able to reason about soundness and completeness of code
completion, opening up a path to richer editing services in language imple-
mentations.

vii

1
Introduction

This dissertation shows that declarative syntax definitions can be used to effectively
define the syntax of programming languages and generate efficient tools.

1.1 P R O G R A M M I N G L A N G U A G E S

Programming languages are one of the key components of computer science.
They allow one to control, define and change the behaviour of computer
systems by introducing abstractions over hardware-specific tasks such as
accessing memory, executing commands, and controlling hardware devices.
At their core, different programming languages have the same goal—allow
programmers to write computer instructions—however, each programming
language may have specific characteristics according to its application domain.

Some programming languages such as Pascal [139], C [70], Scala [92],
Haskell [86], and Java [55] are considered general-purpose programming lan-
guages, since they are designed for writing software for many application
domains. Other languages, on the other hand, so-called domain-specific lan-
guages, introduce abstractions for tasks in a specific domain. For instance, the
numerical analysis language MATLAB [88], the query language SQL [87], the
modelling language UML [102], and the mark-up language YAML [20] are
considered domain-specific languages.

Programming languages, both general-purpose and domain-specific, still
require considerable effort in their design, implementation, maintenance, and
evolution. Declarative approaches can be used to define programming lan-
guages to facilitate their design and implementation.

1.2 L A N G U A G E D E F I N I T I O N

A language definition often consists of the specification of the language’s syntax
and semantics. In programming languages, the description of a language’s
syntax corresponds to a set of rules that govern how the sentences (programs)
of a language can be correctly constructed. Meanwhile, the specification of the
language’s semantics describes the meaning of syntactic constructs, restricting
its set of valid programs to programs that are semantically meaningful.

Most programming languages have their syntax defined by a grammar. More
specifically, a context-free grammar is a syntax definition formalism introduced
by Noam Chomsky that enables formal specifications of the syntax of pro-
gramming languages [37]. Grammars consist of rules, called productions, which
define the structure of the sentences in a programming language. Recognizers,
and parsers are tools that use grammars to verify whether a sentence belongs

1

to a language, or to construct an abstract representation in the form of a tree,
to represent this structure. Grammars are declarative in their essence, since they
describe what such language tools should do, not necessarily how to do it [69].

1.2.1 Context-free Syntax

Traditionally, languages are implemented using handwritten parsers, which
are optimized for the language at hand. However, this approach results in
high maintainability and extensibility costs. Furthermore, handwritten parsers
often result in a mismatch between the language specification and language
implementation. Parser generators address this issue by generating a parser from
a language specification such as a context-free grammar, integrating language
specification and language implementation. Ideally, parser generators can
be reused for multiple grammars, and grammars can be reused for different
purposes, other than parser generation.

It is possible to distinguish parser generators by the classes of grammars
they support. Traditional parser generators such as YACC [64] and ANTLR [95,
96] only support certain grammar subclasses such as LR, LL, or LALR. Even
though restricting grammars to a certain class may provide benefits such as
better performance, this approach comes at a price, as grammars become
parser specifications rather than language specifications, thus losing their declara-
tive aspect. Furthermore, parsers based on LL(k) grammars do not support
left recursion, whereas parsers based on LR(k) grammars have to deal with
shift/reduce conflicts in parse tables. In both cases, these parsers are restricted
by the number of symbols that need to be considered to take a certain action,
the lookahead k.

Another major drawback of restricting grammars to a certain subclass
relates to language composition. When composing grammars from a certain
subclass, it is not guaranteed that the resulting grammar will belong to the
same subclass [61]. This inhibits the modularity of syntax definitions and
limits the composition of grammars.

An alternative to maintaining the declarative nature of syntax definition
formalisms is to use generalized parsers. Generalized parsers such as general-
ized LL (GLL) [109], or generalized LR (GLR) [125] support the full class of
context-free grammars, thus allowing modular language specifications and
language composition. Furthermore, generalized parsers handle unlimited
lookahead by allowing multiple interpretations of the input to be parsed in
parallel. This feature also allows generalized parsers to parse ambiguous gram-
mars. Generalized parsers such as GLL may have cubic worst-case complexity
for ambiguous grammars, but they often have a linear behaviour for most
grammars of programming languages [125, 109].

1.2.2 Lexical Syntax

Another way to classify parser generators is with respect to how they deal with
lexical syntax, that is, how parser generators verify that words in a language

2

have been correctly constructed. Lexical syntax is often specified using character-
level grammars, which are based on a less expressive subset of context-free
grammars called regular grammars. Regular grammars use regular expressions
to determine how to combine characters to form the words in a language.

Because character-level grammars often require arbitrary length lookahead
to parse, conventional parsers based on LL or LR grammars handle grammars
that incorporate productions to specify lexical syntax [28]. Thus, these parsers
separate the processing of context-free syntax and lexical syntax by using a
scanner, or lexer, to tokenize the input, such that the parser can operate on
these tokens.

The separation of lexical and context-free syntax has many implications.
First, grammars need to be split between lexical and context-free syntax, with
different expressive powers, which are often defined using two different syntax
definition formalisms. Moreover, because lexical syntax is restricted to regular
grammars, constructs such as nested comments cannot be expressed. In fact,
this problem occurs whenever lexical constructs need context information to
properly tokenize the input. This problem can be tackled by introducing a
lexical state, creating a mechanism to allow lexer and parser to interact, but
this increases the complexity of the implementation, and is also detrimental to
the declarative nature of syntax definitions.

To avoid the need for a separate scanner, scannerless parsers process pro-
grams at the level of characters. They use a single syntax definition for both
lexical and context-free syntax and can only be implemented using generalized
parsing algorithms [69]. For instance, the scannerless GLR parsing algorithm
(SGLR) [130] uses the syntax definition formalism SDF [58, 131], which enables
a language specification that combines lexical and context-free syntax.

1.2.3 Disambiguation

Grammars in their natural and declarative form are often ambiguous [10],
which means that parser generators need to be equipped with mechanisms
to efficiently handle the various types of ambiguities that may occur in syn-
tax definitions. There are three ways that ambiguities can be handled by
parser generators: treating an ambiguity as conflict, ignoring ambiguities, or
embracing ambiguities [69].

Because parsers based on LL and LR grammars are deterministic, they
cannot handle ambiguous grammars. To determine whether a grammar is
ambiguous or not is an undecidable problem [53]. Thus, when conflicts (points
where it is not possible to determine which action the parser should take)
do not occur when using LL and LR parsers, the grammar is deterministic.
However, when a conflict does occur, it is not a guarantee that an ambiguity
has been detected. Nevertheless, conflicts provide a good indication about
whether the grammar is ambiguous or not.

Solving conflicts can be quite challenging. First, non-local conflicts can be
introduced by making minor modifications to the grammar. Thus, evolving a
syntax definition can become a time-consuming and tedious task. Furthermore,

Chapter 1. Introduction 3

conflict resolution is often done by modifying the parser definition to the
point where the original structure is lost, which makes the definition hard to
maintain. Finally, modifying the grammar to perform disambiguation often
produces a larger grammar that is neither as declarative nor as concise as the
original grammar.

Packrat parsers [49] are recursive-descent parsers that use memoization
to efficiently perform backtracking when parsing programs. Packrat parsers
are based on parsing expression grammars (PEGs) [50], which is a class of
grammars that are not a strict subset of context-free grammars and cannot
be used to express all grammars in this class. PEGs use a strict order of
productions, that is, the first alternative that matches the input is always
performed, preventing any non-determinism from occuring. Thus, ambiguities
are ignored by PEGs, and cannot be defined.

The main problem when using PEGs is that for productions that contain
multiple alternatives and have joint patterns to recognize expressions, it is not
always clear to determine which language a definition describes because of the
ordering of the alternatives. This can lead to subtle errors, where the intention
of the language designer is not the one represented in the syntax definition.
Because detection of disjointness is also undecidable [50], such problems are
difficult to capture.

Generalized parsers embrace ambiguities, being able to handle ambiguous
grammars, and producing a parse forest containing all possible interpretations of
the input. These parsers are often equipped with disambiguation mechanisms
to produce a single parse tree as result.

A syntax definition used by a generalized parser is usually extended with
disambiguation rules. For them to be effective, disambiguation rules are also
designed to be declarative and to naturally adhere to context-free grammars.
Disambiguation can then occur as a grammar transformation, when generating
a parse table, during parsing, or after parsing by selecting a tree that meets
certain criteria. For instance, the syntax definition formalism SDF [58] has been
equipped with many declarative disambiguation rules to effectively handle
different forms of ambiguities that occur in syntax definitions, both in lexical
and context-free syntax. Even parser generators based on LR parsers such as
YACC [64] use declarative rules to deal with common ambiguities.

1.3 L A N G U A G E W O R K B E N C H E S

Despite being at the core of language implementations, parsers are only one of
the many tools to consider when designing a language. Tools such as language
workbenches can be used to assist language engineers to develop and prototype
domain-specific and general-purpose programming languages. The term
language workbench was introduced by Martin Fowler [51] to characterize tools
that support the efficient definition, implementation, maintenance, evolution
and composition of languages going beyond parsing and code generation. They
allow a better editing experience to language users, providing various editing
services that are present in integrated development environments (IDEs).

4

Examples of early language workbenches include SEM [122], Metaview [114],
MetaPlex [35], and MetaEdit [113]. Language workbenches are still being de-
veloped to provide better experiences to language engineers, and to support
more language features. Some examples of modern language workbenches are
JastAdd [44], Rascal [72, 73], Spoofax [68], and Xtext [47]. These are examples
of so-called textual workbenches, since they use parsers to validate the syntax
of programs as the user types in a text editor. Projectional workbenches, on the
other hand, allow users to manipulate abstract syntax trees directly, which are
then shown back to the programmer in a particular format. Intentional Pro-
gramming [112], and the Meta Programming System (MPS) [135] are examples
of projectional language workbenches. Modern language workbenches are
enjoying significant growth in number and diversity, driven by both industry
and academia [46].

Figure 1.1 A screenshot of the Spoofax Language Workbench.

Editor support is a key component of language workbenches. For instance,
when considering a textual language workbench, besides a plain text editor,

Chapter 1. Introduction 5

a language workbench should provide a selection of syntactic and semantic
features such as syntax highlighting, parse error recovery, code folding, pretty-
printing, refactoring tools, reference resolution, and code completion.

Figure 1.1 provides an overview of the Spoofax Language Workbench [68],
which allows the development of textual languages with full IDE support.
From different language specifications for the language’s syntax and semantics,
Spoofax generates an IDE plugin that can be loaded into the Eclipse or Intel-
liJ IDEs to support language users. Spoofax provides support for language
prototyping, since language developers can load the plugins while the lan-
guage is being developed, enabling them to simultaneously edit the language
specification and programs of the language being developed.

1.4 T H E T H E S I S I N M O R E D E TA I L

The goal of this dissertation is to present general solutions that support agile de-
velopment and prototyping of both general and domain-specific programming
languages. Despite the evolution of language workbenches and syntax defini-
tion formalisms, many challenging problems remain when using declarative
language specifications in a language workbench.

Syntax definition formalisms are multipurpose. They can be used as a source
of documentation, providing a way to easily understand and describe a lan-
guage’s syntax. At the same time, syntax definition formalisms can be used
to derive language implementations by generating tools and services in a
language workbench. A declarative syntax definition formalism requires that
the language specification abstracts over the details of the language implemen-
tation.

To enable truly declarative syntax definitions, parsers and other tools must
support grammars in their natural and declarative form, i.e., they must be able
to handle ambiguous grammars. Most textual language workbenches rely on
parser generators based on a specific class of context-free grammars. Syntax
definition formalisms based on generalized parsers lack a clear semantics for
disambiguation, which restrict the languages these formalisms can successfully
specify, and may also affect the performance of the generated parser.

Complementary to parsing, another important element in a language work-
bench consists of pretty-printing. A pretty-printer transforms abstract syntax
trees back into text, and is used by many other tools in a language workbench
such as refactoring tools, code completion, and code generation. Pretty-printers
are often written by hand, or written using a different specification from the
syntax definition. Both approaches are detrimental to evolving and maintain-
ing a language, since changes to the syntax definition need to be reflected in
the pretty-printer specification.

Code completion is one of the most used editor services in an IDE. How-
ever, both IDEs and language workbenches use ad-hoc approaches to code
completion that are unsound and/or incomplete. Syntactic code completion is
based on a language’s syntax, and enables language discoverability, helping
programmers to code faster by avoiding syntax errors. A principled approach

6

to code completion is necessary to produce a sound and complete completion
service.

Thus, the lack of a clear semantics for disambiguation, the lack of an
efficient implementation of this semantics, and the need to manually implement
tools such as parsers, pretty-printers, and code completion services prevent
effectively using syntax definition formalisms to define languages in language
workbenches.

Our vision is that syntax definition formalisms can be used in language work-
benches to declaratively specify different programming languages, and at the same
time, implement efficient tools such as parsers, pretty-printers, and syntactic code
completion.

1.5 R E S E A R C H O V E RV I E W A N D C O N T R I B U T I O N S

In this section, we give an overview of the research described in this disserta-
tion, listing our core contributions. Throughout this dissertation, we present
the design and implementation of the syntax definition formalism SDF3, used
in the Spoofax Language Workbench [68]. SDF3 is based on context-free gram-
mars, extended with constructs that enable declarative specifications of parsers
and pretty-printers. SDF3 has evolved from SDF [58] to serve the needs of
modern language workbenches and at the same time improve various issues
of its predecessor, SDF2 [131].

1.5.1 Declarative Disambiguation

In the first part of this dissertation we focus on disambiguation of context-
free grammars, in particular, addressing ambiguities that occur in expression
grammars.

Safe and Complete Semantics for Disambiguating Expression Grammars As men-
tioned previously, the concise, declarative, natural specifications of context-free
grammars are often ambiguous. One common source of ambiguities in gram-
mars of programming languages is related to operator priority and associativity
in expression grammars. Recent work [5] has shown that the disambiguation
techniques of SDF2 for handling operator precedence ambiguities are unsafe,
incomplete and limited. It is unsafe because it rejects unambiguous sentences,
it is incomplete because it cannot handle all combinations of operators, and
it is limited because it only considers conflicts that occur one level deep in a
resulting tree. In order to address these issues, we propose a new semantics
for SDF3 declarative disambiguation in Chapter 2. Our semantics provide safe
disambiguation by only rejecting trees that are part of an ambiguity. Further-
more, we make our semantics complete by addressing a specific type of conflicts
in expression grammars: deep priority conflicts. In conclusion, the semantics
described in this chapter enables declarative syntax definitions to effectively define the
syntax of programming languages.

Chapter 1. Introduction 7

Empirical Study on Deep Priority Conflicts Despite our efforts to provide safe
and complete disambiguation of expression grammars, there was no data
about how often deep priority conflicts occur in practice, or the efficiency of
the techniques to disambiguate deep conflicts. Thus, in Chapter 3, we present a
study that investigates deep priority conflicts in two different programming
languages: Java, and OCaml. As a statement-based language, Java provides
a good example of a language that only contains a few deep conflicts in its
specification. In contrast, OCaml, as an expression-based language represents
the other side of the spectrum, a language with many deep priority conflicts.
Our study investigated disambiguation of deep priority conflicts using a
grammar transformation technique, considering programs from the top 10

trending repositories on GitHub for each language. In conclusion, our study
indicated that deep priority conflicts do occur in real programs, demonstrating the
need for efficient disambiguation.

Efficient Disambiguation of Deep Priority Conflicts Grammar transformation
techniques to address disambiguation may have a large impact on the per-
formance of the parser. In Chapter 4 we address efficient disambiguation of
deep priority conflicts by using data-dependent grammars. We implement the
semantics for disambiguation described in Chapter 2, disambiguating deep
priority conflicts at parse time. The technique consists of creating a data-
dependent grammar that encodes deep priority conflicts. A data-dependent
parser constructs parse trees propagating information about how the trees
are constructed. This information is then used to forbid trees that violate a
particular disambiguation rule. Since disambiguation occurs at parse time, it is
not necessary to transform the grammar creating additional productions that
affect the performance of the parser. In conclusion, our data-dependent approach
for disambiguation generates efficient parsers from declarative syntax definitions.

1.5.2 Declarative Syntax Definition

In the second part of this dissertation we investigate the specification of layout-
sensitive languages, and syntactic code completion.

Layout Declarations Layout-sensitive languages characterizes languages that
must obey particular indentation rules, i.e., languages in which the indentation
of a program influences how the program should be parsed. While layout-
sensitive languages, such as Haskell and Python, have been widely adopted,
tools such as parsers and pretty-printers still need to be handwritten for
these languages. In Chapter 5, we detail an approach to declaratively specify
layout-sensitive languages. We introduce layout declarations as a mechanism to
declaratively specify indentation rules in the syntax definition, evaluating our
approach using the Haskell programming language. In conclusion, layout
declarations enable deriving efficient layout-sensitive parsers and pretty-printers.

Principled Syntactic Code Completion Syntactic code completion enable users to
change the source code by inserting code snippets corresponding to fragments
of the language’s syntax. In a language workbench, a syntactic completion

8

service assists both novice and experience language users, enabling language
discoverability, and avoiding syntax errors. Existing code completion systems
are ad-hoc and neither sound nor complete, meaning that they produce wrong
results, and do not support the entire language’s syntax. We discuss syntactic
code completion in Chapter 6. We propose a principled approach for syntactic
code completion based on placeholders, which can be derived from a syntax
definition. We adopt a divide and conquer approach that enables us to address
code completion for (i) incomplete programs, i.e., programs with placeholders,
(ii) complete programs without placeholders, and (iii) programs with syntax
errors. In conclusion, our approach assists generating a completion service that is
both sound and complete.

1.5.3 Methodology

In this dissertation we are interested in answering what is a better way to
do/create/modify/evolve syntactic tools when implementing programming
languages. Answering this question requires developing methods to automat-
ically derive efficient tools from a syntax definition. We follow the iterative
process described in the memorandum on design-oriented information systems
research, published by Österle et al. [94]. This process consists of four phases:
analysis, design, evaluation, and diffusion.

In the analysis phase we identify and study problems when using syntax
definition formalisms to define programming languages in tools such as lan-
guage workbenches. In the design phase, we design new approaches that solve
the problems we identified, implementing new solutions, as shown in each of
the chapters of this dissertation. We also perform a thorough comparison with
related work contrasting the main differences between our approach and other
solutions in the literature.

In the evaluation phase, we evaluate each of our solutions by applying
it to real world programs and programming languages. We also develop
formal proofs to ensure that particular characteristics hold when using the
solution proposed. When considering the performance of a technique, we
experimentally evaluate our solution, measuring performance differences, and
discussing to what degree we improve performance.

Finally, in the diffusion phase, we publish our findings as research papers
to journals and conferences, producing software artifacts that are reviewed
and can be used to perform further research. In the next section, we list the
research papers that originated from the work in this dissertation.

1.6 O R I G I N O F C H A P T E R S

All chapters are directly based on peer-reviewed (or under ongoing review)
publications at programming languages and software engineering conferences
and workshops. Therefore, all chapters can be read independently of each other.
Despite having independent core contributions, there is some redundancy in
the chapters when stating the background, related work, motivation and

Chapter 1. Introduction 9

examples. Nevertheless, this redundancy has not been removed allowing
reading each of the chapters independently.

• Chapter 2 is currently under submission at the ACM Transactions of
Programming Languages and Systems (TOPLAS) journal as the paper A
Direct Semantics for Declarative Disambiguation of Expression Grammars [116].

• Chapter 3 has been published as the paper Deep Priority Conflicts in
the Wild: A Pilot Study [118] at the International Conference on Software
Language Engineering (SLE) 2017.

• Chapter 4 has been published at the journal The Art, Science, and Engineer-
ing of Programming (<Programming>) and presented at the <Programming>
2018 conference as the paper Towards Zero-Overhead Disambiguation of
Deep Priority Conflicts [119].

• Chapter 5 has been published at SLE 2018 as the paper Declarative Specifica-
tion of Indentation Rules: A Tooling Perspective on Parsing and Pretty-Printing
Layout-Sensitive Languages [117].1

• Chapter 6 has been published as the paper Principled Syntactic Code
Completion Using Placeholders [115], presented at SLE 2016.

1This paper was awarded the distinguished paper, for most notable paper, as determined by the
PC chairs based on the recommendations of the programme committee.

10

Part I

Declarative Disambiguation

11

2
Declarative Disambiguation of Expression
Grammars

A B S T R A C T

Context-free grammars in reference manuals and academic papers are often
ambiguous, yet, they provide concise descriptions and a direct correspon-
dence between abstract syntax trees and grammar rules. A major part of such
ambiguities arises from the subset of a grammar that specifies expressions. Dis-
ambiguation of expressions in context-free grammars by means of priority and
associativity declarations enables a direct correspondence between grammar
and abstract syntax trees, more concise grammars, and a better expression of
intent than encoding associativity and priority in the grammar.

There is no standardized, declarative semantics of disambiguation with
associativity and priority declarations. Indirect approaches to the semantics
use a translation into another formalism (such as parse tables or tree automata),
inhibiting generalization and/or understanding. A direct approach is to define
the semantics of priority and associativity declarations by means of subtree
exclusion patterns, which are independent of a particular parsing algorithm or
grammar transformation. However, existing definitions of direct approaches
are not safe, and/or do not cover all cases of ambiguous expressions.

In this chapter, we provide a direct semantics of disambiguation by means of
associativity and priority declarations that is safe and complete, and not limited
to simple expression grammars. We define a semantics for safe disambiguation
with priority and associativity in terms of shallow subtree exclusion patterns,
filtering trees only when the input is ambiguous. We extend the semantics with
a formal definition of deep priority conflicts, covering additional ambiguities
in more complex expression grammars that cannot be solved by fixed-depth
patterns, such as ambiguities due to low precedence prefix or postfix operators,
dangling prefix, dangling suffix, longest match, and indirect recursion. We
have implemented the semantics in a parser generator for SDF3, evaluating
the approach by applying it to the grammars of five languages. Finally, we
demonstrate that our approach is practical by measuring the performance of a
parser that implements our disambiguation techniques, applying it to a corpus
of real-world Java and OCaml programs.

2.1 I N T R O D U C T I O N

Context-free grammars provide a concise, high-level, and well-understood for-
malism for the specification and documentation of the syntax of programming
languages. Grammars play a dual role in such descriptions. On the one hand,

13

a grammar describes the structure of programs in a language, i.e. the set of
trees that represent its well-formed programs. On the other hand, grammars
also specify parsers, i.e. the mapping from sentences to trees. These roles pose
conflicting requirements on grammars. For the purpose of describing structure,
the (abstract) syntax definitions in reference manuals and academic papers
are often ambiguous, providing concise descriptions and a direct correspon-
dence between abstract syntax trees and grammar rules. For the purpose of
semantic evaluation, a grammar should unambiguously identify the structure of
a program text.

context-free syntax
Exp.Var = ID
Exp.Int = INT
Exp = "(" Exp ")" {bracket}
Exp.Add = Exp "+" Exp {left}
Exp.Sub = Exp "-" Exp {left}
Exp.Mul = Exp "*" Exp {left}
Exp.Minus = "-" Exp
Exp.Lambda = "\\" ID "." Exp
Exp.Inc = Exp "++"
Exp.If = "if" Exp "then" Exp
Exp.IfElse = "if" Exp "then" Exp "else" Exp
Exp.Subscript = Exp "[" Exp "]"
Exp.While = "while" Exp "do" Exp "done"
Exp.App = Exp Exp {left}
Exp.Function = "function" PMatch+ {longest-match}
PMatch.Clause = ID "->" Exp

context-free priorities
{Exp.Subscript Exp.Inc} > Exp.App > Exp.Minus >
Exp.Mul > {left: Exp.Add Exp.Sub} > Exp.IfElse >
{Exp.If Exp.Lambda Exp.Function}

Figure 2.1 Expression grammar with declarative disambiguation rules.

Associativity and Priority In mathematics, instead of explicitly indicating the
structure of expressions using parentheses, parsing the structure is determined
based on conventions. Anyone with high school mathematics has learned to
read an expression such as a ∗ b + c/d as (a ∗ b) + (c/d) and not as a ∗ ((b +
c)/d) since multiplication and division have higher priority1 than addition.
Similarly, a + b + c is the same as (a + b) + c and a + (b + c) since addition
is associative. However, a − b − c should be read as (a − b)− c and not as
a− (b− c), since subtraction is left associative. The expression sub-languages of
programming languages have evolved from these notational conventions. For
example, the name of the FORTRAN programming language is derived from
formula translation and its compiler applied these conventions to determine

1While precedence is often used in the context of expression disambiguation, we use its synonym
priority, which has been used in the SDF family of grammar formalisms for that concept [58].

14

the order of computation of the sub-expressions [16]. Thus, associativity and
priority are well known conventions, familiar to programmers before they
write their first program.

Conceptually, then, we learn the structure of expressions based on an
ambiguous grammar. Operators such as addition and multiplication combine
(the values of) two expressions into a new expression. The productions for
addition and multiplication in the context-free syntax section of the syntax
definition in Figure 2.1 reflect this structure. Only when combining multiple
operators in an expression do we (need to) apply disambiguation rules to
determine their structure (or order of evaluation). Programming languages
have extended expression notation beyond the simple infix, prefix, and postfix
operators of mathematical notation. Figure 2.1 presents a syntax definition
with an eclectic collection of examples of such constructs.

Encoding Associativity and Priority. There are essentially two approaches to
encode associativity and priority in the grammar of a programming language.

First, associativity and priority can be encoded in the grammar by using a
different non-terminal for each priority level, and making productions left or
right recursive in order to encode associativity, resulting in an unambiguous
grammar. This encoding obscures the conceptual structure of expressions and
the notion of associativity and priority. Moreover, it does not scale well to
more complex expression forms such as dangling else and low priority prefix
operators (which are prevalent in functional languages), requiring duplication
of productions [2].

The second approach to address expression disambiguation is to define
an ambiguous expression grammar in combination with separate associativity
and priority rules [42]. This route is often taken by reference manuals of
programming languages; a table enumerates the operators at each priority
level and for each level indicates associativity. Grammar formalisms such as
YACC [64] and SDF [58, 128, 28] formally integrate priority and associativity
declarations (which we will also refer to as disambiguation rules, for brevity).
Figure 2.1 illustrates the use of associativity and priority declarations in SDF3.
This approach preserves the conceptual structure of expressions in the grammar
and applies the familiar notion of associativity and priority.

Both approaches are used in practice. The grammar in the Java SE 7

Specification [54] uses an ambiguous grammar with a separate (informal)
specification of associativity and priority. However, an explicitly disambiguated
grammar is used as the basis for the reference implementation of the parser
for Java SE 7. In contrast, the Java SE 8 specification [55] explicitly encodes
associativity and priority in the grammar. As a result, the grammar is less
concise since productions are duplicated to solve ambiguities that arise from
combining operators or statements.2

2For example, to solve dangling-else ambiguities, the Java grammar creates a new non-
terminal StatementNoShortIf, duplicating the productions for statements excluding
IfThenStatement, as shown in https://docs.oracle.com/javase/specs/jls/se8/
html/jls-14.html#jls-14.9. In the case of operators, the grammar contains separate non-
terminals to encode the priority levels of operators.

Chapter 2. Declarative Disambiguation of Expression Grammars 15

https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.9

Semantics of Associativity and Priority. While the semantics of pure context-free
grammars is well-understood, there is no standardized semantics of context-
free grammars extended with associativity and priority declarations. Defining
such a semantics requires answers to the following questions:

• What is the meaning of a set of disambiguation rules for a grammar?
That is, what are the parse trees associated with sentences in the lan-
guage of the disambiguated grammar? To what extent is that meaning
independent of particular implementation strategies?

• Is a set of disambiguation rules safe? That is, do the disambiguation rules
preserve the language of the grammar they disambiguate? Is it necessary
for disambiguation rules to be safe, or can rules exclude sentences?

• Is a set of disambiguation rules complete? That is, do the rules identify at
most one parse tree for each sentence in the language? It is not obvious
that this question is decidable, since, in general, it is undecidable to
determine whether a context-free grammar is ambiguous or not [36, 48,
34].

• What is the coverage of disambiguation rules? That is, what classes of
ambiguity do the rules solve?

• What is an effective implementation strategy for disambiguation rules?

• What is the notational overhead of disambiguation rules? That is, is the
use of rules more effective than an encoding in the grammar?

We distinguish indirect and direct approaches to characterize the semantics of
disambiguation rules.

Indirect Semantics of Associativity and Priority Indirect approaches use a trans-
lation into another formalism. For instance, in YACC, operator priority is
defined by declaring a linear priority ordering on operators and declaring the
associativity of individual operators. The semantics of these declarations is
defined indirectly through their interpretation in solving shift-reduce conflicts
in parse tables. “If there is a shift/reduce conflict, and both the grammar rule
and the input character have priority and associativity associated with them,
then the conflict is resolved in favour of the action (shift or reduce) associated
with the higher priority. [64]" Thus, understanding the semantics of priority
declarations in a YACC grammar requires understanding LR table generation,
the nature of shift/reduce conflicts, and the mapping of disambiguation decla-
rations to conflict resolution. YACC’s approach is also limited to the LR class
of context-free grammars. For example, it does not generalize to character-level
grammars, in which individual characters are the tokens; in this case, decisions
cannot be taken using the next token(s).

Adams and Might [4] propose tree automata [39] to describe disambiguation
policies. A tree automaton describes the trees that should or should not be
produced by a parser. Intersecting the context-free grammar with the tree au-
tomaton produces a transformed context-free grammar that does not produce

16

tree structures forbidden by the automaton. The tree automata approach is
very expressive and can be used to carve out a rich set of subtree patterns from
grammars. Adams and Might [4] give examples of the use of tree automata
to disambiguate associativity and priority, but they do not provide a general
semantics for such rules in terms of tree automata. From those examples,
it is clear that tree automata are not a useful formalism to directly define
disambiguation rules for individual grammars since they require a regular
tree pattern for each pair of productions. It may be possible to use tree au-
tomata as a target for compiling disambiguation rules, but determining the
correctness of such a translation requires a semantics for the latter in the first
place. Furthermore, disambiguation by tree automata is, intentionally, not
guaranteed to be safe or complete. Finally, tree automata are tightly coupled to
the implementation of disambiguation by means of grammar transformation.
As we will show in Section 2.10, disambiguation by grammar transformation
can lead to very large grammars and correspondingly large parse tables.

Direct Semantics of Associativity and Priority By contrast, a direct approach to
disambiguation is independent of a particular parsing algorithm or grammar
transformation. For instance, the SDF2 [131, 128] syntax definition formalism
defines the semantics of disambiguation declarations directly through inter-
pretation as disambiguation filters [74] that select among the possible parse
trees for a sentence. Specifically, SDF2 uses parse tree patterns [123, 130, 28]
to exclude trees of a certain shape as disambiguation filter. For example,
the prototypical ambiguity between addition and multiplication is resolved
by excluding trees that have the shape [[t1 + t2] * t3] resulting in trees
with shape [t1 + [t2 * t3]] to be selected as unambiguous result of pars-
ing t1 + t2 * t3. These tree patterns directly follow from disambiguation
declarations and provide a natural explanation of operator priority. Another
advantage of using a direct semantics is that it does not preclude specific
implementation techniques (as in the case of YACC), enabling, for example,
generalization to character-level grammars.

Afroozeh et al. [5] show that the SDF2 semantics for operator priority and
associativity is unsafe, incomplete, and limited. The semantics is unsafe because it
rejects trees that are unambiguous and belong to the language defined by the
grammar. It is incomplete because it is not powerful enough to disambiguate
some combinations of operators. It is limited because it only considers conflicts
that occur one level deep in a resulting tree. To address these issues, Afroozeh
et al. [5] define a new interpretation of SDF2 priorities that is safe, expressed
by means of a grammar transformation. However, their solution unnecessarily
modifies the grammar in the presence of shallow conflicts, and is still indirect
as they rely on other methods than priority and associativity declarations to
solve ambiguities such as dangling prefix, dangling suffix, and longest match.

Contributions In this chapter, we present the first direct semantics of disam-
biguation by means of associativity and priority declarations that is safe and
complete for expression grammars. The chapter makes the following contribu-
tions:

Chapter 2. Declarative Disambiguation of Expression Grammars 17

• We formalize the semantics of associativity and priority rules for classes
of expression grammars, subsets of the class of context-free grammars that
correspond to the structure of the expression sub-languages of program-
ming languages. While the ambiguity of arbitrary context-free grammars
is undecidable, when considering embedded expression grammars, we
can guarantee safe and complete disambiguation. We study classes of
expression grammars of increasing complexity: infix expression gram-
mars, prefix and infix expression grammars, basic (infix, prefix, postfix)
expression grammars , distfix expression grammars, indirectly recursive
distfix expression grammars and indirectly recursive distfix expression
grammars with hidden recursion.

• We define an extraction of expression grammars from larger context-free
grammars, such that the techniques from this chapter can be applied to
the embedded expression grammars in larger programming language
grammars.

• We identify the concept of harmless overlap between grammar productions,
in order to ensure that expression grammars do not have inherent am-
biguities that are not solvable by associativity and priority declarations,
while not completely ruling out overlap between productions.

• We define the semantics for associativity and priority rules by means of
subtree exclusion patterns. We adapt the existing rules for subtree exclusion
to be safe and extend them to a large class of expression grammars with
harmless overlap, relying on deep priority conflict patterns.

• We prove that the semantics is safe, i.e. preserves the language of the
underlying expression grammar, and complete, i.e., it solves all ambigui-
ties in the underlying expression grammar. Methodologically, we prove
safety and completeness using parse trees (and in particular using the
notion of trees under subtree exclusion) instead of derivations, which
simplifies reasoning. A prerequisite for completeness is that the set of
disambiguation rules is total. We define totality for all expression gram-
mar classes and implement a check for totality in order to detect missing
disambiguation rules in a grammar.

• We define a canonical implementation of the semantics by means of a
grammar transformation to contextual grammars that preserves the tree
structure of the original ambiguous grammar. We also show that our
canonical implementation correctly implement the semantics defined
in the chapter, and that it terminates when transforming the original
grammar.

• We discuss two additional implementations of the semantics in a parser
generator for SDF3. The first one combines grammar transformation
with disambiguation during parse table generation, and the second
one postpones disambiguation of deep priority conflicts to parse time,

18

using a data-dependent parsing algorithm. Both implementations focus
on deep priority conflicts. Shallow conflicts are solved during parse
table generation in the style of SDF2 [126, 130] but adapted to the safe
semantics.

• We have evaluated the approach by applying it to the grammars of
five languages. We have also evaluated the performance of the parser
that implements disambiguation by grammar transformation against
disambiguation by data-dependency, applying both variations of the
parser to a corpus containing 9935 Java and 3296 OCaml real-world
source files.

Outline We proceed as follows. In Section 2.2 we introduce the basic notions
for our discussion of ambiguities in expression grammars, formally defining
concepts such as context-free grammars, parsing, parse trees, and ambiguities
as we use them in the rest of the chapter. In Section 2.3 we discuss disambigua-
tion of infix expression grammars, presenting declarative disambiguation rules
and existing techniques for implementing and interpreting these definitions,
and discussing a semantics for declarative disambiguation of infix grammars
based on subtree exclusion that is safe and complete. In Section 2.4 we discuss
prefix expression grammars, introducing a semantics to disambiguate grammars
that also include prefix operators, and introducing deep priority conflicts. In
Section 2.5, we consider expression grammars with prefix, postfix, and infix
operators, called basic expression grammars. In Section 2.6, we extend these
to distfix expressions and in Section 2.7, to distfix expression grammars with
indirect recursion.

In Section 2.8 we present a canonical implementation of the semantics pre-
sented in the previous chapters using a grammar transformation. In Section 2.9
we discuss how to detect expression grammars, recalling disambiguation of
shallow conflicts as implemented by SDF2, and a more efficient implementa-
tion of our semantics using data-dependent parsing. Finally, in Section 2.10 we
evaluate our approach, discussing related work in Section 2.11, and concluding
in Section 2.12.

2.2 G R A M M A R S A N D A M B I G U I T I E S

In this section we define (the notation for) context-free grammars, well-formed
terms, parsing, abstract syntax trees, tree patterns, derivation steps, and match-
ing, as we will use them in this chapter. We also discuss the general notions of
ambiguities, ambiguous grammars, disambiguation filters, and their properties.

2.2.1 Grammars and Parsing

Context-free grammars are usually written in some concrete grammar for-
malism such as BNF [17]. In this chapter we use the SDF3 syntax definition

Chapter 2. Declarative Disambiguation of Expression Grammars 19

context-free syntax
Exp.Add = Exp "+" Exp
Exp.Sub = Exp "-" Exp
Exp.Mul = Exp "*" Exp
Exp.Var = ID

Figure 2.2 An example of an SDF3 grammar for arithmetic expressions.

formalism as grammar notation3. SDF3 extends BNF with explicit abstract
syntax tree constructors for productions, which also provides a convenient
way to identify grammar productions in disambiguation directives. Figure 2.2
shows an SDF3 grammar for a simple expression language. Formally, the
context-free grammar fragment of SDF3 is defined as follows:

Definition 2.2.1 (Context-free Grammars). A context-free grammar is a tuple (Σ,
N, P), with Σ a set of terminal symbols, N a set of non-terminals (sorts) and P a set
of productions of the form A.C = α, where we use the following notation: P(G) to
represent the productions of a grammar G, V to represent Σ ∪ N; X, Y, Z to represent
symbols in V; A, B, and S to represent elements of N; a, b to represent elements of Σ;
C to represent constructor names that are used when constructing abstract syntax tree
nodes and together with a non-terminal uniquely identify a production; u, v, w, x, y, z
to represent elements of Σ∗; and α, β, γ, φ to represent elements of V∗, also known as
sentential forms. �

Definition 2.2.2 (Well-formed Trees). Given a grammar G, we inductively define
the family of sets of well-formed trees (or terms) TX(G) indexed by X ∈ V as the
smallest set such that:

a ∈ Σ
a ∈ Ta(G)

(2.1)

A.C = X1...Xn ∈ P(G) ti ∈ TXi (G) 1 ≤ i ≤ n
[A.C = t1...tn] ∈ TA(G)

(2.2)

The family of well-formed trees is then defined as (TX(G))X∈V , or simply T(G). The
yield of a tree is the concatenation of its leafs, which are terminals. The language
defined by a grammar is the family L(G) = {LX(G) | yield(TX(G)), X ∈ V} of sets
of strings that are the yields of trees over the grammar. �

Definition 2.2.3 (Parsing). Given a grammar G, a parser Π(G) is a mapping from
strings to parse trees such that:

Π(G)(w) = {t ∈ TX(G) | yield(t) = w, X ∈ V} (2.3)

A parser Π is non-ambiguous if |Π(w)| ≤ 1 for all strings w. �

3SDF3 is part of the SDF family of syntax definition formalisms [58], it is an evolution of
SDF2 [127, 131], introducing new features such as template productions [133], and addressing
problems of its predecessor such as declarative disambiguation.

20

For example, using the productions in the grammar of Figure 2.2, parsing
an addition of two variables produces the tree [Exp.Add = [Exp.Var = ID]

+ [Exp.Var = ID]].4

Definition 2.2.4 (Derivation Steps). Given a context-free grammar G, the one-step
derivation relation⇒G is the binary relation of sentential forms V ×V such that:

α = λAρ β = λγρ A.C = γ ∈ P(G)

α⇒G β
(2.4)

The reflexive and transitive closure of ⇒G is denoted by ∗
=⇒G. The symbol being

expanded in a derivation step is indicated by . We might also write
p
=⇒G to indicate the

production using when expanding a symbol. A leftmost derivation ∗
=⇒
lm G

is a sequence

of derivation steps which always expands the non-terminal at the leftmost position. �

Lemma 2.2.5. A parse tree directly corresponds to a derivation, modulo the order in
which productions are applied.

Proof. By induction on the number of steps in a derivation, as shown by Aho,
Sethi, and Ullman [11].

2.2.2 From Parse Trees to Abstract Syntax Trees

signature
constructors
Add : Exp * Exp -> Exp
Sub : Exp * Exp -> Exp
Mul : Exp * Exp -> Exp
Var : ID -> Exp

Figure 2.3 Signature

A parser maps a string to a set of parse trees according to a grammar. Parse
trees often contain syntactic information that is not necessary in the following
phases of a compiler. Abstract syntax trees (ASTs) provide a more concise
representation of the strucure of a program, abstracting over the syntactic
details (literals, layout) of parse trees. Rather than providing semantic actions
that execute arbitrary code to construct abstract syntax trees, SDF3 includes
constructors in productions in order to define a standardized mapping from
parse trees to abstract syntax trees. For example, the parse tree

[Exp.Add = [Exp.Mul = [Exp.Var = a] * [Exp.Var = b]] +
[Exp.Var = c]]

4ID is a lexical non-terminal denoting identifiers and should be defined in the lexical syntax section
of the grammar. For simplicity, we omit subtrees for lexical non-terminals from our examples or
use concrete lexical elements as leafs, e.g., parsing a + b produces the tree [Exp.Add = a + b]
.

Chapter 2. Declarative Disambiguation of Expression Grammars 21

for the sentence a * b + c according to the grammar of Figure 2.2 is converted
to the term5:

Add(Mul(Var("a"), Var("b")), Var("c"))

The structure of abstract syntax trees is captured by an algebraic data type
described by a signature. For instance, the signature in Figure 2.3 describes the
abstract syntax trees of the grammar of Figure 2.2. For example, the production

Exp.Add = Exp "+" Exp

is converted to the corresponding signature by taking the non-terminals in
the body of the production as arguments of the constructor and leaving
out the operator literal. Thus, grammars with constructors define a direct
correspondence between abstract syntax trees and parse trees.

It may be desirable to further simplify abstract syntax trees. Such simplifica-
tions can be realized by means of a desugaring transformation after parsing.
For example, using a rewrite rule in the Stratego rewriting language [29], one
would write a desugaring rule

desugar : IfThen(e, stmt) -> IfElse(e, stmt, Skip())

transforming an if-then AST to an if-then-else AST using the skip statement
(for some imaginary language with such constructs).

While we will not further consider abstract syntax in this chapter, the
standardized mapping is an important consideration in the design of disam-
biguation. Ambiguous productions in expression grammars result in a concise
abstract syntax, e.g. without constructors corresponding to injection produc-
tions of the form Exp.T2E = Term. Therefore, a disambiguation mechanism
should preserve the (abstract syntax) tree structure, which is not the case for
mechanisms that transform the grammar.

2.2.3 Tree Patterns and Matching

Tree patterns, which extend trees with non-terminals as leafs to characterize sets
of trees that have a particular structure, are defined as follows:

Definition 2.2.6 (Tree Patterns). Given a grammar G, we inductively define the
family of tree patterns (TPX(G))X∈V over G as the smallest sets such that:

X ∈ V
X ∈ TPX(G)

(2.5)

A.C = X1...Xn ∈ P(G) ti ∈ TPXi (G) 1 ≤ i ≤ n
[A.C = t1...tn] ∈ TPA(G)

(2.6)

�

A tree pattern p denotes a set of parse trees, namely the set obtained by
replacing each non-terminal A in p by the elements of TA(G). For example, the

5To be precise, SDF3 produces terms in the ATerm format [27].

22

pattern [Exp.Add = [Exp.Var = ID] + Exp] represents a set of parse trees
for addition expressions where the first operand is a variable and the second
operand is an arbitrary expression.

A tree pattern corresponds to the derivation tree for a sentential form. For
example, consider the derivation Exp Add

=⇒G Exp + Exp Add
=⇒G Exp + Exp + Exp in

which the leftmost expression (Exp) of each sentential form derives an addition
(Exp + Exp). This derivation is represented by the tree pattern [Exp.Add =

[Exp.Add = Exp + Exp] + Exp]. In addition to tree patterns, we also define
a mechanism to determine whether a tree matches a particular tree pattern.

Definition 2.2.7 (Matching). Given a grammar G, a tree t ∈ T(G), and a tree
pattern q ∈ TP(G), t matches q, i.e.,M(t, q), iff:

a ∈ Σ
M(a, a)

(2.7)

[A.C = t1...tn] ∈ TA(G)

M([A.C = t1...tn], A)
(2.8)

[A.C = t1...tn] ∈ TA(G) [A.C = q1...qn] ∈ TPA(G) M(ti, qi) 1 ≤ i ≤ n
M([A.C = t1...tn], [A.C = q1...qn])

(2.9)

If Q is a set of patterns thenM(t, Q) if there is some q ∈ Q such thatM(t, q). �

Using the definition above, the tree

[Exp.Add = [Exp.Add = [Exp.Var = ID] + [Exp.Var = ID]] +
[Exp.Var = ID]]

matches the pattern [Exp.Add = [Exp.Add = Exp + Exp] + Exp].

2.2.4 Ambiguity

Context-free grammars are suitable to formally specify the syntax of program-
ming languages concisely and declaratively. However, the price to pay for
conciseness — for example in grammars found in reference manuals and aca-
demic papers — is that they are often ambiguous. While such grammars can
be used to describe the abstract syntax of a language, they cannot be directly
used to generate parsers, since for some sentences, there may be multiple
ways to identify their structure according to the grammar. We formally define
ambiguous grammars as follows.

Definition 2.2.8 (Ambiguous Grammar). A grammar G is ambiguous if for some
sentence w ∈ L(G), |Π(G)(w)| > 1, i.e., parsing a sentence that belongs to the
language defined by G produces more than one tree. �

Lemma 2.2.9. A grammar G is ambiguous if there exist at least two leftmost deriva-
tions that generate a sentence w ∈ L(G).

Proof. By Lemma 2.2.5.

Chapter 2. Declarative Disambiguation of Expression Grammars 23

For instance, consider the grammar from Figure 2.2 is ambiguous and the
sentence a + b + c defining the addition of three variables. Parsing this
sentence produces two different trees:

[Exp.Add = a + [Exp.Add = b + c]]
[Exp.Add = [Exp.Add = a + b] + c]

which correspond to the following leftmost derivations:

(i) Exp⇒G Exp + Exp⇒G a + Exp⇒G a + Exp + Exp ∗
=⇒
lm G

a + b + c

(ii) Exp⇒G Exp + Exp⇒G Exp + Exp + Exp ∗
=⇒
lm G

a + b + c

Thus, the grammar is ambiguous.

2.2.5 Explicit Disambiguation

When grammars are used as a formalism to describe the abstract syntax of
well-formed programs, they abstract over disambiguation. However, when
grammars are used as a parser specification they should be unambiguous.
Thus, for each sentence of the language defined by a context-free grammar,
parsing this sentence should produce a single tree. For example, consider again
the grammar in Figure 2.2. Even though this grammar is perfectly adequate to
identify the abstract syntax of the expressions it defines, it cannot be used to
describe the mapping from sentences to trees, as it does not unambiguously
identify the structure of an input program. To determine whether a context-free
grammar is ambiguous or not is an undecidable problem [36, 48, 34].

One approach to preserve the conciseness of context-free grammars and
avoid ambiguity of individual programs is to support explicit disambiguation.
For instance, in the case of ambiguities due to operator priority and associa-
tivity, parenthesized expressions allow programmers to specify their preferred
precedence in each expression they construct. SDF3 supports defining explicit
disambiguation while preserving the abstract syntax of programs by bracket

productions.

context-free syntax
Exp.Add = Exp "+" Exp
Exp.Sub = Exp "-" Exp
Exp.Mul = Exp "*" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

Figure 2.4 Using brackets to explicitly disambiguate programs.

A production with a bracket annotation does not have a constructor and
therefore preserves the abstract syntax of the program. At the same time, such
productions allow programmers to parenthesize expressions, encoding their
desired precedence in the expressions they construct. For example, consider the
grammar in Figure 2.4 and the ambiguous sentence a * b + c. A programmer

24

may then write a * (b + c), indicating that the addition to the right should
have higher priority. Parsing this new sentence produces a single parse tree:

[Exp.Mul = a * [Exp = ([Exp.Add = b + c])]]

with abstract syntax tree Mul(a, Add(b, c)). While this approach can be
used to construct alternative sentences that are unambiguous, it does not disam-
biguate the context-free grammar itself, since the grammar remains ambiguous
for the sentence a * b + c.

2.2.6 Disambiguation Filters

Ambiguous grammars can be disambiguated by transforming it into an un-
ambiguous grammar (Section 2.3.2) (provided it is not inherently ambiguous).
However, the resulting grammars are typically hard to read and maintain and
do not preserve the intended abstract syntax tree structure. For this reason we
are interested in disambiguation as a separate concern. In particular, this chapter
is about disambiguation by means of associativity and priority declarations, as
we will discuss in more detail in Section 2.3.1. To formalize the semantics of
such declarations we use the general notion of disambiguation filters, which
were introduced to reason about a variety of disambiguation mechanisms for
context-free grammars [74, 123]. We recall the definition by Klint and Visser
[74] of a filter that disambiguates a grammar by selecting the preferred trees
from a set of trees, and introduce the new notion of well-formed trees under
subtree exclusion.

Definition 2.2.10 (Disambiguation Filter). A filter F for a CFG G is a function
F : P (T(G)) → P (T(G)) that maps sets of parse trees to sets of parse trees, where
F(Φ) ⊆ Φ for any Φ ⊆ T(G). The disambiguation of a CFG G by a filter F is
denoted by G/F. The language L(G/F) generated by G/F is defined as follows:

L(G/F) = {w ∈ Σ∗ | ∃Φ ⊆ T(G), yield(Φ) = {w}, F(Φ) = Φ} (2.10)

The condition F(φ) ⊆ φ ensures that filters only reduce the set of trees, instead
of creating new ones. A parser for G/F is defined by the equality Π(G/F)(w) =
F(Π(G)(w)). �

Definition 2.2.11 (Safe Filter). A filter F for grammar G is safe if it preserves the
language of the grammar, i.e. if w ∈ L(G) then w ∈ L(G/F). �

Thus, a filter is safe if it produces at least one tree for each sentence in the
language of a grammar, i.e. if w ∈ L(G) then |F(Π(G)(w))| ≥ 1.

Definition 2.2.12 (Completely Disambiguating Filter). A filter F is completely dis-
ambiguating if all sentences are unambiguous, i.e. if w ∈ L(G) then |F(Π(G)(w))| ≤
1. �

Thus, a filter is completely disambiguating if it produces at most one tree for
each sentence. Filters are often defined in negative terms by rejecting trees that
are invalid in some sense. The following definition defines subtree exclusion
filters, which reject trees that match a particular set of tree patterns.

Chapter 2. Declarative Disambiguation of Expression Grammars 25

Definition 2.2.13 (Subtree Exclusion Filter). Given a set Q of tree patterns, the
subtree exclusion filter FQ is defined by

FQ(Φ) = {t ∈ Φ | @t′ ∈ sub(t) :M(t′, Q)} (2.11)

where sub(t) denotes the set of all subtrees of t, including t itself. �

Definition 2.2.14 (Trees under Subtree Exclusion). Given a grammar G and a set
of tree patterns Q, the family TQ

X (G) of well-formed trees under subtree exclusion are
the smallest sets satisfying the following rules:

a ∈ Σ ¬M(a, Q)

a ∈ TQ
a (G)

(2.12)

A.C = X1...Xn ∈ P(G) t = [A.C = t1...tn]

ti ∈ TQ
Xi
(G) for 1 ≤ i ≤ n ¬M(t, Q)

t ∈ TQ
A (G)

(2.13)

We denote with GQ the grammar G under subtree exclusion with tree patterns Q. The
language defined by GQ is defined as LX(GQ) = {yield(t) | t ∈ TQ

X (G)}. �

Lemma 2.2.15. All trees produced by a grammar under subtree exclusion pass the
subtree exclusion filter, i.e. t ∈ TQ

X (G) ⇐⇒ t ∈ TX(G) ∧ t ∈ FQ({t}).

Proof. By Definition 2.2.14 no subtree of t ∈ TQ
X (G) matches a pattern in Q.

Lemma 2.2.16. The language of a grammar filtered by a subtree exclusion filter is
the same as the language of that grammar under subtree exclusion, i.e. L(G/FQ) =
L(GQ).

Proof.

LX(G/FQ) = {w ∈ Σ∗ | ∃Φ ⊆ TX(G), yield(Φ) = {w}, FQ(Φ) = Φ}
= {w ∈ Σ∗ | ∃t ∈ TX(G), yield(t) = w, FQ({t}) = {t}}

= {w ∈ Σ∗ | t ∈ TQ
X (G), yield(t) = w} (by Lemma 2.2.15)

= LX(GQ)

Corollary 2.2.17. A subtree exclusion filter for a set of patterns Q for a grammar G
is safe if for each w ∈ L(G) there is at least one t ∈ TQ(G) with yield(t) = w.

Corollary 2.2.18. A subtree exclusion filter for a set of patterns Q for a grammar G is
completely disambiguating if t1, t2 ∈ TQ(G) =⇒ yield(t1) 6= yield(t2) ∨ t1 = t2

26

2.2.7 Expression Grammars

In this chapter we consider the disambiguation of context-free grammars by
means of associativity and priority declarations, which are not intended to
solve all possible kinds of ambiguities in grammars, but rather to disambiguate
operators in expressions. In the following sections we will consider the semantics
of associativity and priority declarations for expression grammars of growing
complexity.

Definition 2.2.19 (Basic Expression Grammars). The syntax of basic expressions
is defined by basic expression grammars which have productions of the form:

A.C = LEX (2.14)
A.C = . A / (2.15)
A.C = A ⊕ A (2.16)
A.C = I A (2.17)
A.C = A J (2.18)

such that A is a non-terminal, C is a constructor, and LEX is a (sequence of) lexical
symbol(s). The symbols ., /, I, J, and ⊕ represent arbitrary lexical symbols
corresponding to operator words, such that no operator word is a valid lexical symbol
LEX.6 �

context-free syntax
Exp.Var = ID
Exp.Int = INT
Exp = "(" Exp ")" {bracket}
Exp.Add = Exp "+" Exp
Exp.Mul = Exp "*" Exp
Exp.Minus = "-" Exp
Exp.Lambda = "\\" ID "." Exp
Exp.Inc = Exp "++"
Exp.If = "if" Exp "then" Exp
Exp.IfElse = "if" Exp "then" Exp "else" Exp
Exp.Subscript = Exp "[" Exp "]"
Exp.While = "while" Exp "do" Exp "done"
Exp.Match = "match" Exp "with" PMatch
Exp.Function = "function" PMatch
PMatch.Clause = ID "->" Exp

Figure 2.5 Example expression grammar.

Basic expressions consist of atomic (Equation 2.14) expressions, and infix
(Equation 2.16), prefix (Equation 2.17), and postfix (Equation 2.18) operators.

6In general, lexical symbols LEX represent symbols of the grammar that are defined by lexical
syntax, such as INT or ID.

Chapter 2. Declarative Disambiguation of Expression Grammars 27

For example, in the grammar of Figure 2.5, the Exp.Int and Exp.Var pro-
ductions define atomic expressions, the Exp.Add and Exp.Mul productions
define infix operators, the Exp.Minus and Exp.Lambda productions define pre-
fix operators, and the Exp.Inc production defines a postfix operator. Note that
distinguish operators from operator words, such that an operator may consist
of a multiple operator words, such as ‘\ID.’ in the production Exp.Lambda.
Further, note that we conflate ‘operators’ and ‘delimiters’, the symbols that
specify closed expressions (Equation 2.15) — e.g., the symbols (and) in the
production annotated with bracket.

Basic expressions cover typical mathematical expressions. However, pro-
gramming languages often feature more complicated expression forms with
multiple and intercalated operator words, such as the Exp.If and Exp.IfElse

productions in Figure 2.5, also known as distfix (or mixfix) operators [1].

Definition 2.2.20 (Distfix Grammars). The syntax of distfix expressions is defined
by distfix expression grammars which have productions of the form:

A.C = I A ⊕1 ... ⊕k A (2.19)
A.C = A ⊕1 ... ⊕k A J (2.20)
A.C = A ⊕1 ... A ⊕k A (2.21)
A.C = . A ⊕1 ... ⊕k A / (2.22)

where ., /, I, J, and ⊕i stand for an arbitrary operator word that must be unique
within the grammar. A context-free grammar containing only distfix and atomic
expressions is called distfix grammar. �

Distfix expressions can be classified as infix distfix (Equation 2.21), prefix
distfix (Equation 2.19), and postfix distfix (Equation 2.20). The production in
Equation 2.22 defines closed distfix expressions. For example, in the grammar of
Figure 2.5, the productions Exp.If, Exp.Subscript, and Exp.IfElse define
prefix distfix, postfix distfix and infix distfix expressions, respectively. The
production Exp.While defines a closed distfix operator (with the operator
words while, do, and done). The basic expression forms of Definition 2.2.19

are a subset of distfix expressions.
The distfix expression of Definition 2.2.20 are recursive in the same non-

terminal. Not all productions for the non-terminal Exp in the grammar in Fig-
ure 2.5 define distfix expressions. The productions Exp.Do and Exp.Function

compose multiple expressions using indirect recursion. Such productions are
covered by the following extension of distfix grammars.

Definition 2.2.21 (Indirectly Recursive Distfix Grammars). Given A, B ∈ N, the
syntax for indirect distfix expressions is defined by productions of the form:

A.C = I B0 ⊕1 ... ⊕k Bk (2.23)
A.C = B0 ⊕1 ... ⊕k Bk J (2.24)
A.C = B0 ⊕1 ... ⊕k Bk (2.25)
A.C = . B0 ⊕1 ... ⊕k Bk/ (2.26)

28

context-free grammars

infix
(Section 3)

prefix (Section 4)

basic (Section 5)

distfix (Section 6)

overlapping distfix (Section 6.1)

indirectly recursive distfix (Section 7)

Figure 2.6 Expression grammars according to their complexity.

where Bi
∗
=⇒
lm G

A γ or Bi
∗
=⇒
lm G

α A for any 0 ≤ i ≤ k, and ., /, I, J, and ⊕i

stand for arbitrary operator words consisting of a lexical symbol. A grammar defining
indirectly recursive distfix expressions is called indirectly recursive distfix grammar.
�

In this chapter we are interested in the semantics of associativity and
priority rules for expression grammars. More specifically, we are interested
in the following questions. (1) Is there a safe and complete semantics of
disambiguation rules for arbitrary expression grammars (that also captures
our intuition of these rules)? We will show that this is the case as long as such
grammars only have harmless overlap. (2) Is it possible to determine for a
specific expression grammar whether a set of rules fully disambiguates that
grammar? We will show this is indeed possible. (3) How can we efficiently
implement this disambiguation semantics? We will discuss several techniques.
In the rest of the chapter we address these questions, where we consider
expression grammars of increasing complexity as illustrated by Figure 2.6. It
turns out that the complicated case of deep priority conflicts already surfaces in
prefix expression grammars that just combine infix and prefix operators.

2.2.8 Embedded Expression Grammars

The grammars of programming languages are not restricted to expression
grammars for a single expression non-terminal, but rather consist of many
syntactic categories such as (top-level) declarations, functions, statements, and
expressions. We want to apply the results of this chapter to full blown program-
ming language grammars. In particular, we want to determine whether a set
of disambiguation rules is complete, and we want to use the implementation
techniques for these disambiguation rules. This is possible by observing that
programming language grammars compose one or more expression gram-
mars (for different expression non-terminals) with ‘glue’ productions (that are
typically non-ambiguous) and lexical productions (that use different disam-

Chapter 2. Declarative Disambiguation of Expression Grammars 29

lexical syntax
ID = [a-zA-Z][a-zA-Z0-9]*
INT = [0-9]+
ID = "if" {reject}
ID = "class" {reject}

lexical restrictions
ID -/- [a-zA-Z0-9]
INT -/- [0-9]

context-free syntax
Class.Class = "class" ID "{" Mem* "}"
Mem.Method = Type ID "(" Arg* ")" "{" Stmt* "}"
Stmt.If = "if" "(" Exp ")" Stmt
Stmt.Expr = Expr ";"
Expr.Int = INT
Expr.Var = ID
Expr = "(" Expr ")" {bracket}
Expr.Add = Expr "+" Expr {left}
Expr.Mul = Expr "==" Expr {non-assoc}
Expr.Call = Expr "." ID "(" {Exp ","}* ")"

context-free priorities
Expr.Call > Expr.Add > Expr.Eq

Figure 2.7 Syntax definition for subset of Java with with embedded expression
grammar.

biguation techniques). For example, consider the grammar in Figure 2.7 that
defines a Java-like language with classes, methods, statements, expressions,
identifiers, and integer constants. The definitions for lexicals ID and INT use
lexical disambiguation rules — follow restrictions for longest match and reject
productions for reserved words — that are different from the rules for expres-
sions, and not further considered in this chapter. Embedded in this grammar
is the expression grammar for Expr consisting of the productions for variables,
constants, parentheses, addition, equality, and method calls. To determine that
the disambiguaton rules are complete, we can consider just the productions for
this embedded expression grammar. To implement the disambiguation rules,
we can apply the techniques that we develop in this chapter to the grammar
as whole, with the guarantee that a total set of disambiguation rules solves
all ambiguities in the expression grammar. In Section 2.9.1 we discuss the
extraction of expression grammars in more detail.

