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Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in
semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent
integration of a magnetic field or g-factor gradients in coupled quantum dot systems allows for a one-step, robust
realization of the controlled-phase (C-phase) gate instead. We analyze the C-phase gate durations and fidelities
that can be obtained under realistic conditions, including the effects of charge and nuclear field fluctuations, and
find gate error probabilities of below 107*, possibly allowing fault-tolerant quantum computation.
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The spin of a single electron is a natural degree of freedom
for storing quantum information. In semiconductor quan-
tum dots, all operations required for quantum computation
with single spins have been demonstrated experimentally in
recent years: single-shot read-out' and coherent rotations of
individual spins®> as well as coherent interactions between
two neighboring spins.? Single-spin relaxation times, T, are
extremely long, up to 1 s.'** Recent measurements in GaAs
quantum dots gave spin-echo coherence times, T, echo, Of Up
to a few hundred microseconds.’ In quantum dots built from
materials without nuclear spins, even longer spin coherence
times are expected.

Despite this impressive progress, there have been no
experimental reports of elementary two-qubit gates such as
the controlled-NOT gate or the controlled-phase (C-phase)
gate. These gates are important since they are, together with
single-qubit rotations, the natural building blocks for quantum
algorithms. Implementing the quantum Fourier transform,
for instance, comes down to concatenating a sequence of
two-qubit C-phase gates.®

In their seminal paper, Loss and DiVincenzo’ present a
scheme to achieve a two-qubit C-phase gate by two periods of
coherent evolution under the exchange interaction between the
spins, separated by a single-qubit rotation. In present quantum
dot systems, such a combination of operations turns out to
be rather difficult due to the strong influence of nuclear spins
on the electron spin combined with the rather weak coupling
between electron spins and electromagnetic fields. A more
direct and robust C-phase gate realization would therefore be
desirable.

New possibilities for constructing efficient two-qubit gates
between single-spins are offered® by the recently demonstrated
possibility of engineering different Zeeman splittings in
neighboring dots. Using micromagnets placed close to the
quantum dots, up to a 30-mT difference in the local magnetic
field in neighboring dots has been demonstrated,’”'! and
a 50-mT difference field is realistic.'> By local control of
the nuclear field, even higher difference fields, up to 1 T,
have been been achieved.'®> Also differences in the g factor
between neighboring dots offer similar possibilities and have
been realized, both in quantum dots formed in etched GaAs
pillars'* and in InAs nanowires.'> The main motivations for
these gradients in Zeeman splitting were local addressing of
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individual spins by spectral selectivity, and the possibility
of single-spin rotations by electric-dipole spin resonance.'?
Strong gradients also permit very fast exchange-controlled
single-spin rotations.'®

Here we show that a difference in the local Zeeman
splitting d E, between two quantum dots can be exploited to
realize a fast and high-fidelity C-phase gate under realistic
conditions. Taking a broader view, we show that the natural
two-qubit gate in tunnel-coupled quantum dots evolves from
the exchange gate at d E, = 0 to the C-phase gate at large d E ,.
The cross-over depends on the strength of the interdot tunnel
coupling and on the magnitude and rise time of the pulse that
tilts the double-dot potential. We quantify the error probability
of the C-phase gate under realistic conditions, giving insight
in the optimal working point for fault-tolerant quantum
computation.

At the heart of the C-phase gate are spin-dependent energy
shifts, analogous to C-phase gate realizations with trapped
ions!” and nuclear spins in molecules.'® As we will show in
detail below, in the presence of a gradient, tilting the double-dot
potential lowers the two-electron states with antiparallel spins
in energy with respect to those with parallel spins. This
results in energy shifts AE; | and AE 4, respectively, for the
two antiparallel spin states. Fast and accurate control of the
double-dot potential therefore allows adding a controllable
spin-dependent phase shift to the antiparallel spin states,
described by the unitary transformation

1 0 0 0
0 €% 0 0

Uc phase — 0 0 ol 0 (1
0 0 0 1,

expressed in the {[ 11), | 11), [ {1), | {{)} basis and ¢10) =
AE4 (1twait/Ti, Where fy4i is the time the system spent in the

tilted position.

