
Sim-to-Sim-to-Real: Utilizing high
and low-fidelity simulators for

predicting Sim-to-Real Transfer and
Analysis using small-scale

autonomous vehicles
by

Jurriaan Buitenweg

In partial fulfilment of the requirements for the degree of Master of Science at Delft
University of Technology

Track: Artificial Intelligence

Faculty: EEMCS
Department: Multimedia

Program: Computer Science
Delft University of Technology

Delft, NL

Thesis advisor: Dr. Cynthia Liem
Daily supervisor: Antony Bartlett

External commitee member: Dr. Annibale Panichella

To be defended publicly on 27-06-2025

Introduction

This thesis is split up into 2 sections. 1 contains the scientific paper which highlights
all important background, related work, methodology, approach, results, discussion and
conclusion. The paper is aimed towards computer scientists, familiar with AI, specifically,
(Deep) reinforcement learning and image processing techniques. For readers not familiar
with these topic, section 2 contains all material needed to understand the fundamental
topics.

iii

Table of Contents

List of Abbreviations v

1 Scientific Paper 1

2 Supplementary Material 20

2.1 Deep Learning . 20

2.2 Reinforcement Learning . 22

2.3 Image Processing Methods . 24

References 25

A Supplementary Results 27

A.1 Result tables . 27

A.2 Heatmaps . 29

A.3 Additional Metrics . 30

B Python Implementation 33

B.1 Libraries . 33

B.2 Code . 33

iv

List of Abbreviations

Sim2Real Simulation-to-reality
AV Autonomous Vehicles
AI Artificial Intelligence

(D)RL (Deep) Reinforcement Learning.
CNN Convolutional Neural Network.
RGB Red Green Blue
PPO Proximal Policy Optimization
SB StableBaselines3

CARLA Car Learning to Act
DT Duckietown

v

Chapter 1

Scientific Paper

1

Sim-to-Sim-to-Real: Utilizing high and
low-fidelity simulators for predicting

Sim-to-Real Transfer and Analysis using
small-scale autonomous vehicles

Jurriaan Buitenweg
Delft University of Technology
j.r.buitenweg@student.tudelft.nl

Thesis Supervisor: Dr. Cynthia Liem
Daily Supervisor: Antony Bartlett

Abstract—The Sim2Real gap poses significant chal-
lenges for testing autonomous vehicles, often becoming
apparent only during high-risk real-world deploy-
ments. This research proposes a novel pipeline that
leverages both high-fidelity (CARLA) and low-fidelity
(Gym-Duckietown) simulators to estimate this gap
prior to deployment. The results reveal a strong
correlation between performance in Gym-Duckietown
and real-world outcomes, suggesting it can serve as
potential estimation for real world performance and
the Sim2Real gap. Nonetheless, real-world testing
remains an essential part of the validation process.
Future work should build on these findings to further
explore and validate the approach.

I. INTRODUCTION

By 2035, autonomous driving is projected to
generate $300 billion to $400 billion in revenue,
making it one of the most anticipated technolog-
ical advancements of this generation [1]. Despite
progress in their development, evaluating these sys-
tems remains a significant challenge due to safety
concerns, high costs, and strict safety requirements
[2, 3].

To mitigate these risks, autonomous vehicle (AV)
models are typically trained in simulated environ-
ments. However, models that perform well in simu-
lation often degrade significantly in the real world,
a phenomenon known as the simulation-to-reality

(Sim2Real) gap. This gap arises from discrepancies
in visual inputs, environmental conditions, dynam-
ics, or dissimilarities between the simulator and the
real world.

Although many studies focus on reducing the
Sim2Real gap during the training process with
techniques like domain randomization [4], relatively
little research has been conducted on identifying
or quantifying this gap prior to deployment in the
real world. Previous work has explored modifying
simulation environments to closely resemble real-
world conditions [5], which improves the simula-
tor’s ability to estimate the Sim2Real gap. However,
this approach is costly and relies on having a highly
customizable simulator.

The current study proposes a novel approach
to estimate the Sim2Real gap using a three-stage
evaluation pipeline. A Deep Reinforcement Learn-
ing (DRL) model is first trained in CARLA, a
high-fidelity simulator, using different image types
(RGB, Grayscale, and Segmentation masks), pre-
processing methods and network architectures. The
trained model is then evaluated in Gym-Duckietown
(Gym-DT), a lower-fidelity simulator, resembling
the real-world enviroment and finally deployed on
a physical Duckiebot robot. This gradual transition
allows us to assess performance degradation at

each stage to determine whether an intermediate
simulator can serve as a proxy for estimating the
Sim2Real gap itself. Furthermore, models trained
in CARLA are analyzed to see if they have learned
similar feature representations compared to those
that perform well in Gym-DT and the real world.
If this is the case, similarity metrics can be used to
make deductions about Sim2Real capabilities. This
results in the following research questions

1) To what extent can performance in a low-
fidelity simulator, resembling the real-world
environment, be used as a predictive metric
for the Sim2Real gap for models trained in
high-fidelity simulation environments?

2) To what extent can similarity of learned
feature representations between autonomous
driving models be an indication of real-world
performance?

The structure of this paper is as follows: Chapter
II provides a review of background research, fo-
cusing on the simulators used in the experiments
and existing methods addressing the Sim2Real gap.
Chapter III discusses related work. Chapter IV,
V discuss methodology and approach. Chapter VI
presents result. These are then analyzed and dis-
cussed in chapter VII and concluded in chapter IX.

II. BACKGROUND

In this section, the technologies that underlie
the work are discussed. This includes information
about autonomous vehicles, image representations
and (Deep) Reinforcement Learning.

A. Autonomous Vehicles

In this research, the term autonomous vehicle
(AV) specifically refers to Level 5 autonomy as
defined by the SAE [6] (Table I), which represents
full driving automation where no human driver
is required under any circumstances. These fully
autonomous vehicles present significantly greater
challenges compared to lower levels of autonomy
[7]. Without human intervention, they demand real-
time control outputs to handle all driving scenarios
independently. Additionally, training policies must
be far more strict, as errors can be life-threatening
in the absence of human oversight and control

[3]. Lastly, the amount of training data required
is much higher, as fully autonomous vehicles must
be capable of navigating any type of road in any
environment. This also introduces the importance of
simulators because real world training in different
environments is very costly.

B. Reinforcement Learning

Reinforcement Learning (RL) addresses the prob-
lem of enabling a computational agent to make
sequential decisions through trial and error to max-
imize a reward function (Figure 1). An RL model
is often visualized as a Markov Decision Process
(MDP) [8], characterized by the following compo-
nents:

• S: The state space.
• A: The set of possible actions.
• Pa(s, s

′) = P (St+1 = s′ | St = s,At =
a): The transition probability, representing the
likelihood of moving from state s to s′ under
action a at time t.

• Ra(s, s
′): The reward received when transi-

tioning from state s to s′ under action a. This
is determined by a reward function.

A basic reinforcement learning agent interacts with
its environment in discrete time steps. At each time
step t, the agent receives the current state St and
reward Rt. It then chooses an action At from the set
of available actions, which is subsequently sent to
the environment. The environment moves to a new
state St+1 and the reward Rt+1 associated with the
transition (St, At, St+1) is determined. The goal of
a reinforcement learning agent is to learn a policy:

π : S×A → [0, 1], π(s, a) = Pr(At = a | St = s)

that maximizes the expected cumulative reward.
In RL, an important distinction exists between

on-policy and off-policy algorithms. On-policy al-
gorithms require the evaluation or improvement of
the policy that is actively collecting data, while off-
policy algorithms can learn from data generated by
an arbitrary policy. Additionally, the action space
in reinforcement learning (RL) can be categorized
into discrete and continuous types. In the discrete
action space, the model learns a policy that outputs

Level Name Description
0 No Automation The driver is in complete control of the vehicle at all times.

1 Driver Assistance The vehicle can assist the driver in either speed (e.g., cruise control) or lane
position (e.g lane guidance).

2 Improved Driver Assistance The vehicle can assist the driver in speed (e.g., cruise control) and lane position
(e.g lane guidance).

3 Occasional Self-Driving The vehicle can take control of both speed and lane position in some situations,
such as on limited-access freeways.