2.3 I N F I X E X P R E S S I O N G R A M M A R S

We start our investigation with infix expression grammars, i.e., grammars that
only define infix (and closed) operators. We introduce associativity and priority
rules and their intuitive meaning, and we survey existing techniques for the
interpretation of such rules.

30

Definition 2.3.1 (Infix Expression Grammars). An infix grammar is an expression
grammar with atomic, closed, and infix expressions. �

2.3.1 Declarative Disambiguation Rules

context-free syntax
Exp.Add = Exp "+" Exp {left}
Exp.Sub = Exp "-" Exp {left}
Exp.Mul = Exp "*" Exp {left}
Exp.Pow = Exp "^" Exp {right}
Exp.Mul = Exp "==" Exp {non-assoc}
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Pow > Exp.Mul >

{left: Exp.Add Exp.Sub} > Exp.Eq

Figure 2.8 SDF3 grammar with disambiguation declarations.

To disambiguate expression grammars, reference manuals often include a
table defining the priority and associativity of its operators. Some syntax defi-
nition formalisms incorporate these concepts, enabling users to declaratively
specify how to disambiguate grammars. While the basic intention of syntax of
priority and associativity declarations does not vary much between formalisms,
the definition of their semantics might be quite different, as we will see in
the remainder of this section. Below, we informally describe the declarative
disambiguation constructs of SDF3, which is based on the disambiguation rules
of its predecessors from the SDF family of syntax formalisms (cf. Section 2.11).

The SDF family of syntax definition formalisms defines associativity and
priority declarations on productions rather than on operator symbols. For exam-
ple, consider the SDF3 grammar in Figure 2.8. The left, right, non-assoc
production annotation on a production indicates that it is left associative, right
associative, or non-associative with respect to itself. For example, the left an-
notation on Exp.Add implies the relation Exp.Add left Exp.Add, and declares
that addition is left associative; e.g. the sentence a + b + c has the following
parse trees:

[Exp.Add = [Exp.Add = a + b] + c]
[Exp.Add = a + [Exp.Add = b + c]]

The first of these trees corresponds to the left associative interpretation of the
operator, the second to the right associative interpretation. Hence, declaring
the production to be left associative, defines the first tree to be the correct parse
tree of the sentence.

Associativity groups such as {left: Exp.Add Exp.Sub} indicate the mutual
relation between the set of productions in the group (Exp.Add left Exp.Sub

Chapter 2. Declarative Disambiguation of Expression Grammars 31

and Exp.Sub left Exp.Add), that is, addition is left associative with respect to
subtraction and vice-versa. For example, the sentence a + b - c has trees:

[Exp.Add = a + [Exp.Sub = b - c]]
[Exp.Sub = [Exp.Add = a + b] - c]

of which the second is the correct parse tree according to the associativity of
the operators.

The priority rule p1 > p2 indicates that the (group of) production(s) p1 has
higher priority than the (group of) production(s) p2. For instance, the prior-
ity Exp.Mul > {left: Exp.Add Exp.Sub} indicates that multiplication has
higher priority than addition (Exp.Mul > Exp.Add) and subtraction (Exp.Mul
> Exp.Sub), whereas the priority {left: Exp.Add Exp.Sub} > Exp.Eq indi-
cates that both addition and subtraction have higher priority than equality
expressions. Priority rules are transitive and irreflexive, whereas associativity
rules are symmetric and non-transitive. For example, the sentence a + b * c

has trees:

[Exp.Add = a + [Exp.Mul = b * c]]
[Exp.Mul = [Exp.Add = a + b] * c]

of which the first is correct according to the priority of the operators.
We have sketched the interpretation of associativity and priority declarations,

appealing to the common intuitition about these notions. But what is the
precise semantics of these declarations? And how does that extend to more
complicated expression grammars? In the rest of this section we study existing
techniques for interpreting and implementing disambiguation declarations,
which indirectly define the intuition about the meaning of associativity and
priority in terms of other mechanisms. We end with a semantics based on
subtree exclusion, which directly corresponds to the informal explanation
above.

2.3.2 Grammar Rewriting

To disambiguate an expression grammar, one can rewrite it to an unambigu-
ous grammar by introducing a non-terminal for each priority level, and by
guaranteeing that productions are either left or right recursive. For example,
Figure 2.9 shows the result of disambiguating the grammar from Figure 2.2.
The grammar directly encodes the fact that addition, subtraction and multi-
plication are left associative and that multiplication has higher priority than
addition and subtraction. Using this grammar, the string a + b * c has only
a single parse tree, as shown in Figure 2.10.

Directly encoding priority and associativity in the grammar has three major
drawbacks. First, the grammar loses its direct mapping to the abstract syntax,
due to the additional non-terminals and productions to encode priority levels.
For example, the parse tree from Figure 2.10 directly corresponds to the
following abstract syntax tree:

Add(Term(Fact(Var("a"))),
Mul(Term(Fact(Var("b"))), Fact(Var("c"))))

32

context-free syntax
Exp.Add = Exp "+" Term
Exp.Sub = Exp "-" Term
Exp.Term = Term
Term.Mul = Term "*" Factor
Term.Fact = Factor
Factor.Var = ID
Factor = "(" Exp ")" {bracket}

Figure 2.9 Encoding precedence and associativity in the grammar productions.

Exp

Exp

Term

Factor

a

+ Term

Term

Factor

b

* Factor

c

Figure 2.10

Such abstract syntax tree encodings typically make a custom mapping to
abstract syntax necessary. Second, the grammar obscures the conceptual
notions of associativity and priority by encoding it in grammar productions.
Third, the approach does not scale. While the encoding is fairly simple for
infix expressions, it becomes complex when considering other expression
forms such as low priority prefix operators (e.g. let expressions in functional
languages) and dangling else, which require duplication of productions to be
encoded in the grammar.

To support declarative specification of associativity and priority, various
techniques implement declarative disambiguation by translating a concise
context-free grammar extended with disambiguation constructs into an unam-
biguous grammar [1, 5]. However, none of these approaches handles all types
of ambiguities in expression grammars.

2.3.3 Operator Grammars

Operator grammars are a class of grammars that represent expressions in pro-
gramming languages [11]. An operator grammar has two specific properties:
no production right-hand side is the empty string, nor does it have two adjacent
non-terminals. Our definition of infix expression grammars also satisfies these
requirements, but operator grammars are more expressive than infix expression

Chapter 2. Declarative Disambiguation of Expression Grammars 33

Relation Meaning
a l b a “yields precedence to” b
a .
= b a “has the same precedence as” b

a m b a “takes precedence over” b

Figure 2.11 Precedence relations in operator precedence grammars.

grammars, allowing other operators, such as prefix or postfix operators.
Operator grammars can be parsed by an easy-to-implement parsing tech-

nique called operator precedence parsing. This technique defines three disjoint
precedence relations l, .

=, and m, between certain pairs of terminals indicating
lower priority, same priority level, and higher priority, as shown in Figure 2.11.
These relations dictate how to parse expressions because they can be used to
delimit sentential forms, indicating the extent of each expression, and which
one should have higher priority. Parsing works by changing the input to
encode the precedence between each terminal, such that the parser can easily
recognize which trees to construct by traversing the input. While seemingly
related, the precedence relation in an operator grammar is not the same as
associativity and priority. Encoding the latter in the former is non-trivial, and
the resulting precedence table cannot be read as a description of associativity
and priority [11].

2.3.4 Disambiguation by Shift/Reduce Conflict Resolution

Disambiguation rules in YACC are defined by associativity and priority direc-
tives on the tokens corresponding to operators [64]. The grammar in Figure 2.12

is an infix expression grammar written in YACC. The %left directive indicates
that the following operators are left associative. Furthermore, the lines are
listed by increasing priority, i.e., the operator * has higher priority than the
operators + and -. Operators on the same line have the same priority.

The semantics of YACC’s disambiguation constructs relies on its implemen-
tation using LR parser generation. From an ambiguous expression grammar
such as the grammar in Figure 2.12, YACC generates an LR parse table contains
conflicts as shown in Figure 2.13. These conflicts indicate that there are am-
biguous interpretations of the input or that the parser needs more lookahead.
If the conflict is caused by an ambiguity involving operators in the priority
declaration, YACC selects one alternative over another based on the priority
declarations, producing a deterministic parser as a result.

For example, when parsing a sentence a + b + c and reaching the con-
flict state 9 after parsing the variable b, as shown by the configuration in
Figure 2.14a, YACC’s parser prefers the reduce action r2 over the shift action
s5 in the conflict in the column +. This results in the sentence being interpreted
as (a + b) + c, instead of a + (b + c), i.e., the addition operation is inter-
preted as left associative. However, when parsing a sentence a + b * c and
reaching the conflicting state 9 after parsing b, as shown by the configuration
in Figure 2.14b, the parser prefers the shift action s4 in the column *, resulting

34

%left '+' '-'
%left '*'

Expr
: Expr '+' Expr
| Expr '-' Expr
| Expr '*' Expr
| '(' Expr ')'
| IDENTIFIER
;

Figure 2.12 YACC grammar for arithmetic expressions.

Action GOTOState ∗ + - () ID $ E
0 s2 s3 1

1 s4 s5 s6 acc
...

9 s4/r2 s5/r2 s6/r2 r2 r2

...

Figure 2.13 SLR(1) parse table for the grammar in Figure 2.12.

in the sentence being interpreted as a + (b * c), implementing the higher
priority of the multiplication over the addition.

The YACC semantics for disambiguation directives does not carry over
to other parsing algorithms. In particular, since the selection of a parse
action is based on the next token, this solution is not suitable for scannerless
parsing, where the lookahead token is the next character, which might be
layout (whitespace and comments) [130]. YACC’s semantics of selecting a
particular action over another may also produce unexpected results for more
complex ambiguities such as dangling suffix, as we will discuss in Section 2.6.2.
Furthermore, a semantics that depends on a particular parsing algorithm is
not portable, and limits grammars to some deterministic subset, such as LL
or LR, of the set of all context-free grammars. Finally, limiting grammars to
a deterministic subset inhibits grammar (language) composition, since only
the full class of context-free grammars is closed under composition. That
is, composing the grammars of two languages may require modifying the
grammars in order to solve parse table conflicts.

For example, when parsing a sentence a + b + c and reaching the con-
flict state 9 after parsing the variable b, as shown by the configuration in
Figure 2.14a, YACC’s parser prefers the reduce action r2 over the shift action
s5 in the conflict in the column +. This results in the sentence being interpreted
as (a + b) + c, instead of a + (b + c), i.e., the addition operation is inter-
preted as left associative. However, when parsing a sentence a + b * c and

Chapter 2. Declarative Disambiguation of Expression Grammars 35

Stack Remaining
Input Action

0 1 +
Expr

b
4 9

Expr

a
+ c r2

Expr0
a

+ Expr
b

1

Expr

+ c s4

(a) Conflict between addition operators.

Stack Remaining
Input Action

0 1 +
Expr

b
4 9

Expr

a
* c s6

0 1 +
Expr

b
4 9

Expr

a
* 4 c s3

(b) Conflict between addition and multiplication.

Figure 2.14 Solving parse table conflicts based on disambiguation rules.

reaching the conflicting state 9 after parsing b, as shown by the configuration
in Figure 2.14b, the parser prefers the shift action s4 in the column *, resulting
in the sentence being interpreted as a + (b * c), implementing the higher
priority of the multiplication over the addition.

2.3.5 Tree Automata

Another approach to describe disambiguation of expression grammars involves
tree automata [4, 39]. Disambiguation works by expressing invalid patterns us-
ing tree automata, and intersecting the automata with a context-free grammar.
The intersection produces a context-free grammar that avoids invalid patterns.
For instance, Figure 2.15 shows a specification that captures invalid patterns
corresponding to the associativity of addition expressions. Figure 2.15b shows
the specification of the invalid patterns in Figure 2.15a using a regular tree
expression. Figure 2.15c shows the automaton produced by this specification.
The intuition is that when traversing to the right side of an addition (transition
+2 to state +A), an addition is forbidden (there is no transition from +A that
involves an addition). This automaton is later intersected with the original
grammar, producing a grammar that does not allow the violating pattern.

This approach allows expressing a variety of transformations on context-free
grammars. However, it does not provide a semantics for associativity and
priority, nor does it provide a convenient and concise notation for expressing
grammar disambiguations for language engineers. A semantics can be defined
by defining a translation from associativity and priority declarations to regular

36

…

…

+

… …

+

(a) Invalid pat-
tern.

(any* .
 +(_, +(_, _)))

(b) Specification of invalid
pattern.

+S +A

start
ε, +2

*1, *2, ()1, ID$
 +1

(c) Tree automaton.

Figure 2.15 Disambiguation using Tree Automata.

tree expressions. But establishing the correctness of such a translation requires
a semantics for these declarations in the first place. Furthermore, the tree
automata approach (by design) does not guarantee safety or completeness of
disambiguation.

2.3.6 Subtree Exclusion

In Section 2.3.1, we informally explained disambiguation as the selection of
a particular tree among the possible trees in an ambiguity. In the preceding
subsections, we have seen several indirect definitions of the semantics of disam-
biguation declarations. Following the earlier work of Thorup [123] and Klint
and Visser [74], we provide a direct semantics of associativity and priority rules
as subtree exclusion, which is independent of a particular parsing algorithm
and enables reasoning about the safety and completeness of a disambiguation
mechanism. Earlier definitions of subtree exclusion did not (safely and com-
pletely) cover the full class of expression grammars, as we do in this chapter.
To understand the issues and how they are addressed, we first study the
definition by Visser [126] of the semantics of disambiguation in SDF2.

To understand the shape of ambiguities in infix expression grammars,
Table 2.16 shows all possible tree shapes constructed by an infix expression
grammar. From the table, it should be clear that only the combination of
infix productions causes ambiguities. Thus, in order to disambiguate an infix
expression grammar, we need to make a choice for one of the trees in the
middle cell, for each pair of productions. The following definition defines
the semantics of associativity and priority declarations by defining the tree
patterns that they are conflict with.

Definition 2.3.2 (SDF2 Semantics: Priority Conflict Patterns). Given a grammar
G extended with disambiguation rules PR defining symmetric, non-transitive relations
right, left, non-assoc, and irreflexive, anti-symmetric, and transitive7 relation >

over the infix8 productions of G such that there is at most one relation between each
7SDF2 also supports specification of relations with a dot (.>), as non-transitive variant of >.
8The original definition of Visser [126] does not make this restriction, leading to unsafe

disambiguation.

Chapter 2. Declarative Disambiguation of Expression Grammars 37

Figure 2.16 Examples of all direct combinations of closed, infix, and atomic expres-
sions in infix expression grammars.

pair of productions, the set of priority conflict patterns QG is defined as follows:

A.C1 > A.C2 ∈ PR
[A.C1 = α[A.C2 = β]γ] ∈ QG

(2.27)

A.C1 right A.C2 ∈ PR
[A.C1 = [A.C2 = β]γ] ∈ QG

(2.28)

A.C1 left A.C2 ∈ PR
[A.C1 = α[A.C2 = β]] ∈ QG

(2.29)

A.C1 non-assoc A.C2 ∈ PR
[A.C1 = [A.C2 = β]γ] ∈ QG

(2.30)

A.C1 non-assoc A.C2 ∈ PR
[A.C1 = α[A.C2 = β]] ∈ QG

(2.31)

A relation A.C1 R A.C2 is mutually exclusive, e.g., if A.C1 left A.C2 ∈ PR, then
A.C1 > A.C2 /∈ PR. With QG we construct the subtree exclusion filter FQG .
Thus, the semantics of a grammar G with disambiguation declarations Pr(G) is the
disambiguated grammar G/FQG . �

The set of conflict patterns QG captures the trees that are invalid according
to the disambiguation rules in the grammar. The priority rule A.C1 > A.C2
forbids the tree constructed by A.C2 to occur as a direct descendant of the
tree constructed by A.C1. The rule A.C1 right A.C2 forbids the tree A.C2 to
occur as the direct descendant at the leftmost position of tree A.C1. Similarly,

38

the rule A.C1 left A.C2 forbids the tree A.C2 to occur as a direct descendant
at the rightmost position of the tree A.C1. Finally, the rule A.C1 non-assoc A.C2
forbids the tree A.C2 to occur as a direct descendant at the rightmost and leftmost
positions of the tree A.C1.

Let us consider some concrete examples of associativity and priority. The
priority declaration Exp.Mul > Exp.Add generates the following pattern in
QG according to Equation 2.27:

Exp.Mul > Exp.Add ∈ PR
[Exp.Mul = [Exp.Add = Exp + Exp] * Exp] ∈ QG

The pattern [Exp.Mul = [Exp.Add = Exp + Exp] * Exp] defines that any
tree that contains an addition as the leftmost child of a multiplication is
invalid and should be rejected. Therefore, the only valid tree for the sentence
a + b * c is

[Exp.Add = a + [Exp.Mul = b * c]]

since the other tree in the ambiguity

[Exp.Mul = [Exp.Add = a + b] * c]

matches the conflict pattern above. Note that the pattern indicates that the
addition is forbidden as the direct descendant of a multiplication at any
position. Hence, the pattern [Exp.Mul = Exp * [Exp.Add = Exp + Exp]]

is also created by the same priority declaration.
The associativity declaration in the production Exp.Add = Exp + Exp

{left} generates the following conflict pattern according to Equation 2.29:

Exp.Add left Exp.Add ∈ PR
[Exp.Add = Exp + [Exp.Add = Exp + Exp]] ∈ QG

The pattern defines left associativity by ruling out the right-associative variant.
Thus, for a sentence a + b + c, the only valid tree is

[Exp.Add = [Exp.Add = a + b] + c]

and the other tree in the ambiguity

[Exp.Add = a + [Exp.Add = b + c]]

is invalid, since it matches the conflict pattern.

2.3.7 Safe and Complete Disambiguation

The semantics from Definition 2.3.2 directly defines how to disambiguate
expressions by filtering parse trees. We would like to know whether the
disambiguation of a grammar with disambiguation rules is safe and completely
disambiguating as defined in Section 2.2.6. Safety guarantees that the language
of the underlying context-free grammar is preserved, i.e. each sentence in the
language of the grammar is also in the language of the disambiguated grammar.
Completely disambiguating means that all sentences in the disambiguated
grammar have at most one parse tree. We first consider safety.

Chapter 2. Declarative Disambiguation of Expression Grammars 39

Lemma 2.3.3 (Subtree Exclusion is Safe). Given an infix expression grammar
G and a set Q of priority conflict patterns generated by disambiguation rules (not
including non-assoc) for G, if w ∈ L(G) then there is a t ∈ TQ(G) such that
yield(t) = w.

Proof. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then a ∈ TQ
a (G) since disambiguation rules do not

exclude lexemes.

(Inductive case) Assume that u, v ∈ L(G) and that there are t1, t2 ∈ TQ
A (G)

such that yield(t1) = u, yield(t2) = v, then there are two cases:

(1) If A.C = / A . is a closed production in G, then / u . ∈ L(G) and
[A.C = / t1 .] ∈ TQ

A (G), since there is no priority conflict pattern that
matches this tree. (Note that the original definition of Visser [126] does
not restrict priority relations to infix productions. Via Equation 2.27

a priority relation A.C > A.C′ for some production A.C′ = α in the
grammar would lead to rejecting a tree [A.C = / [A.C′ = ...] .], and
hence the corresponding sentence.)

(2) If A.C = A ⊕ A is an infix production in G, then u⊕ v = w ∈ L(G).
Now we need to demonstrate that there is a t ∈ TQ(G) such that
yield(t) = w. By induction v = yield(t1) and v = yield(t2) such that
t1, t2 ∈ TQ(G). We consider the following cases:

– If t1 and t2 are lexemes or closed expressions then t = [A.C =
t1 ⊕ t2] ∈ TQ(G) since there are no disambiguation rules that apply.

– If t1 = [A.C1 = t11 ⊗ t12] with yield u11 ⊗ v12 and t2 = [A.C2 =
/t21.] with yield /w21.. Take t = [A.C = [A.C1 = t11 ⊗ t12] ⊕
[A.C2 = /t21.]] as the obvious candidate as tree for w. If A.C1 >
A.C then t ∈ TQ(G) since it does not match a conflict pattern
(since there are no other disambiguation relations between the pro-
ductions). On the other hand, if A.C > A.C1 then t matches a
conflict pattern and therefore t 6∈ TQ(G). However, the reordering
t′ = [A.C1 = t11 ⊗ [A.C = t12 ⊕ [A.C2 = /t21.]]] has the same
yield and does not have a priority conflict, therefore t′ ∈ TQ(G). If
t2 is a lexeme, or the disambiguation relation is left , right , the
proof works analogously.

– The proof works analogously when t1 is a lexeme or closed expres-
sion and t2 is an infix expression.

– When both t1 and t2 are infix expressions we have to consider more
cases, but the reasoning is analogous: by the fact that there is at
most one disambiguation relation between each pair of operators,
we can always construct a non-conflicted tree for the sentence by
re-ordering the sub-expressions of t1 and t2.

40

Next we consider the completeness of disambiguation. Clearly, if a gram-
mar does not declare disambiguation rules for some/any productions in the
grammar, it will not be completely disambiguating. In general, for arbitrary
context-free grammars, it is undecidable whether a grammar is ambiguous
or not. However, we establish that constructing a total set of disambiguation
rules, which defines a disambiguation relation between each pair of (relevant)
productions, guarantees complete disambiguation of an expression grammar.

Definition 2.3.4 (Total Set of Disambiguation Rules for Infix Expression Gram-
mars). A set of disambiguation rules PR for an infix expression grammar G is total
for a non-terminal A:

• If for any pair of productions A.C1 = A op1 A ∈ P(G), and A.C2 =
A op2 A ∈ P(G), such that A.C1 6= A.C2, either A.C1 R A.C2 ∈ PR or
A.C2 R A.C1 ∈ PR where R ∈ {>, right, left}.

• If A.C = A op A ∈ P(G) then A.C R′ A.C ∈ PR where R′ ∈ { right, left,
non-assoc}.

Lemma 2.3.5 (Subtree Exclusion is Completely Disambiguating). Given an infix
expression grammar G and a set Q of priority conflict patterns generated by a total set
of disambiguation rules for G, then all trees in TQ(G) have unique yields. That is, if
t1, t2 ∈ TQ(G) and yield(t1) = yield(t2) then t1 = t2.

Proof. By induction on TQ(G).

(Base case) If a is a lexeme, then a ∈ TQ
a (G) and has a unique yield.

(Inductive case) Assume that t1, t2 ∈ TQ
A (G) and that their yields are unique.

(1) If A.C = / A . is a closed production in G, then t = [A.C = / t1 .] ∈
TQ

A (G), since there is no priority conflict pattern that matches this tree,
and the fact that each constructor uniquely identifies a production, by
uniqueness of t1, t is also unique.

(2) If A.C = A ⊕ A is an infix production in G, since each constructor
uniquely identifies a production, that is the only way we can construct
the tree t = [A.C = t1 ⊕ t2]. Now we need to demonstrate that
if t ∈ TQ(G) then there is no tree t′ ∈ TQ(G) such that t′ 6= t and
yield(t) = yield(t′). We consider the following cases:

– If t1 and t2 are lexemes or closed expressions then t ∈ TQ(G) since
there are no disambiguation rules that apply. By uniqueness of t1
and t2 and non-overlap of productions, there are no other ways to
construct a tree with the same yield as t.

– If t1 = [A.C1 = t11 ⊗ t12] with yield u⊗ v and t2 = [A.C2 = /t21.]
with yields /w. then t = [A.C = [A.C1 = t11 ⊗ t12] ⊕ [A.C2 =
/t21.]] with yield u⊗ v⊕ /w.. By totality of disambiguation rules,

Chapter 2. Declarative Disambiguation of Expression Grammars 41

we have that there is a disambiguation relation between A.C and
A.C1. If A.C > A.C1 then t matches a conflict pattern and there-
fore t 6∈ TQ(G). If A.C1 > A.C then t does not match a con-
flict pattern (since there are no other disambiguation relations be-
tween the productions). The only other tree with the same yield
is t′ = [A.C1 = t11 ⊗ [A.C = t12 ⊕ [A.C2 = /t21.]]] ∈ TQ(G).
However, t′ does have a priority conflict and therefore t′ 6∈ TQ(G). If
the disambiguation relation is left , right , or non-assoc , the
proof works analogously.

– The proof works analogously when t1 is a lexeme or a closed ex-
pression and t2 is an infix expression.

– When both t1 and t2 are infix expressions, we have to consider more
cases since all combinations of disambiguation relations between
the three productions need to be considered, but the reasoning is the
same; by totality there are relations between all three productions,
and therefore at most one tree is selected.

Theorem 2.3.6. Disambiguation of an infix expression grammar using a total set of
disambiguation rules (not including non-assoc) is safe and completely disambiguat-
ing.

Proof. Assume that G is an infix expression grammar and R a total set of
disambiguation rules for G. Let Q be the set of priority conflict patterns for
R according to Definition 2.3.2. By Lemma 2.3.3 we have that if w ∈ L(G)
then there is a t ∈ TQ(G) such that yield(t) = w. By Corollary 2.2.17 we
have that FQ is a safe disambiguation filter. By Lemma 2.3.5 we have that if
t1, t2 ∈ TQ(G) then yield(t1) 6= yield(t2) ∨ t1 = t2. By Corollary 2.2.18 we have
that FQ is completely disambiguating.

2.3.8 Explicit Unsafety

Safety preserves the language of the underlying grammar. We have proven
that disambiguation with associativity and priority is safe, but excluded
non-assoc from that proof, because in fact this construct is not safe. That is,

declaring production as non-associative removes sentences from the language
of a grammar.

That sounds like an error, but in some cases, unsafe filters are actually
desired. For example, consider the equality comparisons in the grammar of
Figure 2.17 and the sentence a == b == c, which is in the language of the
grammar. The parse trees for the sentence are:

[Exp.Eq = a == [Exp.Eq = b == c]]
[Exp.Eq = [Exp.Eq = a == b] == c]

Since the production Exp.Eq is annotated with the disambiguation directive
non-assoc, it generates the following conflict patterns:

Exp.Gt non-assoc Exp.Gt ∈ PR
[Exp.Eq = [Exp.Gt = Exp == Exp] == Exp] ∈ QG

42

context-free syntax
Exp.Add = Exp ">" Exp {non-assoc}
Exp.Sub = Exp "<" Exp {non-assoc}
Exp.Mul = Exp "==" Exp {non-assoc}
Exp.Var = ID
Exp.Int = INT
Exp = "(" Exp ")" {bracket}

context-free priorities
{non-assoc: Exp.Gt Exp.Lt Exp.Eq}

Figure 2.17 SDF3 grammar containing non-associative expressions.

Exp.Gt non-assoc Exp.Gt ∈ PR
[Exp.Eq = Exp == [Exp.Eq = Exp == Exp]] ∈ QG

These conflict patterns match both of the trees in the ambiguity, which
are therefore rejected. Hence, the filter FQG is unsafe, when considering
non-assoc declarations. While this approach forbids constructing ambiguous

sentences by rejecting the sentence altogether, it does allow that language users
use explicit disambiguation to choose one of the parse trees. For example,
users may still use parentheses to specify the priority of the operator, writing
the expression as either (a == b) == c or a == (b == c), which are both
syntactically valid.

Treating non-assoc as an unsafe filter in this fashion leads to a parse error.
This does not provide a very useful experience for the programmer, since it
invokes parse error recovery for a program that has a perfectly fine shape.
Thus, we propose to treat non-associativity as a semantic error rather than as a
syntactic error, as follows. We define the righ-associative parse as a conflict, as
before:

A.C1 non-assoc A.C2 ∈ PR
[A.C1 = α[A.C2 = β]] ∈ QG

(2.32)

However, rather than making the left associative parse a conflict as well, we
flag it as a warning using the separate pattern set QW

G :

A.C1 non-assoc A.C2 ∈ PR
[A.C1 = [A.C2 = β]γ] ∈ QW

G
(2.33)

Thus, non-assoc productions are treated as left associative, allowing programs
with violations to be parsed, but occurrences of direct combinations of non-
associative operators are flagged and produce a warning or error in the user
interface. In the rest of the chapter we will treat non-associativity in this
manner, i.e. define additional rules for the QW set, but abstract from its further
treatment.

Chapter 2. Declarative Disambiguation of Expression Grammars 43

context-free syntax
Exp.Add = Exp "+" Exp {left}
Exp.Lambda = "\\" ID "." Exp
Exp.Minus = "-" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Minus > Exp.Add > Exp.Lambda

Figure 2.18 Example prefix expression grammar.

2.4 P R E F I X E X P R E S S I O N G R A M M A R S

In this section, we consider the extension of infix expression grammars with
prefix expressions. Consider the grammar in Figure 2.18 with the Exp.Minus

and Exp.Lambda productions, which define unary minus and lambda abstrac-
tion for prefix expressions, such as - e and \x. e. Since prefix operators are
only right recursive, they do not require associativity annotations. However,
in the absence of a priority specification, the combination of prefix and infix
operators may be ambiguous as is the case with the sentence - a + b, which
has the following parse trees:

(1) [Exp.Minus = - [Exp.Add = a + b]]
(2) [Exp.Add = [Exp.Minus = - a] + b]

How does the semantics of disambiguation rules from Definition 2.3.2
extend to prefix operators? First consider the case of prefix minus, which
usually has higher priority than infix operators for arithmetic expressions, i.e.
Exp.Minus > Exp.Add, with the following conflict pattern:

Exp.Minus > Exp.Add ∈ PR
[Exp.Minus = - [Exp.Add = Exp + Exp]] ∈ QG

Thus for the - a + b sentence, tree (2) above is selected, since tree (1) matches
the conflict pattern. The sentence a + - b has only one parse tree

(3) [Exp.Add = a + [Exp.Minus = - b]]

which is valid since Exp.Minus > Exp.Add.

2.4.1 The SDF2 Semantics is Unsafe for Prefix Grammars

Next we consider the productions Exp.Add and Exp.Lambda. While the lambda
operator is a prefix operator, it typically is given low priority (Exp.Add >

Exp.Lambda) so that it is not necessary to enclose its body expression in
parentheses. Definition 2.3.2 generates the following conflict patterns for this
priority declaration:

Exp.Add > Exp.Lambda ∈ PR
[Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp] ∈ QG

44

Exp.Add > Exp.Lambda ∈ PR
[Exp.Add = Exp + [Exp.Lambda = \ ID . Exp]] ∈ QG

The sentence \x . a + b has the following parse trees:

(4) [Exp.Add = [Exp.Lambda = \ x . a] + b]
(5) [Exp.Lambda = \ x . [Exp.Add = a + b]]

Since tree (4) matches the first pattern, a filter based on this rule selects tree
(5). Similarly to the minus case, the sentence a + \x. b has only one parse
tree:

(6) [Exp.Add = a + [Exp.Lambda = \ x . b]]

However, unlike the minus case, this tree matches the second pattern generated
by the disambiguation rule, thereby rejecting the sentence! Thus, the filter FQG

is unsafe for this grammar.
In summary, the SDF2 semantics is safe for prefix operators with high

priority, but not for prefix operators with low priority, which are prevalent in
functional languages such as ML, with language constructs such as lambda,
let, and case expressions.

2.4.2 Safe Semantics

We define a new semantics for disambiguation rules that is safe for low pri-
ority prefix operators, naming it after the SDF3 formalism in which it was
introduced:

Definition 2.4.1 (SDF3 Semantics: Safe Priority Conflict Patterns). Given a gram-
mar G extended with priority declarations Pr(G) defining symmetric, non-transitive re-
lations right, left, non-assoc, and non-nested, and irreflexive, anti-symmetric,
and transitive relation > over the productions in P(G) of G, the set of conflict patterns
Qsafe

G and warning patterns QW
G are derived as follows:

A.C1 > A.C2 ∈ PR

[A.C1 = [A.C2 = αA]γ] ∈ Qsafe
G

(2.34)

A.C1 > A.C2 ∈ PR

[A.C1 = α[A.C2 = Aγ]] ∈ Qsafe
G

(2.35)

A.C1 right A.C2 ∈ PR

[A.C1 = [A.C2 = Aβ2 A]β1 A] ∈ Qsafe
G

(2.36)

A.C1 left A.C2 ∈ PR

[A.C1 = Aβ1[A.C2 = Aβ2 A]] ∈ Qsafe
G

(2.37)

A.C1 non-assoc A.C2 ∈ PR

[A.C1 = Aβ1[A.C2 = Aβ2 A]] ∈ Qsafe
G

(2.38)

A.C1 non-assoc A.C2 ∈ PR
[A.C1 = [A.C2 = Aβ2 A]β1 A] ∈ QW

G
(2.39)

Chapter 2. Declarative Disambiguation of Expression Grammars 45

A.C1 non-nested A.C2 ∈ PR ¬(αi ⇒∗ Aγ)

[A.C1 = α1[A.C2 = α2 A]] ∈ QW
G

(2.40)

A tree t ∈ T(G) has a priority conflict, ifM(t, Qsafe
G). A filter FQsafe

G implements this
semantics, thus, the new semantics of a grammar G with priority declarations Pr(G)

is the disambiguated grammar G/FQsafe
G . �

Definition 2.3.2 is unsafe because it is too indiscriminate, deriving patterns
matching parse trees of sentences that are not ambiguous. For example, the
semantics of priority was defined as

A.C1 > A.C2 ∈ PR
[A.C1 = α[A.C2 = β]γ] ∈ QG

rejecting any production with lower priority as a child at any position of a
production with higher priority, which derives the problematic conflict pattern
for Exp.Lambda as child of Exp.Add. In Definition 2.4.1, the new rules for
priority only reject subtrees that are right-recursive in a left-recursive position
(2.34) and that are left-recursive in a right-recursive position (2.35). Since a
prefix expression is not left-recursive, it is no longer rejected as child in a
right-recursive position, even if the parent production has higher priority. Thus,
the only conflict pattern for Exp.Lambda and Exp.Add is now:

Exp.Add > Exp.Lambda ∈ PR

[Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp] ∈ Qsafe
G

such that tree (6) above is no longer rejected. This semantics of priority
also covers the postfix expressions, which we will introduce in Section 2.5.
Similarly, the rules for associativity in Definition 2.4.1 are only defined between
proper infix productions that are left- and right-recursive. (Or rather, infix-like
operators, since the βs in these productions also match the ‘extended infix‘
operators of distfix productions we will encounter later.)

In Definition 2.3.2 we have introduced the new disambiguation rule non-
nested, which is the analogue of non-assoc for prefix operators. While the
combination of two prefix operators is not ambiguous, we may sometimes
want to force parentheses for such expressions. For example, combining prefix
operators such as assert e, and lazy e in OCaml [84] leads to expressions
such as assert lazy e, which is unambiguous, but may also be confusing
to programmers considering the syntax of function application. By declaring
the operators to be mutually non-nested, requires such an expression to be
written as assert (lazy e). As in Section 2.3.8, we treat this case as a
warning pattern instead of a conflict pattern, so that violations can be treated
semantically rather than generating a syntax error.

The filter FQsafe
G is safe for prefix expression grammars, as we will show

formally below. However, while the SDF2 semantics was indiscriminate in
rejecting sentences, it turns out that the new semantics does not discriminate
enough, making it incomplete.

46

Exp

a + Exp

\x. Exp

b + c

Figure 2.19

Exp

Exp

a + Exp

\x. b

+ c

Figure 2.20

2.4.3 Deep Priority Conflicts

The elegance of the SDF2 semantics (if we put aside its unsafety for a moment)
is that it covers the semantics of associativity and priority with just five rules,9

defining patterns containing direct combinations of productions into so called
shallow priority conflicts. By addressing the safety of the SDF2 semantics, we
expose a new pattern of ambiguity that cannot be captured with shallow
patterns.

Consider again the grammar of Figure 2.18 with priority rule Exp.Add

> Exp.Lambda. As discussed in the previous section, the ambiguity in the
sentence \x. a + b is addressed by the SDF3 semantics in Definition 2.4.1.
Moreover, the expression a + \x. b is still valid, since its tree does not match
any conflict pattern generated from this priority rule. However, the expression
a + \x. b + c is now ambiguous, since parsing this sentence produces the
trees in Figures 2.19 and 2.20. With the SDF2 semantics, both trees match the
conflict pattern according to Equation 2.27:

Exp.Add > Exp.Lambda ∈ PR
[Exp.Add = Exp + [Exp.Lambda = \ ID . Exp]] ∈ QG

Thus, with the SDF2 semantics, one needs explicit parentheses to obtain
either of the trees10: a + (\x. b + c) or a + (\x. b) + c. With the SDF3

semantics, the sentence is not rejected, but the ambiguity is not solved, since
neither of the trees match the conflict pattern:

Exp.Add > Exp.Lambda ∈ PR

[Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp] ∈ Qsafe
G

Since Exp.Add > Exp.Lambda, the addition to the right of the lambda
expression should extend as much as possible. That is, the preferred tree is
the one in Figure 2.19. However, it is not possible to filter the invalid tree of
Figure 2.20 using a shallow conflict pattern, since the lambda expression does
not occur as a direct left child of the top-most addition, occurring nested as the
right-most descendant of another addition. In fact, any infix expression that

9In the original definition of Visser [131] they are factored in just three rules.
10Substitute function application for addition to get a phrase that may be more semantically

meaningful.

Chapter 2. Declarative Disambiguation of Expression Grammars 47

γ

α A

…

…
…

Figure 2.21 Conflict pattern to solve an ambiguity due to a lower priority prefix
operator.

has higher priority than addition, and may occur as leftmost descendant of the
addition, allowing an Exp.Lambda as its rightmost descendant (considering
priorities), will produce an ambiguity that cannot be captured by shallow
conflict patterns. Since such ambiguities involve patterns of unbounded depth,
we call them deep priority conflicts. Figure 2.21 sketches the general shape of
parse trees with a deep priority conflict.

2.4.4 Filtering Deep Priority Conflicts by Subtree Exclusion

To capture deep priority conflicts, we define a matching function that recur-
sively checks for subtrees that match a certain pattern at arbitrary nesting
depth.

Definition 2.4.2 (Rightmost Deep Matching). Given a grammar G, a tree t ∈
T(G), and pattern q ∈ TP(G), then Drm(t, q) — t right-most deeply matches q — if
t matches q, or if any subtree in the right-most branch of ti matches the sub-pattern qi:

∀1 ≤ i ≤ n :Mrm(ti, qi)

Drm([A.C = t1...tn], [A.C = q1...qn])
(2.41)

M(t, q)
Mrm(t, q)

(2.42)

Mrm(tn, q)
Mrm([A.C = t1...tn], q)

(2.43)

If Qrm is a set of rightmost patterns, Drm(t, Qrm) if there is some q ∈ Qrm such that
Drm(t, q). �

With the rightmost deep matching function, we can specify patterns that
capture trees that contribute a deep prefix operator ambiguity. For example,
consider the tree t from Figure 2.20, and a rightmost pattern q, specified as
follows:

t : [Exp.Add = [Exp.Add = a + [Exp.Lambda = \ x . b]] + c]
q : [Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp]

48

Clearly we have that M(t, q) does not hold, since the pattern q does not
directly match the tree t, particularly because t1 does not match q1. However,
by Equations 2.41 and 2.43, the tree t right-most deeply matches the pattern q
since the rightmost subtree of t1 matches q1,:

Mrm([Exp.Lambda = \ x . b], [Exp.Lambda = \ ID . Exp])

Mrm([Exp.Add = a + [Exp.Lambda = \ x . b]], [Exp.Lambda = \ ID . Exp])

Drm(t, q)

With this definition of deep matching, we can formally define the patterns
for deep priority conflicts and the subtree exclusion disambiguation filter based
on those patterns.

Definition 2.4.3 (Rightmost Deep Priority Conflict Patterns). Given a grammar
G extended with priority declarations Pr(G) defining an irreflexive, transitive relation
> over the productions in P(G), the set Qrm

G containing rightmost conflict patterns
over G is the smallest set of patterns such that:

A.C2 > A.C1 ∈ PR α
∗
=6=⇒G Aβ

[A.C2 = [A.C1 = αA]γ] ∈ Qrm
G

(2.44)

The set TPQrm
(G) = {q ∈ TP(G) | Drm(q, Qrm)} is the set of all tree patterns that

match a deep priority conflict pattern. We write QG = Qsafe
G ∪ TPQrm

(G) for the
conflict patterns of a grammar G combining the safe shallow and deep priority conflict
patterns. �

Equation 2.44 describes a deep priority conflict arising from a deep prefix
operator ambiguity, i.e., the conflict involves an infix expression with higher
priority (A.C2 = Aγ)11 and a prefix operator (A.C1 = αA) with lower priority,
as illustrated by our example with lambda and addition operators. The

restriction α
∗
=6=⇒G Aβ prevents the creation of the conflict pattern if A.C1

defines an infix operator, since lower precedence infix operators do not cause a
deep priority conflict, as discussed previously.

2.4.5 Overlapping Operators

Associativity and priority rules solve ambiguities that are created by different
permutations of the same productions. Some ambiguities in prefix expression
grammars cannot be solved by priority and associativity declarations since
they involve trees constructed with different productions. Such grammars are
inherently ambiguous.

Definition 2.4.4 (Inherently Ambiguous Grammars). A grammar G is inherently
ambiguous if there exist two different trees t1, t2 ∈ T(G), such that yield(t1) =
yield(t2), and t1 has been constructed with a different set of productions than t2. �

11We use a more general production with the sentential form γ to be able to generalize this
equation to postfix operators, shown in Section 2.5.

Chapter 2. Declarative Disambiguation of Expression Grammars 49

context-free syntax
Exp.Minus = "-" Exp
Exp.Plus = "+" Exp
Exp.PlusMinus = "+-" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

Figure 2.22 Example of an inherently ambiguous prefix expression grammar.

lexical restrictions
"+" -/- [\-]

context-free syntax
Exp.Minus = "-" Exp
Exp.Plus = "+" Exp
Exp.PlusMinus = "+-" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

Figure 2.23 Using lexical restrictions to disambiguate inherently ambiguous gram-
mars.

For example, consider the grammar of Figure 2.22, and the productions
Exp.Plus, Exp.Minus, and Exp.PlusMinus. Parsing the sentence +-a pro-
duces the following trees:

(1) [Exp.Plus = + [Exp.Minus = - a]]
(2) [Exp.PlusMinus = +- a]

Note that the tree (1) has been constructed with the productions Exp.Plus,
Exp.Minus, whereas the tree (2) has been constructed with the production
Exp.PlusMinus. The inherent ambiguity above occurs because the operators
+, -, and +- overlap, i.e., they have character(s) in common.

Our goal is to provide a direct semantics to solve ambiguities due to operator
priority and associativity. We would like to avoid grammars that are inherently
ambiguous because they are out of the scope of priority and associativity
disambiguation. These ambiguities occur when it is possible to construct a
valid operator word (or a sequence of valid operator words) by combining
two or more different operators in an expression grammar. In the case of
prefix expression grammars, such ambiguities can always be solved by lexical
disambiguation. As mentioned in Section 2.2.8, SDF2/3 uses follow restrictions to
implement longest match on lexical constructs. In the example above, we can
use follow restrictions to forbid the operator + to be followed by the operator
-, since this would result in the operator +-, as shown in the grammar of
Figure 2.23. Thus, using lexical disambiguation allows us to reject the tree (1),
disambiguating the sentence +-a. Of course, it is still possible to create that
tree using the expression + - a, i.e. by separating the operators with a space.

50

2.4.6 Safe and Complete Disambiguation

Below, we prove that the semantics in Definition 2.4.1 is safe and completely
disambiguating for prefix expression grammars when extended with the deep
priority conflict patterns shown above. First, we extend the notion of total set
of disambiguation rules to also include rules for prefix operators.

Definition 2.4.5 (Total Set of Disambiguation Rules for Prefix Expression
Grammars). A set of disambiguation rules PR for a prefix expression grammar G
is total for a non-terminal A if it is total for all productions in G defining infix
expressions, and for any pair of productions A.C1 = op1 A ∈ P(G), and A.C2 =
A op2 A ∈ P(G), either A.C1 > A.C2 ∈ PR or A.C2 > A.C1 ∈ PR.

Lemma 2.4.6 (Subtree Exclusion for Prefix Expression Grammars is Safe). Given
a prefix expression grammar G and set Q of shallow and deep priority conflict patterns
generated by the disambiguation rules for G, if w ∈ L(G) then there is a t ∈ TQ(G),
such that yield(t) = w.

Proof. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then a ∈ TQ
a (G) since disambiguation rules do not

exclude lexemes.

(Inductive case) Assume that u, v ∈ L(G) and that there are t1, t2 ∈ TQ
A (G)

such that yield(t1) = u, yield(t2) = v, then there are three cases:

(1) If A.C = / A . is a closed production in G, then / u . ∈ L(G) and
[A.C = / t1 .] ∈ TQ

A (G), since there is no priority conflict pattern that
matches this tree.

(2) If A.C = I A is a prefix production in G, then I u = w ∈ L(G). We
need to demonstrate that there is a t ∈ TQ(G) such that yield(t) = w. By
induction u = yield(t1) such that t1 ∈ TQ(G). We consider the following
cases:

– If t1 is a lexeme, closed expression or another prefix expression,
then t = [A.C =I t1] ∈ TQ(G), since there are no disambiguation
rules that apply.

– If t1 = [A.C1 = t11 ⊗ t12] with yield u11 ⊗ u12. Take t = [A.C = I
[A.C1 = t11 ⊗ t12]] as the candidate tree for w. If A.C1 > A.C then
t ∈ TQ(G) since it does not match a conflict pattern (since there are
no other disambiguation relations between the productions). On
the other hand, if A.C > A.C1 then t matches a conflict pattern
and therefore t 6∈ TQ(G). However, the tree t′ = [A.C1 = [A.C =I
t11]⊗ t12] has the same yield and does not have a priority conflict,
therefore t′ ∈ TQ(G).

(3) If A.C = A⊕ A is an infix production in G, then u⊕ v = w ∈ L(G). Now
we need to demonstrate that there is a t ∈ TQ(G) such that yield(t) = w.
By induction u = yield(t1) and v = yield(t2) such that t1, t2 ∈ TQ(G).
We consider the following cases:

Chapter 2. Declarative Disambiguation of Expression Grammars 51

– If t1 = [A.C1 = I t11] the proof is analogous to the last case for the
production A.C = I A.

– If t1 = [A.C1 = t11⊗ t12] with yield u11⊗ u12, t2 a closed expression
or lexeme, the analysis is analogous to the proof for the infix-infix
case for Lemma 2.3.3, except for the case of a right-most deep match.
If A.C1 > A.C, the candidate tree is t = [A.C = [A.C1 = t11⊗ t12] ⊕
t2]. If ¬Mrm(t, [A.C = [A.C3 = I t21]⊕ t12]) for any prefix operator
A.C3 = I A then t ∈ TQ(G). However, if Mrm(t, [A.C = [A.C3 =
I A] ⊕ A]) and A.C > A.C3 then t has a deep priority conflict,
i.e. it has the form [A.C = [A.C1 = t11 ⊗ [..[A.C3 = I t121]]]⊕ t2]
and t /∈ TQ(G). However, the tree t′ = [A.C1 = t11 ⊗ [...[A.C3 = I
[A.C = t121 ⊕ t2]]]] has the same yield and does not have a priority
conflict, i.e. t′ ∈ TQ(G).

– The remaining cases are also analogous to the cases in the proof of
Lemma 2.3.3.

Lemma 2.4.7 (Subtree Exclusion for Prefix Expression Grammars is Completely
Disambiguating). Given a prefix expression grammar G and the set Q of shallow
and deep priority conflict patterns generated by the total set of disambiguation rules
for G, then all trees in TQ(G) have unique yields. That is, if t1, t2 ∈ TQ(G) and
yield(t1) = yield(t2) then t1 = t2.

Proof. By induction on TQ(G).

(Base case) If a is a lexeme, then a ∈ TQ
a (G) and has a unique yield.

(Inductive case) Assume that t1, t2 ∈ TQ
A (G) and that their yields are unique.

(1) If A.C1 = / A . is a closed production in G, then t = [A.C1 = / t1 .] ∈
TQ

A (G), since there is no priority conflict pattern that matches this tree,
and that any sequence of operators can be disambiguated by lexical
disambiguation, by uniqueness of t1, t is also unique.

(2) If A.C = I A is a prefix production in G, we can construct the tree
t = [A.C = I t1]. We need to demonstrate that if t ∈ TQ(G) then there
is no tree t′ ∈ TQ(G) such that t′ 6= t and yield(t) = yield(t′).

– If t1 is a lexeme or closed expression then t ∈ TQ(G) since there are
no other ways to construct t by uniqueness of t1 and since there are
no disambiguation rules that apply.

– If t1 = [A.C1 = t11 ⊗ t12] with yield u11 ⊗ v12, then t = [A.C = I
[A.C1 = t11 ⊗ t12]] with yield I u11 ⊗ v12. If A.C > A.C1 then t
matches a conflict pattern and therefore t /∈ TQ(G). If A.C1 > A.C
then t does not match a conflict pattern (since there are no other
disambiguation relations between the productions). The only other
tree with the same yield is t′ = [A.C1 = [A.C = I t11] ⊗ t12].
However, t′ does have a priority conflict and therefore t′ 6∈ TQ(G)
when A.C1 > A.C.

52

(3) If A.C = A ⊕ A is an infix production in G, we can construct the tree
t = [A.C = t1 ⊕ t2]. We need to demonstrate that if t ∈ TQ(G) then
there is no tree t′ ∈ TQ(G) such that t′ 6= t and yield(t) = yield(t′). We
consider the following cases:

– If t1 = [A.C1 = I t11] and t2 = [A.C2 = /t21.], the analysis is
analogous as the last case for the production A.C = I A.

– If t1 = [A.C1 = t11⊗ t12] with yield u⊗ v and t2 is a lexeme or closed
expression with yield w then t = [A.C = [A.C1 = t11 ⊗ t12] ⊕ t2]
with yield u⊗ v⊕ /w.. The analysis is analogous to the proof for
the infix-infix case of Lemma 2.3.5, except that we need to consider
rightmost deep matching. If Mrm(t, [A.C = [A.C3 = I A] ⊕ A])
then t has the form [A.C = [A.C1 = t11 ⊗ [..[A.C3 = I t121]]] ⊕
t2]. By totality of disambiguation rules, we have that there is a
disambiguation relation between A.C and A.C3. If A.C > A.C3,
then t has a priority conflict, thus t /∈ TQ(G). On the other hand, if
A.C3 > A.C, then t does not have a priority conflict. The other tree
with the same yield is t′ = [A.C1 = t11⊗ [...[A.C3 = I [A.C = t121⊕
t2]]]], which does have a priority conflict and therefore t /∈ TQ(G).

– The remaining cases are analogous to the cases in the proof of
Lemma 2.3.5.

Theorem 2.4.8. Disambiguation of a prefix expression grammar using a total set of
disambiguation rules is safe and completely disambiguating.

Proof. Assume that G is a prefix expression grammar and R a total set of
disambiguation rules for G. Let Qsafe be the set of priority conflict patterns
for R according to Definition 2.4.1, and TPQrm

be the set of deep priority
conflict patterns for R according to Definition 2.4.3, such that Q = Qsafe ∪
TPQrm

. By Lemma 2.4.6 we have that if w ∈ L(G) then there is a t ∈ TQ(G)
such that yield(t) = w. By Corollary 2.2.17 we have that FQ is safe. By
Lemma 2.3.5 we have that if t1, t2 ∈ TQ(G) then yield(t1) 6= yield(t2) ∨ t1 = t2.
By Corollary 2.2.18 we have that FQ is completely disambiguating.

2.5 P O S T F I X E X P R E S S I O N S

In this section we extend the semantics for disambiguation rules to address
expression grammars that contain postfix expressions. Expression grammars that
contain only postfix and infix expressions are dual to prefix expression gram-
mars. That is, expression grammars that contain postfix and infix expressions,
but do not contain prefix expressions are susceptible to similar ambiguities and
can also be affected by deep priority conflicts.

For example, the expression a + b -- according to the grammar of Fig-
ure 2.24 is ambiguous with the following trees:

[Exp.Add = a + [Exp.Dec = b --]]
[Exp.Dec = [Exp.Add = a + b] --]

Chapter 2. Declarative Disambiguation of Expression Grammars 53

context-free syntax
Exp.Add = Exp "+" Exp
Exp.Dec = Exp "--"
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

Figure 2.24 Grammar containing a postfix expression.

According to Definition 2.4.1, a priority rule that states Exp.Dec > Exp.Add

creates the pattern [Exp.Dec = [Exp.Add = Exp + Exp] --], which matches
the first tree, whereas a priority rule Exp.Add > Exp.Dec creates the pattern
[Exp.Add = Exp + [Exp.Dec = Exp --]], filtering the second tree. Similar
to the combination of infix and postfix expressions, the sentence a -- + b

involving an infix and a postfix expression can be parsed unambiguously with
the tree:

[Exp.Add = [Exp.Dec = a --] + b]

Because the SDF3 semantics is safe, this tree is not captured by the priority
Exp.Add > Exp.Dec. However, a deep priority conflict can occur when parsing
the sentence a + b -- * c. Parsing this sentence produces the trees:

[Exp.Add = a + [Exp.Mul = [Exp.Dec = b --] * c]]
[Exp.Mul = [Exp.Dec = [Exp.Add = a + b] --] * c]

Note that only the second tree should be valid, since the addition to the left of
the postfix expression should extend as much as possible. To disambiguate
this sentence and solve the deep priority conflict we use a symmetric strategy
to disambiguation of prefix operator deep ambiguities, applying leftmost deep
matching using sets of leftmost deep priority conflict patterns according to the
following definitions.

Definition 2.5.1 (Leftmost Deep Matching). Given a grammar G, a tree t ∈ T(G),
and pattern q ∈ TP(G), then Dlm(t, q) — t left-most deeply matches q — if t matches
q, or if any subtree in the left-most branch of ti matches the sub-pattern qi:

∀0 ≤ i ≤ n :Mlm(ti, qi)

Dlm([A.C = t1...tn], [A.C = q1...qn])
(2.45)

M(t, q)
Mlm(t, q)

(2.46)

Mlm(t1, q)
Mlm([A.C = t1...tn], q)

(2.47)

If Qlm is a set of leftmost patterns then Dlm(t, Qlm) if there is some q ∈ Qlm such that
Dlm(t, q). �

54

Definition 2.5.2 (Leftmost Deep Priority Conflict Patterns). Given a grammar G
extended with priority declarations Pr(G) defining an irreflexive, transitive relation
> over the productions in P(G), the set Qlm

G containing leftmost conflicting patterns
over G, respectively, is the smallest set of patterns such that:

A.C2 > A.C1 ∈ PR γ
∗
=6=⇒G βA

[A.C2 = α[A.C1 = Aγ]] ∈ Qlm
G

(2.48)

The set TPQlm
(G) = {q ∈ TP(G) | Dlm(q, Qlm)} is the set of all tree patterns that

match a deep priority conflict pattern. We write QG = Qsafe
G ∪ TPQrm

(G)∪ TPQlm
(G)

for the conflict patterns of a grammar G combining the safe shallow and deep priority
conflict patterns. �

2.5.1 Basic Expression Grammars

So far we have looked at the combination of prefix and infix expressions, and
postfix and infix expressions separately. In this subsection we investigate ambi-
guities that may occur in basic expression grammars, i.e., expressions grammars
that contain prefix, infix, and postfix operators.

Definition 2.5.3 (Basic Expression Grammars). A basic expression grammar is
an expression grammar that contains only productions defining atomic, closed, prefix,
infix, and postfix expressions. �

According to Definition 2.5.3, infix and prefix expression grammars consist
of simplified instances, i.e. subsets, of basic expression grammars. The gram-
mar in Figure 2.25 is a basic expression grammar containing productions that
define atomic (Exp.Var), closed (Exp = "(" Exp ")"), prefix (Exp.Not and
Exp.Minus), infix (Exp.Add), and postfix (Exp.Inc) expressions.

Ambiguities in basic expression grammars do not only occur between prefix
and infix, or postfix and infix operators, but may also occur between prefix
and postfix operators. For example, parsing the expression - a ++ using the
grammar in Figure 2.25 produces the following trees:

(1) [Exp.Inc = [Exp.Minus = - a] ++]
(2) [Exp.Minus = - [Exp.Inc = a ++]]

According to the safe semantics from Definition 2.4.1, the priority Exp.Inc >

Exp.Minus creates the following priority conflict:

Exp.Inc > Exp.Minus ∈ PR

[Exp.Inc = [Exp.Minus = - Exp] ++] ∈ Qsafe
G

Thus, our safe semantics can also be used to disambiguate this sentence, since
the tree (1) is rejected because it matches this pattern. Note that the inverse
priority creates the following pattern, which can be used to reject tree (2):

Exp.Minus > Exp.Inc ∈ PR

[Exp.Minus = - [Exp.Inc = Exp ++]] ∈ Qsafe
G

Chapter 2. Declarative Disambiguation of Expression Grammars 55

context-free syntax
Exp.Add = Exp "+" Exp
Exp.Not = "!" Exp
Exp.Minus = "-" Exp
Exp.Inc = Exp "++"
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Not > Exp.Inc > Exp.Minus > Exp.Add

Figure 2.25 Example of a basic expression grammar.

context-free syntax
Exp.Min = "-" Exp
Exp.PosMin = Exp "-"
Exp.Sub = Exp "-" Exp {left}
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.PosMin > Exp.Min > Exp.Sub

Figure 2.26 Inherently ambiguous grammar.

Deep matching may also be necessary to disambiguate particular sentences
constructed by combining only prefix and postfix operators. For instance,
consider the prefix operator ! with higher priority, the sentence ! - a ++

contains an ambiguity that can only be solved by the deep priority conflict
in Definition 2.4.3, created by the priority Exp.Inc > Exp.Minus. Lower
priority postfix operators do not occur frequently in programming languages.
However, when such operators do occur, the ambiguities they cause also
require disambiguation by deep matching using the deep priority conflict
patterns of Definition 2.5.2.

2.5.2 Overlapping Operators

In Section 2.4.5 we considered inherently ambiguous prefix expression grammars,
discussing how lexical disambiguation can be used to address ambiguities in
such grammars. However, that is not always the case. For example, consider
the inherently ambiguous grammar in Figure 2.26. Parsing the sentence a -

- - b produces the following trees:

[Exp.Sub = [Exp.PosMin = [Exp.PosMin = a -] -] - b]
[Exp.Sub = a - [Exp.Min = - [Exp.Min = - b]]]
[Exp.Sub = [Exp.PosMin = a -] - [Exp.Min = - b]]

This ambiguity cannot be solved by priority and associativity disambiguation,
since it involves trees constructed with different productions. Furthermore,
this ambiguity can not be solved by follow restrictions such as the ambiguity

56

discussed in Section 2.4.5, because operators overlap by having the same
operator words. One solution to avoid such ambiguities is to forbid all overlap
of operators, dramatically restricting the set of grammars we support. However,
not all overlap is harmful, i.e. causes inherent ambiguities. We can check for
harmful overlap by verifying the productions used to construct a tree, using
this information to restrict the grammars we consider, avoiding inherently
ambiguous grammars.

