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The	Decline	of	Violent	Conflicts:	What	
Do	The	Data	Really	Say?	
Pasquale	Cirillo	and	Nassim	Nicholas	Taleb1	

Nobel	Foundation	Symposium	161:	The	Causes	of	Peace		

	

	

Summary:	We	propose	a	methodology	to	look	at	violence	in	particular,	and	other	aspects	of	
quantitative	historiography	in	general,	in	a	way	compatible	with	statistical	inference,	which	
needs	 to	accommodate	 the	 fat-tailedness	of	 the	data	and	 the	unreliability	of	 the	 reports	of	
conflicts.	We	investigate	the	theses	of	“long	peace”	and	drop	in	violence	and	find	that	these	
are	 statistically	 invalid	 and	 resulting	 from	 flawed	 and	 naive	 methodologies,	 incompatible	
with	fat	tails	and	non-robust	to	minor	changes	in	data	formatting	and	methodologies.	There	
is	no	statistical	basis	to	claim	that		“times	are	different”	owing	to	the	long	inter-arrival	times	
between	 conflicts;	 there	 is	 no	 basis	 to	 discuss	 any	 “trend”,	 	 and	 no	 scientific	 basis	 for	
narratives	 about	 change	 in	 risk.	 We	 describe	 naive	 empiricism	 under	 fat	 tails.	 We	 also	
establish	that	violence	has	a	“true	mean”	that	is	underestimated	in	the	track	record.		This	is	a	
historiographical	adaptation	of	the	results	in	Cirillo	and	Taleb	(2016).	

	

	

	

Preamble	

The	first	theory	of	“long	peace”	is	as	follows.	In	1858,	one	H.T.	Buckle	wrote:	

That	this	barbarous	pursuit	is,	in	the	progress	of	society,	steadily	declining,	must	be	
evident,	 even	 to	 the	 most	 hasty	 reader	 of	 European	 history.	 If	 we	 compare	 one	
country	 with	 another,	 we	 shall	 find	 that	 for	 a	 very	 long	 period	 wars	 have	 been	
becoming	less	frequent;	and	now	so	clearly	 is	the	movement	marked,	that,	until	 the	
late	commencement	of	hostilities,	we	had	remained	at	peace	for	nearly	forty	years:	a	
circumstance	 unparalleled	 (...)	 The	 question	 arises,	 as	 to	 what	 share	 our	 moral	
feelings	have	had	in	bringing	about	this	great	improvement.	(Buckle,	1858)	.	

																																								 																					
1	Delft	Institute	of	Technology	and	Tandon	School	of	Engineering,	New	York	University.	The	
contributions	of	the	authors	to	this	paper	and	the	general	statistical	studies	associated	with	
it,	are	equal.	We	thank	Captain	Marc	Weisenborn	for	his	diligent	and	indefatigable	work	in	
collecting,	checking,	and	comparing	data.			
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Buckle	was	perhaps	“right”	(	with	minor	hick-ups)	for	another	five	decades,	but	moral	
feelings	or	not,	the	century	following	Mr.	Buckle’s	prose	turned	out	to	be	the	most	
murderous	in	human	history.			

The	first		–	obvious	–	problem	is	that	Buckle	made	a	severely	flawed	risk	assessment.		The	
second	is	that	he	felt	obligated	to	mount	a	narrative	entailing	“moral	feelings”	for	what	he	
perceived	were	the	changes	in	the	environment.	Note	that	Buckle	was	placing	himself	in	the	
tradition	of	“scientific”	social	science	of	Auguste	Comte.	

Another	event.	In	2004,	Ben	Bernanke,	then	a	member	of	the	board	of	the	Federal	Reserve	
Bank	of	the	United	States	proclaimed	that	economic	life	was	undergoing	a	“great	
moderation”,	on	the	basis	of	an	unprecedented	stability	of	economic	variables	(Taleb,	2007,	
2010).		Like	Buckle,	he	found	the	reasons	for	that.		The	theory	became	the	norm	until	the	
crisis	of	2007	when	we	experienced	a	similar	revision	of	belief.		

***	

This	article	is		organized	as	follows.	First	we	present	the	problems	associated		with	historical	
analyses	 of	 violence.	 Second,	 we	 discuss	 the	 quantitative	 approaches	 since	 Richardson	
(1948)	 and	 present	 the	 statistical	 flaws	 and	 methodological	 errors	 in	 the	 widely	 held	
theories	such	as	those	in	Pinker	(2011).	Third,	we	discuss	our	approach.		Fourth,	we	provide	
a	slightly	more	technical	backup.	Fifth,	we	give	our	verdict.		

Some	Problems	in	Quantitative	Historiography	

Studying	 the	history	of	 violence	 to	detect	 trends	and	 changes	over	 a	 time	period	 is	 a	non-
trivial	 task	for	a	scientist	constrained	by	rigor.	 	We	list	 five	problems	that	are	particular	to	
violence,	but	may	be	universal	to	any	form	of	quantitative	and	statistical	historiography.		

Problem	 1:	 Fat	 tails.	 First,	 we	 are	 dealing	 with	 a	 “fat-tailed”	 phenomenon.	 We	 define	
violence	seen	quantitatively	as	either	“fatalities	over	a	specific	time	period”	or	“fatalities	per	
specific	 event”	 and	 both	 are	 fat	 tailed	 variables.	 What	 characterizes	 fat	 tailed	 variables?	
These	have	 their	properties	 (such	as	 the	average)	dominated	by	extreme	events,	 those	 "in	
the	 tails".	The	most	popularly	known	version	 is	 the	"Pareto	80/20"	(80	%	of	 the	people	 in	
Italy,	Pareto	noticed,	own	20%	of	the	land,	and	vice	versa,	which	by	recursion	leads	to	1%	of	
the	people	owning	53%	of	the	land).			

These	tools	are	not	just	“changing	the	color	of	the	dress”,	but	they	require	a	new	statistical	
framework	 and	 a	 different	 way	 of	 thinking,	 going	 from	 the	 tail	 to	 the	 body	 (standing	 the	
usual	statistical	logic,	which	consists	of	going	from	the	body	to	the	tail,	on	its	head)	–and	the	
great	majority	of	researchers	who	are	trained	in	statistics	are	not	familiar	with	the	branches	
of	 the	discipline	and	theorems	needed	for	 fat	 tails	(see	Taleb	2007/2010,	2016).	To	add	to	
the	 problem,	 our	 examination	 shows	 that	war	 turned	 out	 to	 be	 the	mother	 of	 fat	 tails,	 far	
worse	 than	 the	 popular	 80/20	 rule:	 there	 are	 few	phenomena	 such	 as	 fluid	 turbulence	 or	
thermal	spikes	on	the	surface	of	the	sun	that	can	rival	the	fat-tailedness	of	violence.	Further,	
historical	 data	 are	 temporal	 (spread	 out	 over	 time)	 and	 statistical	 analyses	 of	 time	 series	
(such	as	financial	data)	require	far	more	sophistication	than	simple	statistical	tests	found	in	
empirical	 scientific	 papers.	 For	 instance	 one	 cannot	 blindly	 use	 the	 same	 methods	 to	
compute	the	statistical	properties	of	city	size	and	the	time	series	of	war	–since	in	the	latter	
case	 the	observed	properties	depend	on	our	 survival	 (say	a	1960	nuclear	war	would	have	
prevented	us	from	having	this	discussion),	hence	restriction		apply	to	what	can	or	cannot	be	
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inferred	 (there	 is	 a	 difference	 between	 ensemble	 probability	 and	 time	 probability,	 though	
not	always,	and	the	effect	of	the	bias	needs	to	be	established).			

Problem	2:	Boundedness.	Not	only	are	we	dealing	with	extreme	fat	tails,	but	the	effect	 is	
bounded	quantitatively,	with	an	almost	precisely	known	upper	 limit	–no	war	can	kill	more	
than	 the	population	of	 the	planet.	 	This	brings	 in	an	additional	mathematical	 complication,	
since	 all	 techniques	 for	 fat	 tails	 requires	 an	 infinite	 support	 for	 the	 variable.	 The	
boundedness	requires	some	formulaic	adjutment	to	the	statistics	of	violence	–which,	as	we	
show	in	some	detail,	has	had	so	far	a	mathematically	and	statistically	naive	literature.		But	it	
is	not	all	bad	news	since	there	will	be	a	statistical	“mean”,	which,	carefully	interpreted,	can	
help	 in	 the	 analysis	 –	while	 naive	 statistical	 analysis	 produces	 an	 “infinite”	 or	 “undefined”	
mean.	