4 Limited Self-Driving The vehicle is in full control in some situations, monitors the road and traffic,
and will inform the driver when they must take control.

5 Full Self-Driving Under All Condi-
tions The vehicle can operate without a human driver or occupants.

TABLE I: The Levels of Vehicle Autonomy [6]

a probability distribution over a finite set of possible
actions. Each action is assigned a probability, and
the agent selects an action based on this distribution.
In the continuous action space, the model outputs
a probability distribution over a continuous range
of values. An action is then sampled from this
distribution, allowing for a more fluid and precise
representation of actions.

Fig. 1: General representation of a reinforcement
learning algorithm.

C. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is similar
to traditional reinforcement learning, except that it
incorporates a neural network to learn the policy.
This integration leverages the power of deep neural
networks to learn complex policies directly from
raw data. Neural networks in DRL often include
feature extraction layers, such as convolutional lay-
ers in image-based tasks which automatically iden-
tify and transform relevant input patterns into lower-
dimensional representations. These extracted fea-
tures are crucial, as they allow the network to focus
on the most informative aspects of the environment,
ultimately improving the accuracy and stability of

the agent’s decisions. The final feature extraction
layer plays a key role by producing a compact,
high-level summary of the input data, essentially
serving as the foundation for decision making in
DRL models. Increasing the dimensionality of the
feature space can give the model access to richer
representations, potentially improving performance
in complex environments. However, it can also in-
crease computational cost and the risk of overfitting,
especially when training data is limited. DRL is
particularly useful in tasks involving self-driving
cars, where environments are highly complex and
demand adaptive policies [9].

A well-performing DRL on-policy algorithm is
Proximal Policy Optimization (PPO) [10]. This
algorithm, developed by OpenAI, is a robust and
widely used deep reinforcement learning algorithm.
It addresses the core challenge of how to make
the most significant possible improvements and
encourage exploration within a policy using the
available data, while avoiding the risk of perfor-
mance collapse typically caused by the training
process becoming trapped in a local minimum.
PPO achieves this by employing a clipped objec-
tive function to constrain policy updates, ensuring
a balance between exploration and stability. This
approach avoids the instability often associated with
excessively large updates while maintaining high
sample efficiency. When using images as input, PPO
employs convolutional neural networks (CNNs) to
extract visual features, which are then transformed
into a latent representation. This representation is

passed to the actor-critic network to generate ac-
tion probability outputs. CNNs consist of multiple
layers, where the lower layers typically detect low-
level features such as edges, and the higher layers
capture more abstract, task-specific patterns. A cru-
cial hyperparameter in a CNN is the dimensionality
of the final feature representation layer (often a
fully connected layer). This layer has impact on
the capacity of the network to represent complex
features, influencing its ability to perform well on
the target task.

D. Simulators

Simulators are digital programs that allow models
to be trained in a controlled environment. They can
be categorized into low- and high-fidelity simula-
tors. High-fidelity simulators replicate real-world
conditions in great detail, providing both com-
plexity and configurational freedom. In contrast,
low-fidelity simulators focus only on the essential
components of an environment.

For autonomous vehicles (AVs), a high-fidelity
simulator might simulate an entire city, com-
plete with traffic, weather conditions, and dynamic
changes. On the other hand, a low-fidelity simulator
could consist of just a road with markings, without
any surrounding elements. Examples of different
simulators are:

1) CARLA: CARLA [11] is an open-source,
high-fidelity driving simulator designed to facili-
tate the development and evaluation of autonomous
driving systems. CARLA offers an extensive suite
of features, including realistic environmental com-
ponents such as other vehicles, pedestrians, and
diverse traffic scenarios. CARLA also allows for
gathering data from multiple sensors, including
RGB, and segmentation masks through OpenDrive
Data [12].

2) Gym-Duckietown: Gym-duckietown (Gym-
DT) was developed using using OpenAI’s gymna-
sium framework [13, 14] to serve as a simulator for
real-life duckietowns (Figure 2). Gym-DT is fast,
open, low-fidelity simulator suitable for developing
and evaluation reinforcement learning models. An
example of a Gym-DT environment can be seen in
Figure 3.

Duckietown is a widely recognized framework
for hands-on learning and research in robotics. It
provides an easy to use and inexpensive way to do
experiments involving autonomous driving robots
(Figure 2) in simulation and in the real world.

Fig. 2: A real life duckietown environment

Fig. 3: A simulated duckietown environment

E. Sim2Real

Simulations are not perfect copies of reality,
therefore models trained in simulators usually per-
form worse after being deployed in the real world.
This performance difference is known as the sim-
to-real (Sim2Real) gap. This phenomenon can be
caused by different factors, including but not re-
stricted to different colors between environments,
physics, lighting conditions or unexpected encoun-
ters. Additionally, the simulator itself may fail to
accurately capture critical aspects of the real-world
environment.

F. Domain Randomization

Domain randomization [4] is a technique used
to improve a model’s robustness and generaliza-
tion capabilities and reduce the Sim2Real gap.
The technique consists of varying certain aspects
of the training environment or observations. This
method introduces controlled randomness into the
observations or the environment, forcing the model
to learn invariant features that are not specific to any
particular instance. In the context of visual tasks,

for example, visual domain randomization involves
altering the appearance of images, such as changing
color spaces, textures, lighting, or backgrounds of
features that should not matter to the model. By
applying a set of random perturbations to these
visual parameters, the model becomes less sensitive
to specific environmental conditions, enhancing its
ability to generalize to unseen scenarios. Domain
randomization reduces overfitting and increases ro-
bustness to real-world variability [4].

G. Input representations

In DRL models for AVs, visual inputs are usually
images. The image can be a camera image in a
certain color space (RGB or Grayscale), or a result
of a semantic segmentation network.

1) Camera images: RGB images are captured
directly from a camera and offer complex and de-
tailed representations of an environment. However,
their complexity can be challenging for training
robust deep reinforcement learning (DRL) models.
Environmental changes such as lighting variations
or weather conditions in simulation can significantly
change key visual features within RGB inputs,
further complicating the generalization of learned
policies [4].

Grayscale images contain only a single intensity
channel, they reduce the input dimensionality for
neural networks, allowing models to train faster and
with fewer parameters, an advantage when real-time
decisions are critical. In many driving scenarios,
essential information such as lane markings, road
edges, and obstacles can be accurately perceived
through contrast and shape rather than color, mak-
ing grayscale sufficient for tasks like lane following
or collision avoidance.

2) Semantic Segmentation: Semantic segmenta-
tion masks has long been researched as input data to
machine learning models, and provide great results
[15]. Semantic segmentation masks are the result
of a process called semantic segmentation. This
technique classifies each pixel in an image as one
of a finite set of classes and assigns a specific color
to each class (figure 4). This process provides an
image representation which is generalizable across
multiple environments and reduces the complexity

significantly, making for more robust models when
used as input. The drawback of this technique is that
it can be time intensive to obtain the segmentation
masks because of per pixel classification and might
need a lot of groundtruth data to teach a model to
do this correctly.

Fig. 4: Segmentation image example

A fast end-end segmentation network is
FastSCNN [16] (Figure 5). End-End means that
you take in an input images and your desired
output image is achieved by a single pass through
the network.

Fig. 5: Network architecture of Fast SCNN [16]

III. RELATED WORK

A. Sim2Real prediction through simulation

Sim2Real predictivity through a simulator was
previously explored in the domain of robotic arm
manipulation [5] . By using a metric called the
Sim2Real correlation coefficient, the study quan-
tifies how well a simulator can predict the real-
world capabilities of a trained model. This metric is
further employed to guide the tuning of simulator
parameters such as visuals and dynamics to improve
Sim2Real predictivity.

The work in this paper builds upon this sys-
tematic approach by applying it to the domain

of self-driving cars. Additionally, while the pre-
vious work focuses on models trained within the
same simulation where evaluation occurs, this study
expands the scope by evaluating models trained
across different simulators, allowing the assess-
ment of generalization and robustness in Sim2Real
transfer. This is particularly useful because there
are many autonomous vehicle simulators available,
each with varying fidelity and characteristics, so
evaluating across different simulators better reflects
the diversity of real-world conditions and helps
identify models that generalize well beyond a single
simulation environment.