Definition 2.5.4 (Harmful Overlap). Given a function prod(t) returning the set
of productions used to construct a particular tree t, an expression grammar contains
harmful overlap if there exist trees t1 and t2 such that yield(t1) = yield(t2), and
prod(t1) 6= prod(t2), i.e., the overlap in the operators in the productions prod(t1)
and prod(t2) is harmful.

Lemma 2.5.5. An expression grammar that contains only contains harmless overlap
is not inherently ambiguous.

Proof. By the definition of inherently ambiguous grammars (Definition 2.4.4)
and harmful overlap (Definition 2.5.4).

We cannot claim a decision procedure for stating that a grammar contains
only harmless overlap, since ambiguity of context-free grammars is an un-
decidable property. Instead, we describe an implementation in Section 2.9
that iteratively constructs parse trees, checking for harmful overlap. In the
remainder of the chapter we only consider expression grammars with harmless
overlap.

2.5.3 Safe and Complete Disambiguation

The safety and completeness of disambiguation of basic expression grammars
follows the structure of the earlier proofs. We consider the interaction of prefix
and postfix operators.

Definition 2.5.6 (Total Set of Disambiguation Rules for Basic Expression Gram-
mars). A set of disambiguation rules PR for a basic expression grammar G is total
for a non-terminal A if it is total for all productions in G defining infix and prefix
expressions (Definition 2.4.5), and for any pair of productions A.C1 = A γ ∈ G, and
A.C2 = α A ∈ G, either A.C1 > A.C2 ∈ PR or A.C2 > A.C1 ∈ PR.

Lemma 2.5.7 (Subtree Exclusion for Basic Expression Grammars is Safe). Given
a basic expression grammar G, and Q the set of safe, left-most, and right-most deep
conflict patterns generated from the disambiguation rules of G, if w ∈ L(G) then there
is a t ∈ TQ(G), such that yield(t) = w.

Proof. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then a ∈ TQ
a (G) since disambiguation rules do not

exclude lexemes.

Chapter 2. Declarative Disambiguation of Expression Grammars 57

(Inductive case) Assume that u, v ∈ L(G) and that there are t1, t2 ∈ TQ
A (G)

such that yield(t1) = u, yield(t2) = v, then there are four cases:

(1) If A.C = / A . is a closed production in G, then / u . ∈ L(G) and
[A.C = / t1 .] ∈ TQ

A (G), since there is no priority conflict pattern that
matches this tree.

(2) If A.C = I A is a prefix production in G, then I u = w ∈ L(G). We
need to demonstrate that there is a t ∈ TQ(G) such that yield(t) = w. By
induction u = yield(t1) such that t1 ∈ TQ(G). We consider the following
cases:

– If t1 = [A.C1 = t11 J] with yield u11 J. Take t = [A.C = I [A.C1 =
t11 J]] as the candidate tree for w.
First consider A.C1 > A.C. If ¬Mlm(t, [A.C = I [A.C2 = t21 l]])
for any postfix operator A.C2 = A l, then t ∈ TQ(G) since it does
not match a conflict pattern.
If Mlm(t, [A.C = I [A.C2 = t21l]]) then t has the shape [A.C =
I [A.C1 = [[A.C2 = t21l]...] J]]. If A.C2 > A.C then t does not
have a priority conflict and t ∈ TQ(G). If A.C > A.C2, then t
has a deep priority conflict and t /∈ TQ(G). However, the tree
t′ = [A.C1 = [[A.C2 = [A.C = I t21]l]...] J] has the same yield
and does not have a priority conflict, therefore t′ ∈ TQ(G).
On the other hand, if A.C > A.C1, then t matches a conflict pattern
and therefore t /∈ TQ(G). However, the tree t′ = [A.C1 = [A.C =
I t11] J] has the same yield. We need to consider right-most deep
matches similarly as above.

– The remaining cases are analogous to the proof for Lemma 2.4.6.

(3) If A.C = A J is a postfix production in G, then u J = w ∈ L(G). We
need to demonstrate that there is a t ∈ TQ(G) such that yield(t) = w. By
induction u = yield(t1) such that t1 ∈ TQ(G). We consider the following
cases:

– If t1 is a lexeme, closed expression, or a postfix expression, then
t = [A.C = t1 J] ∈ TQ(G), since there are no disambiguation rules
that apply.

– If t1 = [A.C1 = I t11], then the analysis is similar to the first case
for the production A.C = I A.

– If t1 = [A.C = t11 ⊗ t12], with yield u11 ⊗ u12. Take t = [A.C =
[A.C1 = t11⊗ t12] J] as the candidate tree for w. If A.C1 > A.C then
t ∈ TQ(G) since it does not match a conflict pattern (and since there
are no other disambiguation relations between the productions). On
the other hand, if A.C > A.C1 then t matches a conflict pattern and
therefore t 6∈ TQ(G). However, the tree t′ = [A.C1 = t11 ⊗ [A.C =
t12 J]] has the same yield and does not have a priority conflict,
therefore t′ ∈ TQ(G).

58

(4) If A.C = A⊕ A is an infix production in G, then u⊕ v = w ∈ L(G). Now
we need to demonstrate that there is a t ∈ TQ(G) such that yield(t) = w.
By induction u = yield(t1) and v = yield(t2) such that t1, t2 ∈ TQ(G).

– If t2 = [A.C2 = t11 J] the proof is analogous to the last case for the
production A.C = A J.

– The remaining cases are analogous to the cases of the proof for
Lemma 2.4.6.

Lemma 2.5.8 (Subtree Exclusion for Basic Expression Grammars is Completely
Disambiguating). Given a basic expression grammar G with only harmless overlap,
and Q the set of safe, left-most, and right-most deep conflict patterns generated from a
total set of the disambiguation rules for G, then all trees in TQ(G) have unique yields,
i.e., if t1, t2 ∈ TQ(G) and yield(t1) = yield(t2) then t1 = t2.

Proof. By induction on TQ(G).
(Base case) If a is a lexeme, then a ∈ TQ

a (G) and has a unique yield.
(Inductive case) Assume that t1, t2 ∈ TQ

A (G) and that their yields are unique.

(1) If A.C = / A . is a closed production in G, then t = [A.C1 = / t1 .] ∈
TQ

A (G), since there is no priority conflict pattern that matches this tree,
and by uniqueness of t1, t is also unique.

(2) If A.C = I A is a prefix production in G, we can construct the tree
t = [A.C = I t1]. We need to demonstrate that if t ∈ TQ(G) then there is
no tree t′ ∈ TQ(G) such that t′ 6= t and yield(t) = yield(t′). We consider
the following cases:

– If t1 = [A.C1 = t11 J] with yield u11 J, we can construct the tree
t = [A.C = I [A.C1 = t11 J]] with yield w =I u11 J.
If A.C > A.C1 then t matches a conflict pattern and therefore t /∈
TQ(G).
If A.C1 > A.C, then t does not match a shallow conflict pattern.
If ¬Mlm(t, [A.C = I [A.C2 = t31 l]]) for any postfix operator
A.C2 = A l then t does not have a conflict, and has a unique yield
w, since the only other tree [A.C1 = [A.C = I t11] J] with the same
yield has a priority conflict.
If Mlm(t, [A.C = I [A.C2 = t31 l]]), then t = [A.C = I [A.C1 =
[[A.C2 = t21]l]...] J]] and t′ = [A.C1 = [[A.C2 = [A.C = I
t21]l]...] J] has the same yield. By totality of disambiguation rules,
either A.C > A.C2 and t /∈ TQ(G), or A.C2 > A.C and t′ /∈ TQ(G).

– The remaining cases are analogous to the proof for Lemma 2.4.7.

(3) If A.C = A J is a postfix production in G, we can construct the tree
t = [A.C = t1 J]. We need to demonstrate that if t ∈ TQ(G) then there is
no tree t′ ∈ TQ(G) such that t′ 6= t and yield(t) = yield(t′). We consider
the following cases:

Chapter 2. Declarative Disambiguation of Expression Grammars 59

– If t1 is a lexeme, another postfix expression, or closed expression
then t ∈ TQ(G) since there are no disambiguation rules that apply,
and t has a unique yield since there are no other ways to construct t
by uniqueness of t1.

– If t1 = [A.C1 = I t11], then the analysis is analoguous to the first
case for the production A.C = I A.

– If t1 = [A.C1 = t11 ⊗ t12], with yield u11 ⊗ u12, then t = [A.C =
[A.C1 = t11 ⊗ t12] J] with yield w = u11 ⊗ u12 J. If A.C > A.C1
then t matches a conflict pattern and therefore t /∈ TQ(G). If A.C1 >
A.C then t does not match a conflict pattern. The only other tree
with the same yield is t′ = [A.C1 = t11 ⊗ [A.C = t12 J]], however
t′ /∈ TQ(G), since A.C1 > A.C.

(4) If A.C = A ⊕ A is an infix production in G, we can construct the tree
t = [A.C = t1 ⊕ t2]. Similarly, we need to demonstrate that if t ∈ TQ(G)
then there is no tree t′ ∈ TQ(G) such that t′ 6= t and yield(t) = yield(t′).
We consider the following cases:

– If t2 = [A.C2 = t11 J] the proof is analogous to the last case for the
production A.C = A J.

– The remaining cases are analogous to the cases for the proof of
Lemma 2.4.7.

Theorem 2.5.9. Disambiguation of a basic expression grammar G with only harmless
overlap by a total set of disambiguation rules R is safe and completely disambiguating.

Proof. Let Q be the set of safe, left-most, and right-most deep conflict patterns
generated from R. By Lemma 2.5.7 and Corollary 2.2.17 we have that FQ is
safe. By Lemma 2.5.8 and Corollary 2.2.18 we have that FQ is completely
disambiguating.

2.6 D I S T F I X E X P R E S S I O N S

In Section 2.2.7, we defined distfix expressions, an extension of basic expres-
sions in which productions can have multiple alternating non-terminals and
operators. Since ambiguities only occur at the open recursive positions of
productions (and not in closed positions), ambiguities in distfix grammars
have the same shape as ambiguities in basic expression grammars. That is,
distfix operators behave as if they were infix, prefix, or postfix operators.

Consider the grammar in Figure 2.27, which defines several distfix produc-
tions. The production Exp.Let defines a prefix distfix operator, the production
Exp.Cond defines a infix distfix operator, the production Exp.Subscript de-
fines a postfix distfix operator, and the production Exp.While defines a closed
distfix operator.

Disambiguation for distfix expressions uses the same rules for safe shallow
conflicts and deep priority conflicts that we established in the previous sections.

60

context-free syntax
Exp.Add = Exp "+" Exp {left}
Exp.If = "if" Exp "then" Exp
Exp.Cond = Exp "?" Exp ":" Exp {left}
Exp.Subscript = Exp "[" Exp "]"
Exp.While = "while" Exp "do" Exp "done"
Exp.Let = "let" ID "=" Exp "in" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Subscript > Exp.Add > Exp.If >
Exp.Cond > Exp.Let

Figure 2.27 An example of a distfix grammar.

Figure 2.28 Example sentences over the grammar of Figure 2.27 and their parse
trees. Trees marked with * are selected according to the disambiguation rules.

The examples in Figure 2.28 demonstrate their application to sentences over the
grammar of Figure 2.27. In the case of an ambiguity, an * marks the tree that is
selected. Note that the portion of a production that is enclosed in operators
behaves as closed expression, i.e. it cannot cause ambiguities with nested
productions; see the first and last examples. Note that deep priority conflicts
apply to low priority distfix operators as well, for example, in the sentence
a + let x = b in c + d with priority Exp.Add > Exp.Let.

Theorem 2.6.1. Disambiguation of a distfix expression grammar without overlap and
with a total set of disambiguation rules is safe and completely disambiguating.

Proof. By Lemmas 2.5.7 and 2.5.8, we have that disambiguating of a basic
expression grammar using a total set of disambiguation rules is safe and
completely disambiguating. Thus disambiguation for distfix grammars is safe
and completely disambiguating in the right-most and left-most recursive positions
of distfix expressions.

Since there are no conflict patterns that match on the internal recursive
positions of a distfix production, disambiguation of distfix grammars is safe.
(This is an important distinction from the SDF2 semantics from Definition 2.3.2,
which is not safe in the closed positions of distfix productions.)

Chapter 2. Declarative Disambiguation of Expression Grammars 61

To show that no ambiguity occurs in the internal recursive positions of
a distfix expression consider the tree t = [A.C = ...⊕i ti ⊕i+1 ...] with yield
w = ...⊕i ui⊕i+1 For any unique ti with yield ui, t is the only tree with yield
w, since no operators overlap. Therefore, disambiguation of distfix grammars
is completely disambiguating.

2.6.1 Overlapping Distfix Operators

A requirement in the definition of distfix grammars by [1] is that its operators
must not overlap. For instance, extending the grammar of Figure 2.27 with the
productions

Exp.IfThenElse = "if" Exp "then" Exp "else" Exp
Exp.Plus = "+" Exp

does not result in a distfix grammar according to Definition 2.2.20, since their
operators overlap with the operators in the productions Exp.If and Exp.Add.
However, this is a strong restriction on expression grammars, which excludes
grammars with ambiguities that can be solved completely by priority and
associativity declarations. For that reason, we relax this restriction on distfix
grammars, to grammars with harmless overlap according to Definition 2.5.4. We
call these grammars overlapping distfix grammars.

Definition 2.6.2 (Overlapping Distfix Grammars). An overlapping distfix gram-
mars is a distfix expression grammar with only harmless overlap.

Relaxing the restriction on overlap for distfix grammars, gives rise to new
forms of ambiguity, besides the now familiar ambiguities that occur at left-
most and right-most recursive positions. These new ambiguities are due to
overlapping prefixes (or suffixes) of productions and cause dangling suffix
(or prefix) ambiguities. The poster child of this form of ambiguity is the
dangling-else. Consider the grammar in Figure 2.29. Parsing the sentence
if a then b + if c then d else e produces the trees:

(1) [Exp.IfElse = if a then [Exp.Add = b + [Exp.If = if c
then d]] else e]

(2) [Exp.If = if a then [Exp.Add = b + [Exp.IfElse = if c
then d else e]]]

First note that the overlap in this grammar is harmless. The ambiguities
it causes are permutations of the same productions, in contrast to inherent
ambiguities consisting of trees composed from different productions.

The standard disambiguation policy is that the dangling “else” clause
should belong to the nearest “if-then” clause. Hence, this sentence can be
disambiguated by forbidding any if expression to be nested as the rightmost
child of any other expression that occurs as “then” clause of an if-then-else
expression. Nevertheless, since the conflict does not occur at the leftmost
or rightmost position of a particular expression, dangling suffix ambiguities
cannot be captured by any of the conflict patterns shown previously.

62

context-free syntax
Exp.If = "if" Exp "then" Exp
Exp.IfElse = "if" Exp "then" Exp "else" Exp
Exp.Add = Exp "+" Exp {left}
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Add > Exp.IfElse > Exp.If

Figure 2.29 Grammar containing dangling suffix ambiguity.

γ

α A

…

…
…

α

(a)

α A

…

…
…

α

γ

(b)

Figure 2.30 Rejecting a tree that matches the pattern (a), results in attaching γ to
the closest α, whereas rejecting pattern (b) results in attaching γ to the furthest α.

2.6.2 Disambiguating Overlapping Distfix Grammars

Dangling suffix ambiguities are a common issue in grammars of programming
languages. For example, the Java grammar adopts a grammar rewriting
technique that solves the ambiguity, forbidding if statements to occur (deeply
nested) inside if-then-else statements. YACC, on the other hand, uses the
mechanism of preferring a particular action based on the lookahead symbol
of the sentence being parsed. While this strategy works for enforcing that an
else clause should attach to the closest if-then clause by preferring a shift in the
presence of such conflict, preferring a reduce does not allow selecting the other
tree in the ambiguity, but rejects the sentence altogether. We use (deep) priority
conflicts to define the semantics for disambiguating expressions containing
dangling suffix and dangling prefix ambiguities, enabling the selection of either
permutation, as illustrated by the generic patterns in Figure 2.30.

Definition 2.6.3 (Dangling Prefix/Suffix Conflict Patterns). Given a grammar
G with priority declarations defining transitive relations > over the productions
A.C1 = αA and A.C2 = αAγ in G, the set Qrm

G is extended with the following
dangling suffix conflict patterns over G:

A.C2 > A.C1 ∈ PR
[A.C2 = α[A.C1 = Aγ]γ] ∈ Qlm

G
(2.49)

Chapter 2. Declarative Disambiguation of Expression Grammars 63

A.C1 > A.C2 ∈ PR
[A.C1 = [A.C2 = αAγ]γ] ∈ Qlm

G
(2.50)

A.C2 > A.C1 ∈ PR
[A.C2 = α[A.C1 = αA]γ] ∈ Qrm

G
(2.51)

A.C1 > A.C2 ∈ PR
[A.C1 = α[A.C2 = αAγ]] ∈ Qrm

G
(2.52)

�

Note that Equations 2.49 and 2.50 represent patterns that match trees in
ambiguities due to dangling prefix, and Equations 2.51 and 2.52 represent
patterns that match trees in ambiguities due to dangling suffix. If we apply
this definition to the priority rule Exp.IfElse > Exp.If of the grammar in
Figure 2.29 we get the following right-most deep conflict pattern, which solves
the ambiguity by pairing the closest if-then and else:

Exp.IfElse > Exp.If ∈ PR
[Exp.IfElse = if Exp then [Exp.If = if ...] else Exp] ∈ Qrm

G

This pattern deeply matches tree (1) above, and therefore tree (2) is selected.

2.6.3 Safe and Complete Disambiguation

As shown previously, filters that address basic expression grammars are also
able to address distfix grammars without overlap. Below we consider dis-
ambiguation for overlapping distfix grammars. We start by extending our
definition of total set of disambiguation rules to enforce priority between
productions involved in dangling prefix and dangling suffix ambiguities. Then
we show that subtree exclusion for overlapping distfix grammars is safe and
completely disambiguating.

Definition 2.6.4 (Total Set of Disambiguation Rules for Overlapping Distfix
Grammars). A set of disambiguation rules PR for a distfix grammar G is total for a
non-terminal A:

• If for any pair of productions A.C1 = α A ∈ G and A.C2 = A γ ∈ G, either
A.C1 > A.C2 ∈ PR or A.C2 > A.C1 ∈ PR.

• If two (not necessarily distinct) productions A.C1 = A β1 A ∈ G, A.C2 =
A β2 A ∈ G, then either A.C1 R A.C2 ∈ PR or A.C2 R A.C1 ∈ PR, where
R ∈ {>, right, left, non-assoc}.

• If A.C1 = α A γ ∈ G and A.C2 = α A ∈ G, or A.C1 = α A γ ∈ G and
A.C2 = A γ ∈ G, either A.C1 > A.C2 ∈ PR or A.C2 > A.C1 ∈ PR.

64

Lemma 2.6.5 (Subtree Exclusion for Overlapping Distfix Expression Grammars
is Safe). Given a distfix expression grammar G with only harmless overlap, and Q
the set of safe, left-most, and right-most deep conflict patterns generated from a total
set of the disambiguation rules for G, if w ∈ L(G) then there is a t ∈ TQ(G), such
that yield(t) = w.

Proof. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then a ∈ TQ
a (G) since disambiguation rules do not

exclude lexemes.

(Inductive case) Assume that there are ui ∈ L(G) and that there are ti ∈ TQ
A (G)

such that yield(ti) = ui.

(1) If A.C = I A⊕1 ...⊕i A⊕i+1 ...⊕n A J is a closed distfix production in G,
then w =I u1...⊕i ui ⊕i+1 ...⊕n un J ∈ L(G). We need to demonstrate
that there is a t ∈ TQ(G) such that yield(t) = w. Take t = [A.C =
I t1 ⊕1 ...⊕i ti ⊕i+1 ...⊕n tn J]. By induction ui = yield(ti) such that
ti ∈ TQ(G), ∀1 ≤ i ≤ n. We consider the following cases:

– Let q = [A.C = I A⊕1 ...⊕i [A.C1 =I A⊕1 ...⊕i A]⊕i+1 ...⊕n A J
]. If ¬Mrm(t, q), then t ∈ TQ(G), since A.C is a closed distfix
expression. However, ifMrm(t, q) and A.C > A.C1, then t = [A.C =
I t1⊕1 ...⊕i [..[A.C1 = I t11⊕1 ...⊕i t1i]]⊕i+1 ...⊕n tn J] has a deep
priority conflict and t /∈ TQ(G). However, the tree t′ = [A.C1 = I
t1⊕1 ...⊕i [..[A.C = I t11⊕1 ...⊕i t1i ⊕i+1 ...⊕n tn J]]] has the same
yield and does not have a priority conflict, i.e., t′ ∈ TQ(G).

– Similarly, let q = [A.C = I A⊕1 ...⊕i [A.C2 = A⊕i+1 ...⊕n A J
] ⊕i+1 ... ⊕n A J]. if ¬Mlm(t, q), then t ∈ TQ(G). However, if
Mlm(t, q) and A.C > A.C2, t = [A.C = I t1 ⊕1 ... ⊕i [[A.C2 =
t21 ⊕i+1 ...⊕n t2n J]..]⊕i+1 ...⊕n tn J] matches a deep priority con-
flict and t /∈ TQ(G). However, the tree t′′ = [A.C2 = [[A.C = I
t1 ⊕1 ...⊕i t21 ⊕i+1 ...⊕n t2n J]..]⊕i+1 ...⊕n tn J] has the same yield
and does not have a priority conflict, thus, t′′ ∈ TQ(G).

(2) The remaining cases involving the production A.C = I A ⊕1 ... ⊕i
A⊕i+1 ...⊕n A defining a prefix distfix expression, the production A.C =
A ⊕1 ...⊕i A ⊕i+1 ...A J defining a postfix distfix expression, and the
production A.C = A ⊕1 ... ⊕i A ⊕i+1 ... ⊕n A defining an infix distfix
expression are analogous to the case above. Note that when ti = t1
or ti = tn, i.e., the conflict occurs at the leftmost or rightmost tree, the
analysis is analogous to the proof of Lemma 2.5.7.

Lemma 2.6.6 (Subtree Exclusion for Overlapping Distfix Expression Grammars
is Completely Disambiguating). Given a distfix expression grammar G with only
harmless overlap, and Q the set of safe, left-most, and right-most deep conflict patterns
generated from a total set of the disambiguation rules for G, then all trees in TQ(G)
have unique yields, i.e., if t1, t2 ∈ TQ(G) and yield(t1) = yield(t2) then t1 = t2.

Chapter 2. Declarative Disambiguation of Expression Grammars 65

Proof. By induction on TQ(G).

(Base case) If a is a lexeme, then a ∈ TQ
a (G) and has a unique yield.

(Inductive case) Assume that ti ∈ TQ
A (G) and that their yields are unique.

(1) If A.C = I A⊕1 ...⊕i A⊕i+1 ...⊕n A J is a closed distfix production in
G, we can construct the tree t = [A.C = I t1 ⊕1 ...⊕i ti ⊕i+1 ...⊕n tn J]
with yield w = I u1...⊕i ui ⊕i+1 ...⊕n un J. We need to demonstrate
that if t ∈ TQ(G) then there is no tree t′ ∈ TQ(G) such that t′ 6= t and
yield(t) = yield(t′). Consider the following cases:

– Let q = [A.C = I A⊕1 ...⊕i [A.C1 =I A⊕1 ...⊕i A]⊕i+1 ...⊕n A J
]. If t = [A.C = I t1⊕1 ...⊕i [..[A.C1 = I t11⊕1 ...⊕i t1i]]⊕i+1 ...⊕n
tn J], A.C > A.C1, andMrm(t, q) then t has a deep priority conflict
and t /∈ TQ(G). If A.C1 > A.C, then t ∈ TQ(G). The tree t′ =
[A.C1 = I t1⊕1 ...⊕i [..[A.C = I t11⊕1 ...⊕i t1i ⊕i+1 ...⊕n tn J]]] is
the only tree with the same yield, since by our definition of harmless
overlap, no other productions can be used to derive w. However t′

matches a priority conflict when A.C1 > A.C i.e., t′ /∈ TQ(G).

– Similarly, let q = [A.C = I A⊕1 ...⊕i [A.C2 = A⊕i+1 ...⊕n A J
]⊕i+1 ...⊕n A J]. If t = [A.C = I t1⊕1 ...⊕i [[A.C2 = t21⊕i+1 ...⊕n
t2n J]..]⊕i+1 ...⊕n tn J], A.C > A.C2, and Mlm(t, q), t matches a
deep priority conflict and t /∈ TQ(G). If A.C2 > A.C, then t ∈
TQ(G). The tree t′′ = [A.C2 = [[A.C = I t1 ⊕1 ...⊕i t21 ⊕i+1 ...⊕n
t2n J]..]⊕i+1 ...⊕n tn J] is the only tree with the same yield, since
by our definition of harmless overlap, no other productions can
be used to derive w. However t′ matches a priority conflict when
A.C2 > A.C, thus, t′′ /∈ TQ(G).

(2) The remaining cases involving prefix distfix productions A.C = I A⊕1
...⊕i A ⊕i+1 ...⊕n A, the postfix distfix productions A.C = A ⊕1 ...⊕i
A ⊕i+1 ...A J, and infix distfix productions A.C = A ⊕1 ...⊕i A ⊕i+1
... ⊕n A are analogous to the case above. Note that when ti = t1 or
ti = tn, i.e., the conflict occurs at the leftmost or rightmost tree, the
analysis is analogous to the proof of Lemma 2.5.8.

Theorem 2.6.7. Disambiguation of a distfix expression grammar with harmless
overlap using a total set of disambiguation rules is safe and completely disambiguating.

Proof. As before by Lemma 2.6.5 and Lemma 2.6.6.

2.7 I N D I R E C T R E C U R S I O N

In this section, we examine the extension of distfix expression grammars
to indirectly recursive distfix expression grammars. Ambiguities involving
indirectly recursive distfix expressions may also occur deeply nested in a tree,
and require resolution using deep priority conflicts. For example, consider the

66

context-free syntax
Exp.Add = Exp "+" Exp {left}
Exp.Function = "function" Match
Match.Clause = ID "->" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Add > Exp.Function

Figure 2.31 An example of a grammar containing indirect recursion.

grammar of Figure 2.31, which models (simplified) pattern match clauses in
OCaml using the non-terminal Match. The production Match.Clause uses the
non-terminal Exp in its right-most position, making Exp and Match mutually
recursive. Parsing the sentence a + function p -> b + c, produces the
following parse trees:

(1) [Exp.Add = a + [Exp.Function = function [Match.Clause =
p -> [Exp.Add = b + c]]]]

(2) [Exp.Add = [Exp.Add = a + [Exp.Function = function
[Match.Clause = p -> b]]] + c]

This ambiguity is similar to the deep priority conflicts we saw before. The
priority Exp.Add > Exp.Function indicates that tree (2) should be rejected
and tree (1) should be selected. However, the priority does not generate the
required deep priority conflict pattern, since the productions involved are not
directly recursive, and hence do not match the rules in Definition 2.4.3. In
general, the patterns we defined in Definitions 2.4.3, 2.5.2, and 2.6.3 are not
applicable to indirectly recursive distfix expressions.

2.7.1 Disambiguating Indirectly Recursive Distfix Grammars

The following definition generalizes our previous semantic rules to indirectly
recursive expression grammars, subsuming the rules for shallow and deep
conflict patterns for directly recursive expression grammars.

Definition 2.7.1 (Indirectly Recursive Conflict Patterns). Given a distfix expres-
sion grammar G with indirect recursion and disambiguation rules PR defining sym-
metric, non-transitive relations right and left 12, and irreflexive, anti-symmetric,
and transitive relation > over the productions of G, the sets Qlm

G and Qrm
G of left-most

and right-most deep conflict patterns are the smallest sets such that:

A.C2 > A.C1 ∈ PR α
∗
=⇒G α′A

[A.C2 = [A.C1 = α]γ] ∈ Qrm
G

(2.53)

12The relation non-assoc is interpreted as left associative, and non-assoc and non-nested
generate the symmetric patterns as warnings, which we leave out here.

Chapter 2. Declarative Disambiguation of Expression Grammars 67

A.C1 > A.C2 ∈ PR γ
∗
=⇒G Aγ′

[A.C1 = α[A.C2 = γ]] ∈ Qlm
G

(2.54)

A.C2 > A.C1 ∈ PR α′
∗
=⇒G αA

[A.C2 = α[A.C1 = α′]γ] ∈ Qrm
G

(2.55)

A.C1 > A.C2 ∈ PR α′
∗
=⇒G αA

[A.C1 = α[A.C2 = α′γ]] ∈ Qlm
G

(2.56)

A.C1 > A.C2 ∈ PR γ′
∗
=⇒G Aγ

[A.C1 = α[A.C2 = γ′]γ] ∈ Qlm
G

(2.57)

A.C2 > A.C1 ∈ PR γ′
∗
=⇒G Aγ

[A.C2 = [A.C1 = αγ′]γ] ∈ Qrm
G

(2.58)

A.C1 right A.C2 ∈ PR β2
∗
=⇒G AβA β1

∗
=⇒G αA

[A.C1 = [A.C2 = β2]β1] ∈ Qrm
G

(2.59)

A.C1 left A.C2 ∈ PR β2
∗
=⇒G AβA β1

∗
=⇒G Aγ

[A.C1 = β1[A.C2 = β2]] ∈ Qlm
G

(2.60)

�

The conflict patterns above take into consideration indirect recursion, cap-
turing ambiguities that can be solved by priority rules. The patterns in Equa-
tions 2.53 and 2.54 disambiguate prefix- and postfix-basic ambiguities involving
indirectly recursive distfix expressions. The patterns in Equations 2.55 to 2.58

address dangling prefix and dangling suffix ambiguities, now considering
indirect recursion. Note that because conflicts due to indirect recursion require
deep matching, associativity declarations also contribute to indirectly recursive
patterns, as shown by Equations 2.59 and 2.60.

For example, consider again the sentence a + function p -> b + c and
the trees constructed when parsing it. Since function Match

∗
=⇒G function

Pattern -> Exp, the priority rule Exp.Add > Exp.Function now generates
the following conflict pattern according to Equation 2.53:

Exp.Add > Exp.Function ∈ PR
[Exp.Add = [Exp.Function = function Match] + Exp] ∈ Qrm

G

This pattern deeply matches the tree (2), and therefore tree (1) is selected.
Consider now the grammar in Figure 2.32, containing a dangling suffix

conflict involving indirectly recursive distfix expressions. Parsing a sentence
if a then if b then s1 else s2 creates the following trees:

(3) [CondStmt.IfElse = if a then [Stmt.Cond = [CondStmt.If =
if b then s1]] else s2]

(4) [CondStmt.If = if a then [Stmt.Cond = [CondStmt.IfElse =
if b then s1 else s2]]]

68

context-free syntax
Stmt.Cond = CondStmt
CondStmt.If = "if" Exp "then" Stmt
CondStmt.IfElse = "if" Exp "then" Stmt "else" Stmt
Exp.Var = ID

context-free priorities
CondStmt.IfElse > CondStmt.If

Figure 2.32 Grammar containing a dangling suffix conflict caused by indirect recur-
sion.

Since if Exp then Stmt
∗
=⇒G if Exp then CondStmt, the indirectly recur-

sive interpretation of the priority rule CondStmt.IfElse > CondStmt.If gen-
erates the following pattern, according to Equation 2.55:

CondStmt.IfElse > CondStmt.If ∈ PR
[CondStmt.IfElse = if Exp then [CondStmt.If = ...] ...] ∈ Qrm

G

Since this conflict pattern deeply matches tree (3), a disambiguation filter
constructed using this pattern rejects this tree, and tree (4) is selected.

Lemma 2.7.2 (Deep Conflicts Subsume Shallow Conflicts). The deep priority
conflict patterns of Definition 2.7.1 include the shallow conflict patterns of Defini-
tion 2.4.1.

Proof. By inspection, each of the rules for Qsafe
G is included in either Qrm

G or Qlm
G ,

and rightmost and leftmost deep matching includes shallow matching.

Hidden recursion is another problem that may occur when we consider
indirect recursion. Hidden recursion occurs when a non-terminal can derive
the empty string, and hides another recursive non-terminal. We address hidden
recursion by applying a grammar transformation to make the recursion explicit
(Section 2.8.4).

2.7.2 Nested Lists

Programming language grammars often feature lists of expressions. For ex-
ample, consider the actual parameters of a function call (typically a list of
expressions separated by commas) or the bindings in a let expression. These
particular examples probably do not involve ambiguities since the lists are
closed within delimiters. However, other lists do give rise to ambiguities, in
particular when they may be nested. In SDF3, the regular symbols A+ and A∗

represent shorthands for lists with one or more, or zero or more elements, re-
spectively. For example, consider the grammar in Figure 2.33. The production
Exp.Do (based on the Haskell do-notation) defines a construct with a list of
one or more expressions as argument. The production Exp.Function defines

Chapter 2. Declarative Disambiguation of Expression Grammars 69

context-free syntax
Exp.Do = "do" Exp+
Exp.Function = "function" Match+
Match.Clause = Pattern "->" Exp
Exp.Var = ID

Figure 2.33 Grammar containing nested list ambiguities.

a function literal expression, which pattern matches its arguments with one or
more pattern match clauses.

We consider the extension of distfix expression grammars with list symbols.
SDF3 defines list symbols using the following production schemas13:

A∗.LstA = A+

A∗.NilA = ε
A+.AppA = A+ A
A+.SngA = A

Given the grammar of Figure 2.33 and the productions for list symbols, the
sentence do do a b has the following parse trees:

(1) [Exp.Do = do [Exp+.App = [Exp+.Sng = [Exp.Do = do a]] b]]
(2) [Exp.Do = do [Exp+.Sng = [Exp.Do = do [Exp+.App = a b]]]]

An ambiguity involving nested lists occurs because the expression b can belong
to the inner or outermost list. The standard resolution policy is to expand the
inner list as much as possible, i.e., the longest match. When considering the
standard disambiguation policy and the example above, the inner list should
be longest match, thus only tree (2) should be produced. Conversely, rejecting
tree (2) and producing tree (1) specifies the opposite, i.e., the shortest match.

Erdweg et al. [45] propose to use a post-parse filter that selects the alternative
that represents the longest innermost list from all possible parse trees. While
this solution works in principle, it does not scale to larger programs, since the
number of ambiguities grows exponentially in the length of the list elements.
Moreover, it only enables longest match disambiguation, since it lacks an
alternative to implement the dual disambiguation based on shortest match.
Therefore, instead of applying a post parse filter, we propose a solution based
on deep priority conflicts.

Definition 2.7.3 (Nested List Conflict Patterns). Given a grammar G containing
productions of the form A.C1 = αB+ such that B ∗

=⇒G α′A, the set Qrm
G is extended

with the following conflict patterns over G with respect to longest match or shortest
match lists B+ (or B∗):

A.C = αB+ {longest-match} ∈ PR B ∗
=⇒G α′A

[B+.AppB = [A.C = αB+]B] ∈ Qrm
G

(2.61)

13SDF3 also defines lists with separators {A s}+ and {A s}∗. These are defined analogously.

70

A.C = αB+ {shortest-match} ∈ PR B ∗
=⇒G α′A

[B+.SngB = [B+.AppB = B+B]] ∈ Qrm
G

(2.62)

A.C1 = B+γ {longest-match} ∈ PR B ∗
=⇒G α′A

[B+.AppA1
= [A.C1 = αB+]B] ∈ Qrm

G
(2.63)

A.C1 = B+γ {shortest-match} ∈ PR B ∗
=⇒G Aγ′

[B+.ConsB = [B+.AppA1 = B+B]] ∈ Qrm
G

(2.64)

Equations 2.61 and 2.62 define the conflict patterns for productions with nested lists
as postfixes, whereas Equations 2.63 and 2.64 define conflict patterns for productions
with nested lists as prefixes. �

context-free syntax
Exp.Do = "do" Exp+ {longest-match}
Exp.Function = "function" Match+ {shortest-match}
Match.Clause = Pattern "->" Exp
Exp.Var = ID

Figure 2.34 Disambiguation rules to implement longest match and shortest match.

To express disambiguation by longest or shortest match, we extend SDF3

disambiguation rules with longest-match and shortest-match annotations
to specify that a list is longest or shortest match, respectively. Consider the
grammar in Figure 2.34, which contains disambiguation rules for both lists in
the grammar of Figure 2.33. The annotation in the production Exp.Do creates
the following conflict pattern:

Exp.Do = "do" Exp+ {longest-match} ∈ PR
[Exp+.AppExp = [Exp.Do = "do" Exp+] Exp] ∈ Qrm

G

Since this pattern deeply matches tree (1) above, only tree (2) is selected by a
subtree exclusion filter that considers this pattern.

2.7.3 Safe and Complete Disambiguation

We extend the safety and completeness proofs to indirectly recursive distfix
expression grammars.

Definition 2.7.4 (Total Set of Disambiguation Rules). A set of disambiguation
rules PR for a grammar G is total for a non-terminal A,

• If for any pair of productions A.C1 = α ∈ G and A.C2 = γ ∈ G, such that
α
∗
=⇒G α′A, γ

∗
=⇒G Aγ′, either A.C1 > A.C2 ∈ PR or A.C2 > A.C1 ∈ PR.

• If two (not necessarily distinct) productions A.C1 = β1, A.C2 = β2 ∈ P(G),
with β1

∗
=⇒G Aβ′1 A and β2

∗
=⇒G Aβ′2 A, then either A.C1 R A.C2 ∈ PR or

A.C2 R A.C1 ∈ PR, R ∈ {>, right, left}.

Chapter 2. Declarative Disambiguation of Expression Grammars 71

• If A.C1 = αγ and A.C2 = α, such that α
∗
=⇒G α′ A, or A.C1 = αγ and

A.C2 = γ, such that γ
∗
=⇒G A γ′, either A.C1 > A.C2 ∈ PR or A.C2 >

A.C1 ∈ PR. �

Lemma 2.7.5 (Subtree Exclusion for Indirectly Recursive Distfix Expression
Grammars is Safe). Given an indirectly recursive distfix expression grammar G with
only harmless overlap, and the set Q of left-most, and right-most deep priority conflict
patterns generated by the disambiguation rules for G, if w ∈ L(G) then there is a
t ∈ TQ(G), such that yield(t) = w.

Proof. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then a ∈ TQ
a (G) since disambiguation rules do not

exclude lexemes.

(Inductive case) Assume that ui ∈ L(G) and that there are ti ∈ TQ
Bi
(G) such

that yield(ti) = ui, for any 0 ≤ i ≤ n, then there are the following cases:

(1) If A.C = I B0 ⊕1 ...⊕n Bn is an indirectly recursive distfix production
in G, i.e., Bi

∗
=⇒G αA, for any 0 ≤ i ≤ n, then I u1...⊕n un = w ∈ L(G).

We need to demonstrate that there is a t ∈ TQ(G) such that yield(t) = w.
Take t = [A.C = I t0 ⊕1 ...⊕n tn]. By induction ui = yield(ti) such that
ti ∈ TQ(G), ∀0 ≤ i ≤ n. Consider the following cases:

– Consider Bi
∗
=⇒G αA and i 6= n, and let q = [A.C = I B0 ⊕1 ...⊕i

[A.C1 = I B0 ⊕1 ...⊕i Bi] ⊕i+1 ...⊕n Bn]. If ¬Mrm(t, q) then t ∈
TQ(G), since both A.C and A.C1 define indirectly recursive prefix
distfix expressions. However, if Mrm(t, q) and A.C > A.C1, then
t = [A.C = I t0 ⊕1 ...⊕i [..[A.C1 = I t10 ⊕1 ...⊕i t1i]]⊕i+1 ...⊕n tn]
has a deep priority conflict and t /∈ TQ(G). However, the tree
t′ = [A.C1 = I t0 ⊕1 ...⊕i [..[A.C = I t10 ⊕1 ...⊕i t1i ⊕i+1 ...⊕n tn]]]
has the same yield and does not have a conflict, thus t′ ∈ TQ(G). A
similar analysis can be applied if Bi

∗
=⇒G Aγ, with q′ = [A.C = I

B0 ⊕1 ...⊕i [A.C2 = Bi ⊕i+1 ...⊕n Bn]⊕i+1 ...⊕n Bn], andMlm(t, q′).

– Consider Bi
∗
=⇒G αA and i = n, and let q = [A.C = I B0 ⊕1 ...⊕n

[A.C1 = B′0 ⊗1 ... ⊗n B′n]]. If ¬Mrm(t, q) and A.C1 > A.C, then
t ∈ TQ(G). However, if Mrm(t, q), B′0

∗
=⇒G Aγ, and A.C > A.C1,

then t = [A.C = I t0 ⊕1 ...⊕n [..[A.C1 = t10 ⊗1 ...⊗n t1n]]] has a
deep priority conflict, and t /∈ TQ(G). On the other hand, the tree
t′ = [A.C1 = [A.C = I t0 ⊕1 ...⊕n [..t10]]⊗1 ...⊗n t1n] has the same
yield and does not have a conflict, thus t′ ∈ TQ(G). The analysis is
similar if A.C1 = B′0 ⊗1 ...⊗n B′n J, and B′0

∗
=⇒G Aγ.

(2) The analysis is analogous for the other indirectly recursive distfix pro-
ductions.

72

Lemma 2.7.6 (Subtree Exclusion for Indirectly Recursive Distfix Expression
Grammars is Completely Disambiguating). Given an indirectly recursive distfix
expression grammar G and the set Q of left-most, and right-most deep priority conflict
patterns generated from a total set of disambiguation rules for G, then all trees in
TQ(G) have unique yields. That is, if t1, t2 ∈ TQ(G) and yield(t1) = yield(t2) then
t1 = t2.

Proof. By induction on TQ(G).

(Base case) If a is a lexeme, then a ∈ TQ
a (G) and has a unique yield.

(Inductive case) Assume that ti ∈ TQ
Bi
(G), such that Bi

∗
=⇒G αA or Bi

∗
=⇒G Aγ

and that their yields are unique. Then there are the following cases:

(1) If A.C = I B0 ⊕1 ...⊕n Bn is an indirectly recursive distfix production
in G, i.e., Bi

∗
=⇒G αA, for any 0 ≤ i ≤ n, then we can construct the tree

t = [A.C = I t0 ⊕1 ...⊕n tn] with yield I u1...⊕n un = w. We need to
demonstrate that if t ∈ TQ(G) then there is no tree t′ ∈ TQ(G) such that
t′ 6= t and yield(t) = yield(t′). Consider the following cases:

– Consider Bi
∗
=⇒G αA and i 6= n, and let q = [A.C = I B0 ⊕1

... ⊕i [A.C1 = I B0 ⊕1 ... ⊕i Bi] ⊕i+1 ... ⊕n Bn]. If t = [A.C = I
t0 ⊕1 ...⊕i [..[A.C1 = I t10 ⊕1 ...⊕i t1i]]⊕i+1 ...⊕n tn], A.C > A.C1,
andMrm(t, q), then t /∈ TQ(G). If A.C1 > A.C, t ∈ TQ(G). The tree
t′ = [A.C1 = I t0 ⊕1 ...⊕i [..[A.C = I t10 ⊕1 ...⊕i t1i ⊕i+1 ...⊕n tn]]]
is the only tree with the same yield, since by our definition of
harmless overlap, no other productions can be used to derive w.
However, when A.C1 > A.C, t′ /∈ TQ(G). A similar analysis can be
applied if Bi

∗
=⇒G Aγ and we consider q′ = [A.C = I B0 ⊕1 ...⊕i

[A.C2 = Bi ⊕i+1 ...⊕n Bn], such thatMlm(t, q′).

– Consider Bi
∗
=⇒G αA and i = n, and let q = [A.C = I B0 ⊕1

...⊕n [A.C1 = B′0 ⊗1 ...⊗n B′n]], with B′0
∗
=⇒G Aγ. If t = [A.C = I

t0 ⊕1 ...⊕n [..[A.C1 = t10 ⊗1 ...⊗n t1n]]], A.C > A.C1, andMrm(t, q),
then t /∈ TQ(G). However, if A.C1 > A.C, then t ∈ TQ(G). The
tree t′ = [A.C1 = [A.C = I t0 ⊕1 ...⊕n [..t10]] ⊗1 ...⊗n t1n] is the
only tree with the same yield, since by our definition of harmless
overlap, no other productions can be used to derive w. However,
when A.C1 > A.C then t′ /∈ TQ(G). The analysis is similar if
A.C1 = B′0 ⊗1 ...⊗n B′n J, and B′0

∗
=⇒G Aγ.

(2) The analysis is analogous for the other indirectly recursive distfix pro-
ductions. Note that we only guarantee that the trees in the embedded
expression grammar are unique. Since the other non-terminals may have
arbitrary productions, we cannot guarantee that subtree exclusion is
completely disambiguating when considering the other subtrees.

Theorem 2.7.7. Disambiguation of an indirectly recursive distfix expression grammar
using a total set of disambiguation rules is safe and completely disambiguating.

Chapter 2. Declarative Disambiguation of Expression Grammars 73

Proof. As before by Lemma 2.7.5 and Lemma 2.7.6.

2.8 G R A M M A R T R A N S F O R M AT I O N

In the previous sections we presented a semantics for disambiguation using
priority and associativity rules that can be applied to expression grammars of
increasing complexity. In this section we define a canonical implementation of
this semantics by means of a grammar transformation.

2.8.1 Transformation to Contextual Grammars

The main strategy of our grammar transformation is to create copies of existing
productions using contextual non-terminal symbols. Such symbols act as filter by
forbidding particular trees to be nested as the rightmost or leftmost subtrees.
We formally define contextual symbols and contextual productions as follows.

Definition 2.8.1 (Contextual Symbols and Productions). Given a context-free
grammar G, we define a contextual symbol as a non-terminal lm Arm ∈ Nctx(G),
with A ∈ N(G) and lm and rm sets of constructors for productions in P(G) named
contextual tokens. We may omit empty sets of contextual tokens, that is, lm A = lm A∅,
Arm = ∅ Arm, and A = ∅ A∅. A contextual production is a production with
contextual symbols. The function d(lm Arm) = A drops the contextual annotation of
a contextual non-terminal and is lifted to productions, grammars, and parse trees by
point-wise application to all their non-terminals. �

The first step of the grammar transformation consists in marking non-
terminals in the body of productions to indicate which productions may not
occur (deeply nested) in those positions.

Definition 2.8.2 (Marking Symbols). Given a context-free grammar G, and sets
of leftmost patterns Qlm

G and rightmost patterns Qrm
G , the basic contextual grammar

P(Gctx) contains for each production [A.C = X1 . . . Xn] ∈ P(G), a contextual
production [A.C = lm1 X1

rm1 . . . lmn Xn
rmn] where

lmi = {Xi.Ci | [A.C = X1..Xi−1 [Xi.Ci = γ] Xi+1..Xn] ∈ Qlm
G }

rmi = {Xi..Ci | [A.C = X1..Xi−1 [Xi.Ci = γ] Xi+1..Xn] ∈ Qrm
G }

�

Figure 2.35 illustrates the result of this transformation applied to the ex-
pression grammar with addition, subtraction, and multiplication with their
standard disambiguation rules. (We have left out the non-terminal prefix
of the constructors for readability.) Note how the disambiguation rules are
expressed by the contextual non-terminal symbols. For example, according to
the priorities and the conflict patterns created, the multiplication cannot have
an addition as its child, and the right-most child of an addition cannot be an
addition or subtraction.

74

context-free syntax

Exp.Add = Exp "+" {Add,Sub}Exp

Exp.Sub = Exp "-" {Add,Sub}Exp

Exp.Mul = Exp{Add,Sub} "+" {Mul,Add,Sub}Exp

Exp.Var = ID

Figure 2.35 Basic contextual transformation for an expression grammar containing
addition, subtraction, and multiplication.

This first step of the transformation marks the positions where certain
productions are (deeply) forbidden. The next step of the transformation,
dubbed contextual closure, generates the productions that define the contextual
non-terminal symbols thus introduced, and propagates contextual tokens
to rightmost and leftmost recursive positions, repeating the process for the
contextual symbols created in the propagation. Figure 2.36 shows the result of
applying the contextual closure to the grammar of Figure 2.35.

Definition 2.8.3 (Contextual Closure). Given a basic contextual grammar Gctx
derived according to Definition 2.8.2 for a grammar G, the closure Gcls

ctx of Gctx is the
smallest grammar such that Gctx ⊆ Gcls

ctx and:

lm Arm ∈ N(Gcls
ctx) A.C /∈ {lm ∪ rm}

A.C = lm′Brm′ γ ∈ P(Gctx) γ
∗
=6=⇒G βA B ∗

=⇒G Aγ′

lm Arm.C = lm′∪lmBrm′γ ∈ P(Gcls
ctx)

(2.65)

lm Arm ∈ N(Gcls
ctx) A.C /∈ {lm ∪ rm}

A.C = α
lm′B′rm′ ∈ P(Gctx) α

∗
=6=⇒G Aβ B′ ∗=⇒G α′A

lm Arm.C = α
lm′B′rm′∪rm ∈ P(Gcls

ctx)
(2.66)

lm Arm ∈ N(Gcls
ctx) A.C /∈ {lm ∪ rm}

A.C = lm1 Brm1 β
lm2 B′rm2 ∈ P(Gctx) B ∗

=⇒G Aγ′ B′ ∗=⇒G α′A
lm Arm.C = lm1∪lmBrm1 β

lm2 B′rm2∪rm ∈ P(Gcls
ctx)

(2.67)

lm Arm ∈ N(Gcls
ctx) A.C /∈ {lm ∪ rm}

A.C = β ∈ P(Gctx) β
∗
=6=⇒G Aγ β

∗
=6=⇒G αA

lm Arm.C = β ∈ P(Gcls
ctx)

(2.68)

�

Note that the grammar in Figure 2.36 describes the same language as the
unambiguous expression/term/factor (ETF) grammar of Figure 2.9 in Sec-
tion 2.3.2. We can obtain the ETF grammar by renaming the (equivalent)
contextual symbols Exp{A,S}, {A,S}Exp, and {A,S}Exp{A,S} as the non-terminal

Chapter 2. Declarative Disambiguation of Expression Grammars 75

context-free syntax

Exp.A = Exp "+" {A,S}Exp // E = E "+" T

Exp.S = Exp "-" {A,S}Exp // E = E "-" T

Exp.M = Exp{A,S} "+" {M,A,S}Exp // E = T "*" F

Exp.V = ID // E = ID

Exp{A,S}.M = Exp{A,S} "+" {M,A,S}Exp // T = T "*" F

Exp{A,S}.V = ID // T = ID

{A,S}Exp.M = {A,S}Exp{A,S} "+" {M,A,S}Exp // T = T "*" F
{A,S}Exp.V = ID // T = ID

{A,S}Exp{A,S}.M = {A,S}Exp{A,S} "+" {M,A,S}Exp{A,S} // T = T "*" F
{A,S}Exp{A,S}.V = ID // T = ID

{M,A,S}Exp{A,S}.V = ID // F = ID

{M,A,S}Exp.V = ID // F = ID

Figure 2.36 Contextual closure for the expression grammar of Figure 2.35 (we use
A for Add, S for Sub, M for Mul, and V for Var). As shown by the comments, there is
a correspondence with an unambiguous ETF grammar.

Term (T) and the contextual symbols {M,A,S}Exp{A,S}, {M,A,S}Exp as Factor (F).
The set of the resulting productions correspond exactly to ETF productions
as shown in the comments in Figure 2.36, except that our contextual gram-
mar transformation preserves the shape of the abstract syntax trees, since
productions with a single non-terminal on the right-hand side are inlined.

2.8.2 Disambiguating Deep Priority Conflicts

The example above shows how to use contextual grammars to disambiguate
an infix expression grammar. However, such grammars are the simplest ex-
pression grammars, containing only shallow priority conflicts. When we consider
both shallow and deep priority conflicts, the resulting grammar can be even
larger due to the number of extra contextual symbols created when calculating
the closure. For instance, consider the grammar in Figure 2.37a containing a
dangling else ambiguity, and a lower priority prefix operator. Figure 2.37b
shows the respective contextual grammar constructed by marking the (deep)
priority conflicts from the disambiguation rules. Note that the contextual gram-
mar encodes both shallow conflicts, (e.g. forbidding an addition to be a direct
child of a multiplication), and deep priority conflicts (since the then-branch of
the if-then-else cannot be an if-expression, nor the leftmost child of an addition
can be if- and if-then-else expressions).

Calculating the contextual closure for the grammar in Figure 2.37b results

76

context-free syntax
Exp.Mul = Exp "*" Exp {left}
Exp.Add = Exp "+" Exp {left}
Exp.IfE = "if" Exp "then" Exp "else" Exp
Exp.If = "if" Exp "then" Exp
Exp.Var = ID

context-free priorities
Exp.Mul > Exp.Add > Exp.IfE > Exp.If

(a)

context-free syntax

Exp.Mul = Exp{If,IfE,Add} "*"
{Mul,Add}Exp

Exp.Add = Exp{If,IfE} "+" {Add}Exp

Exp.IfE = "if" Exp "then" Exp{If} "else" Exp

Exp.If = "if" Exp "then" Exp

Exp.Var = ID

(b)

Figure 2.37 Basic contextual transformation for a grammar with dangling else.

in a rather unwieldy grammar as shown in Figure 2.38. We obtain a large
grammar as result due to the number of (deep) conflicts, which lead to many
additional contextual symbols created by the contextual closure. One alterna-
tive is to restrict the generation of contextual grammars, excluding shallow
conflicts from the transformation, and leaving their resolution to be performed
during parse table generation, as we show in Section 2.9.3. If we only consider
deep priority conflicts, we obtain the contextual grammars in Figure 2.39a.
Note that the resulting contextual grammar from the contextual closure is
considerably smaller when compared to the grammar of Figure 2.38. How-
ever, this grammar still contains duplicated productions to encode different
precedence levels of operators that could not be eliminated even if we used
a similar strategy as we used for ETF grammars, by trying to find equivalent
contextual symbols and remove redundant productions. In Section 2.9.4 we
present a technique based on data-dependent parsing that does not generate
any duplicated productions, only marking contextual symbols and using them
to disambiguate programs at parse-time.

2.8.3 Termination and Correctness

Below we discuss two properties of our canonical implementation of the seman-
tics for disambiguation of priority and associativity in expression grammars
we defined previously: termination and correctness.

Lemma 2.8.4 (Contextual Closure is Terminating). The transformation of Defini-
tion 2.8.3 is terminating.

Chapter 2. Declarative Disambiguation of Expression Grammars 77

context-free syntax

Exp.M = Exp{I,IE,A} "*"
{M,A}Exp

Exp.A = Exp{I,IE} "+" {A}Exp

Exp.IE = "if" Exp "then" Exp{I} "else" Exp

Exp.I = "if" Exp "then" Exp

Exp.V = ID

Exp{I,IE,A}.M = Exp{I,IE,A} "*"
{M,A}Exp{I,IE,A}

Exp{I,IE,A}.V = ID
{M,A}Exp.IE = "if" Exp "then" Exp{I} "else" Exp
{M,A}Exp.I = "if" Exp "then" Exp
{M,A}Exp.V = ID

Exp{I,IE}.M = Exp{I,IE,A} "*"
{M,A}Exp{I,IE}

Exp{I,IE}.A = Exp{I,IE} "+" {A}Exp{I,IE}

Exp{I,IE}.V = ID
{A}Exp.M = {A}Exp{I,IE,A} "*"

{M,A}Exp
{A}Exp.IE = "if" Exp "then" Exp{I} "else" Exp
{A}Exp.I = "if" Exp "then" Exp
{A}Exp.V = ID

Exp{I}.M = Exp{I,IE,A} "*"
{M,A}Exp{I}

Exp{I}.A = Exp{I,IE} "+" {A}Exp{I}

Exp{I}.IE = "if" Exp "then" Exp{I} "else" Exp{I}

Exp{I}.V = ID
{A}Exp{I,IE}.M = {A}Exp{I,IE,A} "*"

{M,A}Exp{I,IE}

{A}Exp{I,IE}.V = ID
{A}Exp{I,IE,A}.M = {A}Exp{I,IE,A} "*"

{M,A}Exp{I,IE,A}

{A}Exp{I,IE,A}.V = ID
{M,A}Exp{I}.IE = "if" Exp "then" Exp{I} "else" Exp{I}

{M,A}Exp{I}.V = ID
{A}Exp{I}.M = {A}Exp{I,IE,A} "*"

{M,A}Exp{I}

{A}Exp{I}.IE = "if" Exp "then" Exp{I} "else" Exp{I}

{A}Exp{I}.V = ID
{M,A}Exp{I,IE,A}.V = ID
{M,A}Exp{I,IE}.V = ID

Figure 2.38 Contextual closure of expression grammar with dangling else (we use
M for Mul, A for Add, I for If, IE for IfE, and V for Var).

Proof. The basic transformation that generates the grammar Gctx does not
add any productions to G. The contextual closure adds productions for the
contextual symbols in Gctx, and for contextual symbols that arise as a result
of computing the closure. Thus, the computation of the contextual closure
terminates when no new productions can be added. Since the number of
contextual symbols for an expression grammar is bounded by the set of
constructors (productions) in the original grammar, the number of productions

78

context-free syntax
Exp.Mul = Exp{If,IfE} "*" Exp
Exp.Add = Exp{If,IfE} "+" Exp
Exp.IfE = "if" Exp "then" Exp{If} "else" Exp
Exp.If = "if" Exp "then" Exp
Exp.Var = ID

(a)

context-free syntax

Exp.Mul = Exp{If,IfE} "*" Exp

Exp.Add = Exp{If,IfE} "+" Exp

Exp.IfE = "if" Exp "then" Exp{If} "else" Exp

Exp.If = "if" Exp "then" Exp

Exp.Var = ID

Exp{If,IfE}.Mul = Exp{If,IfE} "*" Exp{If,IfE}

Exp{If,IfE}.Add = Exp{If,IfE} "+" Exp{If,IfE}

Exp{If,IfE}.Var = ID

Exp{If}.Mul = Exp{If,IfE} "*" Exp{If}

Exp{If}.Add = Exp{If,IfE} "+" Exp{If}

Exp{If}.IfE = "if" Exp "then" Exp{If} "else" Exp{If}

Exp{If}.Var = ID

(b)

Figure 2.39 Basic contextual transformation and closure for a grammar with dangling
else considering only deep conflict patterns.

added by the closure transformation is finite.

The number of productions in the contextual closure is bound by the num-
ber of productions in the original expression grammar, since there is a finite
number of contextual symbols lm Arm. In the worst-case scenario, if an expres-
sion grammar contains ctx different contextual tokens, and n non-terminals,
the contexual grammar Gctx contains at most n ∗ (2ctx− 1) contextual symbols—
each non-terminal generates a contextual symbol with a different subset of
contextual tokens. Thus, in the worst case, the number of additional produc-
tions in the contextual grammar Gcls

ctx after calculating the contextual closure is
p ∗ n ∗ (2ctx − 1), where p is the number of productions of the original expres-
sion grammar. This number is obtained by generating duplicated productions
for each new contextual symbol. Since the number of states in the parse table
also depends on the shape of each production, it is not possible to determine
the effect on the number of states of a parse table constructed from a contextual
grammar, as we will see in Section 2.10.

Chapter 2. Declarative Disambiguation of Expression Grammars 79

Theorem 2.8.5 (Correctness of Grammar Transformation). Given a context-
free grammar G, and sets of leftmost patterns Qlm

G and rightmost patterns Qrm
G , let

Q = TPQlm ∪ TPQrm
, let G′ = Gcls

ctx, then TQ(G) = d(T(G′)). That is, the grammar
produced by the contextual closure has the same parse trees as the grammar under
subtree exclusion.

