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ABSTRACT

The present research aims to understand the safety over the midblock road sections and
proposes a safety framework using the conventional Time to Collision (TTC) measure. In the
present work, the safety framework underlines a supporting structure connecting the
actions of the surrounding vehicles and assesses the collisions changes for a given subject
vehicle. The Framework principally checks the likelihood of lateral overlap and the time gap
between the subject vehicle and its surrounding vehicles. Later, for the trajectory data
development, an automated trajectory data development tool is built with the help of
image processing for generating the trajectory data from the study sections. In supporting
the developed safety framework, the lateral movement of the vehicles is modeled precisely
with the help of deep learning. Further, the conceptualized safety framework is tested with
the developed trajectory data sets over the study sections. From the results, it is observed
that, in mixed traffic, the collision points are over the entire geometry of the study section.
In the case of homogeneous traffic, the collision instincts are clustered toward the median
lanes. With the advancement of technology, trajectory data development can be a real-time
exercise, and the safety framework can be implemented. By applying the study method-
ology, the critical spots over the road network can be flagged for better treatment and
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improve safety over the sections.

Background

Monitoring traffic road safety is one of the critical
challenges in traffic engineering practice. By quantify-
ing the safety levels over the road sections, the sec-
tions can be treated well in advance, and future
crashes can be limited. To understand traffic road
safety and limit road crashes, researchers initially
focused on historical crash data. With interpolation
using geospatial tools, the critical crash locations over
the road network are identified and treated to prevent
future crashes. Using the Bayes model, Aguero-
Valverde and Jovanis (2006) classified fatal and injury
crashes for Pennsylvania, USA. Rowden et al. (2008)
applied similar geospatial techniques to examine ani-
mal crashes in Australia. Recently, Schepers et al.
(2017) used a similar framework and analyzed bicycle
crashes in The Netherlands. Along with these, there
are numerous other studies in this direction.
However, the other methodologies highly depend on
the historical crash data and fall under the reactive
approach in limiting crashes.

In a parallel direction, researchers tend to relate
driver behavior to understand the safety over the road
sections. Vaiana et al. (2014) assessed the vehicles’
acceleration profiles over the road sections, and safety
was interpolated. By quantifying the vehicles’ time
gaps, Happee et al. (2017) estimated the vehicles’ eva-
sive maneuvers. Further, numerous other studies
(Arvin et al, 2020; Ben-Bassat & Shinar, 2011; Raju,
Kumar, et al., 2019; Sagberg et al, 2015; Taubman-
Ben-Ari & Katz-Ben-Ami, 2012; Van Driel & Van
Arem, 2010; P. Wang et al, 2010) analyzed safety
over the study sections, with various surrogate safety
metrics. Some of the surrogate metrics include Time
To Collision (TTC) (Van Der Horst & Hogema,
1993), Deceleration Rate to Avoid Crash (DRAC)
(Zheng et al, 2019), Time in TTC (TIT) (Vogel,
2003), Time Exposed in TTC (TET) (Behbahani et al.,
2014), and Instantaneous Heading Time (IHT) (Raju
et al, 2020), along with the mentioned measures,
numerous surrogate safety measures are present in the
literature. The preceding metrics demand high-quality
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data for the analysis. It can be noted that most of the
above-mentioned surrogate safety metrics consider the
leader-follower interactions and models the collision
changes between the vehicles. The threat to the sub-
ject vehicle due to its lateral movement and the
actions of surrounding vehicles is ignored.

Understanding driver behavior over the road sec-
tions demands quality data, where the driver
responses can be quantified. In this direction,
researchers used different types of data sources.
Researchers used probe vehicles (Li et al, 2016;
Nadimi et al., 2016; Schwarz, 2014), driving simulators
(Engstrom et al., 2005; Meuleners & Fraser, 2015;
Stavrinos et al., 2013; Yan et al, 2008), and probe
vehicles embedded with video cameras and GPS (Das
& Maurya, 2019; Ellison et al., 2015; Rogers et al,
1999; Strauss et al., 2015). Further, with the release of
the Strategic Highway Research Program 2 (SHRP2)
(Victor, 2016) datasets, researchers uncovered numer-
ous driving instincts with respect to crashes, such as
vehicle crash rate (Abdel-Aty et al., 2007; Blanco
et al., 2016; Z. Chen et al, 2018; Hoseinzadeh et al.,
2020), driving anger (Precht et al., 2017a), effect of
secondary tasks while driving (Schneidereit et al.,
2017), dynamic speed limits (Soriguera et al., 2013),
and traffic violations (Precht et al., 2017b). On the
other hand, considering the Next Generation
Simulation ~ (NGSIM)  (US  Department  of
Transportation and Federal Highway Administration,
2007) data as a base source, researchers tested the sur-
rogate safety metrics to understand collision instincts,
including intersection safety analysis (Cunto &
Saccomanno, 2008), drivers risk efforts (Lyu et al.,
2021; Przybyla et al., 2015; Wu et al., 2020), and effect
of lane changes on safety (Pek et al., 2017).