B. Quantifying the Sim2Real Autonomous Driving
Simulations by using attention map Similarity

Sim2Real transfer can also be quantified by com-
paring attention maps, as demonstrated in [17].
Their method measures the similarity between the
histograms of the middle self-attention maps gen-
erated by models when processing images from the
simulator and the real world. A higher histogram
similarity suggests that the model is extracting
similar features across both environments and thus
also achieves similar performance.

While this approach offers a scientifically sound
way to quantify the Sim2Real gap, histogram com-
parison ignores spatial information within the at-
tention maps. In contrast, the work in this paper
employs a similarity metric that accounts for spatial
differences, providing a more detailed comparison
of feature extraction between simulated and real-
world inputs. This is useful because even if latent
representations differ between models, they may
still capture the same underlying features.

IV. METHODOLOGY

In this section, the general methodology used to
do the experiments is discussed, breaking it down
into three distinct sections: Training, Testing and
Evaluation.

A. Training

Models are trained using different types of input
image representations, each with varying levels of
visual complexity:

• RGB – High complexity

• Grayscale – Medium complexity
• Segmentation masks – Low complexity
For each input type, models are trained while

varying one of the following components that could
influence generalization performance:

• Domain randomization: Enhances generaliza-
tion by making the models more robust to
environmental variations [4].

• Cropping: Cropping input images can improve
performance and robustness by reducing irrel-
evant background features, effectively narrow-
ing the feature space [18].

• Model architecture: Expanding the final feature
extraction layer enables the model to learn a
wider range of informative features, improving
its learning capability, but also increasing the
risk of overfitting [19].

Note that when using segmentation masks, domain
randomization becomes unnecessary. This is be-
cause segmentation masks inherently provide a sim-
plified and environment-independent representation,
already abstracting away visual variations in the
background.

All models are trained in the CARLA simula-
tor. CARLA is selected due to its high rendering
fidelity, flexibility, and ease of integration with
reinforcement learning pipelines [20]. Although al-
ternatives such as Gazebo [21] offer better vehicle
dynamics simulation, they pose significant integra-
tion challenges for DRL and are out of scope for
this study. For each image type, a baseline model
is trained in Gym-DT using domain randomization
and cropping. This model demonstrates validated
performance in both the Gym-DT environment and
the real world, making it a strong benchmark.
Gym-DT is selected because it closely resembles
real-world testing scenarios that utilize Duckietown
products.

B. Testing

Post-training, the models are evaluated in both
CARLA and Gym-DT where performance metrics
are gathered. After evaluation in the two simulators,
the final step involves deploying all models onto
a real-world duckiebot to assess real-world perfor-
mance. This approach allows for evaluating whether

performance in Gym-DT serves as a reliable indica-
tor of real-world performance for models trained in
CARLA. While Duckiebots are used in this study,
the methodology is applicable to any small-scale
autonomous vehicle with a similar observation and
action space.

C. Evaluation

Evaluation is done on three different fronts:
performance, Sim2Real transferability and model
similarity.

• Performance: Model performance is assessed
based on its ability to navigate predefined
environments, comparing it against a baseline
model.

• Sim2Real Correlation: To quantify how well a
simulator predicts real-world performance, the
correlation between simulated and real-world
results is analyzed.

• Feature Similarity: This metric is used to in-
vestigate whether models that achieve strong
performance in CARLA learn features similar
to those associated with high performance in
Gym-DT and real-world environments.

V. APPROACH

This section outlines the technical implementa-
tions used to obtain input images, configure training
environments, and train the DRL models. Technical
methods used in the training process are discussed,
followed by the testing setup and evaluation metrics.

A. Domain randomization

Domain randomization (DR) is applied in the
training process. In CARLA, this is done by ran-
domizing weather conditions on each reset. This has
impact on the overall colors and features of the en-
vironment. In for the baseline Gym-DT model, DR
is applied by randomizing environment background
each time the environment has been resetted. A
reset occurs when the vehicle crashes in the training
process or a training episode reaches its maximum
length.

B. Camera Images

Camera images are obtained via callback func-
tions using the APIs of the respective simulators.
Raw RGB images are used directly for RGB input,
while grayscale images are generated by converting
the RGB images using OpenCV [22]. In real-world
deployment, images are received through ROS com-
munication with the Duckiebot [23]. All images
are resized to C×120×160 and, if required by the
specific model, cropped to C×80×160, where C
denotes the number of channels (3 for RGB and
1 for grayscale). Finally, images are normalized by
diving all pixel values by 255.

C. Semantic Segmentation Masks

In CARLA, OpenDRIVE [12] data is leveraged
to directly generate semantic segmentation masks.
This metadata is embedded within the materials
that the vehicle interacts with (e.g., road, sidewalk),
enabling perfect segmentation without the need for
a trained model. This approach supports training
across various environments, such as asphalt and
dirt roads.

Fig. 6: Sample segmentation mask from the
CARLA simulator

In Gym-DT, segmentation masks are approxi-
mated by modifying environment textures to rep-
resent different classes (e.g., lane, background),
removing the need for a segmentation model during
simulation. This helps isolate the cause of poor
performance, as issues related to a segmentation
network can be ruled out.

However, for real-world deployment, a real-time
segmentation model is needed. The FastSCNN ar-
chitecture is used, which is trained using the Ducki-
etown Segmentation Dataset [24] to perform seman-
tic segmentation on RGB inputs from the duckiebot
(figure 7).

Fig. 7: Illustration of the input and output of the
Fast SCNN model.

For simplicity in our experiments, segmentation
masks consist of three classes: background (black),
lane (purple), and lane markings (green). The seg-
mentation mask, in the form of an RGB image, is
then converted into a class label image of either
3x120x160 or 3x80x160, depending on whether it’s
cropped. Finally, segmentation masks are normal-
ized by diving all pixel values by the number of
classes, in this case 3.

D. Training Algorithm

All models are trained using the Proximal Pol-
icy Optimization (PPO) algorithm from the Sta-
ble Baselines3 library [25]. PPO is selected for
its robustness to hyperparameter choices and its
fast convergence. This is beneficial when training
multiple models with different input modalities.

Models with domain randomization (DR) are
trained for 2 million timesteps, while those with-
out DR are trained for 1 million timesteps. Since
models trained without DR are known to converge
more quickly [26], this decision was made to reduce
computational cost and training time.

An exponential decaying learning rate schedule
is used and the reward function utilized for training
is defined as:

penaltylane = min

(
d

dmax
, 1

)
(1)

penaltyangle =
1− cos(θ)

2
(2)

reward = 1− 0.8 · penaltylane − 0.2 · penaltyangle
(3)

where:
• θ: angle between the vehicle’s heading and the

tangent of the right lane

• d: lateral distance from the center of the vehi-
cle to the lane tangent

• dmax: The maximum allowed deviation, this is
used for normalization purposes.

Fig. 8: Variables used in the reward function [27]

When the car exceeds dmax, the environment is
reset.

Only steering control is learned during training,
while the forward speed is kept constant. Steering
control entails how much the car should steer left
or right. This is expressed in a single float value
between -1 and 1 where -1 indicates a full left turn,
and 1 a full right turn. All training parameters can
be seen in table II. The values used are based on
commonly adopted hyperparameters for PPO.

Parameter Value
learning rate exponential(3e-4, 1e-5, 3)
n steps 2048
batch size 128
n epochs 10
gamma 0.99
gae lambda 0.95
clip range 0.2
ent coef 1e-4
vf coef 0.5
max grad norm 0.5
seed 42

TABLE II: Hyperparameter configuration.
exponential(x, y, d) indicates an exponential
decay from x to y with rate d.

E. Feature extractor

As the feature extractor for PPO, the standard
NatureCNN architecture provided by Stable Base-
lines3 (Figure 9) is used. In our experiments, the

final linear layer is modified to have a size of
512 instead of the default 256. This adjustment
allows for investigation whether increased feature
learning capacity leads to improved generalization
and whether such improvements are observable in
the intermediate simulation environment and in the
real world.

Fig. 9: NatureCNN architecture

F. Environments

Models in CARLA are trained to drive along the
outer lap of the Town02 map 1 (Figure10). This map
was chosen because it provides an environment for
testing basic lane-following maneuvers, including
driving straight as well as making left and right
turns. The baseline model is trained on the loop
map in Gym-Duckietown (Gym-DT), offering a
consistent comparison point across environments.