Proof. We can show that the trees in TQ(G) and T(G′) are equivalent by
a direct correspondence between the definitions of subtree exclusion and
contextual grammars. It is straightforward to see that contextual productions
embody conflict patterns, since the initial marking of the grammar indicates the
positions at which productions may not occur according to the conflict patterns.
Furthermore, the complete fixpoint algorithm defined by the contextual closure
in Definition 2.8.3 constitutes an implementation of the deep matching function
from Definitions 2.4.2 and 2.5.1:

• Equations 2.41 and 2.45 correspond to the condition lm Arm ∈ N(Gcls
ctx) in

Equations 2.65-2.68, i.e., deep matching is considered for each contextual
symbol, since contextual symbols encode conflict patterns.

• Equations 2.42 and 2.46 correspond to the condition A.C /∈ {lm ∪ rm}
in Equations 2.65-2.68. The conditionM(t, q) in a filter that uses deep
matching states that if a tree t matches a conflict pattern, t /∈ TQ(G).
Similarly, if the condition f a holds, no production for the contextual
symbol lm Arm is created, thus t /∈ T(G′).

• Finally, Equation 2.43 corresponds to the propagation of contextual
tokens to the right-most symbol in Equations 2.66 and 2.67, whereas
Equation 2.47 correspond to the propagation of contextual tokens to the
left-most symbol in Equations 2.65 and 2.67. Since the contextual tokens
are recursively propagated to the right-most and left-most positions of
contextual productions, they are a direct implementation of right-most
and left-most deep matching. That is, if t /∈ TQ(G) because Mrm(t, q)
or Mlm(t, q) according to a filter by subtree exclusion, then t /∈ T(G′)
according to a contextual grammar. Note that Equation 2.68 ensures that
all trees that do not (deeply) match a conflict pattern can be constructed
by the contextual grammar.

To see the equivalence of the trees produced by a grammar under subtree
exclusion and a contextual grammar, consider the priorities in the grammar
of Figure 2.37a, and contextual grammar of Figure 2.39. Typical matching is
implemented by forbidding a contextual symbol to derive the productions
in its set of contextual tokens. For example, a tree t in the original grammar
G should be filtered because it matches a pattern [Exp.Mul = [Exp.If =

if Exp then Exp] * Exp]) created by the priority rule Exp.Mul > Exp.If!.
This tree is also filtered by the contextual grammar G′ since the contextual
token If is included in the contextual symbol representing the left operand of
Exp.Mul, forbidding the corresponding subtree to be an if-expression.

80

Deep matching is implemented by propagating the contexts to the left-
most (Equation 2.65), right-most (Equation 2.66), or left-most and right-most
non-terminals (Equation 2.67) of the derived productions. For example,
when constructing the production Exp{If,IfE}.Add for the contextual sym-
bol Exp{If,IfE}, we pass the contextual tokens If and IfE to the right-most
Exp non-terminal. Thus, if a tree t /∈ TQ(G) such that Mrm(t, [Exp.Add =

[Exp.If = if Exp then Exp] + Exp]), the tree t cannot be produced by the
contextual grammar. Finally, Equation 2.68 guarantees that any production that
does not cause deep priority conflicts, i.e. is not recursive, is simply duplicated.
This is the case for the production Exp{If,IfE}.Var.

Implementing disambiguation of deep priority conflicts as a canonical
grammar transformation (even when considering only deep conflicts) comes
with a major drawback. For grammars of expression-based languages with
many deep priority conflicts, such as OCaml, the grammar can get about
three times bigger [118]. To avoid the blow-up in productions caused by the
grammar transformation above, we show a different approach to implement
contextual filters based on data-dependent grammars in Section 2.9.4.

2.8.4 Recursive Productions with Nullable Symbols

Since recursive productions may cause priority conflicts, we also consider
the case where the recursion is hidden by nullable symbols, using contextual
grammars to expose productions that are indirectly recursive. For example
consider the grammar in Figure 2.40a. The production Exp.Add = OptLabel

Exp "+" Exp is still left recursive, but only when the non-terminal OptLabel
derives the empty string. Therefore, to apply the same strategy and solve the
conflicts that may occur due to nullable symbols, we can rewrite this grammar
to enforce the cases where the non-terminal will always derive the empty string,
i.e., we “inline” the productions for the optional symbol, creating two different
productions. With this new grammar, we apply the same analysis described
in the paper, detecting deep priority conflicts. The grammar in Figure 2.40b
illustrates the post-processed contextual grammar in which leftmost recursion
in the production Exp.Add is exposed, allowing us to solve the deep conflict
involving the two addition productions that share the same suffix.

2.9 I M P L E M E N TAT I O N

In this section we discuss other implementations of our semantics for disam-
biguating expression grammars. We start by detailing how to detect expression
grammars and how to check for harmful overlap. Next, we recall disam-
biguation of shallow conflicts, as implemented in SDF2. Finally, we present
an implementation of disambiguation of deep priority conflicts using data-
dependent parsing, which does not require calculating a contextual closure,
resulting in a grammar with the same number of productions as the original
grammar.

Chapter 2. Declarative Disambiguation of Expression Grammars 81

context-free syntax
Exp.Add = Label Exp "+" Exp {left}
Exp.Int = INT
Label.NoL =
Label.L = ID ":"

(a)

context-free syntax

Exp.Add = Label{NoL} Exp "+" Exp

Exp.Add = Label{L} Exp{L} "+" Exp

Exp.Int = INT

Label.NoL =

Label.L = ID ":"

Label{L}.NoL =

Label{NoL}.L = ID ":"

Exp{L}.Add = OptLabel{L} Exp{L} "+" Exp{L}

Exp{L}.Int = INT

(b)

Figure 2.40 (a) SDF3 grammar containing an deep priority conflict hidden by a
nullable symbol. (b) Rewritten contextual grammar that solves the conflict.

2.9.1 Detecting Expression Grammars

As mentioned in Section 2.2.8, the techniques described in this paper target
the subset of context-free grammars that define expressions. To apply these
techniques to traditional context-free grammars we define an algorithm that
detects and captures embedded expression grammars. We use the shape of
productions that define expressions to identify the productions that contribute
to priority and associativity ambiguities. We construct the sets of productions
that may cause associativity and priority ambiguities by looking at (possibly
indirectly) recursive productions of a particular non-terminal. These sets can
be constructed as follows.

Definition 2.9.1 (Expression Grammar Extraction). Given a context-free grammar
G, the set of expression productions EXP(G)(A) can be constructed as the smallest
set of productions such that:

A.C = β β
∗
=⇒G α A γ

A.C ∈ EXP(G)(A)
(2.69)

A.C = α B γ B ∗
=⇒G α′ A γ′

EXP(G)(B) ⊂ EXP(G)(A)
(2.70)

�

82

context-free syntax
Stmt.Assign = ID "=" Expr
Stmt.If = "if" "(" Expr ")" Stmt
Stmt.IfElse = "if" "(" Expr ")" Stmt "else" Stmt
Call.Call = ID "(" {Expr ","}+ ")"
Expr.Mul = Expr "*" Expr {left}
Expr.Add = Expr "+" Expr {left}
Expr.Int = INT
Expr = "(" Expr ")" {bracket}

context-free priorities
Expr.Mul > Expr.Add, Stmt.IfElse > Stmt.If

Figure 2.41 Grammar containing embedded expression grammars.

Totality Check By extracting the productions of expression grammars, we
are also able to check whether a set of disambiguation rules is total for that
expression grammar, warning about missing rules that may lead to ambiguities.

For example, in the grammar in Figure 2.41, the productions Expr.Mul and
Expr.Add define an embedded expression grammar, whereas the productions
Stmt.If and Stmt.IfElse define a different expression grammar, with the
non-terminal Stmt. We can then use both sets of productions to verify if the
set of disambiguation rules in this grammar is total. For instance, the set of
disambiguation rules for the first expression grammar is total. However, when
considering the second expression grammar, we can warn the language devel-
oper that a priority rule between the productions Stmt.If and Stmt.IfElse

is missing, and that the grammar is ambiguous.

Harmless Overlap Another benefit of extracting embedded expression gram-
mars is using expression productions to detect whether an expression grammar
contains harmful overlap. We implement this analysis as described in the pseu-
docode of Figure 2.42. We start by first isolating productions p1, ..., pn that have
any overlap at all. Then, we exhaustively construct trees (tree patterns) using
these productions, checking if there are multiple trees with the same yield. If
there exist two trees t1 and t2 with the same yield such that the productions
used to construct t1 (prod(t1)) are different than the productions used to con-
struct t2 (prod(t2)), we flag that the grammar contains harmful overlap. This
analysis is performed on demand, limited by a particular depth maxDepth,
since the number of trees to consider is infinite. In practice, the majority of
grammars for existing programming languages only have harmless overlap.
(Which is to be expected since harmful overlap causes inherent ambiguities.)

2.9.2 Binding-Time of Disambiguations

Disambiguation may occur at different stages when using a generalized parser.
Figure 2.43 highlights the different stages in which disambiguation may oc-
cur using SDF2 in combination with a scannerless generalized LR parser
(SGLR) [131]. First, the grammar is transformed to a normal form representing

Chapter 2. Declarative Disambiguation of Expression Grammars 83

1 function HARMFUL-OVERLAP(Set<Production> p1, ..., pn, maxDepth)
2 List<TreePattern> trees = the patterns for trees ti with root pi
3 List<TreePattern> oldTrees = trees
4 Integer depth = 1
5 while (depth < maxDepth) do
6 List<TreePattern> constructedTrees
7 for each tree pattern ti in oldTrees do
8 constructedTrees += expand recursive non-terminal
9 tree pattern ti with p1, ..., pn

10 end for
11 if ∃ t1, t2 and yield(t1) = yield(t2) and prod(t1) 6= prod(t2) then
12 flag harmful overlap between prod(t1) and prod(t2)

13 end if
14 oldTrees = constructedTrees
15 depth = depth + 1
16 end while
17 end function

Figure 2.42 Pseudocode for the function to detect harmful overlap.

parser

input
original

grammar
normalized
grammar

parse table
generator

1

3 trees

2

4

parse
table

Figure 2.43 Parsing a program with SGLR and the times when disambiguation
might occur.

a completely explicit character level grammar. This transformation explicates,
among others, the distinction between lexical and context-free constructs, the
definition of regular expression symbols (optionals and lists), and the treatment
of layout (whitespace and comments). The normalized grammar is then used
as input to a parse table generator, which produces a parse table that drives
the parser when parsing an input program. We identify four different stages
in this process in which disambiguation can be applied: (1) before parse table
generation, (2) during parse table generation, (3) during parsing, and (4) after
parsing.

The canonical interpretation of a disambiguation filter is as a post-parse
filter [74]. For example, Erdweg et al. [45] define a post-parse implementation
of longest match disambiguation for lists. A generalized parser produces (a
compact representation of) all possible parse trees (a parse forest), from which
a filter selects the correct disambiguation. However, in the case of ambiguities
due to operator priority and associativity, the number of trees (when unpacking
the parse forest) may grow exponentially with the number of sub-expressions
in an expression.

84

context-free syntax
Expr.Mul = Exp "*" Exp {left}
Expr.Add = Exp "+" Exp {left}
Expr.Var = ID

context-free priorities
Exp.Mul > Exp.Add

Figure 2.44 Simple expression grammar.

A disambiguation filter provides a direct semantics of disambiguation
that is independent of other implementation concerns. However, for many
applications, in particular for the disambiguation of expression grammars, it
does not provide a direct route to an implementation with low complexity
(and good performance). Thus, we are interested in alternative binding times
of disambiguation filters that ensure such characteristics. Concretely, for
associativity and priority, the question is what the most effective binding time
is. It would seem that earlier in the pipeline is always better, but that turns
out not to be the case since grammar transformations may unnecessarily blow
up the grammar. In the rest of this section we discuss several implementation
techniques. In the next section we evaluate their efficacy.

2.9.3 Disambiguation of Shallow Conflicts during Parser Generation

In SDF2, the semantics in Definition 2.3.2 is implemented at stage 2, during
parse table generation [126]. The states of an LR parse table consist of sets of
items of the form [A.C = α • β] consisting of a production with a dot (•)
somewhere on the right hand side, indicating how much of the production has
been already processed by the parser. The closure of an item set adds all items
that are predicted by an item with the dot before a non-terminal. For example,
the closure of an item set with the item

[Exp.Mul = Exp "*" • Exp]

for the grammar in Figure 2.44 also contains the items

[Exp.Add = • Exp "+" Exp]
[Exp.Mul = • Exp "*" Exp]
[Exp.Var = • ID]

Disambiguation of LR tables is achieved by not predicting items that would
cause a priority conflict. For example, the left annotation in the production
Exp.Mul creates the pattern [Exp.Mul = Exp * [Exp.Mul = Exp * Exp]],
forbidding a Exp.Mul to occur as the rightmost child of another Exp.Mul.
Thus when computing the closure of a state with the item [Exp.Mul =

Exp "*" • Exp], we do not create the item [Exp.Mul = • Exp "*" Exp],
forbidding a multiplication to be a direct rightmost child of another mul-
tiplication. Similarly, the priority rule Exp.Mul > Exp.Add creates the pat-
terns [Exp.Mul = [Exp.Add = Exp + Exp] * Exp] and [Exp.Mul = Exp

* [Exp.Add = Exp + Exp]], forbidding any Exp.Add to be a direct child of

Chapter 2. Declarative Disambiguation of Expression Grammars 85

Exp.Mul. Thus, when computing the closure of [Exp.Mul = Exp "*" • Exp]

(or of [Exp.Mul = • Exp "*" Exp]), we do not create the item [Exp.Add

= • Exp "+" Exp], implementing this semantics.
Filtering predictions is not sufficient to rule out all shallow priority conflicts.

While a production may not be predicted by one item, it could still be predicted
by another. To address these situations, the standard SLR table generation
algorithm is adapted to compute the GOTO function with productions instead
of non-terminals. For example, consider the item set consisting of the following
productions.

[Exp.Add = • Exp "+" Exp]
[Exp.Mul = • Exp "*" Exp]
[Exp.Var = • ID]

A goto with the Exp non-terminal leads to the item set:

[Exp.Add = Exp • "+" Exp]
[Exp.Mul = Exp • "*" Exp]

The standard goto does not take into account the priority of the reduction
that gives rise to the goto. For example, a reduction of an addition expression
would still give rise to a state containing the item [Exp.Mul = Exp • "*"

Exp], while that would clearly lead to a priority conflict. Thus, the SDF2

parser generation performs gotos with productions, taking conflict patterns
into account. For example, the goto from the state above with production
Exp.Add leads to the state

[Exp.Add = Exp • "+" Exp]

Since [Exp.Mul = [Exp.Add = Exp + Exp] * Exp] is a priority conflict.
This method can only be used to implement disambiguation of shallow

conflicts, since it only forbids direct descendants of a tree to be a particular
production. For SDF3, we have adapted this method to the safe semantics in
Definition 2.4.1, using an approach based on data-dependent grammars to
disambiguate deep priority conflicts.

2.9.4 Data-Dependent Parsing

Data-dependent grammars [63] extend context-free grammars allowing param-
eterized non-terminals, variable binding, and arbitrary computation at parse
time. Purely data-dependent grammars are powerful enough to disambiguate
priority conflicts at parse time [8]. However, using pure data-dependent gram-
mars may result in a performance penalty in the generated parser. For that
reason, we present a lightweight form of data-dependency, proposed by Souza
Amorim, Steindorfer, and Visser [120], aimed at solving deep priority conflicts
without requiring any variable bindings nor arbitrary computations at parse
time, using a scannerless generalized LR parser (SGLR) [130] in combination
with contextual grammars.

We leverage the analysis that constructs the contextual productions from Def-
inition 2.8.2, but without duplicating the productions for contextual symbols

86

context-free syntax

Exp.Add = Exp{Exp.If} "+" Exp {left}

Exp.If = "if" Exp "then" Exp

Exp.Int = INT

Exp = "(" Exp ")" {bracket}

context-free priorities

Exp.Add > Exp.If

Figure 2.45 Data-dependent Contextual grammar with addition and if expressions.

using the contextual closure from Definition 2.8.3. Thus, the final contex-
tual grammar has the same shape and number of productions as the original
grammar. The grammar itself is still ambiguous, but the contextual tokens
present in the grammar can be used to solve deep priority conflicts at parse
time. For example, consider the grammar in Figure 2.45, which consists of a
data-dependent contextual grammar containing if and addition expressions.

To perform disambiguation at parse time, we propagate information about
leftmost and rightmost subtrees, using this information to enforce the con-
straints imposed by a contextual symbol. As SGLR builds parse trees bottom-
up, we propagate the information about productions that were used to con-
struct the possibly nested leftmost and rightmost nodes of a tree. Each node
of the parse tree of the adapted data-dependent SGLR parser contains two
additional sets that indicate the productions used to construct its leftmost and
rightmost (nested) subtrees, respectively. For every node, the set representing
the leftmost contextual tokens is the union of the production used to construct
the current node with the leftmost set of the leftmost direct child. Similarly, the
set representing the rightmost contextual tokens is the union of the production
used to construct the node itself with the rightmost set of contextual tokens of
the rightmost direct child. Finally, we ensure that only productions that can
cause deep priority conflicts are added to the sets of contextual tokens, since
the number of tokens propagated is often significantly lower than the total
number of productions. For example, the tree in Figure 2.46a for the sentence
a + if b then c was parsed using the data-dependent contextual grammar
of Figure 2.45.

To perform disambiguation at parse time, we propagate information about
left-most and right-most subtrees, using this information to enforce the con-
straints imposed by a contextual symbol. As SGLR builds parse trees bottom-
up, we propagate the information about productions that were used to con-
struct the possibly nested leftmost and rightmost nodes of a tree. Each node
of the parse tree of the adapted data-dependent SGLR parser contains two
additional sets that indicate the productions used to construct its left-most and
right-most (nested) subtrees, respectively. For every node, the set representing
the left-most contextual tokens is the union of the production used to construct
the current node with the left-most set of the left-most direct child. Similarly,
the set representing the right-most contextual tokens is the union of the pro-

Chapter 2. Declarative Disambiguation of Expression Grammars 87

if

Exp

b

Expa

Exp

Exp

+

Exp.If

Exp.If Exp.If

then

c

Exp

(a)

if

Exp

b

Expa

Exp

Exp

+

Exp.If

Exp.If Exp.If

then Exp

c

Exp Exp+

d

(b)

Figure 2.46 (a) Propagating contextual tokens when building parse trees. (b) Invalid
tree constructed when parsing the sentence a + if b then c + d.

duction used to construct the node itself with the right-most set of contextual
tokens of the right-most direct child. Finally, we ensure that only productions
that can cause deep priority conflicts are added to the sets of contextual tokens,
since the number of tokens propagated is often significantly lower than the
total number of productions. For example, the tree in Figure 2.46a for the
sentence a + if b then c was parsed using the data-dependent contextual
grammar of Figure 2.45.

The algorithm for the data-dependent scannerless generalized LR parser
requires only a few changes to the original SGLR algorithm of Visser [130].
The algorithm needs to propagate contextual tokens corresponding to the
productions used to construct the left-most and right-most (possibly nested)
subtrees (t.LeftmostTokens and t.RighmostTokens),14 and to check the con-
straints when performing reduce actions. Figure 2.47 shows the pseudocode
from Souza Amorim, Steindorfer, and Visser [120] corresponding to the modi-
fied methods of the original SGLR algorithm.

Using this algorithm, parsing the sentence a + if b then c + d produces
only a single tree. When propagating the contextual tokens Exp.If, the right-
most context of the tree corresponding to the left operand of an addition
in Figure 2.46b is in the set of contextual tokens of the left operand in the
production for addition (ExpExp.If), in data-dependent contextual grammar of
Figure 2.45. Thus, the reduce action to construct this tree is not performed and
this tree is rejected. Note that because we leverage contextual grammars, we
are able to address all deep priority conflicts shown previously.

In Section 2.10, we show that an optimized implementation of this algorithm,
using bitsets and bitwise operations produces near-zero parsing overhead while
maintaining the size original grammar.

14In the original SGLR algorithm, creating a parse tree node consisted simply of applying
a production to the trees collected when calculating the path for the reduce action. In the
data-dependent algorithm, the sets of left-most and right-most subtrees need to be updated by
propagating the information from the rightmost and leftmost direct subtrees.

88

1 function DO-REDUCTIONS(Stack st, Production A.C = X1...Xn)
2 for each path from stack st to stack st0 of length n} do
3 List<Tree> [t1, ..., tn] = the trees from the links in the path from

st to st0

4 for each Xi such that Xi is a contextual symbol lmXrm do
5 if ti.LeftmostTokens ∩ lm 6= ∅ or ti.RightmostTokens ∩ rm 6= ∅

then
6 return
7 end if
8 end for
9 REDUCER(st0, goto(state(st0), A.C = X1...Xn), A.C = X1...Xn, [t1, ..., tn])

10 end for
11 end function

1 function CREATE-TREE-NODE(Production A.C = X1...Xn, List<Tree>
[t1, ..., tn])

2 Tree t = [A.C = t1, ..., tn]
3 t.LeftmostTokens = t1.LeftmostTokens ∪ A.C
4 t.RightmostTokens = tn.RightmostTokens ∪ A.C
5 return t
6 end function

Figure 2.47 Pseudocode for the modified DO-REDUCTIONS and CREATE-
TREE-NODE methods from the original SGLR, in the implementation of the data-
dependent SGLR.

2.10 E VA L U AT I O N

In this section we evaluate our approach to disambiguate associativity and
priority conflicts. We have implemented the grammar transformation as part of
a new parser generator for SDF3 and integrated it into the Spoofax Language
Workbench [68]. The transformation produces a full contextual grammar
based on the contextual symbols and contextual productions derived from the
conflicting patterns presented earlier. The LR parse table generator has been
adapted to the safe one-level rules of Definition 2.4.1. We also evaluate the
performance of a data-dependent parser using contextual grammars without
duplication of productions, comparing its performance to a parser that uses a
grammar produced by the grammar transformation approach.

We have investigated how our approach scales to real-world languages.
We have used SDF3 syntax definitions for five different languages: Tiger, a
language for education purposes [15]; IceDust, a domain-specific language for
data modeling [57]; Jasmin,15 an assembly language for Java; Java 1.8 [55]; and
OCaml 4.05 including some of its extensions.16 All the specifications are in a
repository on GitHub.17

15http://jasmin.sourceforge.net/about.html
16https://caml.inria.fr/pub/docs/manual-ocaml-4.05/
17https://github.com/MetaBorgCube/declarative-disamb

Chapter 2. Declarative Disambiguation of Expression Grammars 89

http://jasmin.sourceforge.net/about.html
https://caml.inria.fr/pub/docs/manual-ocaml-4.05/
https://github.com/MetaBorgCube/declarative-disamb

Original Grammar Normalized Grammar
Productions Productions States (Unsafe) States (Safe)

Tiger 101 281 731 709

IceDust 155 401 1733 1864

Jasmin 388 1023 3174 3174

Java 479 1207 5138 5127

OCaml 648 1632 7121 6493

Table 2.1 For each language, the number of productions of the original grammar,
and productions and states considering the normalized grammar, using the SDF2
semantics (unsafe) and SDF3 semantics (safe).

Expression Grammar Contextual Grammar

Quantity Largest Size Productions StatesDeep Conflicts Total
Tiger 1 19 13 334 750

IceDust 1 32 29 712 2093

Jasmin 0 0 0 1023 3174

Java 2 53 49 1739 4624

OCaml 7 56 65 4282 42116

Table 2.2 For each language, the number of expression grammars, the size of the
largest expression grammar, the number of productions with deep priority conflicts,
the size of the contextual grammar, and the number of states of the parse table
constructed using the contextual grammar.

We compare the unsafe SDF2 implementation with the new safe SDF3

implementation. For this purpose we use the exact same source grammars
since the only difference is the interpretation of priority declarations.

Complexity Table 2.1 lists for each language the size of the source SDF3 gram-
mar in number of productions, the size of the normalized grammar in number
of productions, and the number of states produced by the parser generator
(with safe and unsafe treatment of priorities). Table 2.2 shows the number
of expression grammars in each language, the size of the largest expression
grammar in number of productions, the number of productions causing deep
conflicts, the number of productions of the transformed contextual grammar,
and the number of states of the parse table (with safe treatment of priorities) for
the contextual grammar. Some observations about the aspects that influence
the complexity of our approach, based on these tables:

• Grammar normalization integrates lexical syntax and context-free syntax
to create explicit character-level grammars. It generates productions
for regular expressions, generates productions for literals, and injects
layout between symbols of context-free productions. Normalization is
orthogonal to the new treatment of priorities. To compare the unsafe

90

(SDF2) approach and the safe approach, the size of normalized grammar
and the size of the parse tables should be compared.

• Most languages have a single embedded expression grammar. However,
some languages have multiple embedded expression grammars, defining
recursive productions using different non-terminals. OCaml for exam-
ple, has many embedded expression grammars of sizes varying from
5 productions to 56 productions. Java, on the other hand, has only 2

expression grammars, one for expression productions and another one
for statements (defining if and if-else statements).

• The increase in size of the contextual grammar depends on the number
of productions with deep conflicts and the number of productions of
the conflicting non-terminals. For a language without expressions such
as Jasmin, our approach does not add any extra production. While the
Java grammar is one of the largest in our benchmark, it does not have
many productions for expressions, nor many low priority prefix/suffix
operators. Therefore, only a few productions need to be duplicated when
generating the contextual productions.

• Regarding number of states: Because the semantics of SDF2 is unsafe, in
some cases it unnecessarily splits states, rejecting unambiguous sentences.
Note that for Java, the number of states for the contextual grammar is
lower than the table with a normalized grammar. Contextual symbols
might contribute to decreasing the number of states, as some symbols
should derive fewer productions, even when considering the additional
contextual productions. Note also that in general the safe semantics
produces fewer states than the unsafe SDF2 semantics, except for Java
and IceDust. In those cases, many splits in the unsafe scenario may lead
to already existing states. Note that the number of states generated for a
data-dependent contextual grammar is the same generated by the nor-
malized grammar considering the safe semantics, i.e., the transformation
to generate a data-dependent contextual-grammar does not generate ad-
ditional productions nor states. Nevertheless, data-dependent contextual
grammars can still be used to address disambiguation of deep priority
conflicts, whereas the parse table constructed from the normalized gram-
mar using only the safe semantics cannot, since the safe semantics only
addresses shallow conflicts.

• On the other hand, the size of the parse table grows as a function of the
number of contextual productions and the number of related expression
productions. Our parse table generator produces a large number of
states for OCaml because of the high number of deep priority conflicts
combined with the large size of the contextual grammar.

Correctness For all the languages in Table 2.1, we have written tests that
cover syntactic features of the language, i.e., tests that exercise valid and
invalid fragments for each non-terminal defined in the grammar. We have

Chapter 2. Declarative Disambiguation of Expression Grammars 91

also collected full programs, including programs that purposely stress deep
priority conflicts. In total we have 112 tests for Tiger; 180 tests for Jasmin; 67

tests for IceDust; 10749 tests for Java; and 3431 tests for OCaml. We have run
these test sets with parsers based on the SDF2 and new SDF3 approaches. The
parsers agree on most test cases, but the SDF2 parser fails on programs with
deep conflicts. It either filters too much, rejecting unambiguous programs
due to unsafety, or filters too little, as the semantics is incomplete, producing
ambiguous trees. In all tests involving valid programs, parsing the program
using our safe semantics combined with disambiguation of deep conflicts
using contextual grammars produced one single final tree. Finally, the Java and
OCaml grammars have also been used in an experiment described by Souza
Amorim, Steindorfer, and Visser [118] to measure the number of deep priority
conflicts that occur in real programs (which are used in our test sets). In this
experiment, real Java and OCaml programs were extracted from the top 10

trending repositories on GitHub, to provide a better understanding of how
often deep conflicts occur in practice. The experiment showed that for OCaml,
up to 17% of the source files used in the benchmark contain deep priority
conflicts.

Usability Our approach automatically detects deep priority conflicts and
correctly disambiguates the grammar based on the original (SDF2) priority
declarations. For example, the grammar in the specification for Java 1.8 is
unambiguous, but encodes priority and associativity by means of extra non-
terminals, which makes it larger and harder to read. Rewriting the grammar
to use priorities, results in a more concise grammar and adds a deep priority
conflict involving lambda expressions. With SDF2 such a conflict would be
detected only when running into a specific case that covers it. When using
contextual grammars, the conflict is automatically solved using the same
grammar and the same priority rules.

All the benchmark languages (except for Jasmin) support if and if-else
expressions or statements. The Java Specification solves the problem by du-
plicating productions for the conflict and using an additional non-terminal
StatementNoShortIf. Instead of rewriting the grammar manually, we capture
this problem with a contextual production that is automatically generated
based on the obvious priorities between productions.

Longest Match We compared our results with the solution for the longest-
match implemented by Erdweg et al. [45] using post-parse disambiguation
filters, which do not scale, since ambiguities can grow exponentially. We
tested SGLR with the grammar in Figure 2.48 using the SDF2 and SDF3 parser
generators and the test program (alpha INT)N , where N is the number of
repetitions of alpha INT. For N = 17, SGLR with a post-parse filter takes 51s
to produce a single tree, whereas using a contextual grammar produced by
grammar transformation, it takes 1ms. By solving ambiguities at the grammar
level, the impact on parse time is the same as that of a deterministic parser.

Parsing Performance To measure the performance of a parser that disam-
biguates deep priority conflicts, we use the corpus of the top-10 trending

92

context-free syntax
Term.Alpha = "alpha" Term+ {longest-match}
Term.Int = Int

Figure 2.48 SDF3 defining a longest-match list.

Language Data Set Disambiguation Time (seconds) Speedup Cost

Java
with
conflicts

data-dependent 0.18 ± 0.00 1.29 x —

rewriting 0.23 ± 0.00 1.00 x —

Java
without

conflicts

data-dependent 270.64 ± 1.28 1.73 x 1.02 x

rewriting 467.20 ± 4.03 1.00 x 1.77 x

none 264.20 ± 2.36 — 1.00 x

OCaml
with
conflicts

data-dependent 80.60 ± 1.48 1.54 x —

rewriting 123.75 ± 1.02 1.00 x —

OCaml
without

conflicts

data-dependent 89.82 ± 0.51 1.46 x 1.01 x

rewriting 130.71 ± 0.55 1.00 x 1.48 x

none 88.58 ± 0.98 — 1.00 x

Table 2.3 Benchmark Results when parsing the OCaml and Java Corpus.

OCaml and Java projects on GitHub mentioned previously, containing 9935

Java and 3296 OCaml real-world source files. The corpus was qualitatively
analyzed by Souza Amorim, Steindorfer, and Visser [118], listing the types of
priority conflicts each file from the projects contains. For both languages we
partitioned the files into two groups according to their analysis results: files
that are free of deep priority conflicts (and therefore can be parsed by parsers
without sophisticated disambiguation mechanisms), and files that contain deep
priority conflicts. We then compare disambiguation by grammar transforma-
tion against data-dependent disambiguation, measuring the parse time of all
programs from a particular group.

Column Cost shows how the parser’s performance is affected by support-
ing the disambiguation of deep priority conflicts. The cost measurements
were performed solely for the data sets that are guaranteed to be free of deep
priority conflicts, since we use a parser without deep priority conflict disam-
biguation as a baseline. The results show that the cost of disambiguation with
data-dependency is between 1 % (OCaml) and 2 % (Java). Column Speedup
of Table 2.3 shows the performance improvements of data-dependent disam-
biguation over disambiguation via grammar rewriting (baseline). In all tested
configurations, data-dependent disambiguation speeds-up from 1.29 x to 1.73 x,
reducing batch parse times considerably. E.g., parse time for the conflict-free
Java corpus reduced from 467.20 s to 270.64 s.

Chapter 2. Declarative Disambiguation of Expression Grammars 93

Threats to Validity Even though we extensively tested our grammars with
code fragments and real programs, we have not compared the resulting abstract
syntax trees with the abstract syntax tree produced by the “official” parser of
each language to verify the correctness of our syntax definitions. However,
in the tests and programs that contained ambiguities due to priority and
associativity, we did observe the unsafety and incompleteness characteristics
of the SDF2 semantics. Furthermore, for those tests we observed that our safe
semantics combined with disambiguation of deep conflicts using contextual
grammars can successfully solve ambiguities from shallow and deep conflicts.

2.11 R E L AT E D W O R K

Throughout the paper we have referred to work that inspired our approach for
solving deep priority conflicts using contextual filtering. Here we highlight the
differences with our work and discuss other approaches related to declarative
disambiguation, such as ambiguity detection, disambiguation by grammar
transformation, and post-parse disambiguation.

Post-Parse Disambiguation Filters Klint and Visser [74] present disambiguation
filters, which select trees from a set of trees for a sentence, as a unifying
approach to the formalization of disambiguation techniques for context-free
grammars. Among the case studies, the paper formalizes priority declarations
using one-level sub-tree exclusion patterns, which were later used in the design
of SDF2 [127, 131]. The paper introduces higher-order tree patterns with an
application to the definition of the dangling else ambiguity.

Priority Rule Recovery Bouwers, Bravenboer, and Visser [23] present an
approach for recovering priority rules from grammars in which these are
encoded in the grammar and for comparing the priority rules of different
grammars for a language, possibly defined in different formalisms. To that
end they derive sets of tree patterns from a grammar and establish which tree
patterns it accepts. The information can be used to migrate grammars between
different styles of disambiguation and/or between grammar formalisms. The
approach does only consider fixed size tree patterns, and does not cover deep
priority conflicts. It would be interesting to consider the extension of the
approach to deep priority conflicts.

Disambiguation by Grammar Transformation In this paper, we have given a
semantics of priority declarations as disambiguation filters on sets of parse
trees, which we then interpreted as a grammar transformation. This fits in
a longer tradition of approaches using grammar transformation to realize
disambiguation of grammars.

Solving the dangling else ambiguity by transforming the grammar is as old
as the last author. Abrahams [2] describes how to encode dangling else in
a grammar for Algol-like conditional statements, by duplicating productions in
order to distinguish open and closed conditional statements.

Thorup [123] proposes filters that capture deep conflicts such as dangling
suffix, using labels to exclude infinite sets of forbidden sub-parse trees. The

94

approach constructs a grammar that encodes the subtrees that should be
excluded, removing grammar symbols that correspond to such trees. However,
it is not clear how to construct infinite sets of forbidden patterns considering
other operators that may still contribute to a dangling suffix ambiguity (e.g., in
the program if e1 then e2 + if e3 then e4 else e5).

Aasa [1] proposes grammar rewriting to solve priority and associativity con-
flicts. They handle deep priority conflicts involving prefix and postfix operators
by creating different non-terminals that do not derive trees that could result in
an ambiguity. However, the approach does not consider harmless overlap or
indirect recursion, requiring that productions do not have overlapping prefixes
or suffixes, and have a single non-terminal, meaning that it cannot be used to
solve dangling prefix and dangling suffix conflicts, for example.

Afroozeh et al. [5] use grammar transformation to produce a disambiguated
grammar from an ambiguous one. Motivated by SDF2 semantics, they pro-
pose a semantics that is safe. However, their semantics for disambiguation of
ambiguities in expression grammars is still not complete, as it does not cover
dangling prefix and suffix ambiguities, and nested list ambiguities. Further-
more, our implementation leverages SDF2 parse table generation techniques to
solve one-level conflicts [128], avoiding unnecessary changes to the grammar,
whereas Afroozeh et al. [5] also transform the grammar to solve one-level
conflicts. Methodologically, Afroozeh et al. [5] use derivations to reason about
ambiguities in expression grammars and define disambiguation as a grammar
transformation. This tangles reasoning about subtree exclusion and grammar
transformation, making it harder to understand. A contribution of this paper
is to use tree patterns to characterize (deep) priority conflict patterns and
thus provide a semantics for priority rules independent of a grammar trans-
formation. The grammar transformation of Section 2.8.1 is just one possible
implementation of our semantics.

While these techniques directly interpret associativity and priority declara-
tions, Adams and Might [4] propose tree automata to express disambiguation
policies. The intersection of a context-free grammar with a regular tree automa-
ton yields a grammar that does (not) admit the tree patterns captured by the
automaton. This approach applies to a variety of disambiguation problems as
demonstrated in the paper. The technique is not safe and complete by construc-
tion. That is, a tree automaton may reject sentences that are not ambiguous
and it is not guaranteed to address all ambiguities. Directly expressing asso-
ciativity and priority rules as automata requires enumerating all combinations
of operators, which requires a number of automata that is quadratic in the
number of operators. It seems possible to use tree automata as an intermediate
representation to compile priority rules to. The generic grammar intersection
technique would then be used to drive the grammar transformation, instead
of the specialized transformation from Section 2.8.1. The instantiation of each
conflict pattern to the productions and priority rules of a grammar would give
rise to an automaton. Soundness of the translation would rely on soundness
of the individual automata and the generic composition.

Chapter 2. Declarative Disambiguation of Expression Grammars 95

Disambiguation during Parse Table Generation Interpreting disambiguation
declarations as grammar transformations provides a principled definition of
their semantics independent of particular parsing algorithms. That is, the
resulting grammars can be used with arbitrary parsing techniques (providing
the grammar class matches). Alternatively, priority rules can be interpreted
during parser generation, to avoid an expensive grammar transformation step,
or to make use of special properties of the parser generator.

An approach to eliminate ambiguities for LR parsers is to handle conflicts
that occur in the parse table. Aho, Johnson, and Ullman [9] present an approach
to eliminate shift/reduce conflicts based on the priority of operator tokens.
The method is applied to resolve all conflicts in the parse table to make the
parser deterministic. YACC’s [64] disambiguation mechanisms are similar,
and use the operator priority indicated in the grammar to define which action
should be preferred when handling a shift/reduce conflict. The disadvantage
of this approach is that it lacks a principled semantics such as those based on
grammar transformations, which precludes its generalization to a larger class
of grammars.

A disambiguation filter is applied after parsing, which makes it independent
of particular parsing algorithms. Partial evaluation of the composition of
parser generator, parser, and disambiguation filter can lead to optimized
implementations of disambiguation. Visser [126] presents a case study of this
idea by optimizing the composition of one-level subtree exclusion filters with
the parsing schemata [111] for Earley and LR parsing to arrive at the application
of disambiguation during parser generation. To realize disambiguation, goto
transitions are applied per production instead of per non-terminal. Thus,
priorities can be taken into account when computing the itemset of the target
state; a goto with production [Exp.Add = Exp + Exp] will not include the
result of shifting the item [Exp.Mul = Exp * • Exp] in the target item set if
Exp.Mul > Exp.Add. This parser generation technique is not limited to LR
grammars and generalizes to character-level grammars [130]. In this paper
we adapt the technique by using safe one-level subtree exclusion patterns
during parse table generation for a contextual grammar in which deep priority
conflicts are resolved through grammar transformation.

Dynamic Disambiguation Instead of resolving ambiguities after parsing, as a
grammar transformation, or during parser generation, ambiguities can also be
resolved during parsing.

Parsing Expression Grammars (PEGs) [50] is a grammar formalism that
deals with ambiguities by not allowing them in the first place, such that the
productions for a non-terminal are tried according to the order they have been
defined. If an alternative fails, the parser efficiently backtracks by memoizing
intermediate results. However, the PEG approach is not a real solution, since
it hides ambiguities behind an ordered choice. Furthermore, PEGs do not
support left recursion, thus the grammar needs to be rewritten to eliminate left
recursive rules. Laurent and Mens [83] present an implementation of parsing
expression grammars that supports left recursion, and implements operator
priority. Disambiguation is implemented via a global parse state that captures

96

the priority level of operators declaratively defined in the grammar. However,
their specification does not address deep priority conflicts.

Afroozeh and Izmaylova [8] propose a dynamic solution to solve operator
priority and associativity that relies on data-dependent grammars. Data-
dependent grammars extend context-free grammars with computations, vari-
able bindings and constraints that can be checked at parse time. A number
indicating the priority level of a rule is assigned to each left or right recursive
non-terminal, and passed around when parsing. A rule might fail to parse
if it violates a constraint defined as a pre- or postcondition when parsing a
symbol. Even though their approach does not require additional productions
to solve most ambiguities, it relies on dynamically evaluated follow restrictions
(parse-time lookahead) that bypass layout to solve dangling prefix and suffix,
and nested list ambiguities.

Other Classes of Ambiguities and Ambiguity Detection Not all ambiguities in
context-free grammars can be characterized in the same manner as ambigui-
ties in expression grammars. Indeed, ambiguity of context-free grammars is
an undecidable property. Several techniques have been proposed to detect
ambiguities in context-free grammars, using conservative language approxi-
mations [19, 107, 24]. We focus on particular types of ambiguities in expression
grammars. We are able to detect such ambiguities using total sets of disam-
biguation rules, i.e., by checking if priority rules are missing in the syntax
definition.

A prominent class of ambiguities in programming language grammars is in
grammars for layout sensitive languages. In such languages, the absence of
punctuation such as end of statement delimiters (semicolon) causes ambiguities,
which is disambiguated by making layout (newlines, indentation) significant.
The approach to the presentation of such languages is similar to that for
operator expressions. The language is defined through an ambiguous context-
free grammar. A separate specification defines disambiguation. Examples
of such approaches are the layout constraints of Erdweg et al. [45] and the
indentation-sensitive grammars of Adams [3]. An important difference is that
such disambiguation rules are often not safe in the sense used in this paper;
some programs are rejected (e.g. if some expression is ‘off-side’) even though
they can be parsed using the underlying context-free grammar.

2.12 C O N C L U S I O N

Syntax definitions for programming languages should have a high-level seman-
tics that is independent of particular parser implementations [69]. Specification
of the associativity and priority rules separately from the productions of a
grammar contributes to that goal. However, that requires a sound and complete
implementation-independent formal semantics of such rules. Formulating such
a semantics has been an elusive goal for three decades.

In this paper we have defined the first direct semantics of associativity and
priority rules that is safe and complete. The semantics is safe since it does not

Chapter 2. Declarative Disambiguation of Expression Grammars 97

reject unambiguous parse trees (except where that is explicitly intended using
the non-assoc directive).

The semantics is complete since it disambiguates all ambiguities in different
types of expression grammars, including deep priority conflicts, dangling
prefix and suffix ambiguities, and nested list ambiguities (assuming a total
disambiguation relation). The semantics is direct since it defines disambiguation
in terms of sub-tree exclusion patterns, independently of a particular parsing
algorithm or grammar transformation.

While a complete disambiguation declaration requires specification of a
disambiguation relation (roughly) between each pair of productions, the ap-
proach admits concise specification through priority chains that are transitively
closed and declaration of groups of productions that are mutually (left or right)
associative [58]. Furthermore, the approach supports grammar modularity by
not requiring a linear ranking of productions. Since the semantics does not rely
on lookahead symbols, it naturally extends to character-level grammars, which
in turn support language composition [131, 31]. Our evaluation shows that
our approach supports concise specification of disambiguation in real world
grammars such as that of Java 1.8 and OCaml.

A (pilot) study of priority and associativity disambiguation in the gram-
mars of real-world languages indicates that expression productions (and their
combinations) requiring the extended soundness and completeness criteria
are used in practice in programs [118]. A larger investigation is needed to
establish whether programmers actually understand the disambiguation rules
of the language they program in (or whether they trust that readers of their
code understand those rules). For example, redundant (non-disambiguating)
use of parentheses may indicate this is not the case.

In this paper we have provided an implementation of the declarative se-
mantics as a grammar transformation producing unambiguous context-free
grammars using contextual labels to distinguish the roles of symbols in (dupli-
cated) productions without affecting the underlying tree structure. While this
demonstrates that the associativity and priority rules provide a conservative
extension of context-free grammars, the size of the grammar (and the size of
the resulting parse tables) may grow significantly. (This is also observed in
other approaches relying on grammar transformation for expression grammar
disambiguation.) For example, the grammar for OCaml, which combines a
large expression sub-grammar with a large number of deep priority conflicts,
produces a 3x increase of (the states of) the parse table. We also show that
contextual symbols can be interpreted using a light-weight data-dependent
extension of the Generalized-LR parsing algorithm (propagating contextual
symbols bottom-up) with near-zero overhead without requiring the generation
of productions defining contextual non-terminals [120]. Thus, demonstrating
that adopting the semantics defined in this paper does not have to come at the
expense of increased parser generation time or parse time.

In the future we would like to mechanize the proofs shown in this paper with
the help of an automatic theorem prover (e.g., Coq [18]), and also investigate a
data-dependent approach to disambiguation of shallow priority conflicts.

98

3
Deep Priority Conflicts in the Wild: A Pilot
Study

A B S T R A C T

Context-free grammars are suitable for formalizing the syntax of programming
languages concisely and declaratively. Thus, such grammars are often found
in reference manuals of programming languages, and used in language work-
benches for language prototyping. However, the natural and concise way of
writing a context-free grammar is often ambiguous.

Safe and complete declarative disambiguation of operator precedence and
associativity conflicts guarantees that all ambiguities arising from combining
the operators of the language are resolved. Ambiguities can occur due to shal-
low conflicts, which can be captured by one-level tree patterns, and deep conflicts,
which require more elaborate techniques. Approaches to solve deep priority
conflicts include grammar transformations, which may result in large unam-
biguous grammars, or may require adapted parser technologies to include
data-dependency tracking at parse time.

In this chapter we study deep priority conflicts “in the wild”. We investigate
the efficiency of grammar transformations to solve deep priority conflicts by
using a lazy parse table generation technique. On top of lazily-generated parse
tables, we define metrics, aiming to answer how often deep priority conflicts
occur in real-world programs and to what extent programmers explicitly
disambiguate programs themselves. By applying our metrics to a small corpus
of popular open-source repositories we found that in OCaml, up to 17% of the
source files contain deep priority conflicts.

3.1 I N T R O D U C T I O N

In software engineering, the Don’t Repeat Yourself (DRY) principle means
that “every piece of knowledge must have a single, unambiguous, authoritative repre-
sentation within a system” [62]. While in theory context-free grammars come
close to fulfilling this principle for declaratively formalizing the syntax of a
programming language, they still fail to deliver it in practice [69].

Natural and concise ways of writing a context-free grammar are often
ambiguous and lead to Write Everything Twice (WET) solutions, i.e., the direct
opposite of DRY. For example, the reference manual of the Java SE 7 edition [54]
contains a natural and concise context-free reference grammar that describes
the language, but a different grammar is used as the basis for the reference
implementation. The refined Java SE 8 specification [55] contains a single
unambiguous grammar, at the price of losing conciseness and readability.

99

A long-standing research topic in the parsing community is how to declara-
tively disambiguate concise expression grammars of programming languages.
To address this issue, formalisms such as YACC [64] or SDF2 [131] extend
context-free grammars with precedence and associativity declarations. In
YACC, precedence is defined by a global ranking on the tokens of operators,
and interpreted as choosing an alternative that solves a conflict in a parse
table (i.e., a conflict should be resolved in favor of a specific action given
a certain lookahead token). SDF2, on the other hand, constructs a partial
order among productions using priority relations, deriving filters that reject
conflicting patterns from the resulting tree. Because it supports the full class of
context-free grammars and character-level grammars to enable modular syntax
definitions and language composition, the YACC solution cannot be applied,
which poses additional challenges when developing a solution to disambiguate
SDF2 grammars.

Two desired properties for declarative disambiguation of precedence and
associativity conflicts using SDF2 priorities are safety and completeness. To strive
towards safety and completeness, recent proposals rely either on grammar-to-
grammar transformation techniques [5, 116], or they rely on data-dependent
formalisms [8] that deflect performance overhead to run-time. On one hand,
grammar-to-grammar transformations have the advantage to output (well-
researched) pure context-free grammars. On the other hand, they blow up the
resulting grammar by extensively duplicating productions,1 which may result
in large LR parse tables.

In this chapter, we aim to investigate the efficiency and usefulness of
grammar-to-grammar transformations for solving (deep) priority conflicts.
We address the efficiency issue by inspecting how much of the resulting gram-
mars are used and respectively, how much of their parse tables are exercised.
To reason about usefulness, we investigate to what extent deep priority conflicts
occur in real code and whether conflicts are explicitly disambiguated, look-
ing into declarative disambiguation from the programmers’ perspective. In
particular we empirically address the following research questions concerning
coding practices:

RQ1 To what extent do deep priority conflicts in declarative language specifi-
cations occur in real-world programs?

RQ2 How do deep priority conflicts impact the efficiency of declarative dis-
ambiguation techniques that rely on grammar transformations?

RQ3 To what extent do programmers use brackets for disambiguation of
priority conflicts explicitly?

We study the aforementioned research questions for declarative context-free
grammars of two programming languages — OCaml and Java — that inher-
ently feature deep priority conflicts. In a pilot study, we empirically examine
the top 10 trending open-source projects of each language on GitHub.

1Grammar transformations create copies of original productions, modifying only specific
non-terminals.

100

Contributions We performed an empirical pilot study that investigates deep
priority conflicts “in the wild”. In particular:

• We contribute a research method for measuring deep priority conflicts
and for obtaining coverage metrics.

• We provide initial results on the frequency and circumstances under
which deep priority conflicts occur.

• We present insights about explicit disambiguation of deep and shallow
priority conflicts using brackets.

With our pilot study, we provide an indication on how much deep priority
conflicts are an issue when parsing real-world code. We investigate the causes
of deep priority conflicts, and provide guidance for subsequent studies.

The remainder of this chapter is organized as follows. In Section 3.2 we
provide background on (deep) priority conflicts and declarative disambigua-
tion. Section 3.3 develops the research method necessary to empirically reason
about deep priority conflicts. Section 3.4 presents the results of our empirical
pilot study. We discuss threats to validity in Section 3.5. Finally, we present
related work in Section 3.6, before concluding.

3.2 A P R I M E R O N D E C L A R AT I V E D I S A M B I G U AT I O N

Safe and complete disambiguation is a precondition for precisely reasoning
about deep priority conflicts. Thus, we discuss the necessary background
on the nature of (deep) priority conflicts, declarative disambiguation of such
conflicts, and explain associated safety and completeness properties.

What is a priority conflict? Context-free grammars allow to declaratively and
concisely define the syntax of a programming language. E.g., the following
example defines productions rules for an expression grammar supporting
integer literals, addition and multiplication:

Exp.Add = Exp "+" Exp
Exp.Mul = Exp "*" Exp
Exp.Int = INT

Although this grammar describes the basic syntax of arithmetic expressions
properly, it fails to mention that multiplication binds stronger than addition, or
that such operators are left associative. As a result, the input string 1 + 2 * 3

is ambiguous, because it could be parsed or interpreted as either (1 + 2) * 3

or 1 + (2 * 3). Generalized parsers [124, 131, 6] typically derive all possible
derivations and capture them in so-called ambiguity nodes:

AmbiguityList(
Mul(Add(Int("1"), Int("2")), Int("3")),
Add(Int("1"), Mul(Int("2"), Int("3")))

)

The ambiguity node represents a variable-length list of alternative interpreta-
tions, in our case for the string 1 + 2 * 3.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 101

How to declaratively disambiguate priority conflicts? In order to designate
unambiguous parse interpretations, reference manuals of programming lan-
guages traditionally describe precedence and associativity relationships among
a language’s operators in supplementary tables. Syntax definition formalisms
translate these tables into declarative constructs for determining the correct
parse when combining such operators [64, 58, 131]. More recent context-free
grammar formalisms directly integrate precedence and associativity using
associativity attributes and priority relations, such as:

Exp.Mul = Exp "+" Exp {left}
Exp.Mul = Exp "*" Exp {left}

Exp.Mul > Exp.Add

These declarations, written in SDF3 [133] syntax, specify that addition and
multiplication are left associative, and that multiplication binds stronger than
addition. Technically, associativity attributes and priority relations define
patterns used by a parse tree filter [74] to prohibit conflicts to occur. The
filter defined using the priority and the precedence attribute in the example
prohibits an addition to occur as a direct child of a multiplication, or additions
(multiplications) to occur as a direct rightmost child of another additions
(multiplications), respectively. Even though this approach is enough to support
the operator precedence and associativity of many programming languages, it
is not safe nor complete [5].

What is safe and complete disambiguation? Ideally, a parser is assumed to
deterministically produce exactly one valid parse tree for any valid input
string of a language. When considering concise but ambiguous grammars,
declarative disambiguation shifts the responsibility of resolving ambiguities
due to operator precedence and associativity from the language engineer to the
parser generator. Safe disambiguation denotes that valid inputs strings are not
rejected by the parser, i.e., if an input string belongs to the language covered
by the grammar, then the parser should produce at least one tree. Complete
disambiguation states that the declarative priority relations specified together
with the grammar can disambiguate all combinations of operators, i.e., for any
input constructed combining the operators from the grammar, at most one tree
is produced.

What is a deep priority conflict? Most priority conflicts can be solved by looking
at the direct expansions of the symbols within a production, ruling out trees
containing invalid patterns. Such conflicts will henceforth be called shallow
priority conflicts. The previous example, of multiplication binding stronger
than addition, is such a shallow conflict, as the priority relation states that
an addition cannot be a direct child of a multiplication. In contrast, conflicts
that cannot be solved via parent-child relations of productions are henceforth
referred to as deep priority conflicts. Deep priority conflicts can occur arbitrarily
nested due to indirections (e.g., intermediate productions) that hide directly

102

conflicting productions. In the following, we will discuss the three types of
deep priority conflicts by example.2

Deep Priority Conflict #1: Operator-Style. To illustrate deep conflicts with
operator precedence,3 we add if-else-expressions to our example expression
grammar:

Exp.IfElse = "if" Exp "then" Exp "else" Exp

Exp.Add > Exp.IfElse

The declarative disambiguation rule on the last line specifies that addition
binds stronger than if-else-expressions. Yet, parsing the string 1 + if e

then 2 else 3 + 4 could produce two different interpretations:

1 + if e then 2 else (3 + 4)
(1 + if e then 2 else 3) + 4

If we consider disambiguation of shallow conflicts, the priority declaration
Exp.Add > Exp.IfElse states that an if-else-expression cannot occur as a
direct child of an addition. Safe disambiguation guarantees that an if-else-
expression can still occur as the right child of an addition, i.e., the string
1 + if e then 2 else 3 should not be rejected as it is unambiguously ac-
cepted by the grammar. In general, operator-style conflicts may occur whenever
nesting prefix operators and post-fix operators4 of different precedences, and
their precedence cannot be checked with a parent-child relation due to indi-
rections. In our example, a deep conflict occurs because the if-else-expression
can still occur as left child of the addition, hidden by another addition. When
writing Exp.Add > Exp.IfElse, one would like to indicate that any addition
to the right of the if-else-expression should always have higher precedence.
That is, the correct interpretation should be only the first one: 1 + if e

then 2 else (3 + 4).

Deep Priority Conflict #2: Dangling Else. To illustrate dangling-else conflicts,
we add if-expressions without else-branches to our running example, the
expression grammar:5

2The formalization of deep priority conflicts in Chapter 2 includes a description of the symmetric
versions of the conflicts presented in this chapter.

3The notion of operators has been extended to sentential forms in recursive productions. E.g.,
"if" Exp "then" Exp "else" is a prefix operator in a production Exp.IfElse = "if"
Exp "then" Exp "else" Exp.

4Infix operators are considered both as prefix, and post-fix. A deep priority conflict does not
occur between two infix operators, since in this case, the conflict can be disambiguated with filters
based on one-level tree patterns.

5The if-else-expression was copied from the previous listing to emphasize that both if-variants
share the same prefix.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 103

Exp.If = "if" Exp "then" Exp
Exp.IfElse = "if" Exp "then" Exp "else" Exp

Exp.IfElse > Exp.If

The dangling-else conflict, which is present in grammars of many programming
languages, arises when an if-expression is nested inside an if-clause of another
if-else-expression, such as in the string if e1 then if e2 then 3 else 4.
This input string results in two possible parses:

if e1 then (if e2 then 3 else 4)
if e1 then (if e2 then 3) else 4

The else-branch could be either connected to the first or the second if-expression.
The root cause of the dangling-else conflict is that two productions of the same
non-terminal share a common prefix, with the smaller production being right-
recursive. The disambiguation rule Exp.IfElse > Exp.If indicates that an
else-branch must be connected to the closest if-expression (cf. first interpreta-
tion). Note that even though the ambiguity above could be solved as a shallow
conflict, dangling else conflicts are also deep conflicts, as the inner if-expression
could be nested inside another expression.

Deep Priority Conflict #3: Longest Match. Longest match conflicts are caused
when nesting lists of the same symbols inside each other. For example, con-
sider the built-in match-expression of a language such as OCaml that has the
following form:

Exp.Match = "match" Exp "with" Pattern+
Pattern.Case = "|" Pattern "->" Exp

An ambiguity arises when a case-clause of a match-expression has an inner
match-expression with multiple case-clauses. In that situation, the parser can-
not distinguish to which expression the subsequent case-clauses are connected
to:

match value with
| pattern -> result
| pattern -> match value with

| pattern -> result
| pattern -> result

match value with
| pattern -> result
| pattern -> match value with

| pattern -> result
| pattern -> result

The standard disambiguation of this conflict consists of expanding the list of
case-clauses of the inner match-expression as much as possible, i.e., producing
the longest match. Thus, in the previous example the first interpretation is
correct.

104

3.3 R E A S O N I N G A B O U T D E E P P R I O R I T Y C O N F L I C T S

In the previous section, we presented examples of three common types of
(deep) priority conflicts that may arise in declarative context-free grammar
specifications. This section incrementally introduces a method that we sub-
sequently use to measure and analyze declarative disambiguation of deep
priority conflicts in practice.

Although declarative disambiguation is widely used in syntax definition
formalisms such as SDF, only recently, shortcomings concerning safe and
complete disambiguation were reported [5]. That raises the question, why
those shortcomings remained undetected for more than a decade? If and to
what extent are deep priority conflicts indeed an issue in real-world grammars
and programs? Not much is known about deep priority conflicts in the wild. In
Section 3.3.1 we will discuss contextual grammars to quantify RQ1: To what extent
do deep priority conflicts in declarative language specifications occur in real-world
programs?

One may question the usefulness of declarative disambiguation techniques,
as no research has been performed into deep priority conflicts in real-world
settings. In particular, solving deep priority conflicts with grammar transforma-
tions has a cost attached, potentially resulting in large context-free grammars
with many productions that are not used in practice. In Section 3.3.2 we will
discuss lazy parse table generation to quantify RQ2: How do deep priority conflicts
impact the efficiency of declarative disambiguation techniques that rely on grammar
transformations?

Aside from the technical limitation, deep priority conflicts that are inherent
to grammars of programming languages may impact common programming
practice. One may ask if programmers need to be aware of the notion of
deep priority conflicts, and if programmers are exposed to limitation of the
disambiguation techniques respectively? Programmers can usually fall back
to explicit disambiguation with brackets, in case the precedence rules are not
clear or the parser is unable to parse an input string due to ambiguities. In
Section 3.3.3 we will discuss a method for detecting explicit disambiguation to
quantify RQ3: To what extent do programmers use brackets for disambiguation of
priority conflicts explicitly?

3.3.1 Contextual Grammars

As mentioned in Section 3.2, generalized parsers produce a parse forest con-
taining ambiguity nodes corresponding to the possible interpretations of a
program. Ideally, a filter should be able to select only one correct interpretation
and return it as result. Filtering ambiguities that arise from operator prece-
dence and associativity after parsing is not practical though, as the number
of ambiguities can grow exponentially with the number of operators in an
expression. Thus, priority conflicts should preferably be solved either at parser
generation time or at parse time.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 105

To solve deep priority conflicts, we use a technique based on contextual
grammars. This approach consists of a grammar transformation that gener-
ates additional productions forbidding deep conflicting patterns before parser
generation. Furthermore, this technique enables precise measurements of the
number of deep conflicts by only duplicating the productions that contribute
to solving a certain conflict. For example, the contextual grammar to solve the
operator-style conflict described in Section 3.2, has the following form:

Exp.Add = Exp
{IfElse}

"+" Exp
Exp.IfElse = "if" Exp "then" Exp "else" Exp
Exp.Int = INT

Exp
{IfElse}

.Add = Exp
{IfElse}

"+" Exp
{IfElse}

Exp
{IfElse}

.Int = INT

The contextual symbol Exp{IfElse} indicates that any expression derived by this
symbol cannot have an if-else-expression as its rightmost child. This semantics
is implemented when duplicating the productions of the non-terminal Exp,
passing the context IfElse to the respective rightmost symbols and forbidding
the contextual symbol Exp{IfElse} to derive an IfElse production itself.