Along with that, it highlighted the importance of
trajectory data for quantifying driver behavior.
Further, to further aid safety understanding, the
Federal Highway Administration(FHWA) developed a
Surrogate Safety Assessment Model (SSAM) (Gettman
et al., 2008). Safety is related to the vehicles’ time gaps
at different driving instincts, such as following, lane
change, and other gap acceptance behavior at intersec-
tions and roundabouts. Along with this, microsimula-
tion packages are embedded as a safety tool.

From the driving behavior studies on NGSIM data,
it is observed that monitoring the vehicles’ movement
plays a crucial role in assessing driver behavior. In
achieving that, the vehicular positions must be traced
over the section under consideration with a minimum
update interval. The semi-automated image processing
tools are reliable sources for trajectory development in

the present context, particularly prevailing in develop-
ing countries like India. Given the advancements in
image processing and artificial intelligence in the
second half of the last decade, researchers identified
the solution for automated trajectory development
tools to enrich the concept of drive behavior analysis.

On the other hand, whereas the present surrogate
studies can gauge the safety in the traffic streams, the
existing surrogate methodologies have not found a
place in the decision making. This can be attributed
to the limited and unreliable historical data set and
variation in results across the different surrogate safety
measures. Most of the existing surrogate safety meth-
odologies are heavily oriented toward the vehicles’
longitudinal movement under midblock conditions.
Whereas, along with longitudinal movement, the vehi-
cles’ lateral movement plays a considerable role in the
overall driving behavior and the studies (Y. Chen
et al., 2019; Deng et al., 2019; Qu et al,, 2020; Raju
et al., 2021) explicitly highlights the importance lateral
behavior of the vehicles. However, the risk of the sur-
rounding vehicles on the subject vehicle is mostly
ignored. In this direction, toward developing a com-
prehensive surrogate safety measure, the vehicles’ lat-
eral movement must identify accurate collision
instincts. Further, a real-time safety analysis can be a
huge benefit in making timely decisions to improve
driver compliance and the prevailing level of safety.
But developing the trajectory data and processing the
data is a challenging aspect in the present context,
given the complexity and the stochasticity nature of
the heterogeneous traffic.

Research methodology

To address the above-mentioned challenges in litera-
ture, the present study was carried in four stages, as
shown in Figure 1. In Stage 1, based on the surround-
ing vehicles, a safety framework was developed using
the conventional TTC measure. In Stage 2, an auto-
mated trajectory tool was programmed for developing
the trajectory data over the study sections. In Stage 3,
to support the developed safety framework the lateral
movement of the vehicles are modeled with the help
of deep learning models. Finally, in Stage 4, based on
the developed safety framework, the collision instincts
over the study sections were evaluated.

Safety framework

Recent studies on driving behavior have observed that
vehicles’ behavior, such as following and lateral
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Figure 1. Research methodology adopted in the study.

movement of vehicles, is primarily influenced by its
surrounding vehicles. On the other hand, in surrogate
safety analysis, researchers heavily focused on leader-
follower vehicle combinations in the traffic stream for
assessing the collision changes. As a result, the colli-
sion threats due to the surrounding vehicles on a
given subject vehicle are ignored. However, given the
lateral movement of vehicles, there can be high chan-
ces for collisions from the surrounding vehicles.

Let n be the subject vehicle in the traffic stream.
Given this, there can be a maximum of eight vehicles
surrounding the vehicle n, as shown in Figure 2. On
these lines, let s;, s, ..., sg be the surrounding
vehicles for the subject vehicle n. In a general sense,
with the current framework, the rear-end collision
changes are given by its next leader vehicle. At the
same time, it can be noted that the immediate leader
can shift laterally, and some other vehicle can take its
position in the next time frame, and the collision
chances due to this lateral movement are not
addressed in the present frameworks.

The surrounding vehicles for a given vehicle were
classified into three vehicle categories: leader vehicles,
adjacent vehicles, and follower vehicles. Further, with
the leader and follower vehicles, the subject vehicle
can have rear-ended collisions, whereas, with the adja-
cent vehicles, there can be sideswipe collisions.

Simultaneously, with a leader combination of
vehicles, mostly the immediate leader having the lat-
eral overlap with the subject vehicle can have the
rear-end collision. Whereas with the left and right
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leader vehicles, the lateral movements of those
vehicles play a role. For example, given the scenario,
if the leader vehicle shifted laterally, the left leader
vehicle tends to have lateral overlap with the subject
vehicle, and the collision chances increase with the
left leader. Similarly, given the lateral movement of
the adjacent vehicles, the sideswipe collision chances
vary. On the other hand, the follower vehicles can
have similar instincts with the subject vehicle.