Problem	 3:	 Reliability	 of	 historical	 data.	 The	 analysis	 needs	 to	 incorporate	 the	
unreliability	of	historical	data	–there	is	no	way	to	go	back	and	fact-check	the	casualties	in	the	
Peloponesian	war	and	we	rarely	only	have	more	than	one	side	to	the	story.	Estimates	of	war	
casualties	 are	 often	 anecdotal,	 spreading	 via	 citations,	 and	 based	 on	 vague	 computations,	
almost	 impossible	 to	 verify	 using	 period	 sources.	 Even	 more	 recent	 events,	 such	 as	 the	
Algerian	war	of	the	1960s	have	two	polarized	sides	to	the	story;	and,	in	some	cases	such	as	
the	Armenian-Syriac	genocide	of	1915-1917,	the	numbers	do	not	converge,	and	have	actually	
been	diverging	over	a	century.	This	unreliability	requires	taking	into	account	another	layer	
of	uncertainty.	In	addition,	the	analysis	must	consider	that	many	wars	went	unreported	–we	
just	do	not	know	how	many,	and	such	a	number	is	itself	a	random	variable.	There	exists	even	
a	third	layer	of	uncertainty:	the	number	of	gaps		between	wars	can	be	treated	as	a	random	
variable,	and	its	effect	must	be	taken	into	consideration	in	the	interpretation	of	the	results.		

Problem	4:	The	definition	of	an	event.	A	hurdle	can	be	the	precise	definition	of	an	event,	
which	appears	to	be	a	function	of	the	sophistication	of	the	historian	and	his	or	her	closeness	
to	one	side	involved	in	it.		We	mentioned	earlier	the	underlying	statistical	variable	defined	as	
“fatalities	per	specific	event”,	but	 the	very	definition	of	an	event	matters	–and	 the	analysis	
should	not	be	fragile	to	the	specification.	For	instance,	Pinker	(2011)	treats	as	a	single	event	
the	“Mongolian	invasions”	which	lasted	more	than	a	century	and	a	quarter.	This	swelled	the	
numbers	per	 event	 over	 the	Middle	 Ages	 and	 contributed	 to	 the	 illusion	 that	 violence	 has	
dropped	since,	 given	 that	 subsequent	 “events”	had	shorter	durations.	 	Effectively	 the	main	
sources	such	as	Philips	and	Axelrod’s	3-volume	Encyclopedia	of	War		list	numerous	conflicts	
in	 place	 of	 "Mongol	 Invasions"	 –the	more	 sophisticated	 the	 historians	 in	 a	 given	 area,	 the	
more	 likely	 they	 are	 to	 break	 conflicts	 into	 different	 "named"	 events	 and,	 depending	 on	
historians,	Mongolian	wars	 range	 between	 12	 and	 55	 conflicts.	 If	 some	Mongolian-centric	
Pinker’s	 counterpart	wrote	 about	European	wars,	 he	would	have	bundled	 the	period	 from	
the	Franco-Prussian	war	to	WW	II	as	"Northern	European	or	Western	wars".			

Not	 only	 are	 "Named"	 conflicts	 –	 part	 of	 what	 Richardson	 called	 “deadly	 quarrels”	 –an	
arbitrary	 designation	 that,	 often,	 does	 not	make	 sense	 statistically,	 but	 a	 conflict	 can	 have	
two	 or	 more	 names;	 two	 or	 more	 conflicts	 can	 have	 the	 same	 name,	 and	 we	 found	 no	
satisfactory	clear-cut	hierarchy	between	war	and	conflict.	Our	solution	is	1)	to	treat	events	
as	the	shorter	of	event	or	its	disaggregation	into	units	with	a	maximum	duration	of	25	years	
each,	which	corresponds	to	a	generation,	and	2)	perform	a	study	of	statistical	robustness	(on	
which	 much,	 further	 down)	 to	 assess	 whether	 other	 time	 windows	 and	 geographic	
redefinitions	produce	different	results.		
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Likewise,	the	data	makes	it	hard	to	assess	whether	the	numbers	include	people	who	died	of	
side	 effects	 of	wars	 –say	 for	 example	 it	makes	 a	 difference	whether	 the	 victims	 of	 famine	
from	the	siege	of	Jerusalem	are	included	or	not	in	the	historical	figures.			

Problem	5:	Units	for	the	Analysis.	Should	one	consider,	in	a	trend	analysis,	raw	or	relative	
numbers,	that	is	actual	number	of	people	killed	or	their	ratio	to	the	total	population?	Given	
that	 the	population	of	 the	 earth	has	been	 increasing	over	 time,	 a	 constant	 rate	of	 violence	
would	give	the	illusion	of	rise	in	casualties.				

Our	paper	Cirillo	 and	Taleb	 (2016)	 set	 to	 construct	 the	most	 statistically	 robust	picture	of	
historical	violence	for	“named	conflicts”	we	could	make	under	the	constraints	given	by	these	
five	 problems.	 To	 deal	 with	 the	 first	 problem	 (Fat	 tails)	 we	 made	 use	 of	 a	 branch	 called	
Extreme	Value	Theory.	For	problem	2	we	had	to	develop	a	technique	to	allow	boundedness	
in	the	analysis	and	publish	as	standalone	as	it	applies	to	other	similar	problems	(Taleb,	2016,	
Taleb	and	Cirillo,	2015).	 	To	deal	with	problems	3	through	5	we	relied	on	various	methods	
from	the	branch	of	robust	statistics.		

	

Fat	Tails	and	Theories	of	Violence	

The	first	main	attempt	to	model	violence	using	power	laws	was	done	by	the	polymath	Lewis	
Fry	 Richardson,	 in	 1948,	when	 he	 fit	 a	 visual	 power	 law	 using	 Zipf	 Plots	 to	 data	 between	
1820	and	1945.	Zipf	plots	are	a	visual	 technique	named	after	George	Zipf	who	popularized	
Pareto’s	 law	 by	 applying	 it	 to	 phenomena	 such	 as	 linguistics	 (word	 frequency)	 ,	
demographics	(size	of	cities),	and	others.			Richardson	himself	came	from	discoveries	of	self-
similarity	 and	 scaling	 in	 nature,	 particularly	 coastlines	 and	 some	 turbulent	 phenomena	
(Mandelbrot	1983).			

Intuitively,	we	can	explain	power	laws	as	follows:			#!"!#$% !"##"$% !"#$ !!!" !""!
#!"!#$% !"##"$% !"#$ !!!" !"!

	approximately	

equal	 to	#!"!#$% !"##"$% !"#$ !!!" !""!
#!"!#$% !"##"$% !"#$ !!!" !""!

	.	 	 This	 “scalability”	 is	 crucial	 as	 it	 makes	 the	 law	 both	
more	intuitive	and	tractable.		More	precisely	there	is	an	“exponent”	in	the	tails,	such	that,	for	
a	large	deviation	K,		

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝐾 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑜 𝐾!! 	

where	 “alpha”	 is	 the	 tail	 exponent	 and	 the	 major	 determinant	 to	 the	 shape	 of	 the	
distribution.	The	lower	the	alpha,	the	fatter	the	tails.	 	Note	here	a	helpful	property	that	the	
alpha	does	not	change	if	one	takes	half	the	data	and	doubles	it.		It	means	the	alpha	is	robust	
to	many	mistakes	in	data.	Also	note	that	the	proportionality	holds	in	the	tails	i.e.	K	very	large,	
but	not	necessarily	for	smaller	values.		

Many	 research	 papers	 subsequently	 confirmed	 the	 power	 law	 or	 “Paretianity”	 of	 the	 data	
(although	 Cirillo	 2013	 shows	 than	many	 phenomena	 identified	 as	 power	 laws	 are	 in	 fact	
lognormal,	though	still	fat-tailed	because	of	their	high	variance)	–but	the	practice	in	that	field	
was	 to	 find	 a	 mechanism	 that	 justifies	 a	 statistical	 law	 prior	 to	 adopting	 it.	 Mechanisms	
abound,	 and	 after	 the	 works	 of	 Mandelbrot	 	 (1983)	 linking	 the	 phenomenon	 to	 fractal	
geometry	(as	Richardson	did),	many	branches	of	“complexity	theory”	were	born.		Cederman	
(2003)	looked	at	a	broader	set	and	“justified”	the	process	thanks	to	a	class	of	models	called	
agent-based	that	have	been	known	to	produce	power	laws.		Cellular	automata	and	models	of	
interaction	between	agents	have	now	 flourished	providing	us	 a	 large	 computational-based	
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modeling	 apparatus;	 it	 suffices	 to	 specify	 the	 conditions	 and	 the	 mathematical	 and	
computational	 framework	 in	 place	 allows	 us	 to	 check	whether	 power	 laws	 emerge	 or	 not	
(see	Wolfram,	2002	and	Mathematica’s	programming	 language;	note	 that	 these	models	are	
not	analytic-functional	but	algorithmic	 requiring	computational	methods).	 	 It	 is	not	part	of	
this	analysis	to	discuss	these	models	–our	domain	is	statistical	inference	not	model	building;	
we	focus	on	the	statistical	backup	that	allows	the	rejection	or	“acceptance”	of	some	models.		