All models are evaluated in three settings:
CARLA, Gym-Duckietown, and a real-world Duck-
iebot setup (Figure 10). In the CARLA environ-
ment, evaluation takes place in Town02, with ran-
domized starting positions selected from various
spawn points along the outer loop. This encourages
robust and diverse lap-driving behavior.

In Gym-DT, each episode starts at a random
position on one of the straight road segments of
the loop map. To introduce controlled variability,
the vehicle’s initial heading angle is randomly
perturbed within the range [−π/8, π/8], ensuring
variation without making the task infeasible.

The real-world Duckiebot setup closely replicates
the Gym-DT layout. This alignment is designed

1https://carla.readthedocs.io/en/latest/map town02/

to maximize the transferability of insights and
performance between the simulated and physical
environments. The robot is placed on one of the
straight road parts randomly, balancing inner and
outer laps.

Fig. 10: Evaluation environments: CARLA (top),
Gym-DT (middle), and real Duckiebot setup (bot-
tom). In CARLA, the vehicle drives a lap around
the outer road.

G. Metrics and Procedure

Below, the key metrics used in our analysis
are defined. First, performance metrics are dis-
cussed, which help evaluate how well models per-
form across different environments. Next, Sim2Real
correlation metrics are introduced, which address
our research question of whether an intermediate
simulator can serve as a reliable predictor of the
Sim2Real gap. Finally, similarity metrics are pre-

sented, used to assess whether models trained in
different simulators develop similar perceptions of
their environment.

1) Performance metrics: Each model is evalu-
ated in simulation over a total of 100K timesteps in
both CARLA and Gym-DT. During this period, the
number of laps completed without crashing and the
overall mean reward are recorded.

• Average percentage of completion: This metric
represents the overall success rate of the vehi-
cle in navigating the environment, calculated
as the percentage of trials in which the vehicle
completes one full lap. A successful navigation
is defined as completing a full circuit of the
track without failure, making this metric a di-
rect measure of task completion performance.

• Mean reward: In the simulated environments
(CARLA and Gym-DT), the mean reward is
used as a proxy for lane alignment and driving
quality.

For real-world testing, the mean reward is not
available; instead, only the average percentage of
completion is reported, computed over 10 trials,
balancing inner- and outer-lane trials.

2) Sim2Real correlation: The Sim2Real Correla-
tion coefficient between CARLA and the real-world
and gym-DT and the real-world is computed. The
Sim2Real Coefficient (SRCC) is an indicator used
to evaluate how well performance in a simulated
environment predicts performance in the real world
[15]. A higher SRCC (up to 1) suggests that the
simulator performance closely correlates with real-
world performance, indicating a smaller Sim2Real
gap. In contrast, a SRCC close to 0 implies a poor
correlation between the performance in simulation
and reality and a larger Sim2Real gap. The SRCC
is calculated by taking the sample pearson correla-
tion between average percentage of completion in
simulation and the real world.

Since the SRCC is based on Pearson correlation,
it is undefined (N.A) when there is a lack of vari-
ation in the results. Therefore, the mean difference
in average percentage of completion is reported
to provide an additional measure of performance
comparison.

3) Similarity metrics: To compare how similarly
different models extract features, Centered Kernel
Alignment (CKA) is used. CKA is a reliable method
for comparing internal representations across neural
networks, even when those representations are ro-
tated or scaled differently [28]. This makes it well
suited for identifying shared patterns learned by
models trained from different starting points.

In this research, CKA is computed between each
layer of a model trained with domain randomization
(DR) and a model trained without it. The goal is
to compare whether models that generalize across
environments learn similar features to those that are
fine-tuned for a specific environment, and whether
this similarity corresponds to performance in that
environment. If a strong correlation is found, CKA
could be used as an indicator of how well a model
might perform in a given environment without need-
ing to deploy it in the real world.

To ensure a reliable CKA comparison between
models, the exact same input data is used across
evaluations. Pre-recorded videos from both Gym-
DT and a lap around the Duckiebot map are served
as the input for all models during the analysis.

VI. RESULTS

A. Performance & correlation results

Tables V, VI and VII summarize the performance
results across environments for RGB, grayscale, and
segmentation inputs, respectively. These tables re-
port the percentage of task completion. Highlighted
values represent the models with the highest com-
pletion percentage for each corresponding environ-
ment. For an extended overview, including the mean
rewards per model, please refer to Appendix A1.
In Table III mean difference in average completion
rate are visualized, and in table IV, the SRCC
is computed over average completion rates of the
models.

Image Type CARLA Gym-DT
RGB 66.25 10.6

Grayscale 75.8 14.9
Segmentation 47.5 1.5

TABLE III: Mean difference in performance when
comparing CARLA and Gym-DT to real world
performance for each image input type.

Image Type CARLA Gym-DT
RGB N.A 0.80

Grayscale -0.008 0.41
Segmentation N.A 0.89

TABLE IV: Sim2Real Correlation Coefficient
(SRCC) across CARLA and Gym-Duckietown for
each image input type. A cell is N.A if SRCC
computation was not possible due to constant values
in one of the performance sets.

B. Similarity results

Figure 11 displays heatmaps that illustrate the
similarity between feature extraction results of layer
of models trained with various input types and
a baseline model trained in the Gym-Duckietown
environment and duckiebot environment. Additional
heatmaps comparing grayscale models can be found
in Appendix A2.

(a) RGB with domain randomization

(b) RGB without domain randomization

Fig. 11: Heatmaps comparing feature learning
similarity using CKA between models trained in
CARLA with (a) and without (b) domain ran-
domization (DR) and a model trained in Gym-
DT, evaluated on a real-world test scenario. On the
vertical axis, layers are ordered from lower (top) to
higher (bottom), while on the horizontal axis, layers
range from lowest (left) to highest (right). For more
information about the architecture, see figure 9.

TABLE V: Accuracy with RGB input across different environments, grouped by architecture

Architecture DR Cropping Train Env. CARLA Gym-DT Duckiebot

256

✓ ✓ Duckietown 0% 99% 100%
✓ ✓ CARLA 100% 75% 80%
✓ – CARLA 100% 31% 40%
– ✓ CARLA 100% 30% 30%
– – CARLA 100% 20% 0%

512

✓ ✓ Duckietown 0% 70% 70%
✓ ✓ CARLA 100% 42% 40%
✓ – CARLA 100% 31% 30%
– ✓ CARLA 100% 20% 50%
– – CARLA 100% 18% 0%

TABLE VI: Accuracy with Grayscale input across different environments, grouped by architecture

Architecture DR Cropping Train Env. CARLA Gym-DT Duckiebot

256

✓ ✓ Duckietown 0% 84% 10%
✓ ✓ CARLA 100% 51% 10%
✓ – CARLA 73% 28% 20%
– ✓ CARLA 100% 0% 0%
– – CARLA 100% 0% 0%

512

✓ ✓ Duckietown 0% 49% 20%
✓ ✓ CARLA 74% 0% 0%
✓ – CARLA 90% 25% 50%
– ✓ CARLA 100% 23% 50%
– – CARLA 100% 18% 0%

TABLE VII: Accuracy with Segmentation input across different environments, grouped by architecture

Architecture Cropping Train Env. CARLA Gym-DT Duckiebot

256
✓ Duckietown 42% 65% 70%
✓ CARLA 100% 61% 60%
- CARLA 100% 50% 50%

512
✓ Duckietown 54% 60% 50%
✓ CARLA 100% 55% 50%
- CARLA 100% 50% 50%

VII. DISCUSSION

The results in Tables V, VI, and VII demonstrate
that it is feasible to train models in a high-fidelity
simulator like CARLA and still achieve perfor-
mance in both the low-fidelity Gym-Duckietown
(Gym-DT) environment and the real world. That be-
ing said, the reverse does not hold: using CARLA to
evaluate models trained in a low-fidelity simulator
proved ineffective, as the baseline model failed to
perform in the high-fidelity CARLA environment.
The first is a promising finding, as it indicates
that models pretrained in high-fidelity simulators
can have their generalization capabilities effectively
assessed using an intermediate simulator.