Further, to assess the collision instincts between the
lead and trail vehicles, the TTC measure was adopted
and was defined as

TTC(t) _ Xlead(t) - Xtmil(t) - lleader
Vtmil(t) - Vleud(t)

> Vleud(t) (l)

v Vtmil ( t)

where:
TTC(t) = time-to-collision at time

Xead(t) = longitudinal position of the leader
vehicle at time ¢,

Xirait(t) = longitudinal position of the trailing
vehicle at time t,

lieader = length of the leader vehicle in m,

Virait(t) = longitudinal speed of the trailing vehicle
at time ¢, and

Viead(t) = longitudinal speed of the leader vehicle
at time t,

Using the TTC measure, the collision chances for
each surrounding vehicle to the subject vehicle was
developed, as shown in Table 1. Then, the total num-
ber of collision instincts for a subject vehicle is given

by

N = P(L,_g)*P TTCoimi
- n—s2 TTCn_Sz
TTClimit
P(L,_o)% P(L, )P —timit
+ P(Ly-s2)* P(Ln—s1)* (TTCn_ﬂ)
TTClimit

P(L, o)*P(L, o)%P —™t) o+ p(L, .
P (L) PP (T ) + PlLya)

TTClipis >

P(L,_ P(Lg_p)*P| —
+ (n55)+ (57 n)* (TTCg_n

TTClipmi
+ PC(Ln_57)* P(Ln—SG)*P (ﬁ)
TTChipi
+ PC(Ln_57)*P(Ln_58)*P (Wssml;)
(2)
where:
N =number of collision instincts for the sub-

ject vehicle,
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Figure 2. Surrounding vehicles classification over the subject vehicle.
Table 1. Collision probability of the surrounding vehicles.
Surrounding vehicle Collision probability Remark

Leader (s,)
Left leader (s;)

P(Ln—sz) P (%ﬂ)

P((Ln—sz) P(Ln*ﬂ) PE?F—E:M::;

Right leader (s;) P(Ln-s2) P(Ln-s3) P gg:i;
Left adjacent (ss) P(Ly—s5)

Right adjacent (s,) P(Ln—s4)

Follower (s,) P(Ls-n) P g&,’fl)

Right follower (s5) P(Ln—s7) P(Ln—s6) P(%)
Left follower (sg) P(Ly_s7) P(Ln_ss) P ( %)

Lateral overlap is present and TTC are in the critical limits
Leader shifts laterally and other leaders have lateral overlaps

Any lateral overlap can lead to sideswipe collision

Lateral overlap is present and TTC are in the critical limits

Follower shifts laterally and other followers have lateral overlaps

P(L,_s) = probability of lateral overlap between
the »n th and s; vehicles, and

P %ﬁ;"‘s”} = probability that TTC between the # th
and s; vehidles is less than TTCjpy;;-

Data collection

Vehicular trajectory data can be a potent source in
understanding the microscopic instincts between the
vehicles. Therefore, in this study, three midblock
study sections were selected for the analysis. The sec-
tions were selected in such a way that they capture
varied traftic flow conditions. Section 1 is midblock in
the western expressway India. In this section, traffic is
mixed with five different vehicle categories, including
Motorized Two Wheelers (MTW), Motorized Three
Wheelers (MThW), Buses, Cars, and Trucks. Sections
2 and 3 are six-lane divided and four-lane divided
highways with shoulders, respectively. Section 1 is a
midblock road section from India, the driving behav-
ior in section 1 is of non-lane based mixed traffic. On
the other hand, the study sections 2 and 3 are motor-
ways from Canada. The major proportion of the
vehicles are cars in nature. Further, the vehicle tends
to have good lane discipline. As a result, the driving
behavior of the vehicles from the study sections is dif-
ferent, given the traffic conditions. Given this, those
three study sections gave enough flexibility and vari-
ation in testing the developed safety framework.
Unlike Section 1, the traffic in Sections 2 and 3 is

homogenous, with a dominant car proportion. In
developing the trajectory data from the study sections,
video graphic data was used to track the vehicles. The
snapshots of the study sections are presented in
Figure 3.

In the present context, there are numerous semi-
automated tools available for vehicular trajectory
development. Computer mouse clicks can manually
track a given vehicle over the road sections with their
help. At the same time, employing those tools for tra-
jectory data development will be laborious in develop-
ing large datasets. Considering this in the present
study, it is planned to develop an image processing
framework for automated trajectory data development
with deep-learning architecture.

In the case of an automated trajectory data devel-
opment, vehicle identification and tracking are the
essential tasks, and vehicle identification is similar to
object detection in an image frame. To achieve this,
the Faster RCNN inception V2 model(Halawa et al,
2019) pre-trained on the Microsoft Coco dataset (Lin
et al., 2015) is adopted to detect the vehicles in a
given image frame.