We	 note	 that	 all	 “fat	 tails”	 are	 not	 power	 laws,	 there	 are	 distributions	 that	 produce	
concentration	 –it	 is	 just	 that	 power	 laws	 are	more	natural	 because	of	 their	 scalability	 and	
appeal	to	users	as	they	are	very	tractable	analytically.		But	there	are	claims	one	should	never	
casually	make	 in	 the	presence	 of	 fat	 tails,	 power	 laws	or	 not.	 Let	 us	 now	put	 together	 the	
problems	of	statistical	inference	under	fat	tails.	

Fat	Tails	,	Long	Peace,		and	the	Foundational	Principles	of	Statistical	Inference	

Pinker	 (2011,	 2011b)	 	 started	 the	 promotion	 of	 an	 idea	 that	 violence	 has	 dropped,	 with		
similar	to	Buckle	–eerily	similar—	an	invocation	to	the	various	moral	values		causing	what	he	
calls	 	 “the	obsolescence	of	major	wars”	 (Pinker	2011b).	 	He	writes,	Buckle-like,	 “The	most	
promising	 explanation,	 I	 believe,	 is	 that	 the	 components	 of	 the	 human	 mind	 that	 inhibit	
violence	—	what	Abraham	Lincoln	called	“the	better	angels	of	our	nature”	—	have	become	
increasingly	engaged.”			

It	 is	 important	 to	discuss	 that	book	because	 it	has	been	cited	as	 “evidence”	 for	 the	drop	 in	
violence	 across	 political	 science.	 Pinker	 deals	 with	 the	 phenomenon	 of	 violence,	 and	 its	
manifestations	at	different	scales,	 from	homicides	and	rapes,	 to	riots	and	wars,	 from	death	
penalty	 and	 torture	 issues,	 to	 civil	 rights	 violations	 and	denial.		 To	 explain	 and	 sustain	his	
vision	 about	 the	 general	 decline	 in	 violence,	 Pinker	 develops	 the	 metaphor	 of	 a	 constant	
battle,	within	humanity,	among	some	``Inner	Demons”,	like	for	example	revenge,	sadism	and	
ideology,	 and	 some	 ``Better	Angels”,	such	 as	 empathy,	 self-control	 and	 reason	 (even	 if	 it	 is	
not	completely	clear,	at	 least	 to	us,	what	 it	 is	 that	Pinker	calls	reason).	Demons	are	mainly	
expressions	of	atavic	feelings	and	compulsions,	which	are	related	to	the	original	beast	in	us.	
Angels	are	a	result	of	civil	evolution	and	reason	development.	And	since	civilization	seems	to	
be	an	unstoppable	process,	Angels	are	bound	to	win	the	battle.	

Using	a	sort	of	meta-analysis,	relying	on	others’	results,	Pinker	collects	a	bunch	of	figures	to	
support	the	idea	of	a	decline	in	violence	in	the	history	of	humanity.		

To	armed	conflicts,	in	all	their	possible	expressions,	he	devotes	two	chapters:	the	fifth,	``The	
Long	 Peace”,	 and	 the	 sixth,	 ``The	 New	 Peace”.	 In	 the	 specific	 case	 of	 wars,	 he	 relies	 on	
previous	analyses	by,	for	example,	Cederman	(2003)	and	Richardson	(1960).	But	the	way	in	
which	he	reads	and	interprets	the	results	of	scholars	 like	Richardson	reveals	an	attempt	of	
bending	empirical	evidence	to	his	own	theory,	e.g.	when	he	deals	with	the	Poisson	nature	of	
the	number	of	armed	conflicts	over	time.	As	we	also	find	out	in	our	data	analysis,	consistent	
with	 Richardson	 (1960),	 there	 is	 no	 sufficient	 evidence	 to	 reject	 the	 null	 hypothesis	 of	 a	
homogenous	 Poisson	 process,	which	 denies	 the	 presence	 of	 any	 trend	 in	 the	 belligerence	 of	
humanity.	 Nevertheless,	 Pinker	 refers	 to	 some	 yet-unspecified	 mathematical	 model	 that	
could	also	support	such	a	decline	in	violence,	what	he	calls	a	“nonstationary”	process,	even	if	
data	 look	 the	way	 they	 look.	 It	 is	 on	 the	 basis	 of	 this	 and	 other	 apodictic	 statements	 that	
Pinker	builds	his	narrative	about	violence.	
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Pinker,	in	addition	builds	a	theory	that	is	not	at	all	statistically	robust	to	problems	3	and	4	of	
the	previous	section–such	as	as	changes	in	the	An	Lushan	estimates	or	the	granularity	of	the	
Mongolian	named	conflict.		

But	 at	 the	 core,	 Pinker’s	 severe	 mistake	 is	 one	 of	 standard	 naive	 empiricism	 –basically	
mistaking	 data	 (actually	 absence	 of	 data)	 for	 evidence	 and	 building	 his	 theory	 of	 why	
violence	has	dropped	without	 even	 ascertainting	whether	violence	did	 indeed	drop.	 	 This	 is	
not	 to	 say	 that	 Pinker’s	 socio-psychological	 theories	 can’t	 be	 right:	 they	 are	 just	 not	
sufficiently	connected	to	data	to	start	remotely	looking	like	science.	Fundamentally,	statistics	
is	 about	 ensuring	 people	 do	 not	 build	 scientific	 theories	 from	 hot	 air,	 that	 is	 without	
significant	departure	from	random.	Otherwise,	it	is	patently	"fooled	by	randomness".	And	we	
have	a	very	clear	idea	what	departure	from	random	means.		

For	fat	tailed	variables,	the	conventional	mechanism	of	the	law	of	large	numbers	(on	which	
statistical	inference	reposes)	is	considerably	slower	and	significance	requires	more	data	and	
longer	 periods.	 	 Taleb	 (2016)	 shows	 	 that	 the	 Pareto	 80/20	 takes	 1013	more	 data	 than	 a	
corresponding	Normal	distribution	that	is	ubiquitous	in	textbooks	if	one	looks	at	the	sample	
average.	Simply,	the	sample	average	is	not	a	good	estimator	of	the	“true”	mean;	it	has	what	is	
called	 a	 small	 sample	 bias	 when	 data	 is	 	 one-tailed	 (i.e.	 can	 only	 take	 either	 positive	 or	
negative	values,	as	is	the	case	with	violence).	 	 	In	other	words,	not	only	do	we	need	a	lot	of	
data	to	know	what’s	going	on,	but	,	as	in	the	case	of	violence,	we	should	expect	that	the	mean	
violence	as	measured	in	sample	to	be	lower	than	the	true	mean.		The	statistician	would	never	
measure	 the	mean	 in-sample	but	use	and	we	will	 resort	 to	 “back-door”	methods	and	more	
rigorous	maximum-likelihood	techniques.	

Ironically,	there	are	claims	that	can	be	done	on	little	data:	inference	is	asymmetric	under	fat-
tailed	domains.	We	require	more	data	to	assert	 that	 there	are	no	black	swans	than	to	assert	
that	there	are	black	swans	hence	we	would	need	much	more	data	to	claim	a	drop	in	violence	
than	to	claim	a	rise	in	it	.	

Finally,	statements	that	are	not	deemed	statistically	significant	–and	shown	to	be	so	–should	
never	 be	 used	 to	 construct	 scientific	 theories.	 Descriptive	 statistics,	 though	 deemed	
unscientific	and	anecdotal,	can	be	useful	for	exploratory	discussions,	but	not	with	fat	tailed	
processes	when	the	random	variable	entails	exposures	rather	than	binary	outcomes.		