Especially using the combination of RGB input
images together with domain randomization and
cropping resulted in performance comparable to
the baseline. Models trained using grayscale input
images, performed less compared to RGB, this
could be to a lack of feature complexity. Increasing
final layer dimensions seem to decrease overall per-
formance of models in both Gym-DT and the real
world, this can be the consequence of overfitting to
the CARLA environment.

The Sim2Real correlation coefficient (SRCC)
values indicate that performance in Gym-
Duckietown provides a more reliable estimation
of Sim2Real transferability than performance in
CARLA. This trend remains consistent regardless
of the model architecture or preprocessing
technique used. In other words, the better a model
performs in Gym-DT, the more likely it is to
perform well in the real world. Although the SRCC
could not be computed for RGB and segmentation
due to a lack of variation in the CARLA simulator
results, the mean difference reveals a similar trend:
performance in Gym-DT more closely aligns
with real-world performance than that observed
in CARLA. These insights have several practical
implications:

1) Performance in an intermediate low-fidelity
simulator gives an early estimation of a
model’s real world performance without re-
quiring access to a full-scale physical vehi-
cle, an expensive, time-consuming, and po-
tentially dangerous resource.

2) Developers can use the intermediate simulator
to identify and debug model failures before
proceeding to real-world testing. Unlike real-
world evaluations, where multiple environ-
mental and dynamic factors can interfere,
simulation provides controlled conditions to
isolate and resolve specific issues.

For instance, it is observed that a model exhibit-
ing difficulty in executing right turns in Gym-DT
also failed similarly in real-world tests. This shows
how an intermediate simulator can act as a filter to
catch predictable failure modes in a safe and cost-
effective way.

Furthermore, segmentation models trained in
CARLA exhibited particularly strong transferabil-
ity. This is useful because CARLA supports training
using OpenDRIVE metadata, an inexpensive alter-
native to manually labeled datasets. These findings
magnify the value of using structured metadata like
OpenDRIVE to train autonomous driving models
efficiently, reducing both cost and manual effort. A
drawback of this method is that in the real-world,
it still requires a semantic segmentation network,
which can greatly impact Sim2Real transfer.

A. Similarity results

The heatmaps in Figure 11 show that, despite
differences in training environments, models trained
on self-driving tasks tend to learn similar features in
their convolutional layers, particularly in the bottom
layers. This is likely because these layers capture
low-level visual features such as edges and shapes,
which remain consistent across environments.

Interestingly, even without the use of domain ran-
domization, models trained in CARLA learn feature
representations that are closely aligned with those
of models trained in Gym-DT. One might expect
this similarity in learned features to translate into
similar performance across environments; however,
this was not observed. This suggests that feature
representation similarity alone is not a reliable
indicator of Sim2Real performance.

The most significant differences between mod-
els emerge in the linear (fully connected) layers,
especially when evaluated on real-world data. This
points to the linear layers playing a critical role in

bridging the gap between simulation and reality, and
may explain discrepancies in performance despite
shared convolutional features.

VIII. LIMITATIONS

Since this is the first study to explore the use
of an intermediate simulator as an indicator for
Sim2Real performance in autonomous driving, sev-
eral limitations exist.

First, this work utilizes only Gym-Duckietown
and Duckiebots to assess the Sim2Real gap. To
determine the broader applicability of this method,
future studies should include additional test sce-
narios involving different vehicles and simulation
platforms.

Second, model training has a significant impact
on performance. In this study, the Proximal Pol-
icy Optimization (PPO) algorithm is used. How-
ever, other reinforcement learning algorithms such
as Soft Actor-Critic (SAC) [29] and Twin De-
layed Deep Deterministic Policy Gradient (TD3)
[30], may result in different levels of performance
and generalization. Future work should investigate
whether the proposed method generalizes across a
variety of RL algorithms.

Third, during experimentation, it became clear
that vehicle dynamics such as wheel slippage and
differences in turning radius have a significant im-
pact on real-world model performance and con-
tribute notably to the Sim2Real gap. Although this
study did not incorporate vehicle dynamics, these
factors are critical. Future work should explore
methods to analyze them prior to real-world deploy-
ment.

Moreover, this study simplifies the control prob-
lem by only having the models output steering
action. To better reflect real-world driving scenarios
and assess compatibility for full-scale AV’s, future
research should expand the action space to include
throttle and braking control.

Finally, to assess the practical and industrial
relevance of this approach, the same method should
be applied on full-scale autonomous vehicles in a
safe environment to assess industry usefulness.

IX. CONCLUSION

In this research, a novel methodology is proposed
that uses an intermediate low-fidelity simulator to
estimate the Sim2Real gap in autonomous driving
models. Testing self-driving car models in simula-
tion is significantly safer and more cost-effective
than deploying them directly in real-world environ-
ments on real-scale vehicles.

Multiple models are trained with proximal policy
optimization (PPO), varying configurations (apply-
ing domain randomization, cropping or changing
model architecture) in the high-fidelity CARLA
simulator, aiming to explore factors that affect gen-
eralization and Sim2Real transfer. These models
were then evaluated both in the intermediate Gym-
Duckietown (Gym-DT) simulator and on a physical
Duckiebot. Results are gathered on performance
(average percentage of completion & mean reward)
and used to analyze the correlation between model
performance in the intermediate simulator and in
the real world.

The findings suggest that it is feasible to train
models in a high-fidelity simulator such as CARLA
and use a low-fidelity simulator to estimate real-
world performance, thereby providing an approx-
imation of the Sim2Real gap. However, results
obtained in the intermediate simulator are not suffi-
ciently reliable to eliminate the need for real-world
testing.

Training in a low-fidelity simulator like Duck-
ietown and evaluating in CARLA proved to be
much less effective. This indicates that the proposed
method is well-suited for high-to-low fidelity trans-
fer like discussed above, but not the reverse. Future
work should look at broadening this methodology
by incorporating multiple training algorithms, simu-
lators and environments. Future work should aim to
investigate if this methods generalizes when using
other simulators and environments, as well as using
full-scale autonomous vehicles.

REFERENCES

[1] Johannes Deichmann. The future of au-
tonomous vehicles (AV) — McKinsey. URL:
https : / / www . mckinsey . com / industries /
automotive - and - assembly / our - insights /

autonomous-drivings-future-convenient-and-
connected#/ (visited on 11/21/2024).

[2] Margarita Martı́nez-Dı́az and Francesc
Soriguera. “Autonomous vehicles: theoretical
and practical challenges”. In: Transportation
Research Procedia. XIII Conference on
Transport Engineering, CIT2018 33 (Jan.
2018), pp. 275–282. ISSN: 2352-1465.
DOI: 10 . 1016 / j . trpro . 2018 . 10 . 103. URL:
https : / / www . sciencedirect . com / science /
article / pii / S2352146518302606 (visited on
04/06/2025).

[3] B. Padmaja et al. “Exploration of issues,
challenges and latest developments in au-
tonomous cars”. In: Journal of Big Data 10.1
(May 2023), p. 61. ISSN: 2196-1115. DOI:
10.1186/s40537- 023- 00701- y. URL: https:
/ / doi . org / 10 . 1186 / s40537 - 023 - 00701 - y
(visited on 04/08/2025).

[4] Josh Tobin et al. Domain Randomiza-
tion for Transferring Deep Neural Net-
works from Simulation to the Real World.
arXiv:1703.06907 [cs]. Mar. 2017. DOI: 10.
48550/arXiv.1703.06907. URL: http://arxiv.
org/abs/1703.06907 (visited on 04/01/2025).

[5] Abhishek Kadian et al. “Sim2Real Predic-
tivity: Does Evaluation in Simulation Pre-
dict Real-World Performance?” In: IEEE
Robotics and Automation Letters 5.4 (Oct.
2020). arXiv:1912.06321 [cs], pp. 6670–
6677. ISSN: 2377-3766, 2377-3774. DOI: 10.
1109/LRA.2020.3013848. URL: http://arxiv.
org/abs/1912.06321 (visited on 05/12/2025).

[6] T Vesselenyi. Autonomous vehicles: classi-
fication, technology and evolution. en. URL:
https : / / www. researchgate . net / publication /
353858131 Autonomous vehicles
classification technology and evolution
(visited on 06/16/2025).