It can be noted that five different vehicles are
observed from the study sections, given these, five dif-
ferent objects (vehicle classes) have to be mapped. To
do this, transfer learning methodology (Jain et al,
2019) is adopted. The pretrained faster RCNN is
trained to classify different everyday objects from the
Microsoft COCO dataset. But to build a classifier to
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Figure 3. Snapshots of the study sections. (a) Section 1, (b) Section 2, and (c) Section 3.
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(c) Section 3
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SoftMax
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Time stamp
Longitudinal position
Lateral position

Trajectory Data Extraction

Figure 4. Automated trajectory data development tool.

perform a much more specific and narrower task, like
identifying different types of vehicles over the study
sections, for the vehicle images from the study section.
On the trained RCNN with COCO dataset, transfer
learning is applied to fine-tune the RCNN for identi-
fying the vehicles with their category. The tensor flow
module provides an API to train the customized
objects (mainly vehicle types) with the pre-trained
model RCNN model. The vehicles are labeled in the
images extracted from the video files to generate the
training data for each of the study sections. Later,
those labeled images are loaded to the LABELING
utility (Python Community, 2020) and converted to
the XML files (Lalmas, 2011). Further, data in the
XML files were used for training the Faster RCNN

inception V2 model to record the vehicle features, as
shown in Figure 4. Along with faster-RCNN, YOLO
(Ren et al., 2020) is available for object detection.
Both the faster-RCNN and YOLO are popular object
detection approaches with an anchor-based frame-
work. Faster-RCNN offers a local search in a given
region of an image by applying the convolution prin-
ciples. On the other hand, the YOLO follows the prin-
ciples of looking once and finalizing the detection and
classification outcomes. YOLO has difficulty detecting
small and close objects due to only two anchor boxes
in a grid predicting only one class of objects. It
doesn’t generalize well when objects in the image
show rare aspects of ratio. Faster RCNN, on the other
hand, do detect small objects well. However, it lags in
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Table 2. Details of the trajectory data from the study sections.

Study section Trap length (m) No. of lanes Road width (m) Traffic composition (%)  No. of vehicles tracked Duration of trajectory data (minutes)
Section 1 120 5-lane 17.5 20,29, 2,45, 1,3 1715 15
Section 2 150 3-lane 11.2 0,0,7,84,90 1068 10
Section 3 150 2-lane 9.5 0,08 82100 211 10

*Traffic composition: MThW, MTW, buses, cars, trucks, LCV.

Distance m

Figure 5. Sample time space plots from the study section 3.

comparison to YOLO for real-time detection with its
two-step architecture. Considering this, in our present
study, we adopted the Faster-RCNN rather than YOLO.

After recording the vehicles’ features, the video files
were given as inputs to the trained models. Initially, the
video was divided into numerous image frames, and
each subsequent frame is given as input to the model.
Based on the trained Faster RCNN inception V2 model,
the vehicular features were searched over the whole
image frame. With the matching criteria, the objects
were identified, and the vehicle category was assigned to
each of the detected objects in a frame. Along with the
vehicle category, other features such as time, centroidal
longitudinal and lateral positions were recorded for the
development of the trajectory data through Euclidean
Object Tracking (Wang et al., 2005). The entire process
is shown in Figure 4. The details of the trajectory data
and the sample time-space plots are presented in Table
2 and Figure 5, respectively. The video footage recorded
in the cameras is of perspective in nature. As a result,
the object size varies with the distance in the image
frames. On the other hand, the trajectory data should be
orthogonal for any analysis. In achieving this, the
recorded video files are initially processed, and the tra-
jectory data is developed. In the next stage, trapezoidal
transform is applied to project the trajectory data coor-
dinates to the 3D orthographic place. After the trapez-
oidal transform still, the axis of the trajectory data from
the study sections is inclined. The concept of Cartesian
coordinate rotation is applied to correct this and bring it
into a planar form.

Further, to validate the automated tool’s trajectory
data, a semi-automated trajectory tool is selected to

understand the authenticity of the data outcomes. This
tool is adopted to obtain a better sample size of trajec-
tory data by variation in vehicle class, traffic compos-
ition, and a combination of vehicular movements in
longitudinal and lateral directions. Given the mixed traf-
fic movement and vehicle classes, the traffic data on sec-
tion 1 (western expressway) is selected for this purpose.
Using a semi-automated trajectory tool, the trajectory
data over the section is developed, in which the vehicle
position was tracked using the pointer. In balancing the
trajectory data accuracy with the manual efforts, the
vehicles over the section are tracked with an update
interval of 0.5s. The detailed semi-automated method-
ology can be found in Raju et al. (2020). On these lines,
the traffic composition is initially compared among the
semi-automated (observed) with automated (outcome)
datasets for every 5-minute interval each. Later, a t-test
is performed to check the possible statistical difference,
as shown in Table 3. From the results, it is observed
that, in all instances, the null hypothesis is accepted at a
5% level of significance, demonstrating the good per-
formance of the automated trajectory tool.

In addition to this, the instant longitudinal speed,
longitudinal acceleration, lateral speed, and lateral
acceleration distributions are also compared both
from the semi-automated (empirical) and the auto-
mated (outcome) trajectory datasets. The probability
function comparisons are shown in Figure 6, and the
emerging values of the ¢-statistic are reported in Table
4. From the analysis, it is statically evident (5% level
of significance) that the automated trajectory develop-
ment tool can replicate the trajectory data very well
when compared with the trajectory data developed
using a semi-automated tool, as discussed earlier.