These	foundational	principles	are	often	missed	because,	typically,	social	scientists’	statistical	
training	 is	 limited	 to	mechanistic	 tools	 from	thin	 tailed	domains.	 	 In	physics,	one	can	often	
claim	 evidence	 from	 small	 data	 sets,	 bypassing	 standard	 statistical	 methodologies,	 simply	
because	the	variance	for	these	variables	is	low	(or	the	process	has	a	strong	theory	verified	on	
a	 high	 signal	 to	 noise	 ratio).	 The	 higher	 the	 variance,	 the	 more	 data	 one	 needs	 to	 make	
statistical	claims.	For	fat-tails,	the	variance	is	typically	high	and	underestimated	in	past	data.	
And,	as	we	showed	 it	drops	very	slowly	under	averaging	(the	 law	of	 large	numbers	means	
the	sample	average	becomes	less	and	less	volatile	as	one	increases	data,	typically	at	the	rate	
of	the	square	root	of	additional	data	counts;	this	is	not	the	case	here).	

The	second	–more	serious	–error	Pinker	made	in	his	conclusion	is	to	believe	that	tail	events	
and	the	mean	are	somehow	different	animals,	not	realizing	that	the	mean	includes	these	tail	
events.	Further,	for	fat-tailed	variables,	the	mean	is	almost	entirely	determined	by	extremes.	If	
you	are	uncertain	about	the	tails,	then	you	are	uncertain	about	the	mean.	It	is	thus	incoherent	
to	say	that	violence	has	dropped	but	maybe	not	the	risk	of	tail	events;	it	would	be	like	saying	
that	 someone	 is	 "extremely	 virtuous	 except	 during	 the	 school	 shooting	 episode	 when	 he	
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killed	30	students",	or	that	nuclear	weapons	are	very	safe	as	they	only	kill	a	small	percentage	
of	the	time.	

Our	methodology	

The	Data:	We	selected	all	available	observations	over	the	period	1-2015	AD,	usually	armed	
conflicts	with	more	than	3,000	casualties	in	absolute	terms,	counting	both	soldiers	and	
civilians.			

There	are	a	few	exceptions	in	our	data	set,	some	events	that	cannot	be	considered	standard	
armed	conflicts	in	the	definition	of	Wallensteen	and	Sollenberg	(2001).	They	are	some	of	the	
bloodiest	dictatorships	of	history,	such	as	Stalin’s	regime.	This	choice	has	been	made	to	be	
consistent	with	other	works	about	war	victims	and	violence	(e.g.	Mueller,	1989;	Pinker,	
2011).			

The	data	come	from	different	sources,	such	as	Phillips	and	Axelrod	(2004)	 	Encyclopedia	of	
Wars,	and	Necrometrics	(2015),	with	some	considerations	of	selections	by	Berlinski	(2009),	
Goldstein	 (2011),	 Mueller	 (1989),	 Pinker	 (2011),	 and	 White	 (2013).	 For	 some	 online	
resources	like	Necrometrics	(2015),	we	double-checked	the	data	against	the	cited	references.		

The	first	observation	in	our	collection	is	the	Boudicca’s	Revolt	of	60-61	AD,	while	the	last	one	
is	the	still-open	international	armed	conflict	against	the	Islamic	State	of	Iraq	and	the	Levant.		
We	ended	concentrating	on	565	pieces.	

A	 natural	 question	 is	 why	 we	 have	 chosen	 to	 impose	 a	 3000-casualties	 threshold,	 when	
collecting	the	observations	about	armed	conflicts.	We	have	three	main	reasons:	

• We	do	not	need	smaller	casualties	to	get	the	properties,	as	smaller	casualties	do	not	
affect	the	average	(Richardson	himself	noted,		“Anyone	who	tries	to	make	a	list	of	"all	
the	wars"		encounters	the	difficulty	that	there	are	so	many	small	incidents,	that	some	
rule	has	to	be	made	to	exclude	them.”	(Richardson,	1948).	The	higher	the	threshold,	
the	fewer	the	observations	and	the	lower	the	noise	and	imprecision.		

• The	main	object	of	our	concern	is	tail	risk,	that’s	the	risk	of	major	destructive	
conflicts.	The	statistical	techniques	we	use	to	study	this	type	of	extreme	events	
require	the	imposition	of	thresholds	for	all	the	approximations	to	hold.	

• Conflicts	with	many	victims	are	more	likely	to	be	registered	and	studied	by	
historians.	It	would	be	impossible	to	have	reliable	information	about	“small”	battles	
with	tens	of	victims.	Empirically,	3000	victims	proved	to	be	a	good	selection	
threshold	for	other	aspects	of	the	analysis.	

• A	3000-casualties	threshold	gives	us	a	better	confidence	about	the	estimated	number	
of	casualties,	thanks	to	the	possibly	larger	number	of	sources	to	compare.	However,	
the	risk	of	over-exaggeration,	especially	for	the	large	conflicts	of	antiquity	is	
something	we	had	to	take	into	consideration.	

In	order	to	be	consistent	with	the	sociological	literature	on	armed	conflicts,	we	have	used	
different	types	of	data	in	our	analyses:		

• Actual	data,	i.e.	data	as	collected	by	historians.	Statistically	speaking	these	are	the	
raw	data.	

• Rescaled	data,	i.e.	casualties	expressed	in	terms	of	today’s	world	population,	in	order	
to	have	comparability	in	terms	of	relative	impact	of	wars.	
Rescaled	data	are	obtained	by	dividing	the	number	of	casualties	in	a	given	year	by	



	 8	

the	world	population	in	that	year,	and	then	multiplying	everything	by	today’s	world	
population.	
When	rescaling	data,	we	have	used	the	population	estimates	of	Klein	and	van	Drechts	
(2006),	and	United	Nations	(1999,	2015).	

• Transformed-rescaled	data,	that	is	data	obtained	via	the	so-called	dual	
transformation,	whose	aim	is	to	deal	with	the	boundess/unboundeness	of	the	
support	of	the	distribution	of	war	casualties	(Taleb,	2016;	Taleb	and	Cirillo,	2015).	
This	transformation	is	more	technical,	but,	as	we	briefly	explain	in	the	section	about	
Methods,	it	is	meant	to	correct	for	an	interpretation	error	about	the	apparent	
infinite-mean	nature	of	war	casualties’	data.	

Interestingly,	our	results	hold	notwithstanding	the	definition	of	data.	Numerical	estimates	
may	vary,	but	the	qualitative	interpretation	stays	the	same.	

Data	Problems:		First	of	all,	it	is	important	to	notice	that	our	data,	especially	for	what	
concerns	antiquity,	are	likely	to	suffer	from	selection/historiographical	bias.	It	was	in	fact	
not	possible	to	collect	observations	about	the	conflicts	taking	place	in	the	Americas	and	
Australia,	before	their	“discovery”	by	European	conquerors.	Naturally,	this	lack	of	evidence	
does	not	mean	that	nothing	happened	in	those	areas	in	the	past.	

Similarly,	because	of	problems	with	sources,	we	probably	miss	some	conflicts	of	antiquity	in	
Europe,	or,	say,	in	China	in	the	sixteenth	century.	However,	we	can	assume	that	the	majority	
of	these	conflicts	are	not	in	the	very	tail	of	the	distribution	of	casualties,	say	in	the	top	10	or	
20%.	It	is	in	fact	not	really	plausible	that	historians	have	not	reported	a	conflict	of	1	million	
casualties	(or	more),	so	that	such	an	event	is	not	present	in	our	sources.	

Dealing	with	 historical	 data,	 some	 dating	 back	 to	 the	 first	 century	AD,	 also	 requires	 some	
attention,	because	of	 the	probably	problems	of	 inconsistency	and	 lack	of	uniformity	 in	 the	
attribution	of	casualties	by	historians.	 	It	can	be	difficult	–	if	not	impossible	–	to	distinguish	
casualties	 from	 direct	 violence	 from	 those	 arising	 from	 such	 side	 effects	 as	 contagious	
diseases	and	hunger.		