[7] patale. Autonomous Vehicle Levels & Trends.
en. URL: https : / / www . researchgate . net /
publication / 384729301 Autonomous
Vehicle Levels Trends (visited on
04/06/2025).

[8] Martijn Otterlo and Marco Wiering. “Re-
inforcement Learning and Markov Deci-

sion Processes”. In: Reinforcement Learning:
State of the Art (Jan. 2012). ISBN: 978-3-
642-27644-6, pp. 3–42. DOI: 10.1007/978-3-
642-27645-3 1.

[9] B. Ravi Kiran et al. Deep Reinforcement
Learning for Autonomous Driving: A Survey.
arXiv:2002.00444 [cs]. Jan. 2021. DOI: 10.
48550/arXiv.2002.00444. URL: http://arxiv.
org/abs/2002.00444 (visited on 04/06/2025).

[10] John Schulman et al. Proximal Policy Opti-
mization Algorithms. arXiv:1707.06347 [cs].
Aug. 2017. DOI: 10.48550/arXiv.1707.06347.
URL: http://arxiv.org/abs/1707.06347 (visited
on 12/11/2024).

[11] Alexey Dosovitskiy et al. CARLA: An Open
Urban Driving Simulator. arXiv:1711.03938.
Nov. 2017. DOI: 10.48550/arXiv.1711.03938.
URL: http://arxiv.org/abs/1711.03938 (visited
on 11/25/2024).

[12] Vivien Potó et al. “OpenDRIVE Standard for
Road Description”. In: Nov. 2019.

[13] Maxime Chevalier-Boisvert et al. Duckietown
Environments for OpenAI Gym. Publication
Title: GitHub repository. 2018. URL: https:
//github.com/duckietown/gym-duckietown.

[14] Greg Brockman et al. OpenAI Gym.
arXiv:1606.01540 [cs]. June 2016. DOI:
10 . 48550 / arXiv . 1606 . 01540. URL:
http://arxiv.org/abs/1606.01540 (visited on
04/06/2025).

[15] John So et al. Sim-to-Real via Sim-to-Seg:
End-to-end Off-road Autonomous Driving
Without Real Data. arXiv:2210.14721 [cs].
Oct. 2022. DOI: 10.48550/arXiv.2210.14721.
URL: http://arxiv.org/abs/2210.14721 (visited
on 03/31/2025).

[16] Rudra P. K. Poudel, Stephan Liwicki, and
Roberto Cipolla. Fast-SCNN: Fast Seman-
tic Segmentation Network. arXiv:1902.04502
[cs]. Feb. 2019. DOI: 10.48550/arXiv.1902.
04502. URL: http://arxiv.org/abs/1902.04502
(visited on 05/12/2025).

[17] Seongjeong Park et al. A Study on
Quantifying Sim2Real Image Gap in
Autonomous Driving Simulations Using
Lane Segmentation Attention Map Similarity.

arXiv:2306.10491 [cs]. June 2023. DOI:
10 . 48550 / arXiv . 2306 . 10491. URL:
http://arxiv.org/abs/2306.10491 (visited on
01/16/2025).

[18] Junhui Liang, Ying Liu, and Vladimir
Vlassov. “The Impact of Background Re-
moval on Performance of Neural Networks
for Fashion Image Classification and Seg-
mentation”. In: 2023 Congress in Computer
Science, Computer Engineering, & Ap-
plied Computing (CSCE). arXiv:2308.09764
[cs]. July 2023, pp. 1960–1968. DOI: 10 .
1109 / CSCE60160 . 2023 . 00323. URL: http :
/ / arxiv . org / abs / 2308 . 09764 (visited on
06/11/2025).

[19] S. H. Shabbeer Basha et al. “Impact of Fully
Connected Layers on Performance of Con-
volutional Neural Networks for Image Clas-
sification”. en. In: Neurocomputing 378 (Feb.
2020). arXiv:1902.02771 [cs], pp. 112–119.
ISSN: 09252312. DOI: 10 . 1016 / j . neucom .
2019.10.008. URL: http://arxiv.org/abs/1902.
02771 (visited on 06/20/2025).

[20] Prabhjot Kaur et al. A Survey on
Simulators for Testing Self-Driving
Cars. arXiv:2101.05337. Jan. 2021. DOI:
10 . 48550 / arXiv . 2101 . 05337. URL:
http://arxiv.org/abs/2101.05337 (visited on
11/25/2024).

[21] N. Koenig and A. Howard. “Design and use
paradigms for Gazebo, an open-source multi-
robot simulator”. In: 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566).
Vol. 3. Sept. 2004, 2149–2154 vol.3. DOI:
10 .1109 / IROS.2004 .1389727. URL: https :
/ / ieeexplore . ieee . org / document / 1389727
(visited on 11/25/2024).

[22] Ivan Culjak et al. “A brief introduction to
OpenCV”. In: 2012 Proceedings of the 35th
International Convention MIPRO. May 2012,
pp. 1725–1730. URL: https : / / ieeexplore .
ieee . org / document / 6240859 (visited on
06/20/2025).

[23] Morgan Quigley et al. “ROS: an open-source
Robot Operating System”. en. In: ().

[24] Hamudi Naanaa. hamnaanaa/Multiclass-
Semantic-Segmentation-Duckietown-Dataset.
original-date: 2023-01-11T00:16:14Z. Mar.
2025. URL: https://github.com/hamnaanaa/
Multiclass - Semantic - Segmentation -
Duckietown-Dataset (visited on 05/12/2025).

[25] Antonin Raffin et al. “Stable-Baselines3: Re-
liable Reinforcement Learning Implementa-
tions”. In: Journal of Machine Learning Re-
search 22.268 (2021), pp. 1–8. URL: http :
//jmlr.org/papers/v22/20-1364.html.

[26] Rawal Khirodkar and Kris M. Kitani.
Adversarial Domain Randomization. en.
arXiv:1812.00491 [cs]. Aug. 2021. DOI: 10.
48550/arXiv.1812.00491. URL: http://arxiv.
org/abs/1812.00491 (visited on 06/20/2025).

[27] Thomas P. A. Wiggers and Arnoud Visser.
“Learning to Drive Fast on a DuckieTown
Highway”. en. In: Intelligent Autonomous
Systems 16. Ed. by Marcelo H. Ang Jr
et al. Vol. 412. Series Title: Lecture Notes
in Networks and Systems. Cham: Springer
International Publishing, 2022, pp. 183–194.
ISBN: 978-3-030-95891-6 978-3-030-95892-
3. DOI: 10 .1007 /978- 3- 030- 95892- 3 14.
URL: https://link.springer.com/10.1007/978-
3-030-95892-3 14 (visited on 12/13/2024).

[28] Simon Kornblith et al. Similarity of
Neural Network Representations Revisited.
arXiv:1905.00414 [cs]. July 2019. DOI:
10 . 48550 / arXiv . 1905 . 00414. URL:
http://arxiv.org/abs/1905.00414 (visited on
05/12/2025).

[29] Tuomas Haarnoja et al. Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor.
en. Jan. 2018. URL: https : / / arxiv.org / abs /
1801.01290v2 (visited on 06/20/2025).

[30] Stephen Dankwa and Wenfeng Zheng.
“Twin-Delayed DDPG: A Deep Reinforce-
ment Learning Technique to Model a Con-
tinuous Movement of an Intelligent Robot
Agent”. en. In: Proceedings of the 3rd In-
ternational Conference on Vision, Image and
Signal Processing. Vancouver BC Canada:
ACM, Aug. 2019, pp. 1–5. ISBN: 978-

1-4503-7625-9. DOI: 10 . 1145 / 3387168 .
3387199. URL: https : / / dl . acm . org / doi /
10 . 1145 / 3387168 . 3387199 (visited on
06/20/2025).

CHAPTER 1. SCIENTIFIC PAPER 19

.

Chapter 2

Supplementary Material

2.1 Deep Learning

Machine learning models can be supervised and unsupervised. Supervised means that there
needs to be a ”ground-truth” label for every training sample. Unsupervised means this is
not necessary. In this case, the model can learns from its own input. Supervised learning
is much harder to do since data collection is difficult, that being said, the performance of
the model sometimes exceeds unsupervised methods because of more exact predictions and
feature extraction [1].