Table 3. Validation of vehicle composition data using t-test.
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Composition
Time (minutes) Traffic volume MThwW MTW Bus Car Truck t-statistic p-value Null hypothesis
0-5 Observed 551 19.1 23.8 24 40.6 14.1 0.185 0.99 Accept
Outcome 547 17.5 25.7 1.9 43.2 1.7
6—10 Observed 545 221 15 1.5 37 24.4 0.412 0.97 Accept
Outcome 549 25.1 12.5 1.9 39 215
1M1-15 Observed 593 12.7 23.2 0 51.8 12.3 0.193 0.99 Accept
Outcome 598 17.2 17.6 0.6 44.2 20.4
11
08
06
x * x
[T : .
04 +
02 4
i ok
0
x x
(' uw
2
Lateral speed (m/s) Lateral acceleration (m/s?)
B Empirical [ Outcome
Figure 6. Comparison among the distributions of the parameters.
Table 4. Comparison of parameters using t-test.
Parameter t-statistic p-value Degree of freedom Null hypothesis
Longitudinal speed —0.299 0.38 20 Accept
Longitudinal acceleration —0.335 0.37 20 Accept
Lateral speed —0.126 0.45 20 Accept
Lateral acceleration 0.217 0.41 20 Accept
numerous parameters from the traffic stream.

Modeling lateral movement: deep learning

To achieve better results from the safety framework,
the vehicles’ lateral movement is precisely modeled. In
overcoming this challenge, the literature on the lateral
and lane changing behavior of vehicles is reviewed. It
is identified that the wvehicle’s lateral movement
depends a lot on the surrounding vehicles with

Considering all these aspects in the present work, it is
planned to model the vehicles’ lateral movement with
deep learning from the branch of artificial
intelligence.

In deep learning, there will be three different layers:
input layers, hidden layers, and output layers, as
shown in Figure 7. Expressly, the input layers are
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Figure 7. Deep learning architecture for modeling lateral movements.

provided with the input vectors as x;, xz, ..., X,. to
map the outcomes in the output layer. Given this, the
input data were filtered through a series of hidden
layers. The hidden layers were sandwiched between
the input and output layers. Typically, deep learning
is developed based on the neuron’s architecture in the
human brain cells. This architecture is analogous to
how electrical signals travel across the cells. Each sub-
sequent layer of nodes is activated when it receives
stimuli from its neighboring neurons. The accuracy of
deep learning models predictions could be increased
with the right amount of training data, as the brain
also learns to identify things similarly.

At the same time, driving behavior is a function of
numerous independent variables. With limited data-
sets, performing a correlation analysis will result in a
smaller number of variables and can be highly local to
the study. To limit this, in the present study and com-
prehensively model the lateral movement of the
vehicles, authors depended on the literature for identi-
fying the independent variables. Based on this, the
authors identified the 22-variables and modeled the
lateral movement of the vehicles. Further, based on
the literature (Asaithambi & Joseph, 2018; Das &
Maurya, 2019; Raju, Arkatkar, et al., 2019), the varia-
bles that can influence the vehicles’ lateral movement
are identified. On these lines, a total of 22-variables
are identified, as shown in Table 5. By adopting the
methodology of Raju, Arkatkar, et al. (2019), the sur-
rounding vehicles that can influence the vehicles’ lat-
eral movement are labeled based on the position of
the subject vehicle. For this purpose, authors marked

a surrounding zone formed by the addition of 60m
distance in front (look-ahead) and 40m distance
behind (look-back) from the center of the subject
vehicle, with a total longitudinal length of 100m. A
lateral distance of 5.5m from the center position of a
subject vehicle to the center position of the surround-
ing vehicle, including the total width of the subject
vehicle, is considered over the entire road space.
Based on this, the surrounding vehicle are label into
eight categories based on their position from the sub-
ject vehicle. Further, based on the identified vehicles,
all the other influencing variables in Table 5 are eval-
uated for a given vehicle at every instant of time.
Later, all the 22-variables are computed for each
vehicle at every recorded timestamp.

Further, to replicate the lateral movement of the
vehicles, lateral speeds of the vehicles are computed.
The lateral speed of the vehicles is considered as the
dependent variable on the 22-influential variables. In
training the deep learning models and testing their
validity, the study sections’ trajectory data is divided
into two halves. With first used for model training
and the second part for model testing and analysis.
The deep learning models are developed with python
programming (Rossum & Swallow, 2011) with the
help of the Google TensorFlow (Google, 2020) pro-
gramming framework. Later, the input variables and
the output lateral speeds are used for training deep
learning models with numerous combinations of hid-
den layers, neuron activation functions, and epochs.
By applying a trial-and-error approach to increase the
present case’s accuracy, three hidden layers with 128,
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ID Lateral Movement Variable Description

lat_1 Leader presence Presence of leader vehicle is taken, 0 is assigned when its absent and
1 is taken if this present.

lat_2 Leader vehicle category Vehicle class of the leader vehicle.