We	mentioned	 earlier	 that	 reports	were	 highly	 source	 dependent	with	 an	 impossibility	 to	
fact-check.	Some	data,	such	as	the	An	Lushan	rebellion,	estimated		by	Pinker	(2011)	to	have	
killed	 36	 million	 people	 (around	 430	 million	 by	 today’s	 population)	 are	 highly	 dubious	
(Durant,	1960)	–and	help	perpetuate	the	impression	that	the	world	is	“less	violent”.		It	may	
have	 been	 13	 million,	 and	 the	 numbers	 were	 the	 result	 of	 	 the	 census	 and	 dispersion	 of	
officials	in	revenue	department.	(Fitzgerald,	1935,	BBC	2012)	

Data	 aggregation	 is	 another	 issue.	We	 said	 that	 conflicts	 such	 as	 the	 so-called	 “Mongolian	
Invasions”	are	nothing	more	than	artificial	designations,	which	need	to	be	treated	carefully,	
as	synthetic	observations.	These	events	are	in	fact	artificial	containers	created	by	historians	
to	 aggregate	 those	 battles	 sharing	 important	 historical,	 geographical	 and	 political	
characteristics,	 but	 that	 never	 really	 existed	 as	 a	 single	 event.	 For	
historical/historiographical	reasons,	 these	events	 tend	to	be	more	present	 in	antiquity	and	
the	Middle	Ages,	thus	possibly	causing	a	naive	overestimation	of	the	severity	of	conflicts	 in	
the	 past.	 Even	 among	 these	 aggregations	 there	 are	 major	 differences:	 WW1	 and	 WW2	
naturally	 also	 involved	 several	 tens	 of	 battles	 in	 very	 different	 locations,	 but	 these	 battles	
took	place	in	a	much	shorter	time	period,	with	no	major	time	separation	among	them.		
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Curing	 the	data	problems:	All	these	data	problems	can	be	dealt	with	by	considering	each	
single	 observation	 in	 our	 collection	 as	 an	 imprecise	 estimate,	 in	 the	 definition	 of	 Viertl	
(1995).	 	 Our	 technique	 for	 robustness	 is	 as	 follows.	 Using	 Monte	 Carlo	 methods	 ,	 and	
assuming	that	the	real	number	of	casualties	in	a	conflict	is	uniformly	distributed	between	the	
minimum	and	the	maximum	estimate	in	the	available	historical	records,	the	tail	exponent	ξ,	
the	 quantity	 that	 governs	 the	 tail	 of	 our	war	 casualties’	 distribution,	 is	 not	 affected,	 apart	
from	the	negligible	differences	in	the	smaller	decimals.			We	did	another	battery	of	tests	for	
other	variables.	(See	Figures	1	and	2	for	an	idea	of	how	we	conducted	the	tests.)	

From	a	statistical	point	of	view,	the	methods	we	use	to	study	tail	risk	are	robust.	 In	simple	
words,	this	means	that	our	results	–	and	the	relative	interpretations	–	are	immune	to	small	
changes	 in	 the	 data.	 Even	 more:	 our	 results	 cannot	 be	 reversed	 on	 the	 basis	 of	 a	 few	
observations,	added,	removed	or	“corrected”.	A	thorough	analysis	of	robustness	shows	that	
our	estimates	are	preserved	and	would	replicate	even	if	we	missed	one	third	of	the	data.		

To	conclude	 this	 section	about	 “data	problems”,	we	 think	 it	 is	 important	 to	 stress	 that	our	
data	set,	despite	its	evident	temporal	connotation,	does	not	form	a	proper	time	series.	It	is	in	
fact	 trivial	 to	 notice	 that	 the	 different	 conflicts	 of	 humanity	 do	 not	 share	 the	 same	 set	 of	
causes.	Battles	belonging	to	different	centuries	and	continents	are	not	only	independent,	but	
also	surely	have	different	origins.	 In	statistical	words,	we	cannot	assume	the	existence	of	a	
unique	conflict	generator	process,	as	if	conflicts	were	coming	from	the	same	source.	

For	 this	 reason,	 we	 believe	 that	 performing	 time	 series	 analysis	 on	 this	 kind	 of	 data	 is	
useless,	 if	 not	 dangerous,	 given	 that	 one	 could	 extrapolate	misleading	 trends,	 as	 done	 for	
example	 in	 Pinker	 (2011).	 How	 could	 the	 An	 Lushan	 rebellion	 in	 China	 (755	 AD)	 be	
dependent	on	the	Siege	of	Constantinople	by	the	Arabs	(717	AD),	or	have	an	impact	on	the	
Viking	Raids	in	Ireland	(from	795	AD	on)?		

Notice	that	we	are	not	saying	that	all	conflicts	are	independent:	during	WW2,	the	attack	on	
Pearl	 Harbor	 and	 the	 Battle	 of	 France	were	 not	 independent,	 notwithstanding	 the	 spatio-
temporal	 divide,	 and	 that’s	 why	 historians	merge	 them	 into	 one	 single	 event,	 as	 we	 have	
already	noticed	before.	And	while	we	can	accept	that,	historically,	most	of	the	causes	of	WW2	
are	 related	 to	 WW1,	 it	 is	 better	 to	 avoid	 translating	 this	 dependence	 when	 studying	 the	
number	of	casualties:	it	would	be	quite	absurd	to	believe	that	the	number	of	victims	in	1944	
had	anything	to	so	with	the	death	toll	in	1917.	How	could	the	magnitude	of	WW2	depend	on	
WW1?		
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Figure	1	How	we	tested	our	robustness	to	the	reliability	of	historical	reports.	We	create	100,000	different	
histories	as	uniform	random	numbers	between	high	and	low	estimates	from	the	data	sets	(which	under	
aggregation	appear	Gaussian)	and	check	if	re-combinations	leads	to	different	results	(we	used	the	p-
value,	actually	1-p-value	for	the	scale	parameter	not	because	we	rely	on	p-values	but	because	p-values	are	
extremely	sensitive	to	changes	in	data).	Some	histories	include	Pinker’s	exaggerated	numbers	for	the	Ann	
Lushan	rebellion,	others	don’t.				

	
Figure	2	The	tail	exponent	from	maximum	likelihood,	not	EVT,	is	invariant	to	errors		in	the	reporting	of	
conflicts.	

Methods	

Since	we	are	interested	in	estimating	the	tail	risk	of	violent	conflict,	that	is	the	risk	of	large	
destructive	 wars	 and	 armed	 conflicts,	 we	 use	 tools	 from	 extreme	 value	 theory	 (EVT)	 to	

0.6 0.7 0.8 0.9 1.0
p val0.00

0.05

0.10

0.15

0.20

0.25

Pr

0.56 0.58 0.60 0.62 0.64 0.66 0.68
��0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr



	 11	

understand	the	behavior	of	the	right	tail	of	the	distribution	of	war	casualties.	EVT	is	a	branch	
of	 statistics	 dealing	 with	 extreme	 and	 rare	 events,	 in	 the	 form	 of	 maxima	 and	 minima	
(Gumbel,	1938;	Embrechts	et	al.,	2003;		de	Haan	and	Ferreira,	2006).	

Within	 the	 broad	 field	 of	 EVT,	 we	 mainly	 use	 the	 so-called	 Generalized	 Pareto	 (GP)	
approximation	 (Balkema	 and	 de	 Haan,	 1974;	 Pickands,	 1975),	 according	 to	 which	 all	 the	
exceedances	above	a	high	threshold,	if	this	threshold	is	correctly	chosen,	tend	to	follow	a	GP	
distribution,	a	skewed	distribution,	which	can	be	characterized	by	fat	tails.	

The	function	form	of	a	GP	distribution	is		

	

𝐺𝑃𝐷 𝑧; 𝜉,𝜎, 𝑢 = 1 − 1 + 𝜉 !!!
!

!!! 𝜉 ≠ 0

1 − 𝑒!
!!!
! 𝜉 = 0

	,	

	

where	𝑧 ≥ 𝑢	for	𝜉 ≥ 0,	and	𝑢 ≤ 𝑧 ≤ 𝑢 − 𝜎/𝜉	for	𝜉 < 0,	with	𝑢, 𝜉 ∈ ℝ	and	𝜎 > 0.		

The	parameter	𝜉	is	 the	most	 important	one	 for	us,	as	 it	controls	 for	 the	 fatness	of	 the	right	
tail.	The	larger	𝜉,	the	fatter	the	tail.	For	𝜉 > 0.5,	the	GP	distribution	has	an	infinite	variance.	
For	𝜉 > 1,	even	the	mean	is	not	finite.	

For	what	concerns	war	casualties,	we	find	that	the	Paretian	tail	is	actually	so	fat	that,	from	a	
theoretical	point	of	view,	the	mean	of	the	distribution	is	not	finite	(𝜉 > 1).	In	simple	words,	
this	means	that	the	tail	risk	is	so	large	that	one	single	event,	one	single	war,	could	destroy	the	
whole	humanity	(7.3	billion	people).		