For ¢ + ¢, = 7, the gate corresponds to a controlled
m-phase gate, up to single-qubit  rotations, with phases ¢ and
¢, on the first and second qubits, respectively. The single-qubit
Z rotations can be left out when the C-phase is part of a larger
sequence of operations, as they can be absorbed into the phase
of the subsequent single-spin £ or 9 rotations.'®
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In our analysis, we consider a closed double quantum dot
filled with two electrons. The relevant two-electron states are
the four states with one 1 or | electron in each dot and
the singlet states S(0,2) [S(2,0)] with both electrons in the
right [left] dot. We also define S(1,1) = (| 14) — | $1))/+/2
and To(1,1) = (| 1) + | 4 1))/~/2. The triplet states with two
electrons in the same dot are much higher in energy and can be
ignored in the following discussion. The Hamiltonian of this

system in the basis {T} = [ 1), [ T1), [ {1), T =1 1]),
5(0,2), §(2,0)} is then given by

-E, 0 0 0 0 0
o == 0 o0 1 t
gl 0 %L 0 -t -t
0 0o 0 E 0 0
0 t -t 0 U-—e 0
0 t -t 0 0 U+e

@)

where t is the interdot tunnel coupling [where, at the
anticrossing, the S(1,1)-S(0,2) separation is Zﬁt], E, is
the average and dE, the difference in the Zeeman splitting
between the two dots, U is the energy cost for moving both
electrons into the same dot (analogous to the on-site interaction
energy in the Hubbard model'®), and € is the detuning or
relative alignment of the potential of the two dots. In this
Hamiltonian, we neglect the influence of spin-orbit interaction
and magnetic field gradients in the X and § directions. The
effect of the transverse gradients is to couple 7 and 7_ to

0 0 0
0 0 0
0 0 0
S =
0 0 0
0 y(—dE;) —y(dE,)
0 o(-dE,) —o(dE,)
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S(1,1), and indirectly (and weakly) to S(0,2) as well. The
spin-orbit interaction gives a direct matrix element between
the (1, 1) triplet states and S (0,2).% In both cases, the resulting
T+-5(0,2) anticrossing will only produce a (small) energy
shift and phase evolution of 7. Since this phase shift will
be different from the phase shift of the antiparallel spin states,
we still obtain a C-phase gate.

The resulting energy level diagram as a function of detuning
€ is depicted in Fig. 1(a). For € close to zero, the electron spins
in the two dots are uncoupled and the eigenstates are 7.y, | 1),
| 4 1), and T_. Their energy differences are set by E, and d E ,.
The T, and T_ states do not move in energy with €, since
they are not coupled (via tunneling) to S(0,2) or S(2,0). The
antiparallel spin states, in contrast, shift downward in energy
as |e€| moves away from zero, since they contain an S(1,1)
component and the S(1,1) state has an avoided crossing with
the §(0,2) and S(2,0) states. By controlling the detuning €
in time, one can add a phase shift between the states with
antiparallel and parallel spins and therefore realize in a single
step the C-phase gate presented in Eq. (1).

In the following, we will quantify the spin-dependent phase
shifts from an effective Hamiltonian acting on the four two-
qubit states. Analytical formulas for the phase accumulations
¢1 and ¢, in Eq. (1) will help to characterize the speed and
fidelity of the C-phase gate.

Using a Schrieffer-Wolf transformation and considering
t smaller than U =+ € (>0),2"*2 we can derive an effective
Hamiltonian H, = eSHe™S by eliminating at any order of
approximation the off-diagonal terms of H between the (1,1)
qubit states and S(0,2) and S(2,0). To second order, and
expressed in the same basis as H in Eq. (2), S has the form

0 0 0
0 —y(-dE) —o(—dE,)

g V(Ci)Ez) o(ci)Ez) , 3)
0 0 0

0 0 0

where y(dE,) =t/(U — € —dE,/2)ando(dE,;) = t/(U + € — dE/2). Then, the projection of H, onto the two-qubit subspace

{1 1440 141), 1 14)} has the form

—E, 0
g | 0 —dE2—a(dE)
N BUE,)
0 0
where
12 12
dE, €)= , 5
MAE ) = En T Uve—abn
o(dE,€)+ a(—dE,€)
BE; €)= A (6)

2

0 0
dE, 0

. BE,) ’ @
J2—a(dE,) 0
0 E,

In the limit where €,dE, << U, « and § are well approxi-
mated by 2t>/U and Eq. (4) reduces to Eq. (37) as shown in
Ref. 8 with exchange interaction J = 4t2/U.