lat_3 Subject vehicle category Vehicle class of the subject vehicle.

lat_4 Relative speed with leader (m/s) Relative speed (subject vehicle minus leader vehicle)

lat_5 Subject vehicle longitudinal speed (m/s) Longitudinal speed of the subject vehicle

lat_6 Present lane Present lane Id in the order as median side lane

lat_7 Left front vehicle Presence of left front vehicle, 0 is assigned when its absent and 1 is
taken if this present.

lat_8 Right front vehicle Presence of right front vehicle, 0 is assigned when its absent and 1 is
taken if this present.

lat_9 Left lateral clearance Available lateral clearance in left side

lat_10 Right lateral clearance Available lateral clearance in right side

lat_11 Left back vehicle speed (m/s) Left back vehicle longitudinal speed

lat_12 Right back vehicle speed (m/s) Right back vehicle longitudinal speed

lat_13 Left back vehicle acceleration (m/s?) Left back vehicle longitudinal acceleration

lat_14 Right back vehicle acceleration (m/s?) Right back vehicle longitudinal acceleration

lat_15 No. of surrounding vehicles Number of vehicles in the surrounding vicinity of the subject vehicle.

lat_16 Lateral tilt with leader vehicle (m) Lateral incline of the subject vehicle toward the leader vehicle in
terms of lateral overlap (left side is taken negative value and right
side as positive).

lat_17 Distance from left back vehicle (m) Longitudinal distance from left back vehicle

lat_18 Distance from right back vehicle (m) Longitudinal distance from right back vehicle

lat_19 Area occupanzcy the vehicles ahead of subject Area occupied by the vehicles in the frontal surrounding vicinity

vehicle (m?)

lat_20 Subject vehicle longitudinal acceleration (m/s?) Instant longitudinal acceleration of the subject vehicle

lat_21 Left longitudinal gap(m) Available left longitudinal gap for the subject vehicle

lat_22 Right longitudinal gap (m) Available right longitudinal gap for the subject vehicle

Table 6. Details of the trained deep learning model 2.

Layer (Type) No. of Nodes Activation Function
L1 (dense) 128 RelLU

L2 (dense) 64 RelLU

L3 (dense) 16 SoftMax

@ Model: Sequential, Epochs: 250, Input parameters: 22, Optimizer:
RMSprop, Loss function: Mean square error, and Metrics: Mean abso-
lute error.

64, and 16 nodes were adopted. In limiting the over-
fitting, 250 epochs were used for training. The archi-
tecture was based on sequential modeling (Goodfellow
et al., 2016). Also, ReLU (Pattanayak, 2018) activation
function is used for the layers other than the final
SoftMax (Nelli & Nelli, 2018) layer. The details of the
trained deep learning models are presented in Table 6.

In checking the trained deep learning models’ val-
idity, the remaining trajectory data is tested, and the
lateral speeds are predicted. To verify the deep learn-
ing model performance, error metrics such as Mean
Absolute Error (MAE) and Root Mean Square Error
(RMSE) are computed. The prediction error, the dif-
ference between the observed and predicted lateral
speeds are computed, and their distributions are pre-
sented in Figure 8. From the error distribution plots,
it can be noted that most of the time in Sections 2
and 3, the prediction error is in the range of —1m/s
to 1m/s. Whereas in the case of Section 1, due to
mixed traffic and weak lane discipline, the vehicles’
lateral movement is disordered compared to the other

two study sections. Based on this, with the help of a
deep learning framework, the vehicles’ lateral move-
ment in terms of lateral speeds is modeled with sur-
rounding conditions.

In checking the validity of deep learning models,
the remaining half of the trajectory data is used, and
the lateral speeds of the vehicles are predicted. Given
this, Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) are computed
over the study sections considered in the present
study, as reported in Table 7. From the results, it is
identified that, in section 1, the error is observed to
be marginally higher over the other two sections. This
may be attributed to the variation in heterogeneous
traffic conditions prevailing in India. Simultaneously,
the RSME is obtained as less than 0.8 m/s, whereas
MAPE is found to be less than 10 percent. This error
is considered to be within acceptable limits (Gilliland,
2010; Ma & Qu, 2020), given the variation heteroge-
neous traffic conditions.

1 sample size
RMSE = J———— (Estimated, — Observed, )
sample size 4=
(3)
MAPE — Samism |Estimated; — Observed, | 100
- sample size = Observed,;
(4)
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Figure 8. Comparison of prediction error of lateral speeds over the study sections. (a) Section 1, (b) Section 2, and (c) Section 3.

Table 7. Error comparison over the study sections.

Measure Section 1 Section 2 Section 3
RMSE (m/s) 0.73 0.54 0.59
MAPE (%) 9.72 7.34 6.21
Results

In line with the study’s objectives, the conceptualized
safety framework, which includes the surrounding
vehicle instincts, is tested. Initially, with the help of
available trajectory data sets, the wvehicles’ lateral
movement is predicted by the trained deep learning
models in terms of lateral speeds for every time
instant. It can be noted that the probability of lateral
overlap between the vehicles will be the key in assess-
ing the safety from the framework. With the help of
predicted lateral speeds, the lateral positions in next
time instants are predicted for all vehicles.