To count the number of deep priority conflicts of a specific type, we use
a contextual grammar that solves all-but-one type of priority conflict. For
example, to measure the number of operator style conflicts, we use a contextual
grammar G{DE,LM} as a contextual grammar G that solves dangling else
and longest match conflicts, i.e., G{DE,LM} does not contain the additional
productions to solve operator-style conflicts. Thus, parsing programs using
this grammar produces an ambiguity whenever this program contains an
operator-style conflict. Similarly, the contextual grammars G{OS,LM}, which
solves only operator-style and longest match conflicts, and G{OS,DE}, which
solves only operator-style and dangling else conflicts, can be used to detect
dangling else and longest match conflicts, respectively. To guarantee that all
ambiguities that arise in a program are related to deep priority conflicts, we
use a contextual grammar G{OS,DE,LM}that solves all conflicts, verifying that
the same program parses unambiguously.

3.3.2 Lazy Parse Table Generation

Transformation to contextual grammars can produce large grammars when
considering languages containing a large number of deep priority conflicts
and many different productions that refer to conflicting symbols. We derive
contextual grammars from SDF3 [133] syntax definitions, using them in com-
bination with a scannerless generalized LR parser (SGLR) [131]. In this case,
the number of states in the generated parse tables can also grow considerably,
because states are split to handle each possible interpretation of a conflict.

Since we suspect that a considerable portion of states generated from con-
textual productions is not used in practice, we adopted lazy parse table gener-
ation [59]. With that technique, the parser generates parse states on demand

106

grammar

parse table
generator

parser

parse
table

input tree

(a) Conventional Table Generator

grammar

lazy parse
table generator

parser

parse
table

input tree

unknown
visible

processed

(b) Lazy Table Generator

Figure 3.1 Table-driven parser with a conventional and a lazy parse table generator,
as presented in [59].

and as a result, only those states actually needed for parsing a program or a
series of programs are generated. In addition to improving the performance of
parse table generation, this technique provides an alternative to measure parse
table coverage of a program or corpus of programs.

A common scenario for most table-driven parsers is described in Figure 3.1a.
A (complete) parse table is generated from the grammar, and a generic parser
reads the actions in the parse table to process the input. The table stays
the same as long as the grammar has no changes, but whenever compiling
a modified grammar, the table generator produces a new full parse table
containing all processed states. That is, for larger grammars with many states,
generating and loading a large parse table in which only a few states are used,
is inefficient.

In a lazy parser generation scenario, whenever the parser requests a state, a
lazy generator either processes a new state or returns an already processed state
to the parser. Processing a state may create actions that refer to unprocessed
states, making them visible. The processed and visible states from all previous
parses are cached until the grammar has been changed, and the subsequent
parses of the same program do not have any impact on parser generation time.
Thus, if most of the programs do not exercise the full grammar, the parser can
be regenerated without a big penalty in performance as parser generation time
is amortized over parsing many input programs. Figure 3.1b illustrates the
scenario of a table-driven parser in combination with a lazy table generator.
Note that all states that are not processed or visited remain unknown.

Applying the conventional SDF3 parser generator and a lazy parser gen-
erator to the contextual grammar presented before (replacing Exp

{IfElse} by
Exp1) produces a parse table defined by the automaton of Figure 3.2. The
complete automaton is generated by the conventional parse table generator,

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 107

Exp.IfElse = "if" ● Exp "then" Exp "else" Exp
Exp.Add = ● Exp1 "+" Exp
Exp.IfElse = ● "if" Exp "then" Exp "else" Exp
Exp.Int = ● INT
Exp1.Add = ● Exp1 "+" Exp1
Exp1.Int = ● INT

3

INT

Start = ● Exp EOF
Exp.Add = ● Exp1 "+" Exp
Exp.IfElse = ● "if" Exp "then" Exp "else" Exp
Exp.Int = ● INT
Exp1.Add = ● Exp1 "+" Exp1
Exp1.Int = ● INT

0

Start = Exp ● EOF 1

Exp.Add = Exp1 ● "+" Exp
Exp1.Add = Exp1 ● "+" Exp1

2

Exp1.Int = INT ●
Exp.Int = INT ●

4

Exp.Add = Exp1 "+" ● Exp
Exp1.Add = Exp1 "+" ● Exp1
Exp.IfElse = ● "if" Exp "then" Exp "else" Exp
Exp.Int = ● INT
Exp1.Int = ● INT

5

Exp.IfElse = "if" Exp ● "then" Exp "else" Exp 6

Exp.Add = Exp1 "+" Exp ● 7

Exp1.Add = Exp1 "+" Exp1 ● 8

Exp.IfElse = "if" Exp "then" ● Exp "else" Exp
Exp.Add = ● Exp1 "+" Exp
Exp.IfElse = ● "if" Exp "then" Exp "else" Exp
Exp.Int = ● INT
Exp1.Add = ● Exp1 "+" Exp1
Exp1.Int = ● INT

9

Exp.IfElse = "if" Exp "then" Exp ● "else" Exp 10

Exp.IfElse = "if" Exp "then" Exp "else" ● Exp
Exp.Add = ● Exp1 "+" Exp
Exp.IfElse = ● "if" Exp "then" Exp "else" Exp
Exp.Int = ● INT
Exp1.Add = ● Exp1 "+" Exp1
Exp1.Int = ● INT

11

Exp.IfElse = "if" Exp "then" Exp "else" Exp ● 12

INT

INT
INT

INT

"if"

"if"

"if"

"if"

"then"

"else"

"+"

Exp1.Add
Exp1.Int

Exp.Add
Exp.IfElse
Exp.Int

Exp1.Add
Exp1.Int

Exp.Add
Exp.IfElse
Exp.Int

Exp.Add
Exp.IfElse
Exp.Int

Exp1.Add
Exp1.Int

Exp1.Int Exp.IfElse
Exp.Int

Exp.Add
Exp.IfElse
Exp.Int

Exp1.Add
Exp1.Int

Figure 3.2 States generated by the conventional and lazy table generation algo-
rithms when applied to the contextual grammar of Section 3.3.1. The states with
striped lines are the ones still unknown by the lazy generator after parsing 1 + 2.
Note that state 3 is visible but has not been processed yet.

whereas only the highlighted states are processed when using the lazy table
generator to parse the program 1 + 2.

We measure the coverage of contextual grammars by the number of all
states visible and processed in the parse tables generated by our lazy generator.
We use two different tables: a fresh parse table to parse each separate program
and a different table that accumulates the number of (visible and processed)
states when parsing all the programs for each corpus. We also measure the
number of productions that have been used considering both scenarios.

108

3.3.3 Explicit Disambiguation

Programmers might use brackets to explicitly specify the precedence of op-
erators when writing a program. For example, when writing a program
(1 + 2) * 3, a programmer uses brackets to explicitly state that in this ex-
pression the addition should have higher precedence over the multiplication.
However, writing a program 1 + (2 * 3), does not change the actual prece-
dence of the operators, since the multiplication already has higher precedence
over the addition. In the last case, the brackets are redundant as they do not
change the shape of the resulting abstract syntax tree (AST).

Programmers might also use brackets to disambiguate deep priority conflicts
explicitly. For example, the brackets in the following two expressions result
in ASTs that would be forbidden by the original contextual grammar, if we
consider the same expressions without brackets:

(1 + if e then 2 else 3) + 4
1 + (if e then 2 else 3) + 4

In both expressions, the brackets specify a different operator precedence from
the one defined in the grammar. To measure the number of brackets used
for explicit disambiguation, we investigate the unambiguous ASTs produced
by the contextual grammar G{OS,DE,LM}. Because brackets do not appear
explicitly in the AST, we added an attribute to AST nodes to indicate whether
a node is surrounded by brackets.

First, we collect all nodes that have a bracket attribute, calculating the total
number of the (pairs of) brackets present in the program. Then, we navigate
through the program’s AST searching for conflicting patterns, as such patterns
are forbidden by the grammar and can only occur inside brackets. We remove
the bracket nodes found this way from the initial list, counting the ones that
disambiguate deep conflicts and the ones that disambiguate shallow conflicts.
The remaining bracket nodes are marked as redundant.

Note that brackets can disambiguate a shallow and a deep conflict at the
same time, as illustrated in the example below:

1 + (2 + if e then 2 else 3) + 4

The brackets are used to disambiguate a deep conflict involving an addition
and an if-else-expression, and a shallow conflict which states that the addition
inside the brackets should be right associative with respect to the outer one. In
cases where brackets disambiguate deep and shallow conflicts, we opted to
consider the brackets used in these cases to disambiguate only a deep priority
conflict.

3.4 E VA L U AT I O N

In the previous section, we devised measurement techniques that enable
empirical investigation into how deep priority conflicts occur in practice. In
this section, we are applying our method to answer to what extent deep priority
conflicts do actually occur in real programs. This pilot study specifically focuses

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 109

on the syntax of two programming languages — OCaml and Java — that have
inherently different attributes.

The OCaml syntax is for the most part expression-oriented, and a large
number of deep priority conflicts originate from the expression part. We
have used the grammar from the OCaml reference manual, which contains
all three types of deep priority conflicts that were discussed in Section 3.2:
operator-style, dangling else and longest match.

In contrast to OCaml, Java is a predominantly statement-oriented program-
ming language. Dangling-else conflicts may apply to if-statements, while
expressions are the main subject to operator-style priority conflicts. The Java
grammar does not contain longest-match constructs.

Based on the inherently different syntaxes of the two languages, we present
our hypotheses of the expected results, grouped according to the research
questions.

Hypotheses for RQ1: The first research question is related to the number of
conflicts that occur in real programs:

H1 We expect more ambiguities triggered by the expression-oriented grammar
of OCaml than by Java’s grammar.

H2 The majority of OCaml deep conflicts are longest-match, because many
expressions can have pattern matches.

H3 Deep priority conflicts are expected to be sparse in Java programs, as most
priority conflicts are shallow.

H4 Overall, deep priority conflicts are sparse and do not occur frequently
across programs of both languages.

Hypothesis for RQ2: The second research question considers the efficiency
of grammar transformation approaches to solve deep priority conflicts. Our
hypothesis is based on the coverage of contextual grammar productions (and
parse table states respectively) that are used to solve deep conflicts.

H5 For both languages we expect that only a minor part of grammar produc-
tions and parse table states is exercised, even after parsing all programs
in the corpus.

Hypotheses for RQ3: The third research question is concerned with explicit
disambiguation. Our expectations are:

H6 Due to its expression-oriented syntax, OCaml programs use considerably
more brackets than Java programs.

H7 The majority of the brackets in Java and OCaml are necessary for disam-
biguating shallow priority conflicts.

110

3.4.1 Experimental Setup

We directly transcribed the declarative context-free grammar of the OCaml
version 4.04 reference manual6 to SDF3. The natural and ambiguous OCaml
grammar contains 1793 productions.7 The original Java SE 8 reference gram-
mar8 encodes conflict resolution in the grammar itself. To make deep priority
conflicts of Java detectable with our method, we have replaced the syntax for
expressions by a natural (and ambiguous) syntax, defining operator precedence
and associativity by means of SDF3 priorities. The resulting Java grammar
contains 1327 productions.

In our pilot study we examine the top 10 trending open-source projects
on GitHub for each language.9 Two out of the top 10 OCaml projects were
misclassified by GitHub, i.e., not containing any OCaml file at all. We removed
the misclassified projects and added the subsequent projects from the list.
Furthermore, we had to clean one project in order to avoid data duplication.
The bucklescript repository duplicated the whole ocaml project into a subfolder.
We removed the subfolder from bucklescript, because the ocaml project itself is
part of our pilot study corpus of OCaml projects.

3.4.2 Results of the OCaml Case Study

Our pilot study corpus contains 3296 OCaml source files, from which 95.9%
(i.e., 3161 files) were successfully parsed with our grammar while 4.1% (i.e., 135

files) could not be parsed due to language extensions that we do not support.10

Tables 3.1 and 3.2 summarize our findings with respect to occurrences of
deep priority conflicts and bracket usage considering each project in the OCaml
corpus. Table 3.1 presents the number of affected files of each project, the
number of deep priority conflicts found and how frequent each type occurs.
Table 3.2 shows information about brackets usage, highlighting the number
of brackets that have been used for disambiguation in each project. Note
that the remaining percentage of brackets for each project corresponds to
redundant brackets. In the following paragraphs we discuss data points from
the aforementioned table.

Affected Files 530 OCaml files (i.e., 16.8% of all files) contained deep priority
conflicts. Concerning the individual categories, the most frequent priority con-
flict type was longest match (in 356 files), followed by operator-style conflicts
(in 278 files) and dangling-else conflicts (in 7 files).

When looking at combinations of categories, our data shows that 79.6%
of files with deep priority conflicts contained conflicts of just a single cate-
gory, whereas 19.8% mixed two conflict categories, and 0.6% contained three
categories.

6http://caml.inria.fr/pub/docs/manual-ocaml/language.html
7We consider the number of productions after SDF3 normalization.
8https://docs.oracle.com/javase/specs/jls/se8/html/index.html
9https://github.com/trending/ accessed on May 19, 2017.

10The grammar currently does not support some language extensions defined in http://caml.
inria.fr/pub/docs/manual-ocaml/extn.html.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 111

http://caml.inria.fr/pub/docs/manual-ocaml/language.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://github.com/trending/
http://caml.inria.fr/pub/docs/manual-ocaml/extn.html
http://caml.inria.fr/pub/docs/manual-ocaml/extn.html

Project Affected Files
Deep Priority Conflicts

Total Operator
Style

Dangling
Else

Longest
Match

FStar 6 / 160 (3.8%) 6 33.3% 0.0% 66.7%

bincat 5 / 26 (19.2%) 26 57.7% 0.0% 42.3%

bucklescript 85 / 885 (9.6%) 305 50.2% 1.3% 48.5%

coq 158 / 417 (37.9%) 441 35.4% 0.5% 64.2%

flow 52 / 305 (17.0%) 117 36.8% 0.0% 63.2%

infer 33 / 234 (14.1%) 52 23.1% 0.0% 76.9%

ocaml 112 / 909 (12.3%) 275 28.4% 0.7% 70.9%

reason 4 / 36 (11.1%) 14 7.1% 0.0% 92.9%

spec 4 / 40 (10.0%) 5 100.0% 0.0% 0.0%

tezos 71 / 149 (47.7%) 416 79.3% 0.0% 20.7%

All 530 / 3161 (16.8%) 1657 48.0% 0.5% 51.5%

Table 3.1 Overview of Deep Priority Conflicts in OCaml Corpus.

Project
Disambiguation with Brackets

Deep Conflicts Shallow Conflicts

FStar 607 (1.7%) 12487 (35.7%)

bincat 28 (0.8%) 2735 (81.3%)

bucklescript 924 (2.1%) 29238 (65.3%)

coq 1039 (1.3%) 56083 (69.9%)

flow 278 (1.6%) 13374 (78.9%)

infer 376 (2.5%) 10720 (70.6%)

ocaml 737 (1.6%) 35010 (77.4%)

reason 25 (1.5%) 1194 (73.2%)

spec 15 (1.0%) 1293 (86.1%)

tezos 130 (1.6%) 6969 (84.3%)

All 4159 (1.6%) 169103 (67.1%)

Table 3.2 Overview of Bracket Usage in OCaml Corpus.

112

Deep Priority Conflicts In total, we discovered 1657 deep priority conflicts in
all files. From these, 48% are operator-style conflicts, 51.5% are longest match
and only 0.5% are dangling else. When looking at the number of conflicts
per project, six projects contained more longest match conflicts, whereas four
projects contained a majority of operator-style conflicts. Three out of ten
projects had dangling else conflicts. On a per file basis, the maximum number
of conflicts observed were 38 operator-style conflicts, 21 longest match conflicts,
and 2 dangling-else conflicts.

Disambiguation with Brackets We observed a total number of 248830 pairs of
brackets. From these, 31.3% are redundant, i.e., removing them does not affect
the resulting tree. The remaining 68.7% of the brackets account for resolving
priority conflicts (67.1% shallow and 1.6% deep conflicts).

Discussion When looking at the files with most conflicts, we found that the
most common patterns of operator-style conflicts have the following form:

exp1 op fun param -> exp2 op2 exp3
exp1 op function pattern -> exp2 op2 exp3

In most cases, op and op2 are user-defined operators such as >>? and >>=?,
whereas fun and function are function definitions in the OCaml language.

For most dangling else conflicts, we noticed that the problematic if was
hidden by an inner let expression, such as:

if exp1 then let binding1 in
if exp2 then exp3
else exp4

One interesting remark is that all dangling else conflicts were indented in a way
that is consistent with how the conflict is solved by the contextual grammar.

Longest match conflicts did not follow a unique form. However, occasionally
pattern-matching constructs that contain match, function, or try expressions
caused conflicts of the following form:

begin function (e, info) -> match e with
| pattern1
| pattern2

end

In the example above, the indentation does not clarify whether pattern2

belongs to function (e, info) or match e.

3.4.3 Results of the Java Case Study

From 9935 Java source files we successfully parsed 97.3% with our grammar.
Manual inspection of the failing 2.7% files (i.e., 268 files) revealed that they
indeed had syntax errors. All these files contained only snippets of Java code
and belonged to a testData folder from the kotlin repository. Table 3.3 presents
the information about deep priority conflicts and bracket usage in Java, for
each project we studied.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 113

Project Affected Files
Disamb. with Brackets

Deep Conflicts Shallow Conflicts

Matisse 0 / 41 (0.0%) 0 (0.0%) 33 (94.3%)

RxJava 0 / 1469 (0.0%) 0 (0.0%) 398 (78.3%)

aurora-imui 0 / 55 (0.0%) 0 (0.0%) 57 (74.0%)

gitpitch 0 / 45 (0.0%) 0 (0.0%) 1 (1.6%)

kotlin 0 / 3854 (0.0%) 0 (0.0%) 4892 (53.3%)

leetcode 0 / 94 (0.0%) 0 (0.0%) 30 (44.8%)

litho 0 / 510 (0.0%) 0 (0.0%) 297 (66.3%)

lottie-android 0 / 109 (0.0%) 0 (0.0%) 134 (87.6%)

spring-boot 2 / 3444 (0.06%) 0 (0.0%) 630 (55.4%)

vlayout 0 / 46 (0.0%) 0 (0.0%) 285 (76.2%)

All 2 / 9667 (0.02%) 0 (0.0%) 6757 (56.1%)

Table 3.3 Deep Priority Conflicts and Bracket Usage in Java.

Affected Files In total, only 2 Java files from the corpus contained deep priority
conflicts.

Deep Priority Conflicts The pilot study revealed in total two operator-style
conflicts involving lambda expressions. The conflicts adhered to the following
form:

(CastType) () -> exp1 == exp2

Lambda expressions have lower priority than expressions for equality compar-
ison (==). In turn, cast expressions have the highest priority amongst the three
operators in the previous example. Incomplete disambiguation would allow
two different interpretations:

((CastType) () -> exp1) == exp2
(CastType) () -> (exp1 == exp2)

Our experimental setup made this conflict measurable with context-free gram-
mars that use declarative disambiguation.

Explicit Disambiguation with Brackets The total number of observed pairs of
brackets was 12049. None of these brackets actually avoided deep priority
conflicts, however 56.08% of brackets account for resolving shallow priority
conflicts. The remaining 43.92% of brackets are redundant.

3.4.4 Grammar and Parse Table Coverage Statistics

Table 3.4 lists the statistics for parsing the corpus with the transformed contex-
tual grammars and resulting parse tables.

114

Grammar Parse Table

Prod. Used # States Lazy Expansion

Proc. Visible

OCaml 3420 59.3% 20200 36.4% 45.8%

Java 1916 54.8% 4674 49.0% 56.8%

Table 3.4 Grammar and Parse Table Coverage Statistics.

●●●

●

●

●

●

●

●

●

●
●●
●

●

●

0
10

20
30

40

Co
nt

ex
tu

al
 G

ra
m

m
ar

 P
ro

du
ct

io
n

Co
ve

ra
ge

 (i
n

%
)

Programs without
Deep Priority Conflics

Programs with
Deep Priority Conflicts

0
5

10
15

20
25

30
35

40

(a) Grammar Coverage

●●

●●

●

●

●

●●

●●●
●●●
●●
●●●●●●●●

●●
●

●

●

●

●

●

●

●

●●●

●

●●●
0

10
20

30
40

Pr
oc

es
se

d
St

at
es

 o
f L

az
y

Pa
rs

e
Ta

bl
e

(in
 %

)

Programs without
Deep Priority Conflics

Programs with
Deep Priority Conflicts

0
5

10
15

20
25

30
35

40

(b) Lazy Parse Table Coverage

Figure 3.3 Comparison of Grammar and Parse Table Coverage between OCaml
Programs with / without Deep Priority Conflicts.

OCaml The transformed contextual grammar, capable of resolving all three
categories of conflicts that we investigate, expands to 3420 productions. In
terms of grammar coverage, parsing all files together exercised 59.3% of the
productions.

From the grammar productions, a lazy parse table was generated that could
extend to 20200 states, i.e., the number of states that a conventional SDF3 parse
table generator would produce. From the possible number of states, 36.4% of
the states were processed during parsing, and 45.8% of the states were visible,
using the lazy parse table generator.

When looking at individual files, the mean coverage observed was 9.5%
(range 0.2–36.1%). Figure 3.3a splits coverage data between programs free of
deep priority conflicts and programs exhibiting deep priority conflicts. We
observed that programs free of deep conflicts use on average 8.1% of contextual
productions per file, while programs with deep conflicts use, in average, 16%.
Figure 3.3b shows the corresponding data for processed states of the lazy parse
table that was generated from the contextual grammar. We observed that
programs free of deep priority conflicts exercise on average 2.7% of all possible
states compared to 6.17% of programs that do have deep conflicts.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 115

Java The transformed contextual grammar consists of 1916 productions.
Parsing the whole Java corpus exercised 54.8% of the productions. When
looking at individual files, the mean coverage measured was 12.95% (range
0.52–34.08%).

The corresponding full parse table has 4674 states. Parsing all Java files
with the lazy parse table generator resulted in 49% processed states and 56.8%
visible states. Due to the low number of deep priority conflicts found in Java,
we omitted separate statistics for programs with and without deep priority
conflicts.

3.4.5 Recapitulation of Hypotheses

Based on the pilot study results reported in previous subsections, we do
conclude:

Confirmation of Hypothesis 1: Parsing the OCaml corpus with OCaml’s expression-
oriented grammar triggered deep priority conflicts in about one out of
six files. In contrast, parsing the Java corpus resulted in total in only two
deep priority conflicts.

Confirmation of Hypothesis 2: With 51.5%, the majority of deep priority conflicts
were of type longest match. To our surprise, with 48%, operator-style
conflicts were almost as frequent as longest match conflicts.

Confirmation of Hypothesis 3: Deep priority conflicts are sparse when parsing
Java with grammars that use declarative disambiguation. Deep conflicts
exclusively occurred in the context of lambda expressions.

Rejection of Hypothesis 4: We did not expect that deep priority conflicts would
occur in about one out of six files when parsing OCaml, nor that all
projects would have files with deep priority conflicts. With a frequency of
16.8% those conflicts can be considered common case, requiring support
for (declarative) disambiguation.

Confirmation of Hypothesis 5: The results indicate that there is indeed a high
cost attached to declarative disambiguation with grammar transformation
techniques. On a per-file basis, our expectations were met. E.g., parsing
OCaml files yielded a mean coverage of contextual productions of 12.95%
(range 0.52–34.08%). Contrary to our intuition, parsing all files exercised
more than 50% of the contextual productions but processed slightly less
than 50% of the parse table states in both languages.

Confirmation of Hypotheses 6 and 7: Brackets are more excessively used in OCaml
than in Java. In both languages brackets are mainly used to disambiguate
(shallow) priority conflicts. However, 1.6% of bracket pairs in OCaml are
used to disambiguate deep priority conflicts, suggesting that language
users are exposed to deal explicitly with deep conflicts, and also that they
rely on the disambiguation policy of the language for disambiguating
deep priority conflicts.

116

Considering both languages, even though only up to 17% of the files contained
deep priority conflicts, such conflicts do occur, and there is a need for sup-
porting efficient disambiguation in combination with readable, concise, but
inherently ambiguous context-free grammars. One may question whether it is
a good language design practice to allow deep priority conflicts to occur in the
first place, due to the problems they cause.

If we consider the efficiency of grammar transformation techniques to solve
deep priority conflicts, we can conclude that there is room for improvement.
Producing an unambiguous grammar that disallows deep conflicts results in
many duplicate productions that do not seem to be used, even after parsing a
considerable number of programs. This conclusion should lead to follow-up
studies that can improve the efficiency of these grammar transformations.

From the programmer’s point of view, deep priority conflicts can be even
more confusing, as it is necessary to really understand the operator precedence
specified with the grammar. Deep priority conflicts could even contribute
to the decision of whether to use or learn a language, if we consider this
extra burden imposed on novice programmers. Therefore, now that we have
an indication that deep priority conflicts occur in real code, we can ask: are
programmers aware of such conflicts?

From our study, we observed that programmers use brackets relatively often,
but that up to 40% of the brackets were redundant. Therefore, we may ask
if programmers use redundant brackets for readability or because they did
not fully understand the precedence of the language. Considering this aspect,
language design may also play a role in how often programmers need to use
brackets explicitly. Future empirical studies could lead to more insights that
connect language design, declarative disambiguation and how both of them
affect programmers.

3.5 T H R E AT S T O VA L I D I T Y

In our pilot study, we have decided to examine the number of occurrences
of deep priority conflicts by the number of ambiguities that occur when we
turn off the solutions for such conflicts. Because ambiguities may occur nested
within each other, this number corresponds to an under-approximation of the
number of deep priority conflicts.

As we mentioned before, a program 1 + if e then 2 else 3 + 4 con-
tains an ambiguity that cannot be solved by a parent-child relation on the
addition and if-then-else expressions, causing a deep conflict. Such conflict
is captured by our approach via the top-level ambiguity node of the whole
expression. However, any operator-style conflict that occurs inside the expres-
sion e will not be counted, since it is hidden inside the top-level ambiguity of
the outer expression.

Furthermore, we do not validate the ASTs produced when parsing each
program in our test suite. In order to test the correctness of our grammars,
we have used Java and OCaml program snippets that compare expected ASTs
with the (unambiguous) ASTs produced when parsing such programs with

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 117

contextual grammars. These tests stress syntactic elements of each language,
including cases of deep conflicts.

When counting brackets that disambiguate deep conflicts, we do not include
brackets that would produce the same AST if removed from the program.
For example, in the program 1 + (if e then 2 else 3 + 4) the brackets
disambiguate a deep conflict, choosing explicitly how the program should
be interpreted. However, when removing the brackets and parsing the same
program with a contextual grammar that solves operator-style conflicts, the
same AST is produced, i.e., the brackets are redundant.

Operator-style conflicts in Java only occur due to lambda expressions. How-
ever, these expressions are relatively new in the Java language, being intro-
duced in Java SE 8. It may be the case that lambda expressions are not yet used
frequently by programmers or are only used in newer projects, which could
explain the low number of deep priority conflicts we found in Java programs.

Finally, the size of our empirical study could hinder the conclusions we draw
in this chapter. However, we still believe that this study can give significant
insights to the research questions we raised.

3.6 R E L AT E D W O R K

In this section we highlight previous work on parsing and related work on
empirical studies (based on corpus analysis).

3.6.1 Safe and Complete Disambiguation

Grammar-to-grammar transformations. Afroozeh et al. [5] proposed a new
semantics for SDF2 priorities [74] that is safe and complete. The approach
consists of rewriting the grammar, duplicating the productions for the non-
terminals such that shallow and deep conflicting patterns cannot be produced.
Even though this approach produces an unambiguous context-free grammar as
result, the size of the resulting grammar can be quite large for languages con-
taining many conflicts. Furthermore, the approach does not handle dangling
else nor longest match conflicts.

Contextual grammars [116] is a grammar transformation that extends the
approach from Afroozeh et al. [5]. The grammar productions are only dupli-
cated to handle deep conflicts, and the technique also solves dangling else
and longest match ambiguities. However, the resulting contextual grammars
can still have many duplicated productions for languages with many deep
conflicts.

Data-dependent grammars. A dynamic solution to safe and complete disam-
biguation is presented by Afroozeh and Izmaylova [8]. Instead of producing
pure and unambiguous context-free grammars, this approach consists of pro-
ducing a data-dependent grammar that checks for priority conflicts at parse
time. Priorities are automatically translated into data-dependent productions
that passes the precedence levels of the expression currently being parsed and
checks whether it produces a priority conflict. This solution does not handle

118

longest match nor dangling else conflicts, and it is used with a top down parser
that supports data-dependency tracking.

3.6.2 Lazy Parser Generation

IPG. The incremental parser generator IPG [59] was developed with the
purpose of speeding-up parser generation in a highly interactive environment.
At the early stages of language design, the language’s syntax is constantly
being changed, invalidating the current parse table. In incremental table
generation, only the parts of a partial table that are affected by a change in
the grammar are reconstructed at parse time. We have only adopted the lazy
generation of IPG, i.e., when the grammar changes, our generator starts from
scratch with an empty table. Lazy parse table generation allowed us to measure
the coverage of contextual grammars.

ANTLR. A top-down approach to lazy parser generation is used in the
Adaptive LL(*) parsing algorithm [97]. ANTLR 4 generates ALL(*) parsers
that adapts to the input sentences presented to it at parse time. The parser
dynamically constructs a prediction automaton that matches the lookahead of
input being parsed deciding which production rule to expand. Intermediate
results are memoized, i.e., the parser incrementally constructs the prediction
automaton by need.

3.6.3 Corpus Analysis and Grammar Coverage

Empirically studying source code allows researchers to learn from real-world
programs, for example to uncover coding practices [60, 82] or to evaluate the
performance of tools and analyses. Studies do either reuse existing corpuses
of various sizes, or construct corpuses that are suitable for answering their
research questions. E.g., Landman et al. refuted common knowledge about
the correlation of two source code metrics [81] by constructing and analyzing
large corpuses.11

In contrast to large scale empirical studies, we conducted a pilot study
for getting an intuition of how deep priority conflicts occur in the wild. The
outcomes of this pilot study pinpoint and characterize real-world issues that
arise with deep priority conflicts, guiding future large scale studies.

Context-dependent branch coverage [79] can give more insights on the cover-
age of contextual grammars. In our experiment, we adopted a rather simplistic
approach by counting the number of productions used by the parser. However,
our approach also includes information about the coverage of lazily generated
tables in order to investigate the efficiency of grammar transformations to
solve deep priority conflicts.

11One Java corpus containing 17.6M methods that are spread out over 1.7M files, and one C
corpus containing 6.3M functions extracted from 462K files.

Chapter 3. Deep Priority Conflicts in the Wild: A Pilot Study 119

3.6.4 Code Readability and Programming Style

Buse and Weimer [33] define source code readability as “as a human judgment of
how easy a text is to understand” and proposed a metric for measuring readability.
Stefik and Siebert [121] and Sedano [110] provide an overview on empirical
studies concerning code readability and programming style.

Instead of focusing on the human judgement perspective, we investigated
deep priority conflicts that may hamper unambiguous parsing of source code.
We studied how often brackets are used for readability purpose or to disam-
biguate (deep) priority conflicts. There is empirical evidence that if-statements
that remove parentheses and braces are easier to comprehend by novice pro-
grammers [121], however such syntaxes are more likely to trigger (deep)
priority conflicts.

3.7 C O N C L U S I O N A N D F U T U R E W O R K

We have presented an experiment to analyze deep priority conflicts in real-
world programs. Our experiment uses contextual grammars to produce unam-
biguous grammars that solve deep conflicts. By turning off the generation of
productions to solve each type of conflict, we were able to categorize and count
occurrences of each type. Furthermore, we used lazy parse table generation to
investigate the efficiency of contextual grammars when solving deep conflicts.
We have also looked into explicit disambiguation, i.e., counting and analyzing
the number of brackets in each program.

Our experiment indicates that deep conflicts do occur often in real programs.
However, when looking into the efficiency of grammar transformations to solve
deep conflicts, we observed that many productions and parse states resulting
from the grammar transformation are not used after parsing corpuses of
real-world programs.

We also observed that a large percentage of deep conflicts are explicitly
disambiguated by brackets, which suggests that the default precedence of the
language does not correspond to how programmers typically use the language
constructs. The analysis of explicit disambiguation also gave us the insight
that brackets are not used exclusively for disambiguation purposes. Further
investigation is necessary to understand the actual intention of the programmer
when using redundant brackets.

As future work, we propose extending the case study to other languages,
i.e., including other SDF3 grammars, and to consider larger corpuses. Based
on our findings, we propose further investigation on grammar transformation
techniques used for declarative disambiguation, analyzing the reasons for the
lack of coverage, and aiming to improve their efficiency when solving deep
priority conflicts.

120

4
Towards Zero-Overhead Disambiguation of
Deep Priority Conflicts

A B S T R A C T

Context-free grammars are widely used for language prototyping and imple-
mentation. They allow formalizing the syntax of domain-specific or general-
purpose programming languages concisely and declaratively. However, the
natural and concise way of writing a context-free grammar is often ambiguous.
Therefore, grammar formalisms support extensions in the form of declarative
disambiguation rules to specify operator precedence and associativity, solving
ambiguities that are caused by the subset of the grammar that corresponds to
expressions.

Ambiguities with respect to operator precedence and associativity arise
from combining the various operators of a language. While shallow conflicts
can be resolved efficiently by one-level tree patterns, deep conflicts require
more elaborate techniques, because they can occur arbitrarily nested in a tree.

Current state-of-the-art approaches to solving deep priority conflicts come
with a severe performance overhead. In this chapter, we present a novel
low-overhead implementation technique for disambiguating deep associativity
and priority conflicts in scannerless generalized parsers with lightweight
data-dependency. By parsing a corpus of popular open-source repositories
written in Java and OCaml, we found that our approach yields speedups of
up to 1.73x over a grammar rewriting technique when parsing programs with
deep priority conflicts — with a modest overhead of 1% to 2% when parsing
programs without deep conflicts.

4.1 I N T R O D U C T I O N

Context-free grammars have been established as the main formalism for con-
cisely describing the syntax of programming languages (e.g., in reference
manuals). Yet, context-free grammar definitions still cause problems when
used to generate parsers in practice. On the one hand, a parser generator may
expect a deterministic grammar that fits a certain grammar class, such as LL
or LR. On the other hand, natural and concise context-free grammars may be
inherently ambiguous, more specifically when considering the subset of the
grammar that defines expressions and operators.

Mainstream parser generators, such as YACC [64], extend their grammar
formalism with declarative constructs for disambiguation, allowing users to
specify the precedence and associativity of operators. In order to not com-
promise performance, under the hood, YACC’s translation of disambiguation

121

rules highly depends on specific characteristics of LR parsing technology —
exploiting LR shift/reduce conflicts— rather than building upon a generalized
solution. Furthermore, YACC does not support the composition of modular
grammar fragments (of potentially different languages).

In contrast, the SDF2 syntax definition formalism [131] allows modular and
composable language specifications, providing mechanisms for declaratively
specifying operator precedence and associativity [74, 126]. The semantics for
SDF2 disambiguation is parsing independent, but it only addresses ambiguities
that are caused by so called shallow conflicts, i.e., conflicts that can be solved by
checking whether a certain parse node is a direct descendant of another node
in the parse tree. However, some ambiguities that occur in expressions can
only be solved by checks in the final tree of unbounded depth [5, 116]. Such
ambiguities are caused by deep priority conflicts.

Several approaches have been proposed to solve deep priority conflicts.
Many of these approaches are based on grammar transformations and
thus are parser independent [5, 4, 116]. However, those techniques typically
result in large unambiguous grammars, which may impact on the performance
of the parser and be somewhat inefficient, as considerable parts of the grammar
are not exercised at runtime, even after parsing many programs [118].

Alternative solutions of so called data-dependent grammars [8] postpone
solving of priority conflicts to parse time. Data-dependent grammars are
context-free grammars, extended with arbitrary computations, parameters,
variable binding, and constraints that can be evaluated at parse time [63]. Data
dependent grammars that address disambiguation of priority conflicts can
be generated from a context-free grammar with disambiguation constructs,
but they are fairly complex and arguably hard to read and understand. The
additional complexity comes from the bindings and constraints, and by the
fact that data can be propagated “downwards” and “upwards” at parse time,
when building the parse tree. Finally, data-dependent grammars have not
yet been generalized to solve frequent types of deep priority conflicts such as
longest match or the well known dangling else problem.

This chapter proposes a different solution to disambiguate deep priority
conflicts at parse time based on data-dependent contextual grammars. Our ap-
proach relies on lightweight data dependency that does not require arbitrary
computation nor variable bindings at parse time, and instead expresses disam-
biguation in terms of set-algebraic operations that can be implemented scoped
and efficiently. The contributions of the chapter are:

• We define a lightweight data-dependent extension of the scannerless gen-
eralized LR parsing algorithm for disambiguating deep priority conflicts.

• We show that this data-dependent extension yields the same disam-
biguation as contextual grammars, an approach that solves deep priority
conflicts through grammar rewriting.

• We compare the performance of disambiguation strategies and show
that our lightweight data-dependent disambiguation is up to 1.73 x faster

122

when parsing programs with deep priority conflicts and has very low
overhead for programs without deep priority conflicts.

We implemented our solution as a modified parser generator for SDF3 [133],
which supports modular and composable syntax definitions. Furthermore,
we evaluated our approach using OCaml, an expression-based language that
contains many deep priority conflicts; and Java, a statement-based language
that contains a small number of deep priority conflicts. Given that deep priority
conflicts may occur in about one in five real-world programs for OCaml [118],
we provide a technique that supports efficient disambiguation of such conflicts,
showing that for programs without conflicts, our approach has a modest
overhead of 1% to 2% on parsing time.

The chapter is organized as follows: Section 4.2 details background infor-
mation on declarative disambiguation and deep priority conflicts. Section 4.3
describes data-dependent contextual grammars. Next, in Section 4.4 we eval-
uate our approach by comparing to disambiguation techniques that rely on
grammar transformations. Finally, we discuss related work in Section 4.5,
before concluding.

4.2 D I S A M B I G U AT I N G P R I O R I T Y C O N F L I C T S

We start by presenting the notation for grammars, grammar productions and
parse trees that will be used throughout this chapter. The remainder of this
section then discusses background on the issue of deep priority conflicts and a
grammar rewriting technique, contextual grammars [116], that addresses the
resolution of such conflicts.

4.2.1 Notation

Grammars. A context-free grammar G can be formally defined as a tuple (Σ,
N, P) with the set Σ representing the terminal symbols; the set N consisting of
the non-terminal symbols defined in the grammar; and the set P representing
the productions. When not mentioned, we adopted the letter A to represent
arbitrary non-terminals; the letter X to represent a symbol from Σ ∪ N; and
Greek letters α, β or γ to represent a symbol in (Σ ∪ N)∗, also known as
sentential forms.

Productions. We use the same notation for productions as in the syntax
definition formalism SDF3 [133]. A production in a grammar G has the
form A = α or A.C = α, where C represents a constructor. SDF3 productions
may have constructors to specify the name of the abstract syntax tree node
constructed when imploding the parse tree. A non-terminal and a constructor
uniquely identify a production, i.e., a production A.C = α may also be referred
as A.C. Note that SDF3 constructors are orthogonal to our approach.

Parse Trees. A production A.C = X1 ... Xn may be used to construct a tree
of form [A.C = t1 ... tn], with the subtree ti being defined by the symbol
Xi. Explicit subtrees are indicated by their productions using nested square

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 123

brackets, whereas arbitrary subtrees and terminal elements that occur as leaves
do not require brackets. For example, the tree [Exp.Add = e1 + [Exp.Mul

= e2 * e3]] constructed with a production Exp.Add = Exp "+" Exp has an
arbitrary subtree e1 as its leftmost subtree, and a rightmost explicit subtree
defined by the production Exp.Mul = Exp "*" Exp, with arbitrary subtrees
e2 and e3.

4.2.2 Background on Deep Priority Conflicts

In context-free grammars of programming languages, ambiguities are often
caused by the subset of the language that contains expressions and operators.
To address this issue, grammar formalisms used in practice support the spec-
ification of declarative disambiguation rules to define operator precedence
and associativity among the grammar productions. E.g., in SDF3, a grammar
production can have an annotation —either left, right, or non-assoc— to
specify its associativity. SDF3 also supports context-free priorities, which form
a partial order, defining a priority relation between productions. E.g., the dis-
ambiguation rule Exp.Add > Exp.If defines that addition has a higher priority
than conditional expressions.

The most common ambiguities from expression grammars involve the direct
combination of operators with different priorities. These ambiguities are
caused by so-called shallow priority conflicts and can be efficiently solved by
subtree filtering [74], i.e., disallowing certain kinds of trees to occur as a direct
child of others.

A small but complicated-to-solve subset of ambiguities is caused by deep
priority conflicts. Unlike shallow conflicts, deep priority conflicts cannot be
filtered by observing the direct parent-child relationship of nodes within
a parse tree. Deep priority conflicts can occur arbitrarily nested (i.e., in
unbounded depth) in a parse tree. In general, deep conflicts can occur when a
low-priority operator shadows a nested higher priority operator on the left- or
rightmost edges along a sub-tree [5, 118]. Deep priority conflicts are commonly
found in the expression parts of grammars of ML-like languages. A recent
empirical pilot study suggests that up to 17 % of OCaml source files originating
from popular projects on Github do contain deep priority conflicts [118], raising
the question how such conflicts can be disambiguated efficiently.

Deep priority conflicts are categorized in three classes, according to their
nature [116]:

Operator-Style Conflicts. Operator-style conflicts involve two operators: 1)
a prefix operator1 with lower priority, and 2) a postfix or infix operator with
higher priority.2 Figure 4.1 contains a minimal grammar example, illustrating

1We consider the definition of operators used in [116]: prefix operators are defined by right
recursive productions, postfix operators by left recursive productions and infix operators by
productions that are both left and right recursive.

2Operator-style conflicts may also involve lower priority postfix operators, but these are
uncommon, as postfix operators usually have higher priority in most programming languages.

124

an operator-style conflict. In our case, it involves an addition expression that
has higher priority than the conditional expression. Parsing the example
sentence on line 13 causes an ambiguity due to a deep priority conflict and
yields two possible interpretations (lines 17 and 19). In the example, the first
instance represents the supposedly correct interpretation, since the addition to
the left of the conditional expression extends as far as possible. The second and
incorrect interpretation cannot be filtered by checking the direct parent-child
relation of parse nodes, since the first addition expression shadows that the
conditional (prefix operator with lower-priority) occurs indirectly nested at the
rightmost position of the second addition (infix operator with higher-priority).

1 context-free syntax
2

3 Exp.If = "if" "(" Exp ")" Exp
4 Exp.Add = Exp "+" Exp {left}
5 Exp.Int = INT
6

7 context-free priorities
8

9 Exp.Add > Exp.If
10

11 causes conflict in sentence
12

13 e1 + if(e2) e3 + e4
14

15 with interpretations
16

17 e1 + if(e2) (e3 + e4)
18

19 (e1 + if(e2) e3) + e4

Figure 4.1 Operator-Style Conflict

Dangling-Else Conflicts. Dangling-else describes a pattern for a deep priority
conflict involving two productions that share the same prefix or suffix, where
the shorter production is (left or right) recursive. Figure 4.2 illustrates a conflict
involving the Exp.If and Exp.IfElse productions. For the sentence on line 9,
a parser cannot decide where the else branches should be connected. Note that
the first interpretation (line 13) is supposedly the correct one, where the else
branches are connected to the closest if-expressions.

Longest-Match Conflicts. Another type of deep priority conflict involves indi-
rectly nested lists [116]. The example grammar in Figure 4.3 defines Exp.Match
expressions ending with a list of patterns. However, match expressions can
themselves occur at the end of a pattern. E.g., for the sentence in line 9, the
parser cannot decide whether the pattern p2 belongs to the list of the match e1
(cf. line 15) or the list of the match e2 expression (cf. line 13). The first inter-

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 125

1 context-free syntax
2

3 Exp.If = "if" "(" Exp ")" Exp
4 Exp.IfElse = "if" "(" Exp ")" Exp "else" Exp
5 Exp.Int = INT
6

7 causes conflict in sentence
8

9 if(e1) if(e2) e3 else if(e4) e5 else e6
10

11 with interpretations
12

13 if(e1) (if(e2) e3 else (if(e4) e5 else e6))
14

15 if(e1) (if(e2) e3 else (if(e4) e5)) else e6
16

17 if(e1) (if(e2) e3) else (if(e4) e5 else e6)

Figure 4.2 Dangling-Else Conflict

pretation should be preferred if the list construct (Pat+) itself follows longest
match.

1 context-free syntax
2

3 Exp.Match = "match" Exp "with" Pat+
4 Pat.Pattern = ID "->" Exp
5 Exp.Int = INT
6

7 causes conflict in sentence
8

9 match e1 with id -> match e2 with p1 p2
10

11 with interpretations
12

13 match e1 with id -> (match e2 with p1 p2)
14

15 match e1 with id -> (match e2 with p1) p2

Figure 4.3 Longest-Match Conflict

4.2.3 Disambiguating Deep Priority Conflicts with Contextual Grammars

Many disambiguation approaches achieve independence from a particular
parsing technology by relying on grammar rewriting (i.e., transforming an
ambiguous context-free grammar into a context-free grammar that does not
contain any priority conflicts). In the following, we discuss the disambigua-
tion approach of contextual grammars [116] as a representative example for

126

1 context-free syntax

2

3 Exp.If = "if" "(" Exp ")" Exp

4 Exp.Add = Exp{Exp.If} "+" Exp {left}

5 Exp.Int = INT

6

7 Exp{Exp.If}.Add = Exp{Exp.If} "+" Exp{Exp.If} {left}

8 Exp{Exp.If}.Int = INT

9

10 context-free priorities

11

12 Exp.Add > Exp.If

13

14 uniquely parses sentence

15

16 e1 + if(e2) e3 + e4
17

18 with interpretation

19

20 e1 + if(e2) (e3 + e4)

Figure 4.4 Contextual grammar that solves an operator-style deep priority conflict
involving if and addition expressions in ML-like languages.

rewriting-based disambiguation strategies, since our contribution builds upon
it. (An extensive discussion and comparison of related work on the subject of
disambiguation can be found in Section 4.5).

Contextual grammars [116] are context-free grammars that can be used to
solve deep priority conflicts. Under the hood, contextual grammars express
invalid parse-tree patterns with respect to the disambiguation rules defined
in the grammar. These patterns can be deeply matched to filter trees that
would cause an ambiguity. The deep pattern matches do not occur at parse-
time, but rather are implemented as a grammar transformation. A “black-list”
of forbidden patterns, represented by so-called contextual tokens drives the
recursive rewriting algorithm, restricting which parse trees a production may
produce along the (leftmost or rightmost) positions of sub-trees.

Recursive Rewriting by Example. Figure 4.4 illustrates an example for a
contextual grammar that solves the operator-style conflicts of Figure 4.1. A
grammar transformation recursively rewrites the grammar and adds new
productions for the symbol Exp{Exp.If} (lines 7– 8). The rewriting propagates
the contextual tokens to all leftmost and rightmost non-terminals of the newly
added production. By using the tokens to create new non-terminal symbols
that implement filters, the rewriting avoids the construction of invalid trees.

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 127

A.C1 = lmArm … lm'Arm'

A.C2 = …

lmArm.C1 = lmArm … lm'Arm' ∪ rm

lmArm.C2 = …

lm'Arm'.C1 = lm' ∪ lmArm … lm'Arm'

lm'Arm'.C2 = …

…

lm'Arm' ∪ rm.C1 = …

lm'Arm' ∪ rm.C2 = …

lm' ∪ lmArm.C1 = …

lm' ∪ lmArm.C2 = …

Figure 4.5 Generalized recursive propagation of contextual tokens in contextual
grammars.

According to this grammar, the example sentence in line 16 now can be
unambiguously parsed as shown in line 20. The invalid sentence (e1 +

if(e2) e3) + e4 cannot be parsed anymore, because the addition . . . + e4
that is parsed with Exp.Add must not have an if-expression on the rightmost
position of the first addition e1 + if(e2) e3.

One issue with the rewriting is that the propagation of constraints might
result in many additional productions in the final contextual grammar, as
productions of the original grammar need to be duplicated (recursively) for
each new contextual symbol. While the previous example is relatively concise,
the general case is not.

Recursive Rewriting in General. Formally, a contextual symbol lm Arm is a
regular non-terminal A that is uniquely identified by the tuple (lm, A, rm),
where lm and rm are sets containing contextual tokens. For brevity we omit lm
or rm respectively when the set is empty. The set lm stores unique references
to productions that are not allowed to occur in any, possibly deeply nested,
leftmost node of the tree defined by the contextual symbol lm Arm. Similarly, the
productions referenced in the set rm cannot be used to construct any, possibly
deeply nested, rightmost node of the tree defined by lm Arm. Finally, the tree
for the symbol A itself cannot be constructed using any of the productions
referenced in lm and rm.

Figure 4.5 highlight the general case of how productions are recursively
rewritten. The starting point are the first two productions A.C1 and A.C2,
where the production A.C1 contains deep priority conflicts, as indicated by
the contextual symbols on the right-hand side of the production. For each

128

unique contextual symbol, the productions for the symbol A need to be du-
plicated excluding the productions in the sets lm and rm, while propagating
the contextual tokens accordingly. In the second pair of rules in the grammar,
new productions are created for the symbol lm Arm assuming that C1 and C2
are not in the sets lm and rm, and the set rm is propagated to the rightmost
symbol of that rule (cf. dotted arrow). When propagating the set containing
the rightmost contextual tokens rm to the rightmost symbol of this rule, a new
unique contextual symbol lm′Arm′ ∪ rm is generated, causing a ripple effect:
new productions need to be recursively generated for the new symbol as well
(cf. the dashed arrows). The same ripple effect might occur for the symbol
lm′ ∪ lm Arm′ and for any other unique contextual symbol resulting from the
propagation of contexts.

Contextual grammars can correctly disambiguate all previously discussed
conflicts, however at a high cost. For expression-based languages with many
deep priority conflicts —such as OCaml— the grammar can get about three
times bigger [116]. In the case of contextual grammars, the duplication is
necessary to solve deep conflicts, however, many productions are not exercised
in practice, even after parsing a large set of programs [118]. The duplication
directly introduces a performance penalty, causing larger parse tables, and
longer parse times in practice.

Our aim is to avoid the blow-up in productions caused by grammar transfor-
mations, without giving up the correctness properties guaranteed by contextual
grammars. In the next section we illustrate how the underlying concepts of con-
textual grammars can be repurposed to disambiguate deep priority conflicts
efficiently at parse time.

4.3 D ATA - D E P E N D E N T C O N T E X T U A L G R A M M A R S

In this section, we focus on declarative disambiguation techniques that are more
general than, for example, YACC’s approach, in order to support modular
and composable syntax definitions. In particular, we illustrate how low-
overhead disambiguation can be implemented in SDF3 [133] with a scannerless
generalized LR parser (SGLR) [130].

Figure 4.6 highlights the different stages in the context of parser generation
using SDF3 and parsing in SGLR. First, a normalized3 SDF3 grammar is first
transformed by recursive rewriting into a contextual grammar, which contains
additional productions to remove deep priority conflicts (cf. Section 4.2.3).
Second, the parse table generator produces a parse table given the contextual
grammar, solving shallow priority conflicts directly when constructing the
table, by filtering goto-transitions according to the priorities specified in the
grammar [126]. Afterwards, the SGLR parser uses the generated parse table for
processing arbitrary input programs. The parser may use other disambiguation

3SDF3 grammars are normalized to handle lexical and context free syntax declarations, derive
additional productions for symbols that represent lists or optionals, insert optional layout in
between context-free symbols, and expand priority groups and chains.

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 129

parser

input
normalized
grammar

contextual
grammar

parse table
generator

1

3 trees

2

4

parse
table

Figure 4.6 Parsing a program with a scannerless generalized parser, and the times
when disambiguation might occur.

mechanisms at parse time to address, for example, ambiguities in the lexical
syntax using reject productions [130]. The SGLR parser returns a compact
representation of a parse forest that contains all trees that were derived when
parsing an input program. As a final step, a (post-parse) disambiguator may
still remove invalid trees from the parse forest according to given constraints.

According to Figure 4.6, we can identify four different stages when dis-
ambiguation of priority conflicts can occur: (1) before parse table generation,
(2) at parser generation, (3) at parse time, and (4) after parsing. Post-parse
disambiguation is conceptually the most expensive approach, since ambigui-
ties can grow exponentially with the size of the input [45]. Disambiguation
should preferably occur in the first three identified stages of disambiguation
(i.e., avoiding the construction of invalid trees beforehand). Nevertheless,
disambiguating early in the pipeline does not necessarily guarantee the best
performance either, as we will discuss next.

When to Disambiguate (Deep) Priority Conflicts? Disambiguating priority
conflicts by grammar rewriting occurs before parse table generation. Rewriting
techniques have the advantage that the remainder of the parser generation
and parsing pipeline can operate oblivious of priority conflicts. Especially
for resolving deep priority conflicts, grammar rewriting unfortunately adds
many productions for forbidding conflicting patterns and may result in large
grammars that negatively impact performance.

Disambiguating conflicts during parse table generation does not require
any grammar rewriting and can be achieved by modifying the LR parse table
generator. In a scannerless parser, disambiguation at parse table generation
can only resolve shallow priority conflicts, requiring that deep priority conflicts
are addressed earlier or later [116].

As noted previously, using post-parse disambiguation filters to solve priority
conflicts can be inefficient in practice, because the number of ambiguities in
expressions can grow exponentially with the size of an expression. Hence, a
post-parse filter would have to traverse a large number of trees in the parse
forest to filter invalid trees.

According to the reasoning above, in the next sections we will explore a
solution to disambiguate deep priority conflicts efficiently at parse time, while
keeping the disambiguation of shallow conflicts when generating the parse
table.

130

4.3.1 Disambiguation of Deep Conflicts with Lightweight Data Dependency

Data-dependent grammars [63] extend context-free grammars allowing pa-
rameterized non-terminals, variable binding, evaluation of constraints, and
arbitrary computation at parse time. Data-dependent grammars can be trans-
lated into stack-based automata, i.e., push-down automata with environments
to track data-dependent parsing states. For example, consider the productions:

Iter(n).Conc = [n >= 1] Iter(n - 1) A
Iter(n).Empty = [n == 0] ε

In the example above, the non-terminal Iter is parameterized by an integer
n, which indicates the length of the iteration over the non-terminal A. The
constraint [n >= 1] is checked before trying to parse Iter(n - 1) A, i.e., if
n ≥ 1 the first production is used, otherwise, the second.

Purely data dependent grammars are powerful enough to disambiguate
priority conflicts of grammars for programming languages at parse time [8].
They allow resolution of possible priority conflicts in the grammar by means
of constraints that forbid the creation of invalid trees. Nevertheless, just
relying on data-dependency might negatively impact the performance of the
parser, especially when parsing files that are free of priority conflicts. For that
reason, we selectively use a lightweight form of data-dependency to solely
solve deep priority conflicts, without requiring variable bindings or arbitrary
computations at parse time.

Leveraging Data-Dependency to Avoid Duplicating Productions. Contextual
grammars (cf. Section 4.2.3) can be treated as pure context-free grammars,
if we consider that every unique contextual symbol specifies a new non-
terminal. Transforming a contextual grammar into a context-free one, occurs
by duplicating productions (recursively) for each unique contextual symbol.

Without duplicating the productions, a contextual grammar would have
exactly the same shape and number of productions as the original grammar,
since contextual symbols consist of essentially annotated non-terminals that
originate from an analysis phase. Without rewriting, the grammar itself is still
ambiguous, but the inferred contextual tokens that occur in the grammar can
be reused to solve deep priority conflicts at parse time.

Bottom-up Constraint Aggregation instead of Top-Down Rewriting. Instead of
propagating the constraints in the form of contextual tokens in the grammar
productions, which may result in new contextual symbols and consequently
new productions, we propagate the data to which the constraints are applied
at parse time. Since the SGLR parser constructs trees bottom-up, we propagate
the information about the productions used to construct the possibly nested
leftmost and rightmost nodes of a tree bottom-up as contextual tokens during
tree construction. Each node of the parse tree of the adapted data-dependent
SGLR parser contains two additional sets that indicate the productions used to
construct its leftmost and rightmost (nested) subtrees, respectively. For every
node, the set representing the leftmost contextual tokens is the union of the
the production used to construct the current node with the leftmost set of the

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 131

if

Exp

INT

ExpINT

Exp

Exp

+

Exp.If

Exp.IfExp.If

(a) Propagation by Example

prod(t)

tknk rmknklmknk
tk0

rm10

t

…t10

…

t1n1

…

lm10 rm1n1lm1n1

rmk0lmk0

prod(t) rm1n1lm10 ∪ ∪

… …

(b) Schema of Generic Propagation

Figure 4.7 Propagation of contextual tokens in contextual grammars with data-
dependency.

1 context-free syntax

2

3 Exp.If = "if" Exp

4 Exp.Add = Exp{Exp.If} "+" Exp {left}

5 Exp.Int = INT

6

7 context-free priorities

8

9 Exp.Add > Exp.If

Figure 4.8 A (truncated) succinct syntax for a data-dependent contextual grammar
with if-expressions, to be used for illustrating concise parse tree examples.

leftmost direct child. Similarly, the set representing the rightmost contextual
tokens is the union of the production used to construct the node itself with
the rightmost set of contextual tokens of the rightmost direct child. Note that
only productions that can cause deep priority conflicts are added to the sets of
contextual tokens; the number of tokens propagated is significantly lower than
the total number of productions, even for highly ambiguous grammars. (The
largest number of contextual tokens —33— where required for OCaml, which
contains a highly ambiguous expression grammar.)

Data-Dependent Contextual Token Propagation by Example. The tree in Fig-
ure 4.7a for the sentence INT + if INT was parsed using the data-dependent
contextual grammar of Figure 4.8. Since Exp.If is the only production that
appears in the contextual tokens in the grammar, it is the only token that
needs to be propagated upwards. Because the if-expression occurs as a direct
right subtree of the addition, only its rightmost set of contextual tokens is
propagated upwards, discarding the leftmost set of tokens.

132

1 function DO-REDUCTIONS(Stack st, Production A.C = X1...Xn)
2 for each path from stack st to stack st0 of length n} do
3 List<Tree> [t1, ..., tn] = the trees from the links in the path from

st to st0

4 for each Xi such that Xi is a contextual symbol lmXrm do
5 if ti.LeftmostTokens ∩ lm 6= ∅ or ti.RightmostTokens ∩ rm 6= ∅

then
6 return
7 end if
8 end for
9 REDUCER(st0, goto(state(st0), A.C = X1...Xn), A.C = X1...Xn, [t1, ..., tn])

10 end for
11 end function

1 function CREATE-TREE-NODE(Production A.C = X1...Xn, List<Tree>
[t1, ..., tn])

2 Tree t = [A.C = t1, ..., tn]
3 t.LeftmostTokens = t1.LeftmostTokens ∪ A.C
4 t.RightmostTokens = tn.RightmostTokens ∪ A.C
5 return t
6 end function

Figure 4.9 Pseudocode for the modified DO-REDUCTIONS and CREATE-TREE-
NODE methods from the original SGLR, in the implementation of the data-
dependent SGLR.