When dE; is nonzero but small with respect to #, the
energy eigenstates are {| 1J),| {1)} close to € =0 but
{S(1,1),To(1,1)} for larger €. This can be seen in Fig. 2(a),
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FIG. 1. (Color online) (a) Energy level diagram for a double
quantum dot containing two electrons, as a function of detuning
€ along the (2,0)-(1,1)-(0,2) axis. The six levels with the lowest
energies are shown and are labeled in the figure. Energies are
expressed relative to the (1,1) states at ¢ =0 and E, = 0. The
parameters used are U = 1000 ueV, t = 10 peV, dE, = 14 peV,
and E, = 100 weV. (b) Energy shift of the levels around € = 0 with
respect to their energy at ¢ = 0. (Inset) Schematic double-dot charge
stability diagram around the (1,1) charge configuration. The dashed
line shows the detuning axis along which panel (a) is plotted.

where the 1] component of one of the antiparallel eigenstates
is shown as a function of dE, for seven values of €. The
exchange gate takes advantage of this condition by pulsing €
nonadiabatically from zero to a finite value.® Then constructing
a C-phase gate requires combining two exchange gates with a
single-spin rotation.

When dE, is large, the magnetic field gradient is the
dominant part of the Hamiltonian, and hence {| 1]),| { 1)}
are eigenstates as long as € is smaller than U, as seen also
in Fig. 2(a). In this case, only the energies of the antiparallel
states change. The exchange gate® is then no longer possible
and the corresponding eigenenergies vary with €, as seen from
Fig. 2(b) and from the following analytical expressions:

a(dE.) + a(—dE;)
2

AdE..¢) = 1/2\/dE§ + dE.S(dE.,€) + TI(dE.,¢),
(8)

where Y(dE;,€) =2[a(—dE,,€) —a(dE,,€)] and
T(dE.,€) = 2[a(dE,,€)* + a(—dE.,€)?].

This means that a C-phase gate can be realized in a single
step viaafastpulseine, frome = 0 toe = €¢*. The closer to the
S(1,1)-5(0,2) crossing the accumulation of phase takes place,
the larger the energy shift and hence the faster the operation
is. We note that when dE, = «/Et, A =dE; to second
order, so | 1) and | | 1) acquire the same energy difference
AE¢¢(¢T) = ET¢(¢¢)(CZEZ,6*) - ETin)(dEZ,O) and thus ac-
cumulate the same phase when ¢ is pulsed. In this case, the

ETl/iT(dEZ’G) = :FA(dEZ), (7)
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FIG. 2. (Color online) (a) Probability of | 1)) in one of
the antiparallel eigenstates that shows the change in the char-
acter of the eigenstates when dE, is increased, extracted from
diagonalization of H,. Different curves correspond to values
of e= 0, 100, 750, 1200, 1600, 1800 (in red/gray), and
1900 (U =2000 peV, t =5 ueV). The closer € is to U,
the larger the dEz that is needed to change the eigenbasis.
(b) Energy shift of the two antiparallel qubit states as a function of d E,
[extracted from Eq. (7)] when € is pulsed from O to €* = 1800 ueV
(U — €* =200 peV, corresponding to the red/gray line in the top
panel). For small d E,, the eigenstates are triplet and singlet and only
one state (the singlet) is shifted in energy. At d E, = +/2t, the energy
shift is the same for the two antiparallel eigenstates.