Let y; be the lateral position of a given vehicle at ¢,
and lat,, be the predicted lateral speeds and T be the
update time interval, the lateral position Y is given as
follows.

Y(t+ T) = ye(t) + latygxT (4)

Further, the lateral overlap L, between the sur-
rounding vehicle (s;) and subject vehicle (n) of widths
W at a given instant are computed as follows.

W, Wi
|Yn_ Ys,-| v |Yn_Ysi| < <%>

Ly =
‘ W, + Wi
BLig V|V, — Y| > (%)
(5)
The probability of lateral overlap is given as,
1V 3L,
P(Lnfs,-) — {0 V ﬂLnfsi (6)

Along with the lateral overlap between the vehicles,
the TTC between the vehicles plays a vital role in

understanding the collision instincts between the
vehicles. As explained, the TTC is the time gap
between the vehicles, the lesser time gap signifies
more collision chances than a higher time gap. The
TTC limit can be influenced by the change in traffic
volume, composition, flow characteristics, vehicular
properties, driver attentiveness, etc. However, in the
present context, there is no such framework in identi-
fying the limit. At the same time, this is one of the
major limitations of the present existing surrogate
safety measures in modeling the safety. In line with
the literature (Li et al,, 2016; Meng & Qu, 2012), in
the present study a threshold value TTCj; =2.5 s
was adopted to characterize collision and non-colli-
sion instincts. On these lines, the probability of colli-
sion instincts due to TTC is given by

» TTClimir\ [ 1Y TTC,_y < TTClimis )
TTC, ) |0 Y TTC, s > TTCpmi

Based on the projected conditions, the probabilities
of lateral overlaps and TTCs are estimated. Later, the
number of collision instincts are evaluated for every
vehicle over time, concerning its surrounding vehicles.
The collision points were marked over the road space
to understand the collision instincts better, as shown
in Figure 9 for the three study sections.

From the safety analysis over the study sections, it
is observed that the collision instincts are scattered
over the road space in Section 1. Given the mixed
traffic and weak lane discipline, the vehicles’ move-
ment is all over the road space, resulting in collision
instincts. On the other hand, in Sections 2 and 3, the
collision instincts are clustered toward the median
side lanes. It is inferred that, in Sections 2 and 3, a
proper lane wise movement of vehicles is observed. As
a result, even collision instincts are more clustered
over the lanes. The results revealed that the median
side lane in Sections 2 and 3 is more prone to colli-
sions than lanes. From the inspection, it is identified
that, in the case of Section 1, most of the time,
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Figure 9. Collision instincts of vehicles over the geometry of the study sections.

Table 8. About the collision points.

No. of collisions: vehicle category wise

Study section Total No. of collision instincts MTW MThw Car Bus Truck LCV
Section 1 42 19 1 7 3 2 -
Section 2 31 - - 25 - 6 -
Section 3 23 - - 13 - 10 -

smaller vehicles are more prone to collision instincts,
which can be attributed to their size and better man-
euverability. On the other hand, in Sections 2 and 3,
given the significant proportion of cars, cars are more
prone to collisions.

To understand the results better, the collision
instincts are segregated based on the vehicle category
over the study sections, as reported in Table 8. It can
be noted that a total of 42 collision instincts are
observed in the case of section 1; MTW and MThW
are found to have a major proportion of collision
instincts with 19 and 11, respectively. Given the non-
lane-based movement in section 1, the collision
instincts are scattered over the road space. On the
other hand, in sections 2 and 3, around 31 and 23
collision instincts are observed (which are substan-
tially smaller than the case of Section 1). Further,
given the major proportion of cars, cars tend to have
a major share of the collision instincts over both the
study sections. Unlike in section 1, most of the colli-
sion points are clustered toward the median side lane
(lane-based homogeneous traffic conditions) in both

the study sections, which may be attributed to vehi-
cles’ faster movement (particularly cars).

Based on the safety framework, collision chances
can be modeled and tested over different scenarios.
Even though the safety analysis is carried with limited
data sets in the present work, the safety framework
can be extended to various study sections with differ-
ent geometrics, such as curves, intersections, work
zones, Etc. over different traffic volume conditions.
The results would undoubtedly help in revealing the
numerous implications of safety. The study sections
can be treated for safe movement, well before any
catastrophic mishaps. Considering the futuristic
autonomous vehicles, these strategies will outline the
researchers and practitioners in examining the safety
of the study sections.