In	reality,	things	are	a	little	bit	more	complicated,	because	data	can	be	misleading,	even	when	
approaching	a	problem	using	the	correct	methodology	(EVT,	when	studying	tails).	While	we	
show	that	the	tail	risk	of	violent	conflict	is	actually	large	–	much	larger	than	what	one	could	
simply	 infer	 using	 standard	 descriptive	 and	 inferential	 statistics	 (not	 appropriate	 in	 this	
case),	we	also	point	out	that	it	cannot	be	infinite,	as	data	tend	to	suggest	naively	using	EVT.	
In	 fact,	 no	 single	 conflict	 can	 kill	more	 than	 the	whole	world	 population.	 This	 implies	 the	
presence	of	an	upper	bound	that	we	can	use	to	correct	our	estimates.	The	dual	distribution	
approach,	 based	on	a	 special	 log-transformation	of	data,	 is	 the	way	 in	which	we	deal	with	
apparently	 infinite	 mean	 phenomena	 like	 war	 casualties.	 For	 more	 details	 about	 our	
methodology,	 especially	 for	 the	 use	 of	 the	 dual	 distribution,	 we	 refer	 to	 Cirillo	 and	 Taleb	
(2016).	

Once	again,	it	is	worth	underlining	that	all	the	statistical	methods	we	use	are	robust,	that	is	
to	say	they	tend	to	be	immune	to	even	to	non-trivial	changes	in	the	data	(a	third	of	reported	
events	in	our	data	could	change	significantly,	and	still	our	results	are	preserved).		

	

The	distribution	of	war	casualties:	basic	facts	

When	looking	at	the	distribution	of	war	casualties,	the	first	thing	we	notice	is	that	it	is	highly	
skewed	with	 a	 very	 fat	 right	 tail.	 Figure	 3	 contains	 a	 simple	 histogram	 using	 actual	 data:	
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while	most	 armed	 conflict	 generate	 a	 few	 thousands	 victims2,	 on	 the	 left-hand	 side	 of	 the	
picture,	a	few	conflicts	cause	millions	of	casualties,	with	WW2	totaling	between	48.5	and	85	
million	victims,	depending	on	the	source	(in	the	graph	we	show	the	average:	73	mio).			

	

	
Figure	3:	Histogram	of	war	casualties	using	raw	data.	

	

The	 average	 number	 of	 casualties	 in	 our	 sample	 is	 1,067,568.	 The	 in-sample	 standard	
deviation	 is	 5,738,541.	 However,	 since	 the	 standard	 deviation	 is	 not	 a	 reliable	 measure	
under	fat	tails,	given	that	the	theoretical	variance	may	not	exist	(Embrecht	et	al.,	2003),	we	
also	 provide	 the	 mean	 absolute	 deviation,	 or	 MAD3:	 1,747,869.	 This	 number	 shows	 the	
extreme	volatility	of	war	casualties,	something	compatible	with	a	fat-tailed	phenomenon.		

																																								 																					
2	Please	notice	that	we	are	not	giving	any	ethical	judgement.	When	we	say	«	a	few	victims	»,	
we	think	of	them	as	statistical	data,	numbers.	From	an	ethical	point	of	view,	one	victim	is	
already	too	much.	
3	The	MAD	is	the	mean	of	all	the	absolute	deviations	of	each	data	point	from	the	sample	
mean.	Formally:	MAD(x)=E|X-E[X]|.		
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Other	 useful	 statistics	 are	 the	 median	 (40,000),	 the	 first	 quartile	 (13,538)	 and	 the	 third	
quartile	(182,000):	75%	of	all	armed	conflicts	generate	less	then	182,000	casualties,	and	still	
the	sample	mean	is	almost	6	times	larger!	

Figures	 4	 and	 5	 show	 the	 number,	 and	 the	 relative	 magnitude	 with	 respect	 to	 world	
population,	of	war	casualties	over	time,	when	using	two	different	definitions	of	data:	actual	
and	rescaled	observations.	

	

	
Figure	4:	War	casualties	over	time	w.r.t.	world	population	using	actual	data.	

It	 is	 interesting	 to	 notice	 how	 the	 choice	 of	 the	 type	 of	 data	 may	 lead	 to	 different	
interpretation	of	trends	and	patterns.	From	rescaled	data	(Figure	3),	one	could	for	example	
superficially	infer	a	decrease	in	the	number	of	casualties	over	time.	It	is	in	fact	obvious	that	
rescaling	data	will	 tend	 to	 inflate	 past	 observations,	 as	 already	noticed	by	Epstein	 (2011),	
who	 also	 object	 that	 rescaling	 may	 generate	 paradoxical	 situations.	 Citing	 him:	 “[...]	 why	
should	we	be	 content	with	only	 a	 relative	decrease?	By	 this	 logic,	when	we	 reach	 a	world	
population	of	nine	billion	in	2050,	Pinker	will	conceivably	be	satisfied	if	a	mere	two	million	
people	are	killed	in	war	that	year”.		

As	 to	 the	 number	 of	 armed	 conflicts,	 both	 figure	 5	 and	 7	 seem	 to	 suggest	 an	 increase	 of	
belligerence	over	time,	since	most	events	are	concentrated	in	the	last	500	years	or	so.	This	is	
very	likely	just	an	illusion,	probably	due	to	a	reporting	bias	for	the	conflicts	of	antiquity	and	
early	 Middle	 Ages.	 It	 is	 certainly	 easier	 to	 obtain	 decent	 information	 about	 more	 recent	



	 14	

conflicts,	 that	 is	 why	 we	 have	 many	 rather	 precise	 observations	 in	 the	 last	 decades	 and	
centuries,	with	respect	to	what	happened	in	the	third	century	AD.	

To	correctly	study	the	tail	risk	of	armed	conflicts,	we	need	to	understand	whether	our	data	
really	exhibit	a	Paretian	right	tail,	as	suggested	by	Figure	4.	 	The	answer	is	affirmative.	For	
example,	in	Figure	6,	we	see	that,	on	a	log-log	scale,	the	distribution	of	war	casualties	shows	
a	 clear	 linear	 behavior	 in	 the	 right	 tail.	 Figure	 6	 is	 a	 Zipf	 plot	 (mentioned	 earlier),	 and	 it	
represents	a	heuristic	tool	to	look	for	Paretianity	in	data	(Cirillo,	2013),	by	using	a	property	
of	 the	 survival	 function	 of	 a	 Pareto	 distributed	 random	 variable.	Many	 other	 plots	 can	 be	
used	 to	 verify	 the	 presence	 of	 a	 fat	 right	 tail,	 such	 as	Maximum-to-Sum	 and	mean	 excess	
plots,	and	we	refer	to	Cirillo	and	Taleb	(2016)	for	more	details	and	discussions.	

	
Figure	5:	War	casualties	over	time	w.r.t.	world	population	using	rescaled	data.	

Figure	6	not	only	confirms	the	idea	of	a	Paretian	right	tail,	but	it	also	suggests	that	the	whole	
distribution	of	war	casualties	may	be	in	the	domain	of	attraction	of	a	fat-tailed	distribution.	
The	linearity	of	the	survival	function	starts	indeed	from	the	very	left-hand	side	of	the	plot.	In	
addition	 Figure	 6	 shows	 how	 the	 right	 tail	 tends	 to	 close	 down	 a	 little	 bit.	 This	 is	 a	
phenomenon	commonly	known	as	finite	sample	bias.	It	is	in	fact	highly	improbable	to	be	able	
to	observe	a	sufficient	number	of	maxima	in	the	data,	so	that	the	tail	decreases	linearly	until	
the	end.	

	

Table	1	 contains	 some	 information	about	 the	occurrence	of	 armed	conflicts	over	 time.	For	
example,	 if	we	 look	 at	 events	 generating	 at	 least	 500,000	 victims,	we	 discover	 that,	when	



	 15	

using	 raw	 data,	 we	 have	 to	 wait	 an	 average	 of	 24	 years	 to	 observe	 such	 events.	 The	
corresponding	mean	absolute	deviation	is	33	years.	If,	on	the	contrary,	we	use	rescaled	data,	
the	average	inter-arrival	time	is	10	years,	with	a	MAD	of	12.		

	

	

	

	

Threshold	 Avg	Raw	 MAD	Raw	 Avg	
Rescaled		

MAD	
Rescaled		

500k	 24	 33	 10	 12	

1	mil	 34	 48	 13	 16	

2	mil	 57	 73	 20	 24	

5	mil	 93	 117	 34	 43	

10	mil	 136	 139	 52	 61	

20	mil	 252	 267	 73	 86	

50	mil	 372	 362	 104	 114	

Table	1:	Average	inter-arrival	times	and	their	mean	absolute	deviation,	in	
integer	years,	for	different	casualties'	thresholds.	
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Figure	6:	Zipf	Plot	(log-log	plot	of	the	survival	function)	of	war	casualties	using	
actual	data.		