Data-Dependent Contextual Token Propagation in General. Consider the tree
schema indicating the propagation of possible contextual tokens of Figure 4.7b.
Assuming that the tree has depth k, the tokens will be propagated bottom-up
through the leaves until reaching the root t. However, for a leaf node tk0,
its set of contextual tokens consist only of prod(tk0) (the production used to
construct tk0). As we will discuss in Section 4.3.3, we only propagate contextual
tokens that occur in the contextual grammar, i.e., if prod(tk0) cannot cause a
deep priority conflict, the set is in fact, an empty set. Thus, besides limiting
the propagation to the depth of the trees being constructed, for grammars
with few conflicts, only a small amount of data is actually propagated when
constructing the tree.

Customization of Parsing Algorithm. The algorithm for the data-dependent
scannerless generalized LR parser requires only a few changes in the original
SGLR algorithm shown in [130]. More specifically, the algorithm needs to prop-
agate contextual tokens corresponding to the productions used to construct
the leftmost and rightmost (possibly nested) subtrees (t.LeftmostTokens and
t.RighmostTokens),4 and to check the constraints when performing reduce

4In the original SGLR algorithm, creating a parse tree node consisted simply of applying
a production to the trees collected when calculating the path for the reduce action. In the
data-dependent algorithm, the sets of leftmost and rightmost subtrees need to be updated by
propagating the information from the rightmost and leftmost direct subtrees.

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 133

actions. We show the pseudocode for the modified methods of the original
SGLR in Figure 4.9. Note that because we leverage the analysis done by contex-
tual grammars, our data-dependent SGLR algorithm can solve the same types
of deep priority conflicts that can be solved by regular contextual grammars,
i.e., operator-style, dangling else and longest match. Furthermore, because we
propagate the data representing possible conflicts at parse time, and enforce
the constraints when performing a reduce operation, the grammar does not
require modifications that increase its number of productions.

4.3.2 Scannerless Generalized LR Parsing with Data-Dependent Disambiguation

To illustrate how our implementation of a data-dependent SGLR performs
disambiguation at parse time, consider the scenario when parsing the input
INT + if INT + INT, which contains an operator-style deep priority conflict,
using the data-dependent contextual grammar shown previously. After parsing
INT + if INT, the parser reaches a state with a shift/reduce conflict in the
parse table shown in configuration (I) from Figure 4.10. Before this point,
SGLR performs actions according to the parse table to construct the single
stack shown in this configuration, with the links between states (represented
by the boxes) containing the trees that have been created so far, or the terminal
symbols that have been shifted.

Note that in this first configuration, when reaching the conflict in the parse
table, a parser that uses the disambiguation mechanism from YACC (see
Section 4.5) can make the decision of which action to take based on the next
input token. In this case, the parser would choose shifting over reducing
because the next token in the input is + and the addition has higher priority
over the if expression. However, this approach of looking at the next input
token does not extend to scannerless parsers or character-level grammars, since
the parser operates on characters, and the character + might be preceded by
layout, or could be the prefix of a different operator.

Thus, instead of making a decision at the configuration (I), a generalized
parser such as SGLR performs both actions in pseudo-parallel, producing an
ambiguity if both actions lead to a successful parse. First, SGLR performs all
possible reduce actions, which may result in the creation of different stacks.
That is, the parser continues by forking a new stack, adding a link to the
original one, creating a graph structured stack. This occurs at the configuration
(II), as a reduce action has been performed to construct the tree:

[Exp.If = if [Exp.Int = INT]]

Because the production used to construct the tree appears in the rightmost
set of contextual tokens of the contextual symbol Exp{Exp.If} in the grammar,
the tree is constructed with the sets of leftmost and rightmost tokens containing
Exp.If.

As the parser can still perform another reduce action from configuration
(II), it does so, reaching configuration (III). Using the tree for the if expression,
SGLR creates the following tree, by reducing using an Exp.Add production:

134

[Exp.If = if [Exp.Int = INT]] Exp.IfExp.If

+ if

shift/reduce
conflict

[Exp.Int = INT] [Exp.Int = INT]

+ if[Exp.Int = INT] [Exp.Int = INT]

reduce! ✔

+ if[Exp.Int = INT] [Exp.Int = INT]

[Exp.Add = [Exp.Int = INT] + [Exp.If = if [Exp.Int = INT]]]

+ if[Exp.Int = INT] [Exp.Int = INT]

[Exp.Add = [Exp.Int = INT] + [Exp.If = if [Exp.Int = INT]]]

+ [Exp.Int = INT]

+

reduce! ✘

shift! ✔

remaining input: + INT

remaining input: + INT

remaining input: + INT

remaining input:

I

II

III

IV

Exp.If

Exp.If

reduce! ✔

reduce! ✔

Figure 4.10 The configurations of SGLR when solving a deep priority conflict when
parsing program INT + if INT + INT.

[Exp.Add = [Exp.Int = INT] + [Exp.If = if [Exp.Int = INT]]]

Note that since the tree for the if expression is used as the rightmost tree
when applying the reduce action, and this tree has a non-empty set of rightmost
contextual tokens, the set is propagated when creating the tree for the addition.

After shifting the additional symbols from the input, and performing a
reduce action that creates the last [Exp.Int = INT] tree, the parser reaches
configuration (IV). At this point, there is no other symbol to shift, so only
reduce actions are left to be performed. When reducing using an Exp.Add

production, there are two possible paths from the state at the top at the stack.
The first path, at the top of the graph, creates a tree corresponding to the
addition of two integers, which does not contain any deep priority conflict.
The second path, at the bottom, contains a conflict since the set of rightmost

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 135

tokens for the first tree intersects with the rightmost set of contextual tokens
for the contextual symbol Exp{Exp.If} in the Exp.Add production. Thus, the
data-dependent SGLR uses this information to forbid the reduce action on the
path at the bottom. By doing that, it produces only a single tree, solving the
deep priority conflict.

4.3.3 Performance Optimizations

As shown in the algorithm for the data-dependent SGLR, the operations
necessary to perform disambiguation of deep priority conflicts consist of set-
algebraic operations such as union (for data propagation) and intersection (for
constraint checking). To optimize our solution, we first map all productions
that occur in the sets of contextual tokens of contextual symbols from the
grammar to a bitset, limiting the amount of data that needs to be propagated.
Thus, if a certain production belongs to a set of tokens, its corresponding bit
is set to 1, or to 0, otherwise. Using this approach, constraint checking and
data propagation can be achieved at a very low cost by performing bitwise
operations on these bitsets. With such optimization we were able to achieve
near zero-overhead when comparing our data-dependent approach and the
original SGLR, for programs that do not contain deep priority conflicts, as we
will show in the next section.

4.4 E VA L U AT I O N

In this section, we evaluate our approach of declarative disambiguation for
solving deep priority conflicts, by applying it to a corpus of real programs. We
are interested in answering the following research questions:

RQ1 For files that do not contain deep priority conflicts, how much overhead
is introduced by data-dependent contextual grammars?

RQ2 For files that do contain deep priority conflicts, how do data-dependent
contextual grammars perform when solving such conflicts, in comparison
to related work?

In order to tackle the aforementioned research questions, it is essential to
partition a data set in files that are free of deep priority conflicts, and files that
are known to have deep priority conflicts. We re-use a corpus of the top-10

trending OCaml and Java projects on Github. The corpus was qualitatively
analyzed by Souza Amorim, Steindorfer, and Visser [118], listing the types of
priority conflicts each file from the projects contains. For both languages we
partitioned the files into two groups according to their analysis results: files are
free of deep priority conflicts (and therefore can be parsed by parsers without
sophisticated disambiguation mechanisms), and files that contain deep priority
conflicts. Table 4.1 lists the projects contained in the corpus, the total number
of source files contained in those project, and the (relative) number of files
with deep priority conflicts for OCaml and Java, respectively. Based on the
research questions listed before, we can formulate our hypotheses:

136

Table 4.1 Deep Priority Conflicts in OCaml and Java Corpus.

OCaml Project Affected Files Java Project Affected Files

FStar 6 / 160 (3.8%) Matisse 0 / 41 (0.0%)

bincat 5 / 26 (19.2%) RxJava 0 / 1469 (0.0%)

bucklescript 85 / 885 (9.6%) aurora-imui 0 / 55 (0.0%)

coq 158 / 417 (37.9%) gitpitch 0 / 45 (0.0%)

flow 52 / 305 (17.0%) kotlin 0 / 3854 (0.0%)

infer 33 / 234 (14.1%) leetcode 0 / 94 (0.0%)

ocaml 112 / 909 (12.3%) litho 0 / 510 (0.0%)

reason 4 / 36 (11.1%) lottie-android 0 / 109 (0.0%)

spec 4 / 40 (10.0%) spring-boot 2 / 3444 (0.06%)

tezos 71 / 149 (47.7%) vlayout 0 / 46 (0.0%)

All 530 / 3161 (16.8%) All 2 / 9667 (0.02%)

H1 Due to our lightweight data-dependent disambiguation, we expect single-
digit percentage overhead when parsing files that do not contain deep
priority conflicts.

H2 Since disambiguation by grammar transformation produces up to three
times bigger [118] grammars, we expect our lightweight data-dependent
disambiguation to perform significantly better (i.e., higher double-digit
percentage improvements).

4.4.1 Experiment Setup

The benchmarks were executed on a computer with 16 GB RAM and an Intel
Core i7-6920HQ CPU with a base frequency of 2.9 GHz and a 8 MB Last-Level
Cache. The software stack consisted of Apple’s macOS operating system
version 10.13.1 (17B48) and an Oracle’s Java Virtual Machine (version 8u121).

To obtain statistically rigorous performance numbers, we adhere to best
practices for (micro-)benchmarking on the Java Virtual Machine (JVM) as, for
example, discussed in Georges, Buytaert, and Eeckhout [52] and Kalibera and
Jones [67]. We measure the execution time of batch-parsing the corpus of
OCaml and Java sources with the Java Microbenchmarking Harness (JMH),
which is a framework to overcome the pitfalls of (micro-)benchmarking. Since
the batch-parsing execution times are expected to be in terms of minutes —
rather than microbenchmarks that execute in milliseconds— we configured JMH
to perform 15 single-shot measurements: i.e., forking a fresh virtual machine 15

times and measuring the total batch-parsing time including cold startup.
For executing the benchmarks, we disabled CPU frequency scaling, disabled

background processes as much as possible, and fixed the virtual machine heap

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 137

Language Data Set Disambiguation Time (seconds) Speedup Cost

Java
with
conflicts

data-dependent 0.18 ± 0.00 1.29 x —

rewriting 0.23 ± 0.00 1.00 x —

Java
without

conflicts

data-dependent 270.64 ± 1.28 1.73 x 1.02 x

rewriting 467.20 ± 4.03 1.00 x 1.77 x

none 264.20 ± 2.36 — 1.00 x

OCaml
with
conflicts

data-dependent 80.60 ± 1.48 1.54 x —

rewriting 123.75 ± 1.02 1.00 x —

OCaml
without

conflicts

data-dependent 89.82 ± 0.51 1.46 x 1.01 x

rewriting 130.71 ± 0.55 1.00 x 1.48 x

none 88.58 ± 0.98 — 1.00 x

Table 4.2 Benchmark Results when parsing the OCaml and Java Corpus.

sizes to 10 GB for benchmark execution. The benchmark setup was tested and
tuned to yield accurate measurements with relative errors of typically less
than 2 % of the execution time. We report the measurement error as Median
Absolute Deviation (MAD), which is a robust statistical measure of variability
that is resilient to small numbers of outliers.

4.4.2 Experiment Results

The results of our experiment are illustrated in Table 4.2. We first report the
precision of the individual data points. For all the data points, the relative
measurement errors are in the range of 1.0 % to 4.1 % with a median error of
1.6 %; the absolute amounts are printed in the table next to the benchmark
runtimes (cf. column Time (seconds)).

Cost of Disambiguating Deep Priority Conflicts (Hypothesis H1). Column Cost
shows how the parser’s performance is affected by supporting the disambigua-
tion of deep priority conflicts. The cost measurements were performed solely
for the data sets that are guaranteed to be free of deep priority conflicts, since
we use a parser without deep priority conflict disambiguation as a baseline.
The results show that the cost of disambiguation with data-dependency is
between 1 % (OCaml) and 2 % (Java), supporting Hypothesis H1. Note that
the result for OCaml is not statistically significant, i.e., the 1 % difference may
as well be in the margin of error. For the Java case, the result is statistically
significant, however the error intervals are very close and almost overlap. We
conclude that Hypothesis H1 is supported by our experiment: the cost of
declarative disambiguation is clearly below 10 %.

Data-Dependent Disambiguation versus Grammar Rewriting (Hypothesis H2).
Column Speedup of Table 4.2 shows the performance improvements of data-

138

dependent disambiguation over disambiguation via grammar rewriting (base-
line). In all tested configurations, data-dependent disambiguation speeds-up
from 1.29 x to 1.73 x, reducing batch parse times considerably. E.g., parse time
for the conflict-free Java corpus reduced from 467.20 s to 270.64 s. We conclude
that Hypothesis H2 is supported by our experiment: data-dependent disam-
biguation outperforms disambiguation via grammar rewriting as discussed in
Souza Amorim, Haudebourg, and Visser [116] and Adams and Might [4].

4.4.3 Threats to Validity

To counter internal threats to validity, we properly tested the data-dependent
implementation and assured that it produces abstract syntax trees identical
to the contextual grammars. For the data sets that are guaranteed to be free
of deep priority conflicts, we also assured that the resulting parse trees are
identical to the trees from the corresponding non-disambiguating grammar.
In all scenarios, we checked that each resulting parse tree is indeed free of
ambiguities, cross-validating the findings from the empirical pilot study [118]
that accompanies the corpus.

To counter external threats to validity, we carefully designed and imple-
mented our approach to use a lightweight form of data-dependency selectively,
solely disambiguating deep priority conflicts. The delta to a baseline SGLR
parser without support for disambiguation of deep conflicts is minimal: it
requires the addition of a few lines of code, as shown in Figure 4.9. Therefore,
we are confident that the observed cost of 1 % to 2 % for disambiguating deep
priority conflicts remains steady, even when using different or larger data
sets. We are also confident that the significance of the performance improve-
ment remains clearly observable regardless of the used data sets, because it
is commonly known that grammar rewriting blows-up the grammars and
the resulting parse tables [118], negatively impacting parsing performance.
Nevertheless, the size and choice of our corpus arguably remains an external
threat to validity.5

4.5 R E L AT E D W O R K

In the following section, we highlight previous work on disambiguation of
conflicts that arise from the declarative specification of operator precedence
and associativity in context-free grammars, grouped by the phase when disam-
biguation happens.

4.5.1 Disambiguation by Grammar Rewriting

Ambiguities that arise from operator precedence and associativity can be
avoided by rewriting the grammar to an unambiguous one. In the following,

5For the Java data set with conflicts, we would even assume that performance further improves
with a larger data set. Unlike the other data sets, the current Java data set with conflicts consists
of only two files, because deep conflicts are scarce in Java. The small data set is disadvantaged,
because we compare batch-parsing time including cold startup time.

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 139

we list declarative disambiguation techniques that try to automatically derive
unambiguous grammars.

Aasa [1] proposes a grammar rewriting technique that addresses priority
conflicts by generating new non-terminals with explicit precedence levels,
forbidding the construction of trees that could cause a conflict. The approach
addresses shallow conflicts as well as deep conflicts of type operator-style. Due
to a restriction —productions may not have overlapping prefixes or suffixes—
it cannot solve dangling-else conflicts.

Thorup [123] presents a grammar transformation algorithm that constructs
an unambiguous grammar, given an ambiguous grammar, and a set of coun-
terexamples (i.e., illegal parse trees). The resulting grammar encodes the parse
trees bottom-up, while removing grammar symbols that correspond to illegal
trees. Thorup’s approach specifically supports dangling-else, but does not gen-
eralize the construction of counterexamples to capture arbitrary deep priority
conflicts.

Conceptually similar to Thorup’s idea, Adams and Might [4] propose a
grammar rewriting solution, where invalid patterns are expressed using tree
automata [39]. Each type of conflict should be expressed as a tree automaton,
representing the pattern of the counterexample. Intersecting the counterexam-
ple automata with the original context-free grammar yields an unambiguous
grammar as result. The authors address all conflicts shown in this chapter,
with the exception of longest match.6

Afroozeh et al. [5] describe a safe semantics for disambiguation by grammar
rewriting that only excludes trees that are part of an ambiguity. While their
semantics does cover shallow priority conflicts and deep priority conflicts of
type operator-style, it addresses neither dangling-else nor longest match.

Contextual grammars [116] generalize the approach by Afroozeh et al.
[5], by supporting a “safe” semantics for disambiguation of arbitrary deep
priority conflicts. The authors analyze and address the root causes of deep
priority conflicts. Their grammar analysis yields as a result, combinations of
conflicting productions that may rise to a deep priority conflict. The authors
show that deep conflicts can only occur in specific paths in the parse trees.
Illegal patterns are conceptually described as deep pattern matches, and
implemented by means of recursive grammar rewriting that forbids invalid
trees to be constructed. Rewriting is used solely for solving deep priority
conflicts; disambiguation of shallow conflicts happens at parse table generation.

All related work mentioned above suffers from the same performance issues:
large unambiguous grammars as a result of recursive rewriting, with even
larger parse tables that have a low-coverage of parsing states when parsing
programs [118]. By contrast, our lightweight data-dependent disambiguation
technique avoids grammar transformations and is able to reuse LR parse tables
of grammars that do not solve deep priority conflicts, resulting in high parse
table coverage and a low overhead of 1 % to 2 % for disambiguation. By reusing
the grammar analysis results of contextual grammars, but implementing our
mechanism for disambiguation via lightweight data-dependency, we are able

6Due to the expressivity of tree automata, we assume that longest match could be supported.

140

to handle arbitrary deep priority conflicts, including deep conflicts caused by
indirect recursion.

4.5.2 Disambiguation at Parser Generation

Instead of changing the original grammar, some techniques perform disam-
biguation of priority conflicts at parser generation time. Even though these
solutions do not require changing the productions of the original grammar,
they might still be restricted to a certain parser, e.g., by depending on specific
characteristics of a parsing technique, or by requiring modifications in the
parser generation algorithm.

YACC [64] resolves ambiguities concerning operator precedence and asso-
ciativity by solving shift/reduce conflicts that occur in LR parse tables. Even
though the decision is made dynamically depending on the current lookahead
token, the grammar has to specify the default action to take in the conflicting
state, given the precedence of the operators involved in the conflict specified
in the grammar. This technique has two major drawbacks. First, users have
to reason in terms of shift/reduce conflicts, and annotate the grammar if a
shift action should be preferred over reduce, or vice versa, to resolve conflicts.
Second, YACC’s disambiguation does not apply to scannerless parsers, since
it requires knowing the lookahead token for decision making. More specif-
ically, YACC’s disambiguation does not apply to any parser that relies on
character-level grammars [103, 104, 131], which are useful to avoid issues when
composing grammars of different languages [31, 30].

Klint and Visser [74] propose a semantics for declarative disambiguation
based on disambiguation filters. This semantics has been implemented by
SDF2, so invalid tree patterns can be constructed from SDF2 priority declara-
tions [127], and used in a disambiguation filter. The implementation relies on a
custom LR parse table generator, as SDF2 parse tables encode goto transitions
between states using productions, forbidding transitions that could construct
an invalid tree according to the tree patterns. Because this semantics only
targets conflicts by checking a parent-child relation in a tree, this solution is
not able to solve deep priority conflicts.

4.5.3 Disambiguation while Parsing

Ambiguities from operator precedence may also be addressed at parse time.
Such approaches have the advantage of using the original (or a slightly modi-
fied) grammar as input, but require adaptations of the parsing algorithm that
may cause overhead when parsing programs that are free of priority conflicts.

Afroozeh and Izmaylova [8] introduce a solution for disambiguating priority
conflicts on the basis of a full-fledged data-dependent grammar formalism.
The authors implemented their approach in a generalized LL parser named
Iguana [6]. Iguana addresses shallow priority conflicts and operator-style deep
conflicts using data-dependent grammars, but the approach does not extend
to dangling-else nor longest match. Given the experimental setup described

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 141

in their paper [8], it is not possible to assess the overhead of solving deep
priority conflicts, because no analysis has been performed on programs free
of deep priority conflicts. When solving the shallow conflicts present in the
Java 7 grammar, Afroozeh and Izmaylova’s approach causes, on average, 5%
overhead compared to the unambiguous Java grammar that directly encodes
precedence and associativity. In contrast, in this chapter we measure the cost
of disambiguating deep priority conflicts by parsing programs that are known
to be free of deep priority conflicts. Our lightweight data-dependent solution
has negligible overhead to solve deep priority conflicts, furthermore, it is able
to address more types of deep priority conflicts than Iguana.

The ALL(*) parsing algorithm of ANTLR [97] also handles operator prece-
dence dynamically by means of semantic predicates. Because top-down parsers
cannot handle left-recursive rules, the grammar is first rewritten to eliminate
direct recursion using a technique known as precedence climbing [38]. Next,
semantic predicates that are evaluated at parse time may filter invalid trees
according to the order in which productions are defined in the grammar.
The predicates are interwoven in the grammar productions representing the
constraints to avoid producing invalid trees. In our case, the constraints are
encoded in contextual non-terminals, as they indicate the trees that a non-
terminal should not produce as its leftmost or rightmost child. Furthermore,
we assume that the ANTLR solution to disambiguate deep conflicts have a
bigger impact on performance than our lightweight data-dependency, more
specifically when parsing programs without conflicts, as it uses similar tech-
niques to data-dependent grammars.

Finally, Erdweg et al. [45] implemented a disambiguation strategy at parse
time for SGLR, to support layout-sensitive languages. The disambiguation
mechanism consists of propagating information about layout when construct-
ing the parse trees, and enforcing constraints that are defined as attributes of
productions in SDF grammars. While we only propagate information about
leftmost and rightmost subtrees, their approach needs to propagate line and
column positions of all terminal symbols that were used to construct a tree.
In our case, we express constraints using sets of contextual symbols, checking
them using set-algebraic operations. By using an optimized bitset representa-
tion, our approach achieves near zero-overhead when disambiguating deep
priority conflicts. In contrast, Erdweg et al. state that their layout-sensitive
parsing approach is practicable with an average slowdown of 1.8 x compared
to a layout-insensitive solution. The authors mix enforcing constraints at parse-
time and post-parse, compared to our solution that solely disambiguates deep
priority conflicts at parse time.

4.6 C O N C L U S I O N S

In this chapter, we presented a novel low-overhead implementation technique
for disambiguating deep priority conflicts with data-dependency. The ap-
proach was implemented in a scannerless generalized LR parser, and evaluated
by benchmarking parsing performance of a corpus of popular Java and OCaml

142

projects on Github. Results show that our data-dependent technique cuts down
the cost of disambiguating deep priority conflicts to 1 % to 2 %, improving sig-
nificantly over contextual grammar rewriting strategies that have an overhead
of 48 % to 77 %, as shown in Section 4.4. By using data-dependency selectively
for just solving deep priority conflicts, we were able to reuse the (compact) LR
parse tables of grammars that do not disambiguate deep conflicts, avoiding
the typical problems of parse-table blowup of grammar rewriting strategies.
Overall, we showed that declarative disambiguation can indeed be solved with
almost no cost.

Chapter 4. Towards Zero-Overhead Disambiguation of Deep Priority Conflicts 143

Part II

Declarative Syntax Definition

145

5
Declarative Specification of Layout-Sensitive
Languages

A B S T R A C T

In layout-sensitive languages, the indentation of an expression or statement
can influence how a program is parsed. While some of these languages (e.g.,
Haskell and Python) have been widely adopted, there is little support for soft-
ware language engineers in building tools for layout-sensitive languages. As a
result, parsers, pretty-printers, program analyses, and refactoring tools often
need to be handwritten, which decreases the maintainability and extensibility
of these tools. Even state-of-the-art language workbenches have little support
for layout-sensitive languages, restricting the development and prototyping of
such languages.

In this chapter, we introduce a novel approach to declarative specification
of layout-sensitive languages using layout declarations. Layout declarations
are high-level specifications of indentation rules that abstract from low-level
technicalities. We show how to derive an efficient layout-sensitive generalized
parser and a corresponding pretty-printer automatically from a language
specification with layout declarations. We validate our approach in a case-study
using a syntax definition for the Haskell programming language, investigating
the performance of the generated parser and the correctness of the generated
pretty-printer against a corpus of 22191 Haskell files.

5.1 I N T R O D U C T I O N

Layout-sensitive (also known as indentation-sensitive) languages were intro-
duced by Landin [80]. The term characterizes languages that must obey certain
indentation rules, i.e., languages in which the indentation of the code influences
how the program should be parsed. In layout-sensitive languages, alignment
and indentation are essential to correctly identify the structures of a program.
Many modern programming languages including Haskell [86], Python [100],
Markdown [56] and YAML [20] are layout-sensitive. To illustrate how lay-
out can influence parsing programs in such languages, consider the Haskell
program in Figure 5.1, which contains multiple do-expressions:

In Haskell, all statements inside a do-block should be aligned (i.e., should
start at the same column). In Figure 5.1, we know that the statement on line 7

(guessValue x) belongs to the inner do-block solely because of its indentation.
If we modify the indentation of this statement, aligning it with the statements in
the outer do-block, the program would have a different interpretation, looping
indefinitely.

147

guessValue x = do
 putStrLn "Enter your guess:"
 guess <- getLine
 case compare (read guess) x of
 EQ -> putStrLn "You won!"
 _ -> do putStrLn "Keep guessing."
 guessValue x

1

2

3

4

5

6

7

Figure 5.1 Do-expressions in Haskell.

While layout-sensitive languages are widely used in practice, their tools are
often handwritten, which prevent their adoption by language workbenches
or declarative language frameworks. State-of-the-art solutions for declarative
specification of layout-sensitive languages extend context-free grammars to
automatically generate layout-sensitive parsers from a language specification,
but are limited by their usability, performance and tooling support. For
example, Adams [3] proposes a new grammar formalism called indentation-
sensitive context-free grammars to declaratively specify layout-sensitive languages.
However, this technique requires modifying the original symbols of the context-
free grammar and, as result, may produce a larger grammar in order to specify
certain indentation rules. Erdweg et al. [45] propose a less invasive solution
using a generalized parser, requiring only that productions of a context-free
grammar are annotated with layout constraints. In these constraints, language
engineers are required to encode indentation rules, such as alignment or
Landin’s offside rule,1 at a low-level of abstraction, that is, by comparing lines
and columns. In both solutions, parsing may introduce a large performance
overhead.

Both approaches ignore an essential tool in a language workbench: pretty-
printers. Pretty-printers play an important role since they transform trees back
into text. This transformation is crucial to developing many of the features
provided by a language workbench, such as refactoring tools, code completion,
and source-to-source compilers. Deriving a layout-sensitive pretty-printer from
a declarative language specification is challenging as the pretty-printer must
be correct, i.e., the layout used to pretty-print the program must not change the
program’s meaning.

In this chapter, we propose a novel approach to declaratively specifying
layout-sensitive languages. We take a holistic approach by considering a
domain-specific language to specify common indentation rules of layout-
sensitive languages that is (a) general enough to support both parsing and
pretty-printing, and (b) lets the user express indentation rules without resorting
to low-level constraints in terms of lines and columns.

We make the following contributions.

1Landin introduced the offside rule, enforcing that in a program of a layout-sensitive language,
all the subsequent lines of certain structures of the language should be “further to the right” than
the first line of the corresponding structure. If the tokens of the subsequent lines occur further to
the left than the first line, they are offside, and the structure is invalid.

148

• We define a domain-specific notation that concisely captures common
patterns for indentation rules that occur in layout-sensitive languages
(Section 5.3).

• We discuss our implementation of a layout-sensitive generalized parser
with efficient support for parse-time disambiguation of layout constraints
(Section 5.4).

• We present an algorithm for deriving correct layout-sensitive pretty-
printers from grammars with layout declarations (Section 5.5).

• We evaluate the performance and correctness of our solution on a bench-
mark introduced by Erdweg et al. [45], exercising 22191 Haskell files
(Section 5.6).

We cover related work in Section 5.7, discussing future work in Section 5.8,
and concluding in Section 5.9.

5.2 B A C K G R O U N D

In this section, we motivate our work on declarative specification of layout-
sensitive languages by providing an overview of layout constraints [45], enu-
merating their shortcomings when used in a language workbench.

5.2.1 Layout Constraints

In layout-sensitive languages, indentation and alignment define the shape of
certain structures of the language and the relationship between these shapes,
such that for the structures to be valid, their shape must adhere to certain rules.
A shape can be constructed as a box, with boundaries around the non-layout
tokens that constitute the structure.

For example, consider the code from Figures 5.2a and 5.2b. In Figure 5.2a,
because the list of statements inside a do-expression should be aligned, each
shape indicating a single statement of the list must start at the same column.
Similarly, if we consider that each statement in the do-expressions from Fig-
ure 5.2b should obey the offside rule, if the statement spans multiple lines, it
must have a shape similar to (but not or , for example).

Layout constraints can be used as annotations in productions of context-free
grammars to enforce specific shapes into the source code of abstract syntax
trees. Each tree exposes its shape given the location of four tokens in its
original source code: first, last, left, and right—called token selectors—as
shown in Figure 5.2b. The token selectors first and last access the position
of the first and last tokens in a tree, respectively. The selector left selects the
leftmost non-whitespace token that is not on the same line as the first token,
whereas the selector right selects the rightmost non-whitespace token that is
not on the same line as last.

Together with token selectors, a layout constraint may also refer to a specific
indentation element of the source code—called position selectors—line and

Chapter 5. Declarative Specification of Layout-Sensitive Languages 149

lComp = do
 x <- xRange
 return $ do
 y <- yRange
 return (x, y)

(a)

x = do 9 + 4
 * 3

main = do putStrLn $
 show (x *
 2)

first

left
right
last

(b)

Figure 5.2 Boxes used to highlight the shape of subtrees in do-expressions.

col, which yield the token’s line and column offsets, respectively. For example,
a layout constraint layout(x.left.col > x.first.col) indicates that the
subtree at position x should follow Landin’s offside rule.

Note that constraints may also mention multiple subtrees in an annotated
production, defining the relative position of these subtrees. That is the case
in the constraint used to indicate that all statements inside a do-expression
should be aligned, i.e., layout(x.first.col == y.first.col). Finally, note
that constraints may also be combined using the boolean operators and (&&),
and or (||), and a constraint ignore-layout can be used deactivate layout
validation locally.

5.2.2 Tools for Layout-Sensitive Languages

While layout constraints can be used to generate layout-sensitive parsers,
there has been little adoption of such specifications by tools such as language
workbenches.

Language workbenches enable agile development and prototyping of pro-
gramming languages by generating an integrated development environment
(IDE) from a language specification [51]. Therefore, one of the requirements for
language specifications of layout-sensitive languages is related to the usability
of the specifications, i.e., they must be declarative, concise and easy to use.
Furthermore, when using an IDE, language users expect rapid feedback from
the editor when editing their programs. Hence, the performance of the tools
generated from a language specification is another important concern when us-
ing a language workbench to develop layout-sensitive programming languages.
Finally, language workbenches go beyond parsing and code generation, pro-
viding many different features to language users, such as refactorings and
code completion. Thus, another concern when developing a layout-sensitive
language using a language workbench consists of specifying a pretty-printer,
which transforms the abstract syntax tree of a program back into source code.

Below, we discuss the shortcomings of layout constraints against these
requirements.

Usability. Layout constraints require annotating context-free productions to
indicate how the source code corresponding to subtrees should be indented.

150

However, they are rather verbose and low-level, since they involve comparing
lines and columns of tokens of different subtrees.

Parsing Performance. Generating tools from a language specification increases
maintainability and extensibility, but usually comes with a penalty in per-
formance. For example, Erdweg et al. [45] reported an overhead of about
80% when using a layout-sensitive generalized LR parser that uses layout
constraints to disambiguate Haskell programs.

Pretty-printing. Layout constraints can be used to generate parsers, but it is
not clear how to use them to automatically derive pretty-printers. One of the
challenges when generating a pretty-printer for a layout-sensitive language is
that the pretty-printer must be correct, i.e., pretty-printing a program should
not change its meaning.

In the remainder of this chapter, we show how we tackle each of these
concerns, such that language designers can develop layout-sensitive languages
using tools such as language workbenches.

5.3 L AY O U T D E C L A R AT I O N S

To improve the usability of declarative specifications for layout-sensitive lan-
guages, we introduce layout declarations: high-level annotations in productions
of a context-free grammar that enforce indentation rules on a specific node of
the abstract syntax tree. Layout declarations abstract over token and position
selectors, and provide a concise specification for most common indentation
rules: alignment and indentation of constructs, and the offside rule. We also
equip layout declarations with tree selectors, allowing them to be more readable
than when using the position of the subtree involved in a declaration.

5.3.1 Tree Selectors

When writing the original layout constraints, one must use the position of the
subtree in a production to enforce a constraint over this subtree. However,
when reading and writing layout constraints, we want to avoid counting
terminals and non-terminals in the production to identify to which tree the
constraint applies.

Layout declarations allow the specification of constraints using tree selectors.
Tree selectors may consist not only of the number of the subtrees, but also
literals and labeled non-terminals that occur in the production. A labeled non-
terminal is a non-terminal preceded by a label and a colon. Labels must be
unique within a production, and if a literal occurs multiple times in the same
production, then they must be referred by its position. For example, consider
the following productions, written using SDF3 [133] syntax:2

2SDF3 productions have the form: A.C = X1 X2 ... Xn {annos}, where the symbol A
represents a non-terminal, Xi represents either a terminal or a non-terminal, and the constructor C
indicates the name of the node in the abstract syntax tree when imploding the parse tree. The
list of annotations inside brackets annos can be used for different purposes, such as operator
precedence disambiguation or to specify layout constraints.

Chapter 5. Declarative Specification of Layout-Sensitive Languages 151

Exp.Seq = exp1:Exp ";" exp2:Exp ";"
Exp.Add = exp:Exp "+" exp:Exp {left}

In the first production, the first Exp subtree might be referred in a layout
declaration by its position (1) or by the label exp1. Considering the same
production, the literals ";" must be referred by their position, as they occur
multiple times in the production. In the second production, the literal "+", can
be referred using the literal itself, as it is unique within the production. Finally,
note that the underlined label in the second production is invalid, because the
same label is used on the first Exp non-terminal.

5.3.2 Alignment

A common rule in layout-sensitive languages requires that certain structures
must be aligned in the source code. For instance, as shown previously, all
statements in a do-block of a Haskell program must be aligned, i.e., they
must start at the same column. To express this indentation rule using layout
constraints, one may use the following productions:

Exp.Do = "do" StmtList
StmtList.Stmt = Stmt
StmtList.StmtSeq = Stmt StmtList

{layout(1.first.col == 2.first.col)}

Instead of using low-level concepts such as token and position selectors, we
propose using high-level layout declarations align or align-list to indicate
alignment of structures in the source code. A declaration layout(align

ref t) enforces that a tree indicated by the tree selector t should start in the
same column as the tree indicated by the ref tree selector, used as reference.
Consider the example below, which uses an align declaration to indicate that
the tail of the list StmtList should be aligned with the head of the list:

Exp.Do = "do" StmtList
StmtList.Stmt = Stmt
StmtList.StmtSeq = head:Stmt tail:StmtList

{layout(align head tail)}

In SDF, lists may be represented by specific non-terminals (A+ or A*), which
instructs the parser to flatten the tree structure corresponding to the list when
constructing the abstract syntax tree. However, using layout constraints require
explicitly defining productions for lists, which breaks this abstraction. The
layout declaration align-list can be applied to list non-terminals to indicate
that all elements in a list should start at the same column. Thus, one may
write:

Exp.Do = "do" stmts:Stmt+
{layout(align-list stmts)}

to indicate that the statements in the list should be aligned.

152

Semantics We define translation rules from layout declarations that describe
alignment to layout constraints using token and position selectors. Consider
the tree selectors x and y, the function pos(t), which obtains the position
of a subtree indicated by selector t, the function rename(X, Y), which locally
renames a non-terminal X to a non-terminal Y, and the following equations:

align x y pos(x) = x' pos(y) = y'

y'.first.col == x'.first.col
(5.1)

align-list x x is a tree selector for A+ (or A*)
rename(A+,A'+)

A'+ = A'+ A layout(1.first.col == 2.first.col)

(5.2)

Note that in Equation 5.2, using align-list enforces the layout constraint
on the list A+ (or A*), which could affect all occurrences of the list in the
grammar. Therefore, we first locally rename this non-terminal A+ to a non-
terminal A'+, restricting the alignment declaration to the particular list in
the production annotated with align-list. In Equation 5.1, on the other
hand, the layout declaration can be directly translated to the layout constraint
involving token and position selectors.

5.3.3 Offside Rule

As mentioned before, the offside rule is a common indentation rule applied
in layout-sensitive languages. This rule requires that any character in the
subsequent lines of a certain structure occur in a column that is further to the
right than the column where the structure starts. For example, consider the
following productions, which contains a layout constraint that requires that
the source code for the OffsideStmt tree obey the offside rule:

Exp.Do = "do" Stmt
Stmt.OffsideExp = Exp

{layout(1.left.col > 1.first.col)}

According to this rule, the expression in the following statement is invalid,
since the second line starts at a column that is to the left of the column where
the statement inside the do-expression starts:
do 18 + 8

* 3

In fact, any statement in which the multiplication sign is at the left of the digit
1 is invalid. By contrast, a valid program that satisfies the offside rule is:

do 18 + 8

* 3

Instead of using layout constraints, one may use the offside layout declaration
to achieve the same effect:

Stmt.OffsideExp = exp:Exp
{layout(offside exp)}

Chapter 5. Declarative Specification of Layout-Sensitive Languages 153

The offside layout declaration can also be used to specify the relationship
between the leftmost column of subsequent lines of a tree, and the initial
column of another tree. For example, consider the following productions:

Exp.Do = "do" stmt:Stmt
{layout(offside "do" stmt)}

Stmt.ExpStmt = Exp

With this declaration, the subsequent lines of Stmt should be in a column to
the right of the column where the literal do starts. For example, even if we do
not consider the offside rule for the inner statement, the following program is
still invalid:

do 18 + 8

* 3

as the symbol * occurs at the same column as the keyword do, i.e., it is offside.

Semantics We show the semantics of layout declarations layout(offside t)

and layout(offside ref t) by defining a translation into layout constraints
using tokens and position selectors. Consider the following equations with x

and y as tree selectors:

offside x pos(x) = x'

x'.left.col > x'.first.col
(5.3)

offside x y pos(x) = x' pos(y) = y'

y'.left.col > x'.first.col
(5.4)

In Equation 5.3, the declaration offside x specifies that the left token of the
tree x should be in a column further to the right than its first token. Similarly,
in Equation 5.4, the offside declaration between the trees x and y specifies
that the left token of y should be in a column further to the right than the
first token of x.

5.3.4 Indentation

Another common pattern in layout-sensitive languages is to enforce indentation
between subtrees. That is, a subtree should have its first token at a column
to the right of the column of the first token of another subtree. Consider for
example, the following productions:

Exp.Do = "do" stmt:Stmt
{layout(indent "do" stmt)}

Stmt.ExpStmt = Exp

The declaration in the first production indicates that the statement should start
further to the right than the do keyword. Thus, this declaration invalidates the
following program:

do
18 + 8 * 3

154

On the other hand, the following program obeys the declaration, as the expres-
sion statement starts further to the right, when compared to the do keyword:

do 18 + 8 * 3

Similar to the indent layout declaration, the declaration newline-indent

allows enforcing that a target subtree should start at a column further to the
right than another subtree. Moreover, the latter declaration also enforces that
the target subtree starts at a line below the line where the reference subtree
ends. Thus, when considering this layout declaration, the program presented
previously would also be invalid. A valid program would then be:

do
18 + 8 * 3

Semantics The indent and newline-indent declarations are rewritten into
layout constraints involving token and position selectors. Consider x and y

tree selectors and the following equations:

indent x y pos(x) = x' pos(y) = y'

y'.first.col > x'.first.col
(5.5)

newline-indent x y pos(x) = x' pos(y) = y'

y'.first.col > x'.first.col &&

y'.first.line > x'.last.line

(5.6)

Note that the layout declaration newline-indent requires a conjunction be-
tween two constraints involving the columns of the first tokens of both trees
referenced by x and y, and the line of the last token of the tree x and the line
of the first token of the tree y.

5.4 L AY O U T- S E N S I T I V E PA R S I N G

Parsing layout-sensitive languages is difficult because these languages cannot
be straightforwardly described by traditional context-free grammars. Such
languages require counting the number of whitespace characters in addition
to keeping track of nesting, which requires context-sensitivity. Therefore,
most parsers for layout-sensitive languages rely on some ad-hoc modification
to a handwritten parser. For example, the Python language specification
describes a modified scanner that preprocesses the token stream, generating
newline, indent and dedent tokens to keep track of when the indentation
changes. Meanwhile, Python’s grammar assumes these tokens to enforce the
indentation rules of the language. In Haskell, an algorithm that runs between
the lexer and parser converts implicit layout into explicit semicolons and curly
braces to determine how the structures should be parsed by a traditional
context-free grammar.

Because modifications to the parser vary from language to language, they
are hard to implement when deriving a parser from a declarative language
specification. Therefore, in this section, we propose a solution similar to Erdweg

Chapter 5. Declarative Specification of Layout-Sensitive Languages 155

et al.’s, which consists of deriving a scannerless generalized layout-sensitive
LR parser (SGLR) from a language specification. Our algorithm improves on
Erdweg et al.’s implementation by performing parse-time disambiguation of
layout constraints, in contrast to post-parse disambiguation.

5.4.1 Layout-Sensitive SLGR

In theory, traditional context-free grammars can be used to generate a general-
ized parser for layout-sensitive languages. Since the parser produces a parse
forest containing all possible interpretations of the program, this forest can
then be traversed, such that only the trees that obey the indentation rules of
the language are produced as result.

In practice this approach does not scale, since ambiguities caused by layout
can grow exponentially [45], making it infeasible to traverse all trees in a parse
forest produced when parsing a program of a layout-sensitive language. Thus,
disambiguation of layout constraints at parse time should be preferred over
post-parse disambiguation [126, 69].

We propose an implementation of a scannerless generalized LR parser
(SGLR), that rejects trees that violate layout constraints at parse time. Our
implementation calculates position information (line and column offsets for
starting and ending positions) for token selectors (first, last, left, and
right), propagating this information when building the trees bottom up, and
using this information to evaluate layout constraints. The main difference
between our implementation and the one proposed by Erdweg et al. [45] is that
we evaluate all layout constraints at parse time, when building the subtrees,
whereas in Erdweg et al.’s implementation, disambiguation using left and
right constructs is performed after parsing (we discuss their implementation
in more detail in Section 5.7).

Position Information The first modification we propose to add layout-sensitivity
to the original SGLR algorithm [130] is to add position information to every
tree node. That is, each node of the parse tree should contain the line and
column at which it begins, and the line and column at which it ends. This
information can be obtained from the parser, since it keeps track of the position
in the source code when it starts and finishes parsing a structure. Besides that,
our algorithm also calculates the position information for the left and right

tokens of every tree node. We present the algorithm that constructs parse tree
nodes in Figure 5.3.

The algorithm propagates position information about token selectors based
on the subtrees of the tree node being constructed. The method CREATE-TREE-
NODE takes as arguments the production being applied, the list of trees that
represent the subtrees of the node being created, and two Position variables
beginPos and curPos, indicating the line and column where the tree starts
and the line and column where the parser is currently at, respectively. The
algorithm first constructs a tree node t given its list of subtrees, as shown in
line 2. In lines 3 and 4, the information about the first and last tokens of t
are assigned to the current node given the arguments beginPos and endPos.

156

1 function CREATE-TREE-NODE(Production A.C = X1 ... Xn,

List<Tree> [t1, ..., tn], Position beginPos, Position

curPos)

2 Tree t = [A.C = t1, ..., tn]

3 t.first = beginPos

4 t.last = curPos

5 t.left = null

6 t.right = null

7

8 // calculate left and right

9 foreach(ti in t) {

10 // should not consider layout

11 if (isLayout(ti))

12 continue

13 if (ti.left != null)

14 t.left = leftMost(t.left, ti.left)

15 if (ti.first.line > t.first.line)

16 t.left = leftMost(t.left, ti.first)

17

18 if (ti.right != null)

19 t.right = rightMost(t.right, ti.right)

20 if (ti.last.line < t.last.line)

21 t.right = rightMost(t.right, ti.last)

22 }

23 return t

24 end function

25

26 function leftMost(p1, p2) {

27 if (p1 == null || p1.col > p2.col)

28 return p2

29 else return p1

30 end function

31

32 function rightMost(p1, p2) {

33 if (p1 == null || p1.col < p2.col)

34 return p2

35 else return p1

36 end function

Figure 5.3 Pseudocode for the modified CREATE-TREE-NODE method from the
original SGLR and the auxiliary functions leftMost and rightMost, in the implemen-
tation of the layout-sensitive SGLR.

The remainder of the algorithm computes the information about left

and right. The algorithm calculates the position information about left by

Chapter 5. Declarative Specification of Layout-Sensitive Languages 157

Source Code Layout Constraints Trees

do stm1
 do stm2
 stm3

Exp.Do = "do" stmts:Stmt+
 {layout(align-list stmts)}

Do

Dostm1

Stm+

Stm+

stm2 stm3

Do

Dostm1

Stm+

Stm+

stm2

stm3

first=(3,7)first=(2,7)

first=(1,4)

first=(1,1)

first=(3,7)first=(1,4) first=(2,4)

first=(2,7)

✘ reject tree

do

do

do

do

first=(2,4)

do e1
 + e2

Stmt.OffsideExp = exp:Exp
 {layout(offside exp)}

Add

e2

e1

Do

first=(1,1)
left=(2,4)

+

first=(2,4)
left=nulldo

Do

e2e1

Add

first=(1,1)
left=(2,4)

first=(1,4)
left=(2,4)

first=(2,6)
left=null

✘ reject tree

+

do

first=(2,4)
left=null

Figure 5.4 Example of how our algorithm for a layout-sensitive SGLR constructs
trees and applies layout constraints.

processing the list of subtrees, as its value should be the leftmost value (the
one in the lowest line, and lowest column), when considering the left tokens
of all subtrees that do not represent layout (line 14). However, if any subtree
starts in a line that is below the line where t starts, the algorithm updates the
left token of t accordingly (line 16). A similar strategy is applied to calculate
the information about the right token.

158

Enforcing Layout Constraints The layout-sensitive SGLR algorithm works by
rejecting trees that violate the layout constraints defined in a production using
the information collected in the algorithm of Figure 5.3. A layout constraint
is enforced at parse time when executing reduce actions in the parser, i.e., in
the function DO-REDUCTIONS [130]. In layout-sensitive SGLR, a reduction
is performed only when a production does not define a layout constraint, or
when the layout constraint it defines is satisfied.

For example, the trees in Figure 5.4 indicate how the parser constructs
tree nodes and verifies layout constraints. For the first program, the layout
constraint states that the statements must be aligned. Therefore, since the
second tree for this program does not satisfy this constraint, the tree is rejected
as the parser does not perform the reduce action to construct it. In the second
program, we can see how the information about the left is propagated.
Similarly to the first example, the first tree constructed when parsing this
program is the only one produced by the parser, since the second tree violates
the offside rule.

5.4.2 Propagation of left and right at Parse Time

In the algorithm presented in Section 5.4.1, we propagate position information
about left and right while building the parse tree. However, this approach
may not produce the correct result in all scenarios. For example, consider a
parse forest containing two different parse trees. Suppose that the source code
for each tree in the parse forest is indicated by the programs below, where
the symbols * represent actual characters in the program, and - represents a
comment:

Considering that both programs start at column 1, in the first tree, the left

token is at column 2, whereas in the second tree, left is actually at column
3, because part of its source code is a comment. Thus, it is unclear what is
the actual value for left when considering the parse forest, i.e., both trees
simultaneously.

While this could be a problem when propagating position information
about left and right tokens, and applying layout constraints at parse time,
we believe that this scenario does not occur often in practice. As an alternative
solution, we adapt our SGLR algorithm to fall back to post-parse disambigua-
tion in such cases.

5.5 L AY O U T- S E N S I T I V E P R E T T Y- P R I N T I N G

A pretty-printer is a tool that transforms an abstract syntax tree back into text.
Pretty-printers are key components of language workbenches. For example,
they can be used by other tools such as refactoring tools and code completion,
or when defining source-to-source compilers. A lack of pretty-printing support

Chapter 5. Declarative Specification of Layout-Sensitive Languages 159

effectively prevents the adoption of language workbenches for layout-sensitive
languages.

Pretty-printing programs in a layout-sensitive language is not an easy task.
Because the layout in the source code identifies how the code should be parsed,
the pretty-printer needs to be designed such that the meaning of the original
program does not change after it is pretty-printed. Thus, in general, a pretty-
printer is correct if the same abstract syntax tree is produced when parsing both
the original and the pretty-printed programs. More formally, if we consider
a program p and parsing and pretty-printing as two functions parse and
prettyPrint, the following equation must hold:

parse(p) = parse(prettyPrint(parse(p)))

In this section we propose a technique to derive a correct pretty-printer
based on a language specification containing layout declarations. We use
strategies to apply modifications to the pretty-printed program, such that each
layout declaration is considered while performing a top-down traversal in an
intermediate representation of the abstract syntax tree.

5.5.1 From Trees to Boxes

A naive implementation of a pretty-printer consists of printing the program
separating each token by a single whitespace. However, it is easy to see that for
a layout-sensitive language that enforces alignment, our naive pretty-printer
would produce an invalid result as the pretty-printed program would not
contain any newlines.

Manipulating this string directly to fix the layout according to the indenta-
tion rules of the language is also not ideal, as we lose the information about the
structure of the program and the layout declarations encoded in the abstract
syntax tree. Therefore, in order to produce an abstract representation of a
program that takes into account the program structure and its layout, we use
the Box language [25, 26] as an intermediate representation.

Boxes provide a structured representation of the pretty-printed text. Each
node in the abstract syntax tree can be translated into a box, with its subtrees
recursively translated into sub-boxes. The most basic boxes are string boxes,
which can be composed (nested) using composition operators. Our approach
considers three different composition operators in the Box language: vertical
composition (V), horizontal composition (H) and z-composition (Z) [132].

The horizontal composition operator concatenates a list of boxes into a
single line, whereas the vertical composition operator concatenates a list of
boxes putting each box into a different line, starting at the same column. Each
operator optionally takes an integer hs or vs as parameter to determine the
number of spaces or empty lines separating each box, respectively. To illustrate,
consider the examples below:

160

[H hs=x] => B1 B2 B3 B1 B2 B3… …

x spaces

[V vs=x] => B1 B2 B3 B1

B2

B3

⋮ x lines

⋮

The z-composition operator places its boxes vertically on separate lines
resetting the indentation of all boxes after the first to 0. Thus, for those
boxes, the indentation from surrounding boxes is ignored and they start at
the left margin. For example, if we combine the horizontal operator and the
z-composition operator, we obtain the following output:

B1 B2…

x spaces

[H hs=x [Z]] => B1 B2 B3

B3

Boxes can be easily converted into text by recursively applying the box
operators, as shown by the examples. Therefore, instead of manipulating the
string produced by the pretty-printer, we manipulate boxes to enforce the
layout declarations from the language specification.

5.5.2 Applying Layout Declarations to Boxes

Boxes provide information about the layout of the program, retaining the
structure of the abstract syntax tree. In order to apply layout declarations to
the boxes generated from pretty-printing a tree, each box should also contain
its relative line and column positions in the pretty-printed program. For
example, consider the following Haskell program, pretty-printed from a naive
pretty-printer, as discussed previously:

x = do s1 s2

One possible box representation for this program is:

[H hs=1 [H hs=1]]x = do s1 s2

To apply layout declarations to this program, we attach the relative line and
column positions in the source code to the box (indicated by l and c in the
diagram below). Furthermore, since boxes are created from the nodes in the
abstract syntax tree, we also attach to the boxes the layout declarations from
the corresponding node in the abstract syntax tree. Assuming that s1 ends at
column x, our pretty-printer produces the following boxes:

Chapter 5. Declarative Specification of Layout-Sensitive Languages 161

B1
l=lx
c=cx

B1
l=lx
c=cx

B2

l=ly
c=cy

B2

l=ly
c=cx

[H hs=cx-cy] E

(a) cx > cy

B1
l=lx
c=cx

B1
l=lx
c=cx

[Z [H hs=cx]]B2

l=ly
c=cy

l=ly+1
c=cx

B2EE

(b) cy > cx

Figure 5.5 Manipulating boxes to apply a layout declaration that enforces alignment
between the boxes B1 and B2.

[H hs=1 [H hs=1]]x = do s1

l=1
c=1

l=1
c=3

l=1
c=5

l=1
c=8

align-list
s2

l=1
c=x+1

Transforming this box into a string and parsing that string results in a syntax
error, since the statements inside the do-expression do not start at the same
column. To ensure correct use of layout in the pretty-printed string, we apply
a layout fixer that traverses the boxes and fixes the indentation where necessary.
In this case, when considering an align-list layout declaration, the layout
fixer replaces the inner horizontal operator by a vertical operator producing
the following boxes and pretty-printed program:

[H hs=1 [V vs=0]]x = do s1

l=1
c=1

l=1
c=3

l=1
c=5

l=1
c=8

align-list
s2

l=2
c=8

x = do s1
 s2

which satisfies the layout declaration.
We adopt a similar strategy for adapting the boxes for the remaining layout

declarations. For a layout declaration align x y, the left-most column of a
box B2 corresponding to the tree indicated by y should be equal to the left-most
column of a box B1 from the reference tree x. To satisfy this layout declaration,

162

if B2 starts at a column to the left of the starting column of B1, our layout fixer
wraps B2 in a horizontal operator, using an empty box (a box E containing
the empty string), setting hs as the number of spaces necessary to align the
two boxes. For the case where B2 starts at a column further to the right than
the left-most column where B1 starts, the layout fixer uses a combination of
a z-operator and a horizontal operator to skip to the next line, adding the
indentation necessary to align both boxes. Both scenarios are illustrated in
Figure 5.5. Note that empty boxes allow indenting other boxes (using the
horizontal operator) or moving them to a new line (using the z-operator).

The same strategy can be used for the layout declarations indent x y, and
newline-indent x y, setting the horizontal box such that the boxes are not
aligned, but that the left-most column of B2 is to the right of the left-most
column of B1, enforcing a z-operator whenever it is necessary to print the text
into another line.

For offside declarations, we apply a slightly different approach. Because an
offside declaration requires that the boxes in the subsequent lines should be
further to the right than the column where the structure starts, we verify the
operands of the z-operator. That is, for all boxes that move to a newline due to
a z-operator and violate the offside rule, we use horizontal composition with
an empty box to indent them such that the offside rule is satisfied.

We apply these strategies in a top-down traversal of the boxes that represent
the original program. This approach produced satisfactory results when
considering the Haskell programs in our benchmark as we will discuss in
Section 5.6.2.

5.5.3 Layout Declarations for Pretty-printing

In this chapter, we focus primarily on the correctness of a generated pretty-
printer, but pretty-printing the program in a single line, adding newlines only
to enforce layout declarations may not produce a pretty-printer. In layout-
sensitive languages, concepts such as alignment, indentation and even the
offside rule contribute to make the pretty-printed code prettier, i.e., more
readable. However, these are not sufficient to determine a pretty layout. For
example, consider the following production defining an if-else construct, with
layout declarations to enforce the alignment of the then (T) and else (E) branches:

S.IfElse = "if" E "then" T:S "else" E:S {layout(align T E)}

A pretty-printed program using this production and the layout fixing algorithm
looks like:

if e1 then s1 else
if e2 then s2 else

s3

While this program is correct according to the layout declaration, one may
say it is not pretty, as its layout may not make the program more readable,
specially if we would consider writing programs with nested if-else statements.

Chapter 5. Declarative Specification of Layout-Sensitive Languages 163

The declarations from Section 5.3 are always enforced when parsing the
program. However, for constructs that are not layout-sensitive, we could use
a more flexible approach, using declarations only to produce better pretty-
printers. Thus, we introduce pretty-printing layout declarations, which are similar
to the previous ones, but are used only for pretty-printing. Layout declarations
for pretty-printing start with the prefix pp-, and are ignored by the parser.

With pretty-printing layout declarations, the language designer can generate
prettier pretty-printers, but still allow flexible layout when parsing the program.
For example, consider the same production as the one shown previously, with
additional pretty-printing layout declarations:

S.IfElse = "if" E "then" T:S "else" E:S
{layout(pp-newline-indent "if" T && pp-align "if" "else" &&
align T E)}

Applying the pretty-printer generated from this production into the same
program, produces:

if e1 then
s1

else
if e2 then
s2

else
s3

Note that the pretty-printed program using only the align declaration would
also be accepted by the same parser defined by the production above, since the
additional layout declarations are used only for pretty-printing.

To provide more flexibility to language designers regarding indentation sizes
and newlines, we also introduce the declaration pp-newline-indent-by(x)

and pp-newline(x). The declaration pp-newline-indent-by(x) is a varia-
tion of the declaration pp-newline-indent, such that it is possible to specify
the number of spaces (using the integer x) that pretty-printer must consider
when indenting the program. The declaration pp-newline(x) t, on the other
hand, enforces that the tree t starts on a newline, indented by x spaces from
the enclosing indentation.3

For instance, if instead we use the layout declaration layout(pp-newline(1)

T && pp-newline "else") on the same production, it is possible to construct
a pretty-printer that produces the following program:

if e1 then
s1

else if e2 then
s2

else s3

3If x = 0, the declaration pp-newline can be used instead.

164

5.6 E VA L U AT I O N

In this section we evaluate our approach for generating a parser and a pretty-
printer from a grammar containing layout declarations. We are interested in
answering the following research questions.

RQ1 How parse-time disambiguation of ambiguities due to layout affects the
performance of a generalized parser?

RQ2 What is the accuracy of our layout fixer when pretty printing files of a
layout-sensitive language?

RQ3 How easy is it to specify a layout-sensitive language?

In order to answer the these research questions, we generate a parser and a
pretty-printer derived from a declarative specification for Haskell containing
layout declarations. We apply both generated parser and pretty-printer to
22191 Haskell programs from the Hackage4 repository, using the benchmark
described in [45]. We used the files in the same benchmark to provide a fair
comparison between the performance of our parser and their implementation.

In order to measure the performance overhead of the layout-sensitive parser,
we use a pretty-printer tool, part of the haskell-src-exts package5, which
has an option to pretty-print programs using only explicit grouping (brackets
and semicolons). We also preprocess files using the C preprocessor part of the
Glasgow Haskell Compiler (GHC) supporting additional extensions to increase
the coverage of files. The diagram in Figure 5.6a illustrates the process we
adopted.

To measure the performance of our layout-sensitive parser (LS-SGLR) on the
original program, we first apply the C preprocessor, applying the parser to the
Program-Norm file. Similarly, we measure the performance of an implementa-
tion of SGLR without support for layout-sensitive disambiguation (LI-SGLR)
on a program that contains brackets and semicolons to explicitly delimit struc-
tures (Program-Expl), using the pretty-printer from the haskell-src-exts

package. We then compare the performance of both parsers to verify the
overhead of using the layout-sensitive features of our implementation.

To measure the correctness of the pretty-printer generated using our ap-
proach, we use the process described in Figure 5.6b. First, we preprocess the
file using the C preprocessor, generating the file Program-Norm. Next, we
parse this file and pretty-print its abstract syntax tree using our pretty-printer
to generate a new program Program-PP. Finally, we parse this file comparing
its tree with the tree originated from the file Program-Norm.

We measure how easy it is to specify a layout-sensitive language by counting
the total number of layout declarations used in the grammar.

4http://hackage.haskell.org
5http://hackage.haskell.org/package/haskell-src-exts

Chapter 5. Declarative Specification of Layout-Sensitive Languages 165

http://hackage.haskell.org
http://hackage.haskell.org/package/haskell-src-exts

LI-SGLR

Program CPP preprocessor

GHC pretty-printer

Program-Norm

Program-Expl

LS-SGLR

(a) Evaluating the performance of the parser.