Deep learning is a subgenre of machine learning that uses complex structures that mimic
the human brain. These structures are called ”neural networks”. Compared to traditional
machine learning, the way these networks predict an output can be hard to traced and
neural networks are sometimes considered ”black box”, meaning you do not know how an
output is predicted.

A traditional deep learning model consists of weights, where each weight is a real
number, and some summation function at the end of it. A very basic neural network is a
perceptron (Figure 2.1). Here, inputs are summed at put through a non-linear node. In
most cases, a ReLU function is used(ReLU(x) = (max(0, x))). Deep learning models learn
by a process called ”backpropagation”.

This method uses a loss function, which quantifies the difference between the predicted
outputs of a machine learning algorithm and the actual target values. The loss function is
used to tune the weights. By calculating the gradient of the loss function with respect to the
neural network’s weights, it can adjust these weights to by a small step (gradient decent)
to improve model performance step by step. The size of these steps is often depicted by the
learning rate (ϵ) parameter, and is usually scheduled to take larger steps in the beginning
and smaller steps towards the end of the learning cycle.

20

CHAPTER 2. SUPPLEMENTARY MATERIAL 21

Figure 2.1: The perceptron neural network

Convolutional Neural Networks

Later came convolution neural networks (CNNs). These are neural network like described
above except that the weights learned are equal to filter values used for convolutions. CNNs
perform very well on images since these convolutions can be used to extract patterns from
images. Convolutional Neural Networks are composed of convolutional layers (Figure 2.3).

Convolution

CNNs make use of the convolution operator (∗). Convolution is defined by sliding a kernel,
which can also be seen as a filter, over a matrix of values (i.e pixel intensities). At each
step, element wise multiplication is performed and summed.(Figure 2.2).

Figure 2.2: An example of the convolution operator

The reason that CNNs are so popular nowadays, is because this operator is optimized
by GPU’s because of the matrix multiplication technique.

CNN layers are typically arranged sequentially, where early layers capture basic fea-
tures such as edges and textures, while deeper layers extract increasingly complex patterns
and structures. After each convolutional layer, a pooling operation (such as max pooling)
is often applied to reduce spatial dimensions, summarizing the most important informa-
tion and improving computational efficiency. Depending on the task, the CNN ends with
one or more fully connected (FC) layers, which transform the extracted features into a
final prediction. For classification tasks, the network outputs a set of scores (logits) that

CHAPTER 2. SUPPLEMENTARY MATERIAL 22

are converted into probabilities using a softmax activation function. These probabilities
represent the likelihood of the input belonging to each class.

Figure 2.3: An example Convolutional Neural Network (CNN)

2.2 Reinforcement Learning

Reinforcement Learning (RL) [2] is an outlier compared to supervised and unsupervised
learning, since its neither supervised or unsupervised. It relies on the ability to monitor the
response to the actions of the learning agent. For this matter,it is widely used in Robotics
since response to real time data is important in these fields.

To eloborate RL terminology: It consists of an Agent, this can be a car or a robot,
which tries to learn a policy from a set of observations during training to solve a given
problem (i.e lane following). It can then use this policy to predict an action when another
observation comes in. The learning is done through a reward function (where generally
a negative rewards means that the action has a negative impact, where a positive reward
means it has a positive impact), mathematically speaking:

• S: The state space.

• A: The set of possible actions.

• Pa(s, s
′) = P (St+1 = s′ | St = s, At = a): The transition probability, representing

the likelihood of moving from state s to s′ under action a at time t.

• Ra(s, s
′): The reward received when transitioning from state s to s′ under action a.

This is determined by a reward function.

• V (s): The value function outputting the expected future reward from a given state.

• Q(a, s): The Q function outputting the expected future reward from taking action a
in state s.

A basic reinforcement learning agent interacts with its environment in discrete time steps.
At each time step t, the agent receives the current state St and rewardRt. It then chooses an
action At from the set of available actions, which is subsequently sent to the environment.

CHAPTER 2. SUPPLEMENTARY MATERIAL 23

The environment moves to a new state St+1 and the reward Rt+1 associated with the
transition (St, At, St+1) is determined. The goal of a reinforcement learning agent is to
learn a policy :

π : S ×A → [0, 1], π(s, a) = Pr(At = a | St = s)

that maximizes the expected cumulative reward.

In RL, an important distinction exists between on-policy and off-policy algorithms.
On-policy algorithms require the evaluation or improvement of the policy that is actively
collecting data, while off-policy algorithms can learn from data generated by an arbitrary
policy. Additionally, the action space in reinforcement learning (RL) can be categorized
into discrete and continuous types. In the discrete action space, the model learns a policy
that outputs a probability distribution over a finite set of possible actions. Each action is
assigned a probability, and the agent selects an action based on this distribution. In the
continuous action space, the model outputs a probability distribution over a continuous
range of values. An action is then sampled from this distribution, allowing for a more fluid
and precise representation of actions.

In Reinforcement Learning, finding a balance between stabilizing a policy and the free-
dom of exploration is very important. You want a policy to convolve, but also, that it tries
to explore new options. This make RL, but also DRL algorithms extremely sensitive to hy-
perparameters. Reinforcement learning algorithms learn by value, policy, or a combination
of both (actor-critic).

Value based

These methods learn a value function, which estimates how good a state (or action) is.
They rely on the theory of Markov decision processes, where optimality is defined as: A
policy is optimal if it achieves the best-expected discounted return from any initial state.
Values are computed using the bellman equation. The Bellman equation for the state-value
function V (s) is given by:

V π(s) = E [r + γV π(s′) | s]
γ denotes the discount factor. The larger the discout factor, the faster previous rewards
degradate over time.

Policy based

These methods learn a policy (a direct mapping from states to actions). This means that
the agent learns a function π(a|s) that tells it the probability of taking each action in each
state. These methods use policy gradients to adjust the policy parameters based on how
much reward the agent is getting.

CHAPTER 2. SUPPLEMENTARY MATERIAL 24

Deep Reinforcement Learning

Deep Reinforcement Leaning (DRL) is similar to reinforcement learning, excepts that it
uses a neural network to learn its policy. More specifically, a neural network is used to
approximate the value function and CNNs are used for feature extraction.

Policy Gradient Methods

Policy Gradient Methods [3] are a class of reinforcement learning algorithms that directly
optimize the policy mapping from states to action probabilities by adjusting its parameters
through gradient ascent. Unlike value-based methods that derive a policy from a value
function, policy gradient methods represent the policy using a neural network in most
cases and improve it by computing gradients of expected reward with respect to those
parameters. These gradients are estimated using sampled trajectories and used to make
the policy more likely to choose actions that lead to higher rewards. This approach is
especially useful for handling high-dimensional or continuous action spaces.

Proximal Policy Optimization (PPO)

PPO [4] teaches an agent to improve its policy gradually, without making huge, risky
changes all at once. It does this by comparing the new policy to the old one and limiting
how much it can change in a single update. This is done using a “clipping” technique
that stops updates if they would push the policy too far from the current one. This helps
prevent the agent from getting worse while trying to get better.

PPO works well with deep neural networks, can handle complex environments (like
video games or robots), and is one of the most widely used DRL algorithms because it is
both simple to implement and very effective. It is also not as sensitive to hyperparameters,
compared to other DRL algorithms.

2.3 Image Processing Methods

Cropping

Cropping involves cutting out a portion of an image to retain only the most relevant visual
information. This process is commonly used to remove unnecessary background or focus
on specific objects or features within the image.

Normalization

Normalization is a crucial preprocessing step in machine learning and artificial intelligence
[5]. It involves scaling numerical data to fall within a specific range, typically [0, 1] or
[-1, 1]. This is important because many machine learning algorithms perform better and
converge faster when input features are on a similar scale.

References

[1] Tishan, “Understanding the Difference Between Super-
vised and Unsupervised Learning Techniques.” [Online]. Avail-
able: https://www.researchgate.net/publication/373979805 Understanding the
Difference Between Supervised and Unsupervised Learning Techniques

[2] M. Otterlo and M. Wiering, “Reinforcement Learning and Markov Decision Processes,”
Reinforcement Learning: State of the Art, pp. 3–42, Jan. 2012, iSBN: 978-3-642-27644-
6.