	

If	 we	 increase	 the	 threshold4,	 and	 consider	 conflicts	with	 at	 least	 5	million	 casualties,	 we	
need	 to	wait	93	or	34	years,	depending	on	 the	data	definition.	 Intuitively,	 the	bloodier	 the	
conflict,	the	longer	the	inter-arrival	time.	For	a	conflict	with	at	least	50	million	victims,	a	very	
extreme	and	hopefully	rare	event,	the	average	inter-arrival	time	is	372	years,	using	raw	data,	
with	a	MAD	of	362.		

All	 this	 tells	 us	 that	 the	 absence	 of	 a	 conflict	 generating	 more	 than	 –	 say	 –	 20	 million	
casualties	in	the	last	20	years	is	highly	insufficient	to	state	that	its	occurrence	probability	has	
decreased	over	time,	given	that	the	average	inter-arrival	time	is	252	years	(73	for	rescaled),	
with	a	MAD	of	267	(86	 for	rescaled)	years!	Unfortunately,	we	still	have	to	wait	quite	some	
time	to	say	that	we	are	living	in	a	more	peaceful	era;	the	actual	data	we	have	are	not	in	favor	
nor	against	a	structural	change	in	violence,	when	we	deal	with	war	casualties.	Very	simply:	
we	cannot	say.	

																																								 																					
4	The	thresholds	in	Table	1	are	just	arbitrary,	and	meant	to	give	useful	information	in	a	
compact	table.	Other	thresholds	can	be	chosen,	but	one	general	monotone	behavior	can	be	
observed,	in	accordance	with	intuition:	the	higher	the	threshold,	the	longer	the	average	
inter-arrival	time.	

1e+04 1e+05 1e+06 1e+07 1e+08

0.
00

1
0.

00
5

0.
01

0
0.

05
0

0.
10

0
0.

50
0

1.
00

0

Zipf Plot of war casualties (actual data)

x (on log scale)

1 
− 

F(
x)

 (o
n 

lo
g 

sc
al

e)



	 17	

	

	

The	tail	risk	of	armed	conflicts	

	

As	 said	 before,	 using	 extreme	 value	 theory,	 and	 in	 particular	 the	 generalized	 Pareto	
approximation,	we	can	extrapolate	information	about	the	tail	risk	of	armed	conflicts.	

The	estimation	of	the	parameters	of	a	GPD	can	be	performed	in	different	ways,	and	we	refer	
to	Embrechts	et	al.	(2003),	or	de	Haan	and	Ferreira	(2006)	for	more	details.	With	our	data,	
the	best	results	are	obtained	using	maximum	likelihood	(Cirillo	and	Taleb,	2016).	

Table	2	contains	our	estimates	for	the	generalized	Pareto	approximation	for	the	distribution	
of	war	casualties,	using	both	actual	and	rescaled	data.	For	both	definitions,	we	can	see	that	
the	 thresholds	 above	 which	 the	 GPD	 approximation	 holds	 are	 definitely	 larger	 than	 the	
original	 3000	 casualties	we	 have	 imposed	 in	 collecting	 the	 data.	 	 However,	 in	 both	 cases,	
almost	60%	of	all	the	observation	lie	above	the	two	thresholds.	Since	we	are	interested	in	the	
risk	of	very	 large	conflicts,	dealing	with	the	top	60%	of	all	conflicts	 is	definitely	more	than	
sufficient	for	our	purposes5.		

The	most	interesting	result	of	Table	2	is	the	qualitative	information	we	can	extrapolate	from	
𝜉	(decimals	 are	much	 less	 relevant).	 For	both	actual	 and	 rescaled	data,	we	 clearly	 see	 that	
𝜉 > 1.	 This	 indicates	 the	presence	of	 an	 infinite	mean	phenomenon,	 that	 is	 a	phenomenon	
whose	realizations	can	be	so	large	and	erratic	that	the	mean	is	not	a	reliable	quantity.	And	if	
the	mean	of	the	GPD	is	not	finite,	then	the	mean	of	the	whole	distribution	of	war	casualties	
must	be	infinite.	In	fact,	since	the	tail	mean	is	a	component	of	the	whole	distribution	mean,	if	
the	former	is	not	finite,	the	same	holds	for	the	latter.	

	

	

Data	 u	
(threshold)	 ξ	 σ	

Raw	 25k	 1.4985	 90620	

Rescaled	 145k	 1.5868	 497436	

																																								 																					
5	In	most	applications	of	EVT,	only	the	top	5%	(or	less)	of	the	observations	lie	above	the	
given	threshold.	Our	60%	is	definitely	very	large,	confirming	the	idea	of	a	whole	distribution	
in	the	domain	of	attraction	of	a	fat-tailed	distribution,	like	the	Fréchet	(Embrechts	et	al.,	
2003).	
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Table	2:	Maximum	likelihood	estimates	for	the	parameters	of	the	GPD	
approximation	of	the	right	tail	of	the	distribution	of	war	casualties.	All	
estimates	are	significant	with	a	type	I	error	of	5%.	

	

As	 said,	 these	 results	 are	 robust	 to	missing	 or	misspecified	 data.	 As	 shown	 in	 Cirillo	 and	
Taleb	 (2016),	using	 tools	 like	bootstrap,	up	 to	20%	of	 the	observations	 (in	 the	 tail	or	not)	
could	change,	without	affecting	the	results	of	the	analysis.		

But	if	the	mean	of	the	distribution	of	war	casualties	is	not	finite,	then	it	means	that	the	tail	
risk	of	armed	conflicts	is	not	finite.	In	other	words,	we	could	experience	any	second	a	single	
event	annihilating	humanity.	A	nuclear	holocaust,	or	even	worse.	

But	can	this	really	be	the	case?	

When	dealing	with	tails,	extreme	value	theory	is	the	right	approach.	It	would	be	wrong	and	
highly	 misleading	 to	 approach	 tails	 using	 other	 techniques,	 mainly	 relying	 on	 normality.	
However,	 when	 using	 EVT,	 it	 is	 extremely	 important	 to	 take	 into	 consideration	 the	 real	
nature	of	data.	Can	a	conflict	kill	more	than	the	whole	world	population?		

The	answer	is	clearly	no.	And	this	fact	needs	to	be	taken	into	account,	if	we	do	not	want	to	be	
fooled	by	data.	

The	distribution	of	war	 casualties	 is	necessarily	bounded:	we	 surely	 cannot	kill	 a	negative	
amount	 of	 people,	 but,	 on	 the	 other	 side,	 we	 cannot	 kill	 more	 than	 the	 whole	 world	
population	(at	present,	7.3	billion	people,	according	to	the	United	Nations).	From	a	statistical	
point	of	view,	boundness	has	one	important	implication:	all	the	moments	of	the	distribution	
need	to	be	finite,	thus	including	the	mean	and	the	variance.	These	are	the	shadow	moments,	
in	the	terminology	of	Taleb	and	Cirillo	(2015),	i.e.	moments	that	cannot	be	correctly	inferred	
from	data,	unless	we	take	into	consideration	the	existence	of	an	upper	bound,	and	we	correct	
for	it.	

Using	 the	 so-called	 dual	 distribution	 (Cirillo	 and	 Taleb,	 2016),	 that	 is	 a	 particular	 log-
transformation	of	the	original	data,	to	map	them	on	the	bounded	support,	one	can	obtain	the	
actual	moments	of	the	distribution	of	war	casualties.	These	moments	are	naturally	finite,	but	
they	 tend	 to	 be	 much	 larger	 than	 those	 one	 could	 estimate	 from	 data	 using	 their	 simple	
empirical	 counteparts	 (which	are	 therefore	not	 reliable).	For	example,	using	rescaled	data,	
we	discover	that	the	tail	mean	of	war	casualties	above	the	1	million	threshold	is	6.21	million,	
against	a	corresponding	sample	mean	of	3.95	million	(1.57	times	larger).		For	a	threshold	of	
50	million	victims,	the	sample	mean	is	28.22	million,	while	the	true	(shadow)	mean	is	67.17	
(2.38	times	larger).	