Program CPP preprocessor

SDF3 pretty-printer

Program-Norm

Program-PP

LS-SGLR

(b) Evaluating the correctness of the pretty-printer.

Figure 5.6 Evaluation setup.

5.6.1 Experimental Setup

We executed the benchmarks on a computer with 16GB RAM, and an Intel
Core i7 CPU with a base frequency of 2.7GHz and a 6MB Last-Level Cache.
The software consisted of Apple’s macOS version 10.13.5 (17F77) and Oracle’s
Java Virtual Machine version 1.8.0_102.

We measured the execution time of batch-parsing the corpus of Haskell
programs using the Java Microbenchmarking Harness (JMH), which is a frame-
work to overcome the pitfalls of (micro-)benchmarking. When executing the
benchmarks, we disabled background processes as much as possible, fixing the
virtual machine heap size to 8 GB. We configured JMH to perform 5 warmup
iterations, and 10 measurements, calculating the average time of each execution.
We use the same settings to test the correctness of the pretty-printer, however,
instead of using JMH, we simply compare Java objects corresponding to the
abstract syntax tree of the programs Program-Norm and Program-PP.

5.6.2 Experiment Results

Performance of the Parser The results showing the parse-time of the LS-SGLR
parser on programs with original layout, and the original SGLR parser on
programs with explicit layout are presented in Table 5.1. Overall, we measured
the overhead of our layout-sensitive parser to be 1.72x. This compares to
1.80x for Erdweg et al.’s implementation. Because Haskell programs may
still require an additional post-parse disambiguation to disambiguate longest-
match constructs [86, 45], we suspect that part of this overhead is caused by

166

Parser Data Set Time (seconds) Overhead
LS-SGLR Program-Norm 638.05± 1.96 1, 72x
LI-SGLR Program-Expl 370.26± 0.68 —

Table 5.1 Benchmark results when executing our LS-SGLR parser on programs
containing their original layout, and the LI-SGLR parser on programs containing
explicit layout.

Parser Data Set Time (seconds) Overhead
LS-SGLR Program-Norm 239.79± 0.90 1.53x
LI-SGLR Program-Expl 156.37± 0.56 —

Table 5.2 Benchmark results when considering a subset of 14830 programs that do
not have longest-match ambiguities.

this additional disambiguation step, since programs with explicit layout do not
present such ambiguities. For this reason, we also ran the same experiment
on programs that do not contain longest-match ambiguities (14830 programs),
measuring the overhead of disambiguating only ambiguities due to layout. As
shown in Table 5.2, for such programs our parser presented an overhead of
1.5x.

Correctness of the pretty-printer When executing our pretty-printer, we verified
that only 6 out of 22191 programs produced incorrect results (0.03 %). Because
of the low number of cases, we investigated these programs manually and
verified that because we apply our layout-fixer using a top-down traversal, a
ripple effect when fixing a layout declaration may disrupt parts of the source
code that have been previously fixed.

Language specification The SDF3 grammar for Haskell used in our experiments
contains 473 productions. It was necessary to annotate 34 productions to specify
the indentation rules for Haskell. In total, we added 43 layout declarations,
being 10 offside, 1 align, 5 align-list, 19 indent, and 8 ignore-layout

declarations. Note that some productions required multiple declarations.

5.6.3 Threats to Validity

A threat to external validity, with respect to the generality of our results, is that
we used only Haskell in our benchmarks. Despite not being able to generalize
our results beyond Haskell programs, we believe that Haskell has indentation
rules that are similar to other layout-sensitive languages. We have also tried
our approach on a syntax definition for a subset of Python. However, because
we do not cover the entire language, we could not parse many real-world
programs, and decided to not include it in our benchmarks.

Another threat to the validity of our results concerns the correctness of
our parser. To tackle this issue, we verified that the abstract syntax trees

Chapter 5. Declarative Specification of Layout-Sensitive Languages 167

we obtained from our parser and the trees from the implementation done
by Erdweg et al. were equal. Erdweg et al. checked the correctness of their
parser by comparing it with to the parser from GHC. Since they obtained
positive results from that comparison, we believe that our parser is also correct.

5.7 R E L AT E D W O R K

In this section, we highlight previous work on layout-sensitive parsers and
generating pretty-printers from a declarative specification, presenting the main
differences with our work, and discussing how prior work inspired us.

5.7.1 Layout-Sensitive Parsing

As we mentioned previously, our approach to derive a layout-sensitive parser
from a declarative specification was inspired by the work by Erdweg et al.
[45]. Their parser performs post-parse disambiguation to avoid splitting parse
states that were already merged when finding an ambiguity, which would
degrade the performance of the parser. We eliminate the necessity of merging
these states by propagating the information about token selectors at parse
time, preventing invalid trees from being constructed in the first place, and
improving the performance of our parser as it is not necessary to disambiguate
such trees after parsing.

Indentation-sensitive context-free grammars (IS-CFGs) [3], can be used to
generate LR(k) or GLR layout-sensitive parsers. In IS-CFGs each terminal
is annotated with the column at which it occurs in the source code, i.e., its
indentation, and each non-terminal is annotated with the minimum column
at which it can occur. To express alignment of constructs, an IS-CFG requires
additional productions, which are generated automatically from certain non-
terminals. We opted for not modifying the original grammar, only requiring
that productions are annotated with layout declarations. While our approach
is based on a scannerless generalized parser, we obtained similar performance
results to a layout-sensitive LR(k) parser generated from an IS-CFG when
considering Haskell programs with longest-match ambiguities. Finally, it is not
clear how to automatically derive a pretty-printer from an IS-CFGs, whereas
we provided a mechanism to derive a pretty-printer from a specification with
layout declarations.

Afroozeh and Izmaylova [7] use data-dependent grammars [63] to generate
a layout-sensitive parser. They propose high-level declarations such as align
and offside that are translated into equations, which are evaluated during
the execution of a generalized LL parser. In our work, we opted to leave the
grammar intact and have layout declarations as annotations on productions.
In contrast, their declarations are intermingled with the non-terminals in
productions, which decreases readability. Finally, their approach also requires
propagating data “upwards” and “downwards” when building tree nodes,
whereas we propagate data only upwards.

168

Brunauer and Mühlbacher [32] propose another approach to declaratively
specify layout-sensitive languages using a scannerless parser. They modify
the non-terminals of the grammar to include integers as parameters, which
are mixed with the grammar productions to indicate the number of spaces
that must occur within certain productions. However, these changes have a
detrimental effect on the readability and on the size of the resulting grammar.
We opted to abstract over details such as number of spaces, columns, and lines,
by using high-level layout declarations.

5.7.2 Pretty-printing

Many solutions have been proposed to integrate the specification of a parser
and a pretty-printer [101, 132, 22]. However, none of these solutions is aimed
at generating layout-sensitive parsers and pretty-printers using the same spec-
ification. For instance, the syntax definition formalism SDF3 [132] allows
the specification of a parser and a default pretty-printer to be combined by
using template productions. Template productions are similar to regular pro-
ductions, but the indentation inside the template is considered only when
pretty-printing the program. Thus, they are similar to our layout declarations
for pretty-printing as they do not enforce any restriction with respect to layout
while parsing. However, when using templates in combination with layout
declarations to generate layout-sensitive parsers, any inconsistency between
the templates and the declarations might result in an incorrect pretty-printer.

Different approaches have been proposed to derive prettier [138], and correct-
by-construction [40] pretty-printers. However, these approaches are aimed at
traditional programming languages, and might require further adaptations
to be applied to layout-sensitive languages. Finally, none of these approaches
allow a specification of the pretty-printer that can be derived from the context-
free grammar. We use layout declarations as annotations to context-free
productions to indicate how structures should be pretty-printed such that the
pretty-printed program obeys the indentation rules of the language. Further-
more, our pretty-printing layout declarations enable customizing the generated
pretty-printer such that it also produces prettier results.

5.8 F U T U R E W O R K

As future work we plan to apply our techniques to more layout-sensitive
languages, examining their indentation rules to observe how our generated
parser and pretty-printer behave in other scenarios. We also would like to
investigate different strategies to apply our layout fixer, finding alternatives that
do not cause a ripple effect when applying (pretty-printing) layout declarations,
as it may produce incorrect results. Furthermore, we would like to study the
integration between our pretty-printing layout declarations and other syntax
definition formalisms that enable declarative specification of both parser and
pretty-printer, such as SDF3.

Chapter 5. Declarative Specification of Layout-Sensitive Languages 169

Another aspect to consider is preservation of comments when pretty-
printing layout-sensitive programs. Currently, our pretty-printer discards
comments altogether, but ideally, comments should be preserved while main-
taining the correctness of the pretty-printer. Preservation of comments in
transformations is challenging even for traditional languages, and most ap-
proaches rely on heuristics [66, 85].

Finally, we propose a more in-depth analysis of SGLR mechanisms to
disambiguate longest-match constructs. As shown by our experiment, such
ambiguities are responsible for a considerable fraction of the overhead of
our parser for Haskell. It would also be interesting to study how layout-
sensitive and longest-match disambiguation are related to operator precedence
disambiguation [8, 119].

5.9 C O N C L U S I O N

In this chapter, we presented an approach to support declarative specifications
of layout-sensitive languages. We tackled the main issues that prevent the
adoption of these languages in tools such as language workbenches: usability,
performance and tool support. We introduced layout declarations, provid-
ing language designers with a high-level specification language to declare
indentation rules of layout-sensitive languages. Furthermore, we described a
more efficient implementation of a scannerless layout-sensitive generalized LR
parser based on layout declarations. Finally, we presented strategies to derive
a correct pretty-printer, which produced the correct result for almost all of the
programs in our benchmark. Overall, we believe that our work can be used to
facilitate the development and prototyping of layout-sensitive languages using
tools such as language workbenches.

170

6
Principled Syntactic Code Completion

A B S T R A C T

Principled syntactic code completion enables developers to change source
code by inserting code templates, thus increasing developer efficiency and
supporting language exploration. However, existing code completion systems
are ad-hoc and neither complete nor sound. They are not complete and only
provide few code templates for selected programming languages. They also
are not sound and propose code templates that yield invalid programs when
inserted. This chapter presents a generic framework that automatically derives
complete and sound syntactic code completion from the syntax definition
of arbitrary languages. A key insight of our work is to provide an explicit
syntactic representation for incomplete programs using placeholders. This
enables us to address the following challenges for code completion separately:
(i) completing incomplete programs by replacing placeholders with code
templates, (ii) injecting placeholders into complete programs to make them
incomplete, and (iii) introducing lexemes and placeholders into incorrect
programs through error-recovery parsing to make them correct so we can
apply one of the previous strategies. We formalize our framework and provide
an implementation in Spoofax.

6.1 I N T R O D U C T I O N

Code completion, also known as content completion or content assist, is an
editor service that proposes and performs expansion of the program text.
Code completion helps the programmer to avoid misspellings and acts as a
guide to discover language features and APIs. Most mainstream integrated
development environments (IDEs) provide some form of code completion and
industrial studies indicate that code completion is one of the most frequently
used IDE services [12].

There are two classes of code completion: syntactic and semantic. Syntactic
code completion considers the syntactic context at the cursor position and
proposes code templates for syntactic structures of the language. For example,
most IDEs for Java support syntactic code completion with class and method
templates. Semantic code completion also uses the cursor position to propose
templates, but by applying semantic analysis to the program, the IDE can
propose code templates or identifiers that do not violate the language’s name
binding or typing rules. For example, in this case IDEs for Java may suggest
variables or methods that are visible in the current scope and have the expected
type at the cursor position.

171

1 2

3 4

Figure 6.1 (1) Incomplete program with explicit placeholders. (2) Triggering com-
pletion for a placeholder. (3) After selecting a proposal, showing completions for
nested placeholders. (4) Completing a nested placeholder by typing.

In our work, we focus on syntactic code completion. Even for mainstream
languages in mainstream IDEs, syntactic code completion is often ad-hoc and
unreliable. Specifically, most existing services for syntactic code completion are
incomplete and only propose code templates for selected language constructs
of a few supported languages, thus inhibiting exploring the language’s syntax.
Moreover, most existing services are unsound and propose code templates that
yield syntax errors when inserted at the cursor position.

To address these shortcomings, we present a generic code-completion frame-
work that derives sound and complete syntactic code completion from syntax
definitions. From the syntax definition, we derive code templates and appli-
cability conditions for them to ensure soundness. To support completeness
and propose all language structures, we represent incomplete program text
explicitly using placeholders that we automatically introduce into the syntax
definition. This allows our code templates to yield incomplete programs that
can be subsequently completed.

Figure 6.1 illustrates our use of placeholders in a Java-like program. The
first box shows an incomplete program with an expression placeholder. The
program is syntactically correct since we introduce the placeholder as part of
the language. The second box shows that placeholders give rise to completion
proposals, which may themselves be incomplete (contain placeholders). After
selection of a proposal, the developer can expand or textually replace the
placeholders inserted by the template.

In addition to enabling step-wise code completion, explicit placeholders
allow us to address two important practical challenges of code completion:
inferring completion opportunities in complete program texts and generating
completion proposals while recovering from syntax errors. Complete programs
do not contain placeholders, yet code completion can be useful for adding list

172

elements or optional constructs. For example, we may want to use syntactic
code completion to add modifiers like public to a method or to add statements
to a method’s body. Instead of developing such support for complete programs
directly, we provide our solution using placeholder inference (to make the
program incomplete) followed by regular syntactic code completion of the
inferred placeholder.

Incomplete
programs

Incorrect
programs

Complete
programs

Expand
placeholder

Infer
placeholder

Recover
incomplete

program

Recover
complete
program

Expand
placeholders

Correct
programs

Infer
placeholder

Figure 6.2 Separation of concerns in code completion.

Incorrect programs contain syntax errors but are important to support
because incorrect programs occur frequently during development. Again,
instead of developing syntactic code completion for incorrect programs directly,
we decompose this activity. We use error-recovery parsing [65, 41] to insert
lexemes into the program text. However, since we made placeholders part of
the language, an error-recovering parser will also consider placeholders for
insertion, thus yielding incomplete programs. A developer can select one of
multiple alternative recoveries and can use regular syntactic code completion
for placeholders in the selected recovered program. Figure 6.2 shows all
transitions between complete, incomplete, and incorrect programs.

We present a formalization of our completion framework and the involved
algorithms. We describe completeness, formally define soundness, and prove
soundness for our algorithms. We also implemented our framework as part
of the Spoofax language workbench [68], which we used to derive syntactic
code completion for a subset of Java containing classes, methods, statements
and expressions, Pascal, and IceDust [57], a domain-specific language for data
modeling.

Chapter 6. Principled Syntactic Code Completion 173

In summary, we make the following contributions:

• An analysis of syntactic code completion in IDEs and language work-
benches, revealing completeness and soundness issues (Section 6.2).

• A sound and complete approach for completing incomplete programs by
rewriting placeholders (Section 6.3).

• An algorithm for inferring placeholders, yielding support for expanding
complete programs (Section 6.4).

• An extension of error-recovery parsing for inserting placeholders, yield-
ing syntactic code completion for incorrect programs (Section 6.5).

• Throughout, we develop a formal framework for reasoning about syntac-
tic code completion and we describe how we realized the algorithms in
Spoofax.

6.2 S TAT E O F T H E A RT O F S Y N TA C T I C C O M P L E T I O N

In this section, we motivate our work on syntactic code completion by present-
ing examples collected from state-of-the-art IDEs and language workbenches.
We observe that state-of-the-art solutions are unsound, incomplete, language-
dependent, and do not support incorrect programs well.

Soundness Existing IDEs and language workbenches often propose unsound
completions that yield syntax errors when inserted. For example, as shown
in Figure 6.3, Eclipse largely ignores the syntactic context at the cursor po-
sition and proposes the insertion of an else-block without a corresponding
if-statement, yielding a syntax error after insertion.
IntelliJ provides code templates that are sensitive to the syntactic and typing
context, but may yield syntax errors nonetheless. For example, the live template
lst inserts an expression for fetching the last element of an array, but yields
the invalid fragment [.length - 1] when no array is available in the current
scope. Language workbenches have similar issues and also propose invalid
completions. For example, as shown in Figure 6.4, Xtext [43] only proposes the
next keyword, but not a complete def-template.

Completeness IDE developers define code templates manually. As a conse-
quence, the set of available templates is limited. Many language constructs are
not available through syntactic code completion, and changes to a language
are often not reflected in the code templates. For example, the proposal list
of Eclipse 4.5.2 shown in Figure 6.3 does not provide a code template for
try-with-resource statements.

Besides missing templates, existing IDEs and language workbenches also
have no way to represent partial completions that users can subsequently
complete to form complex constructs. Instead, existing systems always generate
complete programs with concrete “dummy” constructs as subexpressions. For
example, as shown in Figure 6.5, Eclipse’s proposal for constructing and storing

174

Figure 6.3 Eclipse: Unsound completion yields syntax error.

Figure 6.4 Xtext: Unsound completion yields syntax error.

a new object yields a complete program using type as a “dummy” class name
and name as a “dummy” variable name.

If the developer leaves the IDE’s completion mode, the “dummy” constructs
become part of the program. This inhibits partial completions such as for
assignment statements type name = exp, where exp will be interpreted as a
variable reference rather than as a placeholder for arbitrary expressions.

Incorrect Programs In current IDEs and language workbenches, error-recovery
parsing and code completion are largely orthogonal. For example, Eclipse
uses error-recovery parsing to identify the syntactic context at the cursor
position and compute corresponding proposals. However, Eclipse does not
actually offer support for recovering from the syntax error itself. Similarly,
code completion and error recovery are orthogonal in IntelliJ and the previous
version of the Spoofax language workbench [68, 65]. Instead, error recovery
should yield a list of alternative recovery proposals for the user to select from.
If the user selects an incomplete program as recovery, the user can continue to
expand the program in subsequent code completion steps.

Summary Based on this discussion, we derive the following requirements for
principled syntactic code completion:

• Proposals need to be sound such that code completion does not introduce
syntax errors.

Chapter 6. Principled Syntactic Code Completion 175

Figure 6.5 Eclipse: Completion with “dummy” constructs.

• Proposals need to be complete, meaning that code templates exist for all
language constructs and that developers can use iterative code comple-
tion.

• Code completion should propose recoveries for incorrect programs and
allow the iterative completion of recovered programs.

In the remainder of this chapter, we present a generic framework for syntactic
code completion that satisfies these requirements. Our framework is language-
independent and automatically derives principled code-completion support
from a language’s syntax definition.

6.3 C O M P L E T I O N B Y R E W R I T I N G P L A C E H O L D E R S

In most editors, programs in an incomplete state are incorrect, as they contain
syntax errors indicating missing elements in the source code. In this section, we
present a formal model for syntactic code completion for a subset of incomplete
programs where missing elements correspond to entire structures from the
language. We introduce a valid representation for this subset, representing
these structures by explicit placeholders. As the programs in the subset are
syntactically correct considering our representation, our framework models
sound and complete syntactic code completion deriving completion proposals
as placeholder expansions. Finally, we present an instantiation of our formal
model, describing our implementation of syntactic code completion in Spoofax.

6.3.1 Representing Complete and Incomplete Programs

We consider abstract syntax trees as our primary program representation. We
define representations for complete and incomplete programs as terms over a
signature Σ:

Definition 1 (Signature). A signature Σ = 〈S, C〉 is a pair consisting of a set of
sorts s ∈ S and a set of constructor declarations (c : s1 × . . .× sn → s0) ∈ C with
zero or more arguments and all si ∈ S. The set of sorts must contain the predefined
sort LEX ∈ S for representing lexemes.

Given a signature Σ = 〈S, C〉, we define the well-formed terms TΣ over Σ as
follows:

176

Definition 2 (Well-formed terms). For each sort s ∈ S, the set of well-formed terms
Ts

Σ of sort s is the least set such that

s is a string literal
s ∈ TLEX

Σ
(6.1)

(c : s1 × . . .× sn → s) ∈ C
ti ∈ Tsi

Σ ∀1 ≤ i ≤ n
c(t1, . . . , tn) ∈ Ts

Σ
(6.2)

The family TΣ of well-formed terms is then defined as

TΣ = (Ts
Σ)s∈S.

Well-formed terms represent complete programs over Σ. For example, given a
signature for a statement in an imperative programming language, the term

Assign("x", Add(Int("21"), Int("21")))

represents a complete program.
We represent incomplete structures in programs by means of explicit place-

holders. We introduce an explicit placeholder $s for each sort s as a nullary
constructor:

Definition 3 (Placeholders). Given a signature Σ = 〈S, C〉, we define placeholders
as the set of nullary constructor declarations

S$ = {$s : s | s ∈ S}

and the placeholder-extended signature

Σ$ = 〈S, C ∪ S$〉.

Well-formed terms over an extended signature Σ$ represent incomplete pro-
grams. For example, the term

Assign("x", $Exp)

represents an incomplete program, where we use the placeholder $Exp of
sort Exp instead of a concrete argument term for Assign. According to our
definition, every complete program is also an incomplete program. However,
a program is properly incomplete if t ∈ TΣ$ and t 6∈ TΣ, that is, t contains at
least one placeholder.

6.3.2 Terms with Source Regions

The goal of our formalization is to provide a formal framework for syntactic
code completion. Since code completion is sensitive to the cursor position in the
source code, we need to extend our representation of terms with source regions.
This will later enable us to map the cursor position to the corresponding
subterm.

Chapter 6. Principled Syntactic Code Completion 177

A term’s source region identifies the region of the original source file to
which the term corresponds. Later, when we use code completion to synthesize
terms, we will also need empty source regions that have no correspondence in
the source file.

Definition 4 (Source region). A source region r is an interval [m, n] = {x ∈
N | m ≤ x ≤ n} starting at character offset m and ending at character offset n. We
define r1 < r2 to mean ∀x1 ∈ r1. ∀x2 ∈ r2. x1 < x2.

Note that ∅ denotes an empty source region of the source file. We use ∅ to
denote the source region of synthesized terms. Note furthermore that r1 < r2
expresses that r1 precedes r2 and the two regions may not touch and not
overlap. Finally, the empty region is not affected by the ordering, ∅ < r and
r < ∅ for all r.

We define an augmented set of well-formed terms that associates a source
region with each subterm:

Definition 5 (Well-formed terms with source regions). For each sort s ∈ S, the
set of well-formed terms with source regions TR,s

Σ of sort s is the least set such that

s is a string literal
sr ∈ TR,LEX

Σ

(6.3)

(c : s1 × . . .× sn → s) ∈ C
∀ 1 ≤ i ≤ n : tri

i ∈ TR,si
Σ

∀ 1 ≤ i < j ≤ n : ri < rj
r1 ∪ · · · ∪ rn ⊆ r

c(tr1
1 , . . . , trn

n)r ∈ TR,s
Σ

(6.4)

The family TR
Σ of well-formed terms with source regions is then defined as

TR
Σ = (TR,s

Σ)s∈S.

The first two preconditions of Equation 6.4 ensure that the terms in TR
Σ are

well-formed as before. The latter two preconditions ensure that the annotated
source regions are well-formed. That is, the region of each left-sibling precedes
the region of each right-sibling and the region of a parent term includes the
regions of all its subterms. The well-formedness of source regions allows us to
efficiently navigate within terms to identify the subterm corresponding to a
cursor position. Finally, note that TR

Σ$ denotes the set of terms of incomplete
programs with source regions.

6.3.3 Completing Incomplete Programs

We are now ready to define code completion for incomplete programs where
we replace explicit placeholders by proposed terms. We divide the definition of
code completion into three functions replace, propose, and complete. Function
replace takes a term tr and replaces its subterm up by term v. We use source
regions r and p to navigate in t and to uniquely identify subterm u.

178

Definition 6 (Function replace).

replace(tr, up, v) =
v∅, if tr = up

replace(tri
i , up, v), if tr 6= up, t = c(tr1

1 , . . . , trn
n),

p ⊆ ri
tr, otherwise

If the current term tr equals up including the source region, we yield the
replacement v. We recursively impose the empty source region on term v to
mark it as being synthesized. We use the source region p of u to navigate to
and recurse on subterm tri

i of tr such that p is included in ri. If we cannot find
an appropriate subterm, we yield the current term tr unchanged.

We are not only interested in defining functions like replace but also in the
metatheoretical properties of these functions. In particular, we want to reason
about the soundness of code completion, which means that code completion
yields well-formed terms. Thus, before moving on to the other functions, we
define precisely when an application of replace is sound.

Theorem 6.3.1 (Soundness of replace). Given tr ∈ TR,s
Σ for some sort s, a replace-

ment replace(tr, up, v) = wq is sound iff wq ∈ TR,s
Σ . If up ∈ TR,s′

Σ for some sort s′

and v ∈ Ts′
Σ , then replace(tr, up, v) is sound.

That is, a replacement is sound if it yields well-formed terms of the same sort
as input tr. Specifically, a replacement of u by v in t is sound if u and v have
the same sort. For the proof of this theorem it is important that we impose the
empty region on v, such that the result of the replacement has well-formed
regions.

We will use replace to inject proposed code fragments in place of placehold-
ers $s. Function proposals computes a list of proposed code fragments for a
given sort s. Here, we only specify proposals abstractly, reasoning about its
soundness.

Definition 7 (Proposals function). Given a signature Σ = 〈S, C〉, a proposal
function proposals : S → (TΣ$)∗ maps each sort s ∈ S to a sequence of proposed
terms. A proposal function proposals is sound iff for all s ∈ S, the terms proposed for
s have sort s: proposals(s) ∈ (Ts

Σ$)
∗.

Our proposal function permits context-free syntactic code-completion pro-
posals based on the expected sort. Based on proposals and replace, we can
model code completion by (i) navigating to the placeholder at the current
cursor position c ∈N, (ii) getting proposals for that placeholder, (iii) replacing
the placeholder by one of the proposed terms. Function propose performs
steps (i) and (ii). That is, propose takes a term tr ∈ TR

Σ$ with placeholders as
well as source regions and it takes a cursor position c ∈N. It finds and yields
the term at the cursor position together with a possibly empty list of proposals
for it.

Chapter 6. Principled Syntactic Code Completion 179

Definition 8 (Function propose).

propose(tr, cur) =
〈$sr, proposals(s)〉, if t = $s, cur ∈ r
propose(tri

i , cur), if t = c(tr1
1 , . . . , trn

n), cur ∈ ri
〈tr, ε〉, otherwise

Finally, function complete uses propose and replace to implement full code
completion. To model the user’s behavior, we use an oracle φ : (TΣ)

+ → TΣ to
select one of the proposed terms.

Definition 9 (Function complete).
complete(tr, cur, φ) =

let 〈up, ts〉 = propose(tr, cur) in
if ts = ε

then tr

else replace(tr, up, φ(ts))

Theorem 6.3.2 (Soundness of complete). Given tr ∈ TR,s
Σ for some sort s and

arbitrary cur and φ, a function complete(tr, cur, φ) = wq is sound iff wq ∈ TR,s
Σ . If

function proposals is sound, then function complete is sound for all tr ∈ TR,s
Σ .

That is, a completion is sound if the resulting term is well-formed and has the
same sort as the input. Specifically, for any sound proposal function that only
proposes terms of the required sort, code completion is indeed sound. This
holds because replace is sound and for all proposal 〈$sr, ts〉, the sort of terms
t ∈ ts is s.

Code completion should also be complete. That is, starting from some place-
holder $s, all terms of sort s should be constructible through code completion
(and by typing lexemes of sort LEX). Complete completion enables a purely
projectional user interaction where no typing is necessary except for names of
variables etc.

6.3.4 Implementation in Spoofax

As an instantiation of our formal model for syntactic code completion, we
implemented a generic completion framework in the Spoofax Language Work-
bench. Spoofax provides the syntax definition formalism SDF3 for specification
of syntax. The distinguishing feature of SDF3 is the introduction of explicit
layout specified in a template as the body of a context-free production [133]. A
template production defines the usual sequence of symbols of a production
and an abstract syntax tree constructor. In addition, the whitespace between
the symbols is interpreted as a specification-by-example for the purpose of
producing a pretty-printer. Thus, a single syntax definition serves to define
a grammar, a scannerless generalized parser for that grammar, an abstract
syntax tree schema (in the form of an algebraic signature), and a pretty-printer
mapping ASTs to text.

180

context-free syntax // regular productions

Statement.Assign = [[VarRef] = [Exp];]
Statement.If = [
if([Exp]) [Statement]
else [Statement]]

Statement.While = [while([Exp]) [Statement]]
Statement.Block = [
{

[{Statement "\n"}*]
}]

Statement.VarDecl = [[Type] [ID];]

context-free syntax // derived productions

VarRef.VarRef-Plhdr = [$VarRef]
Exp.Exp-Plhdr = [$Exp]
Statement.Statement-Plhdr = [$Statement]
Type.Type-Plhdr = [$Type]
ID.ID-Plhdr = [$ID]

(a)

rules // derived rewrite rules

rewrite-placeholder:
Statement-Plhdr() -> Assign(VarRef-Plhdr(), Exp-Plhdr())

rewrite-placeholder:
Statement-Plhdr() -> If(Exp-Plhdr(), Statement-Plhdr(),

Statement-Plhdr())

rewrite-placeholder:
Statement-Plhdr() -> While(Exp-Plhdr(), Statement-Plhdr())

rewrite-placeholder:
Statement-Plhdr() -> Block([])

rewrite-placeholder:
Statement-Plhdr() -> VarDecl(Type-Plhdr(), ID-Plhdr())

(b)

Figure 6.6 (a) Extending the grammar with placeholder productions and (b) automat-
ically generating rewrite rules for placeholder expansion from the syntax definition.

We support explicit placeholders as part of a language by automatically
extending the language’s syntax definition with extra template productions.
As specified in the formalization, the goal is to allow a placeholder to appear

Chapter 6. Principled Syntactic Code Completion 181

whenever it is possible to parse a non-terminal at a certain position in the
program. The second context-free syntax section of Figure 6.6a illustrates the
generated template productions from the regular productions defined in the
first section.

In our implementation, we instantiate the abstract function proposals as the
function templates returning a list of proposals for a sort s ∈ Σ.

Definition 10 (Templates function). Given a signature Σ = 〈S, C〉, we define the
set of concrete proposals returned by function templates : S→ (TΣ$)∗ such that:

c : s1 × . . .× sn → s ∈ Σ
c($s1, . . . , $sn) ∈ templates(s)

We can reason about the soundness of our function templates based on the
definition of the abstract function proposals.

Theorem 6.3.3. Our implementation of the function proposals provided by the
function templates is sound.

Proof. By the definition of templates, all the terms that we generate as an
expansion for a placeholder of sort s have sort s. Thus, according to the
soundness criterion of the abstract function proposals, templates is sound.

Moreover, since the templates function generates all alternatives for a sort s,
it is straightforward to establish that our automatically derived completions
are complete.

As specified in the function templates, in Spoofax we not only automatically
derive placeholders from the SDF3 but also derive their respective proposals.
Each template production with a constructor in the syntax definition defines a
possible placeholder expansion. The rules in Figure 6.6b shows an example
of generated rewrite rules in the Stratego transformation language [129] that
transform a placeholder of sort s into all its abstract expansions. As a design
decision, placeholder expansions do not include placeholders for nullable
symbols such as lists with zero or many elements or optional nodes, generat-
ing empty lists or optionals by default and expanding them by placeholder
inference as we will present in Section 6.4.

Spoofax constructs source regions as attachments of terms when parsing a
program and imploding the parse tree. We use this information to navigate to
a placeholder in the program, as specified by the function replace. We produce
concrete proposals by pretty-printing the abstract expansions collected from
the rewrite rules using the generated pretty-printer from SDF3. Completing the
program replaces the placeholder text by the pretty-printed text of its selected
expansion. Thus, completing a program preserves its structure except for the
placeholder being expanded.

6.4 C O D E E X PA N S I O N B Y P L A C E H O L D E R I N F E R E N C E

In this section, we investigate how to use placeholders to propose expansions
of complete programs. A complete program contains no placeholders thus,

182

the method described in the previous section fails to generate any propos-
als. However, we want to use code completion to propose expansions of
complete programs. In this chapter, we focus on adding elements to lists
and adding previously missing optional elements. For example, class Main

in Figure 6.7 does not define the optional extends clause. An invocation of
code completion should propose defining the optional element. To this end,
we introduce a method for expanding complete programs by inferring and
inserting placeholders.

Figure 6.7 Inferring a placeholder inside an optional node.

6.4.1 Placeholder Inference for Optionals

We first investigate placeholder inference for optionals, which we represent
according to the following definition.

Definition 11 (Optional terms). Given a sort s, Opt(s) is the sort of optional terms.
For each s, constructor Somes : s→ Opt(s) indicates the presence of a term of sort s
whereas constructor Nones : Opt(s) indicates its absence.

Placeholder inference for optionals is similar to completion for explicit place-
holders, where term Nones() plays the role of placeholder $s. Thus, in a first
approximation we could extend function propose to generate proposals for
Nones() terms as well as placeholders. However, it is not as straightforward as
that. Since a Nones() term corresponds to the empty string, it does not have a
source region. Hence, in contrast to a placeholder, we cannot select a Nones()

term using the cursor. Furthermore, there may be multiple Nones() terms
that are candidates for expansion in the area around the cursor. For example,
consider the term VarDecl(Ident("x", Nonetype()), Noneexp()) that repre-
sents a variable declaration for an identifier with optional type and optional
initializer. When the cursor is placed after the identifier and code completion
is triggered, we would like to see proposals for expanding the type as well as
the initializer.

To formalize this we need the notion of adjacency of terms to the cursor. A
subterm ti of a term t is adjacent to the cursor if none of the other subterms of t
capture the cursor in their source region. Since terms like Nones() have empty
source regions, multiple subterms can be adjacent to the cursor simultaneously.

Chapter 6. Principled Syntactic Code Completion 183

Definition 12 (Function adjacent).

adjacent(t, cur) ={t
ri
i | r1 ∪ . . . ∪ ri−1 < {cur} < ri+1 ∪ . . . ∪ rn},

if t = C(tr1
1 , . . . , trn

n)
∅, otherwise

Function infero infers completion proposals for all optionals that are adjacent
to the cursor.

Definition 13 (Function infero).

infero(tr, cur) =
{ 〈tr, proposalso(s)〉 },

if t = Nones()⋃{infero(t
ri
i , cur) | tri

i ∈ adjacent(t, cur)},
if t = C(tr1

1 , . . . , trn
n)

proposalso(s) = {Somes(t) | t ∈ proposals(s)}

In the first case, if the current term is Nones(), we generate replacement
proposals for sort s. This corresponds to the case for placeholders $s of propose
except that here we generate proposals of optional terms using proposalso. The
second case applies inference recursively to those subterms tri

i that are adjacent
to the cursor.

6.4.2 Placeholder Inference for Lists

We now consider placeholder inference for list terms, which we represent
according to the following definition.

Definition 14 (List terms). Given a sort s, List(s) is the sort of list terms. For each
s, constructor Conss : s× List(s)→ List(s) indicates a non-empty list with head and
tail and Nils : List(s) indicates an empty list.

Placeholder inference for lists generates proposals for inserting elements into
a list. To that end, inference selects the sublist that directly follows the cursor
(modulo layout) and generates proposals for the syntactic sort of the elements
in the list. When the user selects a proposal, we insert the selected element
at the cursor position. For example, in Figure 6.8, the cursor is positioned
between two statements in a list of statements. Code completion proposes the
insertion of a new statement at the cursor position.

Function infer∗ generates completion proposals for list elements.

184

Definition 15 (Function infer∗).

infer∗(tr, cur) =

{ 〈tr, proposals∗(s, t)〉 },
if t = Nils()

{ 〈tr, proposals∗(s, t)〉 } ∪ infer∗(hdp, cur)
if t = Conss(hdp, tlq), {cur} < p

infer∗(hdp, cur)
if t = Conss(hdp, tlq), cur ∈ p

infer∗(tlq, cur)
if t = Conss(hdp, tlq), {cur} > p⋃{infer∗(t

ri
i , cur) | tri

i ∈ adjacent(t, cur)},
if t = C(tr1

1 , . . . , trn
n), C 6= Cons

proposals∗(s, tl) = {Conss(hd, tl) | hd ∈ proposals(s)}

In the first case, if the current term is the empty list Nils(), we generate
proposals for element sort s. This corresponds to the Nones() case of infero
and to the case for placeholders $s of propose except that here we generate
proposals for list terms using proposals∗. Specifically, we propose to replace
the empty list with a singleton list where the head element is a proposal for
sort s. In the second case of infer∗, if the current term is a Cons term and the
cursor to the left of the head element, we propose to prepend another element.
We also recursively infer completions in the head element to support proposals
for nested lists. In the third case, if the cursor is within the source region of the
head element, we recursively infer proposals there. Otherwise, if the cursor is
to the right of the head element, we recursively infer proposals for the tail of
the list. Finally, for terms that are not lists we recursively infer proposals for
all subterms that are adjacent to the cursor.

We illustrate a concrete example in Figure 6.8. Note that the cursor is at
position 58, that is, we want to add a statement in between the two existing
statements for variable declaration and assignment. We start computing
proposals by applying infer∗ to node Method[16,92]. Since that node is not a
list, the function reaches the fourth case, returning the union of a recursive
application of infer∗ on all adjacent children. However, node Cons[39,74] is the
only adjacent subterm.

Since that node is a non-empty list, we check whether the cursor is before
or after the head of the list. Since the head element VarDecl[39,44] precedes
the cursor at 58, the third case of infer∗ applies and recurses into the tail of
the list Cons[63,74]. This time, the cursor position precedes the head element
Assign[63,74] and the second case of infer∗ applies. Thus, we propose comple-
tions that prepend a statement to Cons[63,74]. The recursive call in the second
case of infer∗ does not yield any additional completions because the head
element does not contain a nested list adjacent to the cursor.

Chapter 6. Principled Syntactic Code Completion 185

Statement*
Statement

1 2

[…]

[…]

Method
[16,92]

Int
[23,25]

“m”
[27,27]

Cons
[39,74]

VarRef
[87,87]

“x”
[87,87]

VarDecl
[39,44]

Assign
[63,74]

Int
[39,41]

“x”
[43,43]

VarRef
[63,63]

“x”
[63,63]

Add
[67,73]

IntValue
[72,73]

IntValue
[67,68]

“21”
[67,68]

“21”
[72,73]

cursor position = 58

Cons
[63,74]

Nil
[74, 74]

Figure 6.8 Placeholder inference inside a list. At the bottom, excerpt of the AST
with source regions before expansion.

6.4.3 Code Expansion by Placeholder Inference

Similar to code completion, we can combine the two inference functions infero
and infer∗ together with replace. Since we do not rewrite incomplete program
fragments but insert code into complete program fragments, we call this code
expansion rather than code completion.

The following function expand defines code expansion formally. To model
the user’s behavior, here we use two oracle functions φ1 and φ2. Through the

186

first oracle φ1, the user selects which one of the subterms adjacent to the cursor
to expand. Through the second oracle φ2, the user selects the expansion for
the selected subterm.

Definition 16 (Function expand).
expand(tr, cur, φ1, φ2) =

let props = infer∗(tr, cur) ∪ infero(tr, cur) in
if props = ∅

then tr

else let 〈up, ts〉 = φ1(props) in
if ts = ε

then tr

else replace(tr, up, φ2(ts))

Theorem 6.4.1 (Soundness of expand). Given tr ∈ TR,s
Σ for some sort s and

arbitrary cur, φ1, and φ2, an expansion expand(tr, cur, φ1, φ2) = wq is sound iff
wq ∈ TR,s

Σ . If function proposals is sound, then function expand is sound for all
tr ∈ TR,s

Σ .

That is, an expansion is sound if the resulting term is well-formed and has the
same sort as the input. Specifically, for any sound proposal function that only
proposes terms of the required sort, code expansion is indeed sound. This
holds because replace is sound and we have setup proposalso and proposals∗
such that for all proposal 〈u, ts〉, the sort of terms t ∈ ts is identical to the sort
of u.

43

Figure 6.9 Inserting an element into a list: Spoofax preserves the surrounding
layout and inserts list separators as needed.

A pragmatic concern when inserting elements into a list is the formatting of
the source code. Our formal model abstracts from this issue by considering

Chapter 6. Principled Syntactic Code Completion 187

ASTs only. As illustrated in Figure 6.9, our implementation in Spoofax pre-
serves the layout of all existing code and only formats the inserted element,
also inserting list separators as needed.

6.5 C O D E C O M P L E T I O N F O R I N C O R R E C T P R O G R A M S

In this section, we consider syntactic code completion for syntactically incorrect
programs, i.e. for which parsing fails. Such syntactic errors occur frequently
during editing. For example, when the developer writes an assignment state-
ment, the program text remains incorrect until the developer terminates the
statement with a semicolon. We want to provide code completion for incorrect
programs to assist developers in completing code fragments as they write them.
Specifically, we address the following scenario:

• We only consider syntax errors at the cursor position; we ignore errors
elsewhere in the program text.

• We only consider the insertion of symbols into the program text; we
ignore other forms of manipulation such as symbol removal.

• Soundness applies as before: The proposed recoveries must yield correct
programs at the cursor position.

• We relax the requirement on completeness: Not all programs are neces-
sarily constructible from the proposed recoveries.

Figure 6.10 illustrates the expected behaviour of the completion framework
for an incorrect program using the grammar of Figure 6.6. Here, x is the first
symbol of a statement and the framework should propose all statements that
can start with symbol x. As shown in the top-right and bottom-right boxes,
upon selection of a proposal, the framework inserts the missing symbols to
make the program syntactically correct. We insert placeholders for subterms,
thus allowing the user to subsequently complete the program as described
in Section 6.3. In the remainder of this section, we present our solution for
computing proposals based on the insertion of missing symbols. Placeholders
play a crucial role for our solution as we will discuss in Section 6.5.2.

6.5.1 Constructing Proposals by Inserting Symbols

To construct the list of proposals, we compute all possible ways to recover
a correct program by inserting symbols at the cursor position. To perform
symbol insertions, we use an error-recovering technique based on permissive
grammars and insertion productions [65].

Permissive grammars are grammars that can parse a more relaxed version
of the input by either skipping individual symbols or simulating the insertion
of missing symbols. Here, we only consider the insertion of missing symbols
as an alternative to fix the error. In addition to regular productions, a permis-
sive grammar for completion contains insertion productions that denote which
symbols may be inserted. For example, Figure 6.11 shows the insertion pro-
ductions for our imperative language from Figure 6.6. An insertion production

188

Figure 6.10 Fixing syntax errors by code completion.

// derived insertion rules for placeholders
context-free syntax // derived productions

VarRef.VarRef-Plhdr = {symbol-insertion}
Exp.Exp-Plhdr = {symbol-insertion}
Statement.Statement-Plhdr = {symbol-insertion}
Type.Type-Plhdr = {symbol-insertion}
ID.ID-Plhdr = {symbol-insertion}

// derived insertion rules for literals
lexical syntax

"=" = {symbol-insertion}
"if" = {symbol-insertion}
"else" = {symbol-insertion}
"while" = {symbol-insertion}
"(" = {symbol-insertion}
")" = {symbol-insertion}
"{" = {symbol-insertion}
"}" = {symbol-insertion}
";" = {symbol-insertion}

Figure 6.11 Extending the grammar with insertion rules.

recognizes the empty string — the right-hand side of the production is empty.
Thus, if a regular production expects some symbol, which is not present in
the text, the insertion production can parse the empty string to pretend it is
there anyway. We automatically generate such insertion productions for each
lexeme and placeholder of the grammar.

To compute the list of proposals, we use generalized parsing [125, 130, 131]

Chapter 6. Principled Syntactic Code Completion 189

StmDecl*

VarDecl Assign
amb

VarDecl Assign

ClassType ; VarRef = ;Exp-Plhdr

[…] […]

x x$ID $EXP

ID-Plhdr

Figure 6.12 Recovered AST with inserted nodes (dashed line) and proposals
(shaded fill).

on the permissive grammar. Generalized parsing supports ambiguous inputs
and constructs a parse forest with one AST for each possible parse result. Thus,
if alternative insertions lead to a correct parse result, we retrieve all alternatives
from the generalized parser. Generalized parsers typically compact the parse
forest, using ambiguity nodes amb to denote alternative subtrees.

Figure 6.12 shows the parse forest we retrieve for parsing the program from
Figure 6.10 using the permissive grammar. The parser found two alternatives
for completing the program. First, we can interpret the lexeme x as a class
type, insert an ID placeholder, and a semicolon lexeme. Or, we can interpret x
as a variable reference, insert an equality lexeme, an Exp placeholder, and a
semicolon lexeme. In Figure 6.12, we mark the inserted symbols using dashed
shapes and we use shaded nodes to mark nodes that become proposals. To
avoid an excessive search for possible recoveries, we limit the search space
using placeholders.

6.5.2 Limiting the Search Space for Recoveries

Insertion productions indicate to the parser to insert missing symbols. However,
arbitrarily applying insertion productions would lead to non-termination. In
our example, we could keep inserting symbols to add more statements to
the list or even construct additional classes. This happens because insertion
productions produce the empty string. As a result, the parser does not consume
any input when applying insertion productions, leading to an infinite number
of possible parses. Hence, we need to restrict the application of insertion
productions to guarantee termination.

First, recall that we are merely interested in code completion, rather than
error-recovery parsing in general. Thus, we can restrict insertions to the cursor

190

position modulo layout. Conversely, we prohibit the parser from applying
insertion productions elsewhere in the program.

Second, we assume that part of a proposal is already in the input. Therefore,
fixing the error preserves the existing fragments of a proposal and only adds
the missing symbols necessary to finish a structure. From this restriction, we
disallow the application of regular productions on only recovered nodes. Note
that error recovery can recover either placeholders or literal strings from the
program. Recovering placeholders is essential to limit the search space as we
do not need to recursively recover complex subterms that may be constructed
by placeholder expansion later.

Third, we define our recovery approach as greedy, assuming that proposals
contain as many symbols as possible from the input. A proposal can also
include multiple nodes implying that the AST of the program contains an
erroneous branch. Thus, we construct a single proposal as the smallest subtree
containing all proposal nodes and we construct multiple proposals by flattening
ambiguities containing multiple proposal nodes. By doing that, we guarantee
that completing the program chooses only one alternative of the ambiguity and
proposals only fix a single node (or branch). Most importantly, we guarantee
that our strategy is sound as selecting a proposal does not introduce errors,
but introduces a fix instead. The list of proposals is partially complete, i.e., we
produce all fixes that include the elements that are already part of the input.

Figure 6.13 At the top the proposal inserts the infix of an incomplete variable
declaration (in this case either a single placeholder $ID). At the bottom, an example
of a nested proposal, where it is necessary to fix multiple nodes in the AST to
recover from the error (turn the Int type into IntArray and insert $ID).

Figure 6.13 shows examples of the third restriction. In the top program, we
do not create two proposals, for example, using int as the prefix of a variable
declaration, and semicolon as a suffix for an assignment. Instead, we use both
symbols as part of only one proposal for a variable declaration. Moreover, at
the bottom, we show an example of a proposal that fixes more than a single

Chapter 6. Principled Syntactic Code Completion 191

node of the program. In this case, we change the inner node for the type of the
variable declaration to array of integers, and add the missing placeholder for
the identifier to complete the variable declaration itself.

6.5.3 Implementation in Spoofax

To implement the syntactic code completion for incorrect programs in Spoofax,
we use the scannerless generalized-LR parsing algorithm (SGLR). The complete
algorithm for SGLR is described in [130, 131] but as we are only interested in
restricting the application of grammar rules to construct proposals, we only
modified the reducer method of SGLR, applying the restrictions on the search
space of possible recoveries we described before.

SGLR is a generalized shift-reduce parser that handles multiple stacks in
parallel. Each conflict action in the parse table generates a new stack so
that parsing can continue with that action. Given a parse table for some
grammar and a string, the parser returns a parse forest containing all possible
alternatives to parse the string according to the grammar described in the
table. This makes SGLR a perfect match for collecting all possible recoveries as
ambiguities in the resulting parse tree.

To produce the list of proposals, we do a traversal on the resulting parse tree,
collecting all proposals as described before and pretty-printing them to present
to the user. A selected proposal only adds the missing fragments necessary to
fix the program. SGLR deals with other errors in the program using its regular
error recovering strategy based on permissive grammars [65].

With the approach described in this section, the completion framework
can handle incorrect programs since the parser is able to construct a list of
proposals by inserting missing symbols, fixing an error at the cursor position.
From there, the framework provides syntactic code completion following the
approach we described before, either by expanding explicit placeholders or by
placeholder inference as illustrated in Figure 6.2.

Our solution also preserves the generic aspect of the completion framework,
as we derive insertion productions from the syntax definition. If the error at
the cursor position does not follow the assumptions we made previously, error
recovery does not produce any proposal. Moreover, syntax errors that occur
in other locations and do not influence code completion are just preserved
since insertion productions to create proposals are only applied at the cursor
position.

6.6 E VA L U AT I O N

We have applied our approach to generate syntactic code completion for
Pascal, a subset of Java, and IceDust, a domain-specific language for data
modelling [57]. We automatically generate placeholder transformations and
construct the proposals with the pretty-printer generated from the syntax
definition. Recovered proposals are constructed by our adapted version of
SGLR.

192

We observed that the way production rules are organized in the syntax
definition directly affects the number of placeholders and proposals for each
placeholder. Moreover, when considering placeholder inference, inferring a
placeholder when multiple optionals and empty lists are adjacent to the cursor
makes the list of proposals even larger. Ideally, it should not be necessary to
massage the grammar to produce better proposals. However, in the current
implementation the grammar structure can affect the generated proposals.

In general, the completion framework produced acceptable proposals for all
languages we evaluated. Deriving syntactic code completion from the syntax
definition allowed us to implement the completion service for each of these
languages without additional effort.

6.7 R E L AT E D W O R K

We have implemented a generic content completion framework that is able to
derive sound and complete syntactic code completion from language defini-
tions. We adopt placeholders to represent incomplete structures for a program
in a textual editor, similar to structural editors. For programs that still contain
syntax errors due to incomplete structures we construct the list of proposals
by error recovery. We compare our approach to projectional editors in the
literature, textual language workbenches and discuss syntactic error recovery.

Syntactic Completion in Textual Language Workbenches Textual language work-
benches such as Spoofax [68] and Xtext [43] derive syntactic completions from
the syntax definition. However, these language workbenches currently do not
have a representation of incomplete programs. In the case of Xtext, proposals
involve only the following token that can appear in the input. Since non-
terminal symbols can reference each other in the syntax definition, proposals
may also involve predefined names or types. To extend the automatically
generated completions, the language engineer can customize code templates
in automatically generated Java methods.

As for the old implementation of syntactic code completion in Spoofax, a
descriptor language for editor services contains the specification of completion
templates, defining expansions given the context of a non-terminal symbol
from the grammar. Placeholders inside proposals contain default strings, and
the possibility to directly navigate to them is lost when leaving the completion
mode. Furthermore, completing the program might lead to syntax errors, as
the framework calculates proposals based on whether it is possible to parse
a non-terminal symbol at the cursor position, possibly inserting incomplete
structures.

Projectional Editing with Placeholders Placeholders allow for directly ma-
nipulating the AST of a program, a characteristic of projectional/structural
editors. The Generic Syntax-directed Editor (GSE) [78] is part of the ASF+SDF
Meta-environment [71] and generates an interactive editor that is hybrid, i.e.,
both textual and projectional from the language specification extended with
placeholders.

Chapter 6. Principled Syntactic Code Completion 193

In GSE, the editor uses the cursor position to determine the smallest node in
the AST being edited. Only the content inside the focus is actually parsed, with
the guarantee that the remainder of the input is syntactically correct. Whenever
the focus is in a placeholder, the editor can expand the node following the
grammar rules for the placeholder. However, one of the consequences for
supporting hybrid editing is that GSE stores both the textual and abstract
representation of the program in memory, creating a two-way mapping be-
tween them. Our approach is only based on textual editors, and we rely on
source positions mapped as attachments to nodes in the AST, constructing
them whenever parsing the program.

Another issue is that GSE does not support error recovery, so a focus is either
syntactically correct or it is not. Thus, to properly provide code completion the
user needs to first manually fix syntax errors. In addition, we only provide a
single editor operation (control + space) to invoke the completion framework,
whereas GSE uses the focus to determine the completions for a placeholder.
Furthermore, our approach supports free textual editing, without any need for
substring parsing to keep track of focuses.

Language workbenches such as CENTAUR [21], MPS [134] and mbeddr
[136] generate projectional editors from language specifications. In such editors,
the user edits the program by manipulating the AST directly instead of editing
pure text. Proposals are automatically derived from the projections defined
by the language engineer, making the completion service sound by definition.
Code completion also alleviates the problems when writing programs in
projectional editors, since the normal editing behaviour does not resemble
classical text editing [137].

The Synthesizer Generator [98] has a representation for unexpanded terms
as completing operators. Completing operators act as placeholders and can be
structurally edited by specifying rules as commands that insert code templates.
In our implementation, code templates are defined by the grammar, whereas
the definition of code templates is disjoint from parsing rules. Moreover, since
the language definition is based on attribute grammars [75], template propos-
als can also use semantic information by evaluating attributes derived from
syntactic sorts of completion operators. Proxima [108] also uses placeholders
as holes that can appear inside textual or structural presentation elements. As
our solution is implemented in a textual editor, we only support placeholders
as part of textual elements of the program.

Error Recovery To handle incorrect programs, our approach recovers miss-
ing symbols to construct a valid AST from which the framework creates an
expansion proposal. There are different approaches to support error recovery
from syntax errors [41]. The current approach implemented in the Spoofax
language workbench is based on island grammars [89, 90] and recovery rules
providing error recovery for a generalized parsing algorithm [65].

In the generalized scenario of SGLR, it is necessary to investigate multiple
branches, and the detection of syntax errors occurs at the point where the
last branch failed. This point might not even be local to the actual root cause
of the error, making error reporting more difficult. Scannerless parsing also

194

contributes to make the recovery strategy more complex. Common strategies
based on token insertion or deletion to fix the error are ineffective when
considering single characters.

Our approach benefits from the assumptions that we know the error location
and that only missing elements contribute to the error. Therefore, it is not
necessary to skip parts of the input nor backtrack to find the actual error
location. Furthermore, we benefit from the fact that SGLR constructs a parse
forest as result. Thus we return all possible fixes, reporting them to the user as
proposals.

6.8 F U T U R E W O R K

Character-based Completions Our current recovery strategy does not recover
from incomplete words, producing only insertion symbols for literals and
placeholders. The completion framework could handle partial keywords by
manipulating the input to reconstruct keywords and use them as a starting
point for recovering a proposal.

Inlining and Ordering Proposals The current approach might generate too
many proposals depending on the productions in the grammar. For this issue,
ordering suggestions might improve the final user experience [99]. Inlining
proposals can also improve the framework for cases when it is necessary many
placeholder replacements to create a final code template.

Semantic Completions The completions in this chapter are restricted to syntactic
completions. Mainstream IDEs typically have spent more effort in the support
for semantic completions, i.e. proposing names (e.g. of variables or methods)
that are valid to use in the cursor context. In future work, we plan to explore
providing generic support for such semantic completions based on our work
on name [76, 91] and type resolution [13]. Using the results of name and
type resolution, we can propose completions for lexical placeholders to insert
declared names. Moreover, semantic information can also be used to filter the
list of syntactic proposals such that sound content completion guarantees the
absence of syntactic and semantic errors.

6.9 C O N C L U S I O N

Code completion avoids misspellings and enables language exploration. How-
ever, the support for syntactic completion is not fully implemented by most
IDEs. The completion implementation is ad-hoc, unsound and incomplete.

The separation of programs into different states allowed us to provide
code completion with a “divide and conquer” strategy. For correct programs,
we implement code completion by expanding placeholders that can appear
implicitly or explicitly in programs. For incorrect programs, we used the nature
of errors in the completion scenario to propose an adapted error recovery
strategy to construct the list of proposals.

Chapter 6. Principled Syntactic Code Completion 195

Finally, our formalization allowed us to reason about soundness and com-
pleteness of code completion. We implemented the framework by modifying
the scannerless GLR parsing algorithm and by generating placeholders and
its expansions from syntax definitions in the Spoofax Language Workbench.
Our framework addresses the requirements derived from the analysis of state-
of-the-art implementations of syntactic code completion (Section 6.2). This
work opens up a path to rich editing services based on the (context-sensitive)
structure of a program in purely textual IDEs.

196

7
Conclusion

In this dissertation we presented techniques that enable declarative syntax
specifications to be used by modern language workbenches. In the first part of
this dissertation, we investigated how to provide support for efficient declarative
disambiguation, since grammars used to define programming languages are
often ambiguous. In the second part we investigated declarative syntax defini-
tions in language workbenches from two different perspectives: the challenges
to support languages with unique features, such as layout sensitivity and how
to support complex syntactic editor services, such as syntactic code completion.
We extensively evaluated each of our techniques using the syntax definition
formalism SDF3 and the Spoofax Language Workbench.

7.1 T H E T H E S I S R E V I S I T E D

In the introduction of this dissertation we listed open problems related to using
declarative syntax definitions in language workbenches. Below, we show how
we addressed those problems.

The key principle underlying the design of the family of syntax definition
formalisms SDF is to enable declarative syntax definition, so that users do not
need to adapt their grammars to a particular parsing algorithm. SDF3, as
the latest generation of SDF and an evolution of SDF2, has been developed
in this dissertation under the same principle, improving various issues of its
predecessor, and serving the needs of modern language workbenches.

The new semantics for disambiguating expression grammars shown in
Chapter 2 guarantees that declarative disambiguation of expression grammars
in SDF3 is safe and complete. We also show the need for efficient disambigua-
tion, developing a study of priority conflicts in real programs in Chapter 3.
Furthermore, we provide an efficient implementation of this semantics in
Chapter 4, such that the generated parser can perform disambiguation without
performance penalties.

To support parsing and pretty-printing of layout-sensitive languages, we
have also equipped SDF3 with layout declarations, as shown in Chapter 5.
Layout declarations enable language engineers to automatically derive a
layout-sensitive parser and pretty-printer for the syntax definition, increasing
maintainability and supporting rapid development and prototyping of such
languages.

Finally, we proposed a principled approach for syntactic code completion in
Chapter 6. We extended the syntax definition with the notion of placeholders,
using them to address code completion for incomplete, complete, and incorrect
programs. We showed that our approach is sound and complete, supporting
rich and efficient editor services in tools such as language workbenches.

197

We believe that our thesis has been supported by the work presented in
this dissertation, and that SDF3 can be used to effectively define the syntax
of programming languages, and generate an efficient generalized parser, a
(layout-sensitive) pretty-printer, and sound and complete code completion.

7.1.1 Summary of Contributions

Below, we summarize our core contributions. For a more detailed account of
our contributions, we refer to the individual chapters of this dissertation.

Design of SDF3
We present the design of the Syntax Definition Formalism SDF3, which
provides many improvements over its predecessor. As shown by our case
studies, SDF3 has been used to successfully define several programming
languages, including domain-specific languages such as IceDust, Tiger,
and Jasmin, and general purpose languages such as Java, OCaml, and
Haskell.

Safe and Complete Semantics for Disambiguation of Expression Grammars
We propose a semantics for declarative disambiguation of operator prece-
dence conflicts that is safe and complete, addressing the issues in the
semantics from SDF2. Our semantics can also handle conflicts that require
unbounded depth analysis of the tree called deep priority conflicts, includ-
ing lower precedence prefix, dangling prefix and suffix, longest match,
and ambiguities due to indirect recursion, which occur in various types of
grammars that define expressions.

Empirical Study on Deep Priority Conflicts
We present a study of deep priority conflicts using real-world programs.
Our study has indicated that such conflicts occur relatively often in practice
and that grammar transformation techniques might not always be efficient
when dealing with deep priority conflicts.

Efficient Disambiguation of Deep Priority Conflicts
We introduced a more efficient technique for disambiguating deep pri-
ority conflicts. By using a data-dependent approach, we can address
deep priority conflict disambiguation at parse time, reducing the cost
for disambiguation and its overhead when parsing programs without
conflicts.

Layout Declarations
We propose declarative specifications of indentation rules in programming
languages as layout declarations. These declarations can be used to derive
a more efficient layout-sensitive parser and correct pretty-printers for
layout-sensitive languages.

198

Principled Syntactic Code Completion
We introduce a novel approach for principled sound and complete syn-
tactic code completion. Syntactic code completion as an IDE feature
in a language workbench increases language discoverability and helps
programmers avoid misspellings.

7.2 S U G G E S T I O N S F O R F U T U R E W O R K

In this section, we list some suggestions for future work based on the work
presented in this dissertation.

Semantic Code Completion In this dissertation we focused on deriving sound
and complete syntactic code completion from a syntax definition. However,
mainstream IDEs spend more effort in the support of semantic completions,
i.e. proposing names (e.g. of variables or methods) that are valid to use in the
cursor context. Thus, we propose as future work, exploring the integration of
both approaches, that is, using syntactic code completion in combination with
semantic completion to produce better proposals. Semantic code completion
can be used to empower textual editors with structural editor features, guaran-
teeing semantic well-formedness for incomplete programs [93]. In the context
of Spoofax, syntactic and semantic code completion can be implemented by
using the results of name and type analysis [76, 13, 14]. Furthermore, semantic
analysis can be used to filter the list of syntactic proposals to guarantee that
the resulting program does not contain syntactic nor semantic errors.

Comment Preserving Layout-Sensitive Pretty-printing While we proposed tech-
niques to automatically derive a pretty-printer for a layout-sensitive language
from the language specification, our technique does not consider comments
when reconstructing the pretty-printed program. Recent work has been done
on layout preservation in refactoring transformations [66]. Therefore, exploring
an integration of both techniques may allow deriving a pretty-printer that also
considers comments when pretty-printing a program of a layout-sensitive
language. One of the challenges consists of reconstructing comments such that
they do not interfere with the meaning of the original program, but are still
correctly preserved, that is, comments still relate to the structure they refer to.

Declarative Disambiguation and Layout Sensitive Languages One challenge that
still remains when using SDF3 to specify a layout-sensitive language consists of
efficient disambiguation of operator precedence conflicts. Despite our efforts on
providing a safe and complete semantics for disambiguating such conflicts, we
believe that our implementation needs to be adapted to handle layout-sensitive
languages. The problem is that, for such languages, layout can be used as
brackets, to perform explicit disambiguation. Thus, in some cases, our solution
may be unsafe for layout-sensitive languages, filtering trees that do not belong
to an ambiguity, because the tree that obeys the priority rules in the language

Chapter 7. Conclusion 199

specification has been invalidated due to layout, that is, disambiguation has
already been performed. Because both layout-sensitive disambiguation, and
our approach for data-dependent disambiguation of deep priority conflicts
happen at parse-time, we believe that they can be combined to guarantee safe
disambiguation even for programs of layout-sensitive languages.

200

Bibliography

[1] Annika Aasa. “Precedences in Specifications and Implementations of
Programming Languages”. In: Theoretical Computer Science 142.1 (1995),
pp. 3–26. doi: http://dx.doi.org/10.1016/0304-3975(95)
90680-J.

[2] Paul W. Abrahams. “A final solution to the Dangling else of AL-
GOL 60 and related languages”. In: Communications of the ACM 9.9
(1966), pp. 679–682. doi: http://doi.acm.org/10.1145/365813.
365821.

[3] Michael D. Adams. “Principled parsing for indentation-sensitive lan-
guages: revisiting landin’s offside rule”. In: The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013. Ed. by Roberto Giacobazzi
and Radhia Cousot. ACM, 2013, pp. 511–522. isbn: 978-1-4503-1832-7.
doi: http://doi.acm.org/10.1145/2429069.2429129.

[4] Michael D. Adams and Matthew Might. “Restricting Grammars with
Tree Automata”. In: Proc. ACM Program. Lang. 1.OOPSLA (Oct. 2017),
82:1–82:25. issn: 2475-1421. doi: 10.1145/3133906. url: http://
doi.acm.org/10.1145/3133906.

[5] Ali Afroozeh, Mark G. J. van den Brand, Adrian Johnstone, Elizabeth
Scott, and Jurgen J. Vinju. “Safe Specification of Operator Precedence
Rules”. In: Software Language Engineering - 6th International Conference,
SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings. Ed. by
Martin Erwig, Richard F. Paige, and Eric Van Wyk. Vol. 8225. Lecture
Notes in Computer Science. Springer, 2013, pp. 137–156. isbn: 978-3-
319-02653-4. doi: http://dx.doi.org/10.1007/978-3-319-
02654-1_8.

[6] Ali Afroozeh and Anastasia Izmaylova. “Faster, Practical GLL Parsing”.
In: Compiler Construction - 24th International Conference, CC 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Ed. by Björn
Franke. Vol. 9031. Lecture Notes in Computer Science. Springer, 2015,
pp. 89–108. isbn: 978-3-662-46662-9. doi: http://dx.doi.org/10.
1007/978-3-662-46663-6_5.

[7] Ali Afroozeh and Anastasia Izmaylova. “One parser to rule them all”.
In: 2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2015, Pittsburgh, PA,
USA, October 25-30, 2015. Ed. by Gail C. Murphy and Guy L. Steele Jr.
ACM, 2015, pp. 151–170. isbn: 978-1-4503-3688-8. doi: http://doi.
acm.org/10.1145/2814228.2814242.

201

https://doi.org/http://dx.doi.org/10.1016/0304-3975(95)90680-J
https://doi.org/http://dx.doi.org/10.1016/0304-3975(95)90680-J
https://doi.org/http://doi.acm.org/10.1145/365813.365821
https://doi.org/http://doi.acm.org/10.1145/365813.365821
https://doi.org/http://doi.acm.org/10.1145/2429069.2429129
https://doi.org/10.1145/3133906
http://doi.acm.org/10.1145/3133906
http://doi.acm.org/10.1145/3133906
https://doi.org/http://dx.doi.org/10.1007/978-3-319-02654-1_8
https://doi.org/http://dx.doi.org/10.1007/978-3-319-02654-1_8
https://doi.org/http://dx.doi.org/10.1007/978-3-662-46663-6_5
https://doi.org/http://dx.doi.org/10.1007/978-3-662-46663-6_5
https://doi.org/http://doi.acm.org/10.1145/2814228.2814242
https://doi.org/http://doi.acm.org/10.1145/2814228.2814242

[8] Ali Afroozeh and Anastasia Izmaylova. “Operator precedence for data-
dependent grammars”. In: Proceedings of the 2016 ACM SIGPLAN Work-
shop on Partial Evaluation and Program Manipulation, PEPM 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016. Ed. by Martin Erwig and
Tiark Rompf. ACM, 2016, pp. 13–24. isbn: 978-1-4503-4097-7. doi: http:
//doi.acm.org/10.1145/2847538.2847540.

[9] Alfred V. Aho, Stephen C. Johnson, and Jeffrey D. Ullman. “Determinis-
tic Parsing of Ambiguous Grammars”. In: Communications of the ACM
18.8 (1975), pp. 441–452. doi: http://doi.acm.org/10.1145/
360933.360969.

[10] Alfred V. Aho, Steven C. Johnson, and Jeffrey D. Ullman. “Deterministic
Parsing of Ambiguous Grammars”. In: POPL. 1973, pp. 1–21.

[11] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986. isbn: 0-201-10088-6.

[12] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. “A
Study of Visual Studio Usage in Practice”. In: SANER. 2016. (Acceptance
Ratio: 52/140 = 37%).

[13] Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco
Visser, and Guido Wachsmuth. “A constraint language for static se-
mantic analysis based on scope graphs”. In: Proceedings of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by Martin
Erwig and Tiark Rompf. ACM, 2016, pp. 49–60. isbn: 978-1-4503-4097-7.
doi: http://doi.acm.org/10.1145/2847538.2847543.

[14] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and
Eelco Visser. “Scopes as types”. In: Proceedings of the ACM on Program-
ming Languages 2.OOPSLA (2018). doi: https://doi.org/10.1145/
3276484.

[15] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge
University Press, 1998. isbn: 0-521-58388-8.

[16] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick,
R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes,
and R. Nutt. “The FORTRAN Automatic Coding System”. In: Papers
Presented at the February 26-28, 1957, Western Joint Computer Conference:
Techniques for Reliability. IRE-AIEE-ACM ’57 (Western). New York, NY,
USA: ACM, 1957, pp. 188–198. doi: 10.1145/1455567.1455599.

[17] John Warner Backus. “The syntax and semantics of the proposed inter-
national algebraic language of the Zurich ACM-GAMM Conference”.
In: IFIP Congress. 1959, pp. 125–131.

[18] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,
Cesar Munoz, Chetan Murthy, et al. “The Coq proof assistant reference
manual: Version 6.1”. PhD thesis. Inria, 1997.

202

https://doi.org/http://doi.acm.org/10.1145/2847538.2847540
https://doi.org/http://doi.acm.org/10.1145/2847538.2847540
https://doi.org/http://doi.acm.org/10.1145/360933.360969
https://doi.org/http://doi.acm.org/10.1145/360933.360969
https://doi.org/http://doi.acm.org/10.1145/2847538.2847543
https://doi.org/https://doi.org/10.1145/3276484
https://doi.org/https://doi.org/10.1145/3276484
https://doi.org/10.1145/1455567.1455599

[19] Bas Basten. “Ambiguity Detection for Programming Language Gram-
mars”. PhD thesis. Universiteit van Amsterdam, Dec. 2011.

[20] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup
Language, Version 1.2. Available on: http://yaml.org/spec/1.2/
spec.html. 2009.

[21] Patrick Borras, Dominique Clément, Th. Despeyroux, Janet Incerpi,
Gilles Kahn, Bernard Lang, and V. Pascual. “CENTAUR: The System”.
In: Proceedings of the third ACM SIGSOFT/SIGPLAN software engineering
symposium on Practical software development environments. New York,
USA: ACM, 1988, pp. 14–24.

[22] R. Boulton. Syn: A single language for specifying abstract syntax trees,
lexical analysis, parsing and pretty-printing. 390. University of Cambridge,
Computer Laboratory, 1996.

[23] Eric Bouwers, Martin Bravenboer, and Eelco Visser. “Grammar Engineer-
ing Support for Precedence Rule Recovery and Compatibility Checking”.
In: Electronic Notes in Theoretical Computer Science 203.2 (2008), pp. 85–
101. doi: http://dx.doi.org/10.1016/j.entcs.2008.03.046.

[24] Claus Brabrand, Robert Giegerich, and Anders Møller. “Analyzing am-
biguity of context-free grammars”. In: Science of Computer Programming
75.3 (2010), pp. 176–191. doi: http://dx.doi.org/10.1016/j.
scico.2009.11.002.

[25] M.G.J. van den Brand. Generation of Language Independent Modular Pret-
typrinters. Tech. rep. P9315. University of Amsterdam, July, 1993.

[26] M.G.J. van den Brand. Prettyprinting Without Losing Comments. Tech. rep.
P9327. University of Amsterdam, October, 1993.

[27] Mark G. J. van den Brand, H. A. de Jong, Paul Klint, and Pieter A.
Olivier. “Efficient annotated terms”. In: Software: Practice and Experience
30.3 (2000), pp. 259–291.

[28] Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and
Eelco Visser. “Disambiguation Filters for Scannerless Generalized LR
Parsers”. In: Compiler Construction, 11th International Conference, CC
2002, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceed-
ings. Ed. by R. Nigel Horspool. Vol. 2304. Lecture Notes in Computer
Science. Springer, 2002, pp. 143–158. isbn: 3-540-43369-4. doi: http:
//link.springer.de/link/service/series/0558/bibs/
2304/23040143.htm.

[29] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. “Stratego/XT 0.17. A language and toolset for program transfor-
mation”. In: Science of Computer Programming 72.1-2 (2008), pp. 52–70.
doi: http://dx.doi.org/10.1016/j.scico.2007.11.003.

BIBLIOGRAPHY 203

http://yaml.org/spec/1.2/spec.html
http://yaml.org/spec/1.2/spec.html
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2008.03.046
https://doi.org/http://dx.doi.org/10.1016/j.scico.2009.11.002
https://doi.org/http://dx.doi.org/10.1016/j.scico.2009.11.002
https://doi.org/http://link.springer.de/link/service/series/0558/bibs/2304/23040143.htm
https://doi.org/http://link.springer.de/link/service/series/0558/bibs/2304/23040143.htm
https://doi.org/http://link.springer.de/link/service/series/0558/bibs/2304/23040143.htm
https://doi.org/http://dx.doi.org/10.1016/j.scico.2007.11.003

[30] Martin Bravenboer, Éric Tanter, and Eelco Visser. “Declarative, formal,
and extensible syntax definition for AspectJ”. In: Proceedings of the
21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006. Ed. by Peri L. Tarr
and William R. Cook. ACM, 2006, pp. 209–228. isbn: 1-59593-348-4. doi:
http://doi.acm.org/10.1145/1167473.1167491.

[31] Martin Bravenboer and Eelco Visser. “Concrete syntax for objects:
domain-specific language embedding and assimilation without restric-
tions”. In: Proceedings of the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2004. Ed. by John M. Vlissides and Douglas C. Schmidt. Van-
couver, BC, Canada: ACM, 2004, pp. 365–383. isbn: 1-58113-831-8. doi:
http://doi.acm.org/10.1145/1028976.1029007.

[32] Leonhard Brunauer and Bernhard Mühlbacher. “Indentation Sensi-
tive Languages”. Unpublished Manuscript. July, 2006. url: http :
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.136.2933&rep=rep1&type=pdf (visited on 05/16/2013).

[33] Raymond P.L. Buse and Westley R. Weimer. “A Metric for Software
Readability”. In: Proceedings of the 2008 International Symposium on Soft-
ware Testing and Analysis. ISSTA ’08. Seattle, WA, USA: ACM, 2008,
pp. 121–130. isbn: 978-1-60558-050-0. doi: 10.1145/1390630.1390647.
url: http://doi.acm.org/10.1145/1390630.1390647.

[34] David G. Cantor. “On The Ambiguity Problem of Backus Systems”. In:
Journal of the ACM 9.4 (1962), pp. 477–479. doi: http://doi.acm.
org/10.1145/321138.321145.

[35] Minder Chen and Jay F. Nunamaker. “MetaPlex: an integrated envi-
ronment for organization and information system development”. In:
Proceedings of the International Conference on Information Systems, ICIS
1989, 1989, Boston, Massachusetts, USA. Association for Information Sys-
tems, 1989, pp. 141–151. doi: http://doi.acm.org/10.1145/
75034.75047.

[36] N. Chomsky and M.P. Schützenberger. “The Algebraic Theory of Context-
Free Languages*”. In: Computer Programming and Formal Systems. Ed. by
P. Braffort and D. Hirschberg. Vol. 35. Studies in Logic and the Foun-
dations of Mathematics. Elsevier, 1963, pp. 118–161. doi: https://
doi.org/10.1016/S0049-237X(08)72023-8. url: http://www.
sciencedirect.com/science/article/pii/S0049237X08720238.

[37] Noam Chomsky. Syntactic Structures. The Hague, The Netherlands:
Mouton, Feb. 1957.

[38] K. Clarke. The Top-down Parsing of Expressions. University of London.
Queen Mary College. Department of Computer Science and Statistics,
1986.

204

https://doi.org/http://doi.acm.org/10.1145/1167473.1167491
https://doi.org/http://doi.acm.org/10.1145/1028976.1029007
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
https://doi.org/10.1145/1390630.1390647
http://doi.acm.org/10.1145/1390630.1390647
https://doi.org/http://doi.acm.org/10.1145/321138.321145
https://doi.org/http://doi.acm.org/10.1145/321138.321145
https://doi.org/http://doi.acm.org/10.1145/75034.75047
https://doi.org/http://doi.acm.org/10.1145/75034.75047
https://doi.org/https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/https://doi.org/10.1016/S0049-237X(08)72023-8
http://www.sciencedirect.com/science/article/pii/S0049237X08720238
http://www.sciencedirect.com/science/article/pii/S0049237X08720238

[39] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
Available on: http://www.grappa.univ-lille3.fr/tata. re-
lease October, 12th 2007. 2007.

[40] Nils Anders Danielsson. “Correct-by-construction pretty-printing”. In:
Proceedings of the 2013 ACM SIGPLAN workshop on Dependently-typed
programming, DTP@ICFP 2013, Boston, Massachusetts, USA, September 24,
2013. Ed. by Stephanie Weirich. ACM, 2013, pp. 1–12. isbn: 978-1-4503-
2384-0. doi: http://doi.acm.org/10.1145/2502409.2502410.

[41] Pierpaolo Degano and Corrado Priami. “Comparison of Syntactic Error
Handling in LR Parsers”. In: Software: Practice and Experience 25.6 (1995),
pp. 657–679.

[42] Jay Earley. “Ambiguity and Precedence in Syntax Description”. In: Acta
Informatica 4 (1974), pp. 183–192.

[43] Sven Efftinge and Markus Völter. “oAW xText: A framework for textual
DSLs”. In: Workshop on Modeling Symposium at Eclipse Summit. 2006.

[44] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: Companion to the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada. Ed. by
Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr. ACM, 2007, pp. 884–885. isbn: 978-1-59593-865-7. doi: http:
//doi.acm.org/10.1145/1297846.1297938.

[45] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. “Layout-Sensitive Generalized Parsing”. In: Software Language
Engineering, 5th International Conference, SLE 2012, Dresden, Germany,
September 26-28, 2012, Revised Selected Papers. Ed. by Krzysztof Czar-
necki and Görel Hedin. Vol. 7745. Lecture Notes in Computer Sci-
ence. Springer, 2012, pp. 244–263. isbn: 978-3-642-36089-3. doi: http:
//dx.doi.org/10.1007/978-3-642-36089-3_14.

[46] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido
Wachsmuth, and Jimi van der Woning. “The State of the Art in Language
Workbenches - Conclusions from the Language Workbench Challenge”.
In: Software Language Engineering - 6th International Conference, SLE 2013,
Indianapolis, IN, USA, October 26-28, 2013. Proceedings. Ed. by Martin
Erwig, Richard F. Paige, and Eric Van Wyk. Vol. 8225. Lecture Notes in
Computer Science. Springer, 2013, pp. 197–217. isbn: 978-3-319-02653-4.
doi: http://dx.doi.org/10.1007/978-3-319-02654-1_11.

BIBLIOGRAPHY 205

http://www.grappa.univ-lille3.fr/tata
https://doi.org/http://doi.acm.org/10.1145/2502409.2502410
https://doi.org/http://doi.acm.org/10.1145/1297846.1297938
https://doi.org/http://doi.acm.org/10.1145/1297846.1297938
https://doi.org/http://dx.doi.org/10.1007/978-3-642-36089-3_14
https://doi.org/http://dx.doi.org/10.1007/978-3-642-36089-3_14
https://doi.org/http://dx.doi.org/10.1007/978-3-319-02654-1_11

[47] Moritz Eysholdt and Heiko Behrens. “Xtext: implement your language
faster than the quick and dirty way”. In: Companion to the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, SPLASH/OOPSLA 2010, October 17-21, 2010,
Reno/Tahoe, Nevada, USA. Ed. by William R. Cook, Siobhán Clarke, and
Martin C. Rinard. ACM, 2010, pp. 307–309. isbn: 978-1-4503-0240-1. doi:
http://doi.acm.org/10.1145/1869542.1869625.

[48] Robert W. Floyd. “On ambiguity in phrase structure languages”. In:
Communications of the ACM 5.10 (1962), p. 526. doi: http://doi.acm.
org/10.1145/368959.368993.

[49] Bryan Ford. “Packrat parsing: simple, powerful, lazy, linear time, func-
tional pearl”. In: Proceedings of the seventh ACM SIGPLAN international
conference on Functional Programming (ICFP 2002). 2002, pp. 36–47. doi:
http://doi.acm.org/10.1145/581478.581483.

[50] Bryan Ford. “Parsing expression grammars: a recognition-based syn-
tactic foundation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004. Ed. by Neil D. Jones and Xavier Leroy. ACM,
2004, pp. 111–122. isbn: 1-58113-729-X. doi: http://doi.acm.org/
10.1145/964001.964011.

[51] Martin Fowler. Language Workbenches: The Killer-App for Domain Spe-
cific Languages? 2005. doi: http : / / www . martinfowler . com /
articles/languageWorkbench.html.

[52] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically Rig-
orous Java Performance Evaluation”. In: OOPSLA ’07: Proceedings of the
ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications. ACM, 2007. isbn: 978-1-59593-786-5.
doi: 10.1145/1297027.1297033. url: http://doi.acm.org/10.
1145/1297027.1297033.

[53] Seymour Ginsburg and Joseph S. Ullian. “Ambiguity in context free
languages”. In: Journal of the ACM 13.1 (1966), pp. 62–89. doi: http:
//doi.acm.org/10.1145/321312.321318.

[54] James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 7 Edition. 1st. Addison-Wesley
Professional, 2013. isbn: 0133260224, 9780133260229.

[55] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification. Java SE 8 Edition. Mar. 2014.

[56] John Gruber. Markdown: Syntax. Available on: https://daringfireball.
net/projects/markdown/syntax. 2004.

206

https://doi.org/http://doi.acm.org/10.1145/1869542.1869625
https://doi.org/http://doi.acm.org/10.1145/368959.368993
https://doi.org/http://doi.acm.org/10.1145/368959.368993
https://doi.org/http://doi.acm.org/10.1145/581478.581483
https://doi.org/http://doi.acm.org/10.1145/964001.964011
https://doi.org/http://doi.acm.org/10.1145/964001.964011
https://doi.org/http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
https://doi.org/http://doi.acm.org/10.1145/321312.321318
https://doi.org/http://doi.acm.org/10.1145/321312.321318
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax

[57] Daco Harkes, Danny M. Groenewegen, and Eelco Visser. “IceDust:
Incremental and Eventual Computation of Derived Values in Persis-
tent Object Graphs”. In: 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy. Ed. by Shriram
Krishnamurthi and Benjamin S. Lerner. Vol. 56. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016. isbn: 978-3-95977-014-9. doi:
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.11.

[58] Jan Heering, P. R. H. Hendriks, Paul Klint, and Jan Rekers. “The syntax
definition formalism SDF - reference manual”. In: SIGPLAN Notices
24.11 (1989), pp. 43–75. doi: http://doi.acm.org/10.1145/
71605.71607.

[59] Jan Heering, Paul Klint, and Jan Rekers. “Incremental Generation of
Parsers”. In: PLDI. 1989, pp. 179–191.

[60] Mark Hills, Paul Klint, and Jurgen Vinju. “An Empirical Study of PHP
Feature Usage: A Static Analysis Perspective”. In: Proceedings of the 2013
International Symposium on Software Testing and Analysis. ISSTA 2013.
Lugano, Switzerland: ACM, 2013, pp. 325–335. isbn: 978-1-4503-2159-4.
doi: 10.1145/2483760.2483786. url: http://doi.acm.org/10.
1145/2483760.2483786.

[61] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Boston, MA, USA: Addison-
Wesley, 2006.

[62] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999. isbn: 0-201-61622-X.

[63] Trevor Jim, Yitzhak Mandelbaum, and David Walker. “Semantics and
algorithms for data-dependent grammars”. In: Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2010, Madrid, Spain, January 17-23, 2010. Ed. by Manuel
V. Hermenegildo and Jens Palsberg. ACM, 2010, pp. 417–430. isbn:
978-1-60558-479-9. doi: http://doi.acm.org/10.1145/1706299.
1706347.

[64] S. C. Johnson. YACC—yet another compiler-compiler. Tech. rep. CS-32.
Murray Hill, N.J.: AT & T Bell Laboratories, 1975.

[65] Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, and Emma Söderberg.
“Natural and Flexible Error Recovery for Generated Modular Language
Environments”. In: ACM Transactions on Programming Languages and
Systems 34.4 (2012), p. 15. doi: http://doi.acm.org/10.1145/
2400676.2400678.

[66] Maartje de Jonge and Eelco Visser. “An Algorithm for Layout Preserva-
tion in Refactoring Transformations”. In: Software Language Engineering
- 4th International Conference, SLE 2011, Braga, Portugal, July 3-4, 2011,
Revised Selected Papers. Ed. by Anthony M. Sloane and Uwe Aßmann.

BIBLIOGRAPHY 207

https://doi.org/http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/http://doi.acm.org/10.1145/71605.71607
https://doi.org/http://doi.acm.org/10.1145/71605.71607
https://doi.org/10.1145/2483760.2483786
http://doi.acm.org/10.1145/2483760.2483786
http://doi.acm.org/10.1145/2483760.2483786
https://doi.org/http://doi.acm.org/10.1145/1706299.1706347
https://doi.org/http://doi.acm.org/10.1145/1706299.1706347
https://doi.org/http://doi.acm.org/10.1145/2400676.2400678
https://doi.org/http://doi.acm.org/10.1145/2400676.2400678

Vol. 6940. Lecture Notes in Computer Science. Springer, 2011, pp. 40–59.
isbn: 978-3-642-28829-6. doi: http://dx.doi.org/10.1007/978-
3-642-28830-2_3.

[67] Tomas Kalibera and Richard Jones. “Rigorous Benchmarking in Reason-
able Time”. In: ISMM ’13: Proceedings of the International Symposium on
Memory Management. ACM, 2013. doi: 10.1145/2464157.2464160.

[68] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench:
rules for declarative specification of languages and IDEs”. In: Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010. Ed.
by William R. Cook, Siobhán Clarke, and Martin C. Rinard. Reno/Ta-
hoe, Nevada: ACM, 2010, pp. 444–463. isbn: 978-1-4503-0203-6. doi:
http://doi.acm.org/10.1145/1869459.1869497.

[69] Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. “Pure and
declarative syntax definition: paradise lost and regained”. In: Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010. Ed.
by William R. Cook, Siobhán Clarke, and Martin C. Rinard. Reno/Ta-
hoe, Nevada: ACM, 2010, pp. 918–932. isbn: 978-1-4503-0203-6. doi:
http://doi.acm.org/10.1145/1869459.1869535.

[70] Brian W. Kernighan and Dennis Ritchie. The C Programming Language.
Prentice-Hall, 1978. isbn: 0-13-110163-3.

[71] P. Klint. “A Meta-environment for Generating Programming Environ-
ments”. In: ACM Trans. Softw. Eng. Methodol. 2.2 (Apr. 1993), pp. 176–
201. issn: 1049-331X. doi: 10.1145/151257.151260. url: http:
//doi.acm.org/10.1145/151257.151260.

[72] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. “EASY Meta-
programming with Rascal”. In: Generative and Transformational Techniques
in Software Engineering III - International Summer School, GTTSE 2009,
Braga, Portugal, July 6-11, 2009. Revised Papers. Ed. by Joao M. Fernandes,
Ralf Lämmel, Joost Visser, and João Saraiva. Vol. 6491. Lecture Notes in
Computer Science. Springer, 2009, pp. 222–289. isbn: 978-3-642-18022-4.
doi: http://dx.doi.org/10.1007/978-3-642-18023-1_6.

[73] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. “RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation”. In:
Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20-21,
2009. IEEE Computer Society, 2009, pp. 168–177. isbn: 978-0-7695-3793-1.
doi: http://doi.ieeecomputersociety.org/10.1109/SCAM.
2009.28.

[74] Paul Klint and Eelco Visser. “Using Filters for the Disambiguation of
Context-free Grammars”. In: Proceedings of the ASMICS Workshop on
Parsing Theory. Milano, Italy: Tech. Rep. 126–1994, Dipartimento di
Scienze dell’Informazione, Università di Milano, Oct. 1994.

208

https://doi.org/http://dx.doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/http://dx.doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/10.1145/2464157.2464160
https://doi.org/http://doi.acm.org/10.1145/1869459.1869497
https://doi.org/http://doi.acm.org/10.1145/1869459.1869535
https://doi.org/10.1145/151257.151260
http://doi.acm.org/10.1145/151257.151260
http://doi.acm.org/10.1145/151257.151260
https://doi.org/http://dx.doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28

[75] Donald E. Knuth. “Semantics of Context-Free Languages”. In: In Mathe-
matical Systems Theory. 1968, pp. 127–145.

[76] Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco
Visser. “Declarative Name Binding and Scope Rules”. In: Software Lan-
guage Engineering, 5th International Conference, SLE 2012, Dresden, Ger-
many, September 26-28, 2012, Revised Selected Papers. Ed. by Krzysztof
Czarnecki and Görel Hedin. Vol. 7745. Lecture Notes in Computer Sci-
ence. Springer, 2012, pp. 311–331. isbn: 978-3-642-36089-3. doi: http:
//dx.doi.org/10.1007/978-3-642-36089-3_18.

[77] Gabriël Konat, Luís Eduardo de Souza Amorim, Sebastian Erdweg,
and Eelco Visser. Bootstrapping, Default Formatting, and Skeleton Editing
in the Spoofax Language Workbench. Language Workbench Challenge
(LWC@SLE). 2016.

[78] J.W.C. Koorn. “GSE: a generic text and structure editor”. In: University
of Amsterdam. 1992, pp. 168–177.

[79] Ralf Lämmel. “Grammar Testing”. In: Fundamental Approaches to Soft-
ware Engineering, FASE 2001. Ed. by Heinrich Hußmann. Vol. 2029.
Lecture Notes in Computer Science. Springer, 2001, pp. 201–216. isbn:
3-540-41863-6. doi: http://link.springer.de/link/service/
series/0558/bibs/2029/20290201.htm.

[80] Peter J. Landin. “The next 700 programming languages”. In: Commu-
nications of the ACM 9.3 (1966), pp. 157–166. doi: http://doi.acm.
org/10.1145/365230.365257.

[81] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J.
Vinju. “Empirical analysis of the relationship between CC and SLOC in
a large corpus of Java methods and C functions”. In: Journal of Software:
Evolution and Process 28.7 (2016). JSME-15-0028.R1, pp. 589–618. issn:
2047-7481. doi: 10.1002/smr.1760. url: http://dx.doi.org/10.
1002/smr.1760.

[82] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. “Challenges
for Static Analysis of Java Reflection: Literature Review and Empirical
Study”. In: Proceedings of the 39th International Conference on Software En-
gineering. ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017, pp. 507–
518. isbn: 978-1-5386-3868-2. doi: 10.1109/ICSE.2017.53. url:
https://doi.org/10.1109/ICSE.2017.53.

[83] Nicolas Laurent and Kim Mens. “Parsing expression grammars made
practical”. In: Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Software Language Engineering, SLE 2015, Pittsburgh, PA, USA,
October 25-27, 2015. Ed. by Richard F. Paige, Davide Di Ruscio, and
Markus Völter. ACM, 2015, pp. 167–172. isbn: 978-1-4503-3686-4. doi:
http://doi.acm.org/10.1145/2814251.2814265.

BIBLIOGRAPHY 209

https://doi.org/http://dx.doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/http://dx.doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/http://link.springer.de/link/service/series/0558/bibs/2029/20290201.htm
https://doi.org/http://link.springer.de/link/service/series/0558/bibs/2029/20290201.htm
https://doi.org/http://doi.acm.org/10.1145/365230.365257
https://doi.org/http://doi.acm.org/10.1145/365230.365257
https://doi.org/10.1002/smr.1760
http://dx.doi.org/10.1002/smr.1760
http://dx.doi.org/10.1002/smr.1760
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/http://doi.acm.org/10.1145/2814251.2814265

[84] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. The OCaml system release 4.07: Documentation
and user’s manual. Intern report. Inria, July 2018, pp. 1–752. url: https:
//hal.inria.fr/hal-00930213.

[85] Huiqing Li, Simon Thompson, and Claus Reinke. “The Haskell Refac-
torer, HaRe, and its API”. In: Electronic Notes in Theoretical Computer
Science 141.4 (2005), pp. 29–34. doi: http://dx.doi.org/10.1016/
j.entcs.2005.02.053.

[86] Simon Marlow. Haskell 2010 Language Report. Available on: https:
//www.haskell.org/onlinereport/haskell2010. 2010.

[87] Jim Melton. “SQL Language Summary”. In: ACM Computing Surveys
28.1 (1996), pp. 141–143. doi: db/journals/csur/Melton96.html.

[88] Cleve B. Moler. “MATLAB: A Mathematical Visualization Laboratory”.
In: COMPCON 88, Digest of Papers, Thirty-Third IEEE Computer Society
International Conference, San Francisco, California, USA, February 29 -
March 4, 1988. IEEE Computer Society, 1988, pp. 480–481.

[89] Leon Moonen. “Generating Robust Parsers Using Island Grammars”.
In: WCRE. 2001, p. 13. doi: http://computer.org/proceedings/
wcre/1303/13030013abs.htm.

[90] Leon Moonen. “Lightweight Impact Analysis using Island Grammars”.
In: 10th International Workshop on Program Comprehension (IWPC 2002),
27-29 June 2002, Paris, France. IEEE Computer Society, 2002, pp. 219–228.
isbn: 0-7695-1495-2. doi: http://computer.org/proceedings/
iwpc/1495/14950219abs.htm.

[91] Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth.
“A Theory of Name Resolution”. In: Programming Languages and Systems
- 24th European Symposium on Programming, ESOP 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings. Ed. by Jan Vitek. Vol. 9032.
Lecture Notes in Computer Science. Springer, 2015, pp. 205–231. isbn:
978-3-662-46668-1. doi: http://dx.doi.org/10.1007/978-3-
662-46669-8_9.

[92] Martin Odersky, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, Matthias Zenger, and et al. An overview of the Scala
programming language. Tech. rep. 2004.

[93] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew
A. Hammer. “Hazelnut: a bidirectionally typed structure editor calcu-
lus”. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017.
Ed. by Giuseppe Castagna and Andrew D. Gordon. ACM, 2017, pp. 86–
99. isbn: 978-1-4503-4660-3. doi: http://dl.acm.org/citation.
cfm?id=3009900.

210

https://hal.inria.fr/hal-00930213
https://hal.inria.fr/hal-00930213
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2005.02.053
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2005.02.053
https://www.haskell.org/onlinereport/haskell2010
https://www.haskell.org/onlinereport/haskell2010
https://doi.org/db/journals/csur/Melton96.html
https://doi.org/http://computer.org/proceedings/wcre/1303/13030013abs.htm
https://doi.org/http://computer.org/proceedings/wcre/1303/13030013abs.htm
https://doi.org/http://computer.org/proceedings/iwpc/1495/14950219abs.htm
https://doi.org/http://computer.org/proceedings/iwpc/1495/14950219abs.htm
https://doi.org/http://dx.doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/http://dx.doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/http://dl.acm.org/citation.cfm?id=3009900
https://doi.org/http://dl.acm.org/citation.cfm?id=3009900

[94] Hubert Österle, Jörg Becker, Ulrich Frank, Thomas Hess, Dimitris Kara-
giannis, Helmut Krcmar, Peter Loos, Peter Mertens, Andreas Oberweis,
and Elmar J. Sinz. “Memorandum on design-oriented information sys-
tems research”. In: EJIS 20.1 (2011), pp. 7–10. doi: http://dx.doi.
org/10.1057/ejis.2010.55.

[95] Terence John Parr. The De
finitive ANTLR Reference: Building Domain-Specific Languages. Pragmatic
Programmers, May 2007.

[96] Terence John Parr and Kathleen Fisher. “LL(*): the foundation of the
ANTLR parser generator”. In: Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4-8, 2011. Ed. by Mary W. Hall and
David A. Padua. ACM, 2011, pp. 425–436. isbn: 978-1-4503-0663-8. doi:
http://doi.acm.org/10.1145/1993498.1993548.

[97] Terence John Parr, Sam Harwell, and Kathleen Fisher. “Adaptive LL(*)
parsing: the power of dynamic analysis”. In: Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014. Ed. by Andrew P. Black and Todd D.
Millstein. ACM, 2014, pp. 579–598. isbn: 978-1-4503-2585-1. doi: http:
//doi.acm.org/10.1145/2660193.2660202.

[98] Thomas Reps and Tim Teitelbaum. “The Synthesizer Generator”. In:
SIGSOFT Softw. Eng. Notes 9.3 (Apr. 1984), pp. 42–48. issn: 0163-5948.
doi: 10.1145/390010.808247. url: http://doi.acm.org/10.
1145/390010.808247.

[99] Romain Robbes and Michele Lanza. “How Program History Can Im-
prove Code Completion”. In: 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2008), 15-19 September 2008, L
Aquila, Italy. IEEE, 2008, pp. 317–326. doi: http://dx.doi.org/10.
1109/ASE.2008.42.

[100] Guido van Rossum and Fred L. Drake. The Python Language Reference
Manual. Network Theory Ltd., 2011. isbn: 1906966141, 9781906966140.

[101] Lisa F. Rubin. “Syntax-Directed Pretty Printing - A First Step Towards a
Syntax-Directed Editor”. In: IEEE Trans. Software Eng. 9.2 (1983), pp. 119–
127.

[102] James E. Rumbaugh, Ivar Jacobson, and Grady Booch. The unified mod-
eling language reference manual. Addison-Wesley-Longman, 1999. isbn:
978-0-201-30998-0.

[103] D. J. Salomon and G. V. Cormack. “Scannerless NSLR(1) parsing of
programming languages”. In: SIGPLAN Not. 24.7 (1989). doi: http:
//doi.acm.org/10.1145/74818.74833.

BIBLIOGRAPHY 211

https://doi.org/http://dx.doi.org/10.1057/ejis.2010.55
https://doi.org/http://dx.doi.org/10.1057/ejis.2010.55
https://doi.org/http://doi.acm.org/10.1145/1993498.1993548
https://doi.org/http://doi.acm.org/10.1145/2660193.2660202
https://doi.org/http://doi.acm.org/10.1145/2660193.2660202
https://doi.org/10.1145/390010.808247
http://doi.acm.org/10.1145/390010.808247
http://doi.acm.org/10.1145/390010.808247
https://doi.org/http://dx.doi.org/10.1109/ASE.2008.42
https://doi.org/http://dx.doi.org/10.1109/ASE.2008.42
https://doi.org/http://doi.acm.org/10.1145/74818.74833
https://doi.org/http://doi.acm.org/10.1145/74818.74833

[104] D.J. Salomon and G.V. Cormack. The disambiguation and scannerless
parsing of complete character-level grammars for programming languages.
Tech. rep. 95/06. Winnipeg, Canada: Department of Computer Science,
University of Manitoba, 1995.

[105] Leonardo Vieira dos Santos Reis, Roberto da Silva Bigonha, Vladimir
Oliveira Di Iorio, and Luis Eduardo de Souza Amorim. “Adaptable Pars-
ing Expression Grammars”. In: Programming Languages - 16th Brazilian
Symposium, SBLP 2012, Natal, Brazil, September 23-28, 2012. Proceedings.
2012, pp. 72–86. doi: 10.1007/978-3-642-33182-4_7.

[106] Leonardo Vieira dos Santos Reis, Roberto da Silva Bigonha, Vladimir
Oliveira Di Iorio, and Luis Eduardo de Souza Amorim. “The formaliza-
tion and implementation of Adaptable Parsing Expression Grammars”.
In: Sci. Comput. Program. 96 (2014), pp. 191–210. doi: 10.1016/j.
scico.2014.02.020.

[107] Sylvain Schmitz. “Conservative Ambiguity Detection in Context-Free
Grammars”. In: Automata, Languages and Programming, 34th International
Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings.
Ed. by Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej
Tarlecki. Vol. 4596. Lecture Notes in Computer Science. Springer, 2007,
pp. 692–703. isbn: 978-3-540-73419-2. doi: http://dx.doi.org/10.
1007/978-3-540-73420-8_60.

[108] Martijn M. Schrage. “Proxima – a presentation-oriented editor for struc-
tured documents”. PhD thesis. Utrecht University, The Netherlands,
Oct. 2004. isbn: 90-393-3803-5. url: http://www.oblomov.com/
Documents/Thesis.pdf.

[109] Elizabeth Scott and Adrian Johnstone. “GLL Parsing”. In: Workshop on
Language Descriptions, Tools and Applications (LDTA’09). 2009.

[110] T. Sedano. “Code Readability Testing, an Empirical Study”. In: 2016
IEEE 29th International Conference on Software Engineering Education and
Training (CSEET). Apr. 2016, pp. 111–117. doi: 10.1109/CSEET.2016.
36.

[111] Klaas Sikkel. Parsing schemata - a framework for specification and analysis of
parsing algorithms. Springer, 1997. isbn: 978-3-540-61650-4.

[112] Charles Simonyi, Magnus Christerson, and Shane Clifford. “Intentional
software”. In: Proceedings of the 21th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006. Ed. by Peri L. Tarr and William R. Cook. ACM, 2006,
pp. 451–464. isbn: 1-59593-348-4. doi: http://doi.acm.org/10.
1145/1167473.1167511.

[113] Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti
Marttiin. “MetaEdit - A Flexible Graphical Environment for Methodol-
ogy Modelling”. In: CAiSE. 1991, pp. 168–193.

212

https://doi.org/10.1007/978-3-642-33182-4_7
https://doi.org/10.1016/j.scico.2014.02.020
https://doi.org/10.1016/j.scico.2014.02.020
https://doi.org/http://dx.doi.org/10.1007/978-3-540-73420-8_60
https://doi.org/http://dx.doi.org/10.1007/978-3-540-73420-8_60
http://www.oblomov.com/Documents/Thesis.pdf
http://www.oblomov.com/Documents/Thesis.pdf
https://doi.org/10.1109/CSEET.2016.36
https://doi.org/10.1109/CSEET.2016.36
https://doi.org/http://doi.acm.org/10.1145/1167473.1167511
https://doi.org/http://doi.acm.org/10.1145/1167473.1167511

[114] Paul G. Sorenson, J. Paul Tremblay, and Andrew J. McAllister. “The
Metaview System for Many Specification Environments”. In: IEEE Soft-
ware 5.2 (1988), pp. 30–38. doi: http://doi.ieeecomputersociety.
org/10.1109/52.2008.

[115] Luis Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth,
and Eelco Visser. “Principled syntactic code completion using placehold-
ers”. In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering, Amsterdam, The Netherlands, October
31 - November 1, 2016. Ed. by Tijs van der Storm, Emilie Balland, and
Dániel Varró. ACM, 2016, pp. 163–175. isbn: 978-1-4503-4447-0. doi:
http://dl.acm.org/citation.cfm?id=2997374.

[116] Luis Eduardo de Souza Amorim, Timothée Haudebourg, and Eelco
Visser. Declarative Disambiguation of Deep Priority Conflicts. Tech. rep.
TUD-SERG-2017-014. Delft University of Technology., 2017.

[117] Luís Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian Erd-
weg, and Eelco Visser. “Declarative specification of indentation rules:
a tooling perspective on parsing and pretty-printing layout-sensitive
languages”. In: Proceedings of the 11th ACM SIGPLAN International Con-
ference on Software Language Engineering, SLE 2018, Boston, MA, USA,
November 05-06, 2018. Ed. by David Pearce 0005, Tanja Mayerhofer, and
Friedrich Steimann. ACM, 2018, pp. 3–15. isbn: 978-1-4503-6029-6. doi:
https://doi.org/10.1145/3276604.3276607.

[118] Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco
Visser. “Deep priority conflicts in the wild: a pilot study”. In: Proceedings
of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2017, Vancouver, BC, Canada, October 23-24, 2017. Ed. by
Benoît Combemale, Marjan Mernik, and Bernhard Rumpe. ACM, 2017,
pp. 55–66. isbn: 978-1-4503-5525-4. doi: http://doi.acm.org/10.
1145/3136014.3136020.

[119] Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco
Visser. “Towards Zero-Overhead Disambiguation of Deep Priority Con-
flicts”. In: Programming Journal 2.3 (2018), p. 13. doi: https://doi.
org/10.22152/programming-journal.org/2018/2/13.

[120] Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco
Visser. “Towards Zero-Overhead Disambiguation of Deep Priority Con-
flicts”. In: Programming Journal 2 (2018), p. 13.

[121] Andreas Stefik and Susanna Siebert. “An Empirical Investigation into
Programming Language Syntax”. In: Trans. Comput. Educ. 13.4 (Nov.
2013), 19:1–19:40. issn: 1946-6226. doi: 10.1145/2534973. url: http:
//doi.acm.org/10.1145/2534973.

BIBLIOGRAPHY 213

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/52.2008
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/52.2008
https://doi.org/http://dl.acm.org/citation.cfm?id=2997374
https://doi.org/https://doi.org/10.1145/3276604.3276607
https://doi.org/http://doi.acm.org/10.1145/3136014.3136020
https://doi.org/http://doi.acm.org/10.1145/3136014.3136020
https://doi.org/https://doi.org/10.22152/programming-journal.org/2018/2/13
https://doi.org/https://doi.org/10.22152/programming-journal.org/2018/2/13
https://doi.org/10.1145/2534973
http://doi.acm.org/10.1145/2534973
http://doi.acm.org/10.1145/2534973

[122] Daniel Teichroew, P. Macasovic, E. A. Hershey, and Y. Yamamoto. “Ap-
plication of the Entity-Relationship Approach to Information Processing
Systems Modelling”. In: Entity-Relationship Approach to Systems Analysis
and Design. Proc. 1st International Conference on the Entity-Relationship
Approach. Ed. by Peter P. Chen. North-Holland, 1979, pp. 15–38. isbn:
0-444-85487-8. doi: db/conf/er/TeichroewMHY79.html.

[123] Mikkel Thorup. “Disambiguating Grammars by Exclusion of Sub-Parse
Trees”. In: Acta Informatica 33.6 (1996), pp. 511–522.

[124] Masaru Tomita. “An Efficient Context-Free Parsing Algorithm for Natu-
ral Languages”. In: IJCAI. 1985, pp. 756–764.

[125] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Norwell, MA, USA: Kluwer Academic Publishers,
1985. isbn: 0898382025.

[126] Eelco Visser. “A Case Study in Optimizing Parsing Schemata by Dis-
ambiguation Filters”. In: International Workshop on Parsing Technology
(IWPT 1997). Massachusetts Institute of Technology. Boston, USA, Sept.
1997, pp. 210–224.

[127] Eelco Visser. “A Family of Syntax Definition Formalisms”. In: ASF+SDF
1995. A Workshop on Generating Tools from Algebraic Specifications. Ed. by
Mark G. J. van den Brand et al. Technical Report P9504, Programming
Research Group, University of Amsterdam, May 1995.

[128] Eelco Visser. A Family of Syntax Definition Formalisms. Tech. rep. P9706.
Programming Research Group, University of Amsterdam, Aug. 1997.

[129] Eelco Visser. “Program Transformation with Stratego/XT: Rules, Strate-
gies, Tools, and Systems in Stratego/XT 0.9”. In: Domain-Specific Pro-
gram Generation, International Seminar, Dagstuhl Castle, Germany, March
23-28, 2003, Revised Papers. Ed. by Christian Lengauer, Don S. Ba-
tory, Charles Consel, and Martin Odersky. Vol. 3016. Lecture Notes
in Computer Science. Springer, 2003, pp. 216–238. isbn: 3-540-22119-0.
doi: http://springerlink.metapress.com/openurl.asp?
genre=article&issn=0302-9743&volume=3016&
amp;spage=216.

[130] Eelco Visser. Scannerless Generalized-LR Parsing. Tech. rep. P9707. Pro-
gramming Research Group, University of Amsterdam, July 1997.

[131] Eelco Visser. “Syntax Definition for Language Prototyping”. PhD thesis.
University of Amsterdam, Sept. 1997.

[132] Tobi Vollebregt. “Declarative Specification of Template-Based Textual
Editors”. MA thesis. Delft, The Netherlands: Delft University of Tech-
nology, Apr. 2012. doi: http://resolver.tudelft.nl/uuid:
8907468c-b102-4a35-aa84-d49bb2110541.

214

https://doi.org/db/conf/er/TeichroewMHY79.html
https://doi.org/http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3016&spage=216
https://doi.org/http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3016&spage=216
https://doi.org/http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3016&spage=216
https://doi.org/http://resolver.tudelft.nl/uuid:8907468c-b102-4a35-aa84-d49bb2110541
https://doi.org/http://resolver.tudelft.nl/uuid:8907468c-b102-4a35-aa84-d49bb2110541

[133] Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser. “Declarative speci-
fication of template-based textual editors”. In: International Workshop on
Language Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Estonia,
March 31 - April 1, 2012. Ed. by Anthony Sloane and Suzana Andova.
ACM, 2012, p. 8. isbn: 978-1-4503-1536-4. doi: http://doi.acm.org/
10.1145/2427048.2427056.

[134] Markus Völter. “Language and IDE Modularization and Composition
with MPS”. In: Generative and Transformational Techniques in Software
Engineering IV, International Summer School, GTTSE 2011, Braga, Portugal,
July 3-9, 2011. Revised Papers. Ed. by Ralf Lämmel, João Saraiva, and
Joost Visser. Vol. 7680. Lecture Notes in Computer Science. Springer,
2011, pp. 383–430. isbn: 978-3-642-35992-7. doi: http://dx.doi.
org/10.1007/978-3-642-35992-7_11.

[135] Markus Völter and Vaclav Pech. “Language modularity with the MPS
language workbench”. In: 34th International Conference on Software En-
gineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. Ed. by Martin
Glinz, Gail C. Murphy, and Mauro Pezzè. IEEE, 2012, pp. 1449–1450.
isbn: 978-1-4673-1067-3. doi: http://dx.doi.org/10.1109/ICSE.
2012.6227070.

[136] Markus Völter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. “mbeddr:
Instantiating a Language Workbench in the Embedded Software Do-
main”. In: Journal of Automated Software Engineering (2013). doi: http:
//link.springer.com/article/10.1007%2Fs10515-013-
0120-4.

[137] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.
“Towards User-Friendly Projectional Editors”. In: Software Language
Engineering - 7th International Conference, SLE 2014, Västeras, Sweden,
September 15-16, 2014. Proceedings. Ed. by Benoît Combemale, David J.
Pearce, Olivier Barais, and Jurgen J. Vinju. Vol. 8706. Lecture Notes in
Computer Science. Springer, 2014, pp. 41–61. isbn: 978-3-319-11244-2.
doi: http://dx.doi.org/10.1007/978-3-319-11245-9_3.

[138] Philip Wadler. “A Prettier Printer”. In: Journal of Functional Programming.
Palgrave Macmillan, 1998, pp. 223–244.

[139] Niklaus Wirth. “The Programming Language Pascal”. In: Acta Informat-
ica 1 (1971), pp. 35–63.

BIBLIOGRAPHY 215

https://doi.org/http://doi.acm.org/10.1145/2427048.2427056
https://doi.org/http://doi.acm.org/10.1145/2427048.2427056
https://doi.org/http://dx.doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/http://dx.doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/http://dx.doi.org/10.1109/ICSE.2012.6227070
https://doi.org/http://dx.doi.org/10.1109/ICSE.2012.6227070
https://doi.org/http://link.springer.com/article/10.1007%2Fs10515-013-0120-4
https://doi.org/http://link.springer.com/article/10.1007%2Fs10515-013-0120-4
https://doi.org/http://link.springer.com/article/10.1007%2Fs10515-013-0120-4
https://doi.org/http://dx.doi.org/10.1007/978-3-319-11245-9_3

Acknowledgments

“Teaching is only demonstrating that it is possible. Learning is making it possible for
yourself.”

Paulo Coelho, The Pilgrimage

I would like to thank all the teachers who helped me during this journey.
I would like to thank my previous supervisor Vladimir Di Iorio, who was
essential in the first steps towards pursing a PhD. I want to thank Guido
Wachsmuth for his great advice and for being so supportive whenever a need
arose. I would like to thank my co-promotor, Sebastian Erdweg, for all the
interesting conversations, the feedback, and for his work, which provided the
foundations for part of the work in this dissertation. I would like to thank my
promotor, Eelco Visser. Thank you so much for your help, for believing in me,
and for the incredible opportunities throughout these years. I also want to
thank all the members of the doctoral committee and the anonymous reviewers
of the papers in this dissertation for the time they dedicated to my work.

Some people teach without even realizing they are doing it. I would like
to thank all my colleagues at TU Delft for being so friendly and supportive,
even when busy with their own work. In particular, I’d like to thank Augusto
Passalaqua for the short time we spent working together, but also for your
friendship, which I will appreciate for the rest of my life. I would also like
to thank Daco Harkes for our many interesting conversations, and for the
time we spent together at different conferences. I would like to thank Danny
Groenewegen for being such a good friend, helping me many times, and
making me feel welcome in the Netherlands. I would like to thank Michael
Steindorfer for stepping outside his comfort zone to be part of much of the work
in this dissertation. I want to thank Gabriël Konat for helping me more times
that I can even count. You passion for computer science and programming is a
big inspiration to me. I would also like to thank Peter Mosses for reviewing
my work on many occasions, and providing great feedback. Finally, I would
like to thank Timothée Haudebourg and Jasper Denkers for giving me the
opportunity to be a teacher myself. I have learned so much from you, and
you made me very proud. Last but not least, I would like to thank Elmer
van Chastelet, Daniel Pelsmaeker, Robbert Krebbers, Martijn Dwars, Casper
Poulsen, Tamás Szabó, Sven Keidel, Hendrik van Antwerpen, Jeff Smiths, Vlad
Vergu, and Roniet Sharabi. It was a pleasure working with you, and a I wish
you all the success in the world.

I was lucky to make many friends during my PhD studies. To all these
amazing people, who are too numerous to mention individually, thank you
very much! I would never go anywhere without the unconditional support of
my family, which I felt even from far away. Uncles and aunts, cousins, I would
like to thank you all. I would also like to thank my best friends who are like

217

brothers to me: Maykom Souza and Jairo da Costa. Maykom, you have always
been someone I looked up to, and who was always there for me. Jairo, I have
learned so many things from you, and your courage and determination are a
great inspiration. I would like to thank my wife, Kate Pitcher, for her love, her
advice, and for bringing me so much joy and happiness. I am very grateful to
have you in my life. Finally, I would like to thank my mother, Elizalde, whose
significant sacrifices have helped me to succeed. Thank you for your love and
patience. Without you, none of the above would ever have happened.

The work presented in this thesis was partially funded by CAPES (Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil).

218

Curriculum Vitae

Luis Eduardo de Souza Amorim

7 June 1989
Born in Unai, Minas Gerais, Brazil

2008-2011
B.Sc. in Computer Science
Universidade Federal de Viçosa
Departamento de Informática
Medalha Arthur Bernardes Mod. Prata (with honor)

2011-2013
M.Sc. in Computer Science
Universidade Federal de Viçosa
Departamento de Informática

2014-2019
Ph.D. in Computer Science
Delft University of Technology
Department of Software Technology

219

List of Publications

• Luís Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian Erd-
weg, and Eelco Visser. “Declarative specification of indentation rules:
a tooling perspective on parsing and pretty-printing layout-sensitive
languages”. In: Proceedings of the 11th ACM SIGPLAN International Con-
ference on Software Language Engineering, SLE 2018, Boston, MA, USA,
November 05-06, 2018. Ed. by David Pearce 0005, Tanja Mayerhofer, and
Friedrich Steimann. ACM, 2018, pp. 3–15. isbn: 978-1-4503-6029-6. doi:
https://doi.org/10.1145/3276604.3276607

• Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser.
“Towards Zero-Overhead Disambiguation of Deep Priority Conflicts”. In:
Programming Journal 2.3 (2018), p. 13. doi: https://doi.org/10.
22152/programming-journal.org/2018/2/13

• Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser.
“Deep priority conflicts in the wild: a pilot study”. In: Proceedings of
the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2017, Vancouver, BC, Canada, October 23-24, 2017. Ed. by
Benoît Combemale, Marjan Mernik, and Bernhard Rumpe. ACM, 2017,
pp. 55–66. isbn: 978-1-4503-5525-4. doi: http://doi.acm.org/10.
1145/3136014.3136020

• Luis Eduardo de Souza Amorim, Timothée Haudebourg, and Eelco
Visser. Declarative Disambiguation of Deep Priority Conflicts. Tech. rep.
TUD-SERG-2017-014. Delft University of Technology., 2017

• Gabriël Konat, Luís Eduardo de Souza Amorim, Sebastian Erdweg,
and Eelco Visser. Bootstrapping, Default Formatting, and Skeleton Editing
in the Spoofax Language Workbench. Language Workbench Challenge
(LWC@SLE). 2016

• Luis Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth,
and Eelco Visser. “Principled syntactic code completion using placehold-
ers”. In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering, Amsterdam, The Netherlands, October
31 - November 1, 2016. Ed. by Tijs van der Storm, Emilie Balland, and
Dániel Varró. ACM, 2016, pp. 163–175. isbn: 978-1-4503-4447-0. doi:
http://dl.acm.org/citation.cfm?id=2997374

• Leonardo Vieira dos Santos Reis, Roberto da Silva Bigonha, Vladimir
Oliveira Di Iorio, and Luis Eduardo de Souza Amorim. “The formaliza-
tion and implementation of Adaptable Parsing Expression Grammars”.
In: Sci. Comput. Program. 96 (2014), pp. 191–210. doi: 10.1016/j.
scico.2014.02.020

221

https://doi.org/https://doi.org/10.1145/3276604.3276607
https://doi.org/https://doi.org/10.22152/programming-journal.org/2018/2/13
https://doi.org/https://doi.org/10.22152/programming-journal.org/2018/2/13
https://doi.org/http://doi.acm.org/10.1145/3136014.3136020
https://doi.org/http://doi.acm.org/10.1145/3136014.3136020
https://doi.org/http://dl.acm.org/citation.cfm?id=2997374
https://doi.org/10.1016/j.scico.2014.02.020
https://doi.org/10.1016/j.scico.2014.02.020

• Leonardo Vieira dos Santos Reis, Roberto da Silva Bigonha, Vladimir
Oliveira Di Iorio, and Luis Eduardo de Souza Amorim. “Adaptable Pars-
ing Expression Grammars”. In: Programming Languages - 16th Brazilian
Symposium, SBLP 2012, Natal, Brazil, September 23-28, 2012. Proceedings.
2012, pp. 72–86. doi: 10.1007/978-3-642-33182-4_7

222

https://doi.org/10.1007/978-3-642-33182-4_7

	Declarative Syntax Definition for Modern Language Workbenches
	Contents
	Samenvatting
	Summary
	Introduction
	Programming Languages
	Language Definition
	Language Workbenches
	The Thesis in More Detail
	Research Overview and Contributions
	Origin of Chapters

	I Declarative Disambiguation
	Declarative Disambiguation of Expression Grammars
	Introduction
	Grammars and Ambiguities
	Infix Expression Grammars
	Prefix Expression Grammars
	Postfix Expressions
	Distfix Expressions
	Indirect Recursion
	Grammar Transformation
	Implementation
	Evaluation
	Related Work
	Conclusion

	Deep Priority Conflicts in the Wild: A Pilot Study
	Introduction
	A Primer on Declarative Disambiguation
	Reasoning about Deep Priority Conflicts
	Evaluation
	Threats to Validity
	Related Work
	Conclusion and Future Work

	Towards Zero-Overhead Disambiguation of Deep Priority Conflicts
	Introduction
	Disambiguating Priority Conflicts
	Data-dependent Contextual Grammars
	Evaluation
	Related Work
	Conclusions

	II Declarative Syntax Definition
	Declarative Specification of Layout-Sensitive Languages
	Introduction
	Background
	Layout Declarations
	Layout-Sensitive Parsing
	Layout-Sensitive Pretty-Printing
	Evaluation
	Related Work
	Future Work
	Conclusion

	Principled Syntactic Code Completion
	Introduction
	State of the Art of Syntactic Completion
	Completion by Rewriting Placeholders
	Code Expansion by Placeholder Inference
	Code Completion for Incorrect Programs
	Evaluation
	Related Work
	Future Work
	Conclusion

	Conclusion
	The Thesis Revisited
	Suggestions for Future Work

	Bibliography
	Acknowledgments
	Curriculum Vitae
	List of Publications