[3] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradi-
ent Methods for Reinforcement Learning with Function Approximation,” in
Advances in Neural Information Processing Systems, vol. 12. MIT Press,
1999. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/1999/
hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html

[4] B. Padmaja, C. V. K. N. S. N. Moorthy, N. Venkateswarulu, and M. M. Bala,
“Exploration of issues, challenges and latest developments in autonomous cars,”
Journal of Big Data, vol. 10, no. 1, p. 61, May 2023. [Online]. Available:
https://doi.org/10.1186/s40537-023-00701-y

[5] J. Yu and K. Spiliopoulos, “Normalization effects on deep neural networks,” Sep.
2022, arXiv:2209.01018 [cs]. [Online]. Available: http://arxiv.org/abs/2209.01018

[6] J. Shlens, “Notes on Kullback-Leibler Divergence and Likelihood,” Apr. 2014,
arXiv:1404.2000 [cs]. [Online]. Available: http://arxiv.org/abs/1404.2000

25

https://www.researchgate.net/publication/373979805_Understanding_the_Difference_Between_Supervised_and_Unsupervised_Learning_Techniques
https://www.researchgate.net/publication/373979805_Understanding_the_Difference_Between_Supervised_and_Unsupervised_Learning_Techniques
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://doi.org/10.1186/s40537-023-00701-y
http://arxiv.org/abs/2209.01018
http://arxiv.org/abs/1404.2000

APPENDICES

26

Appendix A

Supplementary Results

A.1 Result tables

Table A.1: Accuracy with RGB input across different environments, grouped by architec-
ture

Arch Domain Rand. Cropping Train Env. CARLA Gym-DT Duckiebot

256

✓ ✓ Duckietown 0% 99%, R=0.74 100%
✓ ✓ CARLA 100%, R=0.93 75%, R=0.38 80%
✓ – CARLA 100%, R=0.93 31%, R=0.52 40%
– ✓ CARLA 100%, R=0.93 30%, R=0.32 30%
– – CARLA 100%, R=0.94 20%, R=0.46 0%

512

✓ ✓ Duckietown 0% 70%, R=0.68 70%
✓ ✓ CARLA 100%, R=0.93 42%, R=0.28 40%
✓ – CARLA 100%, R=0.93 31%, R=0.55 30%
– ✓ CARLA 100%, R=0.93 20%, R=0.49 50%
– – CARLA 100%, R=0.94 18%, R=0.48 0%

27

APPENDIX A. SUPPLEMENTARY RESULTS 28

Table A.2: Accuracy with Grayscale input across different environments, grouped by ar-
chitecture

Arch Domain Rand. Cropping Train Env. CARLA Gym-DT Duckiebot

256

✓ ✓ Duckietown 0% 84%, R=0.66 10%
✓ ✓ CARLA 100%, R=0.92 51%, R=0.38 10%
✓ – CARLA 73%, R=0.93 28%, R=0.41 20%
– ✓ CARLA 100%, R=0.93 0% 0%
– – CARLA 100%, R=0.94 0% 0%

512

✓ ✓ Duckietown 0% 49%, R=0.57 20%
✓ ✓ CARLA 74%, R=0.93 0% 0%
✓ – CARLA 90%, R=0.93 25%, R=0.46 50%
– ✓ CARLA 100%, R=0.93 23%, R=0.49 50%
– – CARLA 100%, R=0.93 18%, R=0.48 0%

Table A.3: Accuracy with Segmentation input across different environments, grouped by
architecture

Arch Cropping Train Env. CARLA Gym-DT Duckiebot

256
✓ Duckietown 42%, R=0.88 65%, R=0.49 70%
✓ CARLA 100%, R=0.93 61%, R=0.44 60%
– CARLA 100%, R=0.93 50%, R=0.43 50%

512
✓ Duckietown 54%, R=0.89 60%, R=0.44 50%
✓ CARLA 100%, R=0.93 55%, R=0.45 50%
– CARLA 100%, R=0.93 50%, R=0.43 50%

APPENDIX A. SUPPLEMENTARY RESULTS 29

A.2 Heatmaps

(a) RGB with domain randomization (b) RGB without domain randomization

Figure A.1: Heatmaps comparing feature extraction result similarity in models trained in
CARLA with or without DR to a model trained in Gym-DT on a simulated test case in
Gym-DT, models are trained using cropped RGB input images.

(a) RGB with domain randomization (b) RGB without domain randomization

Figure A.2: Heatmaps comparing feature extraction result similarity in models trained
in CARLA with or without DR to a model trained in gym-DT on a real-world testcase
(duckiebot), models are trained using cropped RGB input images.

APPENDIX A. SUPPLEMENTARY RESULTS 30

(a) RGB with domain randomization (b) RGB without domain randomization

Figure A.3: Heatmaps comparing feature extraction result similarity in models trained in
CARLA with or without DR to a model trained in gym-DT on a simulated test case in
Gym-DT, models are trained using cropped Grayscale input images.

(a) RGB with domain randomization (b) RGB without domain randomization

Figure A.4: Heatmaps comparing feature extraction result similarity in models trained
in CARLA with or without DR to a model trained in gym-DT on a real-world test case
(duckiebot), models are trained using cropped Grayscale input images.

A.3 Additional Metrics

Next to performance metrics, we have also gathered data on Kullback–Leibler (KL) diver-
gence between action distributions outputted by the models and empirical metrics relating
to training times.

APPENDIX A. SUPPLEMENTARY RESULTS 31

KL Divergence in action distributions

Kullback–Leibler (KL) divergence [6] measures the distance between distributions. Since
our models output continuous actions, they will output a probability distribution where
an action is sampled from. If we compute the average KL divergence over a set of action
for two models, we can see how similar the model outputs are.

Below we summarize the KL Divergence between a model trained with domain ran-
domization to a model without and the respective baseline for the RGB, grayscale and
segmentation mask input image types. Unfortunately, we could not link KL divergence to
model performance

Model1/Model2 No DR Baseline

DR 6.37 3.3

(a) RGB on gym-dt testcase

Model1/Model2 No DR Baseline

DR 1.34 1.97

(b) RGB on duckiebot testcase

Model1/Model2 No DR Baseline

DR 648849 132859

(c) Gray on gym-dt testcase

Model1/Model2 No DR Baseline

DR 56271 870064

(d) Gray on duckiebot testcase

Figure A.5: KL Divergence between models with and without DR and the respective
baseline on both a simulated and real life testcase for RGB & Grayscale image types.

Empirical analysis

We also looked at training times of different image types and preprocessing methods to
connect computational demand to performance. We looked at training times in terms of
the total timesteps until convergence, meaning the model has learned to perform the task
of lane following.

We first compare training times across different image types. Models trained with
domain randomization (DR) generally require more timesteps to converge, typically around
1.5 million, compared to approximately 500,000 timesteps for models trained without DR
(figure A.6). While DR-trained models consistently achieve better performance in both
simulated and real-world settings, segmentation emerges as an exception: segmentation
models do not require additional training time and achieve comparable performance to
those trained with DR. Model architecture and cropping does not significantly influence
this trend.

APPENDIX A. SUPPLEMENTARY RESULTS 32

Figure A.6: Overall comparison in training timesteps between models using different
image types. All models in this image apply cropping. Model names can be read as
{training env} {input type} {model architecture} {dr applied}

Appendix B

Python Implementation

B.1 Libraries

We used the following libraries:

• PyTorch 1.13.1

• Carla 0.9.15

• duckietown-gym-daffy 6.2.0

• stable-baselines3 2.0.0

B.2 Code

The complete code implementation can be found at https://github.com/Guthax/Sim2Sim2Real

Gymnasium Environments

To run the software, we depend on the following environments:

• CARLA: https://carla.org/

• gym-duckietown: https://github.com/duckietown/gym-duckietown

33

	List of Abbreviations
	Scientific Paper
	Supplementary Material
	Deep Learning
	Reinforcement Learning
	Image Processing Methods

	References
	Supplementary Results
	Result tables
	Heatmaps
	Additional Metrics

	Python Implementation
	Libraries
	Code