When	dealing	with	tail	risk,	another	set	of	important	statistics	is	represented	by	quantiles.	A	
quantile	 is	 the	 value	 above	 which	 a	 certain	 percentage	 of	 observations	 lie.	 The	 top	 5%	
quantile	is	the	value	above	which	we	can	find	5%	of	all	the	observations.	Table	3	contains	the	
top	quantiles	of	 the	distribution	of	war	 casualties,	using	 the	dual	distribution	approach	on	
both	actual	 and	 rescaled	data.	The	 results	 are	 frightening:	 there	 is	 a	5%	probability,	 using	
actual	 data,	 of	 obseving	 a	 conflict	 generating	 at	 least	 2,380,000	 casualties;	 and	 a	 1%	
probability	of	conflicts	with	at	least	26.8	million	victims.	Even	worse:	our	data	also	support	a	
0.1%	probability	of	a	war	killing	something	 like	800	million	people,	more	 than	10%	of	 the	
whole	world	population.	These	figures	are	even	scarier	when	we	use	rescaled	data.	
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%	
above		

Raw	Data	
×107		

Rescaled	Data	
×107		

5%	 2,380,000	 15,400,000	

1%	 26,800,000	 198,200,000	

0.1%	 801,100,000	 4,751,500,000	

Table	3:	Top	quantiles	for	the	distribution	of	war	casualties,	as	obtained	via	the	
dual	distribution.	

	

Conclusion:	Is	there	any	trend?	

The	short	answer	is	no.		

Our	 data	 do	 not	 support	 the	 presence	 of	 any	 particular	 trend	 in	 the	 number	 of	 armed	
conflicts	over	time.	Humanity	seems	to	be	as	belligerent	as	always.	No	increase,	nor	decrease.		

Naturally	 we	 are	 speaking	 about	 the	 type	 of	 conflicts	 for	 which	 we	 have	 performed	 our	
analysis,	that	is	to	say	the	largest	and	most	destructive	ones.	We	cannot	say	anything	about	
small	 fights	with	 a	 few	 casualties,	 since	 they	 do	 not	 belong	 to	 our	 data	 set	 –however	 it	 is	
crucial	 that,	as	a	central	property	of	the	fat-tailedness	of	the	process,	a	decline	 in	homicide	
does	not	affect	 the	 total	properties	of	violence	and	anyone’s	 risk	of	death.	 	As	we	said,	 the	
mean	is	tail	driven.	

At	 the	 best	 of	 our	 knowledge	 no	 available	 data	 set	 contains	 enough	 information	 to	make	
credible	statements	about	statistically	significant	trends	in	the	number	of	conflicts	over	time,	
unless	we	really	 think	 it	 is	reasonable	to	extrapolate	 long-term	trends	on	the	basis	of	sixty	
years	of	observations,	like	those	after	WW2.	Given	the	inter-arrival	times	we	have	observed	
above,	it	would	be	quite	naïve	to	act	that	way.	

If	we	focus	our	attention	on	our	data	set,	and	in	particular	on	the	observations	belonging	to	
the	last	600	years	(from	1500	AD	on),	for	which	missing	observations	should	be	fewer	and	
reporting	errors	smaller,	our	analyses	suggest	 that	 the	number	of	 large	conflicts	over	 time	
follows	 a	 homogeneous	 Poisson	 process.	 In	 a	 similar	 process,	 the	 number	 of	 observations	
over	 time,	 once	we	 fix	 a	 given	 time	 interval	 (say	50	years),	 follows	 a	Poisson	distribution.		
The	 number	 of	 expected	 data	 points	 only	 depends	 on	 the	 length	 of	 the	 time	 interval	 we	
choose.	 For	 intervals	 of	 the	 same	 size,	 the	 expected	 number	 of	 observations	 is	 the	 same,	
because	 the	 intensity	 of	 the	process	does	not	 vary	over	 time.	 In	 simple	 terms,	 this	 finding	
supports	the	idea	that	wars	are	randomly	distributed	accidents	over	time,	not	following	any	
particular	trend,	as	already	pointed	out	by	Richardson	(1960).		

Interestingly,	similar	conclusions	can	also	be	derived	by	a	simple	descriptive	analysis	of	data,	
something	that	should	make	our	results	accessible	also	to	non-statisticians.	

In	Figure	7	and	8	we	show	the	average	number	of	casualties	and	the	number	of	conflits	in	the	
period	 1500-2015,	 using	 a	 non-overlapping	moving	window	 of	 20	 years.	 This	means	 that	
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both	the	average	casualties	and	the	number	of	conflicts	are	computed	for	the	periods	1501-
1520	(there	is	no	observation	in	1500),1521-1540,1541-1560	and	so	on.	

In	 Figure	 7,	 the	 red	 dots	 represent	 rescaled	 data,	 while	 the	 green	 ones	 are	 the	 actual	
observations.	It	is	quite	evident	that,	for	what	concerns	the	average	number	of	casualties,	no	
clear	trend	is	observable.		

	
Figure	7	Average	number	of	casualties	in	the	period	1500-2015	using	a	non-overlapping	moving	window	
of	20	year.	Red	dots:	rescaled	data.	Green	dots:	actual	data.	

In	 Figure	 8,	we	 show	 the	 number	 of	 armed	 conflicts	 in	 the	 same	moving	windows	 as	 per	
Figure	7.	In	this	case,	 	the	number	of	conflicts	seems	to	be	increasing	over	time,	even	if	the	
volatility	 itself	 appears	 to	 be	 higher.	 This	 is	 an	 interesting	 phenomenon	 from	 a	 statistical	
point	of	view,	as	it	makes	the	simple	inference	based	on	a	few	years	of	data	(namely	the	last	
60	 ones,	 as	 in	 the	 “Long	 Peace”	 theory)	 not	 at	 all	 reliable.	 While	 we	 are	 aware	 that	 this	
behavior	could	be	due	to	a	historiographical	reporting	bias,	according	to	which	more	recent	
conflicts	are	more	likely	to	be	recorded	in	data,	we	would	like	to	stress	how,	in	any	case,	no	
Long	Peace	 is	 observed.	 In	particular,	 the	 last	 200	years	prove	 to	 be	quite	 belligerent	 and	
“stable”.	
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Figure	8	Number	of	conflicts	between	1500	and	2015,	using	a	non-overlapping	20-year	moving	window.	
The	number	of	conflicts	is	clearly	increasing	over	time,	together	with	their	volatility.	

	

One	final	comment	on	the	finer-grained	period	since	WW2.	Figure	9	illustrates	the	mistake	
made	 in	 theorizing	 about	what	 has	 happened	 since	 1945.	 Aside	 from	 the	 fact	 that	we	 are	
picking	a	spike	and	that		a	drop	is	natural	after	every	spike.	The	way	to	properly	look	at	the	
issue	is	to	consider	the	entire	history	of	wars,	simulating	from	the	process,	and	checking	how	
many	periods	do	not	 look	 like	the	stretch	since	1945	–(by	generating	simulated	regression	
coefficients).	Alas,	we	are	about	 .37	standard	deviations	away	from	absence	of	trend.	 	Note	
that	we	are	ignoring	the	survivor	bias.	
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Figure	9	Violence	drop	since	1945.		Divergence	from	the	process		to	call	it	a	“trend”	is	patently	not	
statistically	significant,	.37%	of	a	standard	deviation	away.	No	scientist	builds	a	theory	from	.37	standard	
deviations.	

	
Figure	10	Shadow	mean	at	different	threshold.	
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Figure	11	Sample	mean	(journalistic)	and	maximum	likelihood	mean	at	different	values	of	the	tail	
exponent.		We	notice	that	a	drop	in	the	tail	exponent	causes	an	asymmetric	effect	,	hence	uncertainty	and	
lack	of	precision	about	the	tail	means	worse	mean	(Taleb	2016).	

The	fact	that	the	“shadow	mean”	or	maximum	likelihood	mean	is	in	excess	of	the	sample	
mean	across	potential	values	of	the	parameters	(Figures	10	and		11)	is	not	trivial.	It	means	
that	even	a	“real”	statistically	significant	drop	in	violence	would	not	alter	by	much	the	gravity	
of	the	situation:	the	world	is	even	more	dangerous	than	it	looks.	

We	connect	with	the	rest	of	the	chapters	as	follows.	Our	paper	may	add	some	arguments	or	
take	sides	into	the	democratic	peace	debate	entailing	Russett	(2017,	this	volume)	and	Gowa	
and	Pratt	(2017,	this	volume),	as	follows:	there	has	been,	at	the	macro	level,	a	rise	in	
democracy,	but	no	evidence	of	decline	of	wars	and	general	violence.		It	is	always	tempting	to	
assume	that	the	rise	in	institutions	has	contributed	to	change	in	the	structure	of	the	world	–
just	as	many	arguments	have	been	made	that	the	creation	of	the	federal	reserve	and	other	
financial	institutions	have	contributed	to	stability.		In	finance,	this	argument	turned	out	to	be	
wrong:	extreme	events	have	been	at	least	as	severe	(and	if	anything	have	risen)	in	spite	of	
the	development	of	such	institutions.	It	may	be	the	same	with	violence.	
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