Conclusions

Surrogate safety measures are the key to assess the
prevailing safety levels in traffic streams. At the same
time, the surrogate safety metrics tend to have their
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limitations examining traffic safety. In this direction,
through the present study, it is well brought out that
the vehicles’ lateral movement’s character is not well
incorporated in the existing surrogate metrics. At this
backdrop, with the help of Artificial Intelligence (AI)
based deep learning models, the present study also
demonstrated the idea of involving the lateral move-
ment of the vehicles in the safety analysis. In this con-
text, the surrogate safety methodologies are highly
dependent on the trajectory data for obtaining better
insights. To this end, developing high-quality vehicle
trajectory data demands a huge magnitude of effort
given the variation in the involvement of multiple
vehicle classes, their static and dynamic characteristics,
and the non-lane based vehicular movements. The
study presents a detailed framework for developing an
automated trajectory development tool for the vehi-
cles’ real-time tracking in this direction. Based on this
study, the following inferences are made:

1. Vehicular trajectory data have proven to be one
of the potent sources in analyzing driving behav-
ior. However, developing trajectory data can be a
challenging task, given the complexity involved.
Over time, numerous semi-automated tools have
been developed, but they were laborious in devel-
oping trajectory datasets. Therefore, in the present
study, an automated trajectory data tool was
developed using advanced image processing logic
and deep learning architecture. Based on this tool,
the surveyed traffic videos were uploaded, and the
trajectory data were developed with less human
effort. Further, given the cost-effectiveness and
the available programming libraries, the depicted
trajectory data development framework will help
researchers and practitioners working in the traf-
fic engineering field for any driving behav-
ior studies.

2. From the literature on midblock road sections, it
is observed that most studies have focused mainly
on the leader-follower vehicle combinations in
understanding collision chances. At the same
time, collision threats due to the surrounding
vehicles have been ignored. In addressing this, the
present study conceptualized a framework where
the surrounding vehicles were included in model-
ing the collision chances and the conventional
leader-follower interactions. The conventional
TTC measure was used in the present study to
sense the vehicular interactions. The framework
can be extended with some other new advanced
metrics in examining traffic safety.

3. In modeling the lateral movement of vehicles,
lane-change models are adopted in the literature.
Even the well-established simulation packages
tend to adopt linear models for the lateral move-
ment. Recent literature shows that vehicles’ lateral
movement, which is part of driving behavior,
depends on various variables. In this direction,
the present study uncovered the idea of deep
learning in modeling the lateral movements. This
idea can be explored and tested using different
traffic flow modeling concepts.

4. From the safety analysis over the study sections, it
is observed that in the case of the mixed traffic
stream, the collision instincts were scattered over
the road space. This is attributed to the weak lane
discipline of vehicles and the high lateral maneu-
verability of smaller vehicles. On the other hand,
in homogeneous traffic, the vehicles tended to
have good lane discipline. As a result, the colli-
sion instincts were over the lanes, mostly on the
median side lane.

5. Further, to understand the safety in a comprehen-
sive manner, the safety analysis can be carried
over different traffic flow conditions at different
traffic compositions. Based on the results, the
study sections can be treated, and the safety can
be improved. In these lines, even different traffic
management scenarios (i.e., bottleneck scenarios,
ramp metering, lane segregation, etc.) can be
tested for safety and the efficiency of the net-
work elements.

Limitation and future scope

Along with the research findings, the present study
has certain limitations, which should be considered in
the work’s future scope.

o In the present study, trajectory data is developed
over three study sections (with varying traffic con-
ditions; heterogeneous and homogeneous) for
10 minutes, each using a newly devised automated
trajectory development tool. However, the present
study framework must be tested over the study
sections with even more different flow conditions
with variation in vehicles’ proportion. This can
undoubtedly help in comprehensively assessing the
safety levels over the study sections.

e The safety framework is only tested on the trajec-
tory data from the study sections. However, the
framework can be validated with the help of real
collisions data from the field conditions. In this



direction, the video clippings of the vehicle colli-
sions from traffic streams can be used to calibrate
and validate the developed safety framework better.
Though it may be difficult, with better availability
of ground truth data, it should be aimed particu-
larly under heterogeneous traffic conditions.

e Further, the collision instincts reported in the
study is just an indirect representation of colli-
sions. It is reported that, in some instants, the sur-
rogate safety methodologies may overpredict the
collision occurrence; this can act as a limitation in
the present safety framework as well. Given this,
reliable historical data can certainly provide more
insights into the critical values of conflicts to
decide the prevailing safety level. This will also
supplement the effectiveness of traffic management
or safety management measures toward improve-
ment in safety and efficiency.

o The developed safety framework is tested with the
conventional TTC metric. However, the safety
framework can be tested with other available or
newly developed metrics, and the results can be
compared among the safety metrics with real
crash data.

e In the present study, starting from developing the
automated trajectory tool to processing the data,
including training the deep learning models, the
authors adopted various programming logics to
conduct this research work. As a result, the
involvement of many steps increases complexity
while applying the present methodology to the
roadway sections under consideration.
Nevertheless, the study methodology can be sorted
well with a simple Graphical User Interface (GUI)
for the practical utilization of the study with a bet-
ter visualization.

e In the present manuscript, the proposed safety
framework is only tested. Further, the study can be
extended, and comparative analysis can be con-
ducted with the established safety measures with
the proposed safety framework.
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