C-phase gate is obtained for ¢, = ¢, = /2 (as noted before,
the general condition for a C-phase is ¢; + ¢, = ). A 10-ns
gate duration requires an energy shift of ~0.1 ueV, which is in
reach with dE, = 5 peV as seen from Fig. 3 (where we note
that phase evolution during the finite rise time of the pulses can
be easily included in the timing calibration). Gate durations of
1 ns and less are possible by using stronger tunnel couplings
or larger pulse amplitudes. If d E, is made larger too, this will
not affect the gate operation. These gate durations are 10410’
times shorter than the reported spin-echo times in GaAs,> so
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FIG. 3. (Color online) Expected energy shift with respect to the
case € = 0 as a function of detuning €* (r = dEz/+/2 = 5 peV and
U = 2000 peV). The closer to the S(1,1)-S(0,2) anticrossing, the
faster the gate. Also shown is the relative error in the phase ¢ due to
1-peV fluctuations in €. Between €* = 300 peV and €* = 1850 ueV,
errors are below the threshold for fault-tolerant quantum computation.
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error probabilities due to decoherence will be below the 10~*
accuracy threshold for fault-tolerant quantum computation.®

Finally, we analyze the gate errors for realistic conditions
that can be expected from other sources than decoherence, with
the help of the analytical expressions obtained above. To sim-
plify the analysis, we consider the case where ¢ = ¢, = ¢.
As in the case of the exchange gate,> ¢ will be sensitive to
potential fluctuations due to charge noise or gate voltage noise
since we allow a small amount of mixing between charge
and spin states to obtain the phase shift. The effect of potential
fluctuations manifests itself predominantly as fluctuations in €,
rather than as fluctuations in ¢ or U.?* The closer to the
S(1,1)-S(0,2) crossing the operating point is located, the more
sensitive to detuning fluctuations the C-phase gate is, as can
be seen from Fig. 3. From Eq. (7), analytical expressions can
be derived for d¢ /¢ induced by detuning fluctuations and the
results are also shown in Fig. 3, where a realistic value of
1-ueV detuning fluctuations is taken.”* We see that relative
errors d¢ /¢ down to 6 x 1073 can be obtained for the 10-ns
C-phase gate, which translate to a gate error probability of
(dop/d)* =4 x 1073,

A second possible source of error is the random value of
the (quasistatic) nuclear field in the two dots. This affects
the time-evolution during the C-phase in two ways. First, it
causes a dephasing that is independent of €. This dephasing has
been shown to be (largely) reversible by spin-echo techniques
and since the C-phase commutes with dephasing, it can be
simply embedded in existing spin-echo sequences. Second,
there is an additional contribution to the e-dependent energy
shift ¢, but this is only a second-order effect in the dE,
fluctuations. The slow variation of ¢ with d E, is seen in Fig. 2,
in particular as d E, approaches ¢. Gate error probabilities due
to d E, fluctuations can be evaluated from Eq. (7) in the regime
of fast gate operations where dE, < U — €¢* < U and, for
dE, = \/2t, are approximately given by d¢ /¢ = 8/(U — €)
where § is the size of the fluctuations in dE, (=20 neV in
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GaAs). Therefore, for the values used above to obtain a 10-ns
gate, the gate error probability (d¢/¢)? due to the nuclear field
randomness would be only ~1078.

The last source of error we consider is possible nonadia-
baticities that may occur if the rise time of the detuning pulses
is too short. This is relevant when the antiparallel eigenstates
are slightly different between the two pulse positions € = 0
and € = €*. For the parameters used above, we quantify this
difference via the square of the overlap between the eigenstates
at the two pulse positions and it is different from 1 only by
8 x 10, For instantaneous detuning pulses, the resulting gate
error probability calculated from simulations is of the same or-
der of magnitude, ~2 x 1073, However, for realistic rise times
in the range of 0.3 to 1 ns and again using the same ¢ and € as
above, the gate error probability is well below 107, By using
shaped pulses, the adiabaticity can be improved even further.”

In conclusion, we present and analyze a one-step imple-
mentation of a C-phase gate between two single-spin qubits
in a double quantum dot. This gate is the natural replacement
of the exchange gate when large magnetic field or g-factor
gradients are present. We estimate that gate operation times of
a few nanoseconds can be achieved under realistic conditions
with fidelities above the accuracy threshold for fault tolerance.
To probe the spin-dependent phase shifts produced by the
C-phase gate, a Ramsey-type experiment can be used, with the
C-phase gate in between two single-spin rotations. We expect
that this work will impact ongoing experiments aimed at the
realization of elementary quantum gates and simple quantum
protocols with single-spin qubits in a variety of quantum dot
systems.